
REAL-TIME HAND GESTURE RECOGNITION

EXPLOITING MULTIPLE 2D AND 3D CUES

ADVISOR: Ch.mo Prof. Guido Maria Cortelazzo

PH.D. CANDIDATE: MSc. Fabio Dominio

Ph.D. School in Information and Communication Science and Technologies

Academic Year: 2013-2014

UNIVERSITY OF PADUA

Department of Information Engineering

Ph.D. School in Information and Communication

Science and Technologies

PH.D THESIS

REAL-TIME HAND GESTURE

RECOGNITION EXPLOITING

MULTIPLE 2D AND 3D CUES

ADVISOR: Prof. Guido Maria Cortelazzo

PH.D. CANDIDATE: MSc. Fabio Dominio

Academic Year: 2013-2014

Abstract

The recent introduction of several 3D applications and stereoscopic display tech-

nologies has created the necessity of novel human-machine interfaces. The tradi-

tional input devices, such as keyboard and mouse, are not able to fully exploit

the potential of these interfaces and do not offer a natural interaction. Hand

gestures provide, instead, a more natural and sometimes safer way of interacting

with computers and other machines without touching them. The use cases for

gesture-based interfaces range from gaming to automatic sign language interpre-

tation, health care, robotics, and vehicle automation.

Automatic gesture recognition is a challenging problem that has been attain-

ing a growing interest in the research field for several years due to its applications

in natural interfaces. The first approaches, based on the recognition from 2D color

pictures or video only, suffered of the typical problems characterizing such type of

data. Inter occlusions, different skin colors among users even of the same ethnic

group and unstable illumination conditions, in facts, often made this problem

intractable. Other approaches, instead, solved the previous problems by making

the user wear sensorized gloves or hold proper tools designed to help the hand

localization in the scene.

The recent introduction in the mass market of novel low-cost range cameras,

like the Microsoft KinectTM, Asus XTION, Creative Senz3D, and the Leap Mo-

tion, has opened the way to innovative gesture recognition approaches exploiting

the geometry of the framed scene. Most methods share a common gesture recog-

nition pipeline based on firstly identifying the hand in the framed scene, then

extracting some relevant features on the hand samples and finally exploiting suit-

able machine learning techniques in order to recognize the performed gesture from

a predefined “gesture dictionary”.

This thesis, based on the previous rationale, proposes a novel gesture recog-

nition framework exploiting both color and geometric cues from low-cost color

and range cameras. The dissertation starts by introducing the automatic hand

gesture recognition problem, giving an overview of the state-of-art algorithms and

the recognition pipeline employed in this work. Then, it briefly describes the ma-

jor low-cost range cameras and setups used in literature for color and depth data

acquisition for hand gesture recognition purposes, highlighting their capabilities

and limitations. The methods employed for respectively detecting the hand in

the framed scene and segmenting it in its relevant parts are then analyzed with

a higher level of detail. The algorithm first exploits skin color information and

geometrical considerations for discarding the background samples, then it reliably

detects the palm and the finger regions, and removes the forearm. For the palm

detection, the method fits the largest circle inscribed in the palm region or, in a

more advanced version, an ellipse.

A set of robust color and geometric features which can be extracted from the

fingers and palm regions, previously segmented, is then illustrated accurately.

Geometric features describe properties of the hand contour from its curvature

variations, the distances in the 3D space or in the image plane of its points from

the hand center or from the palm, or extract relevant information from the palm

morphology and from the empty space in the hand convex hull. Color features

exploit, instead, the histogram of oriented gradients (HOG), local phase quan-

tization (LPQ) and local ternary patterns (LTP) algorithms to provide further

helpful cues from the hand texture and the depth map treated as a grayscale

image. Additional features extracted from the Leap Motion data complete the

gesture characterization for a more reliable recognition. Moreover, the thesis also

reports a novel approach jointly exploiting the geometric data provided by the

Leap Motion and the depth data from a range camera for extracting the same

depth features with a significantly lower computational effort.

This work then addresses the delicate problem of constructing a robust gesture

recognition model from the features previously described, using multi-class Sup-

port Vector Machines, Random Forests or more powerful ensembles of classifiers.

Feature selection techniques, designed to detect the smallest subset of features

that allow to train a leaner classification model without a significant accuracy

loss, are also considered.

The proposed recognition method, tested on subsets of the American Sign

Language and experimentally validated, reported very high accuracies. The re-

sults showed also how higher accuracies are obtainable by combining proper sets

of complementary features and using ensembles of classifiers. Moreover, it is

worth noticing that the proposed approach is not sensor dependent, that is, the

recognition algorithm is not bound to a specific sensor or technology adopted for

the depth data acquisition. Eventually, the gesture recognition algorithm is able

to run in real-time even in absence of a thorough optimization, and may be easily

extended in a near future with novel descriptors and the support for dynamic

gestures.

ii

Abstract

La recente introduzione di applicazioni 3D e monitor stereoscopici ha creato

la necessità di nuove interfacce uomo-macchina. I classici dispositivi di input,

come la tastiera e il mouse, non sono in grado di sfruttare appieno il poten-

ziale di queste interfacce e non offrono un’interazione naturale. I gesti, invece,

forniscono un modo più naturale e sicuro di interagire con computer e altre mac-

chine senza doverle toccare. I campi d’applicazione per le interfacce basate sui

gesti spaziano dai videogiochi al riconoscimento automatico del linguaggio dei

segni, all’assistenza sanitaria, alla robotica e all’automatizzazione dei veicoli.Il

riconoscimento automatico dei segni è un problema impegnativo che sta inter-

essando la comunità scientifica da diversi anni grazie alla sua applicabilità alle

interfacce naturali. I primi metodi, basati sul riconoscimento a partire da im-

magini o video, erano affetti dai tipici problemi che caratterizzano questo tipo di

dati. Inter-occlusioni, diverso colore della pelle anche tra utenti della stessa etnia

e condizioni di illuminazione instabili, infatti, hanno spesso reso questo prob-

lema intrattabile. Altri metodi, invece, hanno risolto i problemi precedenti obbli-

gando l’utente a indossare guanti sensorizzati o ad afferrare strumenti progettati

per favorire la localizzazione della mano nella scena.La recente introduzione nel

mercato consumer di nuovi sensori di profondità a basso costo, come il Kinect

di Microsoft, lo XTION di Asus, il Senz3D di Creative, e il Leap motion, ha

aperto la strada a metodi di riconoscimento dei gesti innovativi che sfruttano

l’informazione sulla geometria della scena. La maggior parte dei metodi con-

divide una pipeline di riconoscimento comune basata prima sull’identificazione

della mano nella scena, poi nell’estrazione di opportuni descrittori dai campioni

della mano e infine nell’utilizzo di opportune tecniche di apprendimento auto-

matico per riconoscere il gesto eseguito all’interno di un “dizionario dei gesti”

predefinito.Questa tesi, basata sul fondamento precedente, propone un nuovo sis-

tema di riconoscimento dei gesti che sfrutti descrittori sia sul colore sia sulla

geometria della scena estratti dai dati provenienti da un sensore di profondità

a basso costo. La tesi comincia con l’introduzione del problema del riconosci-

mento automatico dei gesti, mostrando una panoramica sugli algoritmi allo stato

dell’arte e sulla filiera di riconoscimento adottata. Poi, la tesi descrive brevemente

i sensori di profondità a basso costo principali e i sistemi usati in letteratura per

l’acquisizione di informazioni sul colore e sulla profondità per scopi di riconosci-

mento dei gesti, evidenziando le loro potenzialità e i loro limiti. In seguito la tesi

analizza con maggiore dettaglio i metodi impiegati rispettivamente per la localiz-

zazione della mano nella scena ripresa e la sua segmentazione nelle parti rilevanti.

L’algoritmo prima sfrutta l’informazione sul colore della pelle e alcune consider-

azioni sulla geometria della mano per rimuovere i campioni riferiti allo sfondo,

poi localizza accuratamente le regioni del palmo e delle dita e rimuove la regione

del braccio. Per la localizzazione del palmo, il metodo fitta il più grande cerchio

inscrivibile nella regione del palmo o un’ellisse.Un insieme di feature robuste sul

colore e sulla geometria che possono essere estratte dalle regioni del palmo e delle

dita, segmentate in precedenza, è poi descritto con accuratezza. Le feature sulla

geometria descrivono proprietà del bordo della mano come le sue variazioni di cur-

vatura, le distanze nello spazio 3D o nel piano immagine dei suoi punti dal centro

della mano o dal palmo, o estraggono informazioni rilevanti sulla morfologia del

palmo e dagli spazi vuoti nel suo guscio convesso. Le feature sul colore sfruttano,

invece, gli algoritmi histogram of oriented gradients (HOG), local phase quantiza-

tion (LPQ) e local ternary patterns (LTP) per ottenere altre informazioni rilevanti

sulla tessitura della mano o sulla mappa di profondità trattata come un’immagine

in scala di grigi. Feature aggiuntive estratte dai dati provenienti dal Leap Motion

completano la caratterizzazione dei gesti per un riconoscimento più affidabile.

Inoltre, la tesi descrive anche un nuovo approccio che sfrutta unitamente i dati

sulla geometria provenienti dal Leap Motion e quelli sulla profondità provenienti

da un sensore di profondità per l’estrazione degli stessi descrittori della profon-

dità con un impegno computazionale inferiore. Questo lavoro in seguito affronta

il delicato problema della costruzione di un modello di riconoscimento dei gesti

robusto dalle feature descritte in precedenza, usando Support Vector Machines,

Random Forests o più potenti insiemi di classificatori. Sono anche considerate

tecniche di selezione delle feature per rilevare il minor sotto insieme di feature

che permetta l’allenamento di un modello di classificazione senza una significativa

perdita di accuratezza.Il metodo di riconoscimento dei gesti proposto, testato su

sotto insiemi di segni dell’alfabeto American Sign Language e validato su dati re-

ali, ha riportato accuratezze molto elevate. I risultati hanno anche mostrato che

le accuratezze maggiori sono ottenibili con la combinazione di opportuni insiemi

di feature complementari e usando insiemi di classificatori. Inoltre, è opportuno

notare che l’algoritmo di riconoscimento non è legato a uno specifico sensore o

tecnologia adottata per l’acquisizione di dati di profondità. Infine, l’algoritmo di

riconoscimento dei gesti può essere eseguito in tempo reale anche in assenza di

una completa ottimizzazione, e può essere esteso facilmente in un prossimo futuro

con nuovi descrittori e con il supporto per i gesti dinamici.

ii

Contents

Abstract i

Table of contents iii

List of figures vi

List of tables x

List of equations xi

List of algorithms xiv

Acknowledgments xv

Dedication xvii

1 Introduction 1

1.1 Problem definition . 4

1.2 Related works . 8

1.3 Proposed method overview . 13

2 Data acquisition 17

2.1 Color cameras . 18

2.2 Passive stereo setups . 20

2.3 Active stereo setups . 22

2.4 Structured light sensors and setups 23

2.5 Time-of-Flight cameras . 27

2.6 Binocular setup . 30

2.7 Trinocular setup . 31

2.8 Leap Motion . 31

2.9 Hybrid setup . 34

3 Hand detection 35

iii

3.1 Hand detection on depth information only 36

3.2 Hand detection on joint color and depth 40

3.3 Hand detection on joint depth and Leap Motion data 48

4 Hand segmentation 49

4.1 Palm detection . 50

4.1.1 Circle fitting approach . 50

4.1.2 Ellipse fitting approach . 56

4.2 Hand orientation estimation . 58

4.2.1 Palm orientation estimation 59

4.2.2 Hand direction estimation 62

4.3 Hand segmentation . 62

5 Feature extraction 65

5.1 Depth data features . 68

5.1.1 Hand contour distances from the palm center 68

5.1.2 Hand contour distances from the palm plane 75

5.1.3 Hand contour similarities 78

5.1.4 Hand contour curvature 80

5.1.5 Palm morphology features 86

5.1.6 Convex hull features . 89

5.1.7 Fingertip orientations . 96

5.1.8 Fingertip positions . 97

5.2 Leap Motion features . 98

5.2.1 Fingertip orientations . 99

5.2.2 Fingertip distances from the palm center 100

5.2.3 Fingertip distances from the palm plane 102

5.2.4 Fingertip positions . 102

5.2.5 Inter fingertip distances 103

5.2.6 Inter fingertip orientations 104

5.2.7 Hand radius . 104

5.2.8 Number of detected fingers 105

5.3 Depth data features with Leap Motion aid 105

5.3.1 Acquisition setup calibration 106

5.4 Color features . 109

5.4.1 Histogram of oriented gradients (HOG) 110

5.4.2 Local phase quantization (LPQ) 113

5.4.3 Local ternary patterns (LTP) 116

iv

6 Feature classification 119

6.1 Support vector machines (SVM) 120

6.2 Random forests . 125

6.3 Ensembles of classifiers . 127

6.3.1 Random subspace ensemble 129

6.3.2 Rotation forest . 130

6.3.3 Adaptive Boosting . 133

6.3.4 Rotation Boosting . 135

6.3.5 Random subspace ensemble of RotBoost classifiers 137

6.4 Feature selection . 140

6.4.1 Feature selection based on PCA 141

6.4.2 Feature selection based on F-score 142

6.4.3 Feature selection based on Random Forests 145

6.4.4 Sequential feature selection 145

6.5 Classification performance . 147

6.5.1 Area under the Receiver Operating Characteristic curve

(AUC) . 147

6.5.2 Wilcoxon Signed-Rank Test 149

6.5.3 Q statistics . 152

7 Results 153

7.1 Single classifier performance . 156

7.2 Ensembles of classifiers performance 172

7.3 Feature selection performance . 176

7.4 Algorithmic performance . 178

8 Conclusions 181

References 183

v

List of Figures

1.1 Example of 3D interface driven by hand gestures from a movie . . 2

1.2 General pipeline of an automatic hand gesture recognition algorithm. 4

1.3 Example of hand detection from depth and color data 4

1.4 Example of typical gestures to be recognized in a 2D interface . . 6

1.5 Gestures from the American Sign Language alphabet 7

1.6 Example of commercial hand detection aid devices 8

1.7 Example of deformable model for hand pose estimation 13

1.8 Architecture of the proposed gesture recognition framework 15

2.1 Example of currently available color cameras 18

2.2 Pinhole camera model . 19

2.3 Stereo vision system operation (courtesy of [1]) 20

2.4 Example of currently available passive stereo cameras and setups . 21

2.5 Active stereo rig for chest 3D surface reconstruction (PneumaCare). 22

2.6 Structured light devices operation (courtesy of [1]) 23

2.7 Laser scanner operation . 24

2.8 Example of currently available laser scanners 24

2.9 Example of 3D scanning based on structured light time multiplexing 25

2.10 Example of 3D scanning based on structured colored light coding 25

2.11 Architecture of the PrimeSense SoC 26

2.12 Structured light coding in Microsoft Kinect (courtesy of [1]) . . . 27

2.13 Example of available structured light coding low-cost range cameras. 27

2.14 Example of currently available ToF cameras. 28

2.15 Time-of-flight principle (courtesy of [1]) 28

2.16 Continuous wave time-of-flight principle 29

2.17 Example of data returned by tof cameras 30

2.18 Example binocular acquisition rig made by a camera and a tof sensor 31

2.19 Trinocular acquisition setup made by a tof and two color cameras 32

2.20 Data acquired by the Leap Motion sensor 33

2.21 Example of hybrid setup made by a Kinect and the Leap Motion . 34

vi

3.1 Hand detection on depth information pipeline 36

3.2 Example of static background removal 37

3.3 Example of wrong detection on depth map 39

3.4 Example of correct hand detection on a depth map 40

3.5 Hand detection on joint color and depth data (static skin-color

thresholding) . 40

3.6 Hand detection on joint color and depth data (dynamic skin-color

thresholding) . 41

3.7 Point reprojection . 42

3.8 Comparison of two color computation approaches for the repro-

jected depth sample on the color image 43

3.9 Point splatting . 44

3.10 Triangulated depth point cloud rendering 44

3.11 Example of skin color thresholding masks on different color spaces 46

3.12 Example of hand detection with joint color and depth information 47

4.1 Hand segmentation pipeline . 49

4.2 Palm detection with circle expansion pipeline 50

4.3 Example of computed c0 for circle fitting algorithm initialization . 52

4.4 Palm detection with circle expansion 55

4.5 Palm detection with ellipse fitting pipeline 56

4.6 Ellipse fitting for palm detection 57

4.7 Comparison between circle and ellipse fitting algorithms for palm

detection . 58

4.8 Estimated hand local reference system (xp,yp, zp) 63

4.9 Example of arm removal on a binary mask 64

5.1 Comparison of maximum distances from the palm center 70

5.2 Example of extracted peaks from the alignment with a gesture

template . 73

5.3 Example of depth mask rectification and hand contour pixels in-

dexing . 74

5.4 Example of generated distance plot from the hand contour points 75

5.5 Comparison of maximum distances from the palm plane 77

5.6 Comparison of the maximum correlation value for a few alignments 79

5.7 Osculating circle for E in P with center of curvature C and radius r 80

5.8 Example of curvature extraction with masks of varying size 82

5.9 Example of binary depth mask and related integral image 83

vii

5.10 Comparison of the curvature descriptor for three different gestures 85

5.11 Example of palm region partitioning 87

5.12 Example of extracted convex hulls from a few hand shapes 90

5.13 Example of convex hull simplification 91

5.14 Comparison of hand VS convex hull perimeter ratios 93

5.15 Comparison of hand VS convex hull area ratios 93

5.16 Comparison of convex hull connected components 94

5.17 Connected components sorting within the computed convex hull . 95

5.18 Example of detected maxima on L(θq) 97

5.19 Example of gestures not discriminable by the Leap Motion 100

5.20 Angular regions in the palm plane. 101

5.21 Example of hand radius detected by the Leap Motion 104

5.22 Generic pipeline of the employed feature extraction algorithm . . 109

5.23 Adopted histogram of oriented gradients feature extraction pipeline 111

5.24 Example of HoG descriptor extraction for a given hand image . . 112

5.25 Comparison of common image blur models 113

5.26 Adopted local phase quantization feature extraction pipeline . . . 114

5.27 LTP descriptor split in two LBP codewords 117

5.28 Pipeline of the LTP descriptor extraction algorithm 118

6.1 Example of SVM separating hyper planes: non separating (H1),

separating with a low margin (H2), separating with a high margin

(H3) . 121

6.2 Feature vector mapping in a kernel SVM classifier 122

6.3 Leave-one-person-out approach 124

6.4 Example of out-of-bag error variation over the number of trained

trees . 126

6.5 Example of adjacency graph for feature vectors in the Euclidean

space . 138

6.6 Example of PCA on a Gaussian bivariate distribution 141

6.7 Comparison of the predictive power of different classifiers in the

ROC space: good (A), random guess (B), poor (C), best (D) . . . 148

6.8 Normal distribution . 151

7.1 Gestures of MICROSOFT dataset 153

7.2 Gestures of LTTM dataset . 154

7.3 Gestures of LEAPNECT dataset 155

7.4 Distances from the palm center (plot alignment version) 159

viii

7.5 Distances from the palm plane . 160

7.6 Palm morphology features . 161

7.7 Hand contour similarity (with ZNCC) 163

7.8 Hand contour similarity (with SSD) 164

7.9 Hand contour curvatures . 165

7.10 Convex hull connected components area ratios 166

7.11 Combination of hand contour similarity features 167

7.12 Combination of all the convex hull features 169

7.13 Fingertip distances from the hand center (Leap Motion) 170

7.14 Fingertip distances from the palm plane (Leap Motion) 170

7.15 Fingertip orientations (Leap Motion) 170

7.16 Fingertip positions (Leap Motion) 171

7.17 Combination of fingertip distances from the hand center and from

the palm plane (Leap Motion) . 172

7.18 Performance of different feature selection algorithms on LEAPNECT176

ix

List of Tables

6.1 Example of Wilcoxon Signed-Ranks Test ranks 149

6.2 Wilcoxon critic values look-up-table 150

6.3 Relationship between a pair of classifiers 152

7.1 Comparison of the depth features accuracies for three datasets . . 157

7.2 Comparison of the Leap Motion features accuracies on LEAPNECT168

7.3 Q statistics on selected feature sets 173

7.4 Performance of the curvature feature with RS of SVM on two datasets174

7.5 Performance of different ensembles on the same features 175

7.6 Performance of different feature selection methods on LEAPNECT 177

7.7 Comparison of the average execution times on MICROSOFT dataset179

x

List of Equations

2.1 Pinhole camera model . 20

3.1 Static background removal from an acquired depth map 37

3.2 Back-projection of a 2D point to the 3D space 37

3.3 Hand point cloud construction from the back-projected depth sam-

ples . 38

3.4 Binary mask construction from the hand point cloud 38

3.5 Masking of a depth map . 39

3.6 Candidate hand point cloud size estimation 39

3.7 Depth sample reprojection on the color image lattice 42

3.8 Nearest neighboring pixel color assignment 42

3.9 Bilinear interpolation of the four neighboring pixels 43

3.10 Color image thresholding on skin color 47

4.1 Gaussian blur of a binary mask 51

4.2 Adaptive scaling of the gaussian kernel support 51

4.3 Binary thresholding of the blurred mask 52

4.4 Selected hand contour point for sector Si 57

4.5 Palm point set definition (circular version) 59

4.6 Palm point set definition (elliptic version) 59

4.7 Estimation of the SVD estimated plane center 59

4.8 Estimation of the SVD estimated plane normal 60

4.9 Finger point removal on the fitted plane 61

4.10 Hand direction projection on the palm plane 62

4.11 Roto-translation of a 3D point . 63

4.12 Fingers point cloud definition . 64

4.13 Arm less hand point cloud definition 64

5.1 Depth map conversion in grayscale image 67

5.2 Distance from the palm center and angle respect to the main hand

direction . 68

5.3 Angle quantization . 69

5.4 Maximum distance from the palm center plot 69

xi

5.5 Distance plot alignment with a gesture template 69

5.6 Zero-mean normalized cross-correlation 71

5.7 Extended distance plot alignment with a gesture template 71

5.8 Aligned distance plot with a gesture template 72

5.9 Distance from the palm center feature extraction 72

5.10 Plot of the distances of the hand contour samples from the esti-

mated palm center . 73

5.11 Signed distance of a generic hand contour sample from the esti-

mated palm plane . 75

5.12 Maximum signed distance from the palm plane plot 76

5.13 Extraction of the distances from the palm plane features 76

5.14 Sum of squared differences cross-correlation 78

5.15 Curvature around a generic hand contour pixel 81

5.16 Scaling of the curvature mask radius expressed in metrical units . 81

5.17 Definition of integral image . 83

5.18 Summed area computation in a generated integral image 84

5.19 Set of the hand contour pixels for a given bin and scale 84

5.20 Curvature feature for bin bj and mask radius rS 84

5.21 Definition of the actual palm point cloud 86

5.22 Alignment of the reference angular intervals with the performed

gesture . 88

5.23 Assignment of a palm finger point to the correct finger region . . 88

5.24 Computation of the palm morphology feature 89

5.25 Convex hull VS hand contour perimeter ratio 91

5.26 Convex hull VS hand region areas ratio 93

5.27 Convex hull connected components area ratios 94

5.28 Definition of the convex hull connected components feature vector 95

5.29 Angle between a fingertip and the hand direction 96

5.30 Euclidean distance of a Leap Motion fingertip from the hand center 100

5.31 Signed distance of a Leap Motion fingertip from the palm plane . 102

5.32 Fingertip positions in the hand coordinate system of Leap Motion 102

5.33 Fingertip inter distances of Leap Motion 103

5.34 Fingertip inter orientations of Leap Motion 104

5.35 Registration of two point clouds 108

5.36 Phase quantization in the LPQ descriptor extraction 115

5.37 Codeword describing the local LPQ texture around a given pixel . 115

5.38 LBP and LTP codeword extraction 117

xii

6.1 Binary SVM classifier definition 120

6.2 Binary SVM predictor . 120

6.3 Binary SVM kernel classifier . 120

6.4 Binary SVM kernel predictor . 121

6.5 Maximum A Posteriori probability 128

6.6 Bayes rule . 128

6.7 Unconditional probability expressed in terms of the Bayes rule . . 128

6.8 Bayes rule in case of conditionally statistically independence . . . 128

6.9 Product rule . 129

6.10 Sum rule . 129

6.11 Sum rule applied to an ensemble of SVM classifiers 130

6.12 Rotation matrix for a generic classifier in a Rotation Forest 131

6.13 Sum rule for the Rotation Forest ensemble 131

6.14 Alternative sum rule for the Rotation Forest ensemble 132

6.15 Boosted classifier error definition 133

6.16 Weight adjustment in AdaBoost 134

6.17 Sum rule applied to an AdaBoost ensemble 134

6.18 NPE weight matrix . 138

6.19 NPE projection . 139

6.20 F-score definition . 143

6.21 Sum of ranks in the Wilcoxon Signed-Rank test 150

6.22 Z-score definition . 151

6.23 Q statistic for a pair of classifiers 152

6.24 Q statistic for an ensemble of classifiers 152

xiii

List of Algorithms

4.1 Circle expansion algorithm . 53

4.2 Circle fitting algorithm . 54

4.3 Ransac plane fitting . 61

5.1 Convex hull simplification algorithm 92

6.1 Rotation Forest algorithm . 132

6.2 AdaBoost algorithm . 135

6.3 RotBoost algorithm . 136

6.4 Feature selection based on PCA 143

6.5 Feature selection based on F-Score 144

6.6 Forward Sequential Selection algorithm 146

xiv

Acknowledgments

It has been a long journey in space and time that, as many important experi-

ences in life, enriched both my mind and my spirit. I was not, however, alone,

since several valuable people walked by my side. I owe them a lot, surely more

than a simple thank. First of all, I want to thank my advisor, prof. Guido M.

Cortelazzo, for inviting me to enter his research group and for his support since

the first moment. I want also to thank all the researchers, PhD candidates, grad-

uates and undergraduates who gave a significant contribution with their research

to the work in this thesis: Pietro Zanuttigh, Loris Nanni, Mauro Donadeo, Mauro

Piazza, Mariano di Noia, Ludovico Minto, Giulio Marin, Marco Fraccaro, Save-

rio Zamprogno and Carlo Dal Mutto. In particular, Pietro Zanuttigh deserves

a special mention for his guidance and the valuable help he gave me in this re-

search. Finally, I want to thank my family, my friends and the personnel of the

Department of Information Engineering of Padua for their support in all these

years, and all the people I may have omitted in these few words and to whom I

owe an acknowledgment.

xv

To prof. Guido M. Cortelazzo,

for his friendship, guidance and support.

Chapter 1

Introduction

Nowadays 3D applications and games are widely populating personal computers,

notebooks and tablets, favored from the rapid development of powerful CPUs

and 3D graphics accelerators offered at an affordable price.

The rapid development of 3D applications and technologies has created the

necessity of novel human-machine interfaces that may no longer be easily driven

by the traditional input devices, such as keyboard and mouse, born for a non

natural interaction with flat 2D environments.

Hand gestures provide, instead, a more natural and sometimes safer way of

interacting with computers and other devices without touching them. After all,

touch-less interfaces driven by hand gestures may be considered the next step in

the human-machine interfaces evolutionary scale started with an uncomfortable

interaction with keyboards, quickly simplified by the introduction of the mouse,

and now completely replaced by highly intuitive finger taps on touch screens.

The use cases for gesture-based interfaces range from the entertainment field to

many other aspects of the daily life. The first key application is gaming, where

hand gestures allow the user a more thorough and straightforward interaction

with personal computers and other gaming platforms. Another key application

is automatic sign-language interpretation, that would allow hearing and speech

impaired people to interact with computers and other electronic devices. Health

care is another field which may benefit from the usage of hand gesture recognition

interfaces. In fact, not only hand gestures offer the surgeons a more natural con-

sultation of diagnostic data such as 3D tomographies, but also the remote control

of surgical devices in aseptic environments. Moreover, 3D data visualization in

general is now an important requirement in several research fields. Hand gestures

provide a more natural interaction also with recent humanoid robots, which aim

at mimicking the human movements and behavior, as gestures may be associated

1

1. INTRODUCTION

to commands the robot has to execute. Automotive industry is interested as well

in hand gestures, in order to release in a near future novel interfaces which offer

the user a more natural interaction with the dashboard and the board computer.

Finally, one of the most important applications of hand gesture is the realization

of human-machine natural interfaces. Hand gestures may be used, in facts, to

replace the mouse in computer interfaces and to allow a more natural interaction

with mobile devices like smartphones and tablets, but also with newer wearable

devices like the Google glasses. Besides controlling standard 2D interfaces, a very

interesting field is the interaction with 3D virtual environments, that is much more

natural if the gestures are performed in the 3D space without using any control

device or even touching the screen [2] (e.g., Fig. 1.1). 3D visualization of virtual

environments is now possible also for consumers thanks to the recent introduc-

tion in the mass market of stereoscopic display technologies that has boosted the

diffusion of 3D movies and other multimedia contents initially only accessible in

cinemas. Nvidia, for example, developed a complete 3D vision environment for its

graphics accelerators, employing active goggles and monitors for offering the user

a more engaging gaming experience. Acer and LG produced active 3D monitors

compatible with Nvidia’s solution, while HP offered a more affordable passive

3D monitor also compatible with AMD graphics accelerators and able, thanks to

the TriDef Ignition driver, to leverage the native 3D capabilities of games and

applications powered by Microsoft’s DirectX APIs.

Figure 1.1: Example of 3D interface driven by hand gestures from a movie

Hand gesture recognition, namely the task of automatically recognize the ges-

ture performed by a person (or user in this context) selected from a predefined

“gesture dictionary”, requires to track the position and orientation changes of a

user’s hand and of the fingers moving in the 3D space. A simpler 3D extension

2

of ordinary 2D mouse capabilities may just require the tracking of one finger

(e.g., the index finger), while more complex gestures may also need the estima-

tion of the position and orientation of the finger tips and the phalanxes. This

problem has been attaining a growing interest in the research field for several

years due to its applications in natural interfaces. The first approaches, based

on the recognition from 2D color pictures or video only, suffered of the typical

problems characterizing such type of data. Inter occlusions, different skin colors

among users even of the same ethnic group and unstable illumination conditions,

in fact, often made this problem intractable. Other approaches, instead, solved

the previous problems by making the user wear sensorized gloves or hold proper

tools designed to help the hand localization in the scene, thus renouncing to the

naturalness of the the interaction.

The recent introduction in the mass market of novel low-cost range cameras,

like the Microsoft KinectTM, Asus XTION and Creative Senz3D, and the Leap

Motion, has opened the way to innovative gesture recognition approaches exploit-

ing the geometry of the framed scene. Most methods share a common gesture

recognition pipeline based on firstly identifying the hand in the framed scene,

then extracting some relevant features on the hand samples and eventually ex-

ploiting suitable machine learning techniques in order to recognize the performed

gesture from a predefined gesture dictionary.

This thesis, based on the same rationale, proposes a novel gesture recogni-

tion framework (named “HAndy”) exploiting both color and depth cues from

low-cost color and range cameras, and is articulated as follows. The remaining

sections of the current chapter introduce the automatic hand gesture recognition

problem, giving an overview of the state-of-art algorithms, and the recognition

pipeline employed in this work. Chapter 2 briefly describes the current major

technologies for the acquisition of color and geometric information, focusing on

the low-cost range cameras used in literature for hand gesture recognition pur-

poses and highlighting their capabilities and limits. Chapters 3 and 4 describe

with a higher level of detail the method employed for respectively detecting the

hand in the framed scene and segmenting it in its relevant parts. Chapter 5 then

analyzes accurately several feature descriptors that can be extracted from the

segmented fingers and palm samples, each one describing significant geometric

or textural properties of the hand. Chapter 6 addresses the delicate problem of

constructing a robust gesture recognition model from the features of Chapter 5,

using multi-class Support Vector Machines, Random Forests or more powerful

ensembles of classifiers. It also considers a few feature selection techniques, de-

3

1. INTRODUCTION

signed to detect the smallest subset of features that allow the training of a leaner

classification model without a significant accuracy loss. Chapter 7 reports and

discusses the results of several tests performed on subsets of the American Sign

Language alphabet to measure the computational and recognition performance

of the proposed algorithm. Chapter 8, finally, draws the conclusions.

1.1 Problem definition

Most automatic gesture recognition approaches share a common pipeline, de-

picted in Fig.1.2, with minor variations.

Hand gesture
 dictionary

Depth
data

Hand
detection

Hand
segmentation

Hand feature
extraction

Hand gesture
recognition

Predicted
gesture

Color
data

Other
data

Figure 1.2: General pipeline of an automatic hand gesture recognition algorithm.

The first step of the pipeline of Fig. 1.2 is the hand detection, namely finding

a region in the color image or in the depth map where the hand is likely to be

located. This task may be divided into two parts: in the first part the rough hand

location is estimated (see Fig. 1.3(b)), then in the second one the hand pixels

are precisely isolated from the rest of the scene (Fig. 1.3(c)). In the first part

the target is usually the identification of a bidimensional (or three dimensional if

depth information is used) bounding box containing the hand, while in the second

part the goal consists in removing the remaining background pixels.

(a) Acquired color image (b) Detected hand region (c) Segmented hand

Figure 1.3: Example of hand detection from depth and color data

4

1.1 PROBLEM DEFINITION

This step is important for two reasons: first, the bounding box position gives

a good starting point for a further accurate hand region segmentation, second,

restricting the region of interest may sensibly reduce the computational load in

the next phases. Hand segmentation algorithms may be based on the exploitation

of color information, edge information, graph-connectivity information between

pixels, and 3D geometry information if available. Moreover, some priors on the

hand shape may be considered in order to solve this task.

After detecting the hand in the framed scene, the segmentation step partitions

the hand pixels in different subsets referred to hand regions of interest, e.g. palm

and fingers, each one containing relevant information about the hand orientation

and finger opening status.

Feature extraction step is one of the most crucial phases in every pattern

recognition method, and consists in extracting a set of relevant features from the

hand only samples describing properties of interest. The features must be robust,

in the sense they must contain useful information for the gesture recognition

purpose, and repeatable, namely they must assume similar values to equality of

conditions. Another desirable property for effective features regards their correla-

tion: the selected features should not be mutually correlated, as highly correlated

features are not informative.

The extracted features are finally collected and used as the input of a suitable

machine learning technique in order to recognize the performed gesture from a

predefined “gesture dictionary”. The dictionary size and contents depend on the

application where the gestures are employed. For example in [2], where the hand is

thought as a replacement of the ordinary 2D mouse for a more natural navigation

in 3D environments, the base dictionary should include firstly all the gestures

corresponding to the common actions that can be performed by a classical 2D

mouse on desktop computers, and by fingers on tablets and smart-phones touch

screens:

• holding position

• left and right click

• double-click

• 2D translation of the pointer

• 2D drag & drop

5

1. INTRODUCTION

This set may be completed by adding a few more articulated actions, like:

• zoom

• scroll

An example of hand gestures for the navigation in 2D environments is shown

in Fig. 1.4.

(a) Holding position (b) Left click (c) Right click (d) Double click

(e) Translation (f) Drag & drop (g) Zoom (h) Scroll

Figure 1.4: Example of typical gestures to be recognized in a 2D interface

However, for the purposes of 3D scene browsing this dictionary is quite lim-

ited and does not exploit the extra features provided by hand gesture interfaces,

namely the localization of the position in 3D space instead of 2D image plane and

the the multi-finger movements. For this reason, the base set should be extended

by adding the following gestures:

• 3D translation of the pointer

• 3D drag& drop

• 3D rotation of an object that is hold under clicking

• 3D rototranslation of an object that is hold under clicking

• articulated multi-finger gestures in 3D

6

1.1 PROBLEM DEFINITION

For automatic sign interpretation purposes, instead, the dictionary should

include all the gestures representing the letters or symbols of the adopted language

alphabet, such as the American Sign Language alphabet (Fig. 1.5).

It is worth noting that, while several approaches in literature share the same

initial steps, they usually differ in the extracted feature sets or the employed

classifiers. For this reason, the accuracy of different methods applied to the

same data mostly depends from the types of extracted features and/or from the

classification algorithm used to train the gesture recognition model.

Figure 1.5: Gestures from the American Sign Language alphabet

7

1. INTRODUCTION

1.2 Related works

Automatic gesture recognition is a challenging problem that has been attaining

a growing interest in the research field for several years due to its applications in

natural interfaces, as reported in recent surveys (e.g. [3, 4]).

Until a few years ago all the available methods were based on the extraction

of color or motion information from images and videos, or exploited the shape of

the hand silhouette. A complete overview of these approaches is out of the scope

of this thesis, which focuses mostly on depth information, and may be found in

[3] and in [5]. Gesture recognition methods based on color cues only suffered

from the typical problems characterizing color data: multiple hand poses often

presenting inter occlusions between fingers, different skin colors among users even

of the same ethnic group and different illumination conditions, in fact, often made

this problem intractable.

Other approaches, instead, solved the previous problems by making the user

wear sensorized gloves, such as the 5DTGlove of 5DT (Fig. 1.6(a)), or hold proper

tools designed to help the hand localization in the scene. Sony and Nintendo, for

example, solved the hand tracking problem with their Playstation Move and Wi-

imote respectively (Fig. 1.6(b) and Fig. 1.6(c)). Even though gloves and various

wearable devices have been used in the past, vision-based methods are nowadays

preferred as they are able to capture the hand gestures without requiring the

user to wear any physical device, thus allowing a more natural interaction with

computers and many other devices.

(a) 5DT 5DTGlove (b) Sony Playstation Move (c) Nintendo Wiimote

Figure 1.6: Example of commercial hand detection aid devices

The introduction in industry of Time-Of-Flight cameras, such as the SR4000

and the newer SR4500 of Mesa Imaging, and more recently in the mass market of

novel low-cost range cameras like the Microsoft KinectTM, Asus XTION and Cre-

ative Senz3D, has opened the way to innovative solutions for several challenging

8

1.2 RELATED WORKS

computer vision problems exploiting the geometry of the framed scene, includ-

ing object tracking and recognition, human activity analysis, indoor 3D mapping

and also hand gesture recognition. A complete review of them is presented in

[6]. In particular the success of Microsoft’s KinectTM, initially designed for track-

ing the body movements for gaming purposes but early adopted by researchers

as well, has shown how natural interfaces based on the acquisition of 3D data

can be efficiently employed in commercial applications. Face detection is another

computer vision task which benefited from the geometric cues provided by the

low-cost range cameras. The work of [7], for example, improves the viola-jones

face detector [8] discarding the face candidates with an incompatible head size or

detected on a flat surface (e.g., a poster).

Along with range cameras, the growing interest in gesture based interfaces

led to the recent introduction in the mass market of the Leap Motion sensor, a

device explicitly targeted to hand gesture recognition that, differently from the

low-cost range cameras that allow to obtain a complete 3D description of the

framed scene, it only provides a limited set of relevant points.

Several automatic gesture recognition methods, as stated in Section 1.1, follow

the general pipeline depicted in Fig. 1.2, adopted by many other pattern recog-

nition algorithms as well. The first important step is hand detection, namely the

discovery of a region in the framed scene where the hand is most likely to be

located, followed by the background removal.

Earlier approaches mostly used skin color only as a detection cue (e.g., [9]),

retaining pixels whose colors are considered to be in the skin color range and

discarding the others. These methods were more likely to fail, since there are

several issues regarding color to deal with: for example, skin color varies among

people of different ethnic groups or even in the same ethnic group, and it is

not uniform among hand pixels of the same person as well. Moreover, colors are

affected by the scene illumination and the images may also contain also other bare

body parts (e.g. arms, face) or other objects sharing the same skin color color

range. Note how most of the hand detection from skin color approaches exploit

cascade classifiers based on Haar-like features [8] employed for face detection.

However, differently from faces having fixed properties related to the position of

the mouth, eyes and nose, hands have many degrees of freedom, thus making this

technique not effective for the hand detection case.

Other hand detectors, instead of color evaluation or together with it, employ

motion or silhouettes as detection clues. In particular, silhouette detectors com-

pare the object shape with any possible hand shape (or template) and discard

9

1. INTRODUCTION

the region if the shapes do not match. A first observation is that the hand is

usually the closest object to the acquisition setup (as in the example of Fig. 1.3)

and if depth information is available, the simplest detection strategy only consists

in performing an appropriate filtering on the depth values ([10, 11]). Additional

geometric constraints in the hand aspect ratio and size may be used to refine the

segmentation, as in [12].

Other approaches exploiting depth information only, use clustering algorithms

such as K-means, iterative seed fill or region growing to separate the hand region

from the rest of the scene. In [13], the depth range is fixed and a flood fill

algorithm is used to cluster contiguous points with the aim of separating the

hand from the body. In [14], instead, the K-means algorithm with two clusters is

used in a limited depth range to find the hands. Note that when the hand shares

its depth range with other objects, the hand detection by a simple depth filtering

fails, and more information is required to effectively segment the hand from the

background. The assumption that the hand has to be the closest object in the

scene can be relaxed by predicting the hand depth according to the position of

other body parts, such as the face.

In addition, when the color image is available as well, skin color segmentation

can be used to enforce the hand detection. In [15], skin color segmentation based

on both a model trained offline and a further online histogram-based refinement

are used to obtain an initial guess of the hand position. Then, the user face is

detected and all the points not belonging to a predefined region in front of the

face are rejected. Once the hand is detected, the arm is removed by exploiting

the depth and other geometrical constraints. Joining color and depth information

may give another advantage: depth filtering discards objects or parts of them not

included in the hand depth range, and color filtering can be used to discriminate

the hand among objects within its depth range. Other clues may be joined to

color and depth, if available, paying a little overhead in the detection algorithm

performance.

Other approaches also exploit some physical aids, e.g. in [11] the users have to

wear a black bracelet around the gesturing hand wrist to help the hand detection

in the color image after a depth thresholding.

Finally, more reliable methods exploit the temporal redundancy to better find

and segment the hand, reducing the false positive detection. For example, [16]

first divide depth map into a given number of blobs using a connected-component

labeling algorithm, then, for the biggest blob (that is assumed to include the

body and the hand), compute blob tracking. The blob with the highest track is

10

1.2 RELATED WORKS

associated to the hand. Additional geometric constraints are also used to identify

and remove points of the wrist region.

Hand segmentation then divides the detected hand in its region of interest

for the extracted features in the following important step. Certain features are

extracted from the whole hand data, while others only from a limited subset (e.g.,

palm or finger regions).

Feature extraction is a fundamental step which often determines the success

in recognizing gestures. Methods working on the same data set may, in fact, show

relevant differences in recognition accuracy due to the kinds of extracted features

or in the implementation of the extraction algorithms.

A first family of approaches is based on the hand silhouette extracted from the

depth data. Ren et al. [11, 17], for example, build an histogram of the distances

of the hand contour points from the centroid of the palm. This approach is

affected by the fact that the palm contour is also considered in the histogram

construction. Better performance can be obtained if the palm and finger areas

are recognized before building the histogram or other descriptors based on the

contents of the two regions. In [16] silhouette and cell occupancy features are

extracted from the depth map and used for building a shape descriptor that is

then fed into a classifier based on action graphs. Other approaches in this family

use features based on the convex hull and on the fingertips positions computed

from the silhouette, as in [18] and [14]. The convex hull is also exploited in the

open source library XKin of [19, 20]. [21] propose, instead, a simple application

of hand gestures for human-robot natural interaction where the user challenges a

robotic hand in the well-known rock-paper-scissors game. The gesture recognition

algorithm exploits the hand contour curvature information to characterize the

three gestures It is worth noting that the system of [21] is able to accurately

recognize the three gestures performed with the only use of the bare hand, and

an AI (artificial intelligence) tries to learn the user’s gaming pattern in order to

foresee his next moves.

Another possibility is computing descriptors based on the volume occupied by

the hand. In [22], 3D volumetric shape descriptors are extracted from the depth

map and fed into a Support Vector Machine (SVM) classifier [23]. A similar

approach is exploited by [24]. Color data can also be used together with the

depth data, as in [25], that is based on Randomized Decision Forests (RDFs)

[26]. RDFs are also used by [27].

Note how all these approaches are focused on the recognition of static poses,

while other methods, instead, deal with dynamic gestures. For example, [28]

11

1. INTRODUCTION

exploit motion information, and in particular the trajectory of the hand centroid

in the 3D space, for recognizing dynamic gestures. Depth and color information

are used together in [29] to extract the trajectory that is then fed to a Dynamic

Time Warping (DTW) algorithm. Finally, Wan et Al [30] exploit both the convex

hull on a single frame and the trajectory of the gesture.

Among the various applications based on hand gesture recognition, sign lan-

guage recognition is one of the most interesting. An approach for sign language

recognition with the Kinect is proposed in [31]. A different but related prob-

lem is the extraction of the 3D hand pose, which can then be in turn exploited

for gesture recognition. A first possible approach consists in fitting a parametric

hand model to the acquired depth data, where the parameters model two different

kinds of information: the shape information, that is the size and thickness of the

various hand components, and the positional information, namely the position

of the various components of the hand in the scene. According to the previous

rationale, the hand is represented by a non-rigid surface (Fig. 1.7 (a)), that is a

function of the shape of the user’s hand, and of a kinematic skeleton defining the

position of the various parts of the hand in the scene (Fig. 1.7 (c)). A deformable

model (Fig. 1.7 (d)) may be developed similarly to the one proposed in [32], that

is the current state-of-the-art in entire body modeling.

The next step is the estimation of the optimal values for its shape and position

parameters, that is, the values minimizing the alignment error between the data

obtained from the estimated parameters of the deformable model and the data

acquired from the real scene by the camera and depth sensor according to a given

norm (usually the L2 norm, for statistical reasons). A good cost function should

account for many clues, including edges, silhouettes and 3D geometry information

if available. A description of classical cost functions adopted in the case of human

body tracking can be found in [33]. Moreover, as fingers movements in real human

hands are limited, e.g. phalanxes may only revolve within a finite range around

a local rotation axis, every model parameter may just adopt a finite range of

values compatible to the allowed movements of hand part it represents. Hence,

when using L2 norm and imposing such constraints, the optimization problem is

configured as a constrained minimization in least squares sense.

Approaches exploiting depth data and skeleton fitting to a 3D hand model

are [34], [35] and [36]. In particular [36] try to estimate the pose by segmenting

the hand depth map into its different parts, with a variation of the machine

learning approach used for full body tracking in [37]. Multi-view setups have

also been used for this task by [35], since approaches based on a single camera

12

1.3 PROPOSED METHOD OVERVIEW

(a) Wireframe surface (b) Shaded surface

(c) Kinematic skeleton (d) Complete model

Figure 1.7: Example of deformable model for hand pose estimation

are affected by the large amount of occluded parts, making the pose estimation

rather challenging.

Finally, differently from the Kinect, the exploitation of Leap Motion data

for gesture recognition systems is still an almost unexplored field. A preliminary

study on the usage of this device for sign language recognition has been presented

in [38]. Another gesture interface based on the Leap Motion has been presented

in [39], where the authors use the device to control a robot arm.

1.3 Proposed method overview

The gesture recognition framework proposed in this thesis, named HAndy, is the

basis of the approach of [21] and of a possible natural interface based on gesture

recognition for the interactive browsing of 3D scenes only relying on the bare

hand. The system architecture, depicted in Fig. 1.8, extends the general pipeline

of Fig. 1.2 adopted by the approaches resumed in Section 1.2. As already stated

in Section 1.2, the overall structure of the gesture recognition algorithm shares

several steps with the other methods in literature. In particular, the acquisition,

hand detection, hand segmentation, feature extraction and classification macro

13

1. INTRODUCTION

blocks in Fig. 1.8 are common to several hand gesture recognition approaches

and other pattern recognition algorithms in general.

The system architecture in Fig. 1.8 encompasses three main steps. In the

first step, described in Chapter 3, the hand samples collected with one of the

acquisition systems of Chapter 2 are segmented from the background exploiting

both depth and color cues from low-cost color and range cameras, and the ad-

ditional information provided by the recent Leap Motion when available. It is

worth noticing that, contrary to the assumption of [10, 11], the hand does not

have to be the closest object to the sensor thanks to the skin color information

or the Leap Motion data. The previous segmentation is then refined in Chapter

4 by further subdividing the hand samples into three non overlapping regions,

collecting palm, fingers and wrist/arm samples respectively. The last region is

discarded, since it does not contain information useful for gesture recognition.

Note how the palm region detection and the main hand direction estimation play

an important role both in the segmentation phase and in the next crucial step of

the pipeline, analyzed in detail in Chapter 5 and consisting in the extraction of

several features belonging to three families:

• Depth features: extracted from the acquired depth map, describe relevant

properties of the hand contour in the 2D image plane or in the 3D space,

and the palm morphology. For example, the distances of the contour points

from the estimated palm center or the palm region (assumed to be flat), the

convexities and concavities of the hand contour, the empty spaces in the

convex hull enclosing the hand and the fingertip positions and orientations

highly characterize each gesture.

• Color features: provide relevant information on the local variations of the

hand texture in the neighborhood of the hand contour pixels.

• Leap Motion features: when available, the Leap Motion data provide

in real-time useful information on the hand pose which may integrate the

features extracted from the depth map or redefine them in a more efficient

way.

The extracted features are then collected in feature vectors fed to proper

multi-class classifiers, described in Chapter 6, for the further gesture recognition.

Note how the proposed classifiers are designed to leverage the uncorrelation of

the features within the same set and their complementarity between different sets

in order to maximize the recognition accuracy.

14

1.3 PROPOSED METHOD OVERVIEW

Hand gesture
 dictionary

Depth
data

Hand
detection

Hand
direction

estimation

Palm
detection

Classification

Predicted
gesture

Color
data

Leap
Motion
data

Hand
samples

Pre-processing

Hand
segmentation

Finger
samples

Palm
samples

Wrist
samples

Hand features extraction

Figure 1.8: Architecture of the proposed gesture recognition framework

15

1. INTRODUCTION

16

Chapter 2

Data acquisition

This chapter deals with the acquisition of color, depth and other kinds of in-

formation, a preliminary important step of the gesture recognition pipeline of

Section 1.3. The choice of proper acquisition hardware and its arrangement in

an acquisition setup is fundamental for the next phases, and depends both on

the application and the budget. The quality of the data acquired by the selected

setup may strongly affect the recognition accuracy, and it is often in a direct

proportion with the hardware cost. Commercial applications developed for the

mass market usually have to rely on robust gesture recognition algorithms able

to compensate the inaccuracies of the data from inexpensive acquisition devices,

while in other applications where an high accuracy is mandatory the usage of

more expensive and accurate devices may not be avoidable.

The remainder of the current chapter describes briefly the main devices and

acquisition setups employed in literature for gesture recognition purposes and for

several computer vision tasks in general, highlighting their capabilities and limits

and focusing on the most relevant low-cost depth sensors currently available in

the mass market. A more thorough analysis of these devices and setups is beyond

the scope of the thesis, and an exhaustive treatment can be found, instead, in [1].

It is worth noting that, as the proposed system aims at recognizing the gestures

performed by the user’s bare hand, any possible acquisition setup involving the

usage of gloves or other tools compromising the naturalness of the gesture will

not be considered.

Automatic hand gesture recognition and, generally, several other computer

vision tasks exploiting color and depth or geometric cues, can use of one of the

following devices or setups. Recall that, without a proper calibration of each

device and especially of each multi-sensor setup, all the information collected will

not lead to a correct hand pose and orientation estimation.

17

2. DATA ACQUISITION

• one color camera only

• two color cameras (passive stereo system)

• two color cameras and a projector (active stereo system)

• one structured light device or system

• one range camera only

• one color camera and one range camera

• two color cameras and one range camera (trinocular system)

• one Leap Motion sensor only

• one Leap Motion sensor and a range camera or a stereoscopic system

2.1 Color cameras

Color cameras have been used for the solution of computer vision tasks since the

birth of this research field, and they have the only available acquisition devices for

several years. They are nowadays equipped as well to several personal computers

and notebooks, each smartphone, tablet and other low-cost embedded devices,

although their imaging sensor quality is generally poor for keeping the prices low.

Fig. 2.1 compares a few examples of color cameras available in the market,

ranging from inexpensive cameras embedded in mobile devices to more profes-

sional models used in industry.

(a) Embedded camera (b) Computer webcam (c) Industrial camera

Figure 2.1: Example of currently available color cameras

18

2.1 COLOR CAMERAS

The trade-off between the imaging sensor and lens quality and the overall

device cost increments the chance of failure of earlier computer vision methods

based on color data. Low-end smartphones, for example, are now often offered

for not more than $100, but are equipped with imaging sensors poorly performing

in low light conditions, while only the optics of a good quality camera are usually

offered for hundreds dollars.

For this reason and for the depth information loss due to the color camera

operation, most of the novel hand gesture recognition approaches reported in

Section 1.2, including the work presented in this thesis, no longer make use of a

single color camera as an acquisition setup.

Even though several recent gesture recognition approaches are no longer based

on color data only, the camera model schematized in Fig. 2.2, that is the pinhole

camera model, is still deeply entwined with almost all gesture recognition methods

as it is the basis of several calibration protocols and the only way of linking the

2D points living in the image plane with the 3D world.

v

c

y

x

z

O

u

Figure 2.2: Pinhole camera model

Eq. 2.1 only reports the relevant equation of the pinhole model for nota-

tion purposes, according to the reference systems of Fig. 2.2. A more complete

treatment can be found in [1].

19

2. DATA ACQUISITION

z

uv
1

 = KX =

fu s cu

0 fv cv

0 0 1

xy
z

 (2.1)

where [u v 1]T are the homogeneous coordinates of the projection ray p̃ for

the 3D point X with coordinates X = [x y z]T , K the intrinsic parameters

matrix with fu, fv the focal lengths of the optics, c the image plane center with

coordinates c = [cu cv]
T and s the axis skew. Note how in most cases s = 0.

From now on, for clarity sake, the projection of X on the image plane denoted

by p with coordinates p = [u v]T will be considered in place of its homogeneous

coordinates p̃.

2.2 Passive stereo setups

Passive stereo setups are a direct extension of the single camera ones, designed

to overcome the third dimension (depth) loss of the latter due to the projection

of 3D points on the image plane (Eq. 2.1). They are made by a pair of color

cameras, usually of the same model and same intrinsic parameters, and their

operation is exemplified in Fig. 2.3.

b

f

zL zR

uL uR

xL xR

P

z

L R

pL pR

Figure 2.3: Stereo vision system operation (courtesy of [1])

20

2.3 PASSIVE STEREO SETUPS

According to the reference systems of Fig. 2.3, the depth z of the 3D point P

can be computed by z = bf
d
, where b is the baseline, namely the distance between

the two optical centers, f the focal length of the optics and d = (uL − uR) the

disparity of the projection of P on the two camera image planes. Note how Fig.

2.3 represents an ideal system with identical cameras perfectly aligned, a situation

hardly verified in real setups but approximable by using proper stereo calibration

protocols [40].

Passive stereo setups are, again, affected by the image quality problems of

single camera setups, and in addition by the accuracy of the 3D reconstruction

algorithm adopted for the depth estimation. The accuracy of a 3D reconstruction

method, in fact, depends on the reliability of the detected correspondences, which

in turn strongly depends on the image quality. A more complete treatment of

this topic can be found in [41].

Passive stereo setups are easy to build and to embed in small low-cost devices,

as they are only made by a pair of color cameras but, as already stated, often the

lower the device cost the lower the image quality and consequently the lower the

number and the reliability of the detected correspondences. Moreover, note how

the correspondence detection is a time-demanding task, and in order to obtain

acceptable frame-rates several practical applications employing passive stereo sys-

tems have to rely on lower quality reconstructions to reduce the computational

load.

Analogously to the single color camera setups, the market offers affordable

and compact passive stereo cameras ranging from low-cost webcams (Fig. 2.4(a))

to more expensive solutions for professional applications (Fig. 2.4(b)). Finally

several research groups often adopt self-made acquisition rigs (Fig. 2.4(c)).

(a) Low-cost

stereo camera

(b) Professional

stereo camera

(c) Ad-hoc

stereo setup

Figure 2.4: Example of currently available passive stereo cameras and setups

21

2. DATA ACQUISITION

2.3 Active stereo setups

Passive stereo rigs, as stated in Section 2.2, are easy to arrange and can be made

of commodity cameras. While the theory behind their operation is rather simple,

practical cases show that the reliable discovery of correspondences between a 3D

point projected in the image planes of the two cameras is a challenging problem

to solve.

Active stereo setups augment passive stereo with a projector casting a known

pattern (e.g. a b/w checkerboard) on the framed scene with the aim of raising

the number of correspondences in low-textured regions or smoothed surfaces.

For example, PneumaCare developed the PneumaScan system (Fig. 2.5) for

automatically measuring the of air into a patient’s lungs over time.

Figure 2.5: Active stereo rig for chest 3D surface reconstruction (PneumaCare).

PneumaScan system operates by first projecting a grid pattern from an LED-

based digital light projector (DLP) on a patient’s chest area, then two digital

cameras capture the corner features of the checkerboard grid and two sets of 2D

points are created from the images. By recording the changes in the projected

pattern on a patient’s chest in the two image planes, a dynamic 3D model of the

chest can be generated. A software-based triangulation method then identifies

each one of the grid locations and recreates a 3D representation of the chest

22

2.4 STRUCTURED LIGHT SENSORS AND SETUPS

and abdominal wall surface. Changes in the chest volume are computed by the

software from the reconstructed virtual surfaces and can be plotted graphically

in real time as the patient breathes. Since the lungs are the only compressible

part of the torso, the system can calculate the flow of air into the lungs, namely,

how the volume of the torso changes over time.

Note how the introduction of a pattern projector both creates new correspon-

dences and limits the capability of the system to be embeddable in a compact

device. Moreover, when the projected light is in the visible spectrum the user’s

scene perception is altered.

2.4 Structured light sensors and setups

Structured light is an alternative technology to active stereo for the solution

of the passive stereo correspondence detection problem. Such systems project

known light patterns (usually in the infrared range) on the scene with a projector

replacing one camera of a stereo system, and estimate the point depths from the

pattern deformation (warping) on the image plane due to the scene geometry

(Fig. 2.6).

C A

pC pA vA vC

uC uA
xC

yC

zC

P = [x, y, z]T

xA

zA

yA

Figure 2.6: Structured light devices operation (courtesy of [1])

23

2. DATA ACQUISITION

A first family of devices of this category is the one of laser scanners, widely

used in industry for prototyping and in architecture or civil engineering to perform

geometric measurements on the acquired 3D scene (eg., bridges, buildings). They

are based on the controlled steering of one or more laser beams followed by a

distance measurement at every pointing direction, as exemplified in Fig. 2.7.

Figure 2.7: Laser scanner operation

As shown in Fig. 2.7, the projected light helps the detection of the correspon-

dences since they are marked by high intensity points or curves in the image plane

of the camera. Fig. 2.8 shows an example of laser scanners currently available in

the market.

(a) Laser scanner for industry (b) Laser scanner for architecture

Figure 2.8: Example of currently available laser scanners

24

2.4 STRUCTURED LIGHT SENSORS AND SETUPS

Although the achieved accuracies are extremely high (measurement error in

the micrometer range), the long time required for each acquisition and the use of

lasers make them unsuitable for the automatic gesture recognition purposes.

Other 3D scanners (Fig. 2.9) replace the laser generator with a video projector

and exploit time multiplexing to rebuild the 3D shape of the framed scene. Each

image pixel index is encoded with a unique light code (e.g., binary or gray code)

made by alternating B/W patterns, usually dark stripes with width varying over

time. Note how the usage of a second camera, like in the acquisition rig of Fig.

2.9, is not mandatory but reduces the lack of data due to inter occlusions.

Figure 2.9: Example of 3D scanning based on structured light time multiplexing

While the accuracy achievable with time multiplexing techniques is, again, ex-

tremely high (around 40µ), the drawbacks are their narrowness to the acquisition

of static scenes and the elevated number of generated patterns. Newer systems

use, instead, colored light coding techniques (Fig. 2.10) able to achieve real-

time performances with fewer frames (e.g. one or two) and a more sophisticated

correspondence matching algorithm.

Figure 2.10: Example of 3D scanning based on structured colored light coding

25

2. DATA ACQUISITION

Microsoft Kinect (ver. 1) and the Asus XTION are two low-cost structured

light coding range cameras built upon the same PrimeSense system-on-chip (Fig.

2.11), whose operation is still undisclosed.

Figure 2.11: Architecture of the PrimeSense SoC

The Kinect was originally designed for gaming purposes as a Microsoft XBOX

controller, but is now widely used in the computer vision field for its high depth

map acquisition frame rate, while the XTION is expressly designed for personal

computers. Both the devices are equipped with an infrared projector with a

coupled infrared camera for the depth estimation, and a HD color camera for the

color information acquisition.

A structured light infrared pattern (Fig. 2.12) is projected on the scene and

its deformations by the scene geometry are captured by the infrared camera.

Since the original pattern is known by the system and the “light codewords” are

uniquely assigned to the pixels of the projector image plane, by tracking each

codeword in the acquired infrared image it is possible to uniquely determine the

correspondences between the infrared camera and the projector image plane and

then estimate the depth from the pixel disparities by triangulation.

Note how the association of color and depth information to the same acquired

sample requires a prior alignment of the color image with the depth map. Al-

though such alignment could be automatically performed by old frameworks like

OpenNI, better results may only be obtained by following ad hoc calibration

protocols (e.g. [42]) different from the classic color camera calibration.

26

2.5 TIME-OF-FLIGHT CAMERAS

Projected Pattern Acquired Image

Scene

A C

P

pC pA

Figure 2.12: Structured light coding in Microsoft Kinect (courtesy of [1])

Finally, Occipital released Structure.io, targeted to IPad tablets.

(a) Microsoft Kinect ver.1 (b) Asus XTION (c) Structure.io

Figure 2.13: Example of available structured light coding low-cost range cameras.

2.5 Time-of-Flight cameras

Range cameras, such as Mesa SR4000 (Fig. 2.14(a)) for industry, the recent

Microsoft Kinect 2TM(Fig. 2.14(b)) and Creative Senz3D (Fig. 2.14(c)) for the

mass market, implement an alternative technology to active or passive stereo and

structured light systems that achieves higher frame rates with generally lower

spatial resolutions [1, 43].

27

2. DATA ACQUISITION

(a) Mesa Imaging SR4000 (b) Microsoft Kinect ver.2 (c) Creative Senz3D

Figure 2.14: Example of currently available ToF cameras.

While stereo systems use triangulation to reconstruct the scene geometry,

range cameras are based on the time-of-flight principle exemplified by Fig. 2.15.

device

scene 𝜌

Figure 2.15: Time-of-flight principle (courtesy of [1])

Consider the single emitter-receiver pair of Fig. 2.15; the “time of flight” is

defined as the round-trip-time of an infrared light pulse, that is, the time required

by the pulse to hit the object at distance ρ from the emitter and being reflected

back to the receiver. The rationale is that, as the light frequency is known a

priori and the round-trip-time measurable, the object distance from the emitter

(depth) can be computed by the simple Eq. 2.2.

ρ = c
τ

2
(2.2)

where c denotes the light speed in vacuum (although the actual speed of the

infrared pulse is slightly lower) and τ the round-trip time of the infrared pulse.

It is worth noting that real range cameras are actually made by a grid of

receivers collecting the infrared radiation from multiple emitters and carry out

more complex computations than Eq. 2.2 to reliably estimate the geometry of

the framed scene.

28

2.6 TIME-OF-FLIGHT CAMERAS

Furthermore, due to timing issues with light pulses, commercial range cameras

often exploit the phase shift of sinusoidal waves as an indirect way of measuring

the round-trip-time [1] (Fig. 2.16).

Time [s]

A
m

pl
itu

de
 [

V
]

s
E
(t)

s
R
(t)

A

B
2π f

mod

∆φ

0

A
E

A
E

Figure 2.16: Continuous wave time-of-flight principle

The SR4000, the Senz3D and other tof cameras return, along with the ac-

quired depth map, additional data useful for calibration or quality estimation

purposes: an intensity map representing the average intensity of the reflected

light collected by the sensor array, and a confidence map quantifying the reli-

ability of the estimated depth samples. Some range cameras like Senz3D and

Microsoft Kinect 2 also return a color image of the framed scene. An example of

data described above is reported in Fig. 2.17.

Finally, time-of-flight cameras usually provide better estimations of the scene

geometry than low-cost structured light sensors like Microsoft Kinect (ver.1) and

Asus XTION, but also require a rather high energy for empowering the infrared

illuminators and do not perform well in presence of dark objects due to the ab-

sorption of most of the infrared radiation. Moreover, as they are highly sensible

to direct sunlight, they should not be used in open environments, and they are

generally not accurate along the object boundaries due to the “flying pixel” phe-

nomenon caused by averaging the estimated depth along sharp edges (see Fig.

2.17(d)).

29

2. DATA ACQUISITION

(a) Acquired color image (b) Acquired depth map (c) Acquired confidence

(d) Generated point cloud

Figure 2.17: Example of data returned by tof cameras

2.6 Binocular setup

This setup enables the acquisition of both color and depth information when using

pure range sensors, like the SR4000 of Mesa Imaging, that only allow natively the

collection of depth data. It is often used in the research field or in industry when

available devices in the market are not suitable to the particular application.

Fig. 2.18 shows an example of acquisition rig made by an industrial range

sensor and a professional color camera. Note how the two devices are placed one

next to the other in order to minimize the reprojection error [1] and to simulate a

unique camera collecting both color and depth information in the same imaging

sensor. The acquisition rig needs an accurate calibration for correctly associating

both color and depth information to the acquired scene samples.

30

2.8 TRINOCULAR SETUP

Figure 2.18: Example binocular acquisition rig made by a camera and a tof sensor

2.7 Trinocular setup

Trinocular setups are acquisition rigs made by a pair of matched color cameras

(passive stereo) and a tof camera. They are designed to leverage the redundancy

of the geometric data provided by both subsystems in order to compensate their

inaccuracies by exploiting complex algorithms for depth data fusion [44]. The

depth data from the range camera may, in fact, compensate the lack of correspon-

dences when framing a uniform color wall and, conversely, the correspondences

detected on a very dark surface may compensate for the low reliability of range

data as stated in the end of Section 2.5. An example of trinocular setup is re-

ported in Fig. 2.19 [1].

Trinocular systems, as any other multi-sensor setup, require an accurate ad-

hoc calibration [44] in order to merge the depth data from the two subsystems.

2.8 Leap Motion

The Leap Motion is another recently introduced sensor based on vision techniques

targeted to the extraction of 3D data for gesture recognition applications only.

Differently from the depth acquisition devices or setups of the previous sections,

that provide a complete 3D description of the framed scene, the Leap Motion

produces a far more limited amount of information (only a few keypoints instead

of the complete depth description) and works on a smaller 3D volume. On the

31

2. DATA ACQUISITION

Figure 2.19: Trinocular acquisition setup made by a tof and two color cameras

other hand, the extracted data are more accurate (according to a recent study [45]

the device accuracy is of about 200µm) and it is not necessary to use computer

vision algorithms to extract the relevant points since they are directly provided

by the device software.

The first release of Leap Motion APIs only recognizes a few movement pat-

terns, e.g., swipe or tap, and the exploitation of Leap Motion data for more

complex gesture recognition systems is still an almost unexplored field. The sen-

sor mainly provides the following data, depicted in Fig. 2.20.

• Number of detected fingers: N that the device is currently seeing.

• Position of the fingertips: Fi, i = 1, . . . , N . Vectors Fi containing the

3D position of each of the detected fingertips. The sensor however does not

provide a mapping between the vectors Fi and the fingers.

• Palm center: C that represents the 3D location roughly corresponding to

the center of the palm region in the 3D space.

• Hand orientation: consists on two unit vectors representing the hand

orientation computed in the palm center C. The first vector, denoted by

h, points from the palm center to the direction of the fingers, while the

second, denoted by n, is the normal to the plane that corresponds to the

palm region pointing downward from the palm center.

• Hand radius: r is a scalar value corresponding to the radius of a sphere

that roughly fits the hand curvature.

32

2.9 LEAP MOTION

Fingertips position

Palm center

Hand
orientation

Hand radius

C
h

n

Figure 2.20: Data acquired by the Leap Motion sensor

The 3D positions of the fingertips are quite accurate, compared to the one

estimated from the depth data acquired by the Kinect or other similar devices,

but their detection is not too reliable. There are some situations, in fact, where

the sensor is not able to recognize all the fingers: fingers folded over the palm

or hidden from the sensor viewpoint are not captured, and fingers touching each

other are sometimes detected as a single finger. Even in situations where the

fingers are visible and separated from the hand and the other fingers it may hap-

pen that some fingers are lost, specially if the hand is not perpendicular to the

camera. Another typical issue of this sensor is that protruding objects near the

hand, like bracelets or sleeve edges, can be confused with fingers. These issues

are quite critical and must be taken into account in developing a reliable ges-

ture recognition approach, since in different executions of the same gesture the

number of captured fingers could vary. For this reason, simple gesture recogni-

tion schemes based on the number of the detected fingers or the direct usage of

fingertip positions report poor performance.

33

2. DATA ACQUISITION

2.9 Hybrid setup

Leap Motion is raising an high interest in the computer vision research field not

only for its affordable cost, its small dimensions and the gesture-based applica-

tions it allows to develop quickly, but also because it returns relevant information

on the hand pose that could only be obtained in the past with a complex process-

ing of the color and depth data from the framed scene. Most of the computation

of the state-of-art gesture recognition approaches of Section 1.2, in fact, is re-

ferred to the hand detection, segmentation and extraction of key points that the

Leap Motion APIs are able to perform natively in a neglectable time.

For this reason, part of the dissertation is dedicated to the joint usage of

the Leap Motion with an affordable depth camera or stereo setup in order to

make more efficient and robust the state-of-art automatic hand gesture recogni-

tion approaches of Section 1.2. An example of hybrid setup made by the Leap

Motion and a Microsoft Kinect (ver.1) is shown in Fig. 2.21, and is used in the

experiments described in Chapter 7.

Figure 2.21: Example of hybrid setup made by a Kinect and the Leap Motion

34

Chapter 3

Hand detection

The first step of the considered gesture recognition pipeline of Fig. 1.8 consists

in segmenting the hand from the rest of the scene, since all the information of

the performed gesture is entirely encoded in the hand region and in the hand

movements. The arm region is, instead, usually discarded as it does not contain

any helpful information and its shape and size are affected by the presence of

sleeves and bracelets. Hand detection is a crucial step because all the processing

in the following chapters is performed on the hand samples only.

Considering one of the acquisition setups described in Chapter 2, the only

available data so far are the depth map of the framed scene and, optionally, the

related color image. Data from Leap Motion may also be used in this step. The

color camera only setup is not considered due to its intrinsic limits.

It is important to recall that, in order to correctly associate the points in

3D space with their projections in the sensor image plane and to perform reli-

able metric measurements on the scene geometry from the acquired samples, an

accurate calibration is mandatory. ToF cameras calibration can be performed

by using a checkerboard with known checkers size and the Camera Calibration

Toolbox for Matlab [46] or the openCV library [47], since these sensors equip

similar optics to the color camera ones and are affected as well by distortion.

Note how in this case the color images for calibration are usually replaced by

the range camera intensity or infrared maps. A more complete treatment of tof

cameras calibration can be found in [1]. In case of Microsoft Kinect (ver.1), a

more appropriate calibration protocol is described in [42].

Moreover, in order to take advantage of both color and depth information

from the framed scene, a joint calibration of the color and the depth camera is

required. Joint calibration, in fact, allows to associate a color and a depth value

to each point in the framed scene.

35

3. HAND DETECTION

Even though depth information alone may be enough for hand detection pur-

poses when the assumption of the hand being the closest object to camera is

valid, a common case for human-machine interfaces empowered by gestures, the

proposed framework can exploit both depth and color information or depth and

the Leap Motion data in order to recognize the hand more reliably. The imple-

mented detection algorithm either uses depth information only, or also exploits

the color or the Leap Motion data according to their availability and the partic-

ular application based on gesture recognition.

3.1 Hand detection on depth information only

In applications where the hand is proven to be always the closest object to the

sensor, the usage of color information in this phase may be skipped in order to

simplify the hand detection procedure and improve the computational perfor-

mances. The proposed framework in this case follows the pipeline of Fig. 3.1.

Absolute
depth

filtering

Minimum
depth point
detection

Isolation
test

Depth
filtering

Detected
hand

Depth
map

Remove
minimum

Blob
analysis

SUCC.

FAIL

SUCC.

FAIL

Figure 3.1: Hand detection on depth information pipeline

Assume the only available data is the depth map D = {du,v} ∈ RM×N of the

framed scene defined on a lattice ΛD on the sensor image plane with M rows and

N columns. An example of acquired depth map is shown in Fig. 3.2(b).

A first preliminary step in the hand detection pipeline of Fig. 3.1 consists in

removing all the possible depth samples with invalid values (e.g., openNI assigns 0

to invalid depth measures for Microsoft Kinect (ver.1)). Moreover, since in several

applications employing natural interfaces the user is supposed to interact within

a limited volume space in front of a static acquisition setup, a further preliminary

step consists in removing all the depth samples du,v having a relative depth to the

acquisition setup higher than a preset threshold TS (e.g., the work of [21] usually

assigns to TS a value within the range [1, 1.5] meters). Note how such filtering also

improves the hand detection performance since most of the background samples

are safely removed and no longer considered for further processing.

36

3.1 HAND DETECTION ON DEPTH INFORMATION ONLY

(a) Acquired color image (b) Acquired depth map (c) Filtered depth map

Figure 3.2: Example of static background removal

Let DS = {dSu,v} ∈ RM×N denote the depth map D after the preliminary

filtering exemplified in Fig. 3.2 and formalized in Eq. 3.1.

dSu,v =

{
du,v if du,v ≤ TS

φ otherwise
(3.1)

where φ in this case denotes the null value for the depth sample in position

(u, v) on the sensor lattice to distinguish an invalid measure from a valid depth

value 0.

The next step in the hand detection pipeline of Fig. 3.1 is the search for the

sample dSu,v with the minimum depth value Dmin
S on DS, with coordinates dS,min

u,v ,

which is likely to be located on one of the fingertips. In order to avoid to select

as the closest point an isolated artifact due to measurement noise, the method

verifies the presence of an adequate number of depth samples in the neighborhood

of the closest point having a similar depth value (e.g., the experiments of Chapter

7 used a rectangular sliding window of 5× 5 pixels centered on the dS,minu,v candi-

date). If the neighborhood of dS,minu,v has an insufficient number of depth samples

whose depth value differs not more than a threshold TW from Dmin
S , dS,minu,v is

discarded by setting dS,minu,v = φ and a new minimum is searched. The research is

performed until a valid minimum is found or DS has no valid minimums. In this

rare case the frame is discarded and the detection is restarted in the next valid

frame.

Let now Xu,v denote a generic 3D point acquired by the selected range camera,

computed as the back-projection of the depth value of dSu,v according to Eq. 3.2.

Xu,v = dSu,vK
−1

uv
1

 (3.2)

37

3. HAND DETECTION

with K−1 the inverse of the intrinsic parameters matrix of Eq. 2.1 obtained

from the sensor calibration. In particular, Xmin
u,v denotes the back-projection of

dS,minu,v and is chosen as the starting point for the hand detection procedure.

Once the closest point Xmin
u,v is found, the set of all the points with respectively

relative depth and distance from Xmin
u,v lower than two thresholds TR and TD is

computed by Eq. 3.3.

H = {Xu,v|(dSu,v ≤ Dmin
S + TR) ∧ (‖Xu,v −Xmin

u,v ‖ ≤ TD)} (3.3)

The values of TR and TD depend on the hand size (typical values are TR =

10cm and TD = 30cm), that may be estimated during the user calibration phase.

In particular, the filtering on the point distances is equivalent to center on Xmin
u,v

a sphere of radius TD and removing all the 3D points Xu,v not contained in it.

Setting TR and TD is a delicate phase that may compromise the further processing:

an excessively low value of TR may discard actual hand samples when the hand is

almost perpendicular to the range camera image plane, while an excessively high

value may, instead, force the inclusion also of the wrist and the first part of the

forearm in H. Analogously, an excessively low value of TD may discard actual

hand samples while an high value is likely to include in H background samples

in the hand neighborhood as well.

It is worth noting that the previous filtering may have retained, due to the

measurement noise and to the selected threshold TR and TD, background samples

constituting artifacts which, if not removed, may seriously compromise all the

subsequent steps of the recognition pipeline of Fig. 1.8.

For this purpose, let BH = bHu,v ∈ {0, 1}M×N be a bidimensional binary mask

built on the same lattice ΛD of D according to Eq. 3.4.

bHu,v =

{
1 if Xu,v ∈ H
0 otherwise

(3.4)

Namely, the entries of BH are non-zero for the pixel positions corresponding

to the points in H.

Starting from BH , the proposed method applies blob analysis techniques to

isolate the biggest blob, assumed it is associated to the hand, from the possible

smaller ones associated to the retained artifacts. All the points Xu,v ∈ H as-

sociated to the smaller blobs are removed from H, which now only contains 3D

points belonging to the hand and part of the forearm. BH is updated accordingly,

setting all the pixels referred to the smaller blobs to 0.

38

3.2 HAND DETECTION ON DEPTH INFORMATION ONLY

Let now DH = {dHu,v} ∈ RM×N denote the depth map DS after the previous

filtering, namely the depth map only containing valid depth values for the samples

in H. DH is simply obtained by masking the depth values dSu,v according to the

logic states of the BH entries (Eq. 3.5).

dHu,v =

{
dSu,v if bHu,v = 1

φ otherwise
(3.5)

A further check is then performed onH in order to ensure it corresponds to the

hand, consisting in measuring the maximum Euclidean distance LmaxD between a

generic pair of samples in H (Eq. 3.6) and discarding again the selected minimum

Xmin
u,v if LmaxD is lower than a preset threshold TL (e.g., TL = 5cm). This check

avoids the selection of H from an object smaller than any possible hand or from

an isolated artifact. If the test fails, a new search for a valid Xmin
u,v has to be

performed with a consequent definition of a new candidate hand point cloud H.

LmaxD = max
Xi
u,v ,X

j
u,v∈H

‖Xi
u,v −Xj

u,v‖ (3.6)

Finally, note how the lack of other information but depth sometimes leads

the detection algorithm to wrong assumptions. For example, when the elbow is

nearer than the hand to the acquisition setup as in Fig. 3.3, Xmin
u,v is not located

on the fingertips and the actual hand samples are erroneously not included in H.

(a) Acquired color image (b) Acquired depth map (c) Detected hand mask

Figure 3.3: Example of wrong detection on depth map

Fig. 3.4 shows, instead, the intermediate results of the hand detection algo-

rithm for a successful case.

39

3. HAND DETECTION

(a) Acquired color image (b) Acquired depth map (c) Detected hand mask

Figure 3.4: Example of correct hand detection on a depth map

3.2 Hand detection on joint color and depth

Hand detection based on depth information only of Section 3.1 is rather effective

when the assumption of the hand being the nearest object to the acquisition setup

is always valid. Whenever this assumption is no longer verified or the application

requires to relax this constraint, integrating the acquired depth data with further

information is mandatory for the success of this task.

Consider an hybrid setup made by a color camera and a depth sensor, or a

single device providing both color and depth information like Microsoft Kinect

1 or 2, Asus XTION or Creative Senz3D described in Chapter 2. The proposed

frameworks implements the algorithms of Fig. 3.5 and 3.6 for the hand detection

task exploiting both color and depth information.

Depth
reprojection

Depth
map

Color
image

Face
detection

Color space
conversion

Color
Histograms
computation

Modes
extraction

Skin color
filtering

Erosion and
dilation
filtering

Hand
detection
on depth

Detected
hand

Depth
masking

Color space
conversion

Calibration
frames

Skin color
calibration

Figure 3.5: Hand detection on joint color and depth data (static skin-color thresh-

olding)

Note how the two pipelines only differ for the usage of static or dynamic

skin-color thresholds.

40

3.2 HAND DETECTION ON JOINT COLOR AND DEPTH

Depth
reprojection

Depth
map

Color
image

Face
detection

Color space
conversion

Color
Histograms
computation

Modes
extraction

Skin color
filtering

Erosion and
dilation
filtering

Face
removal

Hand
detection
on depth

Detected
hand

Depth
masking

Figure 3.6: Hand detection on joint color and depth data (dynamic skin-color

thresholding)

A preliminary yet crucial step in the detection pipelines of Fig. 3.5 and 3.6

consists in reliably associating both color and depth information to each scene

sample. Note how, as the only available data are a color image of the framed

scene and the related depth map acquired by different sensors, with often different

pixel spatial resolutions (usually depth maps have a sensibly lower resolution than

color images) there is not a direct correspondence between the color image pixels

and the depth map ones.

When a Microsoft Kinect (ver.1) is used, the association can be performed

by the tool of [42], while in case of other devices or setups the association has

to be performed with ad-hoc solutions. Certain device APIs or middlewares like

openNI often align the color image to depth map (or viceversa) automatically,

although the achieved accuracy is rather low.

There are mainly three approaches in literature for solving the alignment

problem:

• Depth map to color image reprojection

• Point splatting

• Surface rendering

The first method (Fig. 3.7) consists in reprojecting the depth samples du,v of

the acquired depth map D in the color image lattice ΛC , assigning each depth

sample the color of the pixel cu,v of the color image C it “falls” into. Recall that

D and C are generally acquired by two different imaging sensors with different

lattices ΛD and ΛC , where C has often an higher spatial resolution than D. Let

41

3. HAND DETECTION

du,v = [uD vD]T ∈ N2 with N the natural numbers set denote the coordinates

of a generic pixel du,v of the depth map D, and by cD
u,v = [uC vC]T ∈ R2 the

coordinates of the reprojected depth sample du,v on C according to Eq. 3.7.

c̃D
u,v = KC(RPD + t) = KC(RK−1

D d̃u,v + t) (3.7)

with c̃D
u,v = [uC vC 1]T the homogeneous coordinates of the reprojected

pixel cDu,v, d̃u,v = [uD vD 1]T the homogeneous coordinates of du,v, KC and KD

the intrinsic parameter matrices of the color and range cameras respectively, and

(R, t) their roto-translation.

v
C

c
C

y
C

x
C

z
C

O
C

u
C

v
D

c
D

y
D

x
D

z
D

O
D

u
D

P

p
D

p
C

Color camera Depth camera

Figure 3.7: Point reprojection

It is worth noting that, due to the different lattices ΛD and ΛC , cDu,v has

generally non integer coordinates, thus its value has to be computed by evaluating

the four pixels c11, c12, c21, c22 in its neighborhood. The simplest method of

computing the value of cDu,v (Fig. 3.8(a)) consists in assigning to cDu,v the color of

the nearest neighboring pixel, that is the color of the pixel in cDu,v neighborhood

whose euclidean distance from cDu,v is minimum (Eq. 3.8).

cDu,v = argmin
cu,v∈{c11,c12,c21,c22}

‖cu,v − cD
u,v‖ (3.8)

A more refined approach (Fig. 3.8(b)) computes the value of cDu,v as the bilinear

interpolation of the values of the four neighboring pixels (Eq. 3.9).

42

3.2 HAND DETECTION ON JOINT COLOR AND DEPTH

cDu,v =

c11(u2 − u)(v2 − v) + c21(u− u1)(v2 − v)+

c12(u2 − u)(v − v1) + c22(u− u1)(v − v1)

(u2 − u1)(v2 − v1)
(3.9)

u
C

c
11

c
D

v
C

u
1

u u
2

v
1

v

v
2

c
21

c12 c
22

(a) Nearest neighboring pixel color as-

signment

u
C

c
11

c
D

v
C

u
1

u u
2

v
1

v

v
2

c
21

c12 c
22

(b) Bilinear interpolation of the neigh-

boring pixels

Figure 3.8: Comparison of two color computation approaches for the reprojected

depth sample on the color image

Finally, it is worth noting that the reprojection method may lead to a color

information loss as the only depth samples of D have matched color and depth

information.

The second approach (Fig. 3.9), at the basis of the method of [42], allows to

associate to each sample cu,v of the color image C a depth sample du,v of the depth

map D: starting from the sparse point cloud of 3D points PC with coordinates

PC = RPD + t from Eq. 3.7, expressed in the color camera reference system,

the related depth values dCu,v are computed by splatting the points PC on C and

rendering each splat as a Gaussian disk [48]. In case of splat overlapping, the

interested pixels cu,v are assigned the lowest depth value among the overlapping

splats.

The last method (Fig. 3.10) is the most computational demanding and gen-

erally offers better results. It consists in constructing a triangular mesh from the

point cloud of the previous approach by triangulating the sparse points and then

by extracting the z-buffer from the rendered surface in the color camera view

point.

43

3. HAND DETECTION

v
C

c
C

y
C

x
C

z
C

O
C

u
C

v
D

c
D

y
D

x
D

z
D

O
D

u
D

P
1

p
1

Color camera Depth camera

P
2

P
3 p

2

p
3

Figure 3.9: Point splatting

v
C

c
C

y
C

x
C

z
C

O
C

u
C

v
D

c
D

y
D

x
D

z
D

O
D

u
D

Color camera Depth camera

Figure 3.10: Triangulated depth point cloud rendering

44

3.2 HAND DETECTION ON JOINT COLOR AND DEPTH

Once both color and depth information are associated to each acquired sample,

the pipelines in Fig. 3.5 and 3.6 perform a color thresholding on C in order to

discard all the pixels that are more likely to refer to background samples as their

color differs excessively from the reference color of the user’s skin. The proposed

framework offers two possibilities for executing this task, extending [49]:

• Static thresholding: the user’s skin color thresholds are determined only

in the calibration phase or during the system initialization.

• Dynamic thresholding: the user’s skin color thresholds are determined

adaptively in each acquired frame.

The first method is faster but strongly relies on the accuracy of the skin color

range measured during a calibration phase, not always possible. The second

approach, instead, is less sensitive to possible skin tone variations due to varying

lighting conditions and does not require a skin color calibration phase, though its

computational demand may be excessive for certain applications.

Both methods determines the user’s skin color thresholds in a limited region

roughly corresponding to the nose area, estimated by Viola-Jones [8] face detector

or better, since also the depth information is available, with the more robust face

detector of [7]. While for the static thresholding the face is only detected on

a few calibration frames, for the dynamic version the face detection has to be

performed on each frame.

The first important aspect of the acquired color images is their pixel format.

Most of the low-cost cameras return color images with pixel values expressed in

the RGB color space (or RGBA if also the alpha-channel is available), ideal for

visualization though unsuitable for several computer vision tasks like the color

thresholding. For this reason, both the user’s skin color measurement and the

color tresholding are then performed on the color image C converted in a proper

color space. The selected color space is CIELAB since, as reported in Fig. 3.11(c),

leads to better results. One of the reasons of the poor performance of RGB and

other color spaces is the dependence of the colors from the luminance, which in

turns depends on the varying lighting conditions of the framed scene, and their

dependence from the device that generated them. CIELAB space, instead, is

designed to map the color distances in actual perceived color differences and is

device independent, but also separates the luminance (channel L) from the color

components (a and b).

Let CLab = {cLabu,v }, where cLabu,v has coordinates cLab
u,v = [ca cb]

T , denote the

color image C converted in the CIELAB color space. The current step in the

45

3. HAND DETECTION

(a) Acquired color image (b) Acquired depth map (c) Thresholding on RGB

(d) Thresholding on RGB

(Kovac’s rule)

(e) Thresholding on HSV (f) Thresholding on Lab

Figure 3.11: Example of skin color thresholding masks on different color spaces

pipelines of Fig. 3.5 and 3.6 consists in building an histogram of the color dis-

tribution for each separate channel within the previously detected region. Note

how for the pipeline of Fig. 3.6 the histograms are referred to a single frame,

while for the pipeline of Fig. 3.5 they are averaged on a few calibration frames in

order to obtain a more robust estimate. Note also how the L channel is, indeed,

discarded for the further thresholding as it accounts for the unstable luminance.

The modes Ma and Mb of the color distributions are selected as the base

skin color components. The skin color filtering in Fig. 3.5 and 3.6 is a two-fold

thresholding consisting in firstly selecting all the pixels of CLab whose color dis-

tance from the reference skin color cS defined by Ma and Mb is lower than a

pair of highly selective thresholds T 1st

a and T 1st

b denoting the maximum relative

component distances of a generic pixel color from cS, and then by selecting the

discarded pixels in the first pass whose color distance is lower than a pair of more

relaxed thresholds T 2nd

a > T 1st

a and T 2nd

b > T 1st

b if the number of selected pixels

in the first pass in their neighborhoods is higher than a given threshold Tρ. Let

BC = {bCu,v} define a binary masks on the same lattice ΛC of C indicating what

pixels of CLab are retained by the color thresholding, as formalized in Eq. 3.10.

46

3.2 HAND DETECTION ON JOINT COLOR AND DEPTH

bC,1
st

u,v =

{
1 if |ca −Ma| ≤ T 1st

a ∧ |cb −Mb| ≤ T 1st

b

0 otherwise

bC,2
nd

u,v = bC,1
st

u,v ∨

1 if |ca −Ma| ≤ T 2nd

a ∧ |cb −Mb| ≤ T 2nd

b

∧
∑

(u,v)∈W (cLabu,v)

bC,1
st

u,v ≥ Tρ

0 otherwise

(3.10)

where W (cLabu,v) denotes a sliding window centered on pixel cLabu,v .

A further erosion followed by a dilation filtering on the resulting binary mask

BC first removes the smallest blobs due to the filtering noise and then expands

the retained ones, in particular the blobs referred to the hands, in order to in-

clude in BC hand pixels in CLab that may have been previously discarded by the

color filtering. BC is then applied to DR, the depth map D aligned with C by

reprojection (Eq. 3.7), to only select the regions int the depth map most likely

to be referred to the hands. Note how this approach may also be used to detect

both hands, as they are masked by two different blobs.

Finally, hand detection on depth data is performed on DR with the approach

of Section 3.1, since DR may still contain artifacts not removed by the previous

processing. An example of hand detection on joint color and depth information

is shown in Fig. 3.12.

(a) Acquired color

image

(b) Acquired depth

map

(c) Aligned depth

map

(d) Color image af-

ter thresholding

(e) Thresholded im-

age after erosion

(f) Eroded image

after dilation

(g) Masked aligned

depth map

(h) Detected hand

Figure 3.12: Example of hand detection with joint color and depth information

47

3. HAND DETECTION

The joint usage of color and depth information may also be exploited to relax

the static background thresholding of Section 3.1 in order to allow the user to

freely move within the acquisition setup viewing volume. Since the head position

in the 3D space may be reliably estimated with the approach of [7], it is possible

to detect the maximum volume occupiable by the user and consequently define

dynamic thresholds for the foreground and background sample removal of Eq. 3.1.

While this is not usually needed when the user is sitting in front of a computer or

a machine, this possibility may become mandatory when the user has to interact

with the interface while changing position.

3.3 Hand detection on joint depth and Leap Mo-

tion data

Hand detection task is way simpler when the Leap Motion is jointly used with

a range camera in the same acquisition setup. Assume, in fact, the setup is

calibrated, thus the data provided by the Leap Motion can be expressed in the

range camera coordinate system with a simple roto-translation between the two

coordinate systems. In particular, let CD denote the hand center estimated by

the Leap Motion software expressed in the range camera coordinate system.

CD can now replace Xmin
u,v in Eq. 3.3 and the relative distance threshold can

TR be halved, since CD roughly lies in the hand center and not on a fingertip.

Hand detection then continues as in Section 3.1.

It is worth noting that in this case no color information is required to relax the

assumption of the hand being the nearest object to the camera and the algorithm

does not need to reiterate on different Xmin
u,v candidates as CD is reliable enough.

48

Chapter 4

Hand segmentation

Hand detection of Chapter 3 reliably segments the hand from the background.

Differently from earlier color only based approaches resumed in Section 1.2, the

work in this thesis leverages mostly depth information for this task and, whenever

available and necessary, exploits also color cues or the key points provided by the

Leap Motion APIs.

However, detection itself only provides an insufficient amount of information

for the estimation of the performed gestures. The necessary information is, in

fact, contained in the feature sets described in Chapter 5, which in turn require for

their extraction some additional cues like the hand orientation, the hand center

and the location of the palm and fingers regions.

Hand segmentation in this thesis, following the scheme of Fig. 4.1, relies on

the estimation of a local 3D reference system set on the expected hand center

and representing the hand orientation. Note how this coordinate system has a

fundamental importance for the extraction of several features in Chapter 5.

Hand only
depth map

Back
projection

Palm
detection

PCA

Plane
fitting

Projection
on

plane

Hand
direction

Palm
direction

Palm
region

Palm
center

Projection
on

plane

Refined
palm

center

Figure 4.1: Hand segmentation pipeline

49

4. HAND SEGMENTATION

4.1 Palm detection

The first step in the segmentation pipeline of Fig. 4.1 is the detection of the palm

region within DH , the acquired depth map D after hand detection in Chapter 3.

Recall that the described detection method returns, beside a depth map DH =

{dHu,v} only containing valid depth measures for the pixel positions referred to the

expected hand region, a point cloud H obtained by back-projecting (Eq. 3.2) the

pixels of DH in the 3D space, and a binary mask BH reporting the positions of

the hand region pixels in DH .

In particular, the binary mask BH is at the basis of two different palm detec-

tion approaches implemented in the proposed framework:

• Circle fitting

• Ellipse fitting

The first approach consists in fitting the largest inscribed circle C with center

cp and radius rp in the expected palm region in the binary mask BH . The choice

of the circle as geometric shape is due to its rotational invariance.

The second approach is, instead, an improvement of the first one designed to

overcome its limits in dealing with narrow or excessively slanted palms respect

to the range camera image plane.

4.1.1 Circle fitting approach

Palm detection based on circle fitting follows the pipeline in Fig. 4.2.

Refined
palm

 center

Depth
mask

Blob
filling

Gaussian
filtering

Binary
thresholding

Blob
analysis

x2

Raw palm
center

Minimum
depth
point

Maximum
circle
fitting

Detected
palm

region

Detected
palm

 radius

Figure 4.2: Palm detection with circle expansion pipeline

The first crucial step for the circle fitting success is the choice of a good

starting point c0 for the circle expansion. The implemented selection strategy is

50

4.1 PALM DETECTION

based on the fact that the palm region in BH has the highest point density, since

usually the palm area is larger than the fingers and the wrist. Following this

rationale, a combination of proper image filtering algorithms and blob analysis is

able to detect the highest density blob in BH containing c0.

More specifically, BH is first convoluted with a 2D Gaussian kernel (Eq. 4.1)

with a very large standard deviation σ = (σu, σv), obtaining a strongly blurred

grayscale image IG = {iGu,v} with values proportional to the point density.

iGu,v =
∑
k,l

bHu+k,v+lg
σ
k,l (4.1)

where gσk,l = 1
2πσkσl

exp
(
− k2

2σ2
k
− l2

2σ2
l

)
denotes the 2D gaussian kernel coeffi-

cient at position (k, l).

It is worth noting that, since the hand region area in BH varies not only

according to the type of performed gesture but with the minimum distance of the

hand from the acquisition setup as well, a fixed value for σ would lead to different

filtering results for each acquired frame. For this reason, σ is scaled according to

Eq. 4.2 in order to dynamically adapt to the hand distance from the acquisition

setup.

σD = σ0
1

Dmin
(4.2)

where σ0 is the base value for σ (e.g., for the tests of Chapter 7 σ0 has been

set to 1/4 of the width of BH for both its components) and Dmin is the shortest

distance of the hand points in H from the acquisition setup, computed in Chapter

3.

Scaling by Eq. 4.2 makes the window size in metric units invariant from hand

distance from the acquisition setup, and ensures that the support of the filter is

always large enough to capture the thickness of the hand or arm regions.

Let ImaxG = max
u,v

iGu,v denote the maximum computed density, and T ρG ∈ [0, 1]

a threshold value (in the experiments of Chapter 7 T ρG = 0.9, namely T ρGI
max
G

corresponds to the 90% of the maximum density). A binary thresholding on IG

by T ρG returns a new binary mask BG = {bGu,v} (Eq. 4.3) made of one or more

blobs representing possible candidates to contain c0. This is also due to the fact

that there may be more than one pixel in IG with value ImaxG .

bGu,v =

{
1 if iGu,v ≥ T ρGI

max
G

0 otherwise
(4.3)

51

4. HAND SEGMENTATION

The value of T ρG represents a trade-off between the size and number of blobs

in BG and the estimated c0 position accuracy: relaxed thresholds are more likely

to return more than one large blob probably containing the searched c0, while

tighter thresholds usually return only one blob with a limited area but also with

an higher risk of not containing c0. In some unlucky cases, in fact, c0 may not

lie near the actual palm center, but rather in the arm region if the arm points

density is higher than the hand ones.

In order to over reduce this risk, the proposed algorithm prefers a less tight

threshold T ρG to retain an higher number of blobs and performs a second-pass of

filtering and thresholding on BG. The idea is eroding the minor blobs to only

retain the main one, supposed to contain the desired c0.

Finally, since BG after the filtering may still contain more than one blob, a

further blob analysis is performed on BG to compute the center of mass for each

retained blob, and the nearest center of mass to the projection dminu,v of Xmin
u,v on

BG is chosen as c0. The rationale is that the actual palm center cp can not be

located too far from the nearest hand point to the acquisition setup.

(a) Acquired color image (b) Acquired depth map

(c) Detected hand mask (d) Computed c0 (in blue)

Figure 4.3: Example of computed c0 for circle fitting algorithm initialization

52

4.1 PALM DETECTION

Once a suitable starting point c0 for the palm detection has been determined,

the algorithm formalized in Alg. 4.2 computes iteratively the maximum circle

that can be inscribed in the palm region with center cp in c0 neighborhood. Alg.

4.2 starts by expanding a circle C with initial radius r = r0 (with r0 = 1 pxl in

the current implementation) and center c = c0 in BH , using Alg. 4.1, until the

density ρ of the mask pixels within C is higher than a preset threshold Tρ (e.g.,

Tρ = 0.95, that is the 95% of the points within C must be referred to samples of

H). The tolerance of Tρ accounts for errors due to noise or artifacts of the depth

sensor.

Algorithm 4.1 Circle expansion algorithm
Input:

B = {bu,v}: binary mask

c = (cu, cv): circle center position c with coordinates cu, cv

r0: initial radius length [pxl]

ρmin: minimum circle point density

s: radius increment step [pxl]

Output:

rp: maximum inscribed circle radius [pxl]

ρf : maximum inscribed circle point density

function maxexpand(c, r0,ρmin,s)

rp ← r0 − s
repeat

rp ← rp + s ,ρf ← 0

AB ← 0 . Number of hand pixels within the circle

AC ← 0 . Number of pixels within the circle

for all (u, v) s.t. (u− cu)2 + (v − cu)2 ≤ r2
p do

AC ← AC + 1

if bu,v is true then

AB ← AB + 1

end if

end for

if AB/AC ≤ ρmin then

ρf ← AB/AC

end if

until ρf > ρmin

return rp, ρf

end function

53

4. HAND SEGMENTATION

Algorithm 4.2 Circle fitting algorithm
Input:

B = {bu,v}: binary mask

c0 = (c0
u, c

0
v): initial circle center position c0 with coordinates c0

u, c
0
v

Tρ: minimum circle point density threshold

s: radius increment step [pxl]

Output:

rp: maximum inscribed circle radius [pxl]

cf : maximum inscribed circle center position with coordinates cu, cv

cf ← c0

(rp, ρf)←maxexpand(c0,1,ρmin,s)

repeat

r ← 1, ρ← 0

cn = (cu, cv − s) . Circle center after up shift

rn, ρn ←maxexpand(cn,rp,Tρ,s)

cs = (cu, cv + s) . Circle center after down shift

rs, ρs ←maxexpand(cs,rp,Tρ,s)

ce = (cu − s, cv) . Circle center after right shift

re, ρe ←maxexpand(ce,rp,Tρ,s)

cw = (cu + s, cv) . Circle center after left shift

rw, ρw ←maxexpand(cw,rp,Tρ,s)

if rn > r ∨ (rn = r ∧ ρn > ρ) then

r ← rn, ρ← ρn

end if

if rs > r ∨ (rs = r ∧ ρs > ρ) then

r ← rs, ρ← ρs

end if

if re > r ∨ (re = r ∧ ρe > ρ) then

r ← re, ρ← ρe

end if

if rw > r ∨ (rw = r ∧ ρw > ρ) then

r ← rw, ρ← ρw

end if

if r > rp then

rp ← r

end if

until r > rp

54

4.1 PALM DETECTION

After the maximum radius value satisfying the threshold is found, the coordi-

nates of c are shifted towards the direction that leads to the maximum expansion

of the shifted circle. In case more than one direction leads to the maximum

expansion, c is shifted to the direction among them having the maximum point

density within the expanded circle.

Then, the two phases keep iterating until the largest possible circle has been

fitted on the palm area. The final position of c, denoted by cp, represents the

estimated palm center and will be the starting point for the further processing.

1
2

3

4

Figure 4.4: Palm detection with circle expansion

The corresponding 3D point CP obtained by back-projection of cp, that from

now on will be referred to as the centroid of the hand, will play an important role

in the proposed algorithm together with the final radius value rp. Moreover, note

how the position of the centroid is also useful in order to reconstruct the trajectory

followed by the hand in dynamic gestures, necessary in several applications (e.g.,

55

4. HAND SEGMENTATION

for the control of virtual mouses or of browsing of 3D scenes) and is one of the

key points for the recognition of dynamic gestures.

Alg. 4.2 effectiveness is clearly dependent on the selection of the starting point

c0 for the first circle expansion: if c0 lies within the palm region, not necessarily

near the actual palm center, the algorithm will converge quickly to an optimum

of the estimated palm center position. Conversely, if the starting point lies in

one of the fingers the circle expansion will probably stop early leading to wrong

estimations (e.g., palm center confined in a phalanx).

4.1.2 Ellipse fitting approach

Palm detection by circle fitting of Section 4.1.1 allows to obtain a reasonable but

not always accurate estimate of the palm region in the depth mask BH . This

happens for two main reasons:

1. the palm may be sensibly longer than wide, e.g., for people having thin

hands.

2. In several acquired gestures the hand is not parallel to the imaging plane

and the palm shape is then distorted by the projection of the hand on the

range camera image plane.

In order to deal with these issues, Fig. 4.5 proposes a refined hand detection

algorithm based on computing the ellipse best approximating the expected palm

region boundary [50].

Refined
palm

 center

Depth
mask

Blob
filling

Gaussian
filtering

Binary
thresholding

Blob
analysis

x2

Raw palm
center

Minimum
depth
point

Maximum
ellipse
fitting

Detected
palm

orient.

Detected
palm

 length

Detected
palm
 width

Detected
palm

region

Figure 4.5: Palm detection with ellipse fitting pipeline

56

4.1 PALM DETECTION

Consider again BH , the binary mask only containing a single blob represent-

ing the hand sample positions in the related depth map DH . Let BeH = ∂BH

denote the hand contour point set obtained from edge detection on BH (e.g, with

Canny method [51]). The palm region boundary is detected by intersecting N

overlapping angular sectors Si for i = 1, 2, . . . , N with BeH (Fig. 4.6), returning

each one a subset Si ⊆ BeH of the contour points coordinates of the points con-

tained in Sector Si. Each sector Si contributes for a single palm contour point

pi ∈ Si computed as the nearest point of Si to the approximated palm center cp

(Eq. 4.4).

pi = arg min
pj∈Si

‖pj − cP‖ (4.4)

Note how c0 can be also be used instead of cP to speed up the ellipse compu-

tation, avoiding the circle fitting, although when c0 is positioned near the actual

palm boundary the latter is not partitioned uniformly by the sectors Si thus

returning a less reliable sample of the palm contour.

Moreover, while an higher value of N leads to a more accurate palm region

detection, this also reduces the sectors area, with an higher risk of extracting

edge points from the fingers region than from the palm one.

2
3

4

5

6

7

8

9
10

11

12

1

(a) First pass

2
3

4

5

6

7

8

9
10

11

12

1

(b) Second pass (c) Fitted ellipse

Figure 4.6: Ellipse fitting for palm detection

The extracted points correspond to the corners of a polygon contained inside

the hand contour BeH and that approximates the hand palm, as depicted in Fig.

4.6. The choice of using partially superimposed sectors and to take the minimum

distance inside each sector ensures that the polygon corners are chosen at the

basis of the fingers and that the finger samples are not included in the polygon.

57

4. HAND SEGMENTATION

Once the palm region approximating polygon has been determined, the palm

detector exploit the method of [52] to find the ellipse that better approximates

the polygon in the least-square sense.

Finally, Fig. 4.7 compares the palm detection results of the circle and ellipse

fitting approaches on a few gestures.

(a) Circle fitting

gesture 1

(b) Circle fitting

gesture 2

(c) Circle fitting

gesture 3

(d) Circle fitting

gesture 4

(e) Ellipse fitting

gesture 1

(f) Ellipse fitting

gesture 2

(g) Ellipse fitting

gesture 3

(h) Ellipse fitting

gesture 4

Figure 4.7: Comparison between circle and ellipse fitting algorithms for palm

detection

4.2 Hand orientation estimation

The second main step in the segmentation pipeline of Fig. 4.1 is the estimation of

the hand orientation respect to the acquisition setup, defined by two components:

• hand main direction: the main direction in 3D space of the fingers.

• Palm direction: the direction the palm is pointed to, orthogonal to the

fingers one.

The third direction (axis) of the hand coordinate system will be computed as the

orthogonal axis to the hand and palm directions according to the right-hand rule.

58

4.2 HAND ORIENTATION ESTIMATION

4.2.1 Palm orientation estimation

Palm direction is computed as the normal of a 3D plane π fitted on the point

cloud of the palm samples, following the rationale the actual palm samples lie on

a ratherly flat surface in 3D space.

Let P ⊂ H denote the subset of H corresponding to the palm samples, that

can be easily computed by Eq. 4.5.

P = {Xu,v ∈ H|(u− cpu)2 + (v − cpv)2 ≤ rp
2} (4.5)

where cp = [cpu cpv]
T denotes the coordinates of the center of the circle best

fitting the palm region and rp its radius. Note how in case of ellipse fitting Eq.

4.5 is replaced by Eq. 4.6.

P =

{
Xu,v ∈ H|RE

[(
u−cpu
a

)2 (
v−cpv
b

)2]T
≤ 1

}
(4.6)

where a and b are the semi-axis lengths and RE the rotation matrix repre-

senting the ellipse orientation respect to the image plane coordinate system.

The classic plane fitting approach on P is based on the orthogonal distance re-

gression which in turn exploits the single value decomposition (SVD) for estimat-

ing the plane parameters minimizing the square sum of the orthogonal distances

between the palm points and the estimated plane.

Let π denote a generic plane defined by two parameters: c, a generic point

lying on π and n = [nx ny nz]
T the plane normal. Let also pi ∈ P denote a

generic 3D point of the palm point cloud containing N points. c can be found by

solving Eq. 4.7:

(c,n) = argmin
c,‖n‖=1

N∑
i=1

([pi − c]Tn)2 (4.7)

which it is provable to result in c = pi = 1
N

N∑
i=1

pi, namely c is the center of

mass of the 3D points pi in P . The idea of Eq. 4.7 is that if a point pi actually lies

on plane π, then by definition the vector (pi − c) must be orthogonal to the plane

normal n. The best plane π according to Eq. 4.7 is, thus, the one that minimizes

the average “orthogonality error” defined as the distance from the orthogonality

condition due for a improper estimation of the plane parameters.

59

4. HAND SEGMENTATION

Now, by defining A , [p1 − c p2 − c . . . pN − c] ∈ R3×N , the problem of Eq.

4.7 may be reformulated as:

n = argmin
‖n‖=1

‖ATn‖2
2 (4.8)

Using the singular value decomposition A = UΣV T with U ∈ R3×3 and V ∈
RN×N orthogonal matrices, and Σ ∈ R3×N diagonal matrix with diagonal entries

σ1 ≥ σ2 ≥ σ3 ≥ 0 called singular values. It follows that ‖ATn‖2
2 = ‖V ΣTUTn‖2

2 =

‖ΣTUTn‖2
2 = (σ1y1)2 + (σ2y2)2 + (σ3y3)2 where y = UTn is a unit vector. Thus,

‖ATn‖2
2 is minimized by y = [0 0 1]T or equivalently n = u3 with u3 3rd

column of U . Moreover, the plane fitting error, that is the minimum of the sum

of squared distances ‖ATn‖2
2 for the estimated plane, is simply σ2

3.

It is worth noting that, while the previous plane fitting approach is theoret-

ically correct, in practical situations it is likely to often fail due to the noise in

the acquired depth map. For this reason, the proposed framework encloses the

the plane fitting with SVD in a more robust plane fitting algorithm based on

RANSAC [53], as described in Alg. 4.3.

This enforcement ensures the eventual noisy samples will not lead detrimen-

tal effects to the plane estimation, as they are considered outliers in the plane

model. Ransac requires a proper setting of the value of the outlier threshold TO

that, in the plane model, corresponds to the maximum distance from the plane a

candidate point must have to be considered an inlier. Such distance should not

be lower than the acquisition system accuracy, as the sample noise could lead

Alg. 4.3 to discard several samples for the model estimation.

The plane normal n returned by Alg. 4.3 from now on will be denoted as zp,

referring to the third axis of the local hand coordinate system.

Note how the estimated zp direction may, sometimes, point to the hand dor-

sum instead to the acquisition setup. This ambiguity is easily solvable by invert-

ing the axis direction if the angle formed by zp and the optical axis z is acute,

whenever the palm in the gestures of the employed dictionary is supposed to al-

ways face the acquisition setup. When, instead, the dictionary also accounts for

gestures showing either the palm or the hand dorsum, other information (e.g.,

tracking from the previous frames) is required to solve this ambiguity.

Finally, it is worth noting that P obtained from Eq. 4.5 or Eq. 4.6 may,

indeed, also contain 3D points belonging to the possible folded fingers, as the

palm detection approaches of Sections 4.1.1 and 4.1.2 are based on the hand

binary mask only. For this reason, all the 3D points Xi ∈ P whose signed distance

60

4.2 HAND ORIENTATION ESTIMATION

from the palm plane π is higher than a given threshold Tπ (e.g., Tπ = 20mm)

have to be removed from P as they are likely to belong the the fingers. After the

plane fitting, then, the actual palm points can be extracted from P with Eq. 4.9.

P = P \ {Xi ∈ P|[Xi −CP]Tzp < 0 ∨ [Xi −CP]Tzp > Tπ} (4.9)

Algorithm 4.3 Ransac plane fitting
Input:

P : palm point cloud

n← 3: the minimum number of data values required to fit the plane

k: the maximum number of iterations allowed in the algorithm

TO: a threshold value for determining when a data point fits a model

d: the number of samples required to assert that a model fits well to data

Output:

(c,n): estimated plane reference point in 3D space and normal

it← 0, (cbest,nbest)← φ, besterr ←∞
while it < k do

P3 ← 3 randomly selected points from P
(c,n, err)← fitplaneSVD(P3)

I ← φ

for all p ∈ P \ P3 do

if distancefromplane(p,c,n) < TO then

I ← I ∪ {p}
end if

end for

if |I| > d then

(cI ,nI , errI)← fitplaneSVD(I)

if errI < err then

cbest ← cI

nbest ← nI

besterr ← errI

end if

end if it← it+ 1

end while

return (cbest, nbest)

61

4. HAND SEGMENTATION

4.2.2 Hand direction estimation

In this work the hand direction, denoted by xh, is estimated as the first component

of Principal Component Analysis (PCA) applied to the 3D points in H, which

roughly corresponds to the vector going from the wrist to the fingertips.

Note that the direction computed in this way is not very precise and depends

on the position of the fingers in the performed gesture. It gives, however, a general

indication of the hand orientation. Moreover, the estimated xh could, instead,

be directed from the fingers to the forearm, thus leading to wrong assumptions

in the next steps of the recognition pipeline.

Again, as for the correction of palm direction, tracking information from pre-

vious frames (if available) can be exploited to reliably assert the correctness of the

estimated hand orientation. Whenever this kind of information is not available,

further assumptions on the gesture set may be used as criteria. For example,

if fingers are never expected to point downwards, an estimated axis xh pointing

to the ground surely means the method estimated the right orientation but the

wrong direction.

In order to build a 3D coordinate system centered on the palm centroid CP

previously defined, the axis xh is then projected on the estimated palm plane π

(Eq. 4.10). This operation compensates for the possible orientation error intro-

duced by the partially folded fingers, as their 3D points are taken into account

for the xh computation.

xp = xh − [xh
Tzp]zp (4.10)

with xp the projection of xh on π. Note that xp and zp are orthogonal by

definition. The missing axis yp is obtained by the cross-product of zp and xp

thus forming a right-handed reference system (xp,yp, zp).

Finally, note also that CP does not necessary lie on π, e.g. it could lie on a

finger folded over the palm. In order to place CP closer to the actual hand center,

the point is projected on π by Eq. 4.10. The complete hand coordinate system

is depicted in Fig. 4.8.

4.3 Hand segmentation

The proposed framework has, so far, gathered all the necessary information re-

quired for the hand partitioning in its relevant parts: P , recalling it was defined

62

4.3 HAND SEGMENTATION

C
P

y
P

x
P

z
P

Figure 4.8: Estimated hand local reference system (xp,yp, zp)

as the subset of the hand samples in H belonging to the palm only, was com-

puted by Eq. 4.5 or Eq. 4.6. It follows that H \ P is the set of hand samples

belonging either to the fingers or to the first part of the forearm. Knowing the

palm coordinate system of Fig. 4.8 and the palm parameters is now enough to

discriminate the finger samples from the forearm ones.

Assume, for clarity sake, the palm has been detected by the circle fitting algo-

rithm of Section 4.1.1, with rp the estimated palm radius and CP the estimated

palm center projected on the palm plane π. Let XP
i = [xpi ypi zpi]

T denote

the coordinates of a generic hand sample Xi ∈ H expressed on the palm 3D

coordinate system, obtainable by the simple transform in Eq. 4.11.

XP
i = RXi + t (4.11)

where R denotes the rotation matrix between the palm and the world (depth

camera) coordinate systems and t their translation. Note how t simply corre-

sponds to the palm centroid CP , and R can be directly built from the palm

coordinate system axis (R = [xp yp zp]).

Let now RP denote the palm radius in the 3D space, obtained by the back-

63

4. HAND SEGMENTATION

projection of rp (Eq. 3.2).It is possible to assume that XP
i belongs to the

wrist/forearm point cloud W whenever xpi < −RP (recall that the hand x axis

points from the palm center to the fingertips as shown in Fig. 4.8).

Note how the estimated radius RP is not accurate and may lead either to some

palm points removal or to retain some wrist points. A more accurate approach

consists in performing the wrist removal in the hand depth mask BH analogously

to the first method. Firstly PCA is performed on BH to estimate the hand

direction in the image plane and, jointly to the palm centroid cp, to define an

hand 2D local coordinate system. Then all the hand point coordinates in BH are

expressed in the 2D hand coordinate system and, this time, all the transformed

points with uP value higher than rp are considered to belong to the forearm. The

wrist removal accuracy is higher since the detected palm in BH is rather reliable.

In case of ellipse fitting, rp has to be replaced by the up value of the intersection

point of the ellipse with the negative semi-up-axis.

The novel depth mask BA obtained from the arm removal in BH is at the base

of several feature extraction algorithms of Chapter 5.

(a) Detected hand binary

mask prior arm removal

(b) Detected palm and

hand coordinate system

(c) Detected hand binary

mask after arm removal

Figure 4.9: Example of arm removal on a binary mask

After computing W , the finger samples set F may be obtained again with a

simple binary set operation, as reported in Eq. 4.12.

F = H \ (P ∪W) (4.12)

Finally, it is useful to define, for feature extraction purposes, another sample

set HP made by the union of the palm samples with the finger ones (Eq. 4.13).

HP = H \W = P ∪ F (4.13)

64

Chapter 5

Feature extraction

Current chapter describes with an higher level of detail what features the proposed

framework allows the extract from the segmented data of Chapter 4 and how this

task is performed.

In this context, the features describe geometrical, textural or other kind of

hand properties that are quantifiable and robust, that is, they must assume similar

values in equal conditions. For example, if a feature describes the length of a finger

in a particular gesture, this value must not change sensibly whenever the user

performs the same gesture in different instants.

It is important to recall that, while the previous steps in the gesture recog-

nition pipeline are rather common among the approaches in literature of Section

1.2, the selected feature sets and their extraction algorithms are generally peculiar

of the different methods. Different descriptors extracted from the same data may

lead to noticeable changes in the recognition accuracy of a given machine-learning

approach, as will be shown by the results of Chapter 7.

For this reason, most of the research in this field has been devoted to the

discovery of new hand features to extract and the improvement of the existing

ones. In particular, this thesis shows how depth information allows the extraction

of robust features describing the hand 3D geometry and how certain feature

extraction algorithms in literature designed for the recognition of objects different

from hands can be adapted for the gesture recognition purposes.

The proposed framework implements several extraction algorithms for fea-

ture extraction belonging to two families: geometrical features, describing 2D or

3D properties of the fingers or the palm, and color features, describing textural

properties of the segmented hand from the background.

Geometrical features are either extracted from the acquired depth map or the

3D points computed by its back-projection (Eq. 3.2), and include:

65

5. FEATURE EXTRACTION

• Hand contour distances from the palm center: describe the Euclidean

distances of the fingertips from the estimated palm center CP . They may

be extracted from the 3D points of the finger set F or associated to the

hand boundary in the binary depth mask BA computed from the set HP .

• Hand contour distances from the palm plane: describe the Euclidean

distances of the fingertips from the estimated palm plane π. They are

extracted from the 3D points of the finger set F .

• Hand contour similarities: compare quantitatively the hand contour of

the performed gesture with the one of each gesture template in the selected

gesture dictionary in order to detect the most similar.

• Hand contour curvatures: aim at cataloging each gesture according to

the number of the convexities and concavities detected on the hand contour

in the binary depth mask built from the set HP .

• Palm morphology features: describe the shape of the palm region and

help to state whether each finger is raised or folded on the palm according

to the flatness of the palm surface.

• Convex hull features: quantify several differences between the hand

shape in the depth mask BA and the related convex hull. They include

the ratios between the area or the perimeter of the hand shape and the one

of its convex hull, the number of the convex hull vertexes and the number

and the sizes of the regions between the fingers.

• Fingertip orientations: measure the angle formed by the segments join-

ing each detected fingertip Fj, j = 1, . . . , 5 projected on the palm plane π

with the palm center CP and the hand direction xp.

• Fingertip positions: characterize a gesture according to the positions

of each detected fingertip in the 3D space, expressed in the local hand

coordinate system (xp,yp, zp) pinned on CP .

It is worth noting that the previously described features require the presence

of a range camera in the acquisition setup, since they are extracted from a depth

map. Another set of geometrical features that can be extracted comes from the

data provided by the Leap Motion software and, differently from the previous

case, it does not require the processing of a depth map. The features include:

66

• Fingertip distances from the palm center or the palm plane: de-

scribe the same properties of the related features extracted from the hand

depth map, but exploiting the 3D fingertip positions returned by the Leap

Motion APIs.

• Fingertip orientations and positions: describe the same properties of

the related features extracted from the hand depth map, but exploiting the

3D fingertip positions returned by the Leap Motion APIs.

• Inter fingertip distances: measured between pairs of detected fingertips,

help to discriminate gestures showing the same number of raised fingers and

similar finger lengths but a different finger arrangement.

• Hand radius: exploits the hand radius returned by the Leap Motion APIs

to discriminate gestures only differing for the closeness status of the fingers.

• Number of detected fingers: prevent the misclassification of the per-

formed gesture with another one with a different number of raised fingers.

In case of an acquisition setup made by a Leap Motion and a range camera,

the proposed framework also offers a more performant set of algorithms for the

extraction of most geometrical feature sets exploiting both depth information and

the Leap Motion data.

Finally, the considered textural features are:

• Histogram of oriented gradients (HOG): based on the idea that the

local shape around an hand point can be described rather well by the dis-

tribution of local intensity gradients.

• Local phase quantization: characterizes the hand shape with the distri-

bution of the local phase of the Fourier transform around each hand point.

• Local ternary patterns: encode the differences between each hand pixel

and the surrounding ones within a limited size window.

The proposed color features can be extracted either from the acquired color

image or from the depth map D = {du,v} represented as a grayscale image IG =

{iGu,v} with the simple transform of Eq. 5.1:

iGu,v = ImaxG

du,v −Dmin

Dmax −Dmin
(5.1)

67

5. FEATURE EXTRACTION

where ImaxG denotes the maximum gray value (e.g., ImaxG = 1 for grayscale

image pixels expressed with floating point values or ImaxG = 255 for grayscale

image pixels expressed with integer values) and Dmin, Dmax the minimum and

maximum measurable depth values by the employed range camera.

5.1 Depth data features

This section describes with an high level of detail all the geometrical features

listed in the beginning of the current chapter.

5.1.1 Hand contour distances from the palm center

Hand contour distances from the palm center belong to the family of features

describing the performed gesture on the basis of the hand shape variations. The

extraction of this feature set starts from the construction of a plot representing

the maximum distances of the edge samples in F from the hand centroid CP ,

under the rationale that the shape of the plot is characteristic for each different

gesture [54, 55, 56].

The method extends the main idea of [11] by exploiting Euclidean distances

in the 3D space instead of the pixel distances in the image plane, thus preventing

the loss of information due to the projective geometry of pinhole model (Eq. 2.1).

Let RP denote, again, the computed 3D radius in Section 4.3 for the arm

removal. For each 3D point Xi ∈ F , the algorithm computes its normalized

distance from the centroid d(Xi) and the angle θ(Xi) between the vector Xπ
i −CP

and axis xp on the palm plane π, according to Eq. 5.2.

d(Xi) =

{
‖Xi−CP‖−RP

dmax
if ‖Xi −CP‖ −RP ≥ 0

0 otherwise

θ(Xi) = ∠(Xπ
i −CP) = 2 arctan

(√
x2
p + y2

p − yp
xp

) (5.2)

where Xπ
i denotes the projection of Xi on the plane π, dmax is the maximum

distance from a generic finger sample Xi and the hand centroid CP (which usually

corresponds to the length of the mean finger), and xp, yp, zp are the coordinates

of Xπ
i expressed in the hand coordinate system. Note how the arc tangent in Eq.

5.2 sometimes used in high precision computation and is defined for the whole

trigonometric circle.

68

5.1 DEPTH DATA FEATURES

The range [0, 360) of the possible values for θ(Xi) is then sampled with a

uniform quantization step ∆q into a discrete set of values {θq1, . . . , θ
q
M} with M =

b360/∆qc (e.g. in the results of Chapter 7 ∆q has been set to 2◦). Each θqj thus

represents the angular sector Iqj = [θqj −
∆q

2
, θqj + ∆q

2
]. The quantized value of

θ(Xi), denoted by θq(Xi), is obtained by Eq. 5.3.

θq(Xi) =

⌊
θ(Xi)

∆q

⌋
+

∆q

2
(5.3)

Let now X q
j denote the set of points Xi ∈ F whose quantized angle θq(Xi)

value is θqj . The feature extraction algorithm builds a plot L(θq) reporting for each

angular value θqj the maximum distance d(Xi) of the points within X q
j , namely

the points “falling” in the same angular sector Iqj (Eq. 5.4).

L(θqj) = max
Xi∈X qj

d(Xi) (5.4)

L(θq) is then smoothed by the convolution with a gaussian kernel of short

support in order to minimize the detrimental effects of the finger samples noise

and favor the following steps in the feature extraction pipeline. An example of

generated plots by Eq. 5.4 for a few gestures is shown in Fig. 5.1.

Although the shape of L(θq) characterizes the performed gesture and the

scaling by dmax in Eq. 5.2 potentially allows the comparison of plots referred

to gestures of the same user or different users, L(θq) cannot be directly used

as a feature vector describing the fingers outline in the 3D space. The reason

is the strong dependence of L(θq) from the hand orientation that, besides being

ratherly inaccurate, does not allow to map the angular sectors to the same fingers

in different gestures or even in different repetitions of the same gesture.

For this reason, the proposed feature extraction algorithm compensates the

systematic error in the hand main direction estimation by aligning L(θq) with a

reference plot Lrg(θq) generated in the calibration phase for each gesture g of the

dictionary.

The alignment of L(θq) with a gesture template Lrg(θq) consists in looking for

the translational shift (that is actually a modulus shift) φrg of L(θq) maximizing

the value of a similarity metric ρ(·) between L(θq + φrg) and Lrg(θq) (Eq. 5.5).

φrg = argmax
φ

ρ
(
L(θq + φ), Lrg(θq)

)
(5.5)

69

5. FEATURE EXTRACTION

(a) G1 (b) G2 (c) G3

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(d) G1 repetition 1

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(e) G2 repetition 1

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(f) G3 repetition 1

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(g) G1 repetition 2

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(h) G2 repetition 2

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(i) G3 repetition 2

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(j) G1 repetition 3

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(k) G2 repetition 3

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
o
rm

a
liz

e
d
 d

is
ta

n
c
e

(l) G3 repetition 3

Figure 5.1: Comparison of maximum distances from the palm center

70

5.1 DEPTH DATA FEATURES

A common robust metric employed in pattern recognition for this purpose

is the cross-correlation between L(θq) and Lrg(θq). The proposed framework ex-

ploits, indeed, a variation named zero-mean normalized cross-correlation (ZNCC)

(Eq. 5.6) due to its capability of correctly matching L(θq) and Lrg(θq) when their

maximum amplitudes are different. The classic definition of cross-correlation and

other variations like the sum of squared distances (SSD) reported, in fact, very

low performance because of the sensibility to the plot amplitude in the first case

and the amplification of noise in the second.

ρz(L(θq), L
r
g(θq)) =

b360/∆qc∑
θq=0

(Lrg(θq)− Lrg(θq))(L(θq)− L(θq))√
b360/∆qc∑
θq=0

(Lrg(θq)− Lrg(θq))2
b360/∆qc∑
θq=0

(L(θq)− Lrg(θq))2

(5.6)

where L(θq) and Lrg(θq) denote the arithmetic means of the two plots.

The implemented alignment procedure consists, then, in looking for the trans-

lational shift maximizing the ZNCC between the translated version of L(θq) and

the reference plot Lrg(θq).

Recall from Section 4.2.1 that, depending on the application of gesture recog-

nition, the palm orientation is always assumed to point towards the acquisition

setup or, conversely, the dictionary either accounts for gestures with palm or dor-

sum facing it. Furthermore, a more flexible application may also allow the user to

perform a selected gesture either with the palm or the dorsum facing the acquisi-

tion setup. While in the first case the generated distance plots implicitly induce

a finger ordering, in the remaining cases the finger ordering in the plots depends

on the zp axis direction. It follows that in certain situations a plot aligned with

its template presents a lower similarity value respect to the same plot aligned

with the template of another gesture only because the aligned plot is “flipped”

respect to the template abscissa.

In order to solve this problem, Eq. 5.7 extends Eq. 5.5 considering the

possibility of flipping L(θq) before the alignment with a given gesture template

Lrg(θq).

φrg = argmax
φ

ρz
(
L(θq + φ), Lrg(θq)

)
φr,revg = argmax

φ
ρz
(
L(−θq + φ), Lrg(θq)

) (5.7)

71

5. FEATURE EXTRACTION

It is worth noting that φrg may be different not only among each gesture

template, but also among repetitions of the same gesture in different instants, thus

compensating the limited accuracy of the direction computed by the PCA. The

alignment procedure solves one of the main issues related to the direct application

of the approach of [11].

The distance plot L(θq) aligned to the gesture template Lrg(θq), denoted by

Lg(θq), is then computed with Eq. 5.8.

Lg(θq) =

{
L(θq + φrg) if ρz

(
L(θq + φrg), L

r
g(θq)

)
≥ ρz

(
L(−θq + φr,revg), Lrg(θq)

)
L(−θq + φr,revg) otherwise

(5.8)

Let now G be the number of different gestures in the considered dictionary.

Let also Irg,j(θq) = θming,j < θq < θmaxg,j for j ∈ {1, .., 5} denote the angular interval

associated to the j-th raised finger in each gesture template g ∈ {1, .., G}. The

3D distances descriptor is made by a juxtaposition of the aligned distance plot

peaks within the previously defined angular regions in each gesture template,

namely, the feature value f lg,j associated to finger j in gesture g corresponds

to the maximum of the aligned scaled distance plot within the angular region

Irg,j(θq).

f lg,j = max
Irg,j(θq)

Lg(θq) (5.9)

An example of extracted distance 3D features from the alignment of the com-

puted L(θq) with a given gesture template Lrg(θq) is shown in Fig. 5.2.

Note how the descriptor can contain up to G × 5 features, although their

actual number is smaller since not all the fingers are raised in each gesture and

the raised finger regions are the only ones of interest. The distance features are

collected into feature vector Fl
1.

A more recent version of this descriptor avoids the alignment of the distance

plot L(θq) with each gesture template Lrg(θq), by exploiting the outline of the

hand contour on the range camera image plane and a proper ordering of the

hand contour points [57].

Let BA denote the binary mask built on the set HP of Eq. 4.13, that is, the

binary mask only selecting the hand points after the segmentation of Chapter 4

and the wrist removal. Let also ∂HP denote the frontier ofHP , namely the subset

72

5.1 DEPTH DATA FEATURES

−80 −60 −40 −20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

Gesture template
Aligned gesture

fg,1 fg,2

Figure 5.2: Example of extracted peaks from the alignment with a gesture tem-

plate

of the samples of HP corresponding to the pixels of the BA contour computed

with a state-of-art edge detector (e.g., Canny [51]).

The extraction of the current descriptor starts by constructing a mono-dimensional

representation of the normalized distances of the 3D points Pi ∈ ∂HP , i =

1, . . . , |∂HP | from the estimated hand centroid CP (Eq. 5.10).

L(pi) =
‖Pi −CP‖

Lmax
(5.10)

where pi denotes the projection of the hand contour point Pi on the image

plane of the range camera and Lmax the length of the longest finger (e.g., mean

finger) in order to scale the plot values in the range [0, 1].

It is worth noting that the plot generated from Eq. 5.10 cannot be directly

used as a distance descriptor since the contour pixels pi do not refer to the same

hand contour points for different gesture repetitions. Furthermore, the different

lengths of the hand contour in each frame would lead to the creation of varying

size feature vectors, which are unsuitable for classification purposes.

In order to reestablish an ordering among the hand contour pixels, the algo-

rithm first exploits the main hand direction in BA and the centroid cp to rectify

BA, namely to rotate the binary mask for aligning the main hand direction with

the v axis of the image plane. Then, the method indexes the hand contour pixels

starting from the one lying on intersection of the hand contour with the rectified

73

5. FEATURE EXTRACTION

hand main axis, roughly corresponding to the the center of the wrist. An example

of rectification is reported in Fig. 5.3.

(a) Original hand mask (b) Rectified hand mask

Figure 5.3: Example of depth mask rectification and hand contour pixels indexing

Let pj, j = 1, . . . , N denote the renumbered hand contour pixels and Pj the

associated 3D points by back-projection (Eq. 3.2). Analogously to Eq. 5.2, the

descriptor now computes an hand contour plot with Eq. 5.10 and smooths it with

a Gaussian filtering. Finally, the plot is sampled uniformly in order to always

retain the same number M = N/K of distance values, where K divisor of N

denotes the quantization step.

Fig. 5.4 shows an example of generated plot by the previously described

algorithm. Note how the plot, again, characterizes the performed gesture.

The returned feature descriptor, this time, is directly the plot resulting from

the previous processing, and not the juxtaposition of a few extracted distance

peaks from the plot alignment with each gesture template. The lack of need

for a template alignment in this case is due to the rectification and edge pixels

indexing described in the previous rows, but the new feature vector of length

M , denoted by Fl
2, is usually several magnitude orders longer than the feature

vectors generated by previous version of the descriptor when the cardinality of

the gesture dictionary is rather low.

74

5.1 DEPTH DATA FEATURES

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P1−G13−R1

Contour pixel #

N
or

m
al

iz
ed

 d
is

ta
n
c
e

Figure 5.4: Example of generated distance plot from the hand contour points

5.1.2 Hand contour distances from the palm plane

Analogously to the descriptor of Section 5.1.1, gestures may also be characterized

by the distances of the finger samples from the palm plane π [54, 56]. The

rationale is that the considered gesture dictionary may contain gestures sharing

similar distances of the fingertips from the palm center CP but different fingertip

positions in the 3D space, a property not captured by the descriptor of Section

5.1.1.

Let e(Xi) denote the signed distance of the 3D point Xi ∈ F from the palm

plane π, computed by Eq. 5.11.

e(Xi) = sgn ((Xi −Xπ
i) · zp) ‖Xi −Xπ

i ‖ (5.11)

where Xπ
i denotes the projection of Xi on the palm plane π. The sign of e(Xi)

accounts for the fact that Xi can belong to any of the two semi-spaces defined by

π, that is, Xi can either be on the front or behind π.

75

5. FEATURE EXTRACTION

The current feature extraction consists in a simple adaption of the algorithm

described in Section 5.1.1: first, a plot E(θq) representing the signed distance of

each sample Xi in F from the palm plane π is built, analogously to the distance

plot of Eq. 5.4. Then, E(θq) is aligned to each gesture template and a set of

fingertip distances from the palm plane is extracted from the selected regions

within the aligned plots.

E(θqj) =
1

Lmax

max
Xi∈X qj

e(Xi) if

∣∣∣∣∣max
Xi∈X qj

e(Xi)

∣∣∣∣∣ >
∣∣∣∣∣ min
Xi∈X qj

e(Xi)

∣∣∣∣∣
min
Xi∈X qj

e(Xi) otherwise
(5.12)

where θqj denotes the sampled angle with the same quantization step used for

the distance descriptor of Section 5.1.1 and Lmax the longest finger length as scale

factor. Fig. 5.5 shows an example of the elevation plot for a few gestures.

It is worth noting that, while the distance plots of Fig. 5.1 are rather robust

respect to the same gesture repetitions, the plots generated by Eq. 5.12 are

strongly affected by the reliability of the plane fitting and may thus sensibly

differ also in case of repetitions of the same gesture.

For this reason, the current descriptor avoids the alignment of E(θq) with each

gesture template Er
g(θq) and relies on the angular shifts previously computed in

Section 5.1.1 for the alignment of L(θq) with the respective gesture templates

Lrg(θq).

Let Eg(θq) denote the plot E(θq) aligned with the g-th gesture template by

a circular shift of φrg. The distance features are then computed according to Eq.

5.13.

f eg,j =

max
Irg,j(θq)

Eg(θq) if

∣∣∣∣∣ max
Irg,j(θq)

Eg(θq)

∣∣∣∣∣ >
∣∣∣∣∣ min
Irg,j(θq)

Eg(θq)

∣∣∣∣∣
min
Irg,j(θq)

Eg(θq) otherwise
(5.13)

Finally, since the computation of f eg,j is analogous to the one of f lg,j (Eq. 5.9),

the feature vector Fe made by the juxtaposition of the peaks f eg,j extracted from

each alignment of Eg(θq) with all the gesture templates has the same structure

and number of elements of the vector Fl
1 of Section 5.1.1.

76

5.1 DEPTH DATA FEATURES

(a) G1 (b) G2 (c) G3

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(d) G1 repetition 1

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(e) G2 repetition 1

−100 0 100
−1

−0.5

0

0.5

1

θ[°]
N

or
m

al
iz

ed
 d

is
ta

nc
e

(f) G3 repetition 1

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(g) G1 repetition 2

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(h) G2 repetition 2

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(i) G3 repetition 2

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(j) G1 repetition 3

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(k) G2 repetition 3

−100 0 100
−1

−0.5

0

0.5

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(l) G3 repetition 3

Figure 5.5: Comparison of maximum distances from the palm plane

77

5. FEATURE EXTRACTION

5.1.3 Hand contour similarities

This feature set, directly extracted from the alignment data generated in Section

5.1.1, aims at discriminating the performed gesture according to the similarities

of the hand outline respect to each gesture template [57, 58, 54].

Let L(θq) denote again the hand contour distances from the palm center plot

of the performed gesture, Lrg(θq) the reference distance plot for gesture g and

ρg,maxz the maximum correlation (ZNCC) value obtained from the alignment (Eq.

5.7).

The feature vector for this descriptor, denoted by Fz, is made by the juxta-

position of the maximum correlation ρg,maxz for the alignment of L(θq) with every

gesture template Lrg(θq), analogously to the feature vectors of Sections 5.1.1 and

5.1.2. The rationale behind Fz is that, ideally, the alignment of L(θq) with the

correct gesture template Lrg(θq) returns the maximum correlation value among

the ones returned by the alignment with the other templates. Fig. 5.6 shows

an example of how the correlation value varies for the alignment of L(θq) with

different gesture templates Lrg(θq).

An important aspect of this feature extraction method is the similarity met-

ric employed in Section 5.1.1, which both strongly affects the reliability of the

gesture plot alignments and the maximum correlation value. While the chosen of

zero-mean normalized cross-correlation (ZNCC) between the distance plots leads

to better alignments, since this measure is less affected by the varying sizes of

different hands, at the same time it may also be a weak point. ZNCC, in facts,

sometimes is not able to discriminate two plots with a similar outline but different

amplitudes: for example, a plot representing a gesture with a raised index finger

only may have an high correlation value with another plot representing a gesture

with a raised pinky finger only.

This ambiguity can be often removed by using alternative similarity measure-

ment functions in place of or together with the ZNCC. A good alternative is the

sum of squared differences (SSD) between the two aligned plots (Eq. 5.14).

ρs(L(θq), L
r
g(θq), φ) =

θMq∑
θ1q

[
Lrg(θq)− L

(
(θq + φ) mod

⌊
2π
∆q

⌋)]2

S
(5.14)

where S = b360/∆qc is a scaling factor used to shift the correlation values in

the range [0, 1].

78

5.1 DEPTH DATA FEATURES

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

template
gesture

(a) Alignment 1: ρ = 0.75

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

template
gesture

(b) Alignment 2: ρ = 0.99

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

template
gesture

(c) Alignment 3: ρ = 0.8

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

template
gesture

(d) Alignment 4: ρ = 0.7

Figure 5.6: Comparison of the maximum correlation value for a few alignments

The SSD in this framework can be used in two different ways:

1. as a replacement of the ZNCC in Eq. 5.7.

2. As an integration of the ZNCC in order to overcome its limits.

While in the first case the SSD is best suited for the construction of a stand-

alone feature vector Fs, with usually worse performance than the ZNCC, the

second option may be used, instead, to penalize alignments with templates with

a different number of raised fingers or with templates with the same outline but

different finger lengths. The extended descriptor Fρ in this case is then made by

juxtaposing Fz and Fs.

79

5. FEATURE EXTRACTION

5.1.4 Hand contour curvature

Hand contour curvature is another powerful descriptor of the hand shape which,

alone, proved to be able to recognize the gestures contained in the datasets of

Chapter 7 with a dramatically high accuracy [57, 58, 54, 55, 56]. This feature

set, extracted on the hand depth mask BA after the arm removal of Section 4.3,

discriminates the different gestures on the basis of the detected concavities and

convexities in the hand outline. The clenched hand, for example, is characterized

by a overall convex shape, while the completely open hand (five co-planar fingers)

is characterized by the concavities between consecutive fingers and the convexity

around each fingertip.

Let E be a planar curve representing the hand contour in BA. Let also P ∈ E
be a generic point of E . The curvature of E in P is a measure of how quickly

the tangent line in P changes when moving to another point in its neighborhood.

The curvature of a straight line is then, by definition, always 0 as the tangent over

the line is constant, while the one of a circle with radius r is defined as κ , 1/r.

κ(P), that is, the curvature of E in P may then be geometrically defined as the

the curvature of the unique circle that better approximates E around P , called

the osculating circle. A pictorial example of this definition is shown in Fig. 5.7.

E

P

C

r

Figure 5.7: Osculating circle for E in P with center of curvature C and radius r

80

5.1 DEPTH DATA FEATURES

The previous classic definition of curvature may not, indeed, be exploited for

the extraction of the current descriptor, as it requires a continuous parametric

curve E and the usage of differential operators [59].

Hand contour in BA is, instead, a discrete and non parametric curve described

by the coordinates of the hand contour pixels. Moreover, since depth data coming

from real-time range cameras are usually rather noisy, it is better to avoid differ-

ential operators for curvature description relying, instead, on integral invariants

[60, 61].

The curvature descriptor presented in current section is inspired by the anal-

ogous 2D descriptor of [61] for leaf classification and improves it by removing its

dependence on the object distance from the acquisition setup.

Consider a set of S circular masks Ms(pi), s = 1, . . . , S of radius rs centered

on each edge pixel pi ∈ ∂BA, where ∂BA denotes the hand contour extracted

from BA with edge detection techniques. For example, the tests of Chapter 7

used S = 25 and rs varying from 0.5cm to 5cm, where the radius rs corresponds

to the scale level. Note how circular masks were chosen due to their rotational

invariance.

Let C(pi, s) denote the curvature in pi at scale level s, expressed as the ratio

of the number of samples of BA within the mask Ms(pi) over Ms(pi) size, namely:

C(pi, s) =

∑
Ms(pi)

bAu,v

|Ms(pi)|
(5.15)

where bAu,v = 1 if the depth sample with coordinates (u, v) is selected and

bAu,v = 0 in the opposite case, and |Ms(pi)| denoting the cardinality of Ms(pi).

C(pi, s) is computed for each hand contour and mask scale s (Fig. 5.8).

Differently from [61] and other approaches, the radius rs is defined in metrical

units and is then converted by Eq. 5.16 to the corresponding pixel size on the

basis of the depth of the hand centroid CP . This expedient makes the descriptor

invariant to the different sizes of the hand in BA due to the projection on the

range camera image plane of the hand moving in the 3D space.

rs =

 Rs

2zCP
tan

(
πfH
360

)
DW

+ 1
2

 (5.16)

where Rs denotes the radius of mask Ms expressed in metrical units, zCP the

depth of the estimated palm centroid, fH and DW the horizontal field of view

81

5. FEATURE EXTRACTION

p
i

p
j

p
k

p
i

p
l

Figure 5.8: Example of curvature extraction with masks of varying size

and the depth map width of the employed range camera.

Although circular masks lead to extremely high recognition accuracies and

are rotational invariant, the computational complexity of the curvature descrip-

tor extraction increases dramatically with the number and size of the employed

masks.

A possible way of reducing the computational load without affecting the de-

scriptor accuracy consists in using an incremental approach exploiting dynamic

programming. A simple look-up-table (LUT) indexed by the hand contour pixels,

can, in facts, allow to reuse the curvature value computed for the previous mask

size requiring only to evaluate the contribution of the pixels added by the cur-

rent level mask. Note how the computational complexity of this improvement,

although ways lower than the one of the naive approach, still depends on the

employed mask sizes.

82

5.1 DEPTH DATA FEATURES

Another wiser variation of the basic approach, implemented in the proposed

framework, requires only nearly one tenth of the processing time required by the

naive method and introduces a neglectable loss in the descriptor accuracy. The

main idea consists in relaxing the rotational invariance requirement by replac-

ing the circular masks with square ones, and exploiting the summed area table

algorithm, better known as integral image [8].

Let I = {iu,v} denote the integral image of the depth mask BA, considered

w.l.o.g. a binary image where the logical value “false” corresponds to 0 (black)

and “true” to 1 or 255 (white). I is defined as:

iu,v =
v∑
y=0

u∑
x=0

bAx,y (5.17)

Each pixel value in I is, then, the sum of all the pixels above and on the left of

the pixel with coordinates (u, v) inclusive. Note how I can be computed in linear

time with dynamic programming. An example of depth mask and the related

integral image is shown in Fig. 5.9.

(a) Binary depth mask (b) Associated integral image

Figure 5.9: Example of binary depth mask and related integral image

The peculiarity of integral images is that the sum of the pixels over the rect-

angle spanned by A = (u0, v0), B = (u0, v1), C = (u1, v0), D = (u1, v1) with

u0 ≤ u1 and v0 ≤ v1 in BA, only requires a constant time if I is exploited (Eq.

5.18).

83

5. FEATURE EXTRACTION

u=u1∑
u=u0

v=v1∑
v=v0

bAu,v = D + A−B − C (5.18)

By setting the logical value “false” to 0 and “true” to 1 in BA, it is straight-

forward to see that if A, B, C and D are the vertices of a square mask Ms(pi)

centered on pi in BA, Eq. 5.18 exactly returns the number of hand samples within

Ms(pi). Since the cardinality of Ms(pi) is known a priory, it is also known the

density of hand points within Ms(pi), namely the curvature value C(pi, s) around

pi for the mask scale s defined previously.

The rotational invariance relaxation introduced by the usage of square masks

only leads to a neglectable loss in recognition accuracy in front of a dramatic

performance boost, thus making the integral version of the curvature descriptor

suitable for real-time gesture recognition.

Now, both for circular and square masks, the values of C(pi, s) range from

0 (extremely convex shape) to 1 (extremely concave shape), with C(pi, s) = 0.5

corresponding to the curvature of a straight edge. The [0, 1] interval is quantized

into N bins of equal size b1, . . . , bN (e.g., N = 10 for the tests of Chapter 7). Let

now Eq. 5.19 define the set Cj,s of the hand contour pixels pi having a curvature

value C(pi, s) falling into the bin bj for a curvature mask of radius rs.

Cj,s =

{
pi ∈ ∂BA|

j − 1

N
≤ C(pi, s) <

j

N

}
(5.19)

For each radius value rs and for each bin bj the chosen curvature feature,

denoted by f cj,s, is the cardinality of the set Cj,s normalized by the contour length

|∂BA| (Eq. 5.20).

f cj,s =
|Cj,s|
|∂BA|

(5.20)

All the curvature features f cj,s are collected in a feature vector Fc with N × S
entries, ordered by increasing values of indexes j and s. Thanks to the normal-

ization in Eq. 5.20, the curvature features f cj,s only take values in the same range

[0, 1] shared by several other descriptors for comparison purposes.

By reshaping Fc into a matrix with S rows and N columns and by considering

each f cj,s as the intensity value of the pixel with coordinates (j, s) in a grayscale

image, it is possible to graphically visualize the overall curvature descriptor Fc

as exemplified in Fig. 5.10.

84

5.1 DEPTH DATA FEATURES

(a) G1 (b) G2 (c) G3

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(d) G1 repetition 1

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(e) G2 repetition 1

Curvature
S

c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(f) G3 repetition 1

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(g) G1 repetition 2

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(h) G2 repetition 2

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(i) G3 repetition 2

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(j) G1 repetition 3

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(k) G2 repetition 3

Curvature

S
c
a
le

 l
e
v
e
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

(l) G3 repetition 3

Figure 5.10: Comparison of the curvature descriptor for three different gestures

85

5. FEATURE EXTRACTION

5.1.5 Palm morphology features

Palm morphology features are extracted from the point cloud of the palm samples

in P in order to detect which fingers are likely to be folded over the palm, on the

basis of the deformation the palm shape undergoes in the corresponding region

when the related finger is folded or is raised [54, 56]. It is worth noting that

the samples corresponding to the fingers folded over the palm belong to P and

are thus not considered by feature sets describing the hand contour, but provide

relevant information on the fingers opening status.

Moreover, the folded fingers may lead to failure the plane fitting on P (Alg.

4.3) since the assumption of flatness of P is no longer valid. Palm detection, in

facts, has no preliminary information on possible folded fingers before fitting the

plane and can not exclude the finger samples from the computation.

The main idea of this descriptor consists in detecting the palm regions where

each finger can fold and compute for each of them the average distances from the

palm plane of the samples within the region. The rationale is that the average

sample distance for regions not occupied by a folded finger tends to 0, since the

points almost lie on the palm plane, while for regions occupied by folded fingers

the average distance is much higher as the samples are sensibly detached from

the palm plane.

Let up, vp and cp denote the hand local coordinate system on the range

camera image plane computed in Section 4.2.2. The feature extraction procedure

starts by partitioning P in six subsets: one subset (PL) only contains actual

palm samples, located in the lower half of P (Eq. 5.21), and the remaining ones,

denoted by Aj, j = 1, .., 5 contain the samples of P which may either correspond

to a folded finger or the upper palm region where the finger may fold.

PL = {Xi ∈ P|up > 0} (5.21)

with up the first coordinate value of the 3D point Xi projected in pi on the

range camera image plane and expressed in the palm coordinate system. An

example of partitioning is shown in Fig. 5.11.

The proposed framework accounts for two possible partitioning of P :

• Fixed width intervals: fingers are assumed to have the same uniform

width, or equivalently the same angular extension in L(θq) (Eq. 5.4).

• Variable width intervals: fingers may have different widths or angular

extensions in L(θq).

86

5.1 DEPTH DATA FEATURES

(a) Partition of a circular palm (b) Partition of an elliptic palm

Figure 5.11: Example of palm region partitioning

Let Xi ∈ P denote a generic palm point in the 3D space and pi its projection

on the range camera image plane. Let also rp be the palm radius estimated in

Section 4.1. Xi is now assigned to a given finger j = 1, . . . , 5 according to what

range the value of its second coordinate in the hand 2D local coordinate system

(vp) pi falls in. The assignment procedure is the same for both fixed or variable

intervals, whose extensions are the only difference between the two cases. Fixed

intervals have ranges [−rp,−3/5rp), [−3/5rp,
1 /5rp], [1/5rp,

3 /5rp) and [3/5rp, rp],

while variable intervals have non-overlapping ranges dependent to the angular

region assigned to each finger.

Recall that the angular interval of each finger is relative to the hand main

direction which, besides being rather unstable, depends on the number and the

direction of the raised fingers. Moreover, the angular intervals are only defined

for the raised fingers, as they are clearly distinguishable in the finger contour

outline L(θq). It follows that the actual angular interval for each finger is only

disclosed in gestures having all the fingers raised (e.g., open hand).

For this reason, a preliminary step in the palm points finger region assignment

consists in mapping the known finger intervals of the reference gesture go, denoting

the open hand gesture (only used for the initial user calibration if not accounted in

the gesture dictionary), to the currently performed gesture to analyze. The only

needed information for this purpose is the circular shift φgo between the distance

plot L(θq) and the reference gesture go. Assuming to pin both the reference

gesture and the current one on the same palm center, the alignment between the

87

5. FEATURE EXTRACTION

two gestures is concluded by a rotation of φgo of the gesture coordinate system

(or equivalently a circular shift of L(θq) of φgo). Finally, since the two gestures

have different palm radiuses rgop and rp, a scaling factor rp/r
go
p is used to adapt

the reference gesture finger intervals to the current gesture palm size.

vgop =
rp
rgop

[−up sin (φgo) + vp cos (φgo)] (5.22)

The success of the previously described gesture alignment strongly depends

on the accuracy of the computed circular shift φgo , which in turns depends on the

employed plot similarity metric. As stated in Section 5.1.1, there are situations

where the plot alignment fails, e.g. when two plots have similar outlines but

different amplitude. In the particular case of the open hand gesture, it often

happens that distance plots referred to gestures showing only one or two raised

fingers are erroneously aligned to the reference plot for the open hand. In this

case, the angular intervals are wrongly aligned with the performed gesture as well,

hence the upper palm samples will not be assigned to the correct folded finger

regions.

This problem is solved with a similar approach adopted for the distance de-

scriptor of Section 5.1.1, namely by aligning the performed gesture with each

gesture template and extract the same descriptor for each alignment. The main

idea in this case consists in further aligning the mapped angular intervals with

each gesture template and then extract the morphology descriptor after each

alignment, since the finger regions in the gesture templates are known a priori

and the alignment between each gesture template with go can be compensated

during the calibration phase.

The adjusted angular sector mapping simply requires to replace φgo with φgo+

φgo,g in Eq. 5.22, where φgo,g denotes the circular shift between the open hand

gesture template and the gesture g one. This expedient allows to compensate for

the possible wrong alignments performed in Section 5.1.1.

Once the finger regions in the current gesture for the selected template align-

ment have been determined, Eq. 5.23 partitions the upper palm in five subsets

Ag,j corresponding to the palm regions where a the j-th finger is folded or can

fold.

Ag,j = {Xi ∈ P \ PL|vp ∈ Irg,j} (5.23)

88

5.1 DEPTH DATA FEATURES

where Irg,j denotes the linear interval of vp assigned to the j-th finger in the

alignment with the g-th gesture template.

After assigning each point Xi to a region Ag,j, a new 3D plane πL is fitted

to the actual palm point set PL with Alg. 4.3 as already done for the palm

plane in Section 4.2.1. Then, for each generated subset Ag,j the feature extractor

algorithm computes the average signed distance of its points from the plane πL

with Eq. 5.24 and scales it in the range [−1, 1] by the the length Lmax of the

longest finger. Let fag,j denote this value.

fag,j =

∑
Xi∈Ag,j

sgn ((Xi −Xπ
i) · zp) ‖Xi −Xπ

i ‖

|Ag,j|
(5.24)

All the area features are collected within vector Fa, made by G × 5 area

features, one for each finger in each gesture template.

5.1.6 Convex hull features

The convex hull of the hand shape in the acquired depth map is another useful

clue proposed in [19] and used in various gesture recognition schemes in literature.

LetBA denote again the binary mask of the hand region after the wrist removal

of Section 4.3 and BA the set of coordinates of the pixels selected by BA. The

convex hull of the hand shape, denoted as CH(BA), is by definition the smallest

convex set containing BA, as exemplified in Fig. 5.12.

The main idea behind [19] and other schemes consists in computing the convex

hull of the hand shape in the depth map and analyze the “convexity defects”,

namely the differences between the hand contour and the convex hull outline

due to the empty spaces between finger pairs. These regions, in facts, strongly

characterize each performed gesture. Fig. 5.12, for example, shows that the fist

(G1) has almost no empty space within its convex hull, while the convex hull of

G5 contains a significant amount of empty space. It follows that the fist will be

hardly misrecognized as another sign with one or more raised fingers if an analysis

on the convex hull empty space is performed.

The convex hull descriptors implemented in this work are based on the previ-

ous rationale and are extracted from the depth mask BA. Due to the measurement

noise in the depth samples, the hand shape in BA and the associated convex hull

are affected by several problems which, if not solved, lead to incorrect assumption

in the further recognition step:

89

5. FEATURE EXTRACTION

(a) G1 (b) G2 (c) G3

(d) G4 (e) G5 (f) G6

Figure 5.12: Example of extracted convex hulls from a few hand shapes

• BA contains some small holes due to noise or missing data.

• The computed convex hull may have several close vertexes (highlighted in

red in Fig. 5.12) due to the irregular shape of the acquired hand contour

and consequently a considerable number of short edges.

• The presence of angles close to 180◦ between consequent convex hull edges

(e.g. the edges almost lie on the same line) is a sign of extra edges due to

acquisition artifacts.

The first problem is easily solved by state-of-art blob analysis techniques fol-

lowed by a hole filling method. The second and third problems require, instead,

the application of an ad-hoc convex hull simplification procedure able to remove

the unnecessary vertexes without sensibly reducing the convex hull accuracy.

The convex hull simplification procedure implemented in this work and for-

malized in Alg. 5.1 consists in firstly collapsing all the vertexes connected by

edges whose length is lower than a given threshold TCHL until every edge of the

simplified convex hull is sufficiently long, and then in removing all the vertexes

90

5.1 DEPTH DATA FEATURES

vi, i = 1, . . . , N whose angle ∠v(i−1) mod Nviv(i+1) mod N value is higher than an

angular threshold TCHθ . For the experiments of Chapter7 TCHL and TCHθ where

set respectively to 10mm and 160◦. Note how TCHL is adapted in [pxl] by Eq.

5.16 replacing Rs with TCHL .

The resulting simplified convex hull CH(BA) is the starting point for the ex-

traction of the various features described in the following subsections.

(a) Original convex hull (b) Convex hull after

short edges removal

(c) Convex hull after wide

angle vertexes removal

Figure 5.13: Example of convex hull simplification

Convex hull vertexes number

A first possible feature is the number of vertexes of the simplified convex hull

[54]. This value is an hint of the hand pose and in particular of the number of

raised fingers, since the ideal convex hull has a vertex for each fingertip and a few

other vertexes delimiting the palm area.

While this is theoretically correct, the measurement noise in the depth values

makes this descriptor unusable in practical situation. The number of convex hull

vertexes for repetitions of the same gesture is, in fact, highly unstable.

Perimeters ratio

The ratio between the perimeter of the hand contour in BA and the perimeter of

the convex hull is another useful clue [54]. Gestures with folded fingers typically

report perimeter ratios close to 1 (e.g., G1 in Fig. 5.12), while the perimeter ratio

for gestures with several raised fingers is usually smaller.

F ch
p =

|∂BA|
perimeter(CH(BA))

(5.25)

91

5. FEATURE EXTRACTION

Algorithm 5.1 Convex hull simplification algorithm
Input:

V : ordered list of the original convex hull vertexes vi, i = 1, . . . , N

TCHL : minimum allowed distance between consequent vertex pairs

TCHθ : maximum allowed angle between consequent edge pairs

Output: S: ordered list of the simplified convex hull vertexes vSj , j = 1, . . . ,M ≤
N

curr ← 0, prev ← N − 1 . Current and previous vertex indexes

S ← {vprev}

repeat

prevvert← vprev, currvert← vcurr . Current and previous vertexes

dist← ‖currvert− prevvert‖

if dist ≥ TCHL then

S ← S ∪ {currvert}
prevvert← currvert

prev ← (prev + 1) mod N

end if

curr ← (curr + 1) mod N

until curr ≤ N

repeat

rempoint← false . Flag indicating whether at least one vertex has been

removed

angles← array(θ) of |S| elements

for i← 0, 1, . . . , |S| do

prevvert← vS(i−1) mod |S|, currvert← vSi , nextvert← vS(i+1) mod |S|

angles[i]← ∠prevvert, currvert, nextvert

end for

(maxangle, idx)← max(angles)

if maxangle > TCHθ then

S ← S \ {vSidx}
rempoints← true

else

rempoints← false

end if

until rempoints = true

return S

92

5.1 DEPTH DATA FEATURES

Fig. 5.14 shows a few examples of perimeter ratios.

(a) G1 (b) G2 (c) G3

Figure 5.14: Comparison of hand VS convex hull perimeter ratios

Finally, since the simplified convex hull edges may intersect the hand region,

the hand samples outside the convex hull area are previously discarded and not

accounted in Eq. 5.25.

Areas ratio

The ratio between the area of the hand shape and the area of the associated

convex hull offers a similar description of the one provided by Eq. 5.25 [54].

F ch
a =

|BA|
area(CH(BA))

(5.26)

(a) G1 (b) G2 (c) G3

Figure 5.15: Comparison of hand VS convex hull area ratios

Note how, while the perimeter value of the hand shape is always higher than

the convex hull one, for the area ratio this property is reversed.

93

5. FEATURE EXTRACTION

Connected components features

One of the other relevant cues that can be extracted from the comparison between

the convex hull and the hand region comes from the analysis of the empty space

in the convex hull not occupied by the hand samples [57, 54].

Let BCH denote the binary mask representing the convex hull region in the

range camera image plane, and by S = BCH − BA the difference between the

convex hull and the hand regions. S is typically made of a set of connected

components (blobs) Si of various size, as exemplified in Fig. 5.16. Note how G1

is characterized by the lack of connected components while G2 and G3 by two or

more components of significant size.

The extraction algorithm for the current descriptor firstly performs blob anal-

ysis on S to only retain the connected components whose area is higher than a

preset threshold T cca . This selection is necessary to avoid considering small com-

ponents due to noise. The set S = {Si|Si > T cca } of the retained connected

components is at the basis of all the features described in this section.

(a) G1 (b) G2 (c) G3

Figure 5.16: Comparison of convex hull connected components

A first feature that can be extracted is the number of the retained connected

components Ncc = |S|. Another feature set is, instead, given by the ratio of the

areas of the various connected components over the convex hull area, that is:

Acci =
area(Si ∈ S)

area(CH(BA))
(5.27)

It is worth noting that the number and the area ratios of the retained con-

nected components are not constant and depend not only by the class of the per-

formed gesture, but also by the different way the same gesture is repeated over

time. Moreover, in order to compare the connected components area ratios among

94

5.1 DEPTH DATA FEATURES

the various gestures, it is necessary to impose an ordering among the features Acci .

For this reasons, the retained connected components are firstly sorted in descend-

ing order respect to their blob areas, then only the first Ncc = min(|S|, Nmax) of

them with the highest areas are kept, where Nmax is the maximum number of de-

sired components (for the tests of Chapter 7, Ncc = 6). Finally, the Ncc retained

connected components are sorted again in ascending order respect to the angle θj

formed by the segment joining the component center sj (blob centroid) with the

palm centroid cp in BA, and the main axis of the hand coordinate system defined

in Section 4.2.2. The procedure is exemplified graphically in Fig. 5.17.

u
p

v
p

s
1

s
2

s
3

s
4

c
p

Figure 5.17: Connected components sorting within the computed convex hull

Let j = 1, . . . , Ncc be the index of the retained and ordered connected compo-

nents resulting from the previous processing. The connected components feature

vector Fch
cc is built according to Eq. 5.28.

f ccj = Accj (5.28)

Note how in case Ncc < Nmax, the feature vector is padded with 0.

95

5. FEATURE EXTRACTION

5.1.7 Fingertip orientations

Fingertip orientations feature set describe the angle formed by the segments join-

ing each fingertip projection on the palm plane with the palm centroid and the

hand direction. The computation of this feature set plays a key role not only as

a stand-alone descriptor, but also for the extraction of other descriptors since the

angle is used as a metric to order the fingertips.

Let Fi for i = 1, . . . , 5 be the i-th fingertip and θi the angle formed with the

hand direction (Eq. 5.29).

θi = ∠(Fπ
i −Cp,xp) (5.29)

where F π
i denotes the projection of Fi on the palm plane π.

Fingertip Fi detection, a preliminary step required for the extraction of the

current descriptor, is a rather hard problem to solve even with the aid of depth

data. One possible solution, proposed in this work, consists in exploiting the dis-

tance plot L(θq) generated in Section 5.1.1 for the hand contour distance descrip-

tor due to its capability of describing accurately the hand shape. The rationale

behind this solution is that L(θq) encodes the searched fingertip positions, as for

each angular position in L(θq) it is also stored a reference to the associated hand

point Xi. It follows that the global maxima of L(θq) are likely to be associated

to the fingertips, as fingertips are usually the most distant points from the palm

centroid CP .

Note how, due to the noise which may not have been removed by the Gaussian

filtering in Section 5.1.1, a simple peak detection based on the evaluation of the

first and second order derivatives of L(θq) may return spurious global maxima

along with the actual fingertips (Fig. 5.18). Although most of the unnecessary

peaks can be removed by simple considerations on their value or position (e.g.,

peaks lower than a given fraction of the maximum finger length Lmax or lying in

the neighborhood of another higher peak are more likely to be due to noise), some

of them may still be retained. In the worst case, e.g. adjacent fingers touching,

some fingertips may also be undetected as they are not maxima in L(θq) (lost

peaks) or because the finger is folded over the palm.

Let Pi for i = 1, . . . , N ≤ 5 denote one of the first N peaks detected on the

considered L(θq) and retained by the previous rationale. Note how the maximum

accepted peak number is 5 as they are likely to correspond to the 5 different fin-

gertips. Assume again to sort the 3D points associated to the N peaks according

to the angles they form with the hand direction, as done in Section 5.1.6 for the

96

5.2 DEPTH DATA FEATURES

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

Minimum accepted peak value

Lost peak

Insufficient peak

Spurious peak

Figure 5.18: Example of detected maxima on L(θq)

convex hull connected components. Let Pj for j = 1, . . . , N ≤ 5 denote the sorted

peaks.

The current descriptor is made by the juxtaposition of the sorted fingertip

angles θj in the feature vector Fθ, scaled in the interval [0.5, 1], padding the

possible missing values with 0. Note that the interval starts from 0.5 and not

from −1, although [−1, 1] is the most common interval for features also assuming

negative values, to better discriminate the case of θj = 0 from the 0 padding of

the missing values.

5.1.8 Fingertip positions

The coordinates of the fingertips Fj in the palm coordinate system, extracted for

the construction of the descriptor of Section 5.1.7, allow the realization of another

powerful descriptor encoding in a more compact way the information provided

by the fingertip maximum distances from the palm center CP and from the palm

plane π, and their orientations θj respect to the hand main direction.

This descriptor is built by the same algorithm of Section 5.1.7 employed for the

realization of the fingertip angles vector Fθ, replacing each fingertip scaled angle

in Fθ with the associated 3D point Xi coordinates in the hand local reference

system. Each fingertip coordinate is scaled into the same range [0.5, 1] by the

length Lmax of the longest user’s finger.

Note how the new feature vector Fp has 15 entries instead of the 5 of Fθ, as

each fingertip is now described by 3 values, one per coordinate.

97

5. FEATURE EXTRACTION

5.2 Leap Motion features

The Leap Motion, described previously in Section 2.8, is a novel low-cost device

designed for gesture recognition purposes only which is raising an high interest

thanks to the information about the hand posture that is able to return in real-

time. Recall that, differently from the range cameras described in Chapter 2, the

Leap Motion does not return a depth map of the framed scene but only a set of

relevant hand key points and some hand pose features (Fig. 2.20).

The estimated 3D hand center and orientation, for example, have a funda-

mental importance for the fast hand tracking and hand detection, heavy com-

putational tasks that are performed by most of the methods of Section 1.2 by

exploiting depth, color or other types of information. The estimated fingertip

coordinates are, instead, employed in the extraction of the descriptors of Sections

5.1.7 and 5.1.8, resulting from a complex processing of the acquired depth map

and the adoption of a few anthropometric considerations.

An important observation is that, while the computed 3D fingertip positions

are quite accurate (the error is about 200 µm according to the study in [45]),

the sensor is not always able to recognize all the fingers. Fingers touching each

other, folded over the hand or hidden from the camera viewpoint are naturally

not captured, but also in several configurations some visible fingers could be lost,

specially if the hand is not perpendicular to the camera. Moreover, protruding

objects near the hand, like bracelets or sleeve edges, are easily misrecognized as

fingers. This is quite critical, since in different executions of the same gesture

the number of captured fingers could vary. Note also that the first release of

the Leap Motion software does not return any information about the matching

between the acquired points and the corresponding fingers, hence the estimated

fingertip positions are returned in random order.

Finally, the estimated hand center, differently from the one of Section 4.3, is

highly unstable and does not necessarily correspond to the actual palm center,

but moves according to the fingers configuration in the performed gesture.

The remaining of current section presents several descriptors that can be ex-

tracted from the Leap Motion data and are considered in the proposed framework:

• Fingertip orientations: angles corresponding to the orientation of each

fingertip projected on the palm plane (defined by the palm normal n and

centered on the hand center CL) with respect to the hand orientation h.

• Fingertip positions: x, y and z coordinates of the detected fingertips in

the hand coordinate system defined by the directions h, n and CL.

98

5.2 LEAP MOTION FEATURES

• Fingertip distances from the palm center: distances of the fingertips

from the hand center CL.

• Fingertip distances from the palm plane: distances of the fingertips

from the palm plane defined by the palm normal n and centered on the

hand center CL.

• Inter fingertip distances: distances between consecutive fingertips.

• Inter fingertip orientations: angles formed by the segments joining pairs

of consecutive fingertips with the hand center CL.

• Hand radius: the radius of the sphere which best approximates the palm

surface.

• Number of fingertips: the number of the detected actual fingertips.

All the feature values are normalized in the interval [0, 1] or [05, 1] by dividing

the values for the length Lmax of the longest finger (e.g., middle finger) in order

to make the approach robust to people with hands of different size. The scale

factor Lmax can be computed during the system calibration.

5.2.1 Fingertip orientations

This descriptor is analogous to the one defined in Section 5.1.7, but has a simpler

construction [57, 58]. While, in facts, the feature extraction algorithm of Section

5.1.7 requires a prior fingertip estimation exploiting the distance plots of Section

5.1.1, the use of a Leap Motion as acquisition device allows to skip this step as

the fingertip positions in 3D space are already provided by the sensor APIs.

Recall that the returned 3D points are not necessarily all associated to actual

fingertips but some of them could be due to noise in the measurement. For each

fingertip candidate Pi, its angle respect to h (Eq. 5.29) is used both for imposing

an ordering on the fingertips, as they are normally returned by the Leap Motion

in random order, and to discriminate the actual fingertips from spurious ones

detected on sleeves. Fingertip angle values outside range [−90◦, 90◦) are, in facts,

due to artifacts, e.g. crests in the hand arm sleeve. Such fingertip candidates are,

thus, discarded and will not contribute to this descriptor.

The retained fingertip candidates Pj with j = 1, . . . , NF ≤ 5 are then sorted

in ascending order respect to the angle formed with h and normalized in the

range [0.5, 1] by the maximum angle from h, namely θmax = 90◦. The eventual

missing fingertip values are again padded with 0.

99

5. FEATURE EXTRACTION

Fingertip orientations, collected in a feature vector Fθ
L provide, again, an

important information both to be used alone as descriptor, or better as the basis

for the construction of more informative feature sets.

5.2.2 Fingertip distances from the palm center

This feature set reports the fingertip distances from the palm center, similarly

to the depth descriptor of Section 5.1.1 but, this time, only accounting for the

distances of the actual fingertips and not of every generic hand contour point

[57, 58].

Let CL denote the hand center returned by the Leap Motion and Fj, j =

1, . . . , NF ≤ 5 a generic fingertip retained and sorted by the procedure described

in Sections 5.2.1. The distance Dj of Fj from CL is defined as:

Dj =
||Fj −CL||

Lmax
(5.30)

This scaling is needed to normalize all distances to the range [0, 1] to account

for the different hand sizes of the various users. Although the minimum distance

is 0, the scaled distances are then shifted to the range [0.5, 1] to discriminate a

missing fingertip from a fingertip distance close to 0.

Note how, differently from the distance descriptor of Section 5.1.1, this time

there are no gesture templates and, although the fingertips are sorted according to

the angle respect to the hand direction h, distances themselves are not sufficient

to discriminate all the gestures. Differences among gestures characterized by the

same number of raised fingers with a similar arrangement (e.g. the gestures in

Fig. 5.19) are not always captured by this descriptor.

(a) First gesture (b) Second gesture

Figure 5.19: Example of gestures not discriminable by the Leap Motion

100

5.2 LEAP MOTION FEATURES

In this work, the problem is tackled by partitioning the plane defined by n

and passing through CL into five angular regions Si, i = 1, . . . , 5 (Fig. 5.20),

and assign each captured finger Fj to a specific region according to the angle θj

between the projection of the finger in the plane and the hand direction h (Eq.

5.29).

x

y

1°

2°
3°

4°

5°

-40°

-10° 10°

40°

Figure 5.20: Angular regions in the palm plane.

It is worth noting that there is not a one-to-one matching between sectors

and fingers, namely, some of the sectors Si could contain more than one finger

and others could be empty. When two fingers compete for the same sector Si,

one of them is assigned to the nearest adjacent sector Si+1 or Si−1 if not already

occupied, otherwise the maximum between the two feature values competing for

Si is selected. Let us assume sector Si−1 is empty and let denote by Fi, Fj

respectively the fingertip assigned to Si and the one to be assigned to a sector.

Fj will be assigned to Si−1 if θj ≤ θi, with θj and θi denoting the orientation

values of Fj and Fi, otherwise Fi will be reassigned to Si−1 and Fj to Si. The

same rationale holds in case Si+1 is empty.

The current descriptor, represented by a feature vector Fd
L consists, then, in

the juxtaposition of the fingertip distances after the assignment to the sectors Si,

setting a 0 value only for the possible empty positions.

101

5. FEATURE EXTRACTION

5.2.3 Fingertip distances from the palm plane

This descriptor follows the same rationale and construction of the one of Section

5.2.2, replacing the distance of the fingertips from the hand center with their

distances from the plane defined by the palm normal n returned by the Leap

Motion [57, 58] (Eq. 5.31).

Ej = sgn
(
(Fj − Fn

j) · n
) ‖Fj − Fn

j ‖
Lmax

(5.31)

where Fj
n denotes the projection of Fj on the plane defined by n.

Analogously to the similar descriptor of Section 5.1.2, the sign operator in Eq.

5.31 discriminates to which of the two semi-spaces defined by the palm plane the

fingertip belongs. The values Ej, j = 1, . . . , NF ≤ 5 are then assigned to different

angular sectors according to the rationale of Section 5.2.2. Again, there is at

most one feature value for each sector and the missing values are set to 0. The

values range of this descriptor can assume both positive and negative values, but

are scaled to the interval [0.5, 1]. All the Ej are collected into a vector Fe
L.

5.2.4 Fingertip positions

This feature set represents the positions of the fingertips in the 3D space estimated

by the Leap Motion software [57]. As for the analogous descriptor of Section 5.1.8,

since a reliable hand gesture recognition system must be independent from the

hand position and orientation, the fingertip coordinates are expressed in the Leap

Motion reference system according to Eq. 5.32.

F x
j = (Pj −CL) · (n× h)

F y
j = (Pj −CL) · h
F z
j = (Pj −CL) · n

(5.32)

where Pj, j = 1, . . . , NF ≤ 5 are the retained and sorted fingertip candidates

according to the angle criteria of Section 5.2.1.

The computed fingertip coordinates are normalized in the range [0.5, 1] using

the longest finger length Lmax as scale factor. The possible missing fingertip

values are again padded with 0. Finally, it is worth noting that the fingertip

3D positions can be seen, as for the analogue descriptor of Section 5.1.8, as

the compact representation of the combination of angle, distance and elevation

information. Fingertip positions are collected into a feature vector Fp
L.

102

5.2 LEAP MOTION FEATURES

5.2.5 Inter fingertip distances

Fingertip distances from the hand center, described in Section 5.2.2, are a power-

ful yet imperfect descriptor that in a few cases is not able to reliably discriminate

gestures with the same number of fingers with similar lengths (Fig. 5.19). This

is due to the fact that such descriptor does not account for the absolute position

of the fingertips within the gesture.

A possible solution, implemented in this work and described in Section 5.2.2,

consists in partitioning the palm plane in sectors where each fingertip projection

is likely to “fall into”, where each sector is associated to a known finger (e.g., a

fingertip falling in the rightmost sector in Fig. 5.20 is likely to belong to the actual

pinky finger). The drawbacks are the need for defining fixed angular sectors on

the open hand reference gesture and, since the sectors are defined respect to the

hand direction which varies among different gestures, the sectors may not always

correspond to the same fingers.

An efficient and alternative solution to overcome this ambiguity, implemented

in the proposed framework, consists in augmenting the distance descriptor of

Section 5.2.2 with information about the relative distance between adjacent fin-

gertips (in the ordering) and avoiding the fingertip assignment to separate sectors.

The rationale is that the inter-distance between adjacent fingertips may help to

discriminate gestures sharing the same number of fingertips and their distances

from the hand center but a different arrangement.

Let Ij, j = 1, . . . , 4 denote the relative Euclidean distance in 3D space between

fingertip Fj and the adjacent one Fj+1, as reported in Eq. 5.33. Note how the

fingertips Fj come from the fingertip candidate processing using the approach

described in Section 5.2.1.

Ij =
‖Fj+1 − Fj‖

Imax
(5.33)

where Imax is a scaling factor set with the highest distance between fingertips,

e.g., the distance between the thumb and the pinky. As there may be up to 4

pairs of adjacent fingers and the missing values are padded with 0, the range for

these features is set again to [0.5, 1]. The fingertip inter distances are collected

into a feature vector Fi
L.

103

5. FEATURE EXTRACTION

5.2.6 Inter fingertip orientations

This feature set is an alternative to the fingertip inter-distance descriptor of

Section 5.2.5, based on replacing the inter finger distances with the angles θfj
formed by the segments joining the projections Fn

j of adjacent fingertips on the

palm plane (defined by n) with the estimated hand center CL.

Let Fj and Fj+1 denote, again, two retained and sorted adjacent fingertips

according to the rationale of Section 5.2.1. The angle ∠Fn
j CLF

n
j+1 is computed

by Eq. 5.34, based on a variation of Eq. 5.29.

θfj = arccos

(
Fn

j+1 −CL

‖Fn
j+1 −CL‖

·
Fn

j −CL

‖Fn
j −CL‖

)
, j = 1, . . . , 4 (5.34)

As for the descriptor of Section 5.2.5, there may be up to 4 pairs of adjacent

fingers and the missing values are padded with 0. The range for these features is

set to [0.5, 1]. The fingertip inter angles are collected into a feature vector Fθ,int
L .

5.2.7 Hand radius

Hand radius is another hand relevant information returned by Leap Motion APIs

that, although if considered alone does not allow a reliable gesture recognition,

when used along with other features may improve the overall recognition accuracy.

This feature is made by a single value F r
L = r/SR that represents the scaled

radius of a sphere that roughly approximates the hand palm surface. The scale

factor SR corresponds to the maximum sphere radius detected by the sensor.

Figure 5.21: Example of hand radius detected by the Leap Motion

The rationale behind this feature consists in the fact that the sphere radius

length is in a direct proportion with the overall finger opening status, e.g., bigger

spheres are associated to open hand gestures, while smaller ones are associated

104

5.3 DEPTH DATA FEATURES WITH LEAP MOTION AID

to gestures characterized by fingers curling into a fist. For these reasons, sphere

radius is useful to state if the hand is open or the fingers are folding.

5.2.8 Number of detected fingers

The number of detected fingers is another feature directly defined on a value

returned by the Leap Motion APIs.

This value simply reports the number of captured fingers NF returned by

the sensor. Recall that the value itself is not reliable, especially in presence of

fingers touching each other or long sleeves, although the fingertip pre-processing

described in Section 5.2.1 is able to compensate the Leap Motion fingertip detec-

tion errors in most cases.

The current feature is defined as Fn
L = NF/5 to constrain its values in the

range [0, 1].

5.3 Depth data features with Leap Motion aid

Several features described in Section 5.1 are defined on the local hand coordinate

system, obtained as the result of a delicate and computationally expensive pro-

cessing of the acquired depth map. Moreover, the hand and the palm orientations

require further assumptions to state whether their directions are correct or must

be inverted.

Recall that the Leap Motion APIs return a limited set of the same key points

including the estimated hand center, the hand orientation and the fingertip po-

sitions in the camera space. In particular, Section 3.3 showed how the estimated

hand center by the Leap Motion software may allow to reliably and quickly seg-

ment the hand from the background in the acquired depth map, relaxing the

assumption of the hand being the nearest object to the range camera without

resorting on the color information.

Following the previous rationale, this work also accounts for the possibility of

using an hybrid acquisition setup made by a range camera and the Leap Motion

(Section 2.9) in order to leverage the joint usage of depth information and the key

points provided by the Leap Motion APIs for the extraction of the same features

of Section 5.1.

When using the acquisition rig of Fig. 2.21, the hand detection, segmentation

and the geometric feature extraction steps in the recognition pipeline of Fig. 1.8

can be simplified as follows.

105

5. FEATURE EXTRACTION

• Hand detection: the hand center CL estimated by the Leap Motion may

be used in place of finding the nearest hand sample Xmin
u,v from the range

camera in Eq. 3.3, without requiring a previous skin color thresholding or

assuming the hand is the nearest object to the sensor.

• Hand segmentation: the hand center CL, hand direction h and palm

normal n returned by the Leap Motion APIs may avoid the need for the

usage of PCA and plane fitting with RANSAC for the definition of the hand

local coordinate system. Moreover, CL may be used as the starting point

for the palm detection of Alg. 4.2.

• Feature extraction: the fingertip coordinates estimated by the Leap Mo-

tion may be, after the spurious finger removal, used directly for the extrac-

tion of the fingertip orientation and position features, without requiring the

distance plot analysis of Section 5.1.7.

Since the range camera and the Leap Motion have different reference systems,

the acquisition setup requires an accurate calibration in order to jointly use the

data from the two sensors. Differently from the color and depth cameras, though,

the Leap Motion does not return a color or infrared image of the acquired scene,

and the calibration protocols employed for the color and depth cameras ([1]) can

then not be adapted to the Leap Motion case.

For this reason, this thesis proposes in the following section an ad-hoc cali-

bration protocol designed for the jointly usage of a range camera and the Leap

Motion in an hybrid setup. Note how the calibration must be repeated whenever

the range camera or the Leap Motion are moved from their original positions, as

the sensor alignment is lost.

5.3.1 Acquisition setup calibration

The hybrid setup calibration protocol aims at estimating the extrinsic parameters

of the two devices, namely the roto-translation (R, t) allowing to express the 3D

points in a sensor reference system respect to the one of the other device and

vice-versa. In addition, the two devices need also to be previously independently

calibrated in order to correctly locate points in the 3D space. The Leap Motion

software already provides a calibration tool, while range cameras require an ad-

hoc approach like the one of [42] for Microsoft Kinect.

Assuming the range camera modellable by the pin-hole camera model (Section

2.1), its calibration only requires the estimation of the intrinsic parameter matrix

106

5.3 DEPTH DATA FEATURES WITH LEAP MOTION AID

KD, since the depth map already contains the needed information for mapping

the 3D points in the range camera plane.

In order to find the roto-translation between the two sensors, the standard

procedure consists in aligning a point cloud of key points whose coordinates are

expressed in the first sensor reference system, with the point cloud of the corre-

sponding key points expressed in the reference system of the other sensor. The

alignment method finds the roto-translation (R, t) minimizing in the least-square

sense the average Euclidean distance between a general key point in the first

system and the associated transformed key point in the the second system.

Usually the calibration of setups made by multiple range or color cameras

exploits as key points the corners extracted from a checkerboard with known

checkers number and size. The Leap Motion, instead, as it does not return any

image or depth map, can only rely on the estimated positions in the sensor space

of the detected fingertips as key points. For this reason, the proposed calibration

protocol employs the 3D fingertip positions of the open hand estimated by both

the range camera and the Leap Motion as calibration cues [57]. The choice of the

open hand is due both because this gesture maximizes the number of key points

extracted per frame, and because the Leap Motion is less likely to detect spurious

fingers on this gesture.

It is worth noting that not using external tools like checkerboards or other

classic calibration devices is not a limit of the proposed approach but, indeed, it

is a key requirement for a human-computer interaction system. The calibration,

in facts, is performed automatically and only requires the user to acquire a few

frames of the open hand. Moreover, the two devices do not have to be rigidly

attached to a fixed structure, as whenever one of them is moved the system re-

calibration only requires the acquisition of a few frames of the user’s open hand.

As shown in Fig. 2.21, in order to be able to retrieve useful information from

both the sensors the Leap Motion has to be put under the performed gesture,

while the depth sensor has to be placed a little more forward, facing the user, as

in a regular gesture recognition setup.

Let h, n denote, again, respectively the hand direction and palm orienta-

tion estimated by the Leap Motion, and by CL the estimated palm center. The

first step of the proposed calibration procedure consists in analyzing and sort-

ing the detected fingertips for each calibration frame, as done in Section 5.2.1,

to obtain a set of 5 × N points XL = {X1
L,1, . . . , X

1
L,5, . . . , X

N
L,1, . . . , X

N
L,5} de-

scribing the actual fingertip positions in the Leap Motion coordinate system

for the i-th calibration frame, with i = 1, . . . , N . For the range camera, in-

107

5. FEATURE EXTRACTION

stead, the fingertip positions estimation from the depth map is much more com-

plex and exploits the method described in Section 5.1.7, which returns a set

XD = {X1
D,1, . . . , X

1
D,5, . . . , X

N
D,1, . . . , X

N
D,5} denoting the extracted fingertip posi-

tions from the depth map in the range camera reference system sorted according

to the angle they form with the hand main direction.

Given the two sets XL and XD, the best roto-translation (R∗, t∗) is the one

solving the registration problem of Eq. 5.35:

(R∗, t∗) = argmin
(R,t)

N∑
i=1

5∑
j=1

||RXi
L,j + t−Xi

D,j||2 (5.35)

namely, Eq. 5.35 consists in finding the best roto-translation that brings the

point cloud XL to the point cloud XD, and can be solved by the Horn’s algorithm

[62] enclosed in a RANSAC framework.

The test of Chapter 7 prove that the assumption of considering as fingertips

X i
D,j the extreme point of the fingers is rather valid and that the mean error

obtained from the square root of Eq. 5.35 is around 9mm.

After the calibration has been performed, the hand centroid coordinates es-

timated by the Leap Motion are transformed into the range camera coordinate

system obtaining the point CD = RCL + t and used as a starting point for the

hand detection with the algorithm described in Chapter 3. Note how, although

CD is located in the hand region, its localization is not too accurate due to the

uncertainty in the position estimated from the Leap Motion. For this reason

CD should not be directly used as the palm centroid, but its position must be

optimized again with the circle or ellipse fitting scheme of Chapter 4.

The hand orientation vectors h and n provided by the Leap Motion can be

directly used as hand orientation vectors in the depth camera system after a

simple rotation (x = Rh and z = Rn). It is worth noting that, although the hand

orientation was ratherly well estimated by PCA, the hand direction was supposed

to always point upward, while with the proposed approach this assumption can

be removed relying in the direction estimated by the Leap Motion. Moreover,

the hand orientation computed by the Leap Motion software proved to be more

accurate than the one estimated with PCA.

108

5.4 COLOR FEATURES

5.4 Color features

Color features describe important textural characteristics of the segmented hand

and, when the low-cost range cameras did not enter the mass market yet, were

often employed by earlier automatic gesture recognition approaches in literature.

The color feature extraction algorithms implemented in the proposed frame-

work are based on the scheme of Fig. 5.22 or its slight variations.

Hand
mask

Color space
conversion

Image
enhancement

Image
masking

Color
descriptor

Color
image

Image
crop

Local
feature

extraction

Local
feature

aggregation

Figure 5.22: Generic pipeline of the employed feature extraction algorithm

Image cropping exploits the hand binary mask BA, obtained from the arm

removal of Section 4.3, to extract an image patch from the acquired color image

limited to the region in BA defined by the smallest bounding-box enclosing the

hand pixels.

Color space conversion is another important preliminary step needed to change

the common RGB(A) pixel representation of the color image, returned by most

of the low-cost color cameras, to a more suitable one for the description of the

textural properties of the cropped image. Recall from Section 3.2 that, in fact,

while the RGB color space offers a more human-friendly representation of the pixel

color, its performance in several computer vision tasks are rather low. Often the

selected color space is Lab, as for the hand detection of Section 3.2, although

the color descriptors extracted in the following sections make only use of the L

channel as they were originally designed for grayscale images.

Then, often the gamma and contrast are normalized or adjusted in order to

expand the low dynamic or compress the high one of the pixel intensity variations

in the cropped image. This step is both needed to highlight primitive structures

like edges and to minimize the dependency of the feature extraction algorithm

109

5. FEATURE EXTRACTION

from the intensity levels. Image histogram equalization and image sharpening are

image enhancement techniques commonly used in this step.

Image masking, exploiting again the depth mask BA, prevents the color de-

scriptor from being biased by the information coming from the background pixels

contained in the cropped image. Since most feature extraction techniques aggre-

gate the descriptors computed for each pixel, e.g. by creating a histogram of the

descriptors distribution in the whole image or within limited regions, the masking

avoids to account for the contributions of the retained background pixels.

The final steps in the pipeline of Fig. 5.22 consist in computing a color

descriptor for each pixel, which is usually a local descriptor encoding the textural

information within a texture patch centered on the pixel, and in aggregating all

the pixel descriptors in a unique feature vector characterizing the underlining

image. As already stated, the pixel descriptors are often collected in normalized

histograms representing the descriptor distribution within the processed image.

5.4.1 Histogram of oriented gradients (HOG)

The histogram of oriented gradients (HoG) [63] is a textural descriptor for images

widely used for people or object detection purposes (e.g., pedestrians or vehicles)

on the acquired images or videos. It is based on the idea of dividing the image

into small connected regions, called cells, and building for each cell a histogram of

gradient directions for the considered pixels. The combination of these histograms

then represents the descriptor. For a better invariance to changes in illumination

or shadowing, the local histograms can be contrast-normalized by calculating a

measure of the intensity across a larger region of the image, called block, and then

using this value to normalize all the cells it contains.

The rationale is that the object shapes are well characterized by the distri-

bution of local intensity gradients, namely by the occurrences of the gradient

orientations in localized portions of an image. The implemented HoG feature

extraction algorithm [64] follows the pipeline of Fig. 5.23, inspired by [63].

The first step, namely the color image normalization of its colors and gamma,

is indeed optional thanks to the histogram normalization in the final steps.

Next, the grayscale conversion of the color image is only required for the

intensity gradient computation, and in the current implementation consists in

converting the acquired image in RGB(A) color space to CIELab and extracting

the L component, associated to the lightness of the colors.

The image crop then, performed on the color image according to the hand

mask BA computed in the previous chapters, limits the descriptor computation

110

5.4 COLOR FEATURES

Gray scale
conversion

Image
crop

Gradient
computation

Color
image

Color &
Gamma

normalization

Hand
mask

HOG
features

Histograms
computation

Histograms
normalization

Histograms
aggregation

Gradient
masking
Gradient
masking

Figure 5.23: Adopted histogram of oriented gradients feature extraction pipeline

only within the minimum hand bounding box enclosing the hand pixels in BA.

Although the further gradient computation on the cropped grayscale image

can be performed accurately with Sobel or other discrete differentiation operators,

the horizontal (Gx) and vertical (Gy) image gradients in the pipeline of Fig. 5.23

are computed by convolving the grayscale image patch IG with separable 1-D

kernels gxu,v = [−1 0 1] and gyu,v = [−1 0 1]T [63]. The gradient magnitude

for each pixel mu,v is then computed as mu,v =
√
gxu,v

2 + gyu,v
2. Differently from

the original algorithm of [63], the implemented version adds an intermediate step

which consists in forcing the gradient magnitude to 0 for the cropped image pixels

discarded by the binary mask BA. This expedient prevents the descriptor from

being biased by the intensity of the background pixels.

The grayscale image is then partitioned into a grid of M×N rectangular cells

of size CH ×CW pixels. Note how the cell size depends on the cropped grayscale

image width and height.

Each cell will generate a separate histogram of B bins, each one centered on

a given gradient direction from 0 to 180◦ or 0 to 360◦ depending on the usage

of the unsigned or signed gradients. Each pixel within the cell Ci,j will cast a

vote either corresponding to its gradient magnitude or to the value of a proper

function of the gradient magnitude (e.g., square root, square or a clipped version

of the magnitude). The current implementation exploits the gradient magnitude

itself, as it outperforms the other functions [63]. Since the gradient directions

are real numbers, they do not necessarily correspond to an histogram bin center,

thus a unique assignation to a bin is not possible. A possible solution consists

in using linear interpolation to split each pixel vote to the interested bins, where

111

5. FEATURE EXTRACTION

the fraction of the assigned vote is in an inverse proportion with the distance of

the (real) gradient direction value from the neighboring bin centers.

For a better invariance to illumination and contrast, the cells are grouped

together in larger and spatially connected blocks, and the histograms of the cells

within the same block are locally normalized. Blocks of cells may either adopt a

rectangular (R-HOG) or radial (C-HOG) geometry, and may be either separated

or overlapped. In the latter case, each block shares a certain number of cells with

the surrounding blocks. The experiments in Chapter 7 use separate rectangular

blocks of 5 × 6 cells, where each cell generates a histogram with B = 9 bins

accounting for gradient directions from 0 to 180◦ with a width of 20◦ [64].

The final HoG descriptor consists in the concatenation of the normalized his-

tograms within each block, and the related feature vector is denoted by Fhog. It

is worth noting that, in case of overlapping blocks, the feature vector will contain

repetitions of the same histograms with different normalization. Fig. 5.24 shows

an example of HoG descriptor extraction from a given hand image.

(a) Hand image (b) Hand depth map

(c) Hand depth mask (d) Hand HoG features

Figure 5.24: Example of HoG descriptor extraction for a given hand image

112

5.4 COLOR FEATURES

5.4.2 Local phase quantization (LPQ)

Textural information gives a noteworthy contribution in object and subject recog-

nition, like the automatic hand gesture recognition in this thesis, and was the only

available cue in several pattern recognition methods in the earlier literature.

Real color cameras, as already stated in Section 2.1, are affected by several

image degradation problems due to the low quality camera sensor or optics, lens

distortion or misalignment, object and subject motion respect to the camera and

unfavorable lighting conditions. Image degradation, beside making the acquired

images visually unpleasant, often leads several computer vision algorithms to fail.

One of he most commonly encountered degradations is blurring, which may

arise from:

• out of focus framed scene

• motion of the objects or subjects respect to the camera

• atmospheric turbulence

Image blur for a grayscale image IG = {iGu,v} can be ideally described by

the convolution of IG with a point spread function (PSF) or kernel K = {ku,v}
modeling the blur type. Fig. 5.25 compares three kernels modeling an out of focus

(Fig. 5.25(a)), motion (Fig. 5.25(b)) and atmospheric turbulence (Fig. 5.25(c))

blurs, corresponding to an Airy disk, a line and gaussian kernel respectively.

(a) Out of focus blur (b) Motion blur (c) Turbulence blur

Figure 5.25: Comparison of common image blur models

It is worth noting that the image blur modeling defined above is only valid

for ideal blurs, that are spatially invariant, namely when the blur model (kernel)

does not depend on the image region the kernel is convolved with. The ideal blur

invariance is, however, not achieved in practice.

113

5. FEATURE EXTRACTION

Local Phase Quantization [65] is an image descriptor based on the fact that

texture is a local image property, and is designed to be robust against the most

common image blurs described in the previous lines. LPQ assumes that the

point spread function of the blur can be locally approximated by a centrally

symmetric model, which is often sufficient for example in the case of camera

motion, misfocused optics, and atmospheric turbulence.

Assuming the selected PSF is centrally symmetric, from the properties of the

Fourier transform it follows that the phase of the filtered image corresponds to

the phase of IG in the frequency domain for positive values of the magnitude

of the Fourier transform of the PSF [65]. This property always holds for the

transforms of certain blur models (e.g. the transform of the Gaussian kernel used

to model the atmospheric turbulence blur is always positive by definition), while

for other blur types (e.g. out of focus and ideal motion blurs) modeled by sinc

or Bessel functions the property holds up to the first zero-crossing frequency.

Moreover, since most of the blur models show a low-pass filtering behavior and

their energy is concentrated in the Fourier coefficients corresponding to the lowest

frequencies, the PSF frequency response support can be limited to the first zero-

crossing frequency without a significant information loss. This expedient allows,

if needed, to approximate the PSF frequency response with a positive values

function to maintain the blur invariance property of the Fourier phase spectrum.

Based on the previous rationale, LPQ exploits the local phase information

contained in the phase spectrum of a texture patch of size m×m around a pixel

in position (u, v) in IG for characterizing the underlining image texture, since for

the blur invariance the possible image blur does not corrupt the texture phase.

The implemented version of the LPQ descriptor extraction approach, schematized

in Fig. 5.26, is based on the original work of [65].

Hand
mask

Gray scale
conversion

Image
crop

Local
filtering

LPQ
features

Color
image

Quantization

Codeword
creation

Codeword
distribution
estimation

Histogram
normalization

Figure 5.26: Adopted local phase quantization feature extraction pipeline

114

5.4 COLOR FEATURES

The first steps in the pipeline of Fig. 5.26 are in common with the pipeline

of the texture descriptor of Section 5.4.1 and simply consist in converting the

acquired color image in grayscale and extract the hand region with the aid of

the hand mask obtained in the previous chapters. Note how the hand mask

may, again, be also used to avoid the computation of the LPQ features for the

background pixels within the extracted hand patch.

Then, the method computes for each pixel iGu,v the Fourier transform within

a texture patch of size m ×m with center in (u, v). While the Discrete Fourier

Transform (DFT) is suitable when applied to the whole image, in this case the

Short-Time Fourier Transform (STFT), widely used in signal processing, is more

appropriate since the spectrum is only computed within a limited patch.

Let F (iGu,v, f), with f = [fu fv] denoting the horizontal and vertical frequency

vector, be the STFT of the texture patch centered on the image pixel at position

(u, v). Note how f ∈ {f1, f2, . . . , fL} with L the support length of F (iGu,v, f) which

corresponds to the support length of the frequency response of the positive values

of the PSF in order to maintain the blur phase invariance property. While the

concatenation of all the F (iGu,v, f) phase vectors could be directly used as a texture

descriptor, its length and the space required to encode the real phase values would

make it impractically usable.

For this reason, the LPQ algorithm first performs a quantization of the SFTF

phase according to Eq. 5.36.

Q(F (iGu,v, f)) = sgn(<F (iGu,v, f)) + 2 sgn(=F (iGu,v, f)) (5.36)

where Q ∈ {0, 1, 2, 3}, <(·) and =(·) denote respectively the real and imagi-

nary part of the frequency response and, the sign function this time assigns 1 to

positive values and 0 to the negative ones. It is worth noting that Eq. 5.36 does

not require an explicit computation of the phase angle. The L coefficients have

been previously decorrelated [65] since correlated coefficients would not carry

relevant information.

The quantized phase values for the L frequencies are then represented by 2-bit

codewords aggregated in a unique codeword CW (iGu,v) of 2L bits (Eq. 5.37) which

ranges from 0 to 22L − 1.

CW (iGu,v) =
L∑
i=1

Q(F (iGu,v, fi))2
i−1 (5.37)

115

5. FEATURE EXTRACTION

After computing the codewords encoding all the local patches, the method

builds an histogram with 22L − 1 bins (one per codeword) representing the dis-

tribution of the codewords for the image IG. The histogram is then normalized

in order to make the sum of each scaled codeword frequency value unitary [65].

The extracted descriptor corresponds, then, to the normalized histogram of

the codeword frequencies. In the experiments of Chapter 7, instead, the final

descriptor is made by the concatenation of two codeword distribution histograms

computed for texture patches of size 3× 3 and 5× 5 in order to carry an higher

amount of information on the pixel neighborhoods [66, 64], analogously to the

curvature distribution histograms in Section 5.1.4. The rationale is that when

using small values of m the lower frequencies capture more details of the un-

derlining image patch but reduce the insensitivity of the method to the image

blur, while higher values of m lead to a better blur insensitivity but reduce the

descriptor discrimination capability.

5.4.3 Local ternary patterns (LTP)

Local Ternary Patterns (LTP) [67] is another computationally efficient nonpara-

metric local image descriptor widely used in face detection algorithms [68].

It is based on encoding the information contained in a texture patch of size

m×m with a codeword that will be either used as a single feature or aggregated

in local histograms representing the codeword distribution in a wider region.

This descriptor is a generalization of the Local Binary Pattern (LBP) [69] with

an higher discrimination capability and a lower sensitivity to noise in uniform

regions.

Both LBP and LTP extraction algorithms consist in a binary thresholding of

the pixel intensities in the neighborhood (usually a 8-neighbors) on the basis of

the intensity of the central pixel of the texture patch, followed by the encoding in

a binary or ternary codeword composed by concatenating the binary or ternary

digits associated to the neighboring pixels.

The LBP and LTP codeword extraction is formalized in Eq. 5.38.

LBP (uc, vc) =
7∑

n=0

2nsb(in, ic) with sb(in, ic) =

{
1 if in ≥ ic

0 otherwise

LTP (uc, vc, t) =
7∑

n=0

3nst(in, ic, t) with st(in, ic, t) =

1 if in ≥ ic + t

0 if |in − ic| < t

−1 if in ≤ ic − t
(5.38)

116

5.4 COLOR FEATURES

where ic and in denote respectively the intensities of the central pixel of the

image patch and the one of the n-th pixel in its neighborhood, sb(·) and st(·)
respectively a binary and a ternary thresholding functions.

It is worth noting that, because of sb(·), LBP is highly sensitive to the image

noise since very high or very low pixel intensities due to noise may corrupt the

extracted codeword. LTP, instead, thanks to the global threshold t that accounts

for the image noise, is less sensitive to the codeword corruption due to local

fluctuations of the pixel intensities caused by noise.

Moreover, both in this work and the original version of [67] the LTP descriptor

computation is actually decomposed in the extraction of two LBP descriptors,

where the second one is obtained by inverting the threshoding function sb(·)
(Fig. 5.27). The two sub-descriptors are then only aggregated in the final phase.

78 99 50

54 54 49

57 12 13

1 1 0

0 0

0 -1 -1[54-t, 54+t], t=5

Ternary
threshold

Pixel patch Ternary code

1100(-1)(-1)00

1 1 0

0 0

0 0 0

Upper
binary code

11000000

0 0 0

0 0

0 1 1

Lower
binary code

00001100

Bina
ry

sp
lit

Binarysplit

Figure 5.27: LTP descriptor split in two LBP codewords

Fig. 5.28 reports the pipeline of the used LTP feature extraction algorithm.

The first steps in the pipeline of Fig. 5.28 consist in the extraction of the

hand region from the grayscale image using the information provided by the

hand depth mask, followed by a few pre-processing steps aimed at enhancing the

local dynamic range of the image in dark or shaded regions while compressing

it in bright areas (gamma correction) and augmenting the edges contrast with

techniques of image sharpening based on the difference of gaussians (DoG).

117

5. FEATURE EXTRACTION

Hand
mask

Gray scale
conversion

Image
crop

Gamma
correction

LTP
features

Color
image

Image
sharpening

Masking

Contrast
equalization

LTP
extraction

LTP
histograms

computation

LTP
histograms
aggregation

Figure 5.28: Pipeline of the LTP descriptor extraction algorithm

Then, the enhanced image is masked with the previously defined hand binary

depth mask in order to avoid the extraction of codewords of pixels referred to the

background that may disrupt the final descriptor.

The final pre-processing step consists in equalizing the image contrast in order

to make the extracted descriptor independent from the high or low pixel intensity

dynamic range variations among different frames.

A pair of dynamic codewords is then computed for each non-masked pixel

in the hand region with the approach exemplified in Fig. 5.27 and a codeword

histogram is generated for each texture patch of the image partitioned in a grid.

The final descriptor consists in the concatenation of the normalized histograms of

each image patch. Note how, indeed, the descriptor is made by the juxtaposition

of the feature vectors generated by the two LBP sub-descriptors.

The current work evaluates two variations [64] of the original approach of [67]:

the first variation defines neighborhoods of different size (eg., 8-neighborhood and

16-neighborhood in the tests of Chapter 7) to deal with textures at varying scales,

while the second one only adopts uniform binary codewords exactly containing

at most one transition 0-1 and one 1-0 which represent primitive structural in-

formation like edges and corners.

118

Chapter 6

Feature classification

The third and last main step in the gesture recognition pipeline of Section 1.3

consists in classifying the feature vectors extracted in Chapter 5 in order to re-

liably recognize the performed gestures. Classification makes use of a gesture

recognition model previously computed on a feature vector set, extracted from a

given dataset containing several repetitions (e.g. matched color images and depth

maps) performed by different people of gestures from the selected dictionary, with

a proper machine learning technique.

Approaches based on Support Vector Machines, Decisional Trees, Neural Net-

works, genetic algorithms and many others have been proposed in literature to

tackle automatic gesture recognition and several other computer vision problems.

Presenting a complete taxonomy of the various machine learning methods in lit-

erature, though, is beyond the scopes of this chapter, that limits the analysis to

the classification algorithms used for the tests of Chapter 7. A more thorough

treatment of the classification problem can be found in [70].

The chapter is articulated as follows: Section 6.1 and 6.2 shortly describe

two single classifiers that have been employed for several years for the solution of

computer vision tasks due to their computational efficiency and broad diffusion.

Section 6.3 shows how more complex and robust classifiers can be built by as-

sembling several learners, both of the same or different types. Section 6.4 reports

a few useful algorithms that may be employed to extract a minimal subset of

most relevant features which boost the classification performance without sensi-

bly affecting the estimated classification model accuracy. Eventually, the chapter

presents a few metrics used to compare the actual performance of the considered

classifiers in this work.

119

6. FEATURE CLASSIFICATION

6.1 Support vector machines (SVM)

Support Vector Machines [23] are linear binary classifiers used both for classifi-

cation and regression tasks. Given a training set X of N vectors xi ∈ RF , i =

1, . . . , N of F features and a vector of labels y ∈ {1,−1}F , SVM finds the best

hyperplane separating the feature vectors in the feature space RF by solving the

quadratic optimization problem of Eq. 6.1.

(w∗, b∗, ξ∗) = argmin
(w,b,ξ)

{
1

2
wwT + C

N∑
i=1

ξi

}
subject to yi(w

Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N

(6.1)

where C is a penalty parameter on the training error. For any testing vector

x, after the estimation of the best (w, b, ξ) the predictor assigns a class to x

according to Eq. 6.2.

f(x) = sgn(wTx + b) ∈ {−1, 1} (6.2)

Note how the result of Eq. 6.2 is a value indicating in which of the two semi

spaces of RF separated by the hyperplane defined by w and b the feature vector

x is located. Usually the best hyperplane is the one maximizing its distance from

each separated sample. An example of separating hyperplanes defined by w and

b in a bidimensional space is shown in Fig. 6.1.

The original SVM implementation, though, may be only used in case of lin-

early separable samples. Several computer vision tasks, including automatic ges-

ture recognition present, instead, feature vectors living in highly nonlinear feature

spaces, that are then not separable by one or more hyperplanes. For this rea-

son, SVM has been extended with the “kernel trick” in order to map the feature

vectors xi of a non linear space to an higher dimensional space where their trans-

formed versions are linearly separable. Eq. 6.1 and 6.2 are, then, slightly modified

in Eq. 6.3 and 6.4 respectively to take into account the feature mapping.

(w∗, b∗, ξ∗) = argmin
(w,b,ξ)

{
1

2
wwT + C

N∑
i=1

ξi

}
subject to yi(w · φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N

(6.3)

120

6.1 SUPPORT VECTOR MACHINES (SVM)

x
1

x
2

H
1
=(w

1
, b

1
) H

2
=(w

2
, b

2
)H

1
=(w

1
, b

1
)

H
3
=(w

3
, b

3
)

Figure 6.1: Example of SVM separating hyper planes: non separating (H1),

separating with a low margin (H2), separating with a high margin (H3)

f(x) = sgn(w · φ(x) + b) ∈ {−1, 1} (6.4)

where φ(x) denotes the map from the original feature space to the higher

dimensional transformed space. This rationale is depicted in Fig. 6.2.

Note how the transform φ(xi) is related to a selected kernel function k(xi,xj) =

φ(xi) ·φ(xj) and the dot product w ·φ(x) is again expressed in terms of the kernel

function w · φ(x) =
N∑
i=1

αiyik(xi,x), with w =
N∑
i=1

αiyiφ(xi) in the transformed

space. The map φ(·) does not change the original SVM algorithm but only modi-

fies the input vectors xi. Operationally, the dot product w ·φ(x) can be visualized

as wTx′ with x′ the projected vector x in the linear feature space.

Several kernel functions are present in literature:

• Linear kernel: k(xi,xj) = xi
Txj

• Polynomial kernel: k(xi,xj) = (γxi
Txj + δ)n with n degree of the poly-

nomial

• Radial kernel: k(xi,xj) = C exp(−γ‖xi − xj‖)2

• Sigmoid kernel: k(xi,xj) = C tanh(γxi
Txj + δ)

121

6. FEATURE CLASSIFICATION

Figure 6.2: Feature vector mapping in a kernel SVM classifier

The radial kernel, though, is the most used in several classification methods

based on SVM.

As stated previously, Support Vector Machines were originally binary classi-

fiers and are therefore not directly usable as predictors in multi-class classification

tasks like the automatic gesture recognition presented in this thesis. More recent

implementations extended the original method of [23] to the multi-class classifi-

cation and regression case. Some of them consist in decomposing the multi-class

classification problem in multiple independent binary classification tasks, e.g.,

the “one against one” approach of [71] trains a set of K(K − 1)/2 binary SVM

classifiers used to test all the K classes against each other. Each classification

output is then chosen as a vote for a certain class and the class that obtained the

maximum number of votes is assigned to the input feature vector. This is the

method implemented by LibSVM [72], widely employed in the proposed gesture

recognition framework (with K = G cardinality of the gesture dictionary in this

case).

Both for the binary and the multi-class extension of SVM, setting the proper

values for the selected kernel parameters is not a trivial task, as slight parameter

variations may sometimes lead to high differences in the estimated model accuracy

on the same dataset. Grid Search [72] is de facto standard way of performing

the kernel parameter optimization, and consists in a simple exhaustive searching

through a manually specified subset of the parameter space. The algorithm is

driven by a proper performance metric for the tested parameter values, which

is usually the cross-validation on the training set. A naive implementation of

Grid Search simply tests every possible parameter combination value, selecting

122

6.1 SUPPORT VECTOR MACHINES (SVM)

the one maximizing the performance metric. As each combination can be tested

independently from the others, the best parameter search is highly parallelizable

but continues to suffer from the “curse of dimensionality”. The work in this thesis

uses a radial kernel for the gesture recognition purposes, as it offered the highest

performance among all the previous kernels. In this case, the search space for the

Grid Search algorithm is bidimensional, since the radial kernel only requires the

optimization of two parameters.

Another serious problem in parameter optimization, especially with training

sets of low cardinality, is the high risk of overfitting, namely the low generalization

on the trained model. The model trained with the estimated optimal parameters

for a given training set, that is the parameter values maximizing the expected

model accuracy may, in fact, have poor performance with new feature vectors

not accounted in the parameter optimization. This is more likely to happen

with small training sets, as they usually not contain exhaustive data to represent

the variability of real data. Moreover, as most classification approaches require

separate training and test sets, the problem is more serious in this case as the

original dataset splitting further reduces the cardinality of the training set. While

in certain situations the problem can be tackled by using or building new datasets

with an higher cardinality, in other cases this is not possible, for example when

the same small datasets are shared among various research groups to compare

the performance of the respective gesture recognition algorithms. This is the case

of the datasets employed in the experiments of Chapter 7.

For these reasons, this thesis proposes a new gesture recognition model train-

ing approach based on Grid Search and exploiting the whole dataset while re-

ducing the over-fitting of the estimated model parameter values [54]. Consider a

training setD containing data from N users. The main idea of the proposed learn-

ing protocol consists in training N independent sub-models Mi for i = 1, . . . , N

and considering the average of their estimated accuracies as the overall gesture

recognition approach accuracy. Let Pi ⊂ D denote the subset of the feature

vectors of dataset D extracted from the person’s Pi data only. Each model Mi,

referred to a separate person Pi in the dataset, is trained on the subset Ti = D\Pi
and validated on Vi = Pi, namely the feature vectors associated to person Pi are

only used to test the accuracy of the model trained on the other people data in

the dataset. This rationale ensures the training of each separate model Mi is not

biased by the selected validation data, and offers a better generalization as the

whole dataset is exploited by varying the training and validation sets.

The proposed training protocol, exemplified in Fig. 6.3, estimates the best

123

6. FEATURE CLASSIFICATION

parameter values for the radial kernel of a SVM classifier trained on Ti of each

submodel Mi. Such estimation exploits an ad-hoc variation of the classic Grid

Search approach named “leave-one-person-out”: while the classic implementation

of Grid Search selects the best parameter values maximizing the cross-validation

on the set Ti, which is based on K random partitioning (a common value for K is

5) of Ti in a training and a validation sets, the proposed variation uses N −1 pre-

defined partitioning following the same rationale of the submodel Mi definition.

More specifically the method, for each training set Ti and each parameter pair

(γ, C), trains N − 1 submodels Mi,j, j = 1, . . . , N − 1 on the subsets Ti,j = Ti \Vj
with Vj = Pj ⊂ Ti and selects the best pair (γ∗i , C

∗
i) maximizing the average

validation accuracy on the subsets Vi,j.

M1

P1 P2 PNP3

M2

P1 P2 PNP3

MN

P1 P2 PNP3

PN-1

PN-1

PN-1

...

...

...

.

.

.

Figure 6.3: Leave-one-person-out approach

It is worth noting that the approach of Fig. 6.3 may be only used to estimate

the theoretical accuracy of the gesture recognition approach from a small dataset

describing the gesture dictionary of interest. The final model M , to be used in a

given gesture recognition application, has to be trained using the same approach

used to optimize the parameters for each model Mi replacing Ti with D.

124

6.2 RANDOM FORESTS

6.2 Random forests

Random Forests [26] is a powerful classifier based on growing several classification

trees each one voting for a certain class. Given a new feature vector to classify,

each tree in the forest votes for a class and the class obtaining the majority of

the votes will be assigned to to the input vector.

Each tree is grown as follows:

• If the training set T contains N feature vectors xi ∈ RF , sample N vectors

randomly with replacement from T to build the training set Tb for the b-th

tree in the forest. Note how Tb is more likely to contain several repeated

vectors.

• Select a number f << F of features such that at each node in a given tree

f features are sampled randomly from the feature space, and the best split

from them is used to split the node. Note how f is held constant during

the forest growing.

• Each tree is grown to the largest extent possible. No pruning criteria is

used for early terminating its growth.

Random Forests is, then, a variation of the bootstrap aggregating [73] (or

“bagging”) technique for tree learners. While tree bagging determines the best

split at each node of the tree from the whole feature set, Random Forests only

use a random subset of features (feature bagging). This expedient reduces the

effect of a serious draw-back of tree bagging, that is the tree correlation: features

acting as strong predictors in bagged trees are more likely to be select for node

splitting in each tree, that are then highly correlated and do not carry any useful

information.

Analogously to tree bagging, increasing arbitrarily the number of trees in a

Random Forest decreases the model variance (that is the sensitivity to fluctua-

tions in the data) without affecting the bias, that is, the training and test errors

tend to level off after training a sufficient number of trees, as shown in Fig. 6.4.

The Random Forests error rate depends, then, on two aspects:

• The correlation between any two trees in the forest. Increasing the correla-

tion increases the forest classification error rate.

• The strength of each individual tree in the forest. A tree with a low error

rate is a strong classifier. Increasing the strength of the individual trees

decreases the forest error rate.

125

6. FEATURE CLASSIFICATION

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Classification error over the number of trained trees

Number of trees

Cl
as

si
fic

at
io

n
er

ro
r

Figure 6.4: Example of out-of-bag error variation over the number of trained trees

Reducing the number of randomly sampled features f at each node reduces

both the correlation and the strength, while increasing it increases them both.

The optimal value of f is a trade-off between the tree mutual correlation and the

classifier strength trained on each tree. The evaluation of the out-of-bag error rate

is a good way to detect a suitable value for f . Note how f is the only adjustable

parameter to which random forests is somewhat sensitive, compared to the two

or more parameters for an SVM classifier.

When the training set for a given tree in the forest is drawn by sampling with

replacement, about one-third of the feature vectors are left out of the sample.

This oob (out-of-bag) data is used to get a running unbiased estimate of the clas-

sification error as trees are added to the forest. Namely, the oob data constitutes

the validation set for the considered tree in the forest. More specifically, after

training the trees on their separate training sets Tb, for each feature vector xi of

the full training set T xi is assigned the class which received the highest number

of votes accounted only from the trees for which xi was an out-of-bag feature

vector (namely, the trees for which xi was not selected as a training vector). The

out-of-bag classification error is, then, the ratio of the misclassified feature vectors

xi over the full training set size N , where each xi was only tested by the subset

of trees in the Random Forest for which xi was an oob feature vector.

Note how the out-of-bag error is also used to get estimates of a feature im-

portance, as will be described more in detail in Section 6.4.3.

126

6.3 ENSEMBLES OF CLASSIFIERS

6.3 Ensembles of classifiers

Several machine learning approaches, especially the earliest proposed in literature,

tackle the classification problem by training a single classifier on given dataset

D. The classifier parameters are usually previously tuned in order to maximize a

performance metric, e.g. the estimated classification accuracy of the model built

on D. Machine learning based on single classifiers is, however, affected by several

problems, for example:

• Feature vector length: the computational load required to train a classi-

fication model increases dramatically with the length of the feature vectors

in D.

• Classification bias: the classification model trained on D may suffer of

an high over-fitting, with a consequent sensible drop on the classification

accuracy of new data (feature vectors not contained in D).

The first problem can be tackled by training a set of independent homoge-

neous classifiers [74], each one considering only a subset of the features in D,

and formulate the final decision by combining their individual opinions to derive

a consensus response. The rationale is reducing the computational complexity

by partitioning the original problem in several independent sub-problems, which

may be solved in parallel.

The second problem can be solved with the same approach but exploiting

an ensemble of heterogeneous classifiers, each one capable of capturing different

relevant properties of the selected features. Other classification schemes adopt en-

sembles of classifiers trained on different datasets or even ensembles of ensembles

of classifiers in a hierarchical fashion.

Consider a generic pattern recognition problem where a feature vector x has

to be assigned to one of the K possible classes c1, . . . , cK . Assume also to have

R classifiers, each one trained on a different subset of features of x, with xi for

i = 1, . . . , R feature vector for the i-th classifier. Note how xi may denote, instead,

a different measurement vector on the same pattern in case of heterogeneous clas-

sifiers. In the measurement space each class ck can be modeled by its distribution

P (xi|ck) among the feature vectors of the dataset and its a priori probability of

occurrence denoted by P (ck). According to the Bayesian theory, given the mea-

surement vectors xi, i = 1, . . . , R, x should be assigned by the ensemble to the

class c maximizing the a posteriori probability of that interpretation (Eq. 6.5).

127

6. FEATURE CLASSIFICATION

c = arg max
ck

P (ck|x1,x1, ...,xR) (6.5)

Eq. 6.5 states that, in order to exploit all the available information to cor-

rectly make a proper decision, it is essential to compute the probabilities of the

various hypotheses (namely, the assignment of x to another class) by considering

all the measurements x1, . . . ,xR simultaneously. This is theoretically correct, al-

though impractically solvable as the computation of the a posteriori probability

functions P (ck|x1, . . . ,xR) would require the knowledge of the joint distributions

P (x1, . . . ,xR|ck) which would be difficult to infer.

Practical applications of the rule of Eq. 6.5 attempt to simplify and ex-

press it in terms of intermediate decision support computations performed by the

individual classifiers, each one exploiting only the information provided by the

relative measurement vectors (or in this case, feature vectors) xi. The first step

starts from the application of the Bayes theorem to the a posteriori probability

P (ck|x1, . . . ,xR) to express it in a more manageable form (Eq. 6.6).

P (ck|x1, . . . ,xR) =
P (x1, . . . ,xR|ck)P (ck)

P (x1, . . . ,xR)
(6.6)

where P (x1, . . . ,xR) is the unconditional measurement joint distribution,

which in turn can be expressed in terms of the conditional measurement dis-

tributions as in Eq. 6.7:

P (x1, . . . ,xR) =
K∑
k=1

P (x1, . . . ,xR|ck)P (ck) (6.7)

Now, P (x1, . . . ,xR|ck) represents the joint probability distribution of the mea-

surements extracted by the classifiers, and P (ck) is obtained from the dataset D
statistics (e.g., P (ck) can be the ratio of the number of feature vectors belonging

to class ck in D and the dataset cardinality |D|).
Assuming the classifiers in the ensemble are conditionally statistically inde-

pendent, Eq. 6.6 may be rewritten as:

P (ck|x1, . . . ,xR) =

P (ck)
R∏
i=1

P (xi|ck)

K∑
j=1

P (cj)
R∏
i=1

P (xi|cj)
(6.8)

128

6.3 ENSEMBLES OF CLASSIFIERS

By replacing Eq 6.8 in Eq. 6.5, the latter can be rewritten as Eq. 6.9 [75].

c = argmax
ck

{
P−(R−1)(ck)

R∏
i=1

P (ck|xi)

}
(6.9)

where P (ck|xi) is given by the i-th classifier (e.g., LibSVM[72] offers the

computation of P (ck|xi) as an option). Often the the a posteriori probabili-

ties P (ck|xi) computed by the respective classifiers do not deviate dramatically

from the prior probabilities P (ck), especially in presence of noise in the measure-

ments, rather common when using low-cost sensors. In this case, Eq. 6.9 may be

rewritten as the sum rule [75] (Eq. 6.10)

c = argmax
ck

{
(1−R)P (ck) +

R∑
i=1

P (ck|xi)

}
(6.10)

As showed in [75], there are several other decision rules for the class assignment

alternative to the product rule (Eq. 6.9) and the sum rule (Eq. 6.10), although

the sum rule may be proved theoretically that outperforms the other classifier

combination schemes. For this reason, it is often use in in methods exploiting

ensembles of classifiers (e.g., [74]).

The remaining part of this section describes briefly how different kinds of

ensembles of classifiers have been used to improve the recognition accuracy of

the gesture recognition approach in this work. Their performance are analyzed

in Chapter 7.

6.3.1 Random subspace ensemble

Automatic hand gesture recognition is a difficult task not only for the hand

detection and segmentation problems, but also for the classification of feature

vectors with an high dimensionality (e.g., see curvature features of Section 5.1.4)

selected from low cardinality datasets.

Random Subspace ensemble (RS) [66, 64, 76] is a valid approach for designing

ensembles of classifiers often used in case of datasets affected by the “dimension-

ality curse”, due to the classification performance improvements it offers also in

challenging cases. It is based on the perturbation of features: each classifier is

trained on a training set obtained by reducing the dimensionality of the original

dataset by randomly subsampling the features.

129

6. FEATURE CLASSIFICATION

Given a collection of N training samples xi ∈ RF , of K classes ck, k =

1, . . . , K, Random Subspace randomly selects M < F features without replace-

ment from the original feature space and creates a new training set by projecting

each sample into RM . This procedure is repeated L times where L is the number

of final classifiers combined by the sum rule (Eq. 6.10) to formulate the final de-

cision. Note how the single classifiers can be trained on different feature subsets

of size M . For the tests of Chapter 7, the ensemble parameters have been set to

L = F/2, M = 50 and support vector machines (SVM) from LibSVM were used

as single classifiers.

It is worth noting that the sum rule in this practical case is simpler than the

one of Eq. 6.10 [77], and is reported in Eq. 6.11.

c = argmax
ck

{
1

K

L∑
i=1

P (ck|xi)

}
(6.11)

A great advantage of RS ensembles compared to many other ensemble meth-

ods is that they can be coupled to any kind of single classifier and they only

need to set two parameters: L, the ensemble size, and M , the size of the feature

subsets.

6.3.2 Rotation forest

Rotation Forest [78] is another ensemble of parallel classifiers based on feature

sampling in order to tackle the “dimensionality curse” problem described in the

previous sections.

Let D denote a training set of N feature vectors xi ∈ RF , i = 1, . . . , N of

F features defined in the feature set F . The method is based, for each classifier

Cj, j = 1, . . . , L in the ensemble of L classifiers, on randomly splitting F in

various subsets and applying Principal Component Analysis (PCA) [79] to only

retain the features of F showing an high information variability in the j-th classi-

fier training set Tj ⊂ D. The “rotation” term in the algorithm name comes from

the PCA applied to rotate the features and the “forest” comes from the selection

of the decision trees as base classifiers for the ensemble.

Let, now, X ∈ RN×F be the dataset D expressed in matrix form and Y =

[y1, . . . , yN]T denote the vector of labels yi ∈ C = {c1, . . . , cP} with C the set of

the possible classes assignable to each feature vector x.

The construction of the final classifier, formalized in Alg. 6.1, follows these

steps:

130

6.3 ENSEMBLES OF CLASSIFIERS

1. Split F randomly into K subsets, where K is a parameter of the algorithm.

For simplicity, K should be a factor of F , namely each feature subset should

contain M = F/K features. Note how the subsets can be either disjoint

or intersecting, although the first option is recommended to maximize the

chance of high variability among them.

2. Denote by Fi,j the j-th subset of M features for the classifier Ci, with

j = 1, . . . , K, and by Xi,j the sub matrix of X of the extracted features.

For each Fi,j, select randomly a non empty subset of classes and then draw a

bootstrap sample of objects from Xi,j of size 75% of its cardinality. Let XB
i,j

denote the bootstrap sample. Run PCA on XB
i,j and store the coefficients of

the principal components a1
i,j, . . . , a

Mj

i,j of size M ×1, with Mj ≤M as a few

eigenvalues may be 0. Note that running the PCA on a subset of classes

instead of all of them is done for avoiding to obtain identical coefficients

whenever the same feature set happens to be chosen for different classifiers

[78].

3. Rearrange the obtained vector of coefficients in a sparse “rotation” matrix

Ri ∈ RF×
∑
jMj , as shown in Eq. 6.12.

Ri =

a

(1)
i,1 , a

(2)
i,1 , . . . , a

(M1)
i,1 [0] · · · [0]

[0] a
(1)
i,2 , a

(2)
i,2 , . . . , a

(M2)
i,2 ... [0]

...
...

. . .
...

[0] [0] · · · a
(1)
i,K , a

(2)
i,K , . . . , a

(MK)
i,K

(6.12)

In order to compute the training set Ti for the classifier Ci, the columns

of Ri are first permuted in order to make them correspond to the original

features in the full training set X. Denoting by Ra
i the rearranged rotation

matrix, the training set for Ci is then computed as Ti = XRa
i .

4. Train each single classifier Ci on the extracted datasets Ti and assign to

every feature vector x 6∈ T in exam a class c according to the sum rule (Eq.

6.13).

c← cj = argmax
j

{
1

L

L∑
i=1

Pi,j(xR
a
i)

}
(6.13)

131

6. FEATURE CLASSIFICATION

Where Pi,j(xR
a
i) denotes the probability assigned by classifier Ci of the

ensemble to the hypothesis x belongs to class cj.

Let, now, define an indicator function I(p) ∈ {0, 1} evaluating a predicate

p and returning 1 if the predicate is verified or 0 if not. An alternative

sum rule (Eq. 6.14) exploits the indicator function I(·) to avoid the use of

the often undisclosed probabilities Pi,j(xR
a
i) in favor of the easier to detect

misclassified training vectors [80].

c← cj = argmax
j

{
L∑
i=1

I(Ci(xR
a
i) = yj)

}
(6.14)

Algorithm 6.1 Rotation Forest algorithm
Input:

X ∈ RN×F : training set samples arranged as a matrix

Y ∈ CN×1: label vector for the training set samples

L: the number of classifiers in the ensemble

K: the number of feature subsets for each classifier

Output: The Rotation Forest ensemble classifier

for i = 1, . . . , L do

Split F into K subsets Fi,j, j = 1, . . . , K

for j = 1, . . . , K do

Extract Xi,j from X . The dataset corresponding to the features in Fi,j
Eliminate from Xi,j a random subset of classes (columns)

Select a bootstrap sample XB
i,j from Xi,j of size 75% of Xi,j

Apply PCA to XB
i,j and collect the coefficients a1

i,j, . . . , a
Mj

i,j

end for

Build the rotation rotation matrix Ri according to Eq. 6.12

Build Ra
i rearranging the columns of Ri

Train Ci using (XRa
i ,Y) as training set

end for

. Classification phase:

Input:

x ∈ RF : feature vector to classify

Output: c: the predicted class for the feature vector x

return cj ← argmax
j

{
L∑
i=1

I(Ci(xR
a
i) = yj)

}

132

6.3 ENSEMBLES OF CLASSIFIERS

6.3.3 Adaptive Boosting

Adaptive Boosting [81], also know as “AdaBoost”, is a machine learning meta-

algorithm that can be used in conjunction with many other types of learning

methods to improve their performance. The output of the other learning algo-

rithms, called weak learners in this context, is combined into a weighted sum that

represents the final output of the boosted classifier.

Differently from Random Subsampling and other parallel ensembles, Ad-

aBoost is an iterative training algorithm that at each iteration t adds a weak

learner Ct to the boosted classifier ensemble dependent on the classification per-

formance of the previously trained classifiers C1, . . . , Ct−1.

AdaBoost is also adaptive in the sense that subsequent weak learners are

tweaked in favor of those instances misclassified by previous classifiers. Let, in

fact, D = {x1, . . . ,xN} denote a training set of F -dimensional feature vectors

xi ∈ RF and ht : x→ c ∈ {c1, . . . , cK} the classification function of the classifier

Ct in the ensemble of T classifiers. In this ensemble method, a set of weights

wt,i modeling the feature vector importance and used to sample the training set

for Ct are maintained over D. They are initially set to be equal, namely, all

training instances have the same importance, while in the subsequent iterations

the weights are adjusted so that the weight of the instances misclassified by the

previously trained classifiers is increased whereas that of the correctly classified

ones is decreased. This expedient allows, step by step, to detect the hard instances

and exploit them to train classifiers able to better predict harder instances than

the ones predicted by the classifiers trained in the previous steps.

Let, now, consider again the indicator function I(·) defined in Section 6.3.2.

The misclassification error εt for the ensemble at iteration t both depends on the

training error of the classifier Ct and the weights wt,i assigned to the samples

xi ∈ D in the previous iteration, as formalized in Eq. 6.15.

εt =
N∑
i=1

I(Ct(xi) 6= yi)wt,i (6.15)

Note how the indicator function I(·) is used to only select the weights wt,i

associated to the samples erroneously classified by Ct.

εt has a fundamental importance, as it is at the base of a factor αt =
1
2

ln
(

1−εt
εt

)
that both adjusts the impact of the vote of Ct in the final ensem-

ble and it is used to compute the weights wt+1,i for the next iteration (Eq. 6.16).

133

6. FEATURE CLASSIFICATION

wt+1,i =
wt,i
Zt

{
e−αt Ct(xi) = yi

eαt Ct(xi) 6= yi
(6.16)

where Zt is a normalization factor such that
N∑
i=1

wt+1,i = 1, namely Zt is

selected to make a distribution over the weights wt+1,i.

Once the ensemble has been determined, a given feature vector x is associated

the class c according to the sum rule (Eq. 6.17).

c = argmax
ck

T∑
t=1

αtI(Ct(x) = ck) (6.17)

Note how the indicator function, this time, for each candidate class ck only

selects the weights αt for the classifiers Ct that predicted ck for x. An implemen-

tation of AdaBoost is formalized in Alg. 6.2.

Due to the strong dependence of AdaBoost on the weights wt,i, the algorithm

is highly sensitive to noisy data and outliers, since they corrupt the computed

sample distribution at each step.

In some cases, however, AdaBoost may be less susceptible to the overfitting

problem than other learning algorithms. The individual learners can be weak,

but as long as the performance of each one is slightly better than random guessing

(that is, their error rate is smaller than the 50%), the final model can be proven

to converge to a strong learner.

While almost every learning algorithm tends to suit some problem types better

than others, and has typically several different parameters and configurations to

be adjusted before achieving optimal performance on a given dataset, AdaBoost

is often referred to as the best out-of-the-box classifier as it can be used directly

without requiring an accurate parameter optimization to reach high classification

accuracies.

Finally, several variations of the original AdaBoost approach may be found

in literature (e.g, Real AdaBoost, LogitBoost, Gentle AdaBoost), each one usu-

ally changing the error function or applying pruning techniques to speed-up the

training process. Their treatment, though, is out the scope of this thesis, and the

interested reader is invited to consult the relative literature.

134

6.3 ENSEMBLES OF CLASSIFIERS

Algorithm 6.2 AdaBoost algorithm
Input:

D = {x1, . . . ,xN}: training set samples

y1 . . . , yN : training labels associated to the train samples xi

h : x→ {c1, . . . , cK}: weak learner function

T : number of iterations of the algorithm

w1,i ← 1
N
, i = 1, . . . , N . Weight initialization

for t← 1, . . . , T do

Build the training set Tt ← {xt1, . . . ,xtN} drawing N samples with replace-

ment from D according to the distribution wt,i

Train the classifier Ct on Tt
εt ←

N∑
i=1

I(Ct(xi) 6= yi)wt,i . Misclassification error for Ct

if (εt > 0.5 ∨ εt = 0) then

T ← t− 1

Abort loop

end if

αt ← 1
2

ln
(

1−εt
εt

)
wt+1,i ← wt,i

Zt

{
e−αt Ct(xi) = yi

eαt Ct(xi) 6= yi
. Weight distribution over D update

end for

return c← argmax
ck

T∑
t=1

αtI(Ct(x) = ck) . Predicted class for x

6.3.4 Rotation Boosting

Rotation Boosting [80] is an hybrid classification algorithms based on ensembles

which combines the AdaBoost and Rotation Forest approaches, outperforming

their single performance in accuracy. Recall than an ensemble of classifiers, in

order to achieve a better generalization capability than its constituting members,

must be made by extremely accurate classifiers that, at the same time, also

disagree as much as possible.

RotBoost algorithm, described in Alg. 6.3, consists in training a set of parallel

classifiers using the same approach of Rotation Forest to extract their training

sets, with the difference that each classifier is internally optimized in a sequential

fashion exploiting AdaBoost method. The selected learning algorithm for the

weak classifiers is usually the decision trees, as for AdaBoost and Rotation Forest

used singularly.

135

6. FEATURE CLASSIFICATION

Algorithm 6.3 RotBoost algorithm

Input: X ∈ RN×F : matrix of N training feature vectors of F features

Y ∈ RN : vector of the training set labels.

K: number of feature subsets for the Rotation Forest algorithm

S: number of iterations for Rotation Forest

T : number of iterations for AdaBoost

Output: CRB(x): the computed RotBoost classifier

for s← 1, . . . , S do

Compute the rotation matrix Ra
s for the classifier Cs as in Alg. 6.1

Compute the training set Xs for the classifier Cs as Xs ← XRa
s

Initialize the weight distribution over Xs as w
(i)
s,t ← 1

N

for t← 1, . . . , T do

εs,t ←∞
while εs,t > 0.5 do

w
(i)
s,t ← 1

N
, i = 1, . . . , N

Build the training set Xs,t drawing N samples with replacement from

Xs according to the distribution w
(i)
s,t

Train the classifier Cs,t on Xs,t

εs,t ←
N∑
i=1

I(Cs,t(xi) 6= yi)w
(i)
s,t . Misclassification error for Cs,t

end while

if (εt = 0) then

εs,t ← 10−10

end if

αs,t ← 1
2

ln
(

1−εs,t
εs,t

)
w

(i)
s,t+1 ←

w
(i)
s,t

Zs,t

{
e−αs,t Cs,t(xi) = yi

eαs,t Cs,t(xi) 6= yi
. Update distribution over Xs

end for

Cs(x)← argmax
ck

{αs,tI(Cs,t(x) = ck)} . Classifier Cs vote

end for

return CRB(x)← argmax
ck

S∑
s=1

I(Cs(x) = ck) . Predicted class for x

136

6.3 ENSEMBLES OF CLASSIFIERS

6.3.5 Random subspace ensemble of RotBoost classifiers

Sections 6.3.1, 6.3.2 and 6.3.3 describe briefly a few classification methods exploit-

ing ensembles of classifiers in order to improve the generalization capabilities of

their single components. The hybrid method of Section 6.3.4 further reduces the

classification error of new feature vectors leveraging the complementariness of

AdaBoost with Rotation Forests.

The current section proposes a new hybrid classification approach, called Ran-

dom subspace ensemble of RotBoost classifiers [74, 82], integrating in a hierar-

chical fashion Random Subsampling for the selection of each training set and the

aggregation of the opinions of the weak classifiers in the ensemble for taking the

final decision, and training each of them with a variation of RotBoost in place of

the decision trees employed in the original Random Subsampling algorithm. Dif-

ferently from RotBoost of Section 6.3.4, the employed implementation replaces

PCA with the Neighborhood Preserving Embedding (NPE) feature transform

[66, 64] for dimensionality reduction.

Neighborhood Preserving Embedding (NPE)

Neighborhood Preserving Embedding (NPE) [83] is a technique for dimensional-

ity reduction which aims at preserving the local neighborhood structure on the

data manifold. It has proven to be more effective than PCA in discovering the

underlying nonlinear structure of the data and less sensitive to outliers than other

feature transforms.

NPE starts by building a weight matrix to describe the relationships between

samples, where each sample is described as a weighted combination of its neigh-

bors. Then, an optimal embedding is selected such that the neighborhood struc-

ture is preserved in the reduced space.

Let xi ∈ RF , i = 1, . . . , N denote a generic feature vector of the training set D
represented in a matrix form X ∈ RN×F . Let also G = (V,A) denote a directed

graph having feature vectors xi as nodes. NPE procedure is based on three main

steps:

1. Construct an adjacency graph using a K-nearest neighbors method

For each node pair (xi,xj) ∈ V × V , put a direct edge (arc) from xi to xj

if xj is among the K nearest neighbors of xi according to a given distance

metric, as exemplified in Fig. 6.5. K is a parameter of the algorithm and

the metric in this case is the Euclidean distance.

137

6. FEATURE CLASSIFICATION

x
i

X
j,1

X
l,1

X
l,4

X
j,3

X
j,2

x
k

X
j,4

X
l,3

X
m

X
l,2

X
n,2X

n,3

X
n,1

Figure 6.5: Example of adjacency graph for feature vectors in the Euclidean space

2. Compute the weights of the edges linking the nodes in G
Let W ∈ RN×N denote the matrix of weights wi,j of the arcs in G, with

wi, j = 0 if the arc between xi and xj does not exist. W is computed by

solving the optimization problem of Eq. 6.18.

W ∗ = argmin
W

N∑
i=1

‖xi −
N∑
j=1

wi,jxj‖2

subject to
N∑
j=1

wi,j = 1

(6.18)

138

6.3 ENSEMBLES OF CLASSIFIERS

3. Compute the linear projections

This step aims at computing the linear transform matrix A ∈ RF×D with

D ≤ F projecting the feature vectors xi ∈ RF in their correspondent vectors

yi ∈ RD of the dimensionally reduced space, that is yi = ATxi for i =

1, . . . , N . The column vectors a0, a1, . . . aD−1 of A are the solutions of the

generalized eigenvector problem of Eq. 6.19.

X(I −W)T (I −W)XTa = λXXTa (6.19)

with I identity matrix and λ the eigenvalue associated to the eigenvector

a. A is then constructed as A = [a0, a1, . . . aD−1] by rearranging the eigen-

vectors computed by Eq. 6.19 according to non-decreasing values of their

related eigenvalues, that is λ0 ≤ λ1 ≤ . . . ≤ λD−1.

Note how NPE has two interesting properties:

• it is fast and suitable for real-time applications, being a linear approach.

• It can be performed in either supervised or unsupervised mode. When the

labels of the training patters are available they can be used for building a

better weight matrix W .

Moreover, NPE has several advantages over PCA and other dimensionality

reduction methods in literature, for example:

• PCA as dimensionality reduction method aims at preserving the global

Euclidean structure of the dataset, while NPE aims at preserving the local

neighborhood structure and, for this reason, is less sensible to outliers than

PCA.

• PCA and other methods for dimensionality reduction do not take into ac-

count the actual structure of the underlining datasets. In this way the

local relations among the feature vectors are lost during the dimensionality

reduction process, while NPE maintains them.

139

6. FEATURE CLASSIFICATION

6.4 Feature selection

Classic machine learning based on single classifiers is based on the intuitive idea

that the more extracted features of different types, the higher the recognition

model accuracy due to a larger amount of information available for the class

assignment decision. The high dimensionality of the extracted feature vectors,

however, implies heavy computational loads for the feature extraction.

The ensembles of classifiers aim at reducing the computational load by divid-

ing the original classification problem in a sequential or parallel training of single

learners on subsets of the initial dataset or subsets of the original feature space,

while improving the generalization of the estimated classification model.

Both single classifiers or ensembles, though, unaware of the structure of the

underlining training data, often gain only a modest improvement in the classi-

fication accuracy over a significant increment of the feature vector length and a

consequent higher computational load. The reason of this unfavorable behavior

is due to the possible dependencies among the extracted feature.

Highly correlated features, in fact, bring no additional information when

jointly used, as in front of a change in values of some of them the others change

accordingly. Conversely, highly unncorrelated features may bring a considerable

amount of new information when used together, as the changes of some of them

are independent from the changes of the remaining ones. Moreover, the simple

juxtaposition of uncorrelated and significant features does not necessarily boost

the classification model accuracy, as a limited set of them may already contain

all the information needed to determine the class of the performed gesture with

the maximum possible accuracy.

For these reasons, this section describes a few feature selection methods in

the literature designed to detect the most relevant features of a given dataset and

considered in the proposed framework, in order to train a robust classifier with

the minimum amount of features leading to the maximum classification accuracy.

The following methods have been tested on the features of Chapter 5 for the

automatic hand gesture recognition task, leading to interesting interesting results

reported in Chapter 7. Note how, while certain feature selection algorithms only

depend on the structure of the underlining data disregarding the classification

algorithm, others are only defined for specific learners.

140

6.4 FEATURE SELECTION

6.4.1 Feature selection based on PCA

Principal Component Analysis (PCA) [79] is not properly a feature selection

algorithm itself, but a statistical procedure that may be adapted for this purpose.

PCA uses an orthogonal transformation to convert a set of observations of

possibly correlated variables (in this case a dataset made of feature vectors) into

a set of values of linearly uncorrelated variables called principal components. The

number of principal components is less than or equal to the number of original

variables. This transformation is defined in such a way that the first principal

component has the largest possible variance, that is, accounts for as much of the

variability in the data as possible, and each succeeding component in turn has the

highest variance possible under the constraint that it is orthogonal to (namely,

uncorrelated with) the preceding components. The principal components are

orthogonal because they are the eigenvectors of the covariance matrix, which is

symmetric. PCA is sensitive to the relative scaling of the original variables.

While a thorough treatment of PCA is beyond the scope of this thesis and

an exhaustive description can be found in [84], note only how PCA is a common

dimensionality reduction technique employed in several tasks like compression,

face detection, high dimensionality data visualization and machine learning tech-

niques such as Rotation Forests. An example of PCA applied to a bidimensional

dataset is shown in Fig. 6.6.

Figure 6.6: Example of PCA on a Gaussian bivariate distribution

141

6. FEATURE CLASSIFICATION

The rationale behind PCA for dimensionality reduction and here for feature

selection comes from the definition of the transformed feature vectors by the or-

thogonal transform. Recall, in fact, that PCA may also be visualized as a trans-

formation of the vectors of a multidimensional space (in this case the feature

vector space) in vectors of another multidimensional space whose axis (principal

components) are orthogonal and ordered by non increasing values of variance. By

only selecting the first K principal axis it is possible to reduce the dimension-

ality of the transformed space limiting the information loss, as the variance of

the remaining components is minimal, or equivalently, their contribution in “ex-

plaining” the data variance is neglectable as the data in the transformed space is

almost constant along those axis. In terms of feature importance, the features in

the transformed feature vectors are naturally ordered by relevance, as an higher

variance corresponds to a more significant contribution in the final decision for

the class assignment. According to the Information Theory, in fact, features with

high variance encode an higher information than the ones slowly changing.

For these reasons, this work implemented the algorithm based on Principal

Component Analysis of Alg. 6.4, which consists in selecting the least number of

first features in the transformed space leading to the maximum possible accuracy

of the trained model.

6.4.2 Feature selection based on F-score

This feature selection strategy is, analogously to the method of Section 6.4.1,

based on the selection on a limited set of features according to their F-score [85],

which measures the discrimination of two generic sets of real numbers.

Let xi ∈ RF for i = 1, . . . , N denote, again, a vector of F features of a given

training set T . Let us consider, for clarity sake, a binary classifier C(x) ∈ {−1, 1}
assigning 1 to the feature vectors belonging to considered class and −1 otherwise,

and suppose to partition T in T + and T − = T \ T +, where T + is the subset

of the positive instances of the class and T − of the negatives denoted by xi
+

and xi
− respectively. In case of multiclass classifier, the method must exploit

the one-vs-all or equivalent approaches to reduce the original problem to several

binary sub-problems and average the F-scores computed for each of them.

The F-score of the k-th feature, for k = 1, . . . , F , is defined as:

F (k) ,
(xk

+ − xk)2 + (xk
− − xk)2

1
|T +|−1

|T +|∑
j=1

(x+
j,k − xk

+)2
|T −|∑
j=1

(x−j,k − xk
−)2

(6.20)

142

6.4 FEATURE SELECTION

Algorithm 6.4 Feature selection based on PCA

Input: X ∈ RN×F : training set of N feature vectors of F features

Y: label vector for the training samples in X

C(x): selected classifier

Ta: selected accuracy threshold

Output: c: predicted class for a given feature vector x

P ← PCA(X)

W ← XP

XPCA ← w1 . Feature selection initialization

for i← 2, . . . , N do

Train C with column vectors w1, . . . ,wi and labels Y and store the model

accuracy ai (e.g., with leave-one-person-out approach)

if ((ai−1 < ai) ∧ (ai−1 > Taai) then

XPCA ← [w1, . . . ,wi]

else

Abort loop

end if

end for

w← xTP . Transform input vector

z← [w1, . . . , wK] . Reduced feature vector

c← C(z) . Predict class for the reduced vector z

return c

where xk, xk
+ and xk

− denote the averages of the k-th feature values in T ,

T + and T − respectively, |T |, |T +| and |T −| the whole, postive and negative

dataset cardinalities, x+
j,k and x−j,k the k-th feature value in the j-th feature vector

of T + and T − respectively. The numerator indicates the discrimination between

the positive and negative sets, and the denominator indicates the discrimina-

tion within each of the two sets. The larger the F-score is, the more likely the

considered feature is discriminative.

For this reason, analogously to the feature selection algorithm based on PCA

(Alg. 6.4), the implemented feature selection method based on F-score in the

proposed framework (Alg. 6.5) consists in training a SVM classifier [85] only

using the first K features with the highest F-scores until the model accuracy

does not improve sensibly by considering more than K features.

143

6. FEATURE CLASSIFICATION

Note how F-score, although is one of the fastest and simplest feature selection

strategies, has the big disadvantage of not being able to reveal mutual information

among features.

Algorithm 6.5 Feature selection based on F-Score

Input: X ∈ RN×F : training set of N feature vectors of F features

Y: label vector for the training samples in X

C(x): selected classifier

Ta: selected accuracy threshold

Output: c: predicted class for a given feature vector x

f ← [f1, . . . , fF] . Original feature indexes vector

for k ← 2, . . . , F do

Compute F-Score F (k) for the k-th feature

end for

z ← permutation of the entries of f according to decreasing F-Scores

W ← permutation of the columns of X according to decreasing F-Scores

s← z1 . Feature selection initialization

XF ← w1

for k ← 1, . . . , F do

Train C with column vectors w1, . . . ,wk and labels Y and store the model

accuracy ak (e.g., with leave-one-person-out approach)

if ((ak−1 < ak) ∧ (ak−1 > Taak) then

XF ← [w1, . . . ,wk]

s← [z1, . . . , zk]

else

Abort loop

end if

end for

z← vector of x entries selected by s . Transform input vector

c← C(z) . Predict class for the reduced vector z

return c

144

6.4 FEATURE SELECTION

6.4.3 Feature selection based on Random Forests

This feature selection scheme, analogously to the algorithms of Sections 6.4.1 and

6.4.2, assigns a score to each feature according to its relevance and selects the

first relevant K features maximizing the classification model accuracy.

In this case the full training set D is firstly trained with a Random Forest

classifier [26] and the Out-of-Bag error (Section 6.2) estimated. Then, in order to

measure the importance of the various features, the values of one of the features

in the dataset are permuted and the Out-of-Bag error is estimated again. The

procedure is repeated for each feature and the importance of each feature is given

by the normalized average increase of the Out-of-Bag error after the permutation.

A more detailed description can be found in [86].

6.4.4 Sequential feature selection

Sequential feature selection algorithm [87] is an effective selection scheme based on

iteratively constructing the minimal set of most relevant features maximizing the

accuracy of the classification model. It requires the definition of a search strategy

in the feature research space of size O(2F) with F the number of features, and of

a performance metric on the evaluated possible solution S ∈ {0, 1}F , where S is

a binary string representing the selected feature subset.

There are mainly two search strategies in literature:

• Forward Sequential Selection (FSS): starting from the empty set, the

(greedy) algorithm first evaluates all the possible subsets of 1 feature and

selects the one that maximizes the recognition accuracy of the classifier

trained on it. In the further steps, the algorithm extends incrementally the

feature set with one feature following the same rationale, until adding new

features does not lead to a relevant performance improvement.

• Backward Sequential Selection (BSS): analogously to FSS, the algo-

rithm this time starts from the full feature set and removes one feature per

round until the classification performance does not drop sensibly.

Forward Sequential Selection coupled with SVM as classifier, formalized in

Alg. 6.6, has been evaluated in the experiments of Chapter 7 for the automatic

gesture recognition task. FSS is usable both for classification and for regression.

In the first case, the performance metric is usually the number of misclassified

feature vectors, while in the latter case it is usually the sum of squared errors of

the predictions.

145

6. FEATURE CLASSIFICATION

Algorithm 6.6 Forward Sequential Selection algorithm

. Training phase:

Input:

F = {f1, . . . , fF}: the complete feature set

D = {x1, . . . ,xN}: dataset of N feature vectors of length F

y1, . . . , yN : labels associated to the feature vectors in D
C(x): selected classifier

Ta: selected accuracy threshold

Output: c: predicted class for a given feature vector x

S ← φ . Selected feature subset initialization

R ← F . Set of the not selected features

acc← 0 . Starting accuracy initialization

acc∗ ← 0

repeat

acc← acc∗

for i← 1, . . . , |R| do

Si ← S ∪ {fRi } with fRi the i-th feature contained in R
T ← D only selecting the features indicated in Si
Train C on T and store the model accuracy acci (e.g., with leave-one-

person-out approach)

end for

acc∗ ← max
i
acci

S ← argmax
Si

acci

until acc∗ > Taacc

. Prediction phase:

z← vector of entries of x selected by S . Transform input vector

c← C(z) . Predict class for the reduced vector z

return c

146

6.5 CLASSIFICATION PERFORMANCE

6.5 Classification performance

A final important aspect of the proposed automatic gesture recognition approach,

and more generally of every computer vision task, is the evaluation of the perfor-

mance of the recognition model computed with the selected classifier.

The easiest and most intuitive metric for assessing the model quality is often

the estimated classification accuracy, e.g. the k-fold cross validation on the full

dataset or the ratio of the correctly classified feature vectors of the test set over

the test set cardinality. The main idea in this case consists in selecting the

classification method which outperforms the others on the given training set,

usually after an accurate optimization of the classifier parameters. This rationale,

however, may lead to wrong assumptions as the high estimated classification

accuracy is more likely to be due to the model overfitting on the limited dataset.

The actual capability of the model of correctly classifying new feature vectors

could be, instead, much lower than the expected one.

In order to avoid biased evaluations, literature offers several classification

performance metrics able to assess the actual classification capabilities of the

trained model. This section describes three measures used to test the performance

of the classifiers employed for the automatic hand gesture recognition problem in

this thesis.

6.5.1 Area under the Receiver Operating Characteristic

curve (AUC)

The first metric, originally deployed for binary classifiers and then extended for

the multiclass case, is based on the Receiver Operating Characteristic (ROC)

[88], or ROC curve. ROC is a graphical plot that illustrates the performance of

a binary classifier system varying its parameters.

The curve is created by plotting the true positive rate against the false positive

rate for different configurations of the classifier parameters. The true positive

rate is also known as sensitivity in biomedicine, or recall in machine learning.

The false positive rate is also known as the fall-out and can be calculated as

(1 - specificity). The ROC curve is then the sensitivity as a function of fall-out.

Generally, if the probability distributions for both detection and false positive are

known, the ROC curve can be generated by plotting the cumulative distribution

function (area under the probability distribution from−∞ to +∞ of the detection

probability in the y-axis versus the cumulative distribution function of the false-

positive probability in x-axis).

147

6. FEATURE CLASSIFICATION

Fig. 6.8 compares the predictive powers of a few classifiers in the ROC space

for determined settings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Space

(1 − speci�city)

Se
ns

iti
vi

ty

D

A

C

B

Better

Worse

Figure 6.7: Comparison of the predictive power of different classifiers in the ROC

space: good (A), random guess (B), poor (C), best (D)

ROC analysis provides tools to select possibly optimal models and to discard

suboptimal ones independently from (and prior to specifying) the cost context or

the class distribution. In particular, the area under the ROC curve (AUC), can

be interpreted as the probability that the classifier will assign an higher score to

a randomly chosen positive sample than it would to a randomly chosen negative

one, assuming that higher scores are referred to the samples belonging to a given

class. Namely, AUC is a measure of the classifier discrimination, that is its

capability of correctly classifying a random pair of feature vectors where the one

is a positive sample and the other not.

In the multi-class problem, AUC is calculated using the one-versus-all ap-

proach [70]: a given class is considered as “positive” and all the other classes are

considered as “negative”) and the average AUC is reported.

148

6.5 CLASSIFICATION PERFORMANCE

6.5.2 Wilcoxon Signed-Rank Test

Wilcoxon signed-rank test [89] is an algorithm for measuring the differences in

performance of two classifiers C1(x) and C2(x) on the same dataset D of N feature

vectors, or a set of N different datasets Di, i = 1, . . . , N , to assess which classifier

better performs.

The test ranks the differences in performance or score of two classifiers for each

sample or data set, ignoring the signs, and compares the ranks for the positive

and the negative differences. Let di denote the difference between the scores

of the two classifiers on the i-th sample or dataset. The differences are ranked

according to their absolute values, and average ranks are assigned in case of ties,

as exemplified in Table 6.1 which compares the accuracy of the C4.5 classification

algorithm [90] on different datasets for two parametrizations.

C4.5 (unoptimized) C4.5 (optimized) Difference Rank

adult (sample) 0.763 0.768 +0.005 3.5

breast cancer 0.599 0.591 0.008 7

breast cancer wisconsin 0.954 0.971 +0.017 9

cmc 0.628 0.661 +0.033 12

ionosphere 0.882 0.888 +0.006 5

iris 0.936 0.931 0.005 3.5

liver disorders 0.661 0.668 +0.007 6

lung cancer 0.583 0.583 0.000 1.5

lymphography 0.775 0.838 +0.063 14

mushroom 1.000 1.000 0.000 1.5

primary tumor 0.940 0.962 +0.022 11

rheum 0.619 0.666 +0.047 13

voting 0.972 0.981 +0.009 8

wine 0.957 0.978 +0.021 10

Table 6.1: Example of Wilcoxon Signed-Ranks Test ranks

Let, now, R+ denote the sum of ranks for the data sets on which the second

algorithm outperformed the first, and R the sum of ranks for the opposite, as

reported in Eq. 6.21. The ranks of di = 0 are split evenly among the sums,

ignoring one di in case of an odd number of them.

149

6. FEATURE CLASSIFICATION

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)
(6.21)

Let also T denote the smallest sum betweenR+ andR−, that is T = min{R+, R}.
T , along withN and the confidence value α (often α = 0.005), determines whether

the null hypothesis, that is the hypothesis the two classifiers perform equally well,

can be considered valid or not. Note how the first critical values for T are pre-

computed in Table 6.2, also reported in several books of statistics.

N α = 0.05 α = 0.01 N α = 0.05 α = 0.01

5 – – 18 40 27

6 0 – 19 46 32

7 2 – 20 52 37

8 3 0 21 58 42

9 5 1 22 65 48

10 8 3 23 73 54

11 10 5 24 81 61

12 13 7 25 89 68

13 17 9 26 98 75

14 21 12 27 107 83

15 25 15 28 116 91

16 29 19 29 126 100

17 34 23 30 137 109

Table 6.2: Wilcoxon critic values look-up-table

According to this test, the two classifiers have actual different performance

only if T (α,N) < Tcrit(α,N) with Tcrit critical value for T in case of N ≤ 25 with

a confidence value of α.

For example, Table 6.1 compares the performance of two classifiers on N = 14

datasets, where the first classifier parameters have not been optimized while the

second one have been fully optimized. R+ = 93 and R− = 12, so T = 12.

According to Table 6.2, for N = 14 and α = 0.05 the null hypothesis can be

discarded only if T < Tcrit = 21. Since T = 12, the fully optimized classifier

actually outperforms its unoptimized version.

150

6.5 CLASSIFICATION PERFORMANCE

For an higher number of datasets or samples, the test requires the computation

of the z-score (from the Normal distribution, called “Z-Distribution” in statistics)

with Eq. 6.22.

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(6.22)

In this case, for a two-tailed distribution (as the test is only interested in

the absolute difference of the classifier scores) the null hypothesis can be only

discarded if the area under the normal distribution for the computed z-score in

Eq. 6.22 is lower than the area under the curve for the selected α. Recall that

the area under the normal curve represents the probability that the difference in

performance between the two classifiers only happen by chance.

For example, α = 0.05 corresponds to an area under the normal curve of α/2 =

0.025 as we are considering a two-tailed distribution, which in turn corresponds

to a z-score of −1.96. It follows that, for α = 0.05, the null-hypothesis can be

only rejected if z is smaller than 1.96, as it would mean that the differences in

performance are most likely to happen not by chance than the given threshold

(in this case of the 95%). Since for T = 12 and N = 14 the computed z-score

in Eq. 6.22 is z = −2.5424 < −1.96, which corresponds to an area under the

normal curve of 0.0055 < 0.025, that is the 0.55% of probability the differences

in performance happend by chance (or equivalently the probability of the 99.45%

they are reliable), the test states again that the optimized classifier actually

outperforms its unoptimized version.

Figure 6.8: Normal distribution

151

6. FEATURE CLASSIFICATION

6.5.3 Q statistics

Q statistics is a statistical metric used to quantify the diversity between pairs of

classifiers by their classification outcomes. In particular, this measure was used in

certain tests in Chapter 7 to assess the presence of a sufficient degree of statistical

independence between pairs of feature sets extracted from the same dataset, a

necessary condition for motivating their combination (or the combination of dif-

ferent classifiers in the same ensemble) in order to improve the overall recognition

performance.

LetD = {(x1, y1), . . . , (xN, yN)} be a labeled data set of F-dimensional feature

vectors xi ∈ RF with labels yi ∈ {c1, . . . , cK} associated toK classes. It is possible

to represent the output of a classifier Cj on D as a N-dimensional binary vector

sj = [s1,j, . . . , sN,j]
T , where si,j = 1 if Cj classified correctly xi and si,j = 0 if not.

Given two classifiers Ci and Cj, the Q statistic for Ci and Cj is defined as:

Qi,j =
N11N00 −N01N10

N11N00 +N01N10
(6.23)

where Nab denotes the number of feature vectors xl of D for which sl,i = a

and sl,j = b, e.g., N10 denotes the number of feature vectors correctly classified

by Ci but misclassified by Cj (Tab. 6.3).

Qi,j assumes values within the range [−1, 1] and, for statistically indepen-

dent classifiers, Qi,j converges to 0. Classifiers that tend to recognize the same

feature vectors correctly have positives values of Q, while those which classifies

erroneously different feature vectors make Q negative.

Cj correct (1) Cj wrong (0)

Ci correct (1) N11 N10

Ci wrong (0) N01 N00

Total: N = N00 +N01 +N10 +N11

Table 6.3: Relationship between a pair of classifiers

For an ensemble of L classifiers, Eq. 6.23 is replaced by Eq. 6.24 computing

the average Q statistic over all the pairs of classifiers.

Qavg =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

Qi,j (6.24)

152

Chapter 7

Results

This Chapter discusses the performance of the proposed automatic hand gesture

recognition framework on the basis of the results gathered from several tests

performed on three selected datasets, each one representing a different “gesture

dictionary” made by a subset of gestures from the American Sign Language.

• MICROSOFT dataset: provided by Microsoft [17], contains R = 10

repetitions of G = 10 gestures performed by P = 10 different people for a

total of N = 1000 frames acquired with a Microsoft Kinect (ver. 1) range

camera. A representative picture for each gesture is shown in Fig. 7.1. The

dataset provides both the RGB image and the associated depth map for all

the frames, although the calibration data is missing.

G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

Figure 7.1: Gestures of MICROSOFT dataset

153

7. RESULTS

• LTTM dataset: acquired in the Multimedia Technology and Telecommu-

nications Lab (LTTM) of the University of Padova with a Microsoft Kinect

(ver. 1) range camera, contains R = 10 repetitions of G = 12 different

gestures performed by P = 14 different people for a total of N = 1680

frames. A representative picture for each gesture is shown in Fig. 7.2

while the complete dataset is made available at the url http://lttm.dei.

unipd.it/paper_data/gesture/, and provides both the RGB image and

the aligned depth map for all the frames.

G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

Figure 7.2: Gestures of LTTM dataset

• LEAPNECT dataset: acquired in the Multimedia Technology and Telecom-

munications Lab (LTTM) of the University of Padova with the hybrid setup

depicted in Fig. 2.21, mabe by a Microsoft Kinect (ver. 1) range cam-

era and a Leap Motion, contains R = 10 repetitions of G = 10 gestures

performed by P = 14 people for a total of N = 1400 different frames.

A representative picture for each gesture is shown in Fig. 7.3 while the

154

http://lttm.dei.unipd.it
http://lttm.dei.unipd.it/paper_data/gesture/
http://lttm.dei.unipd.it/paper_data/gesture/

7.1

complete dataset is made available at the url http://lttm.dei.unipd.

it/downloads/gesture/, and provides the RGB image, the aligned depth

map and the Leap Motion data for all the frames. Note how the two de-

vices have been jointly calibrated using the approach of Section 5.3.1 and

synchronized in time. A software synchronization has been used, since its

precision was sufficient for the recognition of gestures based on static poses.

For gesture based on fast movements, instead, probably a more accurate

synchronization approach would be needed.

G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

Figure 7.3: Gestures of LEAPNECT dataset

It is worth noting that all the datasets described above only contain static

gestures used for automatic sign language interpretation purposes, in order to

compare the proposed gesture recognition algorithm with the other approaches

in literature. Dynamic gesture recognition will probably be a future extension of

the work in this thesis.

The remainder of this chapter is articulated as follows: Sections 7.1 and 7.2

compare respectively the performance of single learners and ensembles of classi-

fiers on the features of Chapter 5 extracted from the considered datasets. Section

7.3 evaluates the dimensionality reduction possibility with the feature selection

methods of Section 6.4, and finally Section 7.4 measures the execution times of the

main steps of proposed gesture recognition algorithm running on a real system.

155

http://lttm.dei.unipd.it/downloads/gesture/
http://lttm.dei.unipd.it/downloads/gesture/

7. RESULTS

7.1 Single classifier performance

This section analyzes the classification performance of the various feature sets

described in Chapter 5 and extracted from the MICROSOFT, LTTM and LEAP-

NECT datasets.

Let, for clarity sake, recall the notation of the considered depth feature vectors

of Chapter 5 in this chapter:

• Fl
1: hand contour distances from the palm center (plot alignment version).

• Fl
2: hand contour distances from the palm center (mask alignment version).

• Fe: hand contour distances from the palm plane.

• Fz
1: hand contour similarities with ZNCC (plot alignment version).

• Fz
2: hand contour similarities with ZNCC (mask alignment version).

• Fs
1: hand contour similarities with SSD (plot alignment version).

• Fs
2: hand contour similarities with SSD (mask alignment version).

• Fc: hand contour curvatures.

• Fa: palm morphology features.

• Fcp: convex hull perimeters ratio.

• Fca: convex hull areas ratio.

• Fcc: convex hull connected components areas ratio.

and the notation of the Leap Motion features of interest:

• Fθ
L: fingertip orientations.

• Fd
L: fingertip distances from the palm center.

• Fe
L: fingertip distances from the palm plane.

• Fp
L: fingertip positions.

156

7.1 SINGLE CLASSIFIER PERFORMANCE

For each gesture, one of the repetitions in the training sets was used for the

distance plot template computation (Eq. 5.8), required for the extraction of

several feature sets.

Table 7.1 reports the estimated recognition accuracies obtained with a single

SVM classifier, implemented in the OpenCV library, trained on the datasets de-

scribed in the chapter introduction. As stated in Section 6.1, the proposed frame-

work exploited a radial kernel optimized with the leave-one-person-out approach.

The combination of multiple descriptors was tackled by simply juxtaposing the

feature vectors belonging to the respective feature sets.

Estimated accuracy (%)

Feature set MICROSOFT LTTM LEAPNECT

Fl
1 85.4 68.4 - (-)

Fl
2 - - 91.9 (94.4)

Fe 56.1 46 - (-)

Fz
1 87.4 60.4 56.8 (57.1)

Fz
2 - - 68.5 (68.7)

Fs
1 49.5 37.8 31.9 (29.5)

Fc 91.1 89.5 87.3 (86.2)

Fa 61.5 45.4 - (-)

Fcp - 37 52.9 (52.9)

Fca - 29.6 29 (30.6)

Fcc - 72 70.5 (71.1)

Fl
1 + Fc 93.4 91.4 - (-)

Fl
2 + Fc - - 92.8 (96.4)

Fz
1 + Fs

1 92.1 78.3 - (-)

Fz
1 + Fc 98.5 91.6 89.7 (-)

Fcp + Fca - 51.2 64 (64.4)

Fl
1 + Fe + Fc 94.7 93.6 - (-)

Fl
1 + Fa + Fc 95.2 92 - (-)

Fca + Fcp + Fcc - 73.2 79.1 (81.3)

Fl
1 + Fe + Fa + Fc 96.4 93.5 - (-)

Fz
1 + Fs

1 + Fcp + Fca + Fcc - 86.8 - (-)

Table 7.1: Comparison of the depth features accuracies for three datasets

157

7. RESULTS

where for LEAPNECT dataset the values inside parentheses are referred to

the case of joint usage of a range camera with the Leap Motion [57], while the

others are referred to the case of usage of the two devices independently [58].

A first consideration on Table 7.1 is that the results of the tests on MI-

CROSOFT dataset are generally much better than the test outcomes on the

remaining datasets. This is an expected result, since MICROSOFT dataset is

made of a limited number of gestures performed by people of the same ethnic

group and age range, thus sharing several physical characteristics, and favorable

lighting and framing conditions (good illumination and camera framing the user’s

hand frontally). MICROSOFT dataset is, then, rather homogeneous.

LTTM and LEAPNECT datasets are, instead, more challenging both because

account for users of different age, sex, physique and ethnic group, and for the

acquisition constraints in certain cases. For example, LEAPNECT acquisition

constrained the hand to move within the limited Leap Motion operating range

preventing the range camera from acquiring the full hand frontally. Moreover,

LEAPNECT dataset contain an higer number of gestures and both LTTM and

LEAPNECT datasets purposely include gestures known to raise several recogni-

tion ambiguities, in order to test the robustness of the proposed gesture recogni-

tion algorithm. Note how, for example, G3, G6 and G9 of LTTM dataset only

show a raised finger, that in G3 and G9 is the same finger completely raised in

the first case and half bent in the latter one.

Hand contour distances from the palm center (Fl
1) alone provide an accuracy

of almost 90% in MICROSOFT dataset and 70% in LTTM one, meaning the

descriptor is able to discriminate most of the performed gestures without requiring

further information. As already stated in Section 5.1.1, this feature set is very

good in capturing the fact that the various fingers are folded over the palm or

raised, an important element in the recognition of several gestures. While this is

true for MICROSOFT and LEAPNECT datasets, where the gestures are strongly

characterized by their hand contours, the accuracy drop in LTTM dataset is due

to a considerable number of gestures sharing the same number of raised fingers in

similar configurations, whose differences are not well captured by this descriptor.

Fig. 7.4 compares the confusion matrices for MICROSOFT and LTTM datasets,

where the cells in yellow denote the true positives and the ones with a different

color the false positives. In particular, the cells in gray account for percentages of

false positives below the 5%, cells in orange the ones within the range [5%, 10%)

and the cells in red percentages of classification failures above 10%. Fig. 7.4(a)

shows that the descriptor is perfectly able to discriminate the close fist gesture

158

7.1 SINGLE CLASSIFIER PERFORMANCE

(G1) from the the other gestures with one or more raised fingers in MICROSOFT

dataset, while it fails sometimes in discriminating gestures containing subsets of

the same raised fingers. For example, G4 is often misclassified as G5 and G5

as G6, which form a kind of sequence in the dataset. This is probably due to

slight misalignment errors of the distance plots or to larger fingers falling between

consequent regions in the gesture templates. The same behavior is shown in Fig.

7.4(b), e.g. with G7 and G8 or G3 and G5 of LTTM dataset.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 1 0 0 0 0 0 0 0 0 0
G2 0 0.87 0 0.03 0 0 0.02 0.08 0 0
G3 0 0.02 0.84 0.02 0.11 0.01 0 0 0 0
G4 0 0 0.09 0.78 0.11 0.01 0 0 0.01 0
G5 0 0 0.02 0.08 0.7 0.19 0 0 0 0.01
G6 0 0 0.02 0 0.05 0.93 0 0 0 0
G7 0 0.01 0 0 0 0 0.81 0.01 0.17 0
G8 0 0 0.02 0.06 0.01 0 0.02 0.82 0 0.07
G9 0.02 0 0 0 0 0 0.06 0.02 0.9 0
G10 0 0 0 0 0.02 0.05 0 0.03 0.01 0.89

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.91 0.07 0 0 0 0.01 0 0 0.01 0 0 0
G2 0.13 0.74 0 0.07 0.01 0.01 0 0 0.03 0 0 0.01
G3 0 0 0.68 0 0.24 0.01 0.01 0.01 0.04 0.01 0 0
G4 0 0.04 0 0.61 0.01 0.01 0.01 0.04 0.14 0 0.01 0.14
G5 0 0 0.17 0.01 0.59 0.03 0.04 0.03 0.09 0.03 0 0.01
G6 0.04 0.04 0.01 0 0.02 0.68 0 0.01 0.15 0.04 0.01 0
G7 0 0 0.01 0.03 0.14 0 0.41 0.41 0 0 0 0.01
G8 0 0.01 0 0.1 0.03 0 0.28 0.56 0 0 0.01 0.02
G9 0.04 0.05 0.11 0.06 0.09 0.2 0.01 0 0.44 0 0 0
G10 0.01 0.01 0.03 0 0.01 0.1 0 0 0.01 0.81 0.01 0.01
G11 0 0.01 0 0.02 0 0.01 0 0.01 0 0.01 0.93 0.01
G12 0 0.02 0 0.06 0.01 0 0.02 0.01 0 0 0.01 0.86

(b) LTTM dataset

Figure 7.4: Distances from the palm center (plot alignment version)

The newest version of the distance descriptor (Fl
2) is the most performing

feature set that alone is able to recognize almost all the gestures in LEAPNECT

dataset. This is both due to an higher number of features respect to the previous

version (180 VS 24 or more), which carry more information, and to the fact that

159

7. RESULTS

the hand outline computed from the depth mask is more accurate than the one

estimated from the 3D finger samples only.

Hand contour distances from the palm plane are, instead, a not very perfor-

mant feature set in general (reporting an accuracy lower than the 60% on overall)

and do not allow to discriminate alone the performed gestures with a sufficient

degree of accuracy (see Fig. 7.5). This is both due to the fact that in most ges-

tures in the selected datasets the fingers are either raised or lay very close to the

palm plane, thus not allowing the descriptor to leverage its real capabilities, and

to the varying accuracy in the plane fitting of Alg. 4.3. Moreover, since the range

cameras do not return a volumetric description of the framed scene but only its

surface geometry, when the fingers occlude a considerable part of the palm region

the plane is more likely to be fitted on the finger samples than on the palm ones.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.77 0 0 0.01 0.11 0.02 0.07 0.01 0.01 0
G2 0 0.62 0.06 0 0.01 0 0.07 0.18 0 0.06
G3 0 0.08 0.84 0 0.01 0 0 0.05 0 0.02
G4 0.01 0 0 0.63 0.28 0.04 0.01 0.01 0 0.02
G5 0.22 0.01 0.02 0.19 0.33 0.12 0 0.04 0 0.07
G6 0.24 0 0 0.11 0.28 0.21 0.03 0.03 0.01 0.09
G7 0.26 0.01 0 0.03 0.03 0 0.52 0.01 0.05 0.09
G8 0.01 0.06 0.09 0.03 0.08 0.03 0.08 0.42 0.01 0.19
G9 0.05 0 0 0 0 0.05 0.08 0.03 0.63 0.16
G10 0.01 0.01 0 0 0 0.06 0.08 0.09 0.11 0.64

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.61 0.01 0 0.01 0 0.23 0 0 0 0.06 0.02 0.06
G2 0 0.81 0 0.08 0.01 0.01 0 0.01 0 0.03 0.04 0.01
G3 0 0.01 0.46 0 0.06 0.01 0.18 0.04 0.22 0.01 0.01 0
G4 0.01 0.06 0 0.68 0 0.01 0 0.04 0.01 0.01 0.04 0.14
G5 0.02 0.05 0.08 0.01 0.35 0.01 0.21 0.06 0.14 0.05 0.01 0
G6 0.5 0.05 0 0.01 0.01 0.27 0 0.01 0.01 0.09 0.01 0.04
G7 0 0.01 0.11 0 0.14 0 0.47 0.1 0.12 0.02 0.01 0.01
G8 0.01 0.06 0.04 0.07 0.16 0.01 0.2 0.16 0.07 0.02 0.09 0.11
G9 0 0.01 0.17 0 0.17 0.01 0.18 0.01 0.42 0.01 0.01 0.01
G10 0.16 0.03 0.04 0.03 0.02 0.12 0 0 0.02 0.45 0.11 0.01
G11 0.09 0.05 0.02 0.13 0.01 0.03 0.01 0.02 0.06 0.1 0.37 0.11
G12 0.13 0.04 0 0.12 0 0.18 0.01 0.01 0 0.01 0.04 0.46

(b) LTTM dataset

Figure 7.5: Distances from the palm plane

160

7.1 SINGLE CLASSIFIER PERFORMANCE

Palm morphology features (Fa), along with distances from the palm plane

ones report, again, a ratherly low accuracy in LTTM dataset (45.4%) and better

results in MICROSOFT dataset (61.5%). Fig. 7.6(a) shows that the descriptor

discriminates G4 of MICROSOFT dataset slightly better than the hand contour

distances from the palm center and the improvement respect to the distances

from the palm plane is even more evident, due to the fact that the palm mor-

phology features capture well the thumb and index fingers forming a ring almost

orthogonal to the palm plane. A different behavior is shown in Fig. 7.6(b) for

the LTTM dataset, probably due to errors in the plane fitting on the palm region

because of the presence of several gestures having the fingers tightly folded on

the whole palm region thus disrupting the palm flatness.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.6 0.13 0.06 0 0.04 0.1 0.01 0.06 0 0
G2 0.26 0.43 0.12 0.02 0.03 0.09 0.01 0.01 0 0.03
G3 0.1 0.28 0.33 0.04 0.01 0.08 0 0.09 0 0.07
G4 0 0.01 0.05 0.81 0.06 0.05 0.01 0 0.01 0
G5 0.03 0.06 0.05 0.08 0.61 0.12 0.03 0 0.01 0.01
G6 0.07 0.01 0.02 0.01 0.04 0.83 0 0.01 0.01 0
G7 0 0 0 0.01 0.11 0.01 0.65 0 0.16 0.06
G8 0.14 0.09 0.06 0 0.02 0.01 0.02 0.56 0.01 0.09
G9 0.02 0 0.03 0.02 0.08 0.04 0.05 0 0.67 0.09
G10 0 0.01 0.05 0.03 0.04 0.02 0.01 0.04 0.14 0.66

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.56 0.04 0.06 0.01 0.01 0.04 0.01 0.01 0.12 0.01 0.01 0.12
G2 0.04 0.43 0.01 0.1 0 0.02 0.08 0.05 0.01 0 0.01 0.26
G3 0.2 0.03 0.13 0.02 0.13 0.02 0.1 0.01 0.24 0.05 0.01 0.06
G4 0.04 0.21 0 0.57 0.04 0.01 0.04 0.01 0 0.01 0 0.06
G5 0.07 0.06 0.11 0.03 0.3 0.03 0.15 0.04 0.13 0 0.04 0.05
G6 0.1 0.01 0.02 0.01 0.05 0.59 0.03 0.01 0.03 0.09 0.01 0.05
G7 0.08 0.07 0.15 0.01 0.11 0.02 0.19 0.12 0.11 0 0.06 0.06
G8 0.08 0.02 0.04 0.06 0.09 0.01 0.17 0.34 0.06 0.02 0.02 0.08
G9 0.14 0.04 0.12 0.01 0.08 0.01 0.06 0 0.46 0 0.01 0.08
G10 0.06 0.01 0.02 0.04 0.03 0.19 0.04 0.03 0.01 0.44 0.06 0.08
G11 0.05 0.11 0.01 0 0.09 0 0.04 0.01 0.03 0.01 0.66 0.01
G12 0.05 0.12 0 0 0.01 0.01 0.01 0 0.01 0 0 0.79

(b) LTTM dataset

Figure 7.6: Palm morphology features

161

7. RESULTS

Analogously to the hand contour distances from the palm plane, this descrip-

tor is affected as well by the different quality in the plane fitting and the fact

that in most gestures several fingers lay close to the palm plane not carrying any

relevant information.

Hand contour similarity features (Fz) is another descriptor reporting a ratherly

high accuracy (beyond 87% on MICROSOFT dataset), comparable to the one of

the hand contour distances from the palm center feature set. This is another

expected result, since the correlation values the descriptor is made of are at the

basis of the distance descriptor of Section 5.1.1 but contain less information. As

the selected similarity measure is, in fact, the zero-mean cross-correlation, the

distance plot amplitude information is not relevant for the hand contour align-

ment with the gesture templates. For this reason, Fz is not able to discriminate

certain gestures characterized by the same raised finger configuration, e.g. Fig.

7.7(b) shows that G9 is misclassified as G3 most of the times in LTTM dataset

where the two gestures only differ for the opening status of the finger. Fig. 7.7(a)

analogously shows that, because of distance information loss, G1 of MICROSOFT

dataset is often mistaken as other gestures, an ambiguity not found in other de-

scriptors. However, thanks to the small descriptor size and its fast computation,

this feature set can be considered for applications where the execution time and

the memory footprint of the descriptors are critical.

The hand contour similarity features exploiting the sum of squared distances

in place of ZNCC (Fs) have very poor performance on all the three datasets and

the reason is the high amount of noise on the computed distance plots, amplified

by the square of the plot differences the descriptor is based on. Recall, in fact,

that SSD is defined as the point-wise sum of the differences between two vectors

of measures, and ideally tends to 0 when the vectors are similar. Nonetheless

this descriptor, as will be further shown, is able to improve the overall gesture

recognition accuracy when combined with proper feature sets.

Hand contour curvatures (Fc) is one of the most performant descriptors that

alone is able to discriminate most of the gestures in the selected datasets, thanks

to its capability of detecting the concavities and convexities characterizing the

hand contour. Moreover, since the curvatures only rely on the hand depth mask

and not on the hand orientation, the palm plane fitting or on detected palm

centroid position, this descriptor allows extremely high recognition accuracies

even in challenging situations where the estimation of the hand orientation is

not always accurate or even possible. Fig. 7.9 compares the performance of this

descriptor on all the three datasets.

162

7.1 SINGLE CLASSIFIER PERFORMANCE

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.6 0.15 0.1 0.02 0 0 0.06 0.06 0.01 0
G2 0.05 0.92 0 0 0 0 0.02 0 0.01 0
G3 0.07 0.01 0.79 0.12 0.01 0 0 0 0 0
G4 0.01 0 0.03 0.93 0.02 0.01 0 0 0 0
G5 0 0 0.03 0.06 0.9 0.01 0 0 0 0
G6 0 0 0 0 0.02 0.98 0 0 0 0
G7 0.05 0 0 0 0 0 0.94 0 0.01 0
G8 0.08 0 0 0.01 0 0 0.03 0.88 0 0
G9 0.04 0.05 0 0 0 0 0.01 0.04 0.85 0.01
G10 0.01 0 0 0 0.01 0.02 0 0.01 0 0.95

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.37 0.09 0.06 0.03 0.13 0.07 0.06 0.08 0.05 0.04 0 0.02
G2 0.13 0.63 0 0.01 0 0 0.01 0.2 0.01 0 0.01 0
G3 0.04 0.01 0.55 0.01 0.14 0.06 0.01 0 0.19 0 0 0
G4 0.04 0.06 0 0.56 0.02 0 0.04 0.19 0.03 0.01 0 0.05
G5 0.2 0.01 0.15 0.01 0.34 0.02 0.01 0.02 0.19 0.04 0 0
G6 0.06 0 0.03 0.01 0.05 0.74 0.01 0 0.06 0.03 0.01 0
G7 0.09 0.05 0 0.05 0.02 0 0.56 0.21 0 0 0 0.01
G8 0.03 0.16 0 0.11 0 0 0.21 0.47 0.01 0 0 0.01
G9 0.18 0.06 0.33 0 0.17 0.05 0 0.03 0.19 0 0 0
G10 0.05 0 0 0 0 0.02 0 0 0 0.91 0.02 0
G11 0 0.01 0 0 0 0 0 0 0 0.01 0.97 0.01
G12 0.01 0 0 0.01 0 0 0 0.01 0 0.01 0.01 0.95

(b) LTTM dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.51 0.13 0.02 0.01 0.06 0.09 0.02 0.06 0.06 0.05
G2 0.05 0.61 0.14 0.04 0.01 0 0.01 0.03 0.04 0.07
G3 0.03 0.14 0.56 0.03 0 0.03 0.09 0.08 0.03 0.02
G4 0 0.04 0.06 0.66 0 0 0.06 0.16 0 0.01
G5 0.06 0.08 0.03 0 0.64 0.06 0 0.01 0.06 0.06
G6 0.04 0.08 0.01 0 0.06 0.73 0 0 0.05 0.03
G7 0 0.03 0.03 0.01 0 0 0.77 0.11 0.04 0.01
G8 0 0 0.08 0.1 0 0.03 0.16 0.51 0.06 0.06
G9 0.03 0.07 0 0 0.06 0 0.02 0.09 0.37 0.36
G10 0.06 0.1 0.05 0.01 0.11 0.02 0.01 0.03 0.26 0.35

(c) LEAPNECT dataset

Figure 7.7: Hand contour similarity (with ZNCC)

163

7. RESULTS

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.98 0 0 0 0 0 0 0 0.02 0
G2 0 0.25 0 0.34 0.12 0.05 0.04 0.2 0 0
G3 0 0.01 0.64 0.06 0.12 0.17 0 0 0 0
G4 0.01 0.12 0 0.47 0.18 0 0.03 0.1 0.09 0
G5 0 0.05 0.54 0.13 0.14 0.11 0 0.02 0 0.01
G6 0 0.06 0.42 0.01 0.16 0.31 0 0.03 0 0.01
G7 0 0.05 0 0.12 0.09 0 0.39 0.06 0.29 0
G8 0 0.12 0.01 0.18 0.04 0.06 0.03 0.42 0.03 0.11
G9 0.03 0 0 0.06 0 0 0.32 0.04 0.54 0.01
G10 0 0 0 0 0.02 0.02 0 0.13 0.02 0.81

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.71 0.07 0.01 0 0 0.13 0 0 0 0.01 0.06 0
G2 0.11 0.26 0.04 0.19 0.01 0.19 0.09 0 0 0.07 0.03 0.01
G3 0.01 0.06 0.19 0.24 0.16 0.04 0.08 0.06 0.01 0.01 0.11 0.02
G4 0 0.17 0.11 0.41 0.02 0 0.08 0.04 0.06 0.04 0.02 0.04
G5 0 0.04 0.06 0.16 0.31 0.01 0.09 0.11 0.16 0.01 0.03 0.04
G6 0.26 0.16 0.11 0.01 0.01 0.25 0.01 0 0 0.06 0.11 0
G7 0.01 0.05 0.05 0.1 0 0.04 0.34 0.05 0.01 0 0.09 0.26
G8 0 0 0.02 0.06 0.09 0 0.06 0.34 0.41 0.01 0 0
G9 0 0.01 0.03 0.11 0.03 0 0.08 0.31 0.38 0 0.02 0.03
G10 0.09 0.26 0.14 0.14 0.03 0.06 0.06 0.04 0 0.09 0.1 0
G11 0.04 0.01 0.09 0 0.04 0.09 0.04 0 0 0 0.62 0.06
G12 0 0.01 0.02 0.04 0 0.01 0.18 0.01 0 0.01 0.08 0.64

(b) LTTM dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.42 0.26 0.06 0.01 0.07 0.13 0 0 0 0.05
G2 0.21 0.25 0 0.01 0.18 0.16 0 0.02 0 0.17
G3 0.01 0.01 0.16 0.16 0.12 0.01 0.12 0.08 0.11 0.21
G4 0 0.06 0.08 0.33 0.09 0.01 0.07 0.09 0.06 0.2
G5 0.01 0.01 0.13 0.14 0.17 0.09 0.15 0.09 0.05 0.16
G6 0.15 0.14 0.01 0.01 0.17 0.27 0.06 0.01 0 0.17
G7 0 0 0.09 0.14 0.1 0.11 0.34 0 0.13 0.09
G8 0 0.04 0.08 0.2 0.08 0.01 0.07 0.29 0.21 0.03
G9 0 0 0.09 0.16 0.11 0.01 0.15 0.14 0.29 0.06
G10 0.02 0.07 0.09 0.09 0.05 0.1 0.06 0.03 0.05 0.44

(c) LEAPNECT dataset

Figure 7.8: Hand contour similarity (with SSD)

164

7.1 SINGLE CLASSIFIER PERFORMANCE

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 1 0 0 0 0 0 0 0 0 0
G2 0 0.98 0 0 0 0 0 0 0.02 0
G3 0 0 0.87 0.01 0 0 0.01 0.1 0 0.01
G4 0 0 0 0.92 0.07 0 0 0 0 0.01
G5 0 0 0 0.08 0.77 0.15 0 0 0 0
G6 0 0 0 0 0.1 0.9 0 0 0 0
G7 0 0 0.01 0 0 0 0.95 0.03 0.01 0
G8 0 0 0.13 0 0 0 0.03 0.84 0 0
G9 0 0.06 0 0 0 0 0.01 0.01 0.92 0
G10 0 0 0 0.04 0 0 0 0 0 0.96

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.95 0.04 0 0 0 0 0 0 0.01 0 0 0
G2 0.07 0.89 0 0.01 0.01 0.01 0 0 0.01 0 0 0
G3 0 0 0.85 0 0.01 0.04 0 0 0.11 0 0 0
G4 0 0.04 0 0.86 0 0 0.01 0.1 0 0 0 0
G5 0 0.01 0 0 0.97 0 0.01 0 0.01 0.01 0 0
G6 0 0.01 0.01 0 0.01 0.81 0 0.01 0.13 0.01 0 0
G7 0 0 0 0.03 0 0 0.9 0.03 0 0.02 0.02 0
G8 0 0 0 0.04 0 0.01 0.03 0.89 0 0 0.01 0.02
G9 0.02 0 0.09 0.01 0 0.11 0 0 0.76 0.01 0 0
G10 0 0 0 0 0 0.01 0.02 0 0.01 0.96 0 0
G11 0 0 0.01 0.03 0 0.01 0.01 0 0 0.01 0.94 0
G12 0 0.01 0 0.02 0 0 0 0.01 0 0 0 0.96

(b) LTTM dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.99 0 0.01 0 0 0 0 0 0 0
G2 0 0.89 0.06 0.01 0.01 0.01 0.01 0 0 0
G3 0.01 0.11 0.8 0.01 0.01 0.01 0.05 0.01 0 0
G4 0 0.03 0 0.91 0 0 0.04 0.02 0 0
G5 0 0 0.01 0.04 0.89 0.03 0.02 0 0 0.01
G6 0 0 0.02 0 0.04 0.74 0.01 0 0.01 0.19
G7 0 0.02 0.06 0.04 0.02 0 0.8 0.05 0 0
G8 0 0 0 0.01 0.01 0.01 0.04 0.85 0.01 0.08
G9 0 0 0 0 0 0.02 0.01 0.01 0.96 0
G10 0 0 0 0 0 0.18 0.01 0.01 0 0.81

(c) LEAPNECT dataset

Figure 7.9: Hand contour curvatures

165

7. RESULTS

Convex hull area (Fca) and perimeter ratios (Fcp) are the least performing

features because they are only made by a single scalar number that is not sufficient

to separate all the gesture classes. The separation is also challenging for the

measurement noise corrupting the detected hand contour.

The convex hull connected component area ratios (Fcc) are, instead, one of the

most performant descriptors (with a recognition accuracy up to the 72%) in spite

of their small number. The ratherly high reached recognition accuracy is a proof of

the relevant amount of information encoded in the hand convex hull, as already

stated in Section 5.1.6. Again, its small size and simple computation makes

this descriptor interesting when a trade-off between performance and accuracy

is required, especially when the hand contour similarity features are not easy to

extract.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.96 0.04 0 0 0 0 0 0 0 0 0 0
G2 0.19 0.69 0 0 0.01 0.1 0 0.01 0.01 0 0 0
G3 0 0.01 0.52 0 0.16 0.07 0.04 0 0.1 0.05 0.04 0
G4 0 0.01 0 0.68 0 0 0.03 0.18 0.03 0.03 0 0.04
G5 0 0.02 0.09 0 0.78 0.03 0 0 0.04 0.05 0 0
G6 0 0.05 0.04 0 0.01 0.79 0 0 0.06 0.04 0.01 0
G7 0 0 0.04 0.05 0 0 0.74 0.07 0.02 0.04 0.03 0.01
G8 0.01 0 0 0.17 0 0.01 0.05 0.7 0.01 0.03 0 0.01
G9 0.01 0.07 0.09 0.04 0.15 0.11 0.01 0.01 0.49 0.01 0 0
G10 0 0.01 0.08 0.04 0.09 0.06 0.07 0.09 0.04 0.51 0 0.01
G11 0 0 0.05 0 0 0 0.02 0 0 0.06 0.86 0
G12 0 0.01 0 0.04 0 0 0.01 0 0.01 0 0 0.93

(a) LTTM dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.99 0 0.01 0 0 0.01 0 0 0 0
G2 0.03 0.46 0.26 0.01 0.09 0.03 0.06 0.02 0 0.04
G3 0.01 0.21 0.68 0.01 0.03 0.02 0.04 0 0 0
G4 0 0.03 0 0.67 0.19 0 0.02 0.08 0 0.01
G5 0 0.08 0.01 0.2 0.59 0.06 0 0 0.01 0.05
G6 0.01 0.06 0.01 0.01 0.01 0.8 0.01 0.01 0.03 0.04
G7 0 0.09 0.12 0.01 0.01 0.09 0.64 0 0.01 0.03
G8 0 0.04 0 0.09 0.02 0.01 0 0.69 0 0.15
G9 0 0 0.01 0 0.01 0.04 0 0.01 0.94 0
G10 0 0.09 0.01 0.01 0.05 0.01 0.04 0.15 0 0.64

(b) LEAPNECT dataset

Figure 7.10: Convex hull connected components area ratios

166

7.1 SINGLE CLASSIFIER PERFORMANCE

Although certain depth feature descriptors have, when used alone, the power

of reliably recognize most of the performed gestures (e.g., hand contour distances

from the palm center or hand contour curvatures), the proper combination of two

or more compatible feature sets can boost the overall recognition accuracy even

though one of the descriptors has poor performance. Two or more feature sets

are compatible when they are poorly correlated and thus they do not carry re-

dundant information when combined. Moreover, compatible descriptors are able

to compensate the counterpart failures in most cases, namely they can correctly

classify certain feature vectors misclassified by other descriptors and viceversa.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.82 0.04 0 0.02 0 0 0.05 0.05 0.02 0
G2 0 0.98 0.01 0 0 0 0 0 0.01 0
G3 0 0.03 0.87 0.02 0.08 0 0 0 0 0
G4 0 0 0.02 0.96 0 0 0 0.02 0 0
G5 0 0 0.02 0.05 0.88 0.05 0 0 0 0
G6 0 0 0 0 0.02 0.98 0 0 0 0
G7 0.05 0 0 0 0 0 0.94 0 0.01 0
G8 0.02 0 0 0 0 0 0.03 0.95 0 0
G9 0.04 0.05 0 0 0 0 0.01 0.03 0.87 0
G10 0 0 0 0 0.01 0.02 0 0.01 0 0.96

(a) MICROSOFT dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.66 0.14 0 0 0.02 0.11 0.01 0 0 0.04 0 0.02
G2 0.09 0.86 0 0.02 0.01 0 0.01 0 0 0 0 0
G3 0.01 0 0.65 0 0.26 0.01 0.01 0 0.06 0 0 0
G4 0 0.09 0.03 0.76 0.02 0 0.04 0.05 0 0 0.01 0.01
G5 0 0.01 0.25 0.03 0.56 0.01 0 0.04 0.08 0.01 0.01 0
G6 0.14 0.01 0.04 0 0.01 0.79 0.01 0 0 0.02 0 0
G7 0.04 0 0 0.04 0.01 0 0.87 0.01 0.01 0 0 0.02
G8 0 0.01 0 0.07 0.01 0 0.1 0.74 0.05 0.01 0 0
G9 0 0 0.08 0.01 0.12 0.01 0 0.11 0.67 0 0 0
G10 0.01 0 0 0 0.01 0.06 0 0 0 0.87 0.04 0
G11 0 0 0 0 0 0 0 0 0 0.01 0.98 0.01
G12 0 0 0 0.01 0 0 0 0 0 0 0 0.99

(b) LTTM dataset

Figure 7.11: Combination of hand contour similarity features

167

7. RESULTS

For example, the hand contour distances from the palm center and the curva-

ture features are highly compatible and augment the recognition accuracies when

jointly used, but a dramatically higher improvement is given by the combina-

tion of the two similarity feature sets, leading to an overall recognition accuracy

increment of the 6% for MICROSOFT dataset and almost the 20% for LTTM.

Note how in Fig.7.11(a), for example, the SSD metric removed most of the

ambiguities in discriminating G1 from G2 in MICROSOFT dataset, and the

beneficial effect is even more evident in Fig. 7.11(b) for LTTM dataset.

As already stated in Section 5.1.3, the improvement is due to the fact the

ZNCC is not able to capture the hand contour amplitude difference but is robust

to noise, while the SSD is highly sensitive to noise but able to discriminate similar

gestures with a different distance plot amplitude.

In other cases, instead, the overall improvement in recognition accuracy is

neglectable, like the combination of the curvature and the contour similarity fea-

tures in the LEAPNECT dataset that only led to an accuracy increment around

the 2% since the two descriptors are weakly decoupled. This effect is more evident

in the last rows of Table 7.1, where adding more feature sets did not lead to any

sensible improvement or, in limited cases, the elevated number of features only

introduced clutter with detrimental effects on the overall recognition accuracy.

Convex hull features are another set of weakly compatible descriptors that

when combined slightly improved the overall performance on LTTM dataset,

while on LEAPNECT dataset the increment in accuracy is higher.

Table 7.2 reports the accuracies of the Leap Motion feature sets extracted

from the LEAPNECT dataset.

Feature set Estimated accuracy (%)

Fd
L 76.1

Fe
L 73.1

Fθ
L 74.2

Fp
L 81.5

Fd
L + Fe

L 80.2

Fd
L + Fθ

L 73.8

Fe
L + Fθ

L 77.3

Fd
L + Fe

L + Fθ
L 80.9

Table 7.2: Comparison of the Leap Motion features accuracies on LEAPNECT

168

7.1 SINGLE CLASSIFIER PERFORMANCE

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G1 0.94 0.06 0 0 0 0 0 0 0 0 0 0
G2 0.23 0.66 0 0 0 0.08 0 0 0.01 0.02 0 0
G3 0 0 0.54 0 0.16 0.11 0 0 0.11 0.08 0 0
G4 0 0.02 0 0.63 0 0 0.04 0.29 0.01 0 0 0.01
G5 0 0.01 0.07 0 0.73 0.06 0 0 0.07 0.06 0 0
G6 0 0.06 0.05 0.01 0.01 0.69 0 0 0.11 0.08 0.01 0
G7 0 0 0 0.04 0 0 0.84 0.02 0 0.03 0.06 0.01
G8 0 0 0 0.2 0 0 0.04 0.72 0.01 0.01 0.01 0.01
G9 0.01 0.08 0.07 0.01 0.16 0.13 0.01 0 0.5 0.03 0 0
G10 0 0.03 0.06 0.01 0.06 0.06 0.06 0 0.04 0.67 0 0
G11 0 0 0 0 0 0 0.03 0.01 0 0.04 0.92 0
G12 0 0.01 0 0.02 0 0 0 0.01 0 0 0 0.95

(a) LTTM dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.98 0 0.01 0 0 0.01 0 0 0 0
G2 0.03 0.56 0.25 0.06 0.01 0.01 0.08 0 0 0.01
G3 0.02 0.16 0.76 0.01 0.01 0.01 0.04 0.01 0 0
G4 0 0.06 0 0.76 0.11 0 0.01 0.05 0 0
G5 0 0.02 0 0.12 0.81 0 0.01 0.01 0 0.01
G6 0.02 0.01 0 0 0.04 0.85 0.03 0 0.01 0.04
G7 0 0.09 0.07 0.01 0.02 0.01 0.79 0.01 0 0.01
G8 0 0 0 0.04 0.06 0 0.01 0.79 0 0.1
G9 0 0 0 0 0 0.03 0 0.02 0.95 0
G10 0 0 0 0 0.03 0.04 0.01 0.04 0 0.89

(b) LEAPNECT dataset

Figure 7.12: Combination of all the convex hull features

Features coming from the Leap Motion data report on the overall high accu-

racies also for the analogue descriptors on depth data poorly performing, like the

distances of the fingertips from the palm plane.

A noteworthy result in Table 7.2 are the similar accuracies reported for the

distances of the fingertips from the hand center (Fd
L), the palm plane (Fe

L) and

their orientations respect to the main axis (Fθ
L). In particular, the fingertip

distances from the palm plane that, when extracted from depth data returned

ratherly low accuracies, in this case can be used in place of the distances from

the hand center for a reliable gesture recognition.

A possible reason of this favorable behavior may be due to the same construc-

tion of the first three descriptors in Table 7.2 and to the fact they are probably

169

7. RESULTS

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.89 0.02 0.07 0.01 0 0 0 0 0 0.01
G2 0.3 0.49 0.21 0.01 0 0 0 0 0 0
G3 0.17 0.27 0.48 0.06 0 0 0.02 0 0 0
G4 0.04 0.01 0.03 0.66 0.03 0 0.1 0.04 0 0.09
G5 0.05 0.07 0.02 0 0.82 0 0 0.01 0 0.02
G6 0.01 0.01 0.03 0 0.01 0.91 0 0 0.01 0.03
G7 0.01 0.01 0.02 0.09 0.04 0.03 0.79 0.01 0 0
G8 0 0 0.01 0.06 0.05 0 0.03 0.81 0 0.04
G9 0 0 0.01 0 0 0 0 0.01 0.96 0.02
G10 0.01 0.01 0.01 0.06 0.01 0.07 0 0.01 0.03 0.8

Figure 7.13: Fingertip distances from the hand center (Leap Motion)

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.88 0.01 0.09 0.01 0 0 0 0 0 0.01
G2 0.31 0.52 0.15 0.02 0 0 0 0 0 0
G3 0.17 0.01 0.69 0.06 0.04 0.02 0.01 0 0 0
G4 0.01 0.01 0.04 0.77 0.06 0 0.06 0.02 0 0.02
G5 0.06 0.09 0.03 0.03 0.69 0 0 0.04 0 0.06
G6 0.01 0 0.03 0 0.02 0.76 0.02 0 0.01 0.14
G7 0.01 0.01 0.03 0.07 0.04 0.02 0.62 0.15 0 0.05
G8 0 0 0 0.01 0.06 0 0.06 0.81 0.04 0.02
G9 0.01 0 0 0 0 0.01 0.03 0.04 0.9 0.01
G10 0.01 0.01 0.01 0 0.1 0.12 0.03 0.05 0.01 0.66

Figure 7.14: Fingertip distances from the palm plane (Leap Motion)

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.86 0.06 0.06 0.03 0 0 0 0 0 0
G2 0.3 0.59 0.09 0.01 0.01 0 0 0 0 0
G3 0.11 0.15 0.6 0.09 0.05 0 0 0 0 0.01
G4 0.01 0 0.02 0.84 0.01 0 0.09 0.01 0 0.01
G5 0.05 0.06 0.02 0.01 0.76 0 0.01 0.04 0 0.05
G6 0.01 0 0.04 0.01 0.02 0.82 0 0 0.01 0.09
G7 0.01 0 0.03 0.17 0.01 0.01 0.56 0.16 0 0.06
G8 0 0 0 0.03 0.04 0 0.08 0.8 0.03 0.02
G9 0.01 0 0 0.01 0 0.04 0 0.04 0.9 0.01
G10 0 0 0.02 0.04 0.07 0.13 0.02 0.02 0 0.69

Figure 7.15: Fingertip orientations (Leap Motion)

170

7.2 SINGLE CLASSIFIER PERFORMANCE

more characterized by the fingertip occupation of the regions in Fig. 5.20 than

from the measured feature values. A proof of this statement can be found in Fig.

7.3, where the reported gestures are clearly characterized by the number and the

configuration of the raised fingers in most cases.

The 3D positions of the fingertips (Fp
L) are the most performing descriptor

extracted from the Leap Motion data (accuracy of 81.5%), although the differ-

ence in accuracy with the other descriptors is limited respect to the differences

measured in the feature sets extracted from the depth data. This descriptor,

alone, is able to reliably recognize most of the performed gestures, although it

may fail in the discrimination of gestures like G2 and G3 (Fig. 7.16).

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.89 0.02 0.06 0.02 0 0 0 0 0 0
G2 0.3 0.56 0.14 0 0 0 0 0 0 0
G3 0.14 0.09 0.7 0.04 0 0 0.02 0 0 0
G4 0.03 0 0 0.9 0 0 0.05 0 0.01 0.01
G5 0.05 0.05 0.03 0.02 0.76 0.01 0.02 0.02 0 0.04
G6 0.01 0 0.03 0 0.03 0.84 0.01 0.01 0 0.07
G7 0.01 0 0.04 0.08 0 0 0.81 0.03 0.01 0.02
G8 0 0 0 0.04 0.03 0 0.03 0.83 0 0.08
G9 0 0.01 0 0.01 0 0 0 0.01 0.97 0
G10 0 0 0.01 0 0.04 0.01 0.05 0.01 0 0.89

Figure 7.16: Fingertip positions (Leap Motion)

It is worth noting that the fingertip positions are, again, a feature set contain-

ing all the information carried singularly by the remaining descriptors, and this

is proved by the fact that the joint usage of (Fd
L), (Fe

L) and (Fθ
L) reports almost

the same recognition accuracy obtained with (Fp
L) alone.

Finally, the combination of a few most performing feature sets from the two

devices, that is Fl
2, Fc and Fp

L, led to a recognition accuracy of 96.5%, proving the

Leap Motion features allow to improve the overall performance with the minimal

effort. Note how the improvement in this case is very limited both because the

employed distance descriptor alone reports an accuracy higher than the 94% and

the other feature sets do not add any useful new information to aid the gesture

recognition.

171

7. RESULTS

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.89 0.02 0.07 0.01 0 0 0 0 0 0.01
G2 0.3 0.51 0.19 0.01 0 0 0 0 0 0
G3 0.16 0.06 0.68 0.04 0 0.01 0.02 0 0 0.02
G4 0.04 0.01 0.04 0.74 0.01 0 0.04 0.04 0 0.09
G5 0.05 0.06 0.02 0.02 0.8 0 0 0.02 0 0.02
G6 0.01 0 0.03 0 0.02 0.91 0 0 0.01 0.03
G7 0.01 0 0.05 0.05 0.03 0.01 0.8 0.04 0 0.01
G8 0 0 0 0.01 0.05 0.01 0.03 0.84 0 0.06
G9 0 0 0.01 0 0 0 0 0.01 0.97 0.01
G10 0 0 0.01 0.03 0.02 0.02 0 0.01 0.03 0.88

Figure 7.17: Combination of fingertip distances from the hand center and from

the palm plane (Leap Motion)

7.2 Ensembles of classifiers performance

Section 7.1 analyzed the performance of a single SVM classifier trained on the

extracted features from the depth and the Leap Motion data collected in three

selected datasets. The classifier parameters were optimized with a variation of

grid-search method tailored to the gesture recognition purpose and the combi-

nation of various feature sets was performed by simply juxtaposing the feature

vectors of each set.

In particular, Tables 7.1 and 7.2 showed that, because of the feature cor-

relation, the juxtaposition of proper uncorrelated feature sets boosted sensibly

the overall recognition accuracy, while in other cases the improvement was ne-

glectable. In the worst situations, the dimensionality curse caused by the blind

combination of very long feature vectors could even affect negatively the overall

recognition accuracy introducing novel ambiguities.

For this reason, the tests performed in current section aim at evaluating the

overall improvement in accuracy that can be obtained by replacing the single

SVM classifier with a proper ensemble of Section 6.3, designed to leverage the

capabilities of each feature set considered singularly.

Differently from Section 7.1, which only considered geometrical features, this

section also evaluates the performance of the textural descriptors analyzed in

Section 5.4. In this case HOG (Fhog), LPQ (Flpq) and LTP (Fltp) feature ex-

traction algorithms either ran on the L channel of the hand image expressed in

Lch color space [66, 64] or the grayscale image obtained by considering the cur-

vature values (after rearranging the curvature descriptor in a 2D matrix as in

172

7.2 ENSEMBLES OF CLASSIFIERS PERFORMANCE

Fig. 5.10) as pixel intensities. The texture descriptors were extracted from 50

random reshapings [66, 64] of the hand contour curvatures in a 2D matrix and

the accuracy obtained by the sum-rule on the 50 single classifiers trained on each

reshaped image. Using multiple reshapings allows to observe and encode different

aspects of the curvature variations from a single curvature vector.

As already stated in Section 5.4, the HOG descriptor used separate blocks

of 5 × 6 cells generating histograms of 9 bins 20◦ wide, accounting for gradient

directions from 0 to 180◦. LPQ descriptor was made, instead, by the juxtaposition

of two single LPQ descriptors extracted within patches of 3× 3 and 5× 5 pixels

respectively in order to capture different properties of the underlining local phases.

LTP followed the same rationale using 8 and 16 neighborhood connectivity in each

texture patch, exploiting the NPE variation in place of PCA.

A motivation that lead to the evaluation of ensembles of classifiers is due to

the Q statistics [91] performed on the MICROSOFT and LTTM datasets using

a RS of SVM ensemble. The results are reported in Table 7.3.

Feature set Fd Fc Fa Fe Flpq

Fc - - 0.32 0.27 0.37

Fa - - - 0.27 0.22

Fe - - - - 0.32

Flpq - - - - -

Table 7.3: Q statistics on selected feature sets

Since the collected values are rather low, according to the Q statistics the

considered feature sets are poorly correlated thus proving their combination can

lead to significant improvement on the overall recognition accuracy, especially by

exploiting ensembles of classifiers.

Table 7.4 collects the accuracies of the tests performed on the curvature fea-

tures using a RS of SVM ensemble. The first three rows are referred respectively

to the curvature feature vectors of Section 5.1.4 and the HOG and LPQ descrip-

tors extracted on its reshapings in grayscale images, while the remaining rows

collect the results of the weighted combination of the curvature vectors with the

best performing texture descriptor. Note how the weights modulate the impacts

of the single descriptor votes in the final ensemble decision.

Table 7.4 shows, again, that the hand contour curvatures are an highly per-

forming feature set that, alone, can reliably recognize almost all the gestures in

the considered datasets, but when combined with other descriptors can improve

173

7. RESULTS

Estimated accuracy (%)

Feature set MICROSOFT LTTM

Fc 92.4 82.7

Fhog 94.7 84.6

Flpq 91 80.9

Curvature + Fhog 94.5 86.2

Curvature + 2× Fhog 94.9 86.5

Curvature + 3× Fhog 94.8 86.0

Curvature + 4× Fhog 94.8 85.6

Table 7.4: Performance of the curvature feature with RS of SVM on two datasets

the overall recognition accuracy. In particular, the HOG descriptor in this case

demonstrated to the more performing than LPQ and slightly more reliable than

the curvature feature vector, since the assignation of an higher weight in the

combination led to a modest improvement on the ensemble performance.

Table 7.5 compares, instead, the performance of different ensembles of classi-

fiers operating on the same feature sets, where Fct = Fc + 2×Fhog is a weighted

combination of depth and texture descriptors and Ftex = 4× Fhog + Flpt + Fltp

a pure weighted combination of texture descriptors only. Moreover, HET is an

heterogeneous ensemble of RS of SVM and RS of ROTBOOST, and HET2 and

heterogeneous ensemble where Fc is trained separately with a RS of SVM and

the texture descriptors by aggregating with the sum rule the results of a SVM

classifier trained on each reshaping.

Table 7.5, compared to Table 7.1, shows that a proper weighted ensemble

trained on the same feature sets outperforms the single optimized classifier trained

on long feature vectors while preventing the dimensionality curse.

174

7.2 ENSEMBLES OF CLASSIFIERS PERFORMANCE

Estimated accuracy (%)

Classification approach Feature set MICROSOFT LTTM

RS of SVM Fd 86.9 57.2

Fe 60.5 46.2

Fc 92.4 84

Fa 60.9 45.3

Fct 94.9 86.5

Ftex 95.5 88.1

Fd + Fc 96.7 85.3

Fd + 2× Fc 97.5 86.8

RS of ROTBOOST Fd 88.8 60.5

Fe 61.1 48.7

Fc 93.9 84.9

Fa 64.0 48.2

Ftex 94.7 88.0

Fd + Fc 97.4 86.6

Fd + 2× Fc 97.4 87.5

HET Fd 89 60.1

Fe 61.5 49.2

Fc 94.6 86.2

Fa 63.6 48

Ftex 95.3 89.3

Fd + Fc 97.5 87.2

Fd + 2× Fc 97.9 88.7

HET2 Flpq 91 80.9

Flpq + Fc 93.5 84.3

Flpq + 2× Fc 93.4 85

Flpq + 3× Fc 93.5 85.1

Flpq + 4× Fc 93.3 84.9

Table 7.5: Performance of different ensembles on the same features

175

7. RESULTS

7.3 Feature selection performance

This section compares the performance of the feature selection methods of Sec-

tion 6.4 on the LEAPNECT dataset, with the aim of disclosing the minimal

subset of features in Fd +Fc +Fp
L allowing to maintain the original level of accu-

racy (around 96.5%). The rationale consists in dramatically reducing the gesture

recognition algorithm computational complexity while preserving its capability

in discriminating the different gestures.

Fig. 7.18 shows several curves each one reporting, for a given classification

algorithm, the average accuracy of the estimated gesture recognition model over

the selected subsets of most relevant features. In order to avoid overfitting due

to the low cardinality of the employed dataset, the feature selection has been

performed following the rationale of Section 6.1. Namely, the tests performed on

different subsets of features where repeated M = 14 times using one person’s data

as the validation set and the remaining data as training set, and by averaging

the different models accuracies. The results for subsets of size 435, 128 and 16

features are reported in Table 7.6.

1 2 4 8 16 32 64 128 256 435
10

20

30

40

50

60

70

80

90

100

Number of selected features

A
ve

ra
ge

 re
co

gn
iti

on
 a

cc
ur

ac
y

[%
]

F−Score over SVM (optimized)

F−Score over SVM (not optimized)

F−Score over RF (not optimized)

FSS over SVM (optimized)

FSS over SVM (not optimized)

FSS over RF (not optimized)

RF over SVM (optimized)

RF over SVM (not optimized)

RF over RF (not optimized)

Figure 7.18: Performance of different feature selection algorithms on LEAPNECT

Fig. 7.18 shows that, as expected, F-score is the least performing metric, and

the reason lies in the definition of F-score (Eq. 6.20). This measure is, in fact,

unable to capture the possible mutual correlations between different features, as

the assigned score to a given feature only depends on its value distribution within

the considered training set. Furthermore, not only the average model accuracy

increases along with the size of the selected features subset, compatibly with the

176

7.3 FEATURE SELECTION PERFORMANCE

SVM acc. (%) RF acc. (%)

Feature selection strategy 435 128 16 435 128 16

F-score 96.5 94.5 60.1 94.7 92.6 57.5

Sequential feature selection 96.5 95.9 95.8 94.7 94.1 90.7

Random forest 96.5 95.8 93.7 94.7 94.2 90.8

Table 7.6: Performance of different feature selection methods on LEAPNECT

previsions, but it is also evident that the grid-search is effective in this case as the

optimized SVM classifier highly outperforms its unoptimized version. Compared

to the other techniques, however, F-score does not lead to a sensible performance

improvement, since the related curves show that the gesture recognition algorithm

needs at least from 1/3 to 1/2 of the original features in order to not lose an

excessive amount of information required to effectively classify the performed

gestures.

The chart shows also that a not optimized Random Forest has, in general, a

similar performance to the one of the optimized version of SVM. Random Forests

for automatic gesture recognition are, then, a valid alternative to Support Vector

Machines as they are faster to train (w.r.t. to the grid-search optimization) and

less affected by the overfitting problem.

The remaining metrics, namely the Forward Sequential Selection (FSS) and

the scoring according to the Out-of-Bag-Error (RF) of Random Forests, are

clearly superior to the measure based on the F-score. In particular, FSS with

an appropriate classifier is able to reach almost the maximum accuracy for the

model with only a nearly 2% loss respect to the original feature set. This is due

to the fact that FSS, differently from the F-score, is able to detect the mutual

correlations between features as it selects at each round not the best feature ac-

cording to an independent measure on its distribution on the dataset, but the

feature that works better along with the previously selected ones.

Finally, FSS and RF have similar performance starting from a limited size

features subset, although the two methods select features in a different way. For

this reason, despite of being defined on Random Forests, the RF metric does not

force the usage of Random Forest as the final classifier for the selected subset of

features.

In conclusion of this section, it is worth analyzing an example of the first 8 and

16 selected feature indexes by FSS for one of the 14 trained models. Recall that a

177

7. RESULTS

generic feature vector xi of the LEAPNECT dataset is made by the juxtaposition

of 15 features for the fingertip positions (5 fingertips defined by 3 coordinates

in the 3D space), 180 features for the hand contour distances from the palm

center corresponding to an hand contour point sampled at intervals of 2◦, and

240 features for the curvatures. The feature intervals are, then, [1, 15] for the

fingertip positions, [16, 195] for the distances 2D and [196, 435] for the curvatures.

The first 8 most relevant features are 2, 7, 46, 63, 79, 110, 138, 152 and corre-

spond to the y coordinate of the thumb, the x coordinate of the middle, the

distances from the palm center at (46− 15− 1)2 = 60◦, 94◦, 126◦, 188◦, 244◦ and

272◦ respect to the main hand direction in counterclockwise order starting from

the wrist center. FSS has selected, then, a pair of coordinates of the thumb and

the middle finger, and a few hand boundary points at almost regular intervals

of 60◦. Note how no curvature feature has been selected; this does not mean

the curvatures are not “good” features, but only that the fingertip positions and

the hand boundary distances were enough to reliably discriminate most of the

gestures.

A comparison with the first 16 selected features (1,2,7,41,42,45,47,63,80,99,108,

126,130,138,150,270) is a further proof of what stated: note how FSS only selected

the first 8 relevant features and a few other features in their neighborhood. Only

the one with index 270, corresponding to the 74-th curvature value, that is the 74

mod 10 = 4-th bin (that is a curvature value from 0.3 to 0.4) of the 74/10 = 7-th

mask size probably adds new relevant information.

7.4 Algorithmic performance

The current chapter concludes with the analysis of the execution time of the pro-

posed automatic gesture recognition algorithm processing MICROSOFT dataset.

The current implementation in C++ has not been fully optimized and has

been tested on a not too performing desktop PC with an Intel Q6600 processor

and 4Gb of RAM. Table 7.7 reports the measured average execution times of the

main step in the recognition pipeline of Fig. 1.8.

The initial hand detection phase took only almost 7 mS on depth data only,

while the magnitude order would be much higher if the color information was

taken into account. One of the most time consuming phases for the moment is

the palm detection, which currently takes around 60 mS. The plane fitting and

the hand local coordinate system computation are, instead, very performing since

they take less than 5 mS on the overall. Palm removal and other minor tasks

178

7.4 ALGORITHMIC PERFORMANCE

Task Average execution time [ms]

Hand detection 6.6

Initial centroid detection 37.4

Palm detection 21.15

3D backprojection (full hand) 1.2

Arm removal 2.2

Point projection on palm plane 0.01

3D palm plane fitting 2.1

Palm coordinate system computation 2.1

Coordinate system change 1

Palm removal 0.4

Distances from palm centroid extraction 0.3

Distance plot smoothing 0.01

Distances from palm plane extraction 1

Curvatures extraction (circular masks) 349.3

Curvatures extraction (integral images) 18

Distance plot alignment 0.01

SVM classification 1

Table 7.7: Comparison of the average execution times on MICROSOFT dataset

related to geometrical transforms take neglectable times as well. Moreover, the

extraction of the hand contour distances from the palm center, and consequently

also the ones from the palm plane and the contour similarities are very efficient

and do not increment the overall execution time sensibly. Thanks to the integral

image expedient, the hand contour curvature descriptor extraction only requires

a modest effort (less than 20 mS). Finally, the SVM classification of the extracted

feature vector only takes 1 mS and does need further improvements.

The average execution time for the mandatory tasks and the extraction of

two main descriptors on depth data takes less than 100 mS with the current

implementation, corresponding to a frame rate higher than 10fps. It is worth

noting that an higher framerate (above 15fps) can be obtained by the joint

usage of a range camera and a Leap Motion, since most of the mandatory tasks

are executed in few mS thanks to the data provided by the Leap Motion.

Finally, although the current implementation, not optimized, is able to reach

pseudo real-time performance, and will be able to reach full real-time performance

with the aid of a further optimization.

179

7. RESULTS

180

Chapter 8

Conclusions

Automatic hand gesture recognition is a very challenging task that has been rais-

ing an high interest in academy and industry due to its applicability in several

fields, ranging from gaming to health care. In particular, hand gestures make

possible the realization of novel 3D interfaces that allow a more natural interac-

tion with computers and machinery without the need of a direct contact.

This thesis proposed a robust automatic gesture recognition framework that,

differently from earlier approaches based on the processing of images and videos

only or on the use of auxiliary devices to help the hand detection in the framed

scene, is entirely based on the processing of depth and color data coming from low-

cost range cameras (or the Leap Motion) framing the bare hand. The gesture

recognition problem was, then, solved with state-of-art computer vision tech-

niques thus preserving the naturalness of the interaction. The adopted gesture

recognition pipeline follows four main steps consisting in firstly detecting the

hand in the framed scene and segmenting it in palm and fingers regions, then

in extracting several feature sets describing geometrical or textural properties of

the hand and finally in recognizing the performed gesture with machine learning

techniques.

The dissertation showed how depth data alone allows to quickly and reliably

detect the hand in the framed scene when the hand is supposed to be the near-

est object to the acquisition setup, and how the joint usage of depth and color

information or depth and the Leap Motion data allows, instead, a reliable de-

tection when this assumption is no longer valid. In particular, when the Leap

motion data is available, it can be exploited to quicken the hand detection based

on depth data. Then, the thesis described accurately how the palm is detected

in the acquired depth maps and the steps followed for the construction of a local

coordinate system centered on the palm center, which is at the basis of several fea-

181

8. CONCLUSIONS

ture extraction algorithms. Both palm detection and palm direction estimation

algorithms take into account noise in the acquired data, exploiting the RANSAC

framework and other methods. Several feature sets containing a considerable

amount of information on the performed gesture, quantifying geometrical and

textural properties of the hand contour and the palm morphology, were then

analyzed. In particular, the depth information was also used to adapt the de-

scriptors to the different hand sizes in order to make them robust to the user’s

hand anatomy. Novel features that can be easily and efficiently extracted from

the Leap Motion data were also considered. Moreover, it was also shown how

the Leap Motion data can be jointly used with depth information to extract the

same depth based features with a significantly lower computation effort. Most of

the proposed descriptors are characterized by a strong compatibility that allows

their combination to improve the overall gesture recognition accuracy since they

are highly uncorrelated. Various machine learning techniques, ranging from the

consolidated Support Vector Machines (SVM) and Random Forests (RF) to more

advanced a powerful ensembles of classifiers, were then described. In particular,

it was shown how a proper variation of the grid-search approach allowed to op-

timize the SVM kernel parameters while reducing overfitting on small datasets.

The results collected from several tests on three datasets and validated by proper

metrics proved that the proposed framework is able, although not fully optimized,

to recognize the performed gestures with extremely high accuracy. Moreover, the

reduced execution times of the main steps of the recognition pipeline implemented

on a real system proved the algorithm is capable of running in real-time.

Future work will improve the feature sets presented in this thesis by optimizing

the extraction algorithms parameters, and will introduce novel descriptors lever-

aging depth, color and other types of information coming from low-cost color

and range cameras, and the Leap Motion. Another part of the future work will

be devoted to the improvement of the framework performance, since the current

recognition algorithm implementation is not optimized and, although is capable

of running in real-time with a limited memory footprint, it does not fully exploit

the underlining hardware. By reinterpreting parts of the code more efficiently

and by parallelizing independent tasks like the different feature sets extraction,

in fact, the overall execution time will be sensibly reduced. Finally, the future

work will also expand the existing framework to the recognition of dynamic ges-

tures, a mandatory task in natural interfaces based on gestures. The existing

feature sets and the tracking of the estimated hand centroid are a good starting

point for this purpose.

182

Bibliography

[1] C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-Flight Cameras

and Microsoft Kinect. SpringerBriefs, Springer, 2012.

[2] C. Dal Mutto, F. Dominio, P. Zanuttigh, and G. M. Cortelazzo, “Hand

gesture recognition for 3d interfaces,” 2011.

[3] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based hand-gesture

applications,” Commun. ACM, vol. 54, pp. 60–71, Feb. 2011.

[4] P. Garg, N. Aggarwal, and S. Sofat, “Vision based hand gesture recogni-

tion,” World Academy of Science, Engineering and Technology, vol. 49, no. 1,

pp. 972–977, 2009.

[5] X. Zabulis, H. Baltzakis, and A. Argyros, “Vision-based hand gesture recog-

nition for human computer interaction,” in The Universal Access Handbook,

Human Factors and Ergonomics, ch. 34, pp. 34.1 – 34.30, Lawrence Erlbaum

Associates, Inc. (LEA), June 2009.

[6] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with mi-

crosoft kinect sensor: A review,” Cybernetics, IEEE Transactions on, vol. 43,

pp. 1318–1334, Oct 2013.

[7] L. Nanni, A. Lumini, F. Dominio, and P. Zanuttigh, “Effective and pre-

cise face detection based on color and depth data,” Applied Computing and

Informatics, vol. 10, no. 12, pp. 1 – 13, 2014.

[8] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of

simple features,” in Computer Vision and Pattern Recognition, 2001. CVPR

2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1,

pp. I–511, IEEE, 2001.

183

REFERENCES

[9] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, “A survey of skin-color

modeling and detection methods,” Pattern Recogn., vol. 40, pp. 1106–1122,

Mar. 2007.

[10] Z. Mo and U. Neumann, “Real-time hand pose recognition using low-

resolution depth images,” in Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, vol. 2, pp. 1499–1505, 2006.

[11] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based on

finger-earth mover’s distance with a commodity depth camera,” in Proc. of

the 19th ACM international conference on Multimedia, MM ’11, (New York,

NY, USA), pp. 1093–1096, ACM, 2011.

[12] X. Liu and K. Fujimura, “Hand gesture recognition using depth data,” in

Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE In-

ternational Conference on, pp. 529–534, May 2004.

[13] E. Kollorz, J. Penne, J. Hornegger, and A. Barke, “Gesture recognition with

a time-of-flight camera,” Int. J. Intell. Syst. Technol. Appl., vol. 5, pp. 334–

343, Nov. 2008.

[14] Y. Li, “Hand gesture recognition using kinect,” in Software Engineering

and Service Science (ICSESS), 2012 IEEE 3rd International Conference on,

pp. 196 –199, June 2012.

[15] M. Van den Bergh and L. Van Gool, “Combining rgb and tof cameras for

real-time 3d hand gesture interaction,” in Applications of Computer Vision

(WACV), 2011 IEEE Workshop on, pp. 66–72, Jan 2011.

[16] A. Kurakin, Z. Zhang, and Z. Liu, “A real-time system for dynamic hand

gesture recognition with a depth sensor,” in Proc. of EUSIPCO, 2012.

[17] Z. Ren, J. Meng, and J. Yuan, “Depth camera based hand gesture recog-

nition and its applications in human-computer-interaction,” in Information,

Communications and Signal Processing (ICICS) 2011 8th International Con-

ference on, pp. 1–5, Dec 2011.

[18] Y. Wen, C. Hu, G. Yu, and C. Wang, “A robust method of detecting hand

gestures using depth sensors,” in Haptic Audio Visual Environments and

Games (HAVE), 2012 IEEE International Workshop on, pp. 72–77, 2012.

184

[19] F. Pedersoli, N. Adami, S. Benini, and R. Leonardi, “Xkin - extendable hand

pose and gesture recognition library for kinect,” in In: Proceedings of ACM

Conference on Multimedia 2012 - Open Source Competition, (Nara, Japan),

Oct. 2012.

[20] F. Pedersoli, S. Benini, N. Adami, and R. Leonardi, “Xkin: an open source

framework for hand pose and gesture recognition using kinect,” The Visual

Computer, vol. 30, no. 10, pp. 1107–1122, 2014.

[21] G. Pozzato, S. Michieletto, E. Menegatti, F. Dominio, G. Marin, L. Minto,

S. Milani, and P. Zanuttigh, “Human-robot interaction with depth-based

gesture recognition,” in Proceedings of the 13th International Conference on

Intelligent Autonomous Systems, (Washington, DC, USA), pp. 379–383, July

2014.

[22] P. Suryanarayan, A. Subramanian, and D. Mandalapu, “Dynamic hand pose

recognition using depth data,” in Proc. of Int. Conference on Pattern Recog-

nition (ICPR), pp. 3105 –3108, aug. 2010.

[23] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the 5th Annual ACM Workshop

on Computational Learning Theory, pp. 144–152, ACM Press, 1992.

[24] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3d action

recognition with random occupancy patterns,” in Proceedings of the 12th Eu-

ropean Conference on Computer Vision - Volume Part II, ECCV’12, (Berlin,

Heidelberg), pp. 872–885, Springer-Verlag, 2012.

[25] N. Pugeault and R. Bowden, “Spelling it out: Real-time asl fingerspelling

recognition,” in Proceedings of the 1st IEEE Workshop on Consumer Depth

Cameras for Computer Vision, pp. 1114–1119, 2011.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001.

[27] C. Keskin, F. K$#305;ra$#231;, Y. E. Kara, and L. Akarun, “Hand pose

estimation and hand shape classification using multi-layered randomized de-

cision forests,” in Proceedings of the 12th European Conference on Com-

puter Vision - Volume Part VI, ECCV’12, (Berlin, Heidelberg), pp. 852–863,

Springer-Verlag, 2012.

185

REFERENCES

[28] K. Biswas and S. Basu, “Gesture recognition using microsoft kinect,” in

Automation, Robotics and Applications (ICARA), 2011 5th International

Conference on, pp. 100 –103, Dec. 2011.

[29] P. Doliotis, A. Stefan, C. McMurrough, D. Eckhard, and V. Athitsos, “Com-

paring gesture recognition accuracy using color and depth information,” in

Proceedings of the 4th International Conference on Pervasive Technologies

Related to Assistive Environments(PETRA’11), pp. 20:1–20:7, 2011.

[30] T. Wan, Y. Wang, and J. Li, “Hand gesture recognition system using depth

data,” in Consumer Electronics, Communications and Networks (CECNet),

2012 2nd International Conference on, pp. 1063 –1066, April 2012.

[31] C. Sun, T. Zhang, B.-K. Bao, C. Xu, and T. Mei, “Discriminative exem-

plar coding for sign language recognition with kinect,” Cybernetics, IEEE

Transactions on, vol. 43, pp. 1418–1428, Oct 2013.

[32] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis,

“Scape: Shape completion and animation of people,” in ACM SIGGRAPH

2005 Papers, SIGGRAPH ’05, (New York, NY, USA), pp. 408–416, ACM,

2005.

[33] L. Sigal, A. O. Balan, and M. J. Black, “Humaneva: Synchronized video and

motion capture dataset and baseline algorithm for evaluation of articulated

human motion,” Int. J. Comput. Vision, vol. 87, pp. 4–27, Mar. 2010.

[34] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based 3d track-

ing of hand articulations using kinect,” in Proceedings of the 22nd British

Machine Vision Conference (BMVC 2011), aug. 2011.

[35] L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Pollefeys, “Motion capture

of hands in action using discriminative salient points,” in Proceedings of the

12th European Conference on Computer Vision - Volume Part VI, ECCV’12,

(Berlin, Heidelberg), pp. 640–653, Springer-Verlag, 2012.

[36] C. Keskin, F. Kirac, Y. Kara, and L. Akarun, “Real time hand pose es-

timation using depth sensors,” in ICCV Workshops, pp. 1228 –1234, nov.

2011.

[37] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts from

186

single depth images,” in Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pp. 1297–1304, IEEE, 2011.

[38] L. E. Potter, J. Araullo, and L. Carter, “The leap motion controller: A view

on sign language,” in Proceedings of the 25th Australian Computer-Human

Interaction Conference: Augmentation, Application, Innovation, Collabora-

tion, OzCHI ’13, (New York, NY, USA), pp. 175–178, ACM, 2013.

[39] C. Guerrero-Rincon, A. Uribe-Quevedo, H. Leon-Rodriguez, and J.-O. Park,

“Hand-based tracking animatronics interaction,” in Robotics (ISR), 2013

44th International Symposium on, pp. 1–3, 2013.

[40] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

New York, NY, USA: Cambridge University Press, 2 ed., 2003.

[41] C. Dal Mutto, F. Dominio, P. Zanuttigh, and S. Mattoccia, “Stereo vision

and scene segmentation,” in Current Advancements in Stereo Vision, Human

Factors and Ergonomics, ch. 2, Intech, July 2012.

[42] D. Herrera, J. Kannala, and J. Heikkilä, “Joint depth and color camera

calibration with distortion correction,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 34, no. 10, pp. 2058–2064, 2012.

[43] L. Bezze, C. Dal Mutto, P. Zanuttigh, F. Dominio, and G. M. Cortelazzo,

“Tof cameras and microsoft kinect depth sensor for natural gesture inter-

faces,” in ACM CHItaly, (Alghero, Italy), September 2011.

[44] C. D. Mutto, P. Zanuttigh, and G. Cortelazzo, “A probabilistic approach to

tof and stereo data fusion,” in Proceedings of 3DPVT 10, (Paris (France)),

May 2010.

[45] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of the

accuracy and robustness of the leap motion controller,” Sensors, vol. 13,

no. 5, pp. 6380–6393, 2013.

[46] B. J.Y., “Camera calibration toolbox for matlab.”

[47] G. Bradski Dr. Dobb’s Journal of Software Tools.

[48] L. A. Westover, “Splatting: A parallel, feed-forward volume rendering algo-

rithm,” tech. rep., Chapel Hill, NC, USA, 1991.

187

REFERENCES

[49] M. Di Noia, “Combined use of color and depth information for hand ges-

ture recognition,” Master’s thesis, Masters School of Telecommunications

Engineering, Department of Information Engineering, Padova, 2013.

[50] G. Marin, M. Fraccaro, M. Donadeo, F. Dominio, and P. Zanuttigh, “Palm

area detection for reliable hand gesture recognition,” Proceedings of MMSP,

vol. 2013, 2013.

[51] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 8, pp. 679–698, June 1986.

[52] A. W. Fitzgibbon and R. B. Fisher, “A buyer’s guide to conic fitting,” in Pro-

ceedings of the 6th British Conference on Machine Vision (Vol. 2), BMVC

’95, (Surrey, UK, UK), pp. 513–522, BMVA Press, 1995.

[53] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated cartog-

raphy,” Commun. ACM, vol. 24, pp. 381–395, June 1981.

[54] F. Dominio, G. Marin, M. Piazza, and P. Zanuttigh, “Feature descriptors

for depth-based hand gesture recognition,” in Computer Vision and Machine

Learning with RGB-D Sensors (L. Shao, J. Han, P. Kohli, and Z. Zhang,

eds.), Advances in Computer Vision and Pattern Recognition, pp. 215–237,

Springer International Publishing, 2014.

[55] F. Dominio, M. Donadeo, G. Marin, P. Zanuttigh, and G. M. Cortelazzo,

“Hand gesture recognition with depth data,” in Proceedings of the 4th

ACM/IEEE International Workshop on Analysis and Retrieval of Tracked

Events and Motion in Imagery Stream, ARTEMIS ’13, (New York, NY,

USA), pp. 9–16, ACM, 2013.

[56] F. Dominio, M. Donadeo, and P. Zanuttigh, “Combining multiple depth-

based descriptors for hand gesture recognition,” Pattern Recognition Letters,

vol. 50, no. 0, pp. 101 – 111, 2014. Depth Image Analysis.

[57] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with

jointly calibrated leap motion and depth sensor,” Multimedia Tools and Ap-

plications (Accepted for publication).

[58] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with

leap motion and kinect devices,” in Image Processing, 2014. ICIP 2014.

IEEE International Conference on, 2014.

188

[59] Wikipedia, “Curvature of plane curves.”

[60] S. Manay, D. Cremers, B.-W. Hong, A. Yezzi, and S. Soatto, “Integral in-

variants for shape matching,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, pp. 1602 –1618, October 2006.

[61] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. Lopez,

and J. Soares, “Leafsnap: A computer vision system for automatic plant

species identification,” October 2012.

[62] B. K. P. Horn, “Closed-form solution of absolute orientation using unit

quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4,

pp. 629–642, 1987.

[63] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-

tection,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, vol. 1, pp. 886–893 vol. 1, June 2005.

[64] L. Nanni, A. Lumini, F. Dominio, M. Donadeo, and P. Zanuttigh, “Combi-

nation of depth and texture descriptors for gesture recognition,” in Advances

in Machine Learning Research (S. Shandilya, ed.), Engineering Tools, Tech-

niques and Tables, Nova Science Publishers, 2014.

[65] V. Ojansivu and J. Heikkilä, “Blur insensitive texture classification using

local phase quantization,” in Proceedings of the 3rd International Conference

on Image and Signal Processing, ICISP ’08, (Berlin, Heidelberg), pp. 236–

243, Springer-Verlag, 2008.

[66] L. Nanni, A. Lumini, F. Dominio, M. Donadeo, and P. Zanuttigh, “En-

semble to improve gesture recognition,” International Journal of Automated

Identification Technology (to appear), 2014.

[67] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recog-

nition under difficult lighting conditions,” in Proceedings of the 3rd In-

ternational Conference on Analysis and Modeling of Faces and Gestures,

AMFG’07, (Berlin, Heidelberg), pp. 168–182, Springer-Verlag, 2007.

[68] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recog-

nition under difficult lighting conditions,” in Proceedings of the 3rd In-

ternational Conference on Analysis and Modeling of Faces and Gestures,

AMFG’07, (Berlin, Heidelberg), pp. 168–182, Springer-Verlag, 2007.

189

REFERENCES

[69] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative study of tex-

ture measures with classification based on featured distributions,” Pattern

Recognition, vol. 29, no. 1, pp. 51 – 59, 1996.

[70] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[71] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a

stepwise procedure for building and training a neural network,” in Neurocom-

puting (F. Souli and J. Hrault, eds.), vol. 68 of NATO ASI Series, pp. 41–50,

Springer Berlin Heidelberg, 1990.

[72] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-

chines,” ACM Trans. on Intelligent Systems and Technology, vol. 2, pp. 27:1–

27:27, 2011.

[73] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–

140, 1996.

[74] L. Nanni, S. Brahnam, C. Fantozzi, and N. Lazzarini, “Heterogeneous en-

sembles for the missing feature problem,” April 2013.

[75] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 226–239, Mar. 1998.

[76] T. K. Ho, “The random subspace method for constructing decision forests,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 832–844, Aug. 1998.

[77] T. K. Ho, “The random subspace method for constructing decision forests,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 832–844, Aug. 1998.

[78] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A

new classifier ensemble method,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 28, pp. 1619–1630, oct 2006.

[79] K. Pearson, “On lines and planes of closest fit to systems of points in space,”

Philosophical Magazine, vol. 2, no. 6, pp. 559–572, 1901.

[80] C.-X. Zhang and J.-S. Zhang, “Rotboost: A technique for combining rotation

forest and adaboost,” Pattern Recogn. Lett., vol. 29, pp. 1524–1536, July

2008.

190

[81] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-

line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,

pp. 119–139, Aug. 1997.

[82] L. Nanni, S. Brahnam, A. Lumini, and T. Barrier, “Data mining based

on intelligent systems for decision support systems in healthcare,” in Ad-

vanced Computational Intelligence Paradigms in Healthcare 5 (S. Brahnam

and L. Jain, eds.), vol. 326 of Studies in Computational Intelligence, pp. 45–

65, Springer Berlin Heidelberg, 2011.

[83] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving embed-

ding,” in Proceedings of the Tenth IEEE International Conference on Com-

puter Vision - Volume 2, ICCV ’05, (Washington, DC, USA), pp. 1208–1213,

IEEE Computer Society, 2005.

[84] L. I. Smith, “A tutorial on principal component analysis.”

[85] Y. wei Chen, “Combining svms with various feature selection strategies,” in

Taiwan University, Springer-Verlag, 2005.

[86] Y.-W. Chen and C.-J. Lin, “Combining svms with various feature selection

strategies,” in Feature extraction, pp. 315–324, Springer, 2006.

[87] D. Aha and R. Bankert, “A comparative evaluation of sequential feature

selection algorithms,” in Learning from Data (D. Fisher and H.-J. Lenz,

eds.), vol. 112 of Lecture Notes in Statistics, pp. 199–206, Springer New

York, 1996.

[88] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers,”

tech. rep., 2004.

[89] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J.

Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[90] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1993.

[91] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier en-

sembles and their relationship with the ensemble accuracy,” Mach. Learn.,

vol. 51, pp. 181–207, May 2003.

191

REFERENCES

192

	Abstract
	Table of contents
	List of figures
	List of tables
	List of equations
	List of algorithms
	Acknowledgments
	Dedication
	Introduction
	Problem definition
	Related works
	Proposed method overview

	Data acquisition
	Color cameras
	Passive stereo setups
	Active stereo setups
	Structured light sensors and setups
	Time-of-Flight cameras
	Binocular setup
	Trinocular setup
	Leap Motion
	Hybrid setup

	Hand detection
	Hand detection on depth information only
	Hand detection on joint color and depth
	Hand detection on joint depth and Leap Motion data

	Hand segmentation
	Palm detection
	Circle fitting approach
	Ellipse fitting approach

	Hand orientation estimation
	Palm orientation estimation
	Hand direction estimation

	Hand segmentation

	Feature extraction
	Depth data features
	Hand contour distances from the palm center
	Hand contour distances from the palm plane
	Hand contour similarities
	Hand contour curvature
	Palm morphology features
	Convex hull features
	Fingertip orientations
	Fingertip positions

	Leap Motion features
	Fingertip orientations
	Fingertip distances from the palm center
	Fingertip distances from the palm plane
	Fingertip positions
	Inter fingertip distances
	Inter fingertip orientations
	Hand radius
	Number of detected fingers

	Depth data features with Leap Motion aid
	Acquisition setup calibration

	Color features
	Histogram of oriented gradients (HOG)
	Local phase quantization (LPQ)
	Local ternary patterns (LTP)

	Feature classification
	Support vector machines (SVM)
	Random forests
	Ensembles of classifiers
	Random subspace ensemble
	Rotation forest
	Adaptive Boosting
	Rotation Boosting
	Random subspace ensemble of RotBoost classifiers

	Feature selection
	Feature selection based on PCA
	Feature selection based on F-score
	Feature selection based on Random Forests
	Sequential feature selection

	Classification performance
	Area under the Receiver Operating Characteristic curve (AUC)
	Wilcoxon Signed-Rank Test
	Q statistics

	Results
	Single classifier performance
	Ensembles of classifiers performance
	Feature selection performance
	Algorithmic performance

	Conclusions
	References

