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SOMMARIO 

La giunzione neuromuscolare (GNM) costituisce il sito di trasmissione di un impulso elettrico 

dal terminale del motoneurone alla fibra muscolare; l’organizzazione strutturale di questo 

sistema altamente dinamico è stata ulteriormente complicata dall’aggiunta delle cellule di 

Schwann perisinaptiche (CSPs), dando origine al concetto di sistema tripartito. Le CSPs sono 

cellule di Schwann non mielinizzanti strettamente adese alla zona di contatto tra nervo e 

muscolo; esse partecipano attivamente a molte funzioni fisiologiche della GNM, come il suo 

sviluppo embrionale ma anche il corretto mantenimento di GNMs adulte. Esse sono inoltre 

in grado di percepire e modulare l’attività sinaptica, mediante l’attivazione di recettori 

muscarinici e purinergici presenti sulla loro superficie. 

Studi più recenti hanno dimostrato che le CSPs sono coinvolte nei processi di recupero che 

hanno luogo in risposta ad un danno nervoso; in seguito a denervazione o a ridotta attività 

sinaptica, le CSPs de-differenziano, diventando CSPs “reattive”, ed iniziano a proliferare. 

Queste CSPs reattive partecipano attivamente ai processi di degenerazione e rigenerazione 

nervosa: esse subiscono variazioni nella loro espressione genica e acquisiscono attività simil-

macrofagiche, contribuendo alla rimozione dei detriti neuronali e reclutando fagociti in 

seguito al rilascio di citochine e chemochine. Inoltre, in seguito alla degenerazione dei 

terminali nervosi, le CSPs presenti alle placche motrici denervate estendono lunghi processi 

citosolici in grado di indurre e guidare la ricrescita neuronale. 

Considerando la crescente incidenza di malattie neurodegenerative che inizialmente 

interessano in maniera selettiva i terminali dei motoneuroni – quali la SLA e le neuropatie 

autoimmuni -, sarebbe senz’altro utile caratterizzare in maniera più approfondita il crosstalk 

tra terminali nervosi in degenerazione e le adiacenti CSPs. In particolare, l’identificazione di 

mediatori molecolari coinvolti nell’attivazione delle CSPs e nel processo di rigenerazione 

nervosa potrebbe rivelarsi cruciale per lo sviluppo di nuovi approcci terapeutici. 

A tale scopo, abbiamo adottato un approccio sperimentale innovativo, alternativo al 

cut/crush del nervo sciatico tradizionalmente utilizzato fino ad oggi. Al fine di effettuare un 

danno localizzato ai soli terminali nervosi, evitando il coinvolgimento di molti tipi cellulari e 

mediatori dell’infiammazione come accade nel corso della degenerazione Walleriana, 

abbiamo deciso di sfruttare il meccanismo d’azione di due classi di neurotossine 

presinaptiche animali: α-Latrotoxin, una tossina formante poro presente nel veleno dei ragni 

del genere Latrodectus, ed alcune neurotossine di serpente dotate di attività fosfolipasica, 



denominate SPANs. Entrambi i tipi di neurotossine inducono un’acuta e altamente 

riproducibile degenerazione dei terminali nervosi dei motoneuroni, seguita entro pochi 

giorni da una rigenerazione completa: l’azione di tali neurotossine rappresenta quindi un 

sistema appropriato e controllato per esaminare i meccanismi molecolari alla base della 

degenerazione e rigenerazione nervosa, come anche il contributo delle CSPs a tali processi. 

Abbiamo precedentemente dimostrato che i terminali nervosi esposti ad α-Ltx e SPANs 

deegenerano a causa di un eccessivo influsso di calcio nel citosol, che a sua volta induce un 

danno mitocondriale. In questo lavoro, abbiamo dimostrato che neuroni primari intossicati 

aumentano la produzione di H2O2 a livello mitocondriale: il perossido di idrogeno è una 

molecola stabile e diffusibile attraverso membrane lipidiche, e potrebbe perciò agire come 

segnale paracrino su cellule adiacenti. Infatti, l’esposizione di cellule di Schwann (CSs) 

primarie in coltura a basse concentrazioni di H2O2 induce la fosforilazione di ERK, con la 

conseguente attivazione di pathways a valle. È stato recentemente dimostrato che la via di 

ERK gioca un ruolo fondamentale nel controllo della plasticità delle CSs durante la 

rigenerazione nervosa in vivo, ma fino ad oggi i mediatori molecolari responsabili per 

l’attivazione di tale pathway non sono ancora stati identificati: il perossido di idrogeno 

prodotto dai neuroni in degenerazione costituisce un buon candidato per tale ruolo. In 

supporto a tale ipotesi, abbiamo osservato che il livello di fosforilazione di ERK è ridotto in 

co-colture di neuroni e CSs intossicate e pre-incubate con catalasi, che converte 

rapidamente il perossido di idrogeno in ossigeno ed acqua: ciò conferma che il perossido di 

idrogeno prodotto dai neuroni diffonde effettivamente nel mezzo extracellulare fino a 

raggiungere le vicine CSs, nelle quali induce l’attivazione della via di ERK. Tale attivazione è 

riscontrata anche nelle CSPs alle GNMs intossicate in vivo. Per confermare il coinvolgimento 

del perossido di idrogeno  nell’induzione della rigenerazione nervosa, abbiamo effettuato 

registrazioni elettrofisiologiche ed esperimenti di immunoistochimica, ed entrambi gli 

approcci sperimentali hanno dimostrato che in la somministrazione di catalasi in vivo ritarda 

il processo di rigenerazione nervosa in muscoli intossicati. Inoltre, il pre-trattamento con un 

inibitore della via di ERK - PD98059 – rallenta la il recupero dall’intossicazione con una 

cinetica molto simile a quella osservata in presenza di catalasi, supportando l’idea che in 

effetti il perossido di idrogeno promuova la rigenerazione nervosa attraverso l’attivazione 

della via di ERK nelle CSPs. 

 



SUMMARY 

The neuromuscular junction (NMJ) is the site of transmission of the electrical impulses from 

the motor axon terminal to the muscle; the anatomical organization of this highly dynamic 

system also includes the perisynaptic Schwann cells (PSCs), and therefore the NMJ has to be 

considered structurally and functionally as a tripartite system. These non-myelinating SCs 

are intimately associated with the nerve muscle contact and act as dynamic partners at the 

synapse: they are involved in many physiological functions including the embryonic 

development and the maintenance of adult NMJs. Moreover, they are able to detect and 

reciprocally modulate synaptic activity, through the activation of muscarinin and purinergic 

receptors present on their surface. 

In addition, non-traditional roles for PSCs in the recovery after nerve injury are being 

recognized. Following denervation or reduced synaptic activity, PSCs de-differentiate to an 

earlier developmental stage, becoming “reactive” PSCs, and start proliferating. These 

reactive PSCs actively participate in the process of nerve degeneration and regeneration: 

they undergo changes in their gene expression and acquire macrophagic-like activities, thus 

contributing to the removal of nerve debris as well as to the recruitment of macrophages, by 

releasing cytokines and chemokines. Moreover, following nerve terminals degeneration, 

PSCs at denervated end-plates extend long processes that induce and guide nerve regrowth. 

Given the increasing incidence of non cell-autonomous and dying-back axonopathies - such 

as amyotrophic lateral sclerosis (ALS) and autoimmune neuropathies - which affect 

predominantly motor axons terminals, it becomes very important to characterize the 

crosstalk between degenerating nerve terminals and adjacent PSCs at the NMJ; in particular, 

the identification of molecular mediators involved in PSCs activation and in nerve terminals 

regeneration would be crucial for the improvement of therapeutic strategies. 

This is the general aim of the present thesis and with this purpose in mind, we have adopted 

an innovative experimental approach, alternative to the traditional cut/crush surgical model 

employed till now. To confine the nerve damage to the sole motor axon terminal, thus 

avoiding the involvement of many cell types and inflammatory mediators, we exploited our 

knowledge on the mechanism of action of two classes of animal presynaptic neurotoxins: α-

Ltx, a pore forming toxin of the venom of black widow spiders, and some snake neurotoxins 

endowed with phospholipase A2 activity called SPANs. Both kinds of neurotoxins induce an 

acute and highly reproducible motor axon terminal degeneration, which is followed in few 



days by complete regeneration: thus, this model represents an appropriate and controlled 

system to dissect the molecular mechanisms underlying de- and re-generation of peripheral 

nerve terminals, and to define how PSCs contribute to such processes. 

We have previously shown that nerve terminals exposed to spider or snake neurotoxins 

degenerate owing to calcium overload and mitochondrial failure. Here, we found that toxin-

treated cultured neurons increase their mitochondrial production of hydrogen peroxide 

(H2O2), which can easily diffuse across membranes, thus acting as a paracrine signal on 

neighbouring cellS. Indeed, exposure of cultured SCs to H2O2 leads to ERK phosphorylation 

and to the activation of downstream pathways. The ERK signalling pathway plays a central 

role in controlling SCs plasticity during nerve repair in-vivo, but so far the molecular 

mediators responsible for its activation were unknown: neurons-derived H2O2 represents an 

ideal candidate for this role.  

In support of this hypothesis, we observed that ERK phosphorylation is reduced in 

intoxicated neurons-SCs co-cultures pre-incubated with catalase - which converts H2O2 to 

oxygen and water -, indicating that H2O2 produced inside neurons diffuses to reach nearby 

SCs, contributing to ERK activation in their cytosol. ERK phosphorylation takes place also in 

PSCs at intoxicated NMJs in-vivo. To confirm the involvement of H2O2 in promoting nerve 

regeneration, we performed electrophysiological recordings and immunohistochemistry on 

intoxicated muscles, and we found that co-injection of catalase together with neurotoxins 

delays nerve regeneration, confirming the prominent role of H2O2 in promoting NMJ 

recovery. Injection of the MAP kinase inhibitor PD98059 also impairs nerve repair in a way 

similar to that observed with catalase, supporting the finding that H2O2 enhances nerve 

terminals regeneration through the activation of ERK pathway in PSCs. 
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1. INTRODUCTION 

The motor nerve terminal is a highly complex and dynamic compartment responsible for the 

transduction of electrical impulses to the muscle. The regulation of voluntary and 

involuntary movements, which relies on this transmission, is crucial for many physiological 

functions such as breathing, moving and feeding.  

Due to its intrinsic functional features and the key role in many survival behaviours, the 

motor axon terminal represents the main target of several pathogens: during evolution, both 

animals and bacteria have indeed developed several toxins which selectively interfere with 

nerve-muscle transmission, causing  paralysis and in most severe cases death. 

Beside pathogens, many neuromuscular diseases have been shown to compromise the 

synaptic transmission between motor neurons and muscle cells; most of them are classified 

as genetic or auto-immuno diseases, and can differ in severity and mortality rate. Although 

plenty of work has been focused on the etiology of motorneuron disorders, little is known 

about the pathogenesis of many of them, that still lacks therapeutics. 

The peripheral nervous system (PNS) has an intrinsic ability to repair after nerve injury; this 

capacity depends on patient age, and on type and site of injury (in particular on the distance 

from the neuronal cell body). The PNS regenerative potential mainly relies on the response 

to damage of Schwann cells (SCs), the glia of PNS. These cells are known to provide 

fundamental cues that trigger neuronal regenerative response. Thus, a better understanding 

of SCs contribution to nerve repair may provide compelling information that could be 

relevant for many different pathological contexts, and could allow the development of new 

therapeutic strategies for neurodegenerative diseases. 

This work has been focused on the setting up of an innovative experimental system to 

characterize the crosstalk between degenerating nerve terminals and SCs, with the final 

purpose of identifying molecular mediators crucially involved in the process of nerve 

terminals regeneration. 

Scientific background, experimental approaches and tools of this study will be elucidated in 

the following pages. 
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1.1 THE NEUROMUSCULAR JUNCTION 

The neuromuscular junction (NMJ) is a chemical specialized synapse designed to transmit 

the electrical impulse from the nerve to the skeletal muscle through the release of the 

neurotransmitter acetylcholine (Ach); in mammals, this finely tuned system relies on at least 

three components: the motor neuron, the muscle fiber and the perisynaptic/terminal 

Schwann cells (PSCs) (Fig. 1). 

The motor axon terminal, which represents the pre-synaptic element of the NMJ, is the 

structure where neuroexocytosis occurs; it innervates the muscle at a specialized site called 

end-plate (post-synaptic element). While approaching the muscle fiber, the motor axon 

loses its myelin sheath and splits into several fine branches, which form multiple expansions 

called synaptic boutons.  

 

 

 

 

 

Fig. 1: Anatomical structure of mammalian NMJ.  Immunohistochemistry on Levator Auris Longus (LAL) muscle 

of a transgenic mouse expressing GFP in the cytosol of SCs under the plp promoter (upper left picture, green). 

Nerve terminals are labelled with an antibody against the vesicular Ach transporter (VAcht, upper-right picture, 

blue) and the muscle end-plate is stained with α-Bungarotoxin (α-Btx) Alexa 555-conjugated (bottom left, red). 

Scale bar: 10 µm. 
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Each bouton contains all the machinery required for neurotransmission: synaptic vesicles 

containing Ach and the active zones, regions of the pre-synaptic plasma membrane 

specialized for vesicular release and enriched in voltage-gated calcium channels.  

Active zones are juxtaposed with junctional folds, deep depressions in the surface of the 

post-synaptic muscle fiber which contain nicotinic receptors for Ach as well as voltage-gated 

sodium channels.  

Upon the arrival of an action potential at the motor axon terminal, voltage-dependent 

calcium channels open and the resulting calcium influx triggers the fusion of synaptic vesicles 

with the pre-synaptic plasma membrane: vesicular Ach is therefore poured out into the 

synaptic cleft, which separates the pre- and post-synaptic membranes, and diffuses to reach 

nicotinic receptors on the motor end-plate. The opening of these ionotropic receptors 

induces a depolarization of the end-plate giving rise to an end-plate potential; this in turn 

opens neighbouring voltage-gated sodium channels, eventually leading to the onset of an 

action potential, which propagates along the muscle fiber causing muscle contraction [1]. 

Though it has long been noticed that glial cells named perisynaptic Schwann cells (PSCs) are 

present at the nerve-muscle contact sites, these non-myelinating SCs have traditionally been 

considered merely passive supporting players at the synapse. Indeed, PSCs were thought not 

to actively participate in synaptic transmission at NMJ, partly because they are electrically 

non-excitable. However, a flurry of recent studies have unravelled the active roles of PSCs in 

formation, function and maintenance of the NMJ, demonstrating that PSCs are on the 

contrary integral and essential components of the synapse. Moreover, non-traditional 

executive roles for PSCs are being recognized in the process of recovery after nerve injury. 

Taken together, these evidences have led to the concept that NMJ is a tripartite unit, where 

PSCs must be considered central players in many physiological and pathological processes. 
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1.2 SCHWANN CELLS  

Schwann cells (SCs) are the main glia of the PNS. Named after the German physiologist 

Theodor Schwann, SCs have long been recognized as crucial components in maintaining a 

proper environment for neuronal function. Recently, additional and more dynamic roles at 

synapses have been ascribed to them. 

During embryonic development, SCs originate from neural crest cells; in mice, the 

generation of SCs precursors takes place at E12-E13 (embryonic day 12-13), followed by 

immature SCs at E13-15, which persist till birth. The postnatal fate of the immature SCs 

depends on their random association with axons; during the so-called radial sorting, 

whereby pro-myelinating SCs surround groups of axons by extending processes into axon 

bundles, those SCs that associate with single large-diameter axons will develop into 

myelinating SCs. Small diameter axons become instead entrenched in invaginations of non-

myelinating SCs, also called Remak bundles [2, 3] (Fig. 2). Non-myelinating SCs also comprise 

perisynaptic or terminal SCs (PSCs), which cover the NMJ in close proximity to the neuron-

muscle contact. 

The transition from immature SCs to completely differentiated SCs is reversible: upon loss of 

axonal contact after nerve section, cells of both types de-differentiate to an earlier 

developmental stage, re-entering the cell cycle and start proliferating. 

 

 

 

 

Fig. 2: Schwann cells origin and development. During embryonic development, neural crest cells give rise to 
SCs precursors, which then develop into  different adult phenotypes: myelinating SCs and non-myelinating SCs, 
which can form Remak bundles along axons or differentiate into PSCs at NMJs. Dashed arrows indicate the 
reversibility of the final, largely postnatal transition during which mature myelinating and nonmyelinating cells 
are generated. Figure from Jessen and Mirky, 2005. 
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1.2.1 SCs in NMJ development  

At mammalian and amphibian NMJs there are typically 3 to 5 PSCs: the number of PSCs per 

NMJ is tightly regulated and related to the end-plate size [4]. Since SCs migrate along the 

nerve during embryonic development, they are present at the earliest nerve-muscle contact, 

suggesting their involvement in NMJ formation. Genetic studies of neuregulin-1 (NRG1) and 

its receptors (erbB2 and erbB3) in mice provided valuable information for the role of SCs in 

the formation of the NMJ [5, 6]. At developing NMJs, the survival of SCs relies on the axonal 

supply of NRG-1: indeed, both NRG-1 and erbB mutant mice lack SCs at the periphery. In the 

absence of SCs, motor axons still project and reach the target muscles, but are markedly 

defasciculated; this suggests that SCs are dispensable for axon path finding but are essential 

for nerve fasciculation [5]. Moreover, in NRG-1, erbB2 and erbB3 mutant mice NMJs are 

initially established but fail to be maintained: thus, SCs are dispensable for the initial nerve-

muscle contacts but are necessary for subsequent growth and maintenance of the 

developing synapse [7]. This observation has been further supported by observations at the 

developing NMJ in tadpoles, in which the extension of SCs processes always precedes Ach 

receptors deposition and synaptic growth, thus appearing to guide nerve terminals [8]. 

When PSCs are selectively killed by complement-mediated cell lysis, synaptic growth is 

markedly reduced and terminal retractions are widespread. Thus, it is now clear that any 

consideration of the events underlying NMJ formation and maintenance must take the SCs 

into account. 

 

1.2.2 SCs in synaptic transmission at adult NMJ 

Given the proximity of PSCs processes to the active zones and postsynaptic receptors, it 

stands out that they are well positioned to detect and modulate synaptic activity. 

Additionally, PSCs express many more neurotransmitter receptors and ion channels than 

myelinating SCs: for instance, they have functional L-type voltage-dependent calcium 

channels, muscarinic, purinergic and substance P receptors [9]. Evidence indicating that PSCs 

are actually involved in neuromuscular transmission have been reported in many 

experimental studies. High-frequency nerve stimulation in frogs and mice induces transient 

elevation in the intracellular calcium level in PSCs, and this increase is greatly reduced when 

transmitter release is blocked [10, 11]. Local application of ACh and/or ATP, which are 
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released by nerve terminals during nerve activity, also elicits calcium elevation in PSCs, 

suggesting the recruitment of their G-coupled muscarinic and purinergic receptors. PSCs 

responses to Ach or ATP are not impaired in the absence of extracellular calcium, implying 

that the major source of calcium transients are intracellular stores [10, 12].  

Not only do PSCs sense synaptic transmission, they also modulate subsequent synaptic 

activity [9]; depending on the duration and intensity of nerve stimulation, PSCs react by 

secreting different neuromodulatory substances. Glutamate release from PSCs has been 

shown to cause the depression of synaptic activity via the induction of NO synthase in the 

muscle, whereas it has been proposed that prostaglandins produced by PSCs directly act on 

the nerve terminal leading to a potentiated neurotransmission [13, 14, 15]. 

Thus, PSCs act as dynamic partners in the NMJ transmission by providing feedback 

regulation to the synapse in response to synaptic activity. 

 

1.2.3 SCs in nerve degeneration and regeneration 

Beside the important functions exerted by PSCs in the formation, development and 

maintenance of the NMJ, emerging evidence indicates that they also play, along with 

myelinating SCs, a key role in nerve terminal degeneration and regeneration. 

 

1.2.3.1 Nerve degeneration 

Axon degeneration is a prominent early feature of most neurodegenerative disorders and 

can also be induced directly by nerve injury in a process known as Wallerian degeneration. 

The latter was first described by Augustus Waller in 1850 [16], when he found that following 

the cut or crush of a nerve fiber, the axon segment detached from the neuronal cell body 

undergoes an acute axonal degeneration (also called acute axonal degeneration [17]).  

Wallerian degeneration occurs in both PNS and central nervous system (CNS) and usually 

begins within 24-36 hours from the lesion (Fig.3). Early pathological changes in the distal 

stump include failure of synaptic transmission, target denervation and granular 

disintegration of the axonal cytoskeleton. Increased intra-axonal calcium and calpains 

activation are well established events in the execution phase of Wallerian degeneration: this 

leads to fragmentation of axonal cytoskeleton and inner organelles, together with axolemma 

swelling and bead-like formation. Early alterations also include endoplasmic reticulum 
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degradation and accumulation of swelled mitochondria at the paranodal regions at the site 

of injury [18, 19]. Mitochondria have been proposed to have one or more key roles in 

Wallerian degeneration: in the earliest phase they swell, accumulate at paranodal sites and 

lose their membrane potential. Mitochondrial disfunction lowers ATP levels, generates 

reactive oxygen species (ROS) and impairs calcium buffering, leading to cellular homeostasis 

imbalance, mitochondrial permeability transition pore (mPTP) opening, release of pro-

apoptotic signals and activation of other cell death mechanisms. However, whether these 

changes are a cause or simply a consequence of degeneration remains unclear [20]. 

At the end of the process, the axon undergoes complete fragmentation; the rate of 

degradation depends on the type of injury and is slower in the CNS than in the PNS. Another 

factor that affects degradation rate is the axon diameter: in longer axons the cytoskeleton 

degrades more slowly and thus longer axons take longer to degenerate. 

 

 

 

 

The SCs response to axonal injury is rapid; within few hours, myelinating SCs associated with 

damaged axons de-differentiate to a progenitor-like state, becoming “reactive”, and start 

proliferating [21]. They undergo changes in gene expression, down-regulate structural 

proteins - such as protein zero (P0), myelin basic protein (MBP) and myelin associated 

glycoprotein -, whilst up-regulate cell-adhesion molecules and glial fibrillary acidic protein 

(GFAP), along with growth factors [22]. The myelin sheaths separate from the axons, rapidly 

deteriorate and shorten to form bead-like structures. Moreover, reactive SCs acquire 

macrophagic-like activities and start clearing up the axonal and myelin debris; they also 

Fig. 3. Main steps of Wallerian degeneration. 

Following axon damage (A), the distal stump 

degenerates undergoing fragmentation (B). 

Activated SCs de-differentiate and start 

proliferating, secreting chemokines and 

cytokines which recruit macrophages at the 

site of injury (B). Both activated SCs and 

macrophages contribute to nerve debris 

clearing (C). From Fitzgerald MJT, Folan-Curran 

J. Clinical Neuroanatomy and Related 

Neuroscience. 4
th

 ed. Philadelphia, Pa: WB 

Saunders; 2002. 
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recruit macrophages by releasing cytokines and chemokines, thus improving the clearing 

rate of cell debris favouring regeneration [23, 24]. 

PSCs at NMJs undergo similar alterations upon degeneration of the motor axon terminal: 

they de-differentiate and re-enter cell cycle. It has been shown that a reduced synaptic 

activity (which follows denervation) leads to an increased expression of the cytoskeletal 

protein GFAP and of the p75 neurotrophin receptor, whereas the loss of nerve contact up-

regulates GAP-43 (growth associated protein 43) and down-regulates the cytosolic protein S-

100. In addition, PSCs at degenerating NMJs contribute to the removal of debris originating 

from degenerating nerve terminals; once completed the clearing, they move to occupy the 

denervated synaptic cleft and start releasing ACh, giving rise to miniature endplate 

potentials in the muscle fiber [9, 25]. 

 

1.2.3.2 Nerve regeneration 

In the PNS injured axons can spontaneously regrow. This is in contrast to the CNS, where 

severed axons rarely show significant levels of regeneration, probably due to lack of glial 

support: several studies revealed that the failure of CNS neurons to regenerate is not an 

intrinsic deficit of neurons, but rather a characteristic feature of the damaged environment 

that either do not support or prevented regeneration [26]. In particular, the clearing up 

process of myelin debris seems to be delayed in the CNS with respect to the PNS, and this 

could possibly hinder the process of nerve regrowth [27]. 

In the PNS, soon after nerve injury the proximal stump of damaged axon – which is still 

connected to the neuronal cell body – undergoes deep reorganization which leads to the 

formation of a fundamental structure for nerve regeneration: the growth cone [28]. Growth 

cones are highly motile structures that explore the extracellular environment, determine the 

direction of growth, and then guide the extension of the axon in that direction (Fig. 4).  The   

main   morphological   characteristic  of  a   growth  cone   is  a   sheet-like  expansion of the 

growing axon at its tip, called lamellipodium. The highly dynamic nature of growth cones 

allows them to respond to the surrounding environment by rapidly changing direction and 

branching in response to various stimuli. Overall, axon elongation is the product of a process 

known as tip growth. 
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In this process, new material is added at the growth cone while the remainder of the axonal 

cytoskeleton remains stationary. This occurs via two processes: cytoskeletal-based dynamics 

and mechanical tension. With cytoskeletal dynamics, microtubules polymerize into the 

growth cone and deliver vital components. Mechanical tension occurs when the membrane 

is stretched due to force generation by molecular motors in the growth cone and strong 

adhesions to the substrate along the axon. Laminins of the basal membrane interact with 

the integrins of the growth cone to promote the forward movement of the axon tip [29]. 

Additionally, axon outgrowth is also supported by the stabilization of the proximal ends of 

microtubules, which provide the structural support for the axon.  

SCs play a crucial role in repair of peripheral axons [30, 31]. Beside the release of growth 

factors such as NGF, BDNF, GDNF and NT-3, they also provide structural guidance to further 

enhance regeneration [32]. During their proliferation phase, SCs begin to form a line of cells 

called Bands of Bungner within the basal laminar tube: axons have been observed to 

regenerate in close association to these cells [33]. Also, SCs up-regulate the production of 

cell surface adhesion molecules further promoting growth. These Bands of Bungner guide 

the axon elongation in the proper direction.  

Also PSCs at NMJs greatly contribute to axonal regeneration after nerve injury: their crucial 

roles in such process were initially demonstrated by Son and Thompson in 1995 using 

elegant immunohistochemistry experiments [34, 35]. They found that shortly after a full 

resection of the nerve PSCs extend processes – called “sprouts” –  that grow through the 

muscle, reaching lengths of several hundred micrometers, and forming a network of 

processes interconnecting the denervated endplates (Fig. 5). Regenerating axons grow back 

to the muscle following the endoneurial tubes provided by de-differentiated myelinating 

Fig. 4. Principal steps of nerve regeneration. Soon 

after nerve injury, growth cone forms at the 

proximal stump of damaged axon (A), and 

proliferating SCs organize to form bands of 

Bungner (B) along which the regenerating axon 

grows to re-innervate its target site (C). From 

Fitzgerald MJT, Folan-Curran J. Clinical 

Neuroanatomy and Related Neuroscience. 4th ed. 

Philadelphia, Pa: WB Saunders; 2002. 

http://en.wikipedia.org/wiki/Basal_lamina
http://en.wikipedia.org/wiki/Integrin
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SCs, and are led to denervated endplates. Motor axons approaching muscle fibers proceed 

to re-occupy the endplate sites, but do not stop their growth there. Rather, they grow out 

along PSCs processes extended from the endplate, forming the so-called “excaped fibers”. In 

this manner, PSCs processes act as bridges between endplates for reinnervating axons.  

A similar phenomenon is observed also following partial denervation: here, PSCs processes 

from denervated endplates find the still-innervated ones, where they induce a nerve 

terminal sprout that is then guided back to the denervated site [9, 25]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The proposed role of SCs in regeneration of peripheral nerves and muscle re-innervation. (A) The 

normal innervation of 3 muscle fibers by an intramuscular nerve containing two myelinated motor axons (in 

red), one of which forms branches that innervate two different muscle fibers. PSCs (in blue) cover the NMJs. In 

(B) the nerve is resected and the axons are degenerating distal to the lesion site (dashed red lines). The myelin 

coating of the former axons disintegrates, and activated SCs begin to extend processes within the endoneurial 

tubes of the nerve. Activated PSCs at denervated NMJs start extending processes over the muscle fibers. (C) 

The SCs of the nerve form a bridge across the lesion site (Band of Bungner) through which one axon 

regenerates. Processes of PSCs have extended from each endplate forming in some cases fascicles which 

interconnect denerveted endplates. A regenerating axon arriving at one endplate re-innervates this muscle 

fiber and extends beyond this endplate (that is, “excaped fiber”) by growing onto PSCs processes. (D) The axon 

in C has grown along PSCs sprouts to innervate also the lower endplate, and keeps growing in a retrograde 

direction up the endoneurial tube. At the end, all three muscle fibers become innervated by the same axon, 

thus leading to a clustered distribution of the motor units fibers. Polineurally innervation of a single muscle cell 

is also often observed following nerve regeneration (modified from Son and Thompson 1995). 



11 
 

As a consequence of the reinnervation process, muscle fibers often become polineurally 

innervated; moreover, adjacent muscle fibers are frequently innervated by the same axon, 

leading to a clustered distribution of a motor unit fibers [25]. 

Thus, SCs function as leaders rather than followers during regeneration: indeed they lead 

and guide reinnervating nerve-sprouts in order to re-establish a functional reinnervation of 

muscle fibers. 
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1.3 EXPERIMENTAL MODELS TO STUDY NERVE TERMINALS REGENERATION 

Although clearly documented, the regeneration of damaged motor axons is still ill-known in 

some of its cellular and molecular aspects. The traditional experimental approach used to 

investigate such process is the in-vivo cut or crush of sciatic nerves in rodents, and much of 

our knowledge about how nerve regeneration occurs comes from this kind of studies. 

As mentioned above, Wallerian degeneration, which is set in motion following such 

mechanical injury, is a very complex process: it triggers a pronounced inflammatory 

response, all along the nerve, involving many cell types and inflammatory mediators. This 

surgically-induced nerve degeneration closely mimics the cascade of events which occurs in 

traumatized patients – i. e. calcium overload, mitochondrial impairment and cytoskeletal 

fragmentation of injured nerves -, thus representing a well-established model to 

characterize these pathological conditions. However, many other motor neuron diseases do 

not share some of the pathogenic features of Wallerian degeneration: indeed, in non cell-

autonomous and dying-back axonopathies such as ALS and autoimmune neuropathies, 

including the Guillain-Barré and Miller-Fisher syndromes, many molecular changes 

influencing motor neuron degeneration are thought to occur at the NMJ at very early stages 

of the disease prior to symptom onset [36, 37, 38, 39]. Therefore, experimental models 

which allow a more focused examination of pathogenic events ongoing during motor axon 

terminals degeneration are needed in order to get useful information about this distally-

localized process. 

Beside this, a better understanding of PSCs roles in nerve terminals degeneration and 

regeneration may also be provided by experimental models in which the nerve injury only 

affects axon terminals, thus confining the major effects of such damage at NMJ. 

To this purpose, the ideal condition would be to provide a very specific and localized damage 

of the nerve terminal in order to avoid the activation and involvement of many cell types – 

including myelinating SCs – and the massive production of inflammatory mediators. 

Moreover, this localized injury should reproduce the chain reaction of molecular events that 

leads to nerve terminal degeneration in sick or injured patients. 

To fully meet these requirements, we decided to exploit our knowledge on the mechanism 

of action of two classes of animal neurotoxins that induce a selective and reversible 

degeneration of motor axon terminals (Fig. 6). In particular, we focused our attention on α-

Latrotoxin (α-Ltx), a pore-forming toxin of the venom of black widow spiders [40], and on 
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some snake neurotoxins endowed with phospholipase A2 activity, called SPANs [41, 42]. A 

recent side-by-side comparative study of α-Ltx and SPANs action showed that, despite their 

different biochemical activities, both kind of neurotoxins exert their degenerative activities 

mainly by inducing a large calcium influx inside nerve terminals, due to toxins-induced 

plasma membrane permeability alterations [43]. This uncontrolled calcium overload triggers 

a massive neuroexocytosis followed by muscle paralysis and progressive degeneration of the 

motor axon terminal. Interestingly, α-Ltx- and SPANs-induced peripheral paralysis is followed 

by a complete and rapid recovery: regeneration and re-innervation are almost fully restored 

in rodents by 5 to 10 days [44, 45].  

The regeneration steps that take place upon animal neurotoxins poisoning are likely to be 

similar to those that follow the cut or crush of nerves, since a closely similar cascade of toxic 

events occurs in both conditions (i.e. calcium overload, cytoskeleton degradation and 

mitochondria impairment); moreover, this alternative and innovative approach provides the 

advantage of being much more controlled and more reproducible. In addition, it does not 

involve the death of many cell types, it is strictly limited to the end-plate and the 

biochemical mechanism of action of the toxins is well characterized – see next sections-. 

 

 

 

 

Fig. 6. Animal presynaptic neurotoxins induce a localized and reversible motor axon terminal degeneration. 

α-Ltx from black widow spiders and snake neurotoxins (SPANs) target specifically the presynaptic element of 

the NMJ, causing a toxic calcium influx. This cytosolic calcium overload triggers massive neuroexocytosis, 

followed by vesicles depletion and muscular paralysis; in a later stage of intoxication it sets in motion the 

progressive degeneration of motor axon terminals. In mice a complete and functional regeneration is achieved 

in few days after intoxication. 
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Therefore, the mouse NMJ treated with α-Ltx or SPANs represents a relevant model of acute 

motor axon terminal degeneration and regeneration, which is likely to provide information 

useful not only to the understanding of the pathogenesis of envenomation but, more in 

general, of other human pathological syndromes. 

 

1.3.1 Animal presynaptic neurotoxins 

The understanding of the molecular mechanism of action of these animal neurotoxins is 

fundamental to better understand their role in this study; thus, a detailed decription of their 

structure, mechanism of action and toxic effects will be illustrated in the next sections. 

 

1.3.1.1 α-Latrotoxin 

The black widow spiders (genus Latrodectus) are largely diffused in many parts of the world. 

The venom of Latrodectus spp. contains at least 86 unique proteins [46], some of which play 

a role in its toxicity toward insects and crustaceans, with only one component, α-Ltx, 

targeting vertebrates specifically [47]. This 130-kDa protein induces exhaustive release of 

neurotransmitters from nerve terminals and endocrine cells, and has been employed for 

many years as a molecular tool to study exocytosis [48, 49]. 

α-Ltx is synthetized as a 157 kDa polypeptide in the cytosol of secretory epithelial cells of 

spiders venom glands (Fig. 7) [50, 51]. These cells disintegrate and expel toxin into the gland 

lumen together with various proteases [46]. Here, the toxin is cleaved at both termini by a 

furin-like protease, producing an active α-Ltx of 131 kDa [52]. The most striking feature of α-

Ltx primary structure is a series of 22 ankyrin repeats; the N-terminal of the toxin shows no 

significant homology with other proteins and contains three conserved cysteines important 

for the structural stability and activity of all Ltxs [50]. 

Although some monomers - consisting of a wing, a body and a head domain - have been 

observed by cryo-electron microscopy in EDTA-treated α-Ltx, the toxin almost always exists 

as a stable dimer in which the monomers are associated “head to tail” [50]. Association of 

dimers, strongly catalysed by divalent cations, produces a cyclical structure that can contain 

four monomers only. The bottom region of this bowl-like structure is important for 

penetration into lipid bilayers, and it is likely that structural rearrangements required for 

tetramerisation expose the surface regions favourable to interaction with lipid membranes. 
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Above this, in the centre of the “bowl”, the four heads form a cylindrical assembly 

surrounding the channel, which is restricted at one point to 10 Å; this constriction probably 

corresponds to the cations binding site of the α-Ltx channel. The wings extend sideways 

from the body domains perpendicular to the central symmetry axis of the tetramer, and 

could participate in the binding to some receptors (Fig. 7, 8) [40]. 

 

 

 

 

 

 

 

 

Although α-Ltx is able to insert into pure lipidic membranes, reconstituted receptors greatly 

enhance the rate of insertion. It is not clear whether some receptors are directly involved in 

membrane insertion, if they simply concentrate toxin near membrane or if they organise 

membrane lipid domains to make them accessible to α-Ltx. At present, three surface-

proteins have been identified to be selectively bound by α-Ltx: neurexin (NRX) (calcium-

dependent interaction), latrophilin 1 (LPH1) and protein tyrosin phosphatase σ (PTPσ) 

(calcium-independent interaction). Such receptors are present mostly in the brain, but they 

have also been found, though in small amounts, in other secretory tissues such as pancreas, 

lung and kidney. Thus, receptors confer specificity to the pore-mediated effects of α-Ltx [40]. 

Once bound to its target membrane, α-Ltx can cause both calcium-dependent and -

independent release of neurotransmitters. Part of its calcium-dependent action is due to the 

pore formation and resulting calcium influx (Fig. 8) [53]; this mechanism triggers the release 

Fig. 7. Protein structure of α-Ltx. Top left: diagram of α-Ltx sequence and a linear representation of its domain 

structure; narrow boxes numbered 1-20 correspond to ankirin repeats, thick black lines are fragments 

proteolitically removed during α-Ltx maturation. Bottom left: view of the monomer illustrating the three 

structural domains of the molecule: wing (pink), body(silver), and head (blue); the arrowhead points at a 

connection between the head and the body. Right: top view of the tetramer. From Orlova et al., 2000. 
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of both the readily releasable and the reserve pools of vesicles [54]. Another action is based 

on receptor-mediated signalling, which involves stimulation of PLC, production of IP3 and 

dyacil glycerol, with release of stored calcium and activation of PKC respectively. This 

mechanism, most likely mediated by LPH1, affects the readily releasable vesicles only. Both 

the pore- and receptor-mediated signals can be amplified by the release of intracellular 

calcium and the extracellular calcium influx. In the absence of extracellular calcium, vesicle 

secretion may be caused by sodium and potassium currents through the channel, associated 

with the efflux of small molecules and the influx-efflux of water. In addition, transmitter 

release can be due to membrane perturbations or direct interaction with the secretory 

machinery. However, the toxin effect in the absence of calcium remains so far mostly 

unclear [40, 55]. 

 

 

 

 

The effects of α-Ltx at NMJ can be observed starting from 10 minutes from toxin 

administration. Electrophysiologically it causes an increase in the frequency of spontaneous 

miniature postsynaptic potentials (mepps), and it also affects evoked action potentials 

(epps) and synchronous release in a time-dependent manner, eventually inhibiting them, 

thus leading to skeletal muscles paralysis [49, 56, 57]. 

Electron microscopy studies show that in the earliest stages of intoxication motor nerve 

terminals become markedly swollen - as a consequence of the toxin-mediated entry of 

cations – and depleted of synaptic vesicles - due to the massive vesicle fusion; mitochondria 

appear also swollen and rounded (Fig. 9) [44, 58]. The massive calcium influx also cause the 

activation of calcium-dependent proteases – such as calpains -, triggering cytoskeletal 

Fig. 8. A model of the α-Ltx pore in 

membrane bilayer. The base of the 

tetramer fully penetrates the 

membrane, whilst the wings are 

attached to the outer membrane 

surface. Cations can enter the cytosol 

through the channel, as shown by the 

arrow. From Ushkaryov et al. 2004. 
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fragmentation [59]: thus, in a later stage of intoxication, nerve terminals completely 

degenerate, losing both their structure and their functionality. 

Noteworthy,  the nerve terminal regenerates in a short time, leading to a fully recovery of 

the NMJ [44]. 

 

 

 

 

 

 

1.3.1.2 Presynaptic snake neurotoxins endowed with PLA2 activity (SPANs) 

Presynaptic snake neurotoxins endowed with PLA2 activity are major components of the 

venom of four families of venomous snakes (Crotalidae, Elapidae, Hydrophiidae and 

Viperidae) (Fig. 10) [60, 61, 45, 62]. These neurotoxins play a major role in the envenomation 

of the prey by causing a persistent blockade of neurotransmitter release from nerve 

terminals [63, 64]. Several venom components are biologically active but most of the 

neurological signs and symptoms are due to SPANs action. 

 

 

 

 

Fig. 9. Electron microscopy of a frog  NMJ treated with α-Ltx. α-Ltx causes a massive release of small synaptic 
vesicles. This leads to an enlargement of the plasmalemma and a total depletion of the neurotransmitter 
containing vesicles, but not of the large dense-core vesicles containing neuropeptides (arrow). Nerve terminal 
is swollen as a consequence of a toxin-mediated entry of cations. From Matteoli et al. 1988. 

Fig. 10. Major families of venomous snakes containing SPANs in their venoms. Notechis scutatus (top left), 
Bungarus multicinctus(top right), Oxyuranu sscutellatus (bottom left), and Pseudonaja textilis (bottom right) 
are elapid snakes originary from Australia and South East of Asia. Their venom contains the highly neurotoxic 
phospholipases A2 responsible for the neuromuscular paralysis of their prey. 
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Phospholipases are enzymes that hydrolyze phospholipids into fatty acids and other 

lipophilic substances; there are four major classes, termed A1, A2, C and D, distinguished by 

the type of reaction they catalyze. Phospholipases A2 hydrolyze the sn-2 acyl bond of 

phospholipids generating fatty acids and lysophospholipids. 

More than 800 different PLA2s have been classified, depending on their structure and 

mechanism of action; the two most notable families comprise cytosolic and secreted PLA2s. 

SPANs belong to the latter group, which also includes mammalian isoforms implicated in the 

digestion of phospholipids compounds in dietary fat, as well as in the production of 

inflammatory mediators. 

Secreted PLA2s were the first type of PLA2 enzymes discovered: they are characterized by a 

low molecular weight (m.w. 13-15 kDa), one histidine in the catalytic site, calcium bound in 

the active site, and six conserved disulfide bonds - with one or two variable disulfide bonds. 

Depending on their quaternary structure, SPANs are further divided in four classes [63]: 

- Class I: includes monomeric toxins with a m.w. ranging from 13 to 15 kDa and 7 

disulfide bonds. Notexin, isolated from the venom of Notechis scutatus, belongs to 

this class. 

- Class II: includes neurotoxic PLA2s composed of two non-covalently linked 

homologous subunits, at least one of which endowed with PLA2 activity. 

- Class III: includes heterodimers of non-homologues subunits kept together by 

disulfide bonds. β-Bungarotoxin (β-Btx) from Bulgarus multicinctus venom belongs to 

this group; it is composed by a 120 residues-long subunit, with 6 disulfide bonds and 

endowed with PLA2 activity, bound by a disulfide bridge to a 7 kDa (60 aa) non PLA2-

subunit, homologous  to Kunitz protease inhibitors. 

- Class IV: includes oligomers composed by homologues non-covalently associated 

subunits. Taipoxin (Tpx), from the venom of Oxyranus scutellatus scutellatus belongs 

to this class; it is a 40 kDa toxin composed by three subunits: one extremely basic 

PLA2-endowed subunit, one non-toxic subunit and one glycoprotein with 8 disulfide 

bonds, non-toxic but endowed with PLA2 activity. 

The secondary structure of PLA2 SPANs subunits is highly conserved: it includes 3 α-helix and 

2 β-sheets linked by 6 or 7 disulfide bonds, which make the enzyme resistant to proteolysis 

and denaturation (Fig. 11) [63].  
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High resolution structural studies revealed that they include a PLA2 domain with a calcium 

atom that stabilizes and activates the enzyme, which on the other hand can be inactivated 

by other divalent ions, such as Sr2+, Ba2+ and Zn2+. A remarkable feature of PLA2 subunits is a 

hydrophobic channel that accommodates the fatty acid chain of the phospholipid molecule 

and places the ester bond to be cleaved into the active site. The key residues directly 

involved in catalysis are the conserved histidine (His48), which hydrogen-binds the water 

molecule used for hydrolysis, and an aspartate (Asp49), which positions the Ca2+ ion 

coordinating both the phosphate and the sn-2 carbonyl groups of the phospholipid 

molecule. In addition, chemical modification studies have identified two segments of the 

PLA2 subunit involved in neurotoxicity (Fig. 11) [63]. 

SPANs are widely heterogeneous in structure, enzymatic activity and neurotoxicity; 

apparently no direct correlation exists between the relative enzymatic activities of snake 

PLA2 neurotoxins in vitro and their lethal potencies in vivo. However, a recent study 

demonstrated that at variance from their enzymatic activities in vitro, these neurotoxins 

display comparable kinetics of lysophospholipids release in cultured neurons, reconciling the 

large discrepancy between their in vivo toxicities and in vitro enzymatic activities (table 1) 

[65]. Anyway, beside the PLA2 activity, toxicity depends also on many pharmacokinetics 

parameters, including site of injection, toxin redistribution within the body, presynaptic 

binding, sequestration, degradation, neutralization and excretion.  

 

Fig. 11. Ribbon drawing of the 3-dimensional 

structure of notexin. His-48 and Asp-49 residues 

essential for PLA2 activity are shown. Chemical 

modification experiments indicate that neurotoxicity 

is associated with the bottom part and the right-

hand side of the molecule. From Schiavo et al. 2000. 

 



20 
 

 

 

 

 

Neurotoxicity results from the coexistence of several factors: the ability to recognize the 

nerve terminal, to bind efficiently and to concentrate there the enzymatic activity, and the 

capability of efficiently hydrolyzing phospholipids of the presynaptic membrane. Despite the 

high specificity of SPANs for motor axon terminals, at present no receptors for SPANs have 

been identified at the level of presynaptic membrane, with the exception of β-Btx, which has 

been shown to bind to a class of voltage-dependent K+ channels, blocking them [66]. 

However, the kinetics of paralysis of the pray after snake bite and after SPANs injection 

suggest that they rapidly find their way to peripheral nerve terminals, to which they bind 

quickly and specifically [45, 64, 67] . 

A very interesting proposal for the binding of SPANs comes from Montecucco at al., 2004, 

where the concept of “Array of Presynaptic Receptors” (APR) developed for botulinum 

neurotoxins (BoNTs) is proposed to be extended also to SPANs [68]. In this paper, APRs are 

hypothesized to be dynamic microdomains of the presynaptic membrane where several 

molecules endowed with neurotoxins-binding properties are localized. The oligosaccharide 

portions of polysialogangliosides are suggested to act as initial neurotoxins-binding factors 

because of their high local concentration on the presynaptic membrane, their high lateral 

mobility and the ability of the oligosaccharide moiety to act as “antennas” that can engage 

multiple bonds and thus effectively capture neurotoxins molecules present in the 

intersynaptic fluid. This first “capture step”, which is expected to be reversible and fast on-

rate, brings about a very large membrane concentration effect, and is followed by additional 

interactions with arrays of receptors molecules, arranged in membrane microdomains, 

which render the neurotoxin binding practically irreversible. In the light of the blockade of 

Table 1. Comparison between PLA2 activity of four SPANs on cultured neurons and on synthetic substrates 
and relative toxicity. From Paoli et al., 2000. 
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neurotransmission by the toxins, it is tempting to speculate that APRs coincide with the 

active zones of the presynaptic membrane, where synaptic vesicle fusion takes place.  

Once bound to the presynaptic plasma membrane, SPANs start hydrolyzing phospholipids, 

generating mainly lysophosphatidylcholine (LysoPC) and fatty acids (FAs) (Fig. 12), with low 

amounts  of lysophosphatidyl-ethanolamine and -serine [69, 65]. This indicate that SPANs 

act mainly  on  the  outside  leaflet   of the  plasma   membrane,  as  phosphatidylcholine  is   

the major phospholipid of this layer. 

 

 

 

 

 

Under physiological conditions, such lyso-lipids are present only in minute amounts, as their 

molecular shape is not compatible with the bilayer membrane structure [70]. Indeed, LysoPC 

is an inverted cone-shaped lipid which forms spheroidal micelles, and FAs are cone-shaped 

(Fig. 12); moreover, LysoPC cannot flip-flop across the lipid bilayer of the membrane, 

whereas FAs are capable of a very rapid trans-bilayer movement. Consequently, as FAs are 

produced by SPANs on the external leaflet of the plasma membrane, they redistribute 

among the two membrane layers, whereas LysoPC remains outside (Fig. 13). In such way 

LysoPC, which induces a positive curvature of the membrane, is present in trans, and FAs, 

which induce a negative curvature, are present in cis with respect to the fusion site of 

synaptic vesicles [71, 72]. 

 It has been experimentally documented that this membrane conformation promotes ready-

to-release synaptic vesicle fusion via pore formation from an hemifusion intermediate, with 

release of their neurotransmitter content in the extracellular compartment (Fig. 13) [72, 73, 

74]. At the same time, for the same membrane topological reasons, the opposite process of 

endocytosis is inhibited, thus leading to a strong imbalance in the exo- endocytosis cycle.  

 

Fig. 12. Major lipid products of PLA2 activity. 

SPANs enzymatic activity on presynaptic 

membrane generates lysophospholipids and 

fatty acids; the molecular shape of these lipid 

products – inverted-cone and conic, 

respectively – is not compatible with the bilayer 

membrane structure, whose curvature is 

altered following their accumulation. 
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Moreover, accumulation of LysoPC and FAs alters plasma membrane permeability, allowing 

the formation of transition pores which mediate transient calcium currents to the cytosol 

[75]. 

The key-role of the PLA2 lipidic products in the process of nerve degeneration upon SPANs 

intoxication has been further confirmed by the evidence that equimolar mixtures of FA and 

LysoPLs closely mimic the effect of the toxins on nerve terminals [69].  

Similarly to α-Ltx intoxication, calcium overload in the presynaptic nerve terminal enhances 

the fusion of both ready-to-release and reserve synaptic vesicle pools, also leading to 

mitochondria impairment and calcium-dependent enzymes activation [76, 59, 60, 77]. In 

addition, SPANs can enter neurons in-vitro and selectively bind to mitochondria, inducing the 

opening of the mitochondrial permeability transition pore (mPTP): as a result of this 

interaction, mitochondria depolarize and undergo a profound shape change, from elongated 

to rounded and swollen, together with impairment in functionality [78].  

When SPANs are added to ex-vivo nerve-muscle preparations, neurotransmission fails with a 

triphasic trend: an initial phase of weak inhibition of Ach release is followed by a second 

prolonged phase of facilitated release, and then by a third one of progressive decline of 

neurotransmission [79]. 

Electron microscopy pictures taken at the third stage show swollen and enlarged nerve 

terminals, with depletion of synaptic vesicles; several clathrin-coated Ω-shaped plasma 

membrane invaginations are observed at the plasma membrane level, as a consequence of 

abortive attempts of endocytosis; at a later stage, mitochondria appear damaged, with 

Fig. 13. SPANs action promotes the exocytosis of already-docked synaptic vesicles. Left: SPANs PLA2 activity 

on the external layer of presynaptic plasma membrane generates LysoPC (yellow) and FA (black). Accumulation 

of lysolipids alters the plasma membrane curvature, promoting the fusion of already-docked synaptic vesicles 

via pore formation from an hemifusion intermediate (right). From Rossetto et al., 2006. 
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altered cristae and large vacuoles (Fig. 14) [60, 45, 77]. As it happens with α-Ltx, also SPANs 

intoxication eventually leads to a complete degeneration of nerve terminals, which is 

followed in few days by regeneration and rescue from muscle paralysis [45]. 

 

 

 

 

1.3.2 Experimental models to study animal presynaptic neurotoxins mechanism of 

action 

Ex-vivo nerve-muscle preparations have been for a long time the election experimental 

model for the characterization of the effects of animal presynaptic neurotoxins; indeed, ex-

vivo NMJ is an ideal tool, since it represents the target site of these neurotoxins in-vivo.  

Electrophysiological recordings as well as electron microscopy studies on intoxicated NMJs 

have shed light on many aspects of the intoxication processes, both from a functional and a 

morphological point of view, and much of our knowledge about the effects of SPANs and α-

Ltx arises from these kinds of experimental approaches. 

Despite many studies, the molecular mechanism of action of these neurotoxins have 

remained elusive for a long time. Owing to the complexity of the anatomically fine structure 

of NMJ and to the inherent limited possibility of experimental manipulation of this tissue 

preparation, further progress has required the validation of in-vitro neuronal models 

amenable to biochemical and imaging investigations. Several studies have been performed 

in order to characterize the neurotoxic effects of SPANs and α-Ltx on different kinds of 

primary cultured neurons from rats; in addition to cultured spinal motorneurons (MNs), also 

Fig. 14. Electron microscopy of a 
mouse neuromuscular junction 
intoxicated with taipoxin. The axon 
terminal is almost devoid of synaptic 
vesicles and shows numerous 
axolemma indentations, signs of 
unsuccessful endocytosis events (red 
arrowheads). Mitochondria look 
rounded-shaped and swollen. From 
Cull-Candy et al., 1976. 
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cerebellar granular neurons (CGNs), cortical neurons and hippocampal neurons were found 

to be extremely sensitive to animal neurotoxins action, despite they belong to the CNS, thus 

not representing the real in-vivo target site of intoxication [75, 76, 78]. 

A recent side by side comparative study of SPANs and α-Ltx action on primary cultured 

neurons showed that, despite the different molecular mechanism of intoxication, both kind 

of toxins exert their degenerative activity via inducing a large calcium influx [43]. The earliest 

morphological sign of intoxication by both SPANs and α-Ltx is the formation of swellings 

along neurites, called bulges, hallmarks of neurotoxicity (Fig. 15). Bulges are sites of 

unbalanced endo-exocytosis, since they expose on their surface the luminal domain of 

proteins of the synaptic vesicles membrane. With both toxins bulges accumulate calcium 

right inside (Fig. 15), although with different kinetics, which are accounted for by the 

different biochemical activities of the two types of toxins. Calcium overload triggers a series 

of degenerative events, such as the activation of calpains [59] - which are responsible for 

cytoskeleton degradation -, and the impairment of mitochondria, which become depolarized 

and swollen [75, 78]. 

 

 

 

 

 

Fig. 15. Neurotoxic effects of α-Ltx and SPANs on primary CGNs. 
Top panel: both toxins induce closely similar membrane swellings 
along neurites (bulges) in cultured CGNs. Scale bars: 20 µm. From 
Tedesco et al., 2009. Right panel: pseudocolor images of CGNs 
loaded with Fura2-AM and treated with Tpx 25 nM. Calcium 
increase, from blue – low – to red – high – specifically occurs within 
bulges. Scale bar: 10 µm0. From Rigoni et al., 2007. 
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These in-vitro experimental models well reproduce the neurotoxic effects observed at the 

NMJ – i.e. membrane swelling, imbalanced endo-exocytosis, cytoskeleton fragmentation, 

mitochondria impairment – thus representing a reliable and simpler alternative approach to 

advance our understanding of the mechanism of action and toxicity of SPANs and α-Ltx. 
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1.4 MITOCHONDRIAL-DERIVED ALARMINS  

Cell death and injury often lead to the release intracellular molecules called damage-

associated molecular patterns (DAMPs) [80, 81]; they can result from tissue injury, secretion, 

release and/or exposure on the outer leaflet of the plasma membrane of normally 

intracellularly-sequestered molecules or their derivatives. Once released or exposed 

extracellularly, DAMPs activate the innate immune-response through their interaction with 

pattern recognition receptors – the same receptors that detect pathogen associated 

molecular patterns (PAMPs) [82] -, thus revealing similarities between pathogen-induced 

and non-infectious inflammatory responses. 

Many DAMPs derive from plasma membrane, nucleus, endoplasmic reticulum and cytosol. 

Recently, mitochondria have emerged as major sources of DAMPs [83]. Mitochondria host 

several essential metabolic processes of apoptotic and necrotic cell death; according to the 

endosymbiontic hypothesis, mitochondria still possess many morphological and biochemical 

features of their bacterial ancestors – such as the circular genome containing CpG DNA and 

the presence of N-formyl peptides (NFPs)  – which make them ideal candidates as a source 

of PAMP-like DAMPs.  

 

 

 

 

 

Fig. 16. DAMPs derived from mitochondria. (a) Mitochondrial DNA, N-formyl peptides and cytochrome c are 
examples of mito-DAMPs that once released into the extracellular space – following cell death or tissue injury -
can stimulate the innate and adaptive immune responses. (b) Intact mitochondria derived from cells dying by 
accidental necrosis after mechanical disruption can induce IL-1b production by macrophages, and attract 
neutrophils upon i.p. injection. Question marks indicate links that are not yet proven. From Krysko et al., 2011. 
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Emblematic examples of mitochondrial derived DAMPs are mitochondrial DNA (mtDNA), 

which activates phagocytes through its binding to Toll-like receptor 9 [83, 84], NFPs, which 

act as chemoattractants by interacting with formyl-peptide receptors (FPRs) [85, 86], and 

cytochrome c (Cyt c), which is also endowed with pro-inflammatory activities, although still 

not well documented [87]  (Fig. 16). 

Involvement of mitochondrial DAMPs has already been demonstrated in many pathological 

conditions, including trauma, SIRS [88, 89, 83, 90], rheumathoid arthritis [84], liver injuries 

[91] and myocardial infarction [92], as well as following snake myotoxins-induced muscle 

damage [93], where they contribute to the local or systemic inflammatory responses 

associated with such conditions. Moreover, we found that mtDNA and cytochrome c are also 

released by cultured neurons upon intoxication with snake and spider neurotoxins [42]. 

Recently, reactive oxygen species (ROS), which are efficiently produced by mitochondria 

under stressing and oxidizing conditions, are also emerging as important mitochondria-

derived alarmins, being involved in many intra- and inter-cellular signalling. 

 

1.4.1 Hydrogen peroxide as signalling molecule 

ROS have long been regarded as harmful molecules generated as by-products of respiration, 

causing oxidative damages to various cellular components. The accumulation of such 

damages is thought to be responsible for ageing and multiple disorders, such as cancers, 

neurodegenerative diseases and diabetes mellitus [94]. However, accumulating evidences 

from recent studies have uncovered a role for oxidants as essential second messengers in 

many intra- and inter-cellular signalling pathways [95, 96, 97].  

ROS are generated by multiple processes and enzymes, such as NADPH oxidases (Nox and 

Dual oxidases) in the plasma membrane, lipid metabolism in peroxisomes, and cytosolic 

enzymes such as cyclo-oxygenases. However, the major source of ROS in aerobic cells is 

cellular respiration and oxidative phosphorylation within the mitochondria, and this 

production is extremely enhanced under many stressing conditions. 

Mitochondrial-ROS (mtROS) such as superoxide (O2
•-) are thought to be short lived in-vivo, 

being converted to more stable species such as hydrogen peroxide (H2O2): this process can 

occur spontaneously, but is enhanced at least 1000-fold by superoxide dismutases (SOD). 

H2O2 is the most abundant ROS, with the highest half-life; the relative stability and 

uncharged nature of H2O2 permits its enhanced diffusion across long distances and 
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membranes. Owing to these peculiar features, H2O2 represents an ideal candidate to act as 

both an intracellular messenger and a paracrine signal [95, 98]. 

Contrary to the great advances in understanding the ROS-generation mechanism, the 

molecular signalling events downstream of ROS are poorly understood. An important cellular 

target or “sensor” of ROS is the thiol (RSH) functional group of the amino acid cysteine, 

which can exist in a number of oxidation states and form disulfide bonds with another thiol 

moiety [99]. Several proteins have been shown to function as ROS effectors, modifying their 

function following cysteines oxidation, thus enabling signal transmission to downstream 

targets.  The number of redox-responsive proteins is increasingly accumulating: among them 

protein tyrosine phosphatases (PTPs), thioredoxins (TRXs) and peroxiredoxins (PRXs) family 

proteins share special protein structures that contain redox-active cysteines, which 

sensitively respond to ROS. Progress in the identification of ROS-effector proteins is 

revealing the pleiotropic functions of mtROS in many physiological and pathological 

processes, which can range from cell proliferation [100], regulation of mitophagy and 

autophagy [101], adaptation to hypoxia [102, 103] and regulation of immunity [104]. 

Unexpected roles for extracellular ROS are also emerging in a wide range of contexts; 

extracellular ROS have long been known to play antimicrobial roles after tissue injury or 

infection, in a process known as respiratory burst. Recent experimental evidence in different 

animal models demonstrates that a rapid concentration gradient of H2O2 functions as a long-

range chemoattractant that recruits leukocytes at wound sites [105, 106]. Furthermore, 

recent studies highlight the crucial roles of injury-induced ROS, and in particular of H2O2, in 

several cellular processes involved in tissue regeneration [107]: Love et al. (2013) showed 

that amputation-induced ROS are required for successful Xenopus tadpole tail regeneration, 

since lowering ROS levels by pharmacological or genetic approaches reduces the level of cell 

proliferation through the inhibition of the Wnt/β-catenin signalling [108]. mtROS inhibition 

also delays actin-based wound closure in Caenorhabditis elegans [109].   

In the light of these findings, the understanding of ROS signaling and redox regulation of 

protein function are of crucial importance and may lead to the development of new 

therapeutic strategies. 
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2. AIM 

The PNS can spontaneously regrowth injured axons; this ability can be attributed to both 

intrinsic regenerative capacity of neurons, and to the favourable environment which 

surrounds them. Indeed, the glia of PNS, SCs, has been shown to actively participate in the 

process of nerve regrowth, providing essential supports to stimulate neuronal regenerative 

response [30, 31]. 

PSCs play crucial roles in the regeneration of nerve terminals at NMJs, thus promoting the 

re-innervation of muscle end-plates: in response to denervation, they de-differentiate, 

contribute to the clearing-up of nerve debris and extend cytosolic processes which induce 

and guide nerve terminals re-growth [25]. 

Although clearly documented, the regeneration of motor axon terminals is still ill-known in 

many cellular and molecular aspects; therefore, the aim of this work is to shed light on the 

crosstalk between degenerating nerve terminals and adjacent PSCs at NMJs. More in detail, 

we would like to identify molecular mediator/s involved in PSCs activation and in nerve 

regeneration: such findings could also provide information useful to the understanding and 

treatment of some pathological syndromes. 

We adopted an innovative experimental approach based on the use of some animal 

presynaptic neurotoxins – α-Ltx and SPANs – to induce a localized and reversible nerve 

degeneration [42]. This model provides the advantage of being much more controlled and 

reproducible than the traditional cut/crush surgical approaches: indeed, these presynaptic 

neurotoxins  target specifically the motor axon terminals inducing a localized entry of 

calcium, which cause a degeneration limited and self-contained to the end-plate, thus 

confining the damage at the NMJ; importantly, a complete and functional regeneration is 

achieved in few days following intoxication [44, 45]. 

Thus, this work is also aimed at validating this neurotoxins-based approach as a relevant 

model to study motor axon terminal degeneration and regeneration, which allows a better 

characterization of PSCs contribution to these processes. 
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3. MATERIALS AND METHODS 

3.1 MATERIALS 

Toxins. -Ltx and Tpx were purchased from Alomone, -Btx from SIGMA. The purity of the 

toxins was checked by SDS-PAGE and their neurotoxicity by ex-vivo mouse nerve-

hemidiaphragm preparation as previously described [69]. 

Chemicals. Unless otherwise stated all reagents were purchased from SIGMA. 

Animal strains. C57BL/6 mice expressing cytosolic GFP under the plp promoter [110, 111] 

were kindly provided by Dr. W.B. Macklin (Aurora, Colorado) via the collaboration of Dr. T. 

Misgeld (Munchen, Germany). All experiments were performed in accordance with Italian 

animal care guidelines, law no. 116/1992. 

 

3.2 METHODS 

3.2.1 Primary cells cultures 

3.2.1.1 Cerebellar granular neurons  

Rat cerebellar granular neurons (CGNs) were prepared from 6-days-old Wistar rats as 

described elsewhere [112]. Briefly, neurons were isolated from freshly dissected cerebella by 

mechanical disruption in the presence of trypsin (0,08% m/w) and DNase I (0,08 mg/ml) and 

then seeded onto 24-wells culture plates coated with poly-L-lysine (10 µg/ml). Cells were 

seeded at a density of 3 x 105/well in BME (Life Technologies) supplemented with 10% FBS 

(Euroclone), 25 mM KCl, 2 mM glutamine and 50 µg/ml gentamycin. Cultures were 

maintained at 37 °C in a humidified atmosphere of 95% air, 5% CO2. Cytosine arabinoside (10 

µM) was added to the culture medium 18-24 hours after plating to arrest the growth of non-

neuronal cells. Experiments were performed at 6 days in-vitro. 

 

3.2.1.2 Spinal motoneurons  

Primary rat spinal motoneurons (MNs) were isolated from Sprague-Dawley  rat embryos 

(embryonic day 14) and cultured following previously described protocols [113]. Briefly, 
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spinal cords were dissected from E14 rat embryos, treated with trypsin (0,025% m/w) and 

DNase (0,1 mg/ml) and collected under a bovine serum albumin (BSA) cushion. Cells were 

then resuspended in Neurobasal medium (Life Technologies) supplemented with 2% B27 

supplement (Life Technologies), 2% horse serum (Euroclone), 0,5 mM glutamine, 25 µM 2-

mercaptoethanol, 10 ng/ml CNTF (R&D Systems), 100 pg/ml GDNF (R&D Systems), 5 µg/ml 

Pen/Strep and 25 µM L-glutamic acid, and seeded on poly-ornithine and laminin coated 

plates. Cultures were maintained at 37 °C in a humidified atmosphere of 95% air, 5% CO2, 

and experiments were performed at 6 days in-vitro. 

 

3.2.1.3 Schwann cells 

 Primary SCs were purified from sciatic nerves of six P3 Wistar rats. Briefly, sciatic nerves 

were dissected and tissues digested in 0.1% w/v collagenase, 0.25% w/v trypsin in L15 

medium (Life Technologies) plus 0.3% BSA for 1 h. Dissociated cells were seeded onto 

uncoated Petri dishes in DMEM (Life Technologies) 10% FBS and 50 µg/ml gentamycin; 24 h 

after seeding 10 M arabinoside C was added to the medium and kept for 2 days to prevent 

fibroblasts mitosis. Five days after seeding an immunopanning with an anti-Thy1.1 antibody 

(1:500, 30 min at 37 °C) followed by rat complement addition (1:10, 2 hours) were 

performed to eliminate contaminating fibroblasts. Purified SCs were subsequently plated on 

poly-L-lysine-coated dishes and allowed to grow in Expansion Medium consisting of DMEM, 

supplemented with 10% FBS, 2 M forskolin and 10 nM heregulin  -1. SCs were then 

seeded on laminin-coated 24 wells-dishes (2 x 104 cells/well) and kept in Expansium 

Medium. 

 

3.2.1.4 Neurons-SCs co-cultures  

CGNs and spinal MNs were used to set up co-cultures with primary SCs. Briefly, 4 days after 

primary neurons seeding, primary SCs were added to neuronal cultures at an average 

density of 1 x 104 cells/cm2. Co-cultures were kept for 2-3 days in CGNs or MNs medium 

respectively. 
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3.2.2 Cell treatments 

CGNs, spinal MNs or neurons-SCs co-cultures (6 d.i.v.) plated onto 24 wells-plates were 

exposed for different incubation time to SPANs (6 nM) or to -Ltx (0.1 nM) at 37°C in Krebs 

Ringer Buffer (KRH: Hepes 25 mM, pH 7.4, NaCl 124 mM, KCl 5 mM, MgSO4 1.25 mM, CaCl2 

1.25 mM, KH2PO4 1.25 mM, glucose 8 mM, pH 7,4).  In a set of experiments, CGNs were 

treated with PMA (phorbol 12-myristate 13-acetate) 500 µg/ml for 20 min in KRH at 37°C. 

Primary SCs were exposed to different amounts of H2O2 (10 µM or 100 µM) for different 

incubation times or with SPANs (6 nM) or -Ltx (0.1 nM) for 60 min  in KRH at 37°C. 

In some experiments, primary neurons, SCs or co-cultures were pre-incubated for 5 min with 

1000 U/well catalase or for  1 hour with the MEK1 inhibitor PD98059 (80 µM) (Cell Signaling) 

before toxin addition; catalase and PD98059 were kept throughout the experiments. 

Samples were then processed for Western blotting or immunofluorescence. 

 

3.2.3 Western Blot 

Primary cell cultures were treated as described above, and then  lysed in Lysis Buffer (Hepes 

10 mM, NaCl 150 mM, SDS 1%, EDTA 4 mM, protease inhibitors cocktail (Roche), and 

phosphatase inhibitor cocktail). Samples were then denaturated at 95°C for 5 min, loaded on 

precast 4-12% SDS-polyacrylamide gels (Life Technologies) and transferred to a 

nitrocellulose membrane in a refrigerated chamber. Following saturation, membranes were 

incubated o.n. with primary antibodies (polyclonal anti-Phospho-p44/42 MAPK, Cell 

Signaling, 1:1000, monoclonal anti-Hsc70, Synaptic Systems, 1:10000, monoclonal anti-

Hsp90, BD transduction Laboratories, 1:1000), followed by a secondary antibody HRP-

coniugated (Life Technologies, 1:10000). Chemiluminescence was developed with Luminata 

TM Crescendo (Millipore) or ECL Advance western blotting detection system (GE 

Healthcare), and emission measured with ChemiDoc XRS (Bio-Rad). For densitometric 

quantification the software Quantity One (Bio-Rad) was used, and the bands of interest were 

normalized to the housekeeping protein Hsc70 or Hsp90. None of the bands reached signal 

saturation. 
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3.2.4 Immunofluorescence  

Following treatments, isolated SCs or co-cultures were fixed for 15 min in 4% PFA in PBS, 

quenched (0.38% glycine, 0.24% NH4Cl in PBS) and permeabilized with 0.3% Triton X-100 in 

PBS for 5 min at RT. After saturation with 3% goat serum in PBS for 1 h, samples were 

incubated with primary antibodies (polyclonal anti-Phospho-p44/42 MAPK, Cell Signaling, 

1:1000; monoclonal anti- anti-NF200, SIGMA, 1:200; monoclonal anti-S100, SIGMA, 1:1000; 

polyclonal anti p47Phox, Santa Cruz, 1:200) diluted in 3% goat serum in PBS o.n. at 4°C, 

washed, and then incubated with the correspondent secondary antibodies (Alexa-

conjugated, 1:200, Life Technologies) for 1 h at RT. Nuclei were stained with Hoechst.  

Coverslips were mounted in Mowiol and examined by confocal (Leica SP5) or 

epifluorescence (Leica CTR6000) microscopy. 

 

3.2.5 Hydrogen peroxide detection 

Hydrogen peroxide generation in primary neurons was measured using Mitochondria Peroxy 

Yellow 1 (MitoPY1) [114] or Peroxyfluor 6 acetoxymethyl ester (PF6-AM) [115], synthesized 

in the lab of Prof. Chang (Berkeley, California), specific probes that allow to detect H2O2 

production in mitochondria and cytoplasm respectively. Both probes were loaded at 5 µM 

for 30 min at 37°C in KRH. Images were acquired at different time points following toxins 

exposure with a DMI6000 inverted epifluorescence microscope (Leica, Germany) equipped 

with a 63x HCX PL APO oil immersion objective NA 1.4. Filter cubes (Chroma Technology, 

USA) have an excitation range of 470/40 nm, a dichroic mirror 495LPXR and an emission of 

525/50 nm.  Images were acquired with an Orca-Flash4 digital camera (Hamamatsu, Japan). 

Illumination was kept at a minimum to avoid ROS generation due to phototoxicity. To detect 

neuronal bulges we took advantage of DIC microscopy. Fluorescence intensity quantification 

was carried on with ImageJ and the statistical analysis with Prism (GraphPad, USA).  

 

3.2.6 NMJ immunohistochemistry 

-Ltx (5 µg/kg) or -Btx (10 µg/kg) were diluted in 15 µl of physiological saline (0.9% w/v 

NaCl in distilled water) and injected subcutaneously in proximity of Levatoris auris longus 

(LAL) muscle of anesthetized transgenic   C57BL/6  male  mice (expressing a cytosolic GFP  
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under the plp promoter [111, 112]) of around 20-25 gr. Control animals were injected with 

saline. LAL muscles were dissected at different time points after injections and fixed in 4% 

PFA in PBS for 30 min at RT. Samples were quenched, permeabilized and saturated for 2 h in 

15% goat serum, 2% BSA, 0.25% gelatin, 0.20% glycine and 0.5% Triton X-100 in PBS.  

Incubation with the following primary antibodies was carried out for at least 48 h in blocking 

solution: anti-neurofilaments (mouse monoclonal, anti-NF200 SIGMA, 1:200), anti-SNAP-25 

(SMI81 mouse monoclonal, Covance, 1:200), anti-CD68 (mouse monoclonal, Santa Cruz, 

1:200). Muscles were then washed and incubated with secondary antibodies (Alexa-

conjugated, 1:200 in PBS, Life Technologies). Nuclei were stained with Hoechst. For p-ERK 

detection incubation with the primary antibody (anti-Phospho-p44/42 MAPK, Cell Signaling, 

1:1000) was carried out for 72 h and the tyramide signal amplification kit (Perkin Elmer) was 

used [116].  

To stain acidic compartments, LAL muscles collected after 4 h of intoxication were loaded ex-

vivo with LysoTracker Red DND-99 (1:5000, Life Technologies) for 2-3 min [117], while being 

continuously perfused with oxygenated Neurobasal A medium (Life Technologies). Samples 

were then fixed and processed for indirect immunohistochemistry as described above. 

Images were collected with a Leica SP5 Confocal microscope equipped with a 63x HCX PL 

APO NA 1.4. Laser excitation line, power intensity and emission range were chosen 

accordingly to each fluorophore in different samples in order to minimize bleed-through.  

 

3.2.7 Electrophysiological recordings 

Electrophysiological recordings were performed in oxygenated Krebs-Ringer solution on 

sham or -Ltx-injected soleus muscles (-Ltx 5 µg/kg, with or without 750 U catalase) using 

intracellular glass microelectrodes (WPI, Germany) filled with one part of 3 M KCl and two 

parts of 3 M CH3COOK. In another set of experiments muscles were locally injected with 

PD98059 (50 µg in DMSO) 1 hour before -Ltx injection. 

Evoked neurotransmitter release was recorded in current-clamp mode and resting 

membrane potential was  adjusted with current injection to −70 mV. Evoked junction 

potentials (EJPs) were elicited by supramaximal nerve stimulation at 0.5 Hz using a suction 

microelectrode connected to a S88 stimulator (Grass, USA). To prevent muscle contraction 

after dissection samples were incubated for 10 min with 1 µM µ-Conotoxin GIIIB (Alomone, 

Israel). Signals were amplified with intracellular bridge mode amplifier (BA-01X, NPI, 
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Germany), sampled using a digital interface (NI PCI-6221, National Instruments, USA) and 

recorded by means of electrophysiological software (WinEDR, Strathclyde University). EJPs 

measurements were carried out with Clampfit software (Molecular Devices, USA), statistical 

analysis with Prism (GraphPad Software, USA). 

 

3.2.8 Statistical analysis 

 The sample size (N) of each experimental group is described in each corresponding figure 

legend, and at least with three biological replicates were performed. GraphPad Prism 

software was used for all statistical analyses. Quantitative data displayed as histograms are 

expressed as means ± SEM (represented as error bars). Results from each group were 

averaged and used to calculate descriptive statistics. Significance was calculated by Student’s 

t-test (unpaired, two-side). P- values less than 0.05 were considered significant. 
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4. RESULTS 

4.1 HYDROGEN PEROXIDE IS PRODUCED BY NEURONS EXPOSED TO α-Ltx AND 

SPANs 

Mitochondria are abundant subcellular components of the motor axon terminals: upon 

intoxication with both α-Ltx and SPANs they become severely damaged, as shown in EM 

pictures of intoxicated NMJs, where they appear swollen and rounded-shaped [58,77]. This 

is due mainly to the runaway calcium overload in the cytosol, which in turns leads to an 

excessive calcium accumulation inside the mitochondrial matrix, eventually resulting in 

mitochondria impairment [43, 75]. In addition to that, SPANs can enter primary cultured 

neurons and selectively bind to mitochondria, facilitating the opening of their permeability 

transition pores, thus enhancing the progressive neuronal degeneration [78]. 

Mitochondria represent the major source of ROS inside cells, since superoxide anion is 

formed as a side-product during the process of oxidative phosphorylation; however, ROS 

production is increased under many different stressing conditions, resulting in significant 

damage of cell structures, in a process known as oxidative stress [94]. Beyond their 

traditional harmful roles, ROS are recently being recognized also as essential second 

messengers in many intra- and inter-cellular signalling pathways: in particular H2O2, which is 

much more stable than superoxide and highly diffusible across membranes, is an ideal 

mediator of signal transduction processes and paracrine communication [95, 107]. 

Based on these premises, we wondered whether (i) mtROS – and in particular H2O2 – are 

produced by degenerating neurons upon intoxication, and (ii) whether they might play a role 

in the crosstalk between degenerating nerve terminals and adjacent PSCs at NMJs. 

To address the first question, we performed experiments on primary cultured CGNs and 

spinal MNs, which represent well-established models to study the processes of intoxication 

with α-Ltx and SPANs in-vitro. In order to detect and quantify intracellular H2O2, we took 

advantage of two specific H2O2 probes with different cellular localization, kindly given by 

Prof. Chang. MitoPY1 is a bi-functional molecule that combines a chemoselective boronate-

based switch and a mitochondrial-targeting phopshonium moiety for the detection of H2O2 

localized to mitochondria [114]. PF6-AM on the other hand takes advantage of multiple 

masked carboxylates to increase cellular retention, and hence sensitivity to low levels of 

peroxide. In its ester-protected form, PF6-AM can readily enter cells: once in the cytosol, the 
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protecting group are rapidly cleaved by intracellular esterases to produce their anionic 

carboxylate forms, which are effectively trapped within cells [115]. 

We loaded CGNs with H2O2-specific probes and then we intoxicated them with spider and 

snake neurotoxins, monitoring them for up to an hour. After exposure to α-Ltx or Tpx, H2O2 

levels increased with time, markedly at the level of bulges, as shown in Fig. 17. Bulges are 

site of calcium overload and impaired mitochondria accumulation, so the localized Mito-PY1-

fluorescence increase strongly supports the idea that H2O2 is produced by damaged 

mitochondria upon neurons intoxication.  
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Fig. 17. Live-imaging of neuronal hydrogen peroxide production. Rat CGNs were loaded with the H2O2 specific 

probes MitoPY1 (upper panel) or PF6 (lower panel), washed and then exposed to Tpx 6 nM or to -Ltx 0.1 nM 

for 50 min. Changes in fluorescence due to H2O2 production were monitored with time and expressed as 

percentage of the fluorescence value at t=0 (right panels). Arrows in brightfield images and in the green 

channel point to neuronal bulges. Scale bars: 10 m 
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H2O2 then diffuses to the cytosol, as suggested by the changes in fluorescence of PF6 signal 

(Fig. 17), and it is reasonable to speculate that it also permeates across the plasma 

membrane, exiting neurons along its concentration gradient. 

Quantification of the fluorescent signal during the time-course of intoxication indicates a 

more pronounced effect of α-Ltx with respect to Tpx, in agreement with the fact that the 

pore formed by the former neurotoxin mediates a larger and faster calcium entry than Tpx 

[43]. Similar kinetics of H2O2 production were also observed in rat spinal MNs (Fig. 18). 

 

 

 

 

 

Fig. 18. Live-imaging of neuronal hydrogen peroxide production in spinal cord MNs. Rat MNs were loaded 

with the H2O2 specific probes MitoPY1 (upper panel) or PF6 (lower panel), washed and then exposed to Tpx 6 

nM or to -Ltx 0.1 nM for 50 min. Changes in fluorescence due to H2O2 production were monitored with time. 

Arrows in brightfield images and in the green channel point to neuronal bulges. Scale bars: 10 m.  
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To further confirm the mitochondrial origin of H2O2, we checked the activation state of the 

NADPH oxidase complex in cultured neurons upon intoxication. NADPH oxidases are a family 

of plasma membrane-associated enzymes which generate superoxide – and thus, indirectly, 

H2O2 – by transferring electrons from NADPH to molecular oxygen. The most thoroughly 

studied of these isoforms is the leukocyte NADPH oxidase, which is found in professional 

phagocytes and B lymphocytes; however, other family members are present in a variety of 

different tissues, including neurons [118]. Activation of NADPH oxidase complex occurs in 

response to many different stimuli and requires the correct assembly of all the complex 

subunits; in particular, the cytosolic regulatory component p47phox must be phosphorylated 

in order to move to the plasma membrane.  

To investigate the involvement of NADPH oxidase in our experimental system, we performed 

immunofluorescence (IF) on treated CGNs, labelling p47phox in order to check its cellular 

localization. Intoxication of CGNs with α-Ltx did not induce any translocation of p47phox to 

the plasma membrane, since its staining remained homogeneously distributed in the cytosol 

(Fig. 19); a similar distribution was also observed in untreated neurons but not in samples 

treated with PMA - a known trigger of NADPH oxidase activation -, where p47phox signal 

accumulated at the level of the plasma membrane (Fig. 19). This evidence allowed us to 

exclude any contribution of the NADPH oxidase system in the production of H2O2 observed in 

cultured neurons upon intoxication. 

 

 

 

 

 

  

Fig. 19. NADPH oxidase is not involved in hydrogen peroxide production. p47phox staining was performed in 

CGNs exposed to -Ltx (0.1 nM for 50 min) or to PMA (500 g/ml, 20 min) as positive control for p47phox 

translocation. Arrows point to membrane accumulation of p47phox signal in PMA-treated cells. Scale bar: 10 

m. 

ctr α-Ltx PMA 
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4.2 NEURONAL HYDROGEN PEROXIDE ACTIVATES ERK PATHWAY IN SCs IN VITRO 

First candidate targets of neurons-derived H2O2 at intoxicated NMJs are non-myelinating 

PSCs, which are in close apposition to the motor axon terminal. Thus, we tried to identify the 

potential target pathway/s of neuronal  H2O2 in PSCs. 

Growing evidence indicates that H2O2 is a largely used inter- and intra-cellular signalling 

molecule regulating kinase driven pathways, mainly through chemoselective oxidation of 

cysteine residues in signalling proteins [99, 107]. H2O2 has indeed been shown to trigger ERK 

phosphorylation in different cell types [119, 120, 121], with consequent activation of 

downstream gene transcription.  

ERK (extracellular-signal regulated kinase) is a widely expressed MAP-kinase, activated 

downstream of the Ras-Raf-MEK cascade in the cytosol of cells in response to many different 

stimuli; this pathway is normally involved in many physiological processes, such as cell 

differentiation and proliferation. Interestingly, ERK activation has also been shown to drive 

SCs dedifferentiation in vitro and following nerve wounding in vivo [122]; it has also been 

demonstrated that activation of an inducible Raf-kinase transgene in myelinating SCs leads 

to a severe demyelination – even in the absence of axonal damage – and induces much of 

the inflammatory response important for nerve repair in vivo, identifying ERK pathway as a 

central player in the process of nerve regeneration [116]. 

To date nothing is known about the mediator/s responsible for ERK activation in myelinating 

SCs; it is likely that this rapid, currently unknown signal, derives from damaged axons 

warning SCs of their intention to degenerate: H2O2, produced by neurons mitochondria upon 

intoxication, is an ideal candidate for this function. 

To address the potential role of neuronal H2O2 as a paracrine signal for SCs, we checked 

whether primary cultured SCs isolated from rat sciatic nerves were responsive to H2O2 in 

terms of ERK activation. For this purpose, we analyse ERK phosphorylation levels in SCs by 

Western blotting (WB) and IF. As shown in Fig. 20, exposure of primary SCs to H2O2 led to 

ERK phosphorylation in a dose- and time-dependent manner, with a peak of p-ERK signal 

after 20 minutes of incubation. IF results showed that in many cells H2O2 treatment induces 

p-ERK translocation to the nuclei, where it is known to initiate transcriptional programmes 

controlling cellular responses (Fig. 20) [123]. 
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We next wondered whether ERK phosphorylation in SCs also occurs in our experimental 

system, i.e. in response to neurotoxin-induced neurodegeneration. For this aim, we set up 

neurons-SCs co-cultures, we intoxicated them with α-Ltx and Tpx and we performed IF, 

labelling p-ERK and neurofilaments. As it is shown in Fig 21, upon treatment with 

neurotoxins bulges appeared along neuronal processes, proving the successful intoxication; 

p-ERK labelling was detectable in the cytosol and nuclei of SCs of intoxicated co-cultures, but 

not in untreated ones (Fig. 21). The co-staining of p-ERK and the specific SCs marker S-100 

confirmed that p-ERK positive cells were actually SCs (fig. 22). The score of S-100 positive 

cells that also became p-ERK positive cells upon co-cultures intoxication was 59% with β-Btx 

(n=81 from two different experiments) and 78% in the case of α-Ltx (n=69 from two different 

experiments); these percentages were obtained by counting many S-100 positive cells 

randomly distributed in different fields, but the value was actually higher if one considered 

only clustered SCs in close proximity of intoxicated neurites. This observation further 

supports the conclusion that molecules released by injured neurons reach nearby SCs, thus 

activating them; however, these data do not provide any information about the identity of 

such molecular mediator/s. 

 

 

 

 

Fig.20. Primary SCs respond to hydrogen peroxide by phosphorylating ERK. Left: kinetics and dose-

dependence of ERK phosphorylation induced in primary SCs by H2O2. Right: immunofluorescence of p-ERK 

(green) in SCs following exposure to H2O2 (100 M for 60 min). Nuclei are stained in blue. Scale bar: 10 m.   

Fig. 21. ERK becomes phosphorylated in SCs co-cultured with neurons upon intoxication. p-ERK (green) was 

detected in primary SCs co-cultured with spinal cord MNs upon exposure to -Ltx (0.1 nM) or SPANs (6 nM) 

for 50 min by IF. Arrows point to neuronal bulges stained with an antibody against neurofilaments (NF, red). 

Nuclei are stained with Hoechst (blue). Scale bars: 10 m. 

ctr H2O2 

ctr α-Ltx Tpx 



43 
 

 

 

 

 

To address the involvement of neuronal H2O2 in the activation of ERK pathway in SCs, we 

intoxicated neurons-SCs co-cultures in absence or presence of catalase; this large enzyme 

can not enter cells, thus remaining in the extracellular medium where it converts H2O2 to 

oxygen and water, neutralizing its potential effect on target molecules (fig. 24). As it is 

shown in Fig. 23, pre-incubation with catalase reduced ERK phosphorylation levels of 

intoxicated co-cultures, indicating that H2O2 produced inside neurons actually diffuses 

outside to reach nearby SCs, contributing to ERK phosphorylation in their cytosol. We also 

determined that ERK phosphorylation was not altered in neurons upon intoxication, 

confirming that changes in p-ERK levels observed in co-cultures can be attributed mainly to 

SCs; also, we excluded a direct effect of neurotoxins on SCs, since incubation of isolated SCs 

with α-Ltx and Tpx did not induce any p-ERK increase (Fig. 24). 

 

 

 

 

Fig. 22. p-ERK positive cells in intoxicated co-cultures are SCs. p-ERK positive cells (red) in SCs-MNs co-

cultures exposed to the neurotoxins are positive for the SCs marker S-100 (green, arrowheads). Arrows in 

brighfield panels point to bulges. Scale bar: 20 m 

Fig. 23. Catalase prevents ERK phosphorylation in SCs co-cultured with neurons upon intoxication. Catalase 

pre-treatment of co-cultures (1000 U) significantly reduced ERK phosphorylation induced by the toxins (WB 

and quantification). No ERK phosphorylation is induced in neurons by the toxins.* p<0.05, ** p<0.01; N=4.  
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Taken together, these observations indicate that H2O2, produced by neuronal mitochondria 

upon intoxication, is responsible for ERK activation in co-cultured SCs in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 24. H2O2 - but not neurotoxins - is responsible 

for ERK phosphorylation in cultured SCs. Pre-

incubation of SCs with increasing amounts of 

catalase prevents ERK-phosphorylation by H2O2 to 

a different extent. Both -Ltx and SPANs are 

ineffective in phosphorylating ERK in SCs. 



45 
 

4.3 HYDROGEN PEROXIDE ACTIVATES ERK PATHWAY IN PSCs AT NMJ STIMULATING     

NERVE REGENERATION 

We next wondered whether neurons-derived H2O2 also plays a crucial role in the crosstalk 

between degenerating nerve terminals and adjacent PSCs at NMJ in vivo. Our in vivo 

experiments were performed on transgenic mice, expressing a cytoplasmic GFP specifically 

in SCs under the plp promoter [110, 111]. Fluorescence levels in plp-GFP SCs are not changed  

upon denervation, differently from what observed in S100-GFP transgenic mice, where the 

activation of SCs in response to nerve injury is associated with a decreased GFP signal, due to 

S100 down-regulation. Therefore, plp-GFP transgenic mice represent ideal tools to image SCs 

morphological behaviours during nerve degeneration and regeneration. 

To test whether ERK becomes phosphorylated also in PSCs upon nerve terminals 

intoxication, sub-lethal doses of α-Ltx (5 µg/kg) and β-Btx (10 µg/kg) were injected 

subcutaneously (s.c) at the level of Levator Auris Longus (LAL), a very thin muscle of mice 

ears, ideal for imaging [124] (Fig. 25). 24 hours later, muscle were dissected and processed 

for indirect immunohistochemistry (IHC); a clear p-ERK staining was detected at the level of 

PSCs of intoxicated NMJs, but not in untreated ones, thus extending in vivo the results 

obtained in co-cultures (Fig. 25).  

 

 

 

Fig. 25. Neurotoxins injection triggers ERK 

phosphorylation in PSCs at NMJs in vivo. -Ltx or -

Btx subcutaneously injections in LAL muscle (top, 

from Murray et al., 2010) from transgenic mice trigger 

ERK phosphorylation (p-ERK, red) in PSCs (green) (left 

panel). Muscles were collected 24 hours after 

injection. Scale bars: 10 m. 
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The importance of ERK pathway for SCs activation and nerve regeneration in our 

experimental system was addressed by a pharmacological approach, using the MEK1 

inhibitor PD98059 [126]. We tested the efficacy of PD98059 in inhibiting ERK 

phosphorylation in vitro: as  shown in Fig. 26, neurons-SCs co-cultures exposed to α-Ltx 

showed a decreased p-ERK level when pre-incubated with PD98059, which is therefore 

working correctly. To evaluate the contribution of ERK activation to nerve repair, we 

compared the kinetics of functional regeneration in muscles injected with α-Ltx alone 

and in those pre-treated with PD98059: we injected PD98059 intramuscularly in soleus 

muscles of mice prior to α-Ltx injection, and then performed electrophysiological 

recordings at different time points. As reported in Fig. 26, 3 days after treatment 

muscles pre-treated with MEK1 inhibitor and then locally injected with α-Ltx showed 

evoked junction potentials (EJPs) with significantly smaller amplitudes with respect to 

those injected with toxin only, meaning that inhibition of ERK pathway actually delays 

the process of nerve regeneration. 

 

 

 

 

 

 

 

 

 

Fig. 26.  ERK pathway is involved in SCs activation and in nerve regeneration. Top: SCs-MNs co-cultures 

were pretreated with the MEK1 inhibitor PD98059 prior to -Ltx exposure and then probed for p-ERK 

both in WB (left) and in IF (right). The red channel represents p-ERK, the green one the S-100 marker. 

Scale bar 20 m. Lower histogram: electrophysiological recordings of EJPs at soleus NMJs treated with -

Ltx alone (5 g/ml, black bars) or pre-treated with PD98059 (50 g) prior to -Ltx injection (white bars). 

At 72 hours EJP amplitudes of fibers pre-treated with the inhibitor are significantly smaller than those 

exposed to the sole toxin (** p<0.01). 

 

PD98059 ctr PD98059 + α-Ltx α-Ltx 
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Fig. 27. Catalase delays functional 

regeneration following intoxication in vivo. 

Electrophysiological recordings of EJPs at 

soleus NMJs treated with -Ltx alone (5 g/ml, 

black bars) or with -Ltx plus catalase (750 U, 

white bars). At 72 hours EJP amplitudes of 

fibers exposed to toxin plus catalase are 

significantly smaller than those exposed to the 

sole toxin (** p<0.01).  

 

According to our model H2O2, produced by degenerating nerve terminals upon intoxication, 

is responsible for ERK phosphorylation in PSCs; activation of ERK pathway is in turn 

necessary to activate PSCs and thus to promote nerve regeneration [116]. If this hypothesis 

is correct, neutralizing H2O2 produced during nerve terminals degeneration should reduce 

ERK activation in PSCs, thus leading to an impaired or delayed nerve regeneration. 

To address this point, we compared the kinetics of nerve degeneration and regeneration in 

mice treated with catalase and in untreated ones. Electrophysiological recordings were 

performed at different time points on soleus muscles injected with α-Ltx alone or with α-Ltx 

plus catalase. 24 hours after treatments no EJPs were detected, meaning that the process of 

nerve degeneration took place successfully in both conditions (Fig. 27); moreover, muscles 

treated with catalase alone showed EJPs indistinguishable from control ones. Similarly to 

what observed in experiments with PD98059, 72 hours after treatments muscle fibers 

injected with toxin plus catalase showed significantly smaller EJPs with respect to those of 

muscles exposed to toxin only, indicating also in this case a slowdown of the regeneration 

process.  

 

 

 

The effect of catalase on the rescue from intoxication was investigated also by performing 

IHC on LAL muscles. 

Again, we injected LAL muscles s.c. with α-Ltx or with α-Ltx plus catalase, we dissected them 

at different time points and labelled the presynaptic protein SNAP25 (Synaptosomal-

associated protein 25), which is very abundant at the presynaptic site, in order to monitor 

the structural degeneration of nerve terminals. As shown in Fig. 28, 4 hours after treatments 

the staining of SNAP25 accumulated inside vacuole-like structures in PSCs, which we 

demonstrated to be phagosomes – see next section; at 16 hours, SNAP25 completely 
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disappeared at the level of NMJs, meaning that nerve terminals degeneration and debris 

clearing were occurring successfully in both conditions. However, at 24 hours the 

regeneration of motor axon terminals appeared to be delayed in muscle injected with toxin 

plus catalase, with SNAP25 signal still missing in the vast majority of the analysed NMJs (17% 

positive for SNAP25 staining against 80% in LAL injected with α-Ltx alone at the same time 

point, N=40). A similar trend was observed also at 48 hours, when only 30% of NMJs treated 

with α-Ltx plus catalase showed SNAP25 labelling against 90% SNAP25-positive NMJs in 

muscles injected with only toxin. Catalase did not interfere with the process of nerve 

degeneration, since the disappearance of SNAP25 occurred with a closely similar kinetics 

under the two conditions.  

In conclusion, these data strongly support the evidence that H2O2 plays a crucial role in 

activating PSCs during intoxication in vivo, thus promoting the regeneration of motor axon 

terminals. 

 

 

 

  

Fig. 28.  Regeneration of poisoned presynaptic nerve terminals is delayed by catalase. SNAP-25 labeling (red) 

was used to monitor the degeneration and regeneration of nerve terminals at the NMJs of LAL muscles 

subcutaneously injected with -Ltx or -Ltx plus catalase (750 U). Muscles were collected after 4, 16, 24 and 

48 hours and representative images are shown. Scale bars: 10 m. 
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4.4 PHAGOCYTOSIS IS INDUCED IN PSCs DURING NERVE TERMINAL DEGENERATION 

Upon nerve damage, SCs undergo changes in their gene expression, becoming reactive and 

acquiring peculiar features. Following the cut or crush of sciatic nerves, PSCs at denervated 

end-plates extend long cytosolic processes, called sprouts, which support the process of 

reinnervation and which are an hallmark of SCs activation. Reactive SCs contribute to the 

removal of nerve debris by phagocytosing them and by recruiting macrophages through the 

release of chemokines and cytokines [9, 25, 24]. 

To further validate our experimental system as a model to study degeneration and 

regeneration processes, we decided to better characterize the behaviour of PSCs in response 

to neurotoxins-induced neurodegeneration. 

As shown in Fig. 29, by the first day of α-Ltx injection PSCs responded to intoxication by 

forming sprouts which in some cases grew to form bridges between junctions of different 

fibers; as expected, these processes disappeared soon after reinnervation. 

 

 

 

 

 

 

Moreover, during nerve terminals degeneration PSCs at poisoned NMJs showed a number of 

intracellular structures which appeared dense of material by light microscopy observations 

(Fig. 30). These structures were particularly evident 4 hours after α-Ltx injection, with a 

reduction in number and size with time.  

Fig. 29. PSCs activation following toxins-induced nerve terminal degeneration. Left: PSCs sproutings (green), 

typical hallmarks of activation, are observed at poisoned LAL NMJs by 24 hours from -Ltx injection. Nuclei are 

stained with Hoechst (red); scale bar: 50 m. Right: PSCs sproutings form sometimes bridges between 

adjacent NMJs. Scale bar: 10 m. 
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The appearance and life span of these organelles paralleled nerve terminal degeneration, 

suggesting that they might be phagosomes involved in  the   clearance  of nerve   debris.   

Accordingly,   immunostaininig   of   sham  or  poisoned LAL muscles for the scavenger 

macrophage receptor CD68 was performed [127]. 

After α-Ltx injection, perineural SCs of LAL NMJs did express CD68 on these intracellular 

structures, supporting their phagocytic role (Fig. 31). CD68-positive organelles also appeared 

after β-Btx treatment, although at a later time point (16 hours), in agreement with the 

different time course of pathogenesis of the two kind of neurotoxins. Lysotracker-positive 

staining confirmed the acidic nature of such compartments, reinforcing the idea that they 

are actually phagosomes (Fig. 31).  

 

Fig. 30. PSCs show intracellular dense-of-material organelles following α-Ltx injection in vivo. Upper panels: 

LAL muscles from transgenic mice were injected with -Ltx (5 µg/Kg), collected after different time points (4, 

16 and 24 hours) and processed for indirect immunohistochemistry. PSCs (cyan) show intracellular structures 

of different size that are particularly evident after 4 hours of intoxication. These structures appear dense of 

material by light microscopy (brightfield, lower panels, arrows). Nuclei are stained with Hoechst (blue). Scale 

bars: 10 m. 

ctr α-Ltx 4h α-Ltx 16h α-Ltx 24h 
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We also investigated the content of such phagosomes, by labelling presynaptic elements on 

LAL intoxicated muscles. As shown in Fig. 32, 4 hours after α-Ltx injection the distribution of 

the presynaptic markers neurofilaments (NF) and SNAP25 was altered, with a clear 

fragmentation in most of the NMJs, as a result of the specific and localized nerve terminal 

degeneration induced by the neurotoxins. SNAP25- and NF-positive spots localized within 

PSCs phagosomes (Fig. 32), as further demonstrated by orthogonal projections, thus 

confirming that PSCs are actually phagocytosing nerve terminal debris. 

At a later stage of degeneration (16 hours) CD68-positive macrophages were also found in 

the proximity of intoxicated NMJs (Fig. 33), where they participate in the clearing of 

debris; this is consistent with the well-known chemoattractant role of H2O2 [105, 106]. 

Recruitment of macrophages is likely to be induced also by PSCs-secreted cytokines and 

chemokines [24]. 

 

 

 

Fig. 31. Intracellular structures in activated PSCs at intoxicated NMJs are phagosomes. Left panel: PSCs 

(green) at -Ltx and -Btx-treated NMJs (4 and 16 hours respectively) are positive for the phagocytic marker 

CD68 (red), that stains intracellular vesicular structures. Scale bars: 10 m. Right panel: ex-vivo Lysotracker 

staining (red) of -Ltx–treated LAL (4 hours) confirms the acidic nature of intracellular vacuoles. Scale bar: 10 

m. 
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Fig. 32. Degenerating terminals are engulfed by perisynaptic SCs. Upper panels: PSCs engulf presynaptic 

components as shown by neurofilament (NF)-positive staining of PSCs phagosomes at NMJs treated for 4 

hours with -Ltx (red). Nuclei are stained with Hoechst (blue). Similar results were obtained with -Btx (not 

shown). Scale bars: 10 m. Lower panels, left: control NMJs with typical SNAP-25 presynaptic localization 

(red). In -Ltx-treated NMJs (4 hours) SNAP-25 aggregates localize within PSCs phagosomes. The same results 

were obtained with -Btx (not shown). Scale bars: 10 m. Lower panel, right: orthogonal projections of -Ltx-

treated NMJs show that SNAP-25 positive aggregates are inside PSCs phagosomes. 
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Thus, PSCs respond to nerve terminal intoxication by extending long sprouts, by removing 

nerve debris and by recruiting macrophages; these aspects well resemble the ones observed 

in canonical experimental models of nerve injury and regeneration, such as the cut or crush 

of sciatic nerves. On the whole, these observations strongly support the idea that this 

neurotoxins-based system represents a relevant and reliable model of acute motor axon 

terminal degeneration and regeneration, since it reproduces already-established crucial 

aspects occurring during these processes. 

 

 

 

 

 

Fig. 33.  Macrophages are recruited at the poisoned NMJ. CD68-positive macrophages (red, white arrows) are 

observed at the NMJs of LAL muscles injected with -Ltx during nerve terminal degeneration (16 hours 

intoxication). Scale bar: 10 m. 
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5. DISCUSSION   

The repair of injured peripheral nerves involves the coordinated action of different cell 

types, among which SCs were shown to provide fundamental assistance for axon 

regeneration to occur. In response to nerve injury, both myelinating and perisynaptic SCs de-

differentiate to a progenitor-like state and start proliferating; they also contribute to the 

removal of nerve debris, and recruit macrophages to the damage site by releasing cytokines 

and chemokines. Moreover, upon an extensive cytoskeletal reorganization, PSCs at 

denervated end-plates extend long processes or sprouts, which induce and guide nerve 

regrowth, facilitating the re-innervation of muscle fibers [9, 25].  

While the remarkable plasticity of the SCs in response to nerve damage has been extensively 

documented, the intracellular signalling events that control the transition to this peculiar cell 

state are still poorly understood. Interestingly, it was recently shown that the MAPK 

signalling pathway has a central role in controlling SCs plasticity and peripheral nerve 

regeneration via the activation of ERK1/2 and JNK [122, 116]. Activation of an inducible 

Raf/MEK/ERK pathway in SCs of transgenic mice is sufficient to induce severe demyelination 

in the absence of axonal damage; it also promotes much of the inflammatory response 

important for nerve repair, with breakdown of the blood-nerve barrier and influx of 

inflammatory cells [116]. c-Jun, once activated downstream of JNK pathway, strongly 

promotes axonal regeneration via paracrine signalling by increasing the expression of several 

neurotrophic factors in SCs [128].  

The initiator of this injury response is likely to be a signal coming from damaged axons that 

alerts adiacent SCs of their intention to degenerate: this signal is detected by SCs that are 

induced to de-differentiate. However, to date the identity of such mediator/s remains 

unknown, along with other cellular and molecular aspects regarding the regeneration of 

peripheral nerves. 

In this study, we have adopted an original approach to study motor axon terminals 

degeneration and repair [42]. This model system is based on the use of animal presynaptic 

neurotoxins – α-Ltx and SPANs –, which are highly specific for nerve terminals and have a 

well-defined biochemical mechanism of action, part of which has been characterized in our 

laboratory [40, 74, 69, 39]. Here these neurotoxins are used as tools to induce a localized 

and completely reversible nerve terminals degeneration: this system avoids the activation of  
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a complex inflammatory response, and provokes a damage which remains strictly confined 

to the endplate. Moreover, it prevents some adverse effects of injury techniques such as 

laser ablation (high temperatures, photo-oxidation, etc.).  

The experimental approach proposed here is therefore better suited to study the inter- and 

intra-cellular signalling events underlying the regeneration process. The localized injury 

provided by neurotoxins allows a more defined and reliable examination of PSCs specific 

roles in motor axon terminals repair. 

Spider and snake presynaptic neurotoxins induce, by different biochemical mechanisms, a 

large entry of calcium in axon terminals, which in turn leads to mitochondria failure and, at a 

later stage, to degeneration of nerve terminals [43, 75]. Mitochondria are abundant and 

fundamental components of motor axon terminals, and have recently emerged as major 

sources of DAMPs: following different kinds of tissue injury, mtDAMPs – such as mtDNA and 

Cyt c – are released, and contribute to the activation of inflammatory responses even in the 

absence of infection [80, 83]. In addition, mitochondria-derived ROS are also acquiring very 

important roles as activators of injury-induced responses, acting as alarmins and promoting 

regeneration following different kinds of tissue damage [107, 108, 109]. Among ROS H2O2 

has been shown to act as second messenger and paracrine signal in different physiological 

and pathological contexts, thanks to its high stability and membrane permeability [95]. 

ROS mitochondrial production increase under many stress conditions. In our experimental 

system, the rapid cytosolic calcium overload which takes place upon intoxication of nerve 

terminals was found to severely impair mitochondria, which undergo evident structural 

alterations and depolarization [75, 77, 58]. Based on these premises, we decided to image 

H2O2 in primary cultured neurons, taking advantage of novel specific fluorescent probes 

[114, 115]; live-imaging experiments showed that intoxicated neurons strongly increase 

mitochondrial production of H2O2, which then diffuses to the cytosol where it can easily 

permeate the plasma membrane to reach the extracellular medium. Since PSCs and axon 

terminals are in close contact within the NMJ, significant amounts of H2O2 released by 

intoxicated axon terminals can reach PSCs before being inactivated by cellular antioxidant 

defense systems. Once inside the target cell, H2O2 can act as second messenger via chemo-

selective oxidation of cysteine residues in signalling proteins and via ERK activation [99, 119, 

120, 121]. Indeed, H2O2 induces ERK phosphorylation in isolated cultured SCs, in a dose- and  
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time-dependent manner; p-ERK levels are also significantly increased in SCs co-cultured with 

neurons upon intoxication with α-Ltx and SPANs, meaning that ERK activation in SCs also 

occurs in our neurotoxins-based experimental system. Pre-incubation with catalase strongly 

prevents ERK phosphorylation in intoxicated co-cultures, suggesting that H2O2 produced 

inside neurons diffuses to reach nearby SCs, where it is responsible for ERK activation.  

The results obtained in in vitro systems are also well reproduced in-vivo: indeed, a strong p-

ERK signal is detectable in PSCs of intoxicated NMJs. Co-injection of α-Ltx and catalase 

significantly delays nerve terminal repair, both from a functional and a structural point of 

view, supporting the crucial involvement of H2O2 in promoting motor axon terminals 

regeneration.  

The importance of ERK pathway for SCs activation and nerve regeneration was confirmed by 

a pharmacological approach: pre-treatment with the MEK1 inhibitor PD98059 decreases ERK 

phosphorylation levels in SCs of poisoned co-cultures and slows down the process of nerve 

repair following neurotoxins injections in-vivo in a way similar to that observed upon 

treatment with catalase. 

Thus, H2O2 released by intoxicated nerve terminals activates PSCs in-vitro and in-vivo, 

playing a prominent role in nerve regeneration.  

PSCs at intoxicated NMJs undergo deep morphological and functional alterations aimed at 

promoting NMJ repair, confirming their endowed high plasticity. Indeed, during nerve 

terminals degeneration PSCs extend long sprouts, which are an hallmark of their activated 

state [9, 25]. They become CD-68 positive, indicating an acquired phagocytic activity, and 

start engulfing nerve debris: the macrophagic-like features of PSCs described here represent 

an additional early read-out of PSCs activation at injured NMJ. Macrophages are also 

recruited in the proximity of neurotoxins-treated NMJs: it is therefore possible  that they are 

attracted by H2O2, although we do not know how far H2O2 can migrate from the site of 

production as the circulating extracellular fluids contain many H2O2 quenching molecules. It 

is likely that other more stable mediators, released by the neurons or by the activated PSCs, 

are involved in macrophages recruitment [24, 105, 106].  

These observations support the idea that the neurotoxins-based experimental system 

described here represents a reliable model to study nerve terminal degeneration and 

regeneration processes: indeed, PSCs reaction in response to intoxication well resembles the 
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main features observed in traditional experimental models, such as in-vivo cut/crush of 

sciatic nerve. 

For the future, we plan to investigate more in detail the intracellular signalling and 

transcriptomic events taking place in activated PSCs, in order to identify additional pathways 

and molecular mediators involved in nerve terminal regeneration. It is also planned to 

investigate whether H2O2 is produced in response to other kinds of injury, such as the 

cut/crush of nerves, in order to replicate what happens during traumatic accidents. 

More in general, there are reasons to support the possibility that the present experimental 

approach will provide information that are relevant to the investigation of other motor 

neurons diseases with similar pathogenetic features, as dying-back axonopathies and 

autoimmune neuropathies.  
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7. APPENDICES 

Note: supplementary information of: [Duregotti E, et al. (2015) Mitochondrial alarmins 

released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc 

Natl Acad Sci U S A] are available at: 

http://www.sciencedirect.com/science/article/pii/S0041010112008367# 
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a-latrotoxin and snake presynaptic phospholipases A2 neurotoxins target the presynaptic
membrane of axon terminals of the neuromuscular junction causing paralysis. These
neurotoxins display different biochemical activities, but similarly alter the presynaptic
membrane permeability causing Ca2þ overload within the nerve terminals, which in turn
induces nerve degeneration. Using different methods, here we show that the calcium-
activated proteases calpains are involved in the cytoskeletal rearrangements that we
have previously documented in neurons exposed to a-latrotoxin or to snake presynaptic
phospholipases A2 neurotoxins. These results indicate that calpains, activated by the
massive calcium influx from the extracellular medium, target fundamental components of
neuronal cytoskeleton such as spectrin and neurofilaments, whose cleavage is functional
to the ensuing nerve terminal fragmentation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many animal toxins target the neuromuscular junction
(NMJ), interfering with its key function, the neurotrans-
mission: among them the presynaptic toxins block acetyl-
choline (Ach) release by different, but often related,
mechanisms of action, eventually leading to paralysis.

The black widow spiders (genus Latrodectus) are largely
diffused in many parts of the world. The venom of Latro-
dectus spp. contains at least 86 unique proteins, some of
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which play a role in its toxicity towards insects and crus-
taceans, with only one component, alpha-latrotoxin (a-
Ltx), that specifically targets vertebrates. A large body of
evidence shows that Ca2þ influx through membrane
channels induced by a-Ltx in the presynaptic membrane
accounts for a major part of its effects (Ushkaryov et al.,
2004, 2008; Vassilevski et al., 2009).

Presynaptic snake neurotoxins endowed with PLA2
activity (SPANs) are major components of the venom of
four families of venomous snakes (Crotalidae, Elapidae,
Hydrophiidae and Viperidae). These neurotoxins play
a major role in the envenomation of the prey by causing
a persistent blockade of neurotransmitter release from
nerve terminal (Harris, 1985; Kini, 1997; Pungercar and
Krizaj, 2007). Once bound to the presynaptic membrane
they hydrolyse phospholipids, leading to a progressive
accumulation of lysophospholipids (LysoPLs) and fatty
acids (FA) and the consequent degeneration of the NMJ
(Montecucco and Rossetto, 2000; Rigoni et al., 2005;
Rossetto and Montecucco, 2008).

A recent side by side comparative study of SPANs and
a-Ltx action in primary cultures of central neurons and in
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mice showed that, despite the different molecular mecha-
nisms of intoxication, both kind of toxins exert their
degenerative activity via inducing a large calcium influx
inside nerve terminals (Tedesco et al., 2009). Both SPANs
and a-Ltx cause phenotypical alterations in neurites of
cultured primary neurons called bulges, hallmarks of their
neurotoxicity. Bulges are sites of unbalanced endo–exocy-
tosis and of intracellular calcium overload, where the
neuronal cytoskeleton appears dramatically affected, with
accumulation of neurofilaments (NF) and actin staining
(Rigoni et al., 2004, 2007; Tedesco et al., 2009).

In light of these observations we have considered the
possible involvement of calcium-activated proteases in the
cytoskeletal rearrangements observed in cultured neurons
exposed to both classes of neurotoxins and have focused
our attention on calpains, a class of cysteine-proteases
involved in cell damage following Ca2þ accumulation in
the cytosol (Vosler et al., 2008). The two ubiquitously
expressed isoforms of the calpain superfamily, m-calpain
and m-calpain, are the best-characterized ones and are
conventionally termed calpains. These proteases are local-
ized in the cytosol in their inactive form; in response to
[Ca2þ] increase they translocate to membranes where they
are activated by autolytic processing. The calpain isoforms
differ in [Ca2þ] sensitivity: m-calpain requires micromolar
while m-calpain requires millimolar [Ca2þ] for activation.
Calpain physiological substrates include enzymes such as
protein kinase C (PKC), as well as structural cytoskeletal
proteins including spectrin, tubulin, microtubule-
associated protein 2 (MAP2) and neurofilament proteins.
At resting physiological conditions, when [Ca2þ] oscillates
around 100 nM, slight proteolytic modification of some
calpain substrates is associated with normal cell func-
tioning and protein turnover. Calpain inhibitors elicit
accumulation of NF at the nerve terminal, suggesting that
these proteases are indeed important in the normal regu-
lation of synaptic structure (O’Hanlon et al., 2003). At
pathological higher [Ca2þ] calpains were shown to act
particularly in models of hypoxic and traumatic brain
injury as well as in many neurodegenerative diseases
(Schumacher et al., 1999; Vosler et al., 2008; Kilinc et al.,
2009).

Neurofilaments are composed of three proteins with
apparent molecular weights of 200, 160, and 68 kDa
referred to as heavy (NF-H), medium (NF-M) and light
neurofilaments (NF-L), respectively. The neurofilament
proteins are phosphorylated in vivo, particularly at multiple
repeats of the Lys-Ser-Pro (KSP) motif. Neurofilaments are
good substrates for calpains and their susceptibility is
enhanced by dephosphorylation (Geddes et al., 1995; Pant,
1988). Calpain targets also include spectrin, a major
membrane-skeletal protein, whose cleavage leads to the
generation of two unique and highly stable breakdown
products, which is an early event in neural cell pathology
(Czogalla and Sikorski, 2005).

We have tested calpain contribution to neuronal cyto-
skeletal fragmentation in primary neuronal cultures from
cerebellum and cortex exposed to a-Ltx and notexin (Ntx),
a prototype snake PLA2 presynaptic neurotoxin, in the
absence or presence of calpain inhibitors, using different
experimental approaches: i) analysis of spectrin and NF
Western blotting profiles; ii) time-course of bulge forma-
tion; iii) live-imaging of calpain activity with a fluorigenic
calpain substrate. Our results indicate that these proteases
participate in the degeneration process initiated by these
two classes of animal toxins.

2. Methods

2.1. Chemicals

BME (Basal Eagle Medium), Neurobasal A, B27, Glutamax
and the fluorigenic calpain substrate t-BOC-L-leucyl-L-
methionine amide have been purchased from Invitrogen;
AraC (cytosine b-D-arabinofuranoside), trypsin, trypsin
inhibitor, DNAse I, poly-L-lysine, gentamycin, bovine serum
albumin and oleic acid (OA) are Sigma–Aldrich; 1-
myristoil-2-lysophosphatidylcholine (mLysoPC) is Avanti
Polar Lipids; FBS is Euroclone. For Western Blot detection
we employed the ECL LUMINATA from Millipore.

2.1.1. Toxins
Notexin was obtained from Latoxan (France), a-latro-

toxin from Alomone (Israel). The purity of these toxins was
checked by SDS-PAGE and their neurotoxicity by ex-vivo
mouse nerve-hemidiaphragm preparation as previously
described (Rigoni et al., 2005). The lipid mixture
(mLysoPC þ OA) was prepared following the procedure
reported in Rigoni et al. (2005).

2.1.2. Calpain inhibitors
The following calpain inhibitors have been used at

20 mM final concentration: MDL28170 (Sigma–Aldrich),
ALLN and PD150606 (Calbiochem). In experiments
involving calpain inhibitors samples were preincubated
30 min to 1 h with the compounds and the inhibitors were
kept in the medium throughout the experiment.

2.1.3. Antibodies
The following antibodies were used: mouse monoclonal

anti-spectrin (Chemicon, working dilution in WB 1:1000);
mouse monoclonal anti-neurofilaments (SMI31 and SMI32,
Sternberg Monoclonals, 1:1000); mouse monoclonal anti-
Hsc70 (Synaptic Systems, 1:5000); goat anti-mouse HRP-
conjugated (Calbiochem, 1:2000).

2.2. Primary neuronal cultures

All experiments were performed in accordance with
Italian animal care guidelines, law no. 116/1992. Rat cere-
bellar granule neurons (CGNs) and cortical neurons were
prepared from 6 or 2-days-old Wistar rats respectively as
previously described (Levi et al., 1984; Rigoni et al., 2004)
and used 6–8 days after plating.

2.3. Sample preparation for Western blotting

CGNs (250,000/w, 24w plates) or cortical neurons
(160,000/w, 24w plates) were exposed to a-Ltx, Ntx or
mLysoPC þ OA (0.1 nM for 30 min, 25 nM for 45 min and
25 mM for 30 min, respectively) in Krebs Ringer Buffer
(KRH: 125mMNaCl, 5 mMKCl, 1.2 mMMgSO4, 2 mMCaCl2,
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1.2 mM KH2PO4, 6 mM glucose and 25 mM HEPES, pH 7.4),
then washed twice with PBS 5 mM EDTA and lysed in Lysis
Buffer (Hepes 10 mM, NaCl 150 mM, SDS 1%, EDTA 4 mM,
protease inhibitors cocktail (Roche)). Protein concentration
was quantified using the BCA assay (Protein Assay Kit,
Pierce). 7–10 mg were loaded onto 10-well gels (Protogel,
stacking gel 4%, resolving gel 6.5%, Minigel II Biorad) and
then transblotted onto a nitrocellulose membrane.
Following saturation (PBST 5% milk in the case of spectrin
detection and PBS 5% BSA for phosphoneurofilaments),
membranes were incubated o/n at 4 �C with the primary
antibodies and, after washings, for 1 h at RT with the cor-
responding secondary antibodies HRP-conjugated. For
densitometric quantification the bands of interest were
normalized with the housekeeping protein Hsc70.

2.4. Time course of bulging

CGNs or cortical neurons at 6 to 8 DIV plated onto poly-
L-lysine-coated 24 mm coverslips were washed and incu-
bated in KRH at 37 �C in the absence or presence of the
toxins (a-Ltx 0.1 nM for 40 min, Ntx 25 nM for 45 min) or
the lipid mixture (25 mM for 30 min) and w/o calpain
inhibitors (inhibitors were added to the medium at 20 mM
final concentration 45 min before toxin addition and
maintained throughout the experiment). Brightfield
images with Nomarsky optics were acquired at 5–10 min
intervals for a maximum of 45 min (Leica DMI6000 epi-
fluorescence microscope).

2.5. Live-imaging of calpain activity and quantification

To detect calpain activity in living neurons, cells
were loaded with the fluorogenic calpain substrate 7-
amino-4-chloromethylcoumarin, t-BOC-L-leucyl-L-methio-
nine amide (t-BOC). Non-fluorescent t-BOC freely diffuses
into the cell and becomes membrane-impermeant after
being conjugated to a thiol. Cleavage of t-BOC-thiol by
calpain results in the release of fluorescent 7-amino-4-
methylcoumarin-thiol (MAC-thiol). The formation of
MAC-thiol is not reversible. Calpain activity at steady state
results in an increase in fluorescence due to the accumu-
lation of MAC-thiols. Changes in calpain activity can thus be
detected by considering the rate of change in theMAC-thiol
fluorescent signal (Rosser et al., 1993). CGNs or cortical
neurons were incubated in Krebs buffer containing 50 mM
t-BOC for 15 min at 37 �C, than the loading medium was
washed out and fluorescence levels monitored in control
conditions or following exposure to a-Ltx (0.1 nM for
30min), Ntx (25 nM for 45min) or to an equimolar mixture
of mLysoPC þ OA that has been previously found to mimic
the neurotoxic effects of SPANs (25 mM for 30 min). A
selected area on the coverslip was imaged at 10 min
intervals. An excitation/emission filter set suitable for DAPI
was used to record t-BOC fluorescence (Ex ¼ 351 nm;
Em ¼ 430 nm; Leica DMI6000, LAS AF software). Since t-
BOC is susceptible of photo-activation and this may turn
out in cell photo-toxicity, exposure to ultraviolet light was
kept at a minimum. The same experimental conditions
were employed in the presence of calpain inhibitors; in this
case cells were pre-treated with the inhibitors 45 min
before intoxication and kept in the medium throughout the
experiment. The changes in fluorescence with time within
specific regions of interest at the level of cell bodies, neu-
rites or bulges were measured (ImageJ software) and
expressed as fold increase with respect to the fluorescence
value at t ¼ 0 for each sample.

3. Results

3.1. Analysis of calpain proteolytic activity by Western
blotting

As a first assay of the contribution of calpains to the
phenotypical alterations observed in primary cultures of
neurons treated with a-Ltx or SPANs, we performed
a Western blotting analysis of cell lysates from intoxicated
cerebellar and cortical neurons. Two major targets of these
proteases, spectrin and neurofilaments, were detected with
specific antibodies. In fact, a-spectrin cleavage is a reliable
method to detect calpain activation and has extensively
been used as a quantitative measure of calpain activity
(Vanderklish and Bahr, 2000). The primary antibody used
here recognizes the intact spectrin 280 kDa band as well as
the 150–145 kDa doublet that corresponds to calpain-
specific cleavage products. Treatment of neurons with
staurosporine, a compound known to activate both cal-
pains and caspases (Nath et al., 1996), gave rise to the ex-
pected pattern, whilst pretreatment with calpain inhibitors
(MDL28170, ALLN and PD150606) protected against
staurosporine-mediated spectrin proteolysis (Fig. 1, panel
A). Both a-Ltx and Ntx led to a reduction of the 280 kDa
band and an increase of the bands corresponding to the
cleavage products, and this effect was reduced in the
presence of calpain inhibitors (Fig. 1, panels B and C).
Closely similar results were obtained with cortical neurons
(not shown). Also a lipid mixture composed of myristoyl-
lysophosphatidylcholine (LysoPC) and oleic acid (OA) in
equimolar concentrations, the products of the PLA2 activity
of SPANs that were previously shown to mimic their overall
neurotoxic action in both neuronal cultures and isolated
NMJs (Rigoni et al., 2005, 2007), caused a-spectrin cleavage
(Supplementary Fig. S1, panel A). A small reduction in cal-
pain basal activity was observed in control samples incu-
bated with the inhibitors alone (not shown).

We next extended such analysis to another important
calpain substrate, the neurofilament proteins. No signal
was detected in toxins-treated lysates w/o calpain inhibi-
tors when a primary antibody directed against the phos-
phorylated H subunit was employed (SMI31), suggesting
the possibility that the activation of cellular phosphatases
by toxins-induced calcium entry with consequent
dephosphorylation of such epitope might have occurred
during treatments (Fig. 2, panel A). Indeed, incubation of
neurons with the toxins in the presence of phosphatase
inhibitors restored the phospho-NF signal (not shown).
Following a-Ltx or Ntx exposure a decrease of the 200 kDa
band was observed when an anti-NF antibody raised
against a non-phosphorylated epitope in neurofilament H
was employed (SMI32). In both treatments a partial
protection by pretreatment with calpain inhibitors was
observed (Fig. 2, panels B and C). A decrease in NF staining



Fig. 1. Calpain-mediated proteolysis of spectrin in cerebellar neurons treated with staurosporine, a-Ltx or Ntx. Representative Western blots of neurons exposed
to 0.5 mM staurosporine (S) for 16 h (panel A), 0.1 nM a-Ltx for 30 min (panel B) or 25 nM Ntx for 45 min (panel C) in complete medium in absence or presence of
the calpain inhibitors PD150606, ALLN and MDL28170. Calpain-specific proteolysis of spectrin leads to a reduction of the 280 kDa band and the concomitant
increase of the 150–145 kDa doublet. The 150–145 kDa doublet was quantified by densitometric analysis and normalized to the housekeeping protein Hsc70; the
rate of cleavage is expressed as fold increase of the 150–145 kDa bands intensity with respect to the control as shown in the histograms (mean � SD, n ¼ 4).
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was induced also by lipid mixture treatment (Fig.S1,
panel B). Similar results were obtained in cortical neurons
(not shown).

3.2. Calpain is not involved in the generation of neuronal
bulges

The exposure of cerebellar and cortical neurons to a-Ltx
or Ntx leads to the formation of characteristic swellings
along neurites that we referred to as bulges (Rigoni et al.,
2004, 2005). In the case of a-Ltx, bulges result mainly
from the stimulation of exocytosis elicited by the toxin
triggered by calcium influx, with consequent addition of
vesicular membrane to the cell surface and neurotrans-
mitter emptying of the terminal (Ceccarelli et al., 1972;
Duchen et al., 1981; Ushkaryov et al., 2004). In the case of
SPANs, the PLA2 activity exerted on the plasma membrane
initiates the formation of bulges, with the ensuing unbal-
ance between exocytosis and endocytosis, as shown by
FRET and FM 1–43 experiments and by the surface expo-
sure of the intraluminal domain of the vesicular protein
synaptotagmin I (Rigoni et al., 2004, 2005; Bonanomi et al.,
2005). Indeed, LysoPLs and FAs alone are capable of
inducing neuronal bulging and this is reversed upon their
removal (Caccin et al., 2006). However, with both classes of
neurotoxins, vesicle exocytosis is not the only process
involved in nerve terminal swelling, which nevertheless
remains a good indicator of these presynaptic neurotoxins
activity in vitro. We tested here the possibility that calpains
are involved in nerve terminal bulging and found that
preincubation of neurons with calpain inhibitors followed
by toxins or lipid mixture addition did not decrease the rate



Fig. 2. Calpain-mediated proteolysis of neurofilaments in cerebellar neurons treated with a-Ltx and Ntx. Treatment of cerebellar neurons with a-Ltx 0.1 nM for
30 min led to disappearance of the 200 kDa band of the phosphorylated heavy NF subunit (SMI31 primary antibody, panel A); no recovery was observed with the
inhibitors. B, C NF heavy subunit staining following incubation with a primary antibody raised against a non-phosphorylated epitope (SMI32 antibody). Both
toxins cause a decrease of the 200 kDa band. In both cases a protection by ALLN was observed. The histograms show the densitometric analysis of the 200 kDa
heavy chain normalized to the housekeeping protein Hsc70 (mean � SD, n ¼ 4).

E. Duregotti et al. / Toxicon 64 (2013) 20–2824
of bulge formation nor affected their overall morphology
(Fig. 3 and Supplementary Fig. S2). No toxicity was elicited
by the inhibitors alone (not shown).

3.3. Live imaging of calpain activity in cultured neurons

To assay calpain involvement in later stages of toxins-
induced neurodegeneration, neurons were loaded with
a fluorogenic calpain substrate (7-amino-4-chlor-
omethylcoumarin, t-BOC-L-leucyl-L-methionine amide, t-
BOC) which becomes fluorescent once specifically cleaved
by these proteases. Using this approach, we expected not
only to confirm the results obtained in Western blot, but
also to obtain a picture of the spatial distribution of calpain
activity. Once added to culture medium t-BOC freely
diffuses across the membranes into the cell cytosol, where
it is retained because it is modified and becomes
membrane-impermeable. Control neurons loaded with
t-BOC showed an increase in fluorescence with time due to
the basal activity of these enzymes in the cells and the
photo-activation of the fluorogenic substrate (Fig. 4, panel
A). Using the same acquisition parameters, the samples
treated with a-Ltx, Ntx or the mLysoPC þ OA lipid mixture
(that was previously shown to induce Ca2þ influx, Rigoni
et al., 2007) showed a more pronounced increase in fluo-
rescence with respect to controls; in addition, the fluores-
cent signal was localized within swellings, indicating that
bulges are indeed major sites not only of Ca2þ entry (Rigoni
et al., 2007) but also of calpain activation (Fig. 4, panels B
and C and Supplementary Fig. S3). Quantification of
selected regions of interest (ROI) shows that the increase in
fluorescence at the level of cell bodies was comparable
between controls and treated samples, and that the mean
fluorescence measured at the level of the neurites of toxin-
treated neurons was lower than that measured in the
bulges. The mean fluorescence within bulges increased with
time and, judging from the fluorescence signal, the potency
of the two toxins was comparable among them and with
the lipid mixture (Fig. S4). Pretreatment with calpain
inhibitors reduced both the resting calpain activity in



Fig. 3. Time course of bulge formation in cerebellar granule neurons treated with a-Ltx (0.1 nM for 40 min) or Ntx (25 nM for 45 min) in the absence or presence
of the calpain inhibitor ALLN (20 mM). The same experiments were performed in cortical neurons and with the other inhibitors with similar results (not shown).
White squares indicate areas shown at higher magnification on the right. Scale bar: 25 mm.
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control neurons and that measured in treated samples,
supporting the specificity of the phenomenon and con-
firming the results obtained by Western blotting (Fig. 5).
Similar results were obtained using cortical neurons (not
shown).

4. Discussion

Neuronal Ca2þ homeostasis and Ca2þ signalling regulate
multiple neuronal functions, including synaptic trans-
mission, plasticity and cell survival. Disturbances in
calcium homeostasis due to energy depletion have been
described in acute neurodegenerative disorders, as well as
in tissues from aged humans both with and without asso-
ciated age-related pathologies such as Alzheimer’s disease.
Alterations in Ca2þ homeostasis can affect the physiology of
neurons in different ways and to various extents. A
common observation from the pathologies mentioned
above is the activation of the cysteine protease calpain,
a calcium-dependent, non-lysosomal enzyme known to be
widely expressed in animal tissues. The calcium sensitivity
of calpains suggests that they are important effectors of
changes in neurons brought about by calcium influx,
a rather commonpathological alteration in various forms of
damage and/or degeneration of neurons (Nicotera et al.,
1992; Bertipaglia and Carafoli, 2007). Alterations in
calcium homeostasis during ischaemia, TBI and epilepsy
result in the overwhelming activation of calpain in vitro,
in vivo and in post-mortem brain. Chronic neurodegenera-
tive diseases also show calcium disregulation with ensuing
calpain activation (Vosler et al., 2008). Thus calcium-
dependent processes represent points of convergence
among a heterogeneous set of degenerative mechanisms.
Pathologic activation of calpain results in the cleavage of
a number of neuronal substrates that negatively affect
neuronal structure and function, leading to inhibition of
essential neuronal survival mechanisms. Experimental
findings suggest that caspase and/or calpain inhibitors can
attenuate neuronal degeneration in models of these
neurodegenerative disorders (Vanderklish and Bahr, 2000;
Chan and Mattson, 1999).

SPANs and a-Ltx cause similar degeneration of nerve
terminals (Chen and Lee, 1970; Ceccarelli et al., 1972; Cull-
Candy et al., 1976; Ceccarelli and Hurlbut, 1980; Duchen



Fig. 4. Live-imaging of calpain activity in cultured neurons. CGNs were loaded with the fluorogenic compound t-BOC 50 mM for 15 min at 37 �C, washed, exposed
to a-Ltx 0.1 nM for 30 min (B), Ntx 25 nM for 45 min (C) or left untreated (A) and their brightfield and fluorescence were monitored. Scale bar, 10 mm. Calpain
activity with time was measured in defined regions of interest (ROI) at the level of cell bodies, neurites or bulges and expressed as ratio between the fluorescence
level at each time point of the kinetic and that at t ¼ 0 for the same ROI (see histograms).
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et al., 1981; Lee et al., 1984; Gopalakrishnakone and
Hawgood, 1984) with disappearance of neurofilaments
and synaptic proteins (Dixon and Harris, 1999; Harris et al.,
2000). We found previously that calcium overloading is the
common eventual result of the different biochemical
activities of these two classes of animal presynaptic
neurotoxins (the PLA2 activity of SPANs and the ion
channel activity of a-Ltx) (Rigoni et al., 2007, 2008; Tedesco
et al., 2009).

Here, using different techniques, we have shown that
calpains are indeed activated following intoxication with
both classes of neurotoxins: their cleavage of spectrin and
neurofilaments, two typical calpain substrates, detected by
Western blot, is largely inhibited by preincubation with
calpain inhibitors. Following toxins treatment, the NF
heavy subunit is dephosphorylated and degraded; these
results fit with previous observations that dephosphory-
lation enhances neurofilaments susceptibility to calpains
(Pant, 1988).

Calpain involvement was further confirmed by live-
imaging experiments of calpain activity in cultured neurons,
showing a localized action within bulges, that are pheno-
typical hallmarks of intoxication by both a-Ltx and SPANs.
Bulging derives mainly from membrane accumulation that
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Fig. 5. The generation of MAC-thiol by a-Ltx is calpain-specific. CGNs were
loaded with the calpain fluorogenic substrate t-BOC as described in the
legend of Fig. 4 and in the methods section and then treated w/o a-Ltx in the
presence or absence of the calpain inhibitor ALLN. In a-Ltx-treated samples
the increase in fluorescence within bulges, due to the formation of a MAC-
thiol by calpain cleavage, is almost abolished by the calpain inhibitor
pretreatment. Similar results were obtained with Ntx and the lipid mixture
(not shown).
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follows unbalanced exo–endocytosis. In the case of a-Ltx,
calcium entry is the major event responsible for nerve
swelling from the beginning, as this toxin is a Ca2þ channel
itself, whereas in the case of snake PLA2 the initial process in
bulge formation is the production of LysoPLs, which favour
synaptic vesicle exocytosis not followed by endocytosis.
This is then followed by the entry of calcium mediated by
transient LysoPLspores (Rigoni et al., 2004, 2005; Bonanomi
et al., 2005). Indeed, bulge appearance preceeds intracel-
lular calcium rise (Rigoni M., unpublished observations).
Accordingly, calpain inhibitors did not prevent bulging, in
linewith theobservations thatbulges arenot themere result
of cytoskeletal rearrangements and with electrophysiolog-
ical experiments demonstrating that calpain inhibition does
not prevent the induction of neuroexocytosis by a-Ltx
(O’Hanlon et al., 2003).

Calpain activation appears to be a later event in the
intoxication process by these two classes of presynaptic
neurotoxins, which manifests itself as cytosolic protein
cleavage, and particularly as the cleavage of cytoskeletal
proteins. The fragmentation of the cytoskeleton compo-
nents by calpains found here appears to be an important
prerequisite for the following step which is the degenera-
tion of the nerve terminal into fragments, necessary for the
subsequent removal of the degraded terminals by phago-
cytosis. In turn, this is essential for the final regeneration of
the neuromuscular junction which takes place in vivo
(Grubb et al., 1991; Prasarnpun et al., 2005).

Axon degeneration with fragmentation of axonal cyto-
skeleton is a characteristic event in many chronic neuro-
degenerative conditions as well after acute nerve injuries.
As early as 5–10 min after nerve transection, for example,
the axonal segments immediately proximal and distal to the
injury site rapidly degenerate by several hundred micro-
metres in either directions, and this process is thought to be
driven by influx of extracellular calcium, with subsequent
activation of calpains. Increased calpain cleavage of spectrin
occurs as early as 30 min after injury in vivo, indicating that
calpain activity is the primary effector of the acute axonal
degeneration (AAD) (Wang et al., 2012).

The present study provides further insights into the
molecular mechanisms of action of these two types of
animal toxins, a-Ltx and Ntx, that have very different bio-
logical activities but block the NMJ functionality in a similar
way, via the induction of the entry of calcium ions inside
axon terminals. Our results demonstrate the involvement
of the calcium-activated proteases calpains in the degen-
eration of the nerve terminals induced by both type of
neurotoxins, and suggest that their study can provide
useful information to the understanding of other neuro-
degenerative conditions.
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An acute and highly reproducible motor axon terminal degeneration
followed by complete regeneration is induced by some animal
presynaptic neurotoxins, representing an appropriate and controlled
system to dissect the molecular mechanisms underlying degeneration
and regeneration of peripheral nerve terminals. We have previously
shown that nerve terminals exposed to spider or snake presynaptic
neurotoxins degenerate as a result of calcium overload and mito-
chondrial failure. Here we show that toxin-treated primary neurons
release signaling molecules derived from mitochondria: hydrogen
peroxide, mitochondrial DNA, and cytochrome c. These molecules
activate isolated primary Schwann cells, Schwann cells cocultured
with neurons and at neuromuscular junction in vivo through the
MAPK pathway.We propose that this inter- and intracellular signaling
is involved in triggering the regeneration of peripheral nerve
terminals affected by other forms of neurodegenerative diseases.

motor axon degeneration | presynaptic neurotoxins | mitochondrial
alarmins | Schwann cells

The venoms of the black widow spider Latrodectus mactans,
the Australian taipan snake Oxyuranus scutellatus scutellatus,

and the Taiwan krait Bungarus multinctus cause the paralysis of
peripheral skeletal and autonomic nerve terminals in enveno-
mated subjects. Such paralysis is completely reversible, and
within a month or so, patients, supported by mechanical venti-
lation, recover completely (1–3). Paralysis in mice/rodents has
a shorter duration, and again recovery is complete (4, 5). Major
presynaptic toxins of these venoms are α-latrotoxin (α-Ltx),
taipoxin (Tpx), and β-bungarotoxin (β-Btx), respectively (6, 7).
α-Ltx induces a very rapid nerve terminal paralysis by forming
transmembrane ion channels that cause a massive Ca2+ entry,
with exocytosis of synaptic vesicles and mitochondrial damage
(7–11). This is followed by Ca2+-induced degeneration of motor
axon terminals, which is remarkably limited to the unmyelinated
endplate. Complete regeneration is achieved in mice within
8–10 d (4). Tpx and β-Btx are representative of a large family
of presynaptic snake neurotoxins endowed with phospholipase
A2 activity (SPANs), which are important, although neglected,
human pathogens (12–15). We have contributed to the defini-
tion of their mechanism of action, which involves generation of
lysophospholipids and fatty acids on the external layer of the
plasma membrane (16, 17). The mixture of these lipid products
favors exocytosis of ready-to-release synaptic vesicles and
mediates the rise of cytosolic Ca2+, presumably via transient lipid
ion channels (16, 18). In turn, this Ca2+ influx causes a massive
release of synaptic vesicles and mitochondrial damage, with
ensuing complete degeneration of axon terminals (5, 18–20).
Similar to α-Ltx, SPANs-induced peripheral paralysis is followed
by a complete recovery: regeneration and functional reinnervation
are almost fully restored in rats by 5 d (20). The similar outcome
and time-course of the paralysis induced by the two types of
presynaptic neurotoxins suggest that the common property of
inducing Ca2+ entry into the nerve terminals is the main cause

of nerve terminal degeneration (21). Indeed, these neurotoxins
cause activation of the calcium-activated calpains that contribute to
cytoskeleton fragmentation (22).
Although clearly documented (4, 5, 20), the regeneration of

the motor axon terminals after presynaptic neurotoxins injection
is poorly known in its cellular and molecular aspects. Available
evidence indicates that, in general, regeneration of mechan-
ically damaged motor neuron terminals relies on all three cel-
lular components of the neuromuscular junction (NMJ): the
neuron, the perisynaptic Schwann cells (PSCs), and the muscle
cells (23, 24). The regeneration steps that take place on animal
neurotoxin poisoning are likely to be similar to those after the
cut or crush of nerves, as a closely similar cascade of toxic events
occurs in both conditions (i.e., calcium overload, mitochondrial
impairment, and cytoskeleton degradation). Similar neurodegener-
ative events are also shared by traumatized patients. However, the
model system used here provides the advantage of being much
more controlled and more reproducible. In addition, it does not
involve the death of many cell types, as it follows a well-char-
acterized biochemical lesion of the end plate only (7, 8, 10–12,
16, 18). Therefore, the mouse NMJ treated with α-Ltx, Tpx, or
β-Btx represents a relevant model of acute motor axon terminal
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degeneration and regeneration, which is likely to provide in-
formation useful to the understanding of the pathogenesis not
only of envenomation but also, more in general, of other human
pathological syndromes.
Cell death and injury often lead to the release or exposure of

intracellular molecules called damage-associated molecular patterns
(DAMPs) or alarmins. Recently, mitochondria have emerged as
major sources of DAMPs (25). Mitochondria are abundant sub-
cellular components of the NMJ that have been recently shown
to release mitochondrial DNA (mtDNA) and cytochrome c (Cyt c)
after trauma or snake myotoxin-induced muscle damage, thus
contributing to the systemic or local inflammatory responses
associated with such conditions (26, 27). In this study, we tested
whether α-Ltx and SPANs induce the release of mitochondrial
signaling molecules from primary neuronal cultures and found
that, in addition to mtDNA and Cyt c, hydrogen peroxide (H2O2)
is released. First candidate targets of these mitochondrial media-
tors released by damaged neurons are nonmyelinating PSCs,
which are intimately associated with the end plate. They play an
active role in the formation, function, maintenance, and repair of
the NMJ (28–33). PSC activation parallels nerve degeneration
and contributes to neuronal regeneration by phagocytosis of

cellular debris and by extension of processes that guide rein-
nervation (34, 35). We therefore investigated whether mito-
chondrial DAMPs released by injured neurons were able to
activate SCs, and through which downstream pathway. Using
isolated primary cells, neuron-Schwann cell cocultures, and
the NMJ in vivo, we found that PSCs are activated by mito-
chondrial alarmins and that the MAPK signaling pathway is
involved in this process.

Results
Hydrogen Peroxide Is Produced by Neurons Exposed to Spider or Snake
Presynaptic Neurotoxins.Given that mitochondria of stressed cells
produce superoxide anion, which is rapidly converted into H2O2,
and that in neurons exposed to the neurotoxins, mitochondria
functionality is impaired, we asked whether intoxication of neu-
rons by α-Ltx or SPANs leads to H2O2 production, an ideal can-
didate as intercellular signaling molecule (36–38). We therefore
loaded rat cerebellar granular neurons (CGNs) with specific H2O2
probes with different cellular localization and monitored the
samples for up to an hour. MitoPY1 is a bifunctional molecule
that combines a chemoselective boronate-based switch and a
mitochondrial-targeting phosphonium moiety for the detection

Fig. 1. Live-imaging of neuronal hydrogen peroxide production. Rat CGNs were loaded with the H2O2-specific probes PF6-AM (A) or MitoPY1 (B), washed,
and then exposed to Tpx 6 nM or α-Ltx 0.1 nM for 50 min. Changes in fluorescence resulting from H2O2 production were monitored with time and expressed
as a percentage of the fluorescence value at t = 0 (Right). ***P < 0.001. Arrows in bright-field images and in the green channel point to neuronal bulges.
(Scale bars: 10 μm.)
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of H2O2 localized to mitochondria (39). PF6-AM takes advantage
of multiple masked carboxylates to increase cellular retention, and
hence sensitivity to low levels of peroxide. In its ester-protected
form, PF6-AM can readily enter cells. Once inside cells, the
protecting groups are rapidly cleaved by intracellular esterases to
produce their anionic carboxylate forms, which are effectively
trapped within cells (40).
After exposure to α-Ltx or Tpx, H2O2 levels increased with

time, markedly at the level of neurite enlargements (so-called
bulges), which are a hallmark of intoxication (16, 41), as shown
in Fig. 1. Bulges are sites of calcium overload and accumulation
of depolarized mitochondria (18), and the MitoPY1 signal indicates
that these mitochondria produce H2O2. Quantification of the sig-
nals indicates a more pronounced effect of α-Ltx with respect to
Tpx, in agreement with the fact that the pore formed by the former
neurotoxin mediates a larger Ca2+ entry than Tpx (21). Similar
results were obtained following intoxication of rat spinal cord motor
neurons (MNs; Fig. S1). That mitochondria are the major source
of H2O2 is reinforced by the finding that toxins failed to induce
membrane translocation of cytoplasmic p47phox, a regulatory
component of the NADPH oxidase complex, which excludes
a role of the NADPH oxidase system (Fig. S2).

Hydrogen Peroxide Released by Degenerating Nerve Terminals Activates
Schwann Cells and Stimulates Regeneration. Growing evidence indi-
cates that H2O2 is a largely used intercellular signaling molecule
regulating kinase-driven pathways (37, 38, 42): it triggers ERK
phosphorylation in different cell types (43), with consequent
activation of downstream gene transcription, and ERK signaling
was recently shown to play a central role in the orchestration of
axon repair by SCs (44, 45).
In preliminary experiments, we checked whether primary SCs

isolated from rat sciatic nerves were responsive to H2O2 by an-
alyzing ERK phosphorylation by Western blotting and immu-
nofluorescence. Exposure of primary SCs to H2O2 led to ERK
phosphorylation and translocation of p-ERK into the nucleus
(Fig. S3 A and B). Cocultures of primary spinal cord motor
neurons and sciatic nerve-derived SCs were then exposed to
α-Ltx or Tpx: bulges appeared within few minutes along neuro-
nal processes, and p-ERK was detected in the cytoplasm and
nucleus of SCs (Fig. 2A). Phospho-ERK-positive cells were
also positive for S-100, a specific SC marker (Fig. S3C). In
cocultures, the score of S-100-positive cells that become p-ERK-
positive is 59% on intoxication with β-Btx (n = 81) and 78% in
the case of α-Ltx (n = 69). These percentages were obtained by
counting many S-100-positive cells randomly distributed in dif-
ferent fields, but the value is actually much higher if one con-
siders only clustered SCs in close proximity of intoxicated
neurites; this observation further supports the conclusion that
molecules released by injured neurons reach nearby SCs, thus
activating them.
ERK phosphorylation was reduced in cocultures preincubated

with catalase, which converts H2O2 into water and O2, indicating
that H2O2 produced inside neurons diffuses to reach nearby SCs,
contributing to their ERK activation (Fig. 2B). Residual p-ERK
signal might be a result of mediators other than H2O2 released
on neuronal injury. Toxins failed to induce a direct ERK phos-
phorylation either in isolated SCs (Fig. S3D) or in isolated pri-
mary neurons (Fig. 2B).
Next we tested whether the ERK pathway is activated also

within PSCs at the NMJs of intoxicated mice. Sublethal doses of
the neurotoxins were s.c. injected in transgenic mice expressing
a cytoplasmic GFP specifically in SCs under the plp promoter
(46, 47), in proximity to the levator auris longus (LAL) (48),
a thin muscle ideal for imaging. Twenty-four hours later, muscles
were collected and processed for indirect immunohistochemistry.
A clear p-ERK signal was detected at the level of PSCs in treated
NMJs, thus extending in vivo the results obtained in cocultures

Fig. 2. Hydrogen peroxide released after nerve terminal degeneration
activates ERK in Schwann cells and stimulates regeneration. Phospho-ERK
(green) was detected in primary SCs cocultured with spinal cord MNs on
exposure to α-Ltx (0.1 nM) or SPANs (6 nM) for 50 min by immunofluores-
cence (A), as well as by Western blots of total lysates (B). Arrows in A point to
neuronal bulges stained with an antibody against neurofilaments (NF; red).
Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) Catalase
pretreatment of cocultures (1,000 U) significantly reduced ERK phosphory-
lation induced by the toxins (Western blot and quantification). No ERK
phosphorylation is induced in neurons by the toxins. *P < 0.05; **P < 0.01;
n = 4. (C) α-Ltx or β-Btx s.c. injections in LAL muscle of transgenic mice trigger
ERK phosphorylation (p-ERK; red) in PSCs (green). Muscles were collected
24 h after injection. (Scale bars: 10 μm.) (D) Electrophysiological recordings of
EJPs at soleus NMJs treated with α-Ltx alone (5 μg/kg; black bars) or with
α-Ltx plus catalase (750 U; white bars). At 72 h EJP amplitudes of fibers ex-
posed to toxin plus catalase are significantly smaller than those exposed to
the sole toxin (**P < 0.01).
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(Fig. 2C). The importance of ERK pathway for SCs activation
and regeneration was addressed by a pharmacologic approach:
SCs-MNs cocultures exposed to the neurotoxins show a de-
creased ERK phosphorylation in the presence of the MEK 1
inhibitor PD98059 (Fig. S4 A and B); moreover, soleus muscles
of mice pretreated with PD98059 and then locally injected with
α-Ltx show a delayed recovery from paralysis with respect to
mice injected with toxin only (Fig. S4C).
PSCs respond to neurotoxin-induced nerve degeneration by

forming long sproutings and bridges between junctions of different
fibers by the first day of injection (Fig. S5). This response has been
long known to follow nerve terminal damage (35), and therefore,
the present toxin-based model of acute nerve degeneration repro-
duces the known crucial aspects of regeneration.
To test whether H2O2 production by injured nerve terminals is

important for functional regeneration, we performed electro-
physiological recordings at soleus NMJs 16, 24, 48, and 72 h after
i.m. injections of α-Ltx alone or α-Ltx plus catalase. Three days
after treatment, fibers injected with α-Ltx plus catalase showed
evoked junction potentials (EJPs) with significantly smaller ampli-
tudes than those injected only with the toxin, indicating a slowdown
of the regeneration process; muscles treated with catalase
alone showed EJPs indistinguishable from the control (Fig. 2D).
Immunohistochemistry on LAL muscles treated as described earlier
confirmed the electrophysiological results, showing a delay in the
recovery of synaptosomal-associated protein 25 (SNAP-25) staining,
a presynaptic marker, in samples exposed to α-Ltx plus catalase
compared with muscles injected with α-Ltx only (Fig. S6). At 24 h,
SNAP-25 staining is recovered in 80% of the NMJs treated with
α-Ltx (90% at 48 h) compared with 17% of the NMJs treated with
α-Ltx plus catalase (33% at 48 h; n = 40). The disappearance of
SNAP-25 during the degeneration steps takes place with a closely
similar kinetic under the two conditions (Fig. S6). Four hours
after intoxication, SNAP-25 displays a spotty distribution in nearly
all NMJs analyzed (indicative of nerve terminal degeneration),
both in the presence and absence of catalase; at 16 h, 68% of
α-Ltx-treated NMJs have no more SNAP-25 versus 60% of cat-
alase and α-Ltx-treated NMJs (n = 30).

mtDNA and Cyt C Are Released by Degenerating Neurons and Activate
the ERK Pathway in Schwann Cells. We next tested whether mtDNA
and Cyt c could act together with H2O2 as neuronal mediators of
PSCs activation. For mtDNA detection, primary neurons were
intoxicated, the supernatants collected, and DNA purified. The
eluates were subjected to real-time PCR, using primers specific
for the rat mitochondrial genes Cyt b and NADH dhI. Fig. 3A
shows that mtDNA is indeed released in the neuronal super-
natant after treatment with Tpx or α-Ltx. In another set of
experiments, TCA-precipitated cell supernatants (sham or toxin-
treated) were loaded in SDS/PAGE, followed by Western blot-
ting. Samples were probed with an antibody against Cyt c: only
toxin-treated samples showed a clear band corresponding to the
intact, monomeric form of the protein (Fig. 3B). Control experi-
ments showed no amplification when primers for the nuclear gene
GAPDH were used (Fig. S7A), and the LDH assay on neuronal
supernatant excluded a loss of membrane integrity (Fig. S7B).
Thioredoxin 2, a mitochondrial protein with a molecular weight
similar to Cyt c, was undetectable by Western blot of toxin-treated
supernatants precipitated with TCA, thus supporting the conclu-
sion that neuronal alarmins are released from intact membranes
(Fig. S7C). Moreover, CGNs loaded with calcein-AM did not lose
dye during 50 min incubation with both the toxins, indicating
conservation of plasma membrane integrity (Fig. S7D).
Exposure of isolated SCs to mtDNA or Cyt c led to a sustained

ERK phosphorylation, whereas a peak of p-ERK followed by
progressive decline was observed upon H2O2 stimulation. When
the three mitochondrial alarmins were added together, an ad-
ditive effect on ERK phosphorylation was observed (Fig. 3C).

Mitochondrial Alarmins Exit from Neurons. H2O2 is permeable to
biological membranes (49), whereas mtDNA and Cyt c must be
released from mitochondrial and plasma membranes to reach
the extracellular medium. Pretreatment of neurons with cyclo-
sporin A, a drug that desensitizes the mitochondrial permeability
transition pore (PTP) via its binding to cyclophilin D (50), reduces
both mtDNA and Cyt c release triggered by the toxins (Fig. 4 A
and B), suggesting these molecules can exit mitochondria and

Fig. 3. Mitochondrial DNA and cytochrome c are released by degenerating neurons and activate the ERK pathway, together with hydrogen peroxide. (A)
Real-time qPCR performed on CGNs supernatants from control and toxin-treated samples (Tpx 6 nM or α-Ltx 0.1 nM for 50 min), using primers specific for rat
mitochondrial genes Cyt b and NADH dhI. DNA copy numbers of control and treated samples have been quantified. *P < 0,05; n = 11. (B) Supernatants from
control and neurons treated as described earlier were precipitated with TCA and probed for Cyt c immunoreactivity in Western blot. (C) Time-course of ERK-
phosphorylation induced in primary SCs by H2O2 (10 μM), mtDNA (10 μg/mL), and Cyt c (1 μg/mL) added alone or in a mixture and the relative quantification.
Phospho-ERK signal was normalized to the Hsc70 band. *P < 0.05; **P < 0.01; n = 3.

4 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1417108112 Duregotti et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417108112/-/DCSupplemental/pnas.201417108SI.pdf?targetid=nameddest=SF7
www.pnas.org/cgi/doi/10.1073/pnas.1417108112


reach the cytoplasm through the PTP, whose opening is indeed
induced by snake neurotoxins (51).
Because neuronal plasma membrane integrity is preserved,

how do these alarmins reach the extracellular medium? We
posited that exosomes might be involved and have purified them
from control and treated neuronal supernatants. Purified exo-
somes were found enriched in Hsp90, Hsc70, flotillin, and CD63;
no contamination with Golgi, mitochondrial, or plasma mem-
branes was detected (Fig. 4C and Fig. S8 A and B). Electron
microscopy and immunogold labeling of purified exosomes con-
firmed their correct morphology, size, and positivity for Hsp90
(Fig. S8C). Next, we purified total DNA from exosomes and
performed real-time PCR to check for their mtDNA content. Fig.
4D shows that exosomes released by α-Ltx- and β-Btx-intoxicated
neurons do contain mtDNA. Similar mtDNA copy numbers were
found before and after DNase treatment of exosomal fractions,
indicating that mtDNA is indeed inside exosomes (Fig. S8D). In
contrast, no Cyt c was detected in exosomes by Western blotting;
this is likely to be a result of the much lower sensitivity of Western
blotting with respect to RT-PCR, but the possibility that Cyt c is
released from damaged nerve terminals via other mechanisms
cannot be discarded.

Phagocytosis Is Induced in PSCs During Nerve Terminal Injury.During
toxin-induced neurodegeneration, PSCs at poisoned NMJs un-
dergo evident morphological changes, showing a number of in-
tracellular structures appearing dense by light microscopy (Fig.
5A, Lower). These structures are particularly evident at 4 h after
α-Ltx injection, with a reduction in number and size with time
(Fig. 5A).
The appearance and life span of these structures parallel nerve

terminal degeneration, suggesting they might be phagosomes in-
volved in the clearance of nerve debris. Accordingly, immunostaining
of sham or poisoned LAL muscles for the scavenger macrophage
receptor CD68 was performed. After α-Ltx injection, perineural

SCs of LAL NMJs do express CD68 on these intracellular struc-
tures, supporting their phagocytic role (Fig. 5B). CD68-positive
structures also appear after β-Btx treatment, but at a later time
(16 h), as expected on the basis of the different time course of
pathogenesis of the two neurotoxins (Fig. 5B). Lysotracker-positive
staining confirmed the acidic nature of such compartments (Fig.
5C). CD68-positive macrophages were also recruited in the prox-
imity of neurotoxin-treated NMJs, with a typical migrating pheno-
type (Fig. S9); this is consistent with the chemoattractant role of
H2O2 (52–54). In contrast, polymorphonuclear leukocytes, which
are recruited by axonal degradation (54), were rarely seen in the
many samples we have inspected.
Four hours after α-Ltx injection, the distribution of the pre-

synaptic markers neurofilaments (NF) and SNAP-25 is altered,
with clear fragmentation in many junctions, as a result of the
specific and localized nerve terminal degeneration induced by
the neurotoxins (Fig. 6 A and B). SNAP-25-positive spots lo-
calize within PSCs phagosomes (the same holds true for NF),
as shown by orthogonal projections (Fig. 6C), confirming that
phagocytosis by PSCs and macrophages is taking place during
nerve terminal degeneration.

Discussion
The present article describes an original approach to study motor
axon terminals degeneration and regeneration. This model system is
based on the use of animal presynaptic neurotoxins highly specific
for nerve terminals with a well-defined biochemical mechanism of
action (10, 12, 16, 18). Here, these neurotoxins are used as tools to
induce localized and reversible nerve degeneration, followed by
complete regeneration. This system is more controllable than the
classical cut and crush approaches, which are invasive and inevitably
damage several cell types, triggering a pronounced inflammatory
response (55). Moreover, this model avoids some adverse effects of
techniques such as laser ablation (high temperatures, photooxida-
tion, etc). The model proposed here is therefore better suited to

Fig. 4. Mitochondrial alarmins exit from neurons. Preincubation with cyclosporine A (5 μM for 30 min) significantly reduced both mtDNA (A) and Cyt c
release (B) induced by exposure of CGNs to Tpx or α-Ltx (6 nM and 0.1 nM for 50 min, respectively). *P < 0.05; **P < 0.01; n = 3. (C) Exosomes were purified
from CGNs supernatants and probed for the exosome-enriched proteins flotillin, Hsc70, and Hsp90. The absence of the Golgi marker GM130 and of the
mitochondrial one Tom20 is indicative of uncontaminated preparations (Right). Cellular lysates are positive for all markers tested (Left). (D) DNA was
extracted from exosomes purified from the supernatants of α-Ltx- and β-Btx-treated CGNs (0.1 and 6 nM for 50 min, respectively) and subjected to real-time
qPCR for the detection of mtDNA. *P < 0.05; **P < 0.01; n = 5.
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study the inter- and intracellular signaling and transcriptomic events
involved in the regeneration process.
Spider and snake presynaptic neurotoxins induce, by differ-

ent biochemical mechanisms, a large entry of calcium in axon
terminals, which in turn leads to mitochondrial failure and
nerve terminal degeneration. At the same time, PSCs perceive
the damage occurring to the motor axons and respond by
dedifferentiating to a progenitor-like state, proliferating and

assisting nerve regeneration. They acquire macrophagic-like ac-
tivities that contribute to the removal of nerve cell debris and
facilitate reinnervation, similar to what was found previously after
nerve crush (23). Moreover, upon extensive cytoskeletal re-
organization, PSCs send out long projections, along which the
regenerating nerve terminals extend sprouts, which originate
from the nonmyelinated axon terminal to innervate adjacent
denervated junctions (34, 35).
It was recently shown that the MAPK signaling pathway has

a central role in controlling SC plasticity and peripheral nerve
regeneration via the activation of ERK1/2 and JNK, which ac-
tivate the transcription complex activator protein 1, of which
c-Jun is a key component (44, 45, 56). The major result obtained
here, using p-ERK as a read-out, is that alarmins released by
mitochondria of degenerating axon terminals activate SCs. Mi-
tochondria are abundant components of the motor axons ter-
minals, and here we define them as a source of mediators that
are released under cytosolic calcium overload. The rapid accu-
mulation of Ca2+ inside mitochondria causes the opening of the
PTP and the exit of alarmins (50). Mitochondrial alterations are
hallmarks of nerve terminal damage (19, 20), and therefore the
present findings can be extrapolated to several other nerve
terminal pathological conditions.
Mitochondria of stressed cells produce reactive oxygen spe-

cies (ROS), among which H2O2 is the most stable species (37,
38, 57). It is a very reactive molecule that can permeate bi-
ological membranes. As PSCs and axon terminals are in close
contact within the NMJ, significant amounts of H2O2 released by
axon terminals can reach PSCs before it becomes inactivated by
cellular antioxidant defense systems. Once within the target cell,
H2O2 can act as a second messenger via chemoselective oxidation of
cysteine residues in signaling proteins and via ERK phosphorylation.
Collectively, these properties make H2O2 an ideal mediator of
signal transduction processes (36–38, 42, 58). Recent experimental

Fig. 5. Nerve terminal degeneration triggers phagocytosis in terminal SCs
at the NMJ. (A) LAL muscles from transgenic mice were injected with α-Ltx
(5 μg/kg), collected at different time points (4, 16, 24 h), and processed for
indirect immunohistochemistry. PSCs (cyan) show intracellular structures of
different size that are particularly evident after 4 h of intoxication. These
structures appear dense by light microscopy (brightfield, Lower, arrows).
Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) PSCs (green) at
α-Ltx- and β-Btx-treated NMJs (4 and 16 h of intoxication, respectively) are
positive for the phagocytic marker CD68 (red), which stains intracellular
vesicular structures. A very low CD68 signal is detected in control NMJs.
(Scale bars: 10 μm.) (C) Ex vivo Lysotracker staining (red) of α-Ltx-treated LAL
(4 h) confirms the acidic nature of intracellular vacuoles. (Scale bar: 10 μm.)

Fig. 6. Degenerating terminals are engulfed by perisynaptic SCs. (A) PSCs
engulf presynaptic components, as shown by NF-positive staining of PSCs
phagosomes at NMJs treated for 4 h with α-Ltx (red, Lower). (Upper) control
NMJs. Nuclei are stained with Hoechst (blue). (Scale bars: 10 μm.) (B) Control
NMJs with typical SNAP-25 presynaptic localization (red). In α-Ltx-treated NMJs
(4 h), SNAP-25 aggregates localize within PSC phagosomes. (Scale bars: 10 μm.)
(C) Orthogonal projections of α-Ltx-treated NMJs show that SNAP-25 positive
aggregates are inside PSCs phagosomes. (Scale bars: 10 μm.)
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evidence in different animal models demonstrated that a rapid
concentration gradient of H2O2 is generated during injury and
that H2O2 is a powerful chemoattractant of leukocytes (53, 54).
Moreover, lowering ROS levels by pharmacologic or genetic
approaches reduces cell proliferation and impairs regeneration
(59). We therefore have imaged H2O2 in living neurons exposed
to neurotoxins with novel specific fluorescent probes (39, 40) and
found that the degenerating nerve terminals release H2O2 of
mitochondrial origin. This H2O2 activates PSCs in vitro and in
vivo. We also found that macrophages are recruited around the
neurotoxin-treated NMJs. It is therefore likely that these mac-
rophages are attracted by H2O2, as well as by molecules released
by activated PSCs, as previously found (60, 61). The prominent
role of H2O2 in neurotoxin-induced nerve degeneration and re-
pair is proved by the impaired regeneration we observed in the
presence of catalase.
In addition to H2O2, we found that mtDNA and Cyt c can act

as mediators of neuronal damage and activate SCs via ERK
pathway. When added in a mixture with H2O2, an additive effect
on ERK phosphorylation is observed. As neuronal membrane
integrity is preserved, the question arises of how mtDNA and
Cyt c, coming from the mitochondrial matrix or the intermembrane
space, respectively, can exit the cell. Several pieces of evidence
indicate that mitochondria are central sensors for axonal de-
generative stimuli (62), and the release of mtDNA fragments from
PTP in isolated mitochondria has been documented (63). Here, the
mitochondrial PTP was found to be involved in the exit of both
mtDNA and Cyt c from mitochondria, with a significant reduction
in the presence of the PTP desensitizing molecule cyclosporin A.
Once in the cytosol, mtDNA and Cyt c could be released via the
nonclassical or unconventional secretory route, including secre-
tory lysosomes, membrane blebbing, multivesicular body-derived
exosomes, or autophagy (64). Here, we found that exosomes pu-
rified from intoxicated neuronal supernatants contain mtDNA,
whereas Cyt c was not detected, possibly because of the insufficient
sensitivity of Western blot. It is also possible that Cyt c is released
directly via contact sites between mitochondria and the presynaptic
membrane, similar to those observed by electron microscopy
in a closely similar pathological condition caused by autoim-
mune anti-ganglioside antibodies (65).
The present work has identified three mitochondrial alarmins

involved in PSCs activation after an acute nerve injury and
proposes H2O2 as the strongest inducer of PSCs response. In-
activation of H2O2 by catalase reduces ERK phosphorylation
in SCs in culture and delays NMJ recovery in vivo after toxin-
induced neuroparalysis and degeneration, supporting a crucial
role of this molecule in the regeneration process.
Nerve damage triggers important morphologic and functional

changes in PSCs aimed at promoting NMJ regeneration, con-
firming their endowed high plasticity and their crucial role in the
clearance of nerve debris. Indeed, during nerve terminal de-
generation, PSCs become CD68-positive, indicating an acquired
phagocytic activity. Together with macrophages, but not neu-
trophils, activated PSCs were found here to remove nerve debris,
thus permitting a functional nerve regeneration. This is at vari-
ance from what was found during axonal degeneration, where
a pronounced neutrophil infiltration was detected (54).
The phagocytic features of PSCs described here represent an

additional early read-out of PSCs activation at the injured NMJ.
PSCs respond to axonal damage caused by neurotoxin poisoning
by engulfing degenerating terminals, by extending long processes,
and by activating intracellular signaling pathways crucial for re-
generation. On the basis of these perspectives, we plan to study
more in detail the intracellular signaling and transcriptomic
events taking place inside activated PSCs. More in general, it
appears that the present experimental approach can be extended
to the investigation of other motor neuron diseases, including the
non-cell-autonomous and dying-back axonopathy of ALS and

autoimmune neuropathies including Guillain-Barré and Miller-
Fisher syndromes (66, 67). Such studies are likely to provide
relevant insights for future therapeutic endeavors.

Materials and Methods
Animal Strains. C57BL/6 mice expressing cytosolic GFP under the plp promoter
(46, 47) were kindly provided by W. B. Macklin (Aurora, CO) via the collab-
oration of T. Misgeld (Munchen, Germany). All experiments were performed
in accordance with the European Communities Council Directive n° 2010/63/
UE and approved by the Italian Ministry of Health.

Hydrogen Peroxide Detection. Hydrogen peroxide generation in primary
neurons was measured using Mitochondria Peroxy Yellow 1 (MitoPY1) (39) or
Peroxyfluor 6 acetoxymethyl ester (PF6-AM) (40), synthesized in the C.J.C.
laboratory (Berkeley, CA), specific probes of H2O2 production in mitochondria
and cytoplasm, respectively. Both probes were loaded at 5 μM for 30 min at
37 °C in Krebs ringer buffer (KRH: Hepes 25 mM at pH 7.4, NaCl 124 mM, KCl
5 mM, MgSO4 1.25 mM, CaCl2 1.25 mM, KH2PO4 1.25 mM, glucose 8 mM).
Images were acquired at different points after toxin exposure with a DMI6000
inverted epifluorescence microscope (Leica) equipped with a 63× HCX PL APO
oil immersion objective NA 1.4. Filter cubes (Chroma Technology) have an ex-
citation range of 470/40 nm, a dichroic mirror 495LPXR, and an emission of 525/
50 nm. Images were acquired with an Orca-Flash4 digital camera (Hamamatsu).
Illumination was kept at a minimum to avoid ROS generation because of pho-
totoxicity. To detect neuronal bulges, we took advantage of differential in-
terference contrast microscopy. Fluorescence intensity quantification was carried
out with ImageJ, and the statistical analysis with Prism (GraphPad).

Cell Treatments. CGNs (6 d in culture) plated onto 35-mm dishes (1.2 million cells
per well) were exposed for 50–60 min to SPANs (6 nM) or to α-Ltx (0.1 nM) at
37 °C. In some experiments, neurons were preincubated for 30 min with cyclo-
sporin A 5 μM before toxin addition. Supernatants or cell lysates were collected
and then processed for real-time quantitative PCR (qPCR) or Western blot.

Primary SCs were exposed to different mitochondrial alarmins [H2O2 10–
100 μM, Cyt c (R&D) 1 μg/mL, mtDNA 10 μg/mL] or to the toxins for different
times and lysed in Lysis Buffer [Hepes 10 mM, NaCl 150 mM, SDS 1%, EDTA
4 mM, protease inhibitors mixture (Roche), and phosphatase inhibitor mixture].

Cocultures were treated with the toxins and then lysed after different
points; in a set of experiments, 1,000 U per well catalase was added 5 min
before intoxication and kept throughout the experiment; in another set,
cocultures were incubated with the MEK1 inhibitor PD98059 (Cell Signaling;
80 μM) 1 h before toxins addition. Samples were then probed for p-ERK.

Immunofluorescence. After treatments, isolated SCs or cocultures were fixed
for 15 min in 4% (wt/vol) paraformaldehyde (PFA) in PBS, quenched (0.38%
glycine, 0.24% NH4Cl in PBS), and permeabilized with 0.3% Triton X-100 in
PBS for 5 min at room temperature (RT). After saturation with 3% (vol/vol)
goat serum in PBS for 1 h, samples were incubated with primary antibodies
[anti-Phospho-p44/42 MAPK (Cell Signaling), 1:1,000; anti- anti-NF200 (Sigma),
1:200; anti-S100 (Sigma), 1:1,000] diluted in 3% (vol/vol) goat serum in PBS
overnight at 4 °C, washed, and then incubated with the correspondent sec-
ondary antibodies (Alexa-conjugated, 1:200; Life Technologies) for 1 h at RT.
Coverslips were mounted in Mowiol and examined by confocal (Leica SP5) or
epifluorescence (Leica CTR6000) microscopy.

In a set of experiments, CGNswere exposed to α-Ltx (0.1 nM, 50min) or PMA
(phorbol 12-myristate 13-acetate, 1 μg/mL, 20 min) and processed for immu-
nofluorescence as described earlier. p47phox was detected by a monoclonal
antibody (Santa Cruz; 1:200).

NMJ Immunohistochemistry. α-Ltx (5 μg/kg) or β-Btx (10 μg/kg) were diluted
in 25 μL physiological saline (0.9% wt/vol NaCl in distilled water) and injected
s.c. in proximity of the LAL muscle of anesthetized transgenic C57BL/6 male
mice (expressing a cytosolic GFP under the plp promoter) (46, 47) of around
20–25 g. Control animals were injected with saline. LAL muscles were dis-
sected at different points after injections and fixed in 4% (wt/vol) PFA in PBS
for 30 min at RT. Samples were quenched, permeabilized, and saturated for
2 h in 15% (vol/vol) goat serum, 2% (wt/vol) BSA, 0.25% gelatin, 0.20%
glycine, and 0.5% Triton X-100 in PBS. Incubation with the following primary
antibodies was carried out for at least 48 h in blocking solution: anti-neu-
rofilaments (mouse monoclonal, anti-NF200, 1:200; Sigma), anti-SNAP-25
(SMI81 mouse monoclonal, 1:200; Covance), and anti-CD68 (mouse mono-
clonal, 1:200; Santa Cruz). Muscles were then washed and incubated with
secondary antibodies (Alexa-conjugated, 1:200 in PBS; Life Technologies).
Nuclei were stained with Hoechst. For p-ERK detection incubation with the
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primary antibody (anti-Phospho-p44/42 MAPK, 1:1,000; Cell Signaling) was
carried out for 72 h and the tyramide signal amplification kit (Perkin-Elmer)
was used (45).

To stain acidic compartments, LAL muscles collected after 4 h of in-
toxication were loaded ex vivo with LysoTracker Red DND-99 (1:5,000; Life
Technologies) for 2–3 min (68) while being continuously perfused with ox-
ygenated Neurobasal A medium (Life Technologies). Samples were then
fixed and processed for indirect immunohistochemistry, as described earlier.
Images were collected with a Leica SP5 confocal microscope equipped with
a 63× HCX PL APO NA 1.4. Laser excitation line, power intensity, and emis-
sion range were chosen according to each fluorophore in different samples
to minimize bleed-through.

Electrophysiological Recordings. Electrophysiological recordings were per-
formed in oxygenated Krebs-Ringer solution on sham or α-Ltx-injected soleus
muscles (α-Ltx 5 μg/kg, with or without 750 U catalase), using intracellular
glass microelectrodes (WPI) filled with one part 3 M KCl and two parts 3 M
CH3COOK. In another set of experiments, muscles were locally injected with
PD98059 (50 μg in DMSO) 1 h before α-Ltx injection.

Evoked neurotransmitter release was recorded in current-clamp mode, and
resting membrane potential was adjusted with current injection to −70 mV.
EJPs were elicited by supramaximal nerve stimulation at 0.5 Hz, using a suction
microelectrode connected to a S88 stimulator (Grass). To prevent muscle

contraction after dissection, samples were incubated for 10 min with 1 μM
μ-Conotoxin GIIIB (Alomone).

Signals were amplified with intracellular bridge mode amplifier (BA-01X,
NPI), sampled using a digital interface (NI PCI-6221, National Instruments) and
recorded by means of electrophysiological software (WinEDR; Strathclyde
University). EJPs measurements were carried out with Clampfit software
(Molecular Devices).

Statistical Analysis. The sample size (N) of each experimental group is described
in each corresponding figure legend, and at least three biological replicates
were performed. Prism (GraphPad Software)was used for all statistical analyses.
Quantitative data displayed as histograms are expressed as means ± SEM
(represented as error bars). Results from each group were averaged and used
to calculate descriptive statistics. Significance was calculated by Student’s t test
(unpaired, two-side). P values less than 0.05 were considered significant.
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SI Materials and Methods
Toxins. α-Ltx and Tpx were purchased from Alomone, and β-Btx
from Sigma. The purity of the toxins was checked by SDS/PAGE,
and their neurotoxicity by ex vivo mouse nerve-hemidiaphragm
preparation, as previously described (1).

Chemicals. Unless otherwise stated, all reagents were purchased
from Sigma.

Primary Cell Cultures.Rat cerebellar granular neurons and rat spinal
motoneurons were purified as described in ref. 2. Primary SCs were
purified from sciatic nerves of six P3 Wistar rats. Briefly, sciatic
nerves were dissected and tissues digested in 0.1% wt/vol colla-
genase and 0.25% wt/vol trypsin in L15 medium (Life Technolo-
gies), plus 0.3% BSA for 1 h. Dissociated cells were seeded onto
uncoated Petri dishes in DMEM 10% (vol/vol) FBS; 24 h after
seeding, 10 μM arabinoside C was added to the medium and kept
for 2 d to prevent fibroblasts mitosis. Five days after seeding, an
immunopanning with an anti-Thy1.1 antibody followed by rabbit
complement addition was performed to eliminate contaminating
fibroblasts. Purified SCs were subsequently plated on poly-L-
lysine-coated dishes and allowed to grow in expansion medium
consisting of DMEM, supplemented with 10% (vol/vol) FBS,
2 μM forskolin, and 10 nM heregulin β-1.

Primary Neurons-SCs Cocultures. CGNs and spinal MNs were used
to set up cocultures with primary SCs. Briefly, 4 d after primary
neurons seeding, primary SCs were added to neuronal cultures at
an average density of 1 × 104 cells/cm2. Cocultures were kept for
2–3 d in CGNs or MNs medium, respectively, and then pro-
cessed for immunofluorescence or Western blotting.

Sample Preparation for Western Blotting.
Cyt c detection.CGNs were intoxicated as previously described, the
supernatant was collected, and total proteins were precipitated
with TCA [10% (vol/vol) final concentration]. The resulting pellet
was suspended in loading sample buffer and denatured at 95 °C
for 5 min. Samples were loaded on Precast 4–12% SDS-poly-
acrylamide gels (Life Technologies) and transferred to a nitrocel-
lulose in a refrigerated chamber. After saturation, membranes were
incubated overnight with a mouse monoclonal anti-Cyt c antibody
(BD Biosciences; 1:1,000) followed by a secondary anti-mouse
antibody HRP-conjugated (Life Technologies; 1:2,000). Chem-
iluminescence was developed with the Luminata TM Crescendo
(Millipore) or ECL Advance Western blotting detection system
(GE Healthcare) and was emission measured with ChemiDoc XRS
(Bio-Rad). Band intensities were quantified on the original files
with the software Quantity One (Bio-Rad). None of the bands
reached signal saturation. In another set of experiments, TCA-
precipitated supernatants were probed with a monoclonal anti-
body specific for thioredoxin 2 (Abcam; 1:1,000).
Phospho-ERK detection. Seven to 10 μg of total lysates from SCs or
cocultures were loaded on SDS/PAGE. Protein concentration
was quantified using the BCA assay (Protein Assay Kit; Pierce).
Phospho-ERK was detected with a rabbit polyclonal antibody
(anti-Phospho-p44/42 MAPK, 1:1,000; Cell Signaling). For densi-
tometric quantification, the bands of interest were normalized to
the housekeeping protein Hsc70 (monoclonal anti-Hsc70, 1:10,000;
Synaptic Systems).

Real-Time qPCR. Supernatants of intoxicated neurons were collected
and total DNA was extracted using the DNeasy Blood & Tissue

kit (Qiagen) following manufacturer’s instructions and sub-
jected to real-time PCR. Primers for rat cytochrome B (for-
ward 5′- TCCACTTCATCCTCCCATTC-3′ and reverse 5′-
CTGCGTCGGAGTTTAATCCT-3′), rat NADH dehydrogenase
I (forward 5′- CAATACCCCACCCCCTTATCAA-3′ and reverse
5′- GAGGCTCATCCCGATCATAGAA-3′), and rat GAPDH
(forward 5′-ATTTCCTTTAATAAAGCCGGT-3′ and reverse
5′- TAAGAGACTTAAAATGACTTTG-3′) were synthesized
by Life Technologies. Primer sequences have no significant
homology with DNA found in any bacterial species published
on BLAST.
Standards for quantification were obtained by PCR on total

DNA isolated from cultured CGNs. Samples that produced no
PCR products after 33 cycles were considered undetectable. Real-
time qPCR was performed using iCyclerH thermal cycler (Bio-
Rad). Amplification conditions were the following: 10 min at
95 °C, 40 cycles: 10 s at 95 °C, 30 s at 47.6 °C. A melting curve
analysis, consisting of an initial step of 10 s at 65 °C and a slow
elevation of temperature (0.5 °C/s) to 95 °C, was performed at
the end of the amplification cycles to check for the absence of
primer dimers and nonspecific products, using iQ SYBR Green
supermix (BioRad). Results were expressed as copy numbers of
target genes.

Mitochondrial DNA Purification.Mitochondrial DNA was extracted
from 25 μg mice tibialis muscle, using the DNeasy Blood &
Tissue kit (Qiagen), following manufacturer’s instructions. DNA
concentration was determined by spectrophotometer. No protein
contamination was found. We checked the purity of mtDNA by
real-time PCR, using primers for nuclear GAPDH.

Lactate Dehydrogenase Assay. Lactate dehydrogenase (LDH) ac-
tivity was measured on the supernatants of CGNs plated on 96-well
plates (150,000 cells/well) and exposed to the toxins as previously
described, following manufacturer’s instructions (Sigma). LDH
activity measured in the total cell lysate was taken as 100% (n = 3).

Calcein Imaging. CGNs were loaded with calcein-AM (Life Tech-
nologies), 1 μM for 15 min at 37 °C in KRH, washed, and then
exposed to α-Ltx 0.1 nM or Tpx 6 nM for 50 min. Fluorescence
was monitored with time. Loss of calcein dye because of mem-
brane permeabilization was achieved by the addition of 0.1% sa-
ponin. Images were acquired by epifluorescence (Leica CTR6000)
microscopy.

Exosomes Purification. Exosomes were obtained from CGNs iso-
lated from four rat cerebella (P6) following standard protocols (3).
The mean total cell yield was 50–60 million cells (Mc). Cells
plated on poly-L-lysine-coated 100-mm Petri dishes (10 Mc/dish)
were grown till 6 d in culture; on the day of the experiment, plates
were washed three to four times with warm KRH to remove the
culture medium. α-Ltx 0.1 nM or β-Btx 6 nM were incubated in
KRH for 45–60 min, and control samples were incubated with
saline. Supernatants were then collected and subjected to cycles
of centrifugations (300 × g for 10 min at 4 °C and 16,500 × g for 20
min at 4 °C). The supernatant was then filtered through a 0.2-μm
filter and centrifuged again at 120,000 × g for 70 min at 4 °C to
pellet exosomes, which were resuspended in loading buffer for
SDS/PAGE analysis or in lysis buffer for DNA extraction. Each
lane of SDS/PAGE corresponds to exosomes obtained from the
medium of 107 neurons. Proteins enriched in exosomes such as
flotillin, Hsc70, Hsp90, and CD63 were detected in both the
exosomal and the total lysate fractions [anti-flotillin, 1:500 (BD
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Biosciences); anti-Hsc70, 1:10,000 (Synaptic Systems); anti-
Hsp90, 1:1,000 (BD Biosciences); and anti-CD63, 1:200 (Santa
Cruz)]. To exclude contamination with other cell compartments,
the exosomal fraction was assayed for Golgi (anti-GM130,
1:1,000; BD Transduction laboratories), mitochondrial (anti-
TOM20, 1:1,000; Santa Cruz), and plasma membrane markers
(anti-syntaxin 1A, 1:2,000; Synaptic Systems). DNA extraction
from exosomes and real-time qPCR were performed as de-
scribed earlier. In a set of experiments, exosomes were pre-
treated with purified DNase (1 U/μL, 1 h at 37 °C); DNase was
inactivated at 65 °C for 10 min before DNA extraction and real-
time qPCR.

Exosomes Identification by Electron Microscopy
The exosome-enriched pellet (purified from 60 Mc) was resus-
pended in PBS and ultracentrifuged at 120,000g for 70 min at 4 °C
to repellet the exosomes. The pellets were immediately fixed
by 2% (wt/vol) paraformaldehyde and applied to formvar-
carbon-coated EM grids. For immunogold labeling, grids were
incubated with anti-Hsp90 primary antibodies, which were then
revealed using 5-nm gold-conjugated secondary antibodies
(Sigma, 1:100). The exosomes were then stained with 1% uranyl
acetate for 30 min. Observations were made using a transmission
electron microscope (TECNAI G12, FEI) at 100 kV, equipped
with a digital camera (Veleta, OSIS).

1. Rigoni M, et al. (2005) Equivalent effects of snake PLA2 neurotoxins and lysophos-
pholipid-fatty acid mixtures. Science 310(5754):1678–1680.

2. Rigoni M, et al. (2007) Calcium influx and mitochondrial alterations at synapses ex-
posed to snake neurotoxins or their phospholipid hydrolysis products. J Biol Chem
282(15):11238–11245.

3. Lachenal G, et al. (2011) Release of exosomes from differentiated neurons and its
regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46(2):409–418.
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Fig. S1. Live-imaging of hydrogen peroxide production in spinal cord MNs. Rat MNs were loaded with the H2O2-specific probes PF6-AM (A) or MitoPY1 (B),
washed, and then exposed to Tpx 6 nM or α-Ltx 0.1 nM for 50 min. Changes in fluorescence resulting from H2O2 production were measured at t = 50 min and
expressed as a percentage of the fluorescence value at t = 0 (Right). *P < 0.05; ***P < 0.001; n = 15. Arrows in bright-field images and in the green channel
point to neuronal bulges. (Scale bars: 10 μm.)
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Fig. S2. NADPH oxidase is not involved in hydrogen peroxide production. p47phox staining was performed in CGNs exposed to α-Ltx (0.1 nM for 50 min) or to
PMA (1 μg/mL for 20 min) as positive control for p47phox translocation. Arrows point to membrane accumulation of p47phox signal in PMA-treated cells. (Scale
bar: 10 μm.)

Fig. S3. Primary SCs respond to hydrogen peroxide by phosphorylating ERK. (A) Kinetic and dose-dependence of ERK phosphorylation induced in primary SCs
by H2O2. (B) Immunofluorescence of p-ERK (green) in SCs after exposure to H2O2 (100 μM for 60 min). Nuclei are stained in blue. (Scale bar: 10 μm.) (C) Phospho-
ERK positive cells (red) in SCs-MNs cocultures exposed to the neurotoxins are positive for the SCs marker S-100 (green, arrowheads). Arrows in bright-field
panels point to bulges. (Scale bar: 20 μm.) (D) Preincubation of SCs with increasing amounts of catalase prevents ERK-phosphorylation by H2O2 to a different
extent. Both α-Ltx and SPANs are ineffective in phosphorylating ERK in SCs.
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Fig. S4. ERK pathway is involved in SCs activation and subsequent nerve regeneration. SCs-MNs cocultures were pretreated with the MEK1 inhibitor PD98059
before α-Ltx exposure and then probed for p-ERK both in Western blot (A) and in immunofluorescence (B). The red channel represents p-ERK, and the green
one the S-100 marker. Nuclei are stained with Hoechst. (Scale bar in B: 20 μm.) (C) Electrophysiological recordings of EJPs at soleus NMJs treated with α-Ltx
alone (5 μg/kg, black bars) or pretreated with PD98059 (50 μg) before α-Ltx injection (white bars). At 72 h, EJP amplitudes of fibers pretreated with the inhibitor
are significantly smaller than those exposed to toxin only (**P < 0.01).

Fig. S5. PSCs activation after toxin-induced nerve terminal degeneration. (A) PSCs sproutings (green), typical hallmarks of regeneration, are observed at
poisoned LAL NMJs by 24 h from α-Ltx injection. Nuclei are stained with Hoechst (red). In some instances, PSCs sproutings form bridges between adjacent
junctions (B). (Scale bar: 50 μm in A, 10 μm in B.)
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Fig. S6. Regeneration of poisoned presynaptic nerve terminals is delayed by catalase. SNAP-25 labeling (red) was used as read-out to monitor degeneration
and regeneration of nerve terminals at the NMJs of LAL muscles s.c. injected with α-Ltx or α-Ltx plus catalase (750 U). Muscles were collected after 4, 16, 24, and
48 h, and representative images are shown. (Scale bars: 10 μm.)

Fig. S7. Neuronal DAMPs are released from intact membranes. (A) No GAPDH amplification (nuclear housekeeping gene) was detected by real-time qPCR in
neuronal supernatants after 50 min intoxication with α-Ltx or SPANs. *P < 0.05; **P < 0.01; n = 3. (B) LDH enzymatic activity was determined in the super-
natants of neurons exposed for 50 min to Tpx or to α-Ltx. LDH release is an index of loss of membrane integrity. Data represent the mean of three independent
experiments. (C) Thioredoxin 2, a mitochondrial protein of similar size to Cyt c, is detectable by Western blot only in CGNs lysates, but not in supernatants of
neurons treated with α-Ltx or β-Btx (0.1 or 6 nM for 50 min, respectively) after TCA precipitation. (D) Membrane integrity was also assessed by calcein-AM
retention in CGNs treated with Tpx or α-Ltx for 50 min. Calcein staining is lost after saponin-induced membrane permeabilization. (Scale bar: 10 μm.)
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Fig. S8. Mitochondrial DNA is carried inside exosomes. Purified exosomes are positive for the exosomal marker CD63 (A) and negative for the plasma
membrane marker syntaxin 1A (B). (C) Immunogold labeling of purified exosomes shows positivity for the exosomal marker Hsp90 and confirms their correct
size and morphology. (Scale bars: 50 nm.) (D) Real-time PCR for the detection of mtDNA in exosomes treated with DNase (1 U/μL for 60 min). Exosomes were
incubated with DNase before or after lysis and DNA purification. *P < 0.05; **P < 0.01; n = 3.

Fig. S9. Macrophages are recruited at the poisoned NMJ. CD68-positive macrophages (red, white arrows) are observed at the NMJs of LAL muscles injected
with α-Ltx during nerve terminal degeneration (16 h intoxication). (Scale bar: 10 μm.)
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