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Riassunto 

 

L’attuale modello di produzione agricola di tipo intensivo ha permesso di sfamare 

negli ultimi cinquanta anni una popolazione mondiale cresciuta in maniera esponenziale, ma, 

allo stesso tempo, è stato anche la causa dell’insorgere di preoccupanti problemi a livello 

ambientale, sia a scala locale che globale. Molti di questi problemi sono dovuti all’uso 

massiccio di fertilizzanti azotati di sintesi che derivano dal processo industriale Haber-Bosch. 

Mediamente più del 50% dell’azoto fornito come fertilizzante non è assorbito dalle colture, 

causando una catena di effetti negativi a livello ambientale che hanno come target finale la 

salute dell’uomo. Il mais (Zea mays L.) rappresenta già una delle principali colture agrarie e 

varie stime attribuiscono a questo cereale un ruolo alimentare fondamentale anche nei 

prossimi decenni, quando la popolazione mondiale dovrebbe assestarsi, secondo le 

proiezioni, tra i 9.2 e gli undici miliardi di abitanti. Parallelamente al raggiungimento 

dell’obiettivo della sicurezza alimentare, l’agricoltura è chiamata a produrre rese crescenti in 

maniera sempre più sostenibile a livello ambientale. Punto centrale per la ricerca in 

agricoltura, il miglioramento dell’efficienza di utilizzo dell’azoto (in inglese NUE, Nitrogen 

Use Efficiency) da parte delle colture agrarie, per garantire produzioni crescenti senza 

ulteriore accumulo di forme reattive dell’azoto nell’ambiente. Per questo motivo, la 

comprensione dei meccanismi molecolari e fisiologici che regolano l’adattamento 

dell’apparato radicale delle colture agrarie alle fluttuazioni delle concentrazioni di azoto nel 

terreno, rappresenta un obiettivo primario nell’ottica di un progressivo utilizzo di nuove 

tecnologie finalizzate ad una agricoltura più sostenibile. 

Il corretto sviluppo fisiologico di una coltura agraria non dipende, infatti, solo dalla 

disponibilità di azoto nel terreno, ma anche dall’efficienza d’intercettazione del nutriente da 

parte dell’apparato radicale. Le piante generalmente sono in grado di assimilare sia nitrato 

che ammonio tuttavia, nei suoli agrari ben aerati, la principale fonte di azoto è rappresentata 

dal nitrato. Negli ultimi anni numerosi lavori hanno evidenziato un ruolo del nitrato come 

molecola segnale, considerato che moltissimi geni coinvolti nei processi di sviluppo e di 

crescita della pianta sono regolati da questo anione. Tuttavia molti di questi aspetti 

rimangono ancora da decifrare nel loro insieme. Anche l’ossido nitrico (NO) si sta ritagliando 

negli ultimi anni un ruolo sempre più importante nell’ambito dello studio delle risposte delle 

piante agli stress.  Tuttavia, il suo esatto ruolo in risposta agli stress nutrizionali è stato solo 
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abbozzato. In questo lavoro è stata studiata in dettaglio la produzione di ossido nitrico che si 

registra nelle radici di mais in presenza di nitrato, concentrandosi inizialmente sullo studio 

della regolazione dei geni coinvolti nell’omeostasi dell’ossido nitrico. In un secondo 

momento è stato anche preso in esame il ruolo dell’ossido nitrico come attore chiave nel 

modulare differenti risposte morfologiche a livello radicale in presenza di nitrato.  

Per meglio discriminare eventuali effetti specifici delle varie forme di azoto a livello 

transcrittomico, l’espressione di un numero di geni in precedenza identificati per essere 

regolati dall’azoto è stata analizzata in condizioni di disponibilità/carenza sia di nitrato che 

ammonio. In particolare, il profilo trascrizionale di cinque geni, che specificamente 

esprimono (i) una nitrato reduttasi citosolica (NR1), (ii) due differenti isoforme di 

emoglobine di tipo non simbiotico (nsHbs), (iii) una nitrito reduttasi (NiR) e, infine, (iv) un 

trasportatore ad alta-affinità del nitrato (NRT2.1), ha evidenziato una risposta esclusiva al 

nitrato. Questi geni non hanno manifestano, infatti, variazioni significative nei livelli di 

espressione quando è stata utilizzato come unica fonte azotata l’ammonio. Questo primo 

screening è stato altresì importante perchè ha permesso di focalizzarsi nelle analisi 

successive solamente su quei geni che rispondono specificatamente al nitrato; gli stessi che 

hanno dimostrato poi, durante l’avanzamento della ricerca, essere anche quelli attivamente 

coinvolti nel controllo dell’omeostasi dell’ossido nitrico, e cioè la nitrato reduttasi e 

l’emoglobina. Questi primi risultati ci hanno permesso quindi di ipotizzare un modello di 

regolazione molecolare che vede coinvolti questi geni in un’azione coordinata responsabile 

della sintesi (NR) e rapida inattivazione (nsHb) dell’ossido nitrico, in quanto molecola 

estremamente reattiva e tossica per la cellula, in risposta al nitrato.  

In aggiunta, una serie di analisi morfologiche sulla radice elaborate grazie all’aiuto di 

uno specifico software (WinRhizo) ha evidenziato come il nitrato agisca anche in maniera 

specifica e differenziale sullo sviluppo dell’apparato radicale (sono stati presi in esame come 

indici radicali: (i) la lunghezza totale, (ii) la superficie totale, (iii) il diametro medio delle radici 

e (iv) il numero di apici laterali). 

L’ipotesi che l’ossido nitrico sia prodotto nelle radici in risposta al nitrato è stata 

vagliata successivamente per mezzo di una serie di misurazioni in vivo dell’ossido nitrico, 

usando come sonda specifica per l’ossido nitrico il composto DAF-2DA e misurando poi la 

fluorescenza (indice della presenza di ossido nitrico) negli apici radicali sia allo stereo 

microscopio che al microscopio confocale. I risultati ottenuti hanno confermato pienamente 
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la teoria che suggerisce come l’ossido nitrico sia specificatamente sintetizzato dall’attività 

della nitrato reduttasi in presenza di elevate concentrazioni di nitrato. Le osservazioni al 

microscopio hanno inoltre evidenziato come la fluorescenza, indice della presenza 

dell’ossido nitrico, fosse massima e concentrata in una specifica area dell’apice radicale, e 

cioè la zona di transizione, situata tra l’apice meristematico e la zona di allungamento. Infatti 

successivamente, grazie all’utilizzo di un inibitore dell’attività dell’enzima nitrato reduttasi 

(tungstato) e del composto cPTIO (uno scavenger dell’ossido nitrico), l’ipotesi di partenza 

che prevede la sintesi dell’ossido nitrico legata all’attività della nitrato reduttasi in risposta al 

nitrato, e la rapida inattivazione da parte dell’emoglobina, è stata dimostrata e 

ulteriormente confermata anche dall’utilizzo di queste sostante in analisi di espressione 

genica, supportando pienamente l’ipotesi di una azione concertata di questi geni finalizzata 

alla regolazione omeostatica della sintesi/scavenging dell’ossido nitrico in risposta al nitrato. 

Una nuova serie di analisi è stata in seguito condotta nell’ottica di meglio 

caratterizzare eventuali differenze nei livelli di espressione di questi geni nelle diverse zone 

che compongono l’apice radicale. A questo proposito, l’espressione dei geni NR1, NiR e le 

due nsHbs, in risposta al nitrato, è stata analizzata specificatamente in quattro diverse zone 

della radice: (i) il meristema, (ii) la zona di transizione, (iii) la zona di allungamento e infine 

(iv) la zona di maturazione. In radici allevate in assenza di nitrato, il livello massimo di 

accumulo di trascritto per tutti i geni considerati si è concentrato nel meristema. In risposta 

al nitrato però, la zona di transizione ha registrato invece l’accumulo maggiore. In base a 

questi ultimi dati e allo studio della letteratura, suggeriamo l’ipotesi che il nitrato agisca 

nell’attivazione di una via di segnalazione che ha come risultato finale una risposta 

differenziale a livello morfologico della radice, per meglio rispondere alla presenza 

dell’anione nel terreno, e di come la percezione e l’attivazione di questa via di signaling 

avvenga specificatamente nella zona di transizione. Questa ipotesi non deve stupire, 

considerando la crescente mole di lavori che attribuisce a questa piccolissima zona dell’apice 

radicale un ruolo fondamentale nella percezione degli stimoli (sia interni sia esterni) e nella 

immediata traduzione in risposte adattive all’ambiente. 

Partendo da queste osservazioni, le analisi successive sono state focalizzate quindi 

allo studio degli effetti specifici che il nitrato esercita sulla regolazione della crescita della 

radice primaria, fenomeno che prende avvio a livello cellulare immediatamente a monte 

della zona di transizione e che gioca un ruolo cruciale nell’adattamento delle radici ai 
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cambiamenti della disponibilità del nutriente nel suolo. L’analisi condotta ha evidenziato un 

effetto di stimolazione del nitrato nella crescita ma soprattutto ha confermato una probabile 

partecipazione dell’ossido nitrico in questo processo di induzione all’allungamento, 

considerando che l’aggiunta di cPTIO ad una soluzione nutritiva ricca di nitrato riduce la 

crescita. Parallelamente, l’aggiunta di un donatore di ossido nitrico (SNP) in una soluzione 

nutritiva questa volta priva di nitrato ha evidenziato coerentemente un effetto di 

stimolazione alla crescita. L’utilizzo di tungstato infine, che si è manifestato in un forte 

effetto di inibizione all’allungamento in plantule allevate in presenza della fonte di azoto, 

suggerisce ulteriolmente un ruolo chiave della nitrato riduttasi nella produzione di ossido 

nitrico in risposta al nitrato, e di come questo meccanismo di fine-tuning omeostatico abbia 

degli effetti a livello fenotipico. 

Per riassumere, questi dati collettivamente presi indicano come nella radice di mais 

esista una via di segnalazione in risposta al nitrato mediato dall’attività dell’ossido nitrico, in 

concerto con la regolazione omeostica garantita dall’azione condivisa della nitrato reduttasi 

e dell’emoglobina. Tuttavia nuove analisi si rendono necessarie per caratterizzare meglio 

questa via di signaling e scoprire nuovi attori che partecipano a valle della sintesi di NO in 

risposta al nitrato, e che intervengono infine nel modulare differenzialmente la morfologia 

della radice. A questo riguardo, molti studi suggeriscono di concentrare la ricerca sugli effetti 

dell’ossido nitrico a livello di modificazioni del citoscheletro, così come sulle interconnessioni 

tra l’ossido nitrico e l’ormone vegetale auxina. 

Partendo da queste ultime considerazioni, la parte finale del mio progetto di 

dottorato è stata finalizzata allo studio degli effetti che il nitrato esplica, specificatamente 

nella zona di transizione, sulla formazione della parete cellulare (un processo cellulare 

mediato dall’attività del citoscheletro) e delle emicellulose in particolare (xiloglucani). 

Inoltre, un’analisi preliminare è stata anche condotta per verificare gli effetti del nitrato sul 

trasporto polare dell’auxina. I risultati fin qui ottenuti dall’analisi immunochimica, 

suggeriscono come il nitrato abbia un effetto significativo nella regolazione del trafficking 

vescicolare degli xiloglucani nella zona di transizione. Infatti, questi costituenti di parete dai 

nostri primi dati, mostrano un più elevato tasso di sintesi o recycling in risposta all’anione. 

L’utilizzo dell’inibitore specifico del trafficking vescicolare Brefeldin A (BFA), ha confermato 

ulteriormente questa ipotesi. Questa ipotesi assegna al nitrato un ruolo di stimolazione del 

recycling vescicolare degli xiloglucani. Coerentemente con i dati precedenti che hanno 
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mostrato un effetto di induzione del nitrato nella crescita della radice, un più elevato 

trafficking di materiale di parete può essere interpretato come un’azione per permettere alle 

pareti cellulari di distendersi maggiormente e di assecondare un più rapido sviluppo 

necessario per l’allungamento evocato dal nitrato. Infine, è stato visualizzato anche un 

effetto del nitrato riguardante il trasporto polare delle auxine mediato dai trasportatori PIN1 

nella zona di transizione. In presenza di nitrato infatti, l’auxina si localizza preferibilmente a 

livello di cross-walls (end-poles), e questo effetto è specificatamente indotto dal nitrato. 

Questo dato è stato supportato anche dalle osservazioni sull’immunolocalizzazione dei 

trasportatori PIN1, che hanno mostrato di co-localizzare in risposta al nitrato negli stessi siti 

di accumulo (end-poles) precedentementi osservati per l’auxina. Nuove analisi sono 

necessarie per meglio inquadrare il ruolo giocato dall’ossido nitrico all’interno in questi 

processi cellulari, considerando le numerose interconnessioni che legano NO, auxina e 

citoscheletro nella regolazione delle risposte adattative della radice all’ambiente esterno. 

 

 

  

  



 14  



 15 

Summary 

 

Over the past five decades, intensive agriculture has been able to increase the rate of 

food production more rapidly than that of human population growth but, at the same time, 

has also given rise to a series of negative environmental consequences, at both local and 

global level. Most of them are directly due to the large use in agriculture of synthetic 

ammonia fertilizers industrially produced by the Haber-Bosch process. Over 50% of the 

applied nitrogen in fact, is lost from the plant-soil system, leading to severe environmental 

damages and to negative impacts on human health. Maize (Zea mays L.) is one of the world’s 

major crops and is also expected to give an important contribution to human nutrition in the 

next few decades, when world population should exceed 8 billion people and rise to 9.2/11 

billion by 2050. To ensure future global food security, increasing crop yields are dramatically 

needed, however, sustainable ways of crop production are far from being achieved, 

considering also that further nitrogen accumulation in the environment is expected to be 

increased in the future without an adequate enhancement of Nitrogen Use Efficiency (NUE) 

in the main crops. For this reason, the understanding of the molecular events underlying 

root adaptation to nitrogen fluctuations is a primary goal to develop tools for sustainable 

agriculture.  

Crop plant development in fact, is not only strongly dependent on nitrogen 

availability in the soil but also on the efficiency of its recruitment by roots. Plants take up 

and assimilate both nitrate and ammonium, but nitrate is the main source of inorganic 

nitrogen for plants in aerobic soil conditions typical of most cultivated soils. In addition to its 

role as a nutrient, nitrate acts as a signaling molecule regulating the expression of the genes 

involved in growth and developmental processes. However, the mechanisms governing the 

sensing of nitrate by roots and of the signaling leading to an altered development of roots 

are still only partially characterized. Nitric oxide (NO) has been recently proposed to be 

implicated in plant responses to environmental stresses, but its exact role in the response of 

plants to nutritional stress is still under evaluation. In this work, the role of NO production by 

maize roots after nitrate perception was investigated by focusing on the regulation of 

transcription of genes involved in NO homeostasis and by measuring NO production in roots. 

Moreover, its involvement in the root growth response to nitrate was also investigated.  
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To better discriminate nitrate-specific effects from those more generally N-

dependent, the expression of a number of genes previously identified as being nitrogen-

responsive, was evaluated in response to nitrate/ammonium supply and deprivation. The 

transcriptional response of five genes encoding (i) the cytosolic nitrate reductase NR1, (ii) 

two different non-symbiotic hemoglobins  (nsHbs) isoforms, (iii) a gene encoding nitrite 

reductase together with (iv) a gene encoding the high-affinity root nitrate transporter 

(NRT2.1), evidenced a very strong and exclusive nitrate responsiveness in roots. Conversely, 

no effects were observed when ammonium was supplied as the sole nitrogen source. This 

first screening allowed the current work to focus later only on genes whose expression 

seems to depend exclusively on nitrate and to be specifically involved in the control of NO 

biosynthesis and scavenging. Our results highlight the importance of the coordinate spatio-

temporal expression of nitrate reductase and non-symbiotic hemoglobins in controlling the 

NO homeostasis in the maize root after nitrate provision.  

In addition, data obtained by analysing root morphological parameters by the 

WinRhizo software underlined the same specificity of nitrate, which significantly affected 

root growth when supplied to N-deprived roots.  

To deepen the hypothesis that nitric oxide may be produced by roots as an early 

signal of nitrate perception, NO in vivo detection was carried out. Results obtained using the 

DAF-2DA probe and stereo- and confocal microscopy evidenced a clear induction of 

fluorescence after nitrate provision. Very interestingly, the main zone of NO production 

seemed to be located immediately above the meristematic apex and more precisely to 

coincide with the root transition zone. The fluorescence detected after nitrate supply was 

not revealed in the presence of the specific nitrate reductase inhibitor tungstate, giving 

support to the role of NR in nitric oxide production. Moreover, the addition of the nitric 

oxide scavengers cPTIO together with nitrate, similarly suppressed the development of 

fluorescence, confirming the specificity of NO detection by the probe. These results suggest 

that a NR-dependent NO burst occurred immediately after nitrate supply to roots. The NR-

dependent NO production observed after nitrate supply was then further confirmed by the 

strong induction of NR1, NiR, and nsHbs transcription in the early phases of nitrate 

perception. In this case also, the transcription was significantly inhibited in response to 

tungstate and cPTIO addition, endorsing the cooperation between nitrate reductase and 

haemoglobin activities in the finely tuned control of NO homeostasis. 
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To deepen the spatial regulation of NO homeostasis balance, the expression of NR1, 

NiR and nsHbs genes was also analysed in four different root zones (i.e. meristem, transition 

zone, elongation zone, maturation zone) both in nitrate-depleted and in nitrate-treated 

seedlings. In N-starved roots, all transcripts evidenced their maximum accumulation at the 

meristem level. This pattern radically changed when nitrate was furnished to roots with a 

very significant increase of transcript abundance in the transition zone. As a result, we 

suggest that nitrate supply could activate its own sensing by stimulating NO production by 

the transition zone cells, thus initiating a signalling pathway contributing to the physiological 

adaptation (e.g. root growth) to nitrate fluctuations. 

Based on the preliminary results showing the preferential localization of NO 

production at the level of the transition zone, the attention was then focused on nitrate 

effects on root elongation, which takes place in the zone immediately above and 

neighbouring the transition zone. Our finding evidenced a strong and specific induction of 

root elongation of young maize seedlings supplied with 1 mM nitrate and a drastic inhibition 

in the presence of ammonium, cPTIO, and tungstate. On the contrary, when the negative 

control (-NO3
-) was supplied with a NO donor (SNP) the root length increased significantly. 

These results strongly suggest that the NO generated through NR should significantly 

contribute to the root lengthening noticed after nitrate provision. 

To summarize, it would seem that the NO-mediated pathway here described 

represents an early alert system for external nitrate sensing by root cells, which seem to 

individually possess the competence to activate this pathway when external nitrate is 

perceived. Additional experiments are necessary to better understand the functioning of this 

NO-mediated pathway and to identify the downstream events that link the NO burst with 

the physiological redirection of root growth. In this regard, it has been reported that NO 

signaling can alter cell polarity and cytoskeleton-mediated vesicle trafficking processes, thus 

affecting cell growth and root morphogenesis. This suggests that there should be more 

downstream effectors of NO action, acting either in parallel or in series with cytoskeletal 

constituents. Furthermore, since NO and phytohormones auxin act synergically to control 

diverse aspects of root biology and also considering that lateral root development in 

response to nitrate is strongly auxin dependent, a role of NO as a coordinator of nitrate and 

auxin signaling to control the overall root response to the anion cannot be excluded. 
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In order to try to answer to these last questions, in the final part of my Ph. D. thesis, 

we focused the attention on studying both cytoskeleton-mediated xyloglucans (a major 

primary cell wall component) modifications and polar auxin transport in the maize root 

transition zone cells in response to nitrate. Preliminary data achieved so far by using 

immunofluorescence labelling indicate that nitrate is able to modify cell wall recycling in the 

transition zone. Xyloglucans in fact, were very abundant especially in the sample subjected 

to nitrate treatment, when compared to the negative control, suggesting a higher rate of 

XGs synthesis /or recycling, in response to the anion in the maize root transition zone. 

Additionally, Brefeldin A (a chemical which prevents vesicle formation in the exocytosis 

pathway while allowing endocytosis, resulting in the cytoplasmic accumulation of all 

recycling molecules) treatment partially failed in removing all XGs from cell walls in +N 

samples, since a marked immunofluorescence was still visible at cross walls, despite the 

strong effect of the drug that resulted in the abundance of BFA-compartments also within 

these cells. These latter data could suggest that nitrate promotes a higher rate of XGs 

recycling in order to maintain a loosened cell wall structure, thus allowing an extensive and 

fast cell elongation in response to the anion. Taken together, these data open a fascinating 

scenario in which nitrate might act in promoting rapid cell elongation of root apex by 

regulating, in a mechanism as yet unknown, the synthesis or the turn-over (or both) of 

xyloglucans within root transition cells. Also PIN1-mediated auxin accumulation seems to be 

interfered in response to nitrate. IAA signal in fact, was strongly localized at the cross wall 

(end-poles) of transition zone cells only in nitrate-supplied roots, thus suggesting that IAA 

end-poles labelling was probably due to increased IAA fluxes triggered specifically by nitrate. 

In support to this hypothesis we also observed that IAA and its transporter PIN1 protein co-

localize in NO3
--treated roots at the cross walls (end-poles), thus providing further, although 

preliminary, evidences that nitrate in the maize root transition zone is able to increase IAA-

fluxes, in a mechanism as yet unknown, that involved also PIN1 proteins. Further 

immunolabeling data, by also using NO donors and scavengers, will be needed to better 

understand the coordinated actions of nitric oxide, auxin and cytoskeleton adjustments in 

tightly regulating root motoric response to nitrate.  
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Chapter I - General introduction 
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1. Preface 

 

Intensification of agricultural systems is undoubtedly one of the main global changes 

occurred in the XX century, which have affected not only the traditional farming but also 

economy and society throughout the world. In the last five decades overall food production 

kept pace with the population growth and now modern agriculture feeds more than seven 

billion people. The breakthrough in crop productivity was extremely intense worldwide, 

thanks to the novel technological advances introduced during the “Green Revolution”. In this 

scenario, a massive use of artificial nitrogenous fertilizers has played a central role, however, 

at the same time, environmental concerns about this high application of synthetizing 

ammonia products have emerged in most of agro-ecosystems. In addition, the capability to 

maintain long-term intensive agriculture is also debated, taking into account the fact that 

human population is still increasing and further food production will be consequently 

necessary. Thus, the shift towards more sustainable agriculture has become a compelling 

challenge and the breeding of new crops with enhanced nitrogen use efficiency (NUE) a 

major issue in plant biology. 

Over the past five decades, intensive agriculture has been able to increase the rate of 

food production more rapidly than that of human population growth, as the global 

population increased from about three billion people in the late 1950s to over seven billion 

people (according to the United States Census Bureau (USCB), as of 2013, world population 

is estimated at 7.177 billion). This extraordinary result was mainly due to the enormous 

growth of global cereal production, considering that cereal species belonging to monocots 

family provide >50% of human calories (Rich and Watt, 2013). In fact, total grain production 

is almost tripled since 1961 to 2012, increasing from approximately 880 million tones (Mt) to 

over 2500 Mt (FAOSTAT, 2012). This trend was not paired with an analogue expansion of the 

amount of land devoted to arable agriculture that, in the same time, globally has increased 

by only 9% (Godfray et al., 2010; FAOSTAT, 2012).  Among cereals, maize (Zea mays L.) is 

second only to wheat in total area harvested but first in total grain production (872 Mt), to 

which must be added about 450 Mt of maize harvested for forage and silage (FAOSTAT, 

2012). These last few data are sufficient to understand the importance of this monocot in 

crop production and the consequent need to improve our knowledge on maize biology in 
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order to ensure, on one hand, higher yields in an increasing world population and, on other 

hand, reduced environmental costs of maize cultivation. 

Intensification of agricultural systems in fact, has also given rise to a series of 

negative environmental consequences, at both local and global level. Most of them are 

directly due to the large use in agriculture of synthetic ammonia fertilizers industrially 

produced by the Haber-Bosch process, in which natural gas (CH4) is burned to produce 

hydrogen that react with N2 under high temperature and very high pressure to form 

ammonia (NH3). This process was one of the most important industrial innovations of the 

20th century, as it allowed to feed a rapidly growing population and, currently, almost 50% of 

humanity is still dependent upon the Haber-Bosch process (Erisman et al., 2008). Overall, the 

increase in application of synthetic N fertilizers in the last five decades was dramatic: from 

about 10 Tg (1 Tg = 1 million tonnes) N/year in the late 1950s to more than 100 Tg N/year in 

2008 (Robertson and Vitousek, 2009). The most recent estimates indicate 120-125 Tg of 

synthetic N applied to agricultural system each year as a more realistic value, and the 

magnitude of anthropogenic N fixation is so large that it has paired the natural terrestrial 

sources of reactive nitrogen (Nr) species1 (Fowler et al., 2013), as showed in Fig. 1. The 

tremendous impact on the environment of this massive application of synthesized N in agro-

systems is exacerbated also by considerable greenhouse gases emissions derived from the 

huge amount of energy required by the Haber-Bosch process: it has estimated as 2.5% of the 

total world supply (Erisman et al., 2008). However, the major problem of excessive fertilizing 

regimes in intensive agriculture is due to the enhancing losses of Nr to the environment 

because of the low ability of modern crops to take up efficiently nitrogen from the soil. 

According to several Authors (Raun and Johnson, 1999; Baligar et al., 2001; Robertson and 

Vitousek, 2009) the Nitrogen Use Efficiency (NUE) in agriculture is very low, with an average 

of only 30-50% taken up by the plant and the remainder lost from the plant-soil system, 

which ultimately caused serious pollution to the global biosphere (Good and Beatty, 2011). 

Thus, the selection of cultivars with enhanced NUE is a fundamental goal for modern 

agriculture and for cereals in particular, considering that approximately 65% of globally N 

fertilizers are used for cereal production (Garnett et al., 2009). 

 

                                                           
1 Reactive nitrogen (Nr) species include all N species except N2: inorganic reduced forms (ammonia 
[NH3] and ammonium [NH4

+]), inorganic oxidized forms (nitrogen oxide [NOx], nitric acid [HNO3], 
nitrous oxide [N2O] and nitrate [NO3

-]) and organic compounds. 
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Figure 1. Global nitrogen fixation, natural and anthropogenic in both oxidized and reduced forms through 
combustion, biological fixation, lightning and fertilizer and industrial production through the Haber–Bosch process 
for 2010. The arrows indicate a transfer from the atmospheric N2 reservoir to terrestrial and marine ecosystems, 
regardless of the subsequent fate of the Nr. Green arrows represent natural sources, purple arrows represent 
anthropogenic sources, from Fowler et al., 2013. 

 

Nitrogen (N) is one of the most abundant elements in Earth’s atmosphere, 

hydrosphere and biosphere; however, it is also the least available for living beings, since it is 

present predominately in its molecular un-reactive form N2 (99% of the total amount of N in 

nature) that is reduced to ammonium compounds only by a few species of specialized 

microorganisms through the biological nitrogen fixation (Fowler et al., 2013). Before the 

widespread diffusion of intensive agricultural systems, the rate of Reactive nitrogen (Nr) 

formation was approximately counterbalanced by the rate of denitrification (Robertson and 

Vitousek, 2009) but presently, as mentioned before, anthropogenic sources of newly created 

Nr has paired the global amount of natural terrestrial sources (Fowler et al., 2013) leading to 

an important change in the global nitrogen cycle (Galloway et al., 2013). Nr are highly mobile 

and the negative effects on environment are numerous and magnified by the “nitrogen 

cascade”, in which a single Nr atom can trigger a cascade of negative environmental impacts 

in sequence (Galloway et al., 2013), and with time, considering that the lifetime of Nr in 

terrestrial ecosystems and in the oceans is estimated a few decades (Fowler et al., 2013).  As 

nitrogen is a major nutrient, massive variations in its supply deeply influence the 

productivity of ecosystems and change the competition between species, causing a 

widespread loss of biodiversity, to which must be added a multitude of effects in the 

atmosphere (being Nr species precursor of tropospheric ozone), in freshwater and marine 
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systems, and finally on human health (Erisman et al., 2013; Fowler et al., 2013; Galloway et 

al., 2013). In addition, Nr accumulation in the environment also contributes to the radiative 

forcing of climate change (Robertson and Vitousek, 2009; Cameron et al., 2013). A 

comprehensive illustration of the “nitrogen cascade” is represented in Table 1 and explained 

in more detail in Box 1.  

In 2030, world population should exceed 8 billion people and rise to 9.2/11 billion by 

2050 (Parry and Hawkesford, 2010). This population growth means at least to expand crop 

production of the 50% by 2030 and double by 2050 to meet projected demands, also 

because of a progressive shift towards diets with higher proportion of meat (Godfray et al., 

2010; Tilman et al., 2011). To ensure future global food security, increasing crop yields are 

dramatically needed, however, sustainable ways of crop production are far from being 

achieved, considering also that further Nr accumulation in the environment is expected to be 

increased in the next decades without an adequate enhancement of NUE in the main crops 

(Fowler et al., 2013). At the same time that demand for food is growing, crop production is 

being limited by expanding urbanisation, land degradation (due to erosion and salinization), 

non-food uses of crops (mainly for bioenergy production) and climate change (Parry and 

Hawkseford, 2010; Lobell et al., 2011). Thus, a call for a second “Green Revolution”, which 

would allow increasing crop yields in a more sustainable way, is dramatically needed. 

However, traditional breeding strategies to enhance NUE in crops have experienced a 

plateau, and this indicates that new solutions, which should be able to increase yields while 

decreasing N application, are no longer delayed (McAllister et al., 2012). A possible way out 

of this impasse can be the successful application of biotechnology to crop breeding (Godfray 

et al., 2010; Parry and Hawkseford, 2010), but this requires a deeper understanding of the 

physiological, genetic and molecular mechanisms regulating NUE in plants. 
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BOX 1. Nitrogen losses from the soil/plant system and effects on environment and human health 

___________________________________________________________________ 

The N cycle is complex in natural ecosystems as well as in agriculture and includes several connections between 

air, water and soil (Fig. 2). Regarding crop systems, what makes N different is the absence of an available N 

pools in most soils: unlike other elements, there is no potentially available N in the rocks and, thus, N must 

come outside the plant-soil system by fertilization to re-equilibrate the annual N loss via harvest. However, as 

discussed before, most of the N added to crops does not reach its ultimate target and the N surplus is lost to 

the aqueous and atmospheric environments where it becomes a serious pollutant. Among the reactive N 

species, the leaching of very soluble compound such as nitrate (NO3
-
) represents a major risk to human health 

and a threat to the environment. Contamination of drinking water by an excess amount of NO3
- 

can cause 

methemoglobinemia in babies and has also been linked to cancer and heart disease (Grizzetti et al., 2011). In 

this scenario, the same Author reports that about 20% of the European lives in areas where NO3
- 

concentrations exceed the recommended level of 11.3 mg/L. In addition, NO3
- 
in concert with ammonia (NH3) 

and ammonium (NH4
+
) that enter rivers or lakes contributes to eutrophication, a natural process in which 

increasing Nr levels lead to surface water hypoxia and to the release of toxic compounds due to explosive 

growth of phytoplankton and algal species. This in turn dramatically impacts higher trophic level organisms and 

the rest of aquatic ecosystem (Grizzetti et al., 2011, and references therein). In addition to solution losses, Nr 

can also been lost to the atmosphere as different kinds of polluting N-containing gaseous, such as nitrous oxide 

(N20), nitric oxide (NO) and nitrogen dioxide (NO2), collectively known as NOx, and ammonia (NH3). Nitrous 

oxide is a very strong greenhouse gas with nearly 300 times the global warming potential per unit weight of 

carbon dioxide (CO2) and has also implicated in stratospheric ozone depletion (Mulvaney et al., 2009). The 

concentration of N20 in the troposphere has increased from 270 parts per billion (ppv) in the preindustrial era 

to around 320 ppv today, contributing about 6% to the global greenhouse gas forcing that drives climate 

change (Forster et al., 2007; Good and Beatty, 2011). About 80% of this N20 is associated with intensive 

agriculture and the most part (>50%) with N-fertilized soils (Robertson, 2004). NOx emissions in the atmosphere 

(of which about one-quarter of the total is from agriculture) are directly linked to the generation of secondary 

pollutants (such as tropospheric ozone and other photochemical oxidants and aerosols) that are responsible for 

severe damage to human health and to vegetation on one hand (Erisman et al., 2013; Fowler et al., 2013) and 

for Nr deposition on environment by acid rain on the other hand (Robertson and Vitousek, 2009; Gallowey et 

al., 2013). Finally, the loss of Nr from the soil/plant system due to ammonia volatilization is returned to the 

earth’s surface through wet deposition (acid rain) or dry deposition (i.e. attached to particulate matter), 

causing acidification and eutrophication of natural ecosystem (Cameron et al., 2013). Unlike NOx, a very large 

fraction of global NH3 emissions are from agricultural sources, including N fertilizer application (about a quarter 

of the total; Galloway et al., 2004). To conclude, the global N cycle has been largely modified by human 

activities and the obvious benefits for food security has been accomplished by a great number of negative 

effects on biosphere and human health. Thus, there is a compelling need to reduce the use of N fertilizers in 

most of agro-ecosystems and newly developed crops with greater nitrogen use efficiency (NUE) can be a key 

solution to increase the sustainability of intensive agriculture and minimize the impacts on environment.  
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Table 1. Illustrating the nitrogen cascade: a possible life cycle of a nitrogen atom following fixation in the Haber–
Bosch process to NH3 and its pathway through terrestrial and marine ecosystems and the atmosphere before 
returning to the atmospheric N2 reservoir. The single N atom contributes en route to eutrophication and 
acidification of terrestrial and marine ecosystems, and to human health and climate effects, modified from Fowler 
et al., 2013. 

transformation pathway environmental effects 

N2 fixation: Haber-Bosch 

process 

N2 NH3 

industry energy intensive process, 

production of CO2 plus all the 

consequences of the Nr as it 

cascades through soils, the 

atmosphere and aqueous 

phases 

N fertilizer on crops agricultural lands provision of food 

for human consumption 

NH4 nitrified to  NO3
- 

NO in soil  atmosphere 

oxidation of NO NO2
- 
HNO3 

NO emission from soil to 

atmosphere and ozone 

production during volatile 

organic compound degradation 

ozone effects on vegetation 

and human health 

aerosol formation: HNO3   

NO3
- 

in atmosphere planetary albedo, human health 

wet + dry deposition NO3
- to 

soil vegetation NO3
-
 R-NH2 

removal from atmosphere and 

transfer to plant biomass 

eutrophication 

acidification 

consumption by herbivores 

(excreted as urea) 

R-NH2  CO(NH2)2 

plant biomass  animal protein  

 excreted and returned to soil 

eutrophication 

urea converted to NH3 in soil 

and released to atmosphere 

soil to atmosphere flux of NH3 eutrophication 

NH3/ NH4
+ uptake by 

vegetation 

removal from atmosphere by 

dry deposition to vegetation 

eutrophication 

decomposition R-NH3   NH4
+ vegetation to soil eutrophication 

NH4
+ nitrified to NO3

- 

transferred to 

river/estuary/open ocean 

soil to ground water  river 

 ocean 

eutrophication 

ocean uptake in 

phyto/zooplankton 

shelf seas to open ocean eutrophication 

denitrification in ocean 

sediments NO3
-  N2 

returns to atmosphere as N2 

and N2O 

climate change 
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Figure 2. The soil/plant nitrogen cycle, from Cameron et al., 2012. 

 

2. Nitrogen use efficiency (NUE) 

 

Nitrogen use efficiency lacks exact definition and can be defined in various ways 

depending on the different methods used to measure it, starting from the first classical 

definition of Moll et al. (1982), in which NUE is defined as the yield of grain per unit of 

available N in the soil. As a function of multiple interacting genetic and environmental 

factors, NUE is inherently complex. The definition of NUE itself is also complex, and the term 

can mean different things in different contexts, including N use efficiency (NUE), N uptake 

efficiency (NUpE), N utilization (assimilation) efficiency (NUtE), apparent N recovery rate 

(ANR), agronomy efficiency of fertilizer N (AE), N physiological use efficiency (NpUE), N 

transport efficiency (NTE), and N remobilization efficiency (NRE) (definitions and formulae 

used here to describe nutrient use efficiency in plants are reviewed in Good et al., 2004 and 

Xu et al., 2012). Consequently, the different ways to measure and to define NUE depend on 



 27 

the crop, on its harvest product and on the physiological aspects considered. In addition, in 

order to improve the nitrogen use efficiency, it is necessary to consider that NUE also 

depends on a large number of external factors, such as soil type and management, 

interactions with microorganisms, the nature of N source and the climate (Hirel et al., 2011). 

In this respect, agronomic approaches in improving NUE are related to the (i) organic 

farming (such as using green manure or cover crops for N fertilization, as well as to the 

application of appropriate livestock manure) and (ii) precision agriculture principles (for 

instance, the development of strategies to synchronize fertilization with the larger crop N 

demand periods), (iii) no or minimum tillage techniques in order to reduce leaching and 

volatilization of N and increase in turn, the N soil availability for the crop (Tilman et al., 2002; 

Good and Beatty, 2011; Hirel et al., 2011). The use of combined approaches including 

molecular biology and physiology for the breeding of crops with enhanced NUE is a further 

vital step in order to reduce N losses to the environment while maintaining yield and protein 

quality. In particular, in the last few years, the understanding of the genetic basis of plant 

nutrition has advanced rapidly and has allowed the identification of key elements involved in 

nutrient uptake, transport and assimilation, as well as in root physiology and morphology 

(López et al., 2013). However, the whole regulation and signaling systems of NUE are still far 

from a full comprehensive understanding (Hirel et al., 2007; Kant et al., 2011; McAllister et 

al., 2012) and new studies are required to better decipher the nitrogen use efficiency in 

crops both at molecular and morphological level. 

Before discussing the attempts at modifying NUE in plants, a review of the key steps 

in primary N metabolism as well as the nitrate signaling pathways is given.    

 

2.1 Nitrogen acquisition by plants 

 

Regulation of plant N-metabolism is complex and influenced by several physiological 

and metabolic processes, such as circadian rhythms, sugars synthesis and transport, key N 

metabolite levels and NO3
- itself (McAllister et al., 2012). Nitrate, beside being an essential 

nutrient for plants, also plays a signaling role in regulating important physiological and 

developmental processes, such as seed dormancy, flowering time, root development and 

the expression of a large number of nitrate-responsive genes (Bouguyon et al., 2012). In 

addition, plants are also capable to reprogramme their growth by modulating the activity of 
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N transport system, in order to modify root system architecture in response to different 

nitrogen availability in the soils (Dechorgnat et al., 2011). 

Nitrogen (N) in fact, is present in the soil in several different N-containing compounds 

including inorganic forms, such as nitrate (NO3
-) and ammonium (NH4

+), and to a lesser 

extent, organic forms such as amino acids, peptides (di- and tri-peptides) and proteins 

(Miller et al., 2007). Under natural conditions, the content of inorganic and organic N forms 

in the soil depends on a very large number of factors, such as the physical and chemical 

properties of soils, pH, temperature and the presence and activity of microorganisms; 

however, under aerobic soil conditions (typical of most cultivated soils), soluble NO3
- is the 

major N source taken up by crops (Krouk et al., 2010a). In the well-aerated agricultural soils 

however, high NO3
- concentration are not maintained for a long time (because of losses 

mainly due to NO3
- leaching and microbial denitrification) and the presence of the anion is 

extremely variable in both space and time, considering that it can vary by two to four orders 

of magnitude (Miller et al., 2007). Thus, plant roots have developed multiple strategies to 

cope with this extreme variability in nitrate soil concentration, evolving a very sophisticated 

and fine-tuned nitrate uptake and transport system, in order to optimize and regulate the 

acquisition and assimilation of NO3
-. 

 

2.1.1 Nitrate transporters and channels   

 
Plants have developed four different families of nitrate transporters (Fig. 3):  

 NRT1/PTR (nitrate transporter 1/peptide transporter); 

 NRT2; 

 CLC (chloride channels, with affinity also for nitrate); 

 SLAC/SLAH (slow anion channels). 

 

Among these, only some nitrate transporters belonging to the NRT1/PTR and the 

NRT2 family are directly involved in the acquisition of NO3
- from soil; the CLC family in fact, 

which encodes two tonoplast H+/NO3
- antiporters and the SLAC1/SLAH family, which encodes 

two guard cell anion channels, are responsible, together with the remaining NRT1/PTR and 

NRT2 transporters, for the efflux, transport and allocation of nitrate within the plant (Kant et 

al., 2011; Wang Y. et al., 2012). 
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Figure 3. Physiological functions of Arabidopsis nitrate transporters, from Wang Y. et al., 2012. 

 

2.1.1.1 Nitrate uptake from soil 

 

Regarding the NO3
- uptake system, plants have developed two kinetically different 

NO3
- transport systems: the low affinity transport system (LATS), which operates and 

becomes significant at external NO3
- concentration above 1 mM, and the high affinity 

transport system (HATS) that predominates in the micromolar range (Miller et al., 2007; 

Kraiser et al., 2011; Xu et al., 2012).   

In Arabidopsis, there are 53 NRT1/PTR transporters although, so far, a role in nitrate 

uptake has been proposed for only two NRT1 genes, NRT1.1 and NRT1.2 (Andrews et al., 

2013). The gene family was named NRT1/PTR because in animals, fungi and bacteria they 

transport dipeptides (Wang Y. et al., 2012). In plants, some NRT1/PTR transport NO3
- and 

some transport dipeptides. With the exception of AtNRT1.1, also known as CHL1 (Wang R. et 

al., 1998; Liu et al., 1999), and MtNRT1.3 (Morére-Le Paven et al., 2011), which are dual-

affinity NO3
- transporters, most of the NRT1 members are low-affinity NO3

- transporters 

(LATS). AtNRT1.1 was the first gene identified for its putative role in LATS, using chlorate 
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selection on the NO3
- uptake mutant chl1 (Tsay et al., 1993). Further investigations on nrt1.1 

mutants defective in low-affinity NO3
- uptake demonstrated surprisingly a role for 

NRT1.1/CHL1 also in high-affinity nitrate transport system (HATS), suggesting a dual role in 

taking up nitrate of this gene (Wang R. et al., 1998; Liu et al., 1999). A phosphorylation 

switch of threonine 101 by calcineurin B-like-interacting protein kinase 23 (CIPK23), in 

response to variations in external NO3
- concentration, is responsible for the change of 

AtNRT1.1 mode of action, which functions as a low-affinity transporter in the 

dephosphorylated configuration and exhibits, on the contrary, high-affinity NO3
- uptake 

activity in the phosphorylated isoform (Liu and Tsay, 2003). Very interestingly, increasing 

evidence suggest that AtNRT1.1 may also function as a major nitrate sensor, being involved 

in regulation of several plant physiological responses, such as the relief of seed dormancy 

and the stimulation of lateral root proliferation, similarly to other membrane proteins 

communally called “transceptors”, that fulfil a dual transport/signaling function in yeast and 

animals, (Gojon et al., 2011). Thus, NRT1.1 can sense a wide range of NO3
- concentration in 

the soil, switching between its transporting and signaling activities. In addition to 

NRT1.1/CHL1, in NRT1/PTR family also NRT1.2 participates in low-affinity nitrate uptake 

(Huang N. et al., 1999). In contrast with NRT1.1, which is induced by NO3
-, NRT1.2 is 

constitutively expressed (Huang N. et al., 1999), and does not show neither the dual-affinity 

mode of action nor, so far, a signaling function, and it is expressed only in root epidermal 

cells, whereas NRT1.1 has been found in epidermis, cortex and endodermis (Tsay et al., 

2007). Finally, the role of AtNRT1.3 in taking up NO3
- remains unclear, considering that its 

expression in root is repressed by exposure to NO3
- and conversely induced by NO3

- 

deprivation, suggesting an insignificant contribution to LATS (Okamoto et al., 2003; Plett et 

al., 2010).  

The NRT2 family of Arabidopsis thaliana includes seven genes. NRT2.1 is the main 

component of inducible HATS in Arabidopsis, as demonstrated in nrt2.1 mutants that lack up 

to 75% of the high-affinity nitrate uptake activity (López et al., 2013). To be active, NRT2.1 

forms a functional unit with the membrane protein NITRATE ACCESSORY PROTEIN2.1 

(NAR2.1, also known as AtNRT3.1), which plays a key role in regulating both inducible and 

constitutive HATS (Laugier et al., 2012). In the Arabidopsis nar2.1 mutant, the disappearance 

of NRT2.1 protein from the plasma membrane suggested that NAR2.1 is required for the 

plasma membrane targeting and/or for the NRT2.1 stability (Wirth et al., 2007). Thus, in 
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Arabidopsis three nitrate transporters are involved in HATS: NRT2.1, NRT2.2 and the dual-

affinity NO3
- transporter NRT1.1. The relative contribution of these transporters to high-

affinity NO3
- uptake is dependent on the developmental stage and to the N status of the 

plant (Tsay et al., 2007). Both NRT2.1 and NRT2.2 are inducible by provision of NO3
-, in 

contrast with NRT2.4, which is similarly expressed in root, exhibiting a very high-affinity 

range at low NO3
- concentration, but its gene expression appears to decrease following 

exposure to nitrate (Kiba et al., 2012).  

To conclude, it is predictable that other candidate genes for both LATS and HATS will 

be identified in the future, especially in plant species different than the model species 

Arabidopsis thaliana. In fact, the determination of function of the NRT2 genes in cereals 

simply based on sequence homology to functionally characterized Arabidopsis NRT2 genes 

may not be possible (Xu et al., 2012). The phylogenetic analysis of the NRT gene families in 

Arabidopsis and monocot species in fact, has revealed some striking differences in gene 

family structure, thus providing a framework for future investigations on grass NO3
- 

transporters and potentially future strategies for improving NUE in cereals through genetic 

manipulation of the NRT genes (Plett et al., 2010). However, regarding the three maize 

nitrate transporters analysed in this work, such as ZmNRT1.1 and ZmNRT2.1 and ZmNRT2.2, 

they all show gene expression and regulation patterns similar to those of A. thaliana 

(Quaggiotti et al., 2003; Santi et al., 2003; Trevisan et al., 2008; Yu P. et al., 2014).   

 

2.1.1.2 Nitrate efflux, translocation and allocation in vegetative tissues and seeds, and 

nitrate-induced stomatal movement 

 

Nitrate is taken up from soil through the root system by the activity of a few numbers 

of transporters belonging to the NRT1/PRT and NRT2, as mentioned above (NRT2.1, NRT2.2 

and NRT2.4 acting as HATS, NRT1.2 as LATS and the dual-affinity transporter NRT1.1/CHL1). 

The following steps of the NO3
- fate within the plant are mediated by the concerted action of 

the remaining NRT1/PRT and NRT2 family transporters, together with the vacuolar chloride 

channels CLCa and CLCb, and the anion-efflux channels SLAC1 and SLAH3. 

The physiological role of NO3
- efflux in root epidermal cells remains unclear so far, 

although it has been proposed the involvement of AtNAXT1, a member of the NRT1/PTR 

family (Segonzac et al., 2007) and of AtNRT1.5 (Lin et al., 2008) in this process. The 
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transporter NRT1.5 has a role also in the loading of nitrate into the xylem, in concert with 

NRT1.8 and NRT1.9 in modulating the translocation of NO3
- from root to shoot. The 

cooperation of these transporters in the root-to-shoot NO3
- transport suggests a fine-tuned 

distribution of the anion within plant, by different regulatoty pathways (Wang Y. et al., 

2012). In Arabidopsis, NRT1.5 is expressed in the perycicle cells adjacent to the protoxylem 

and is responsible for exporting NO3
- out the perycicle cells for xylem loading and is positive 

induced by the presence of the anion (Lin et al., 2008). Otherwise, NRT1.8 is responsible for 

retrieving nitrate from the xylem parenchima both in root and shoot (Li J. et al., 2010), thus 

working synergistically with NRT1.5 to control long-distance NO3
- transport. Finally, NRT1.9 

mediates the downward phloem transport of nitrate in root (Wang Y. and Tsay, 2011), 

suggesting that NRT1.9 together with NRT1.8 are negative effectors of root-to-shoot NO3
- 

transport but through different mechanisms. 

After transportation to shoot, nitrate can be assimilated or stored in vacuoles. The 

low- affinity NO3
- transporter NRT1.4 shows a very specific pattern of expression in the leaf 

petiole (a NO3
- storage site) indicating that NRT1.4 regulates NO3

- distribution in leaves and 

that it plays, thus, an important role in regulating leaf nitrate homeostasis and leaf 

development (Chiu et al., 2004). In addition to NRT1.4, also NRT1.7 has been identified as 

playing a role in the allocation of NO3
- within leaves, remobilizing nitrate from the older to 

younger leaves through facilitating phloem loading (Fan et al., 2009). Finally, NRT2.4 also 

participates in phloem NO3
- transport in shoots and its expression in phloem parenchyma 

leaves is induced by N starvation (Kiba et al., 2012). These last findings that suggest a 

contribution of phloem nitrate transporters in controlling NO3
- distribution within plants, 

shed new light on the general opinion that nitrate can be only transported via the xylem, 

suggesting the phloem nitrate transport as a secondary route to modulate local NO3
- 

distribution (Wang Y. et al., 2012). Regarding nitrate membrane transporters through the 

tonoplast, the genes responsible for exporting NO3
- out of vacuoles have not yet been 

identified, as opposed as those that are responsible for transporting NO3
- into the vacuoles, 

which are well document: the proton-nitrate tonoplast exchangers CLCa and CLCb mediate, 

in fact, nitrate import into the vacuole (De Angeli et al., 2006; von der Fecht-Bartenbach et 

al., 2010).  

Lastly, a brief summary about the nitrate transporters and channels associated with 

the stomatal activity and the NO3
- movement in reproductive tissues is given. Very 
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interestingly, NRT1.1/CHL1 is expressed not only in roots but also in the guard cells where, in 

presence of NO3
-, promotes stomatal opening in Arabidopsis (Guo et al., 2003). The anion-

efflux channels SLAC1, which exhibits similar permeability for nitrate and chloride, and 

SLAH3, which shows a strong preference for nitrate over chloride, drive, on the opposite, the 

stomatal closure (Negi et al., 2008; Vahisalu et al., 2008; Geiger et al., 2011). In conclusion, 

the low-affinity NO3
- transporters NRT1.6 (a plasma-membrane localized transporters, 

expressed only in the vascular bundles of the siliques and the funiculi) and the tonoplast-

membrane transporter NRT2.7 are responsible in delivering nitrate to developing seeds 

(Alboresi et al., 2005 and Chopin et al., 2007, respectively).    

After having discussed about nitrate uptake and efflux, translocation and allocation in 

vegetative tissues and seeds of NO3
-, as well as the nitrate effects on stomatal movement, 

and the several transporters involved in all these physiological processes, in the next 

paragraph a review on nitrate assimilation within the root symplast is given. 

 

2.2 Nitrate assimilation through the NR-NiR-GS-GOGAT pathway 

 

Nitrate, after being taken up by root epidermal cells, can be stored in the vacuoles or 

be transported via the xylem (and, to a lesser extent, via the phloem) to vegetative tissues 

and seeds, where again it can be stored or assimilated, as discussed before. Otherwise, 

nitrate can be assimilated into organic forms directly in root cells, through the sequential 

reduction to nitrite (NO2
-) and ammonium (NH4

+), as showed in Fig. 4. 

The first step of NO3
- assimilation is the cytosolic reduction to NO2

- that is carried out 

by nitrate reductase (NR; EC 1.6.6.1) through the subsequent reaction: 

 

NO3
- + NAD(P)H + H+ + 2e- 

 NO2
- + NAD(P)+ + H2O. 

 

Nitrate reductase is a multiple-subunit enzyme, in which each monomer contains three 

prosthetic groups (FAD, molybdenum cofactor and cytochrome 557), and can use, as 

electron donor, NADH or NADPH or both (Tischner, 2000). The most widespread NR is the 

NADH-dependent form, which is mainly expressed in photosynthetic tissues, whereas the 

major form occurring in root can use, as electron donor, both NADH and NADPH (Masclaux-

Daubresse et al., 2010). NR transcription is induced within a few minutes by both NO3
- and 
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light, but a post-translational mechanism of regulation, by reversible phosphorylation and 

the interaction with 14-3-3 proteins was also demonstrated (Heidari et al., 2011; Lambeck et 

al., 2012). High concentration of reduced N-forms, such as NH4
+ or amino acids glutamine 

(Gln) and asparagine (Asn), and the darkness are the most potent inhibitors of NR activity 

(Lillo et al., 2004). Interestingly, high C/N ratio also induces NR expression, suggesting a 

complex interaction between the C and N signaling pathways and predictable matrix effects 

(Coruzzi and Zhou, 2001). Post-translational mechanisms for the regulation of NR activity are 

vital to have a faster control of the enzyme (minutes against hours). 

Nitrite (NO2
-),  is fairly toxic to plant cells and is immediately converted into NH4

+ by the 

plastidial or chloroplastal enzyme nitrite reductase (NiR; EC 1.7.7.1), which catalyses the 

transfer of six electrons to NO2
-, using reduced ferrodoxin (Fd) as electron donor (Sakakibara 

et al., 2012). The reaction is the following: 

 

NO2
- + 6Fdred + 8H+ + 6e-  NH4

+ +6Fdox + 2H2O. 

 

Synthesis of NiR is regulated by a nitrate responsive cis-element, but there is no evidence of 

post-translation modifications (Konishi and Yanagisawa, 2011). Similarly to NR, also NiR is a 

substrate and light induced enzyme, whereas its gene expression is inhibited by Gln and Asn 

(Lillo, 2008). 

 

  

Figure 4. The assimilation of nitrogen (N) in higher plants. The main enzymes involved are indicated in italics: 
NR=nitrate reductase; NiR=nitrite reductase; Nase=nitrogenase; GS=glutamine synthetase; GOGAT =glutamate 
synthase. The ultimate source of inorganic N available to the plant is ammonium, which is incorporated into 
organic molecules in the form of glutamine and glutamate through the combined action of the two enzymes GS 
and GOGAT in the plastid or chloroplast, from Andrews et al., 2013. 
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Ammonium (NH4
+) is rapidly converted, because of its toxicity, into the amino acid 

glutamate (Glu) by the sequential action of glutamine synthetase (GS) and glutamate 

synthase (GOGAT), also known as glutamine:2-oxoglutarate aminotransferase (Masclaux-

Daubresse et al., 2010). Ammonium, both directly taken up from soil and generated by the 

reduction of NO2
- (as seen above) or from the secondary metabolism (photorespiration), is at 

first combined with glutamate to form glutamine, through an ATP-dependent reaction 

catalysed by GS (EC 6.3.1.2). The amide amino group of the newly formed glutamine is 

consequentially transferred to 2-oxoglutarate to yield two molecules of glutamate through a 

reaction catalysed by GOGAT, which uses, as electron donor, either reduced ferrodoxin (Fd-

GOGAT; EC 1.4.7.1) or NADH (EC 1.4.1.13). Thus, the GS-GOGAT cycle can be represent in the 

following way:  

 

Glu + NH4
+ + ATP  Gln + ADP + Pi; 

 

Gln + 2-oxoglutarate + Fdred (NADH + H+)  2Glu + Fdox (NAD+). 

 

Two major isoforms of GS exist; GS1, which occurs in the cytosol of roots, phloem and leaf 

cells, and GS2, which occurs in plastids of roots and other non-photosynthetic tissues and in 

the chloroplasts of photosynthetic tissues (Suzuki and Knaff, 2005). As far as GOGAT is 

concerned, both Fd-GOGAT and NADH-GOGAT isoforms appear to be solely located in the 

plastids and chloroplasts. The NADH-dependent GOGAT is located predominantly in non-

photosynthesizing tissues, where reductant power is initially supplied by the pentose 

phosphate pathway (Bowsher et al., 2007). The Fd-GOGAT activity is much greater than 

NADH-GOGAT in chloroplasts, where light energy is used directly for the synthesis of 

reduced Fd (Masclaux-Daubresse et al., 2010). Both GS isoforms and Fd-GOGAT are induced 

by high level of light and increasing level in C/N ratio, showing, once again, a complex 

convergence of signals between C and N metabolism (Vidal et al., 2010; Castaings et al., 

2011). In addition, GS isoforms, as also observed for NR, show a post-translational regulation 

mechanism mediated by 14-3-3 proteins, suggesting a fine coordinated regulation of 

enzymatic activity in response to external and internal factors (Diaz et al., 2011). 

Glutamate Dehydrogenase (GDH; EC 1.4.1.2) can also catalyse the incorporation of 

NH4+ into amino acids; nevertheless, the conversion of 2-oxoglutarate to Glu is a very 
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improbable reaction, and GDH seems more likely to play a role in the reverse reaction in the 

remobilization of N during senescence ad grain filling (Tabuchi et al., 2007). The enzymatic 

reaction is showed below: 

 

2-oxoglutarate + NH4
+ + NAD(P)H  Glu + NAD(P)+ + H2O. 

 

Finally, once N has been assimilated in organic forms, it is transported throughout the plant 

predominantly as glutamine and glutamate (as seen above), but also as asparagine (Asn) and 

aspartate (Asp), to utilization and storage. The conversion of glutamine to asparagine and 

glutamate to aspartate requires two amino-trasferase enzymes, asparagine synthetase (AS; 

EC 6.3.5.4) and aspartate aminotransferase (AspAT; EC 2.6.1.1.) respectively (Hodges, 2000 

and Masclaux-Daubresse et al. 2010). Transported via the xylem, these amino acids are 

distributed to mesophyll cells where they are either stored or utilized for C assimilation 

(Tegeder and Rentsch, 2010). All the above-mentioned enzymes and associated pathways 

are controlled by several factors, such as soil N availability, plant N status, external and 

internal C status and changes in plant hormones (Vidal et al., 2010; Castaings et al., 2011).  

After having talked about nitrate uptake, transport and assimilation, it is now 

necessary to focus on nitrogen and nitrate signaling in plants, keeping always in mind the 

perspective of improvement on nitrogen use efficiency of crops. 

 

 2.3 Nitrate sensing and signaling in plants 

 

Nitrate is not only a major nutrient for plants but also acts as a signal, regulating gene 

expression and several physiological and developmental processes. Strong evidences suggest 

that NO3
- acts as a signal molecule per se, considering that on one hand, the anion induces 

the expression of many genes involved in its own assimilation pathway, such as NR, NiR and 

many nitrate transporters (Crawford and Glass, 1998), and on other hand, by observing that 

this induction is maintained also in NR-deficient mutants unable to reduce nitrate to nitrite 

(Wang R. et al., 2004). In order to better decipher the specific effects of nitrate as signal 

molecule, microarray analyses, performed especially in Arabidospis thaliana in the last 

decade, were very useful to identify a large number of genes responding specifically to NO3
-  

(in particular by using NR-null mutants) and which do not required NO3
- reduction. These 
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findings surprisingly have been revealed that almost 10% (i.e. >2000 genes) of the detectable 

transcriptome of A. thaliana responds to NO3
-, involving many genes belonging to important 

metabolic pathways and many other regulatory components of plant signaling and 

development (Scheible et al., 2004; Gutiérrez et al., 2007; Krouk et al., 2010a). Since the 

gene regulation in response to NO3
- occurs very rapidly (within few minutes) and does not 

require protein synthesis, it is referred as the “Primary Nitrate Response” (PNR; Krouk et al., 

2010b). PNR affects a wide range of gene functional categories, such as ion transport, 

primary and secondary metabolism, biosynthesis of nucleic acids, transcription and RNA 

processing, hormone homeostasis (Bouguyon et al., 2012). The aim of this paragraph is 

focused at describing the most recent findings of NO3
- sensing in plants, starting from nitrate 

sensors.  

 

2.3.1 Nitrate sensors 
 

Regarding nitrate sensing, the identification of NO3
- sensor/receptors has remained 

elusive for long. In plants in facts, no external NO3
- sensing systems similar to that of bacteria 

have been identified so far (Bouguyon et al., 2012). However, more recent investigations on 

A. thaliana actually suggest that nitrate early sensing in plant seems to be mediated directly 

by nitrate transporters, namely the dual-affinity NO3
- transporter NRT1.1/CHL1 and the high-

affinity NO3
- transporter NRT2.1, similar to that observed in yeast, acting as the so-called 

“transceptors” (Gojon et al., 2011). The role of NRT1.1/CHL1 in early NO3
- sensing was well 

documented by observing the strong altered regulation of many important plant activities, 

such as (i) gene expression of other NO3
- transporters, including NRT2.1 (Muños et al., 2006; 

Krouk et al., 2006), (ii) seedling germination (Alboresi et al., 2005), (iii) root and shoot 

growth/development (respectively, Remans et al., 2006a and Krouk et al., 2010b; Hachiya et 

al., 2010) and (iv) cytokinins (CK) synthesis in roots (Kiba et al., 2011). The NRT1.1-dependet 

regulation of NRT2.1 is very complex, having opposite actions depending on the timing of 

NO3
- supply on one hand, and on NO3

- concentration on the other hand. Short term NO3
- 

supply increases NRT1.1-dependent NRT2.1 gene expression, which is part of the PNR (Ho et 

al., 2009); by contrast, high NO3
-concentration for several days down-regulates NRT2.1 

expression (Muños et al., 2006). Similarly to NRT1.1 transport activity, which is a dual-affinity 

NO3
- transporter exhibiting both HATS and LATS phases, also NRT1.1-dependent NRT2.1 
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expression displays a two-affinity pattern (Ho et al., 2009), being slightly induced at low NO3
- 

concentrations (HATS phase) and, on the opposite, full induced at high NO3
- concentrations 

(LATS phase). As for the transport activity (already mentioned above), the switch from the 

two phases (HATS or LATS) of NRT2.1 by NRT1.1 activity is due to the phosphorylation of the 

T101 residue (Ho et al., 2009). To date, the nitrate signaling pathway elicited by NRT2.1 has 

only been reported for the regulation of the initiation of Lateral Root Primordia (LRP; Little et 

al., 2005; Remans et al., 2006b), as soon will be discussed, as well as the role of NRT1.1 in 

concert with the phytohormone auxin (IAA) in regulating lateral root growth in response to 

nitrate (Krouk et al., 2010b). Very interestingly, specific mutation able to uncouple the 

NRT1.1 activity to that of signaling, demonstrated there is no direct relationship between 

the NO3
- signaling and the transport of the anion (Walch-Liu and Forde, 2008). In this regard, 

nrt1.1 mutants do not shows decreased NO3
- uptake as compared to wild-type controls 

(Muños et al., 2006). On the contrary, the T101A mutation, which prevents the 

phosphorylation of threonine 101 in NRT1.1, is able to suppress the NRT1.1-dependent root 

development response, but not NO3
- transport activity (Walch-Liu and Forde, 2008), thus 

providing further strong parallel between NRT1.1 (and possibly NRT2.1) and the so-called 

“transceptors” (transporter/receptor) identified in yeast. Furthermore, a functional role for 

nitrate transporters in signaling has been recently reported in other plant species in addition 

to the model A. thaliana, such as Medicago truncatula (Yendrek et al., 2010; Morere-Le 

Pavene et al., 2011), suggesting that the concept of “transceptors” may be of general 

occurrence in eukaryotes, and also plant may have been developed this kind of sensing 

mechanism to cope with the extreme range of variability in nutrient concentration in soil 

(Gojon et al., 2011).     

Despite the concerted role of the nitrate transporters NRT1.1/CHL1.1 and NRT2.1 in 

regulating a very large numbers of molecular and physiological responses to NO3
-, specific 

NO3
- signalling pathways are still active in chl1 mutants (Wang R. et al., 2009), suggesting 

that different nitrate sensing systems have yet to be identified. Thus, further investigations 

to better understand the overall plant NO3
- signaling are needed, especially considering the 

strong effects of NO3
- in regulating root development and growth, in view of improving 

nitrogen use efficiency in crops.  
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2.3.2 Nitrate signal transduction 
 

The overall network of signaling cascade triggered by nitrate in plants is largely 

unknown at molecular level to date, as mentioned before, although, in the last few years 

some advances in identifying key genes or transcription factors (TF) involved in NO3
- signaling 

have been obtained, especially in A. thaliana. Regarding the regulation network involved in 

the uptake of NO3
- and in its own assimilation pathway, two kinesis (CIPK8 and CIPK23) and 

many TFs (NLP7, LBD 37/38/39, and SPL9) have been recently characterised.  

As far as CIPK8 and CIPK23 are concerned, both of them are Ser/Thr kinases 

belonging to the CBL-interacting protein kinase (CIPK), a class of plant kinases that has 

shown an emerging role as calcium (Ca2
+)-mediated signaling components in response to 

stresses, which are activated by specific Ca2
+ sensors, collectively named CBL (Calcineurin B-

like protein) (Chen et al., 2011). In A. thaliana, gene expression of both CIPK8 and CIPK23 is 

up regulated in response to NO3
- but, on the contrary, strongly down-regulated in chl1 

mutants, suggesting their involvement in the NRT1.1-dependent signaling pathway (Ho et 

al., 2009; Hu H. et al., 2009). Interestingly, CIPK23 participates in the signaling pathway 

evoked by NO3
- through the activity of the transceptor NRT1.1, but at the same time, the 

protein kinase is in turn a regulator of NRT1.1 by phosphorylating the T101 residue, showing 

a complex mechanism of retro-control loop for NRT1.1-dependent gene response to nitrate 

(Ho et al., 2009). The function of CIPK8 is, on the contrary, partially unknown, although it has 

been demonstrated that acts as a stimulator of the PNR in the low- but not in the high-

affinity phase (Hu H. et al., 2009). 

The transcription factor NLP7 (Nodule Inception-like protein 7) is a member of the 

NIN family of TFs. In the unicellular algae Chlamydomonas reinhardtii it was firstly reported a 

role in up-regulating the activity of NR (NIA) gene by the member of this family NIT2 

(Camargo et al., 2007). In Arabidopsis, NLP7 is thought to be involved in the transduction of 

the NO3
- signal, considering that nlp7 knockout mutants display the characteristic phenotype 

of N-starved wild type seedlings, irrespective of N supply, and transcriptome analysis further 

confirmed the hypothesis of a N-starvation phenotype (Castaings et al., 2009). These 

Authors show that nlp7 mutants are impaired in transduction of the NO3
- signal, as they fail 

to induce NO3
--responsive genes after a short nitrogen starvation followed by NO3

- re-

supply. More recently, a genome-wide analysis reported that NLP7 binds and modulates, via 

a nuclear retention mechanism evocated by NO3
-, several hundred of known nitrate signaling 



 40 

and assimilation genes within few minutes (the PNR), indicating that plants, similarly to fungi 

and mammals, depend on a nuclear retention mechanism to instantaneously respond to 

changes in nutrients availability (Marchive et al., 2013). Thus, it has been suggested that 

NO3
-, directly or indirectly, inhibits, through an as yet unknown mechanism, the export of 

NLP7 from the nucleus, leading to its rapid nuclear accumulation in response to the anion.   

SPL9 (Squamosa Promoter-binding-like Protein 9) is another regulatory TF involved in 

the early PNR, emerging as a potential hub of a gene regulatory network in response to 

nitrate. By performing a high-resolution time course analysis of transcriptome modifications 

after NO3
- supply, it has been shown to respond to NO3

- very fast (3-6 minutes), (Krouk et al., 

2010a). Moreover, spl9 mutants, characterized by over-expression of the TF, significantly 

modified the time-course of NiR gene expression, strongly increasing its transcript 

accumulation levels within the first few minutes as compared to the wt, but interestingly, 

reducing NiR expression after that period. Thus, SPL9 gene provides a further example, 

similarly to the signaling activity of NRT1.1 and NRT2.1, of genes able to adjust either the up- 

or down-regulation of nitrate-responsive genes, depending on the fluctuations in the NO3
- 

availability.    

Regarding the three TFs LBD37/38/39, they are zinc-finger DNA-binding protein 

belonging to the LATERAL ORGAN BOUNDARY DOMAIN family. Interestingly, all of them 

show a strong and very fast induction in response to NO3
- but, at the same time, no 

differences in transcript accumulation when seedling were supply with other N sources 

(Rubin et al., 2009). LBDs play a role in down-regulating many NO3
- responsive genes, among 

which NRT2 and NIA, in response to nitrate supply; however NO3
- induction of NRT2 and NIA 

is not dependent by the activity of LBDs, thus, excluding an involvement of these TFs in the 

PNR but rather suggesting a link with other NO3
- signaling pathways, responsible for 

feedback down-regulation of NO3
- responsive genes by long-term high NO3

- provision 

(Bouguyon et al., 2012). To conclude based on these last findings, the regulation of NO3
- 

transporters and NO3
- assimilation genes in the response to the anion depends on at least 

three major different signaling pathways, as illustrated in Fig. 5. The PNR can be 

consequently subdivided into the kinase CIPK8-dependent (low-affinity: high NO3
- 

concentration) and CIPK8-independent (high-affinity: low NO3
- concentration) pathways (Ho 

et al., 2009), while a third pathway involving LBD 37/38/39 ensures the longer-term 

feedback down-regulation by NO3
-.  
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Figure 5. Molecular players in the nitrate regulation of nitrate transport and assimilation genes, from Bouguyon et 
al., 2012.  
 

As far as the changes in root morphology are concerned, a specific paragraph is 

dedicated to better understand the phenotypic plasticity of the root system in response to 

NO3
- and the signaling events underlying this process, especially in the view of improving 

NUE in plants. 

 

2.4 Regulation of root growth and development in response to nitrate 

 

The effects of nitrate on the root system are complex and depend on several factors, 

such as NO3
- concentration in the soil, the N endogenous status of the plant and the 

sensibility of the different species. Investigations on root system architecture (RSA) and 

morphology are vital, considering that RSA determines the dramatic plasticity of plants to 

explore the soil for searching water and nutrients, including nitrate. Thus, breeding crop 

varieties that are more efficient at capturing soil NO3
- is a compelling need to decrease NO3

- 

leaching and denitrification losses and consequently to increase NUE. Despite the large 

numbers of reports published on NO3
- effects on RSA, especially focused on lateral roots (LR) 

development, many aspects are still unclear and require further investigations, in particular 

at molecular level.  
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The effect of nitrate on primary root growth is controversial and strongly variable 

depending on NO3
- concentration, on the exposure time  and on the species (Andrews et al., 

2013). For example, in a number of Arabidopsis thaliana accessions a stimulatory effect of 

nitrate on primary root growth was observed after nine days of NO3
- exposure at 

concentration ranging from 0.05 mM to 5 mM (Walch-Liu and Forde, 2008), similarly to 

Gifford et al. (2013) after twelve days of exposure (NO3
- concentration was ranging from 0 to 

20mM). In contrast, Zhang and Forde (1998) did not observe any changes in primary root 

length in a range of concentration from 0.01 mM to 100 mM (fourteen days of exposure), as 

well as no effects were measured also by Signora et al. (2001) after seven days of exposure 

to NO3
- concentration ranging from 0.1 mM to 10 mM. The same Authors reported 

conversely, an inhibitory effect at higher concentrations (> 50 mM). Finally, long-term 

exposure (17/18 days) to NO3
- at low concentration (0.01/1 mM) showed additionally an 

inhibition of primary root elongation (Linkohr et al., 2002), making very ardours to clearly 

decipher the regulation of the growth of primary roots in response to nitrate in the model 

species Arabidopsis thaliana. In maize, a consistent inhibitory effect on primary root length 

was observed by Tian and co-authors (2005) after twelve days of growth at a nitrate 

concentration of 20 mM.  A few years later, a more detailed study was published by the 

same Authors who demonstrated that nitrate concentrations lower than 0.5 mM had no 

effect on elongation of primary, seminal, and crown roots, while concentrations above 5 mM 

affected more significantly the root elongation after twelve days of treatment (Tian et al., 

2008). A similar inhibitory effect was also observed in maize, after having grown up the 

seedlings in varying NO3
- concentration (0.1/10 mM) for seven days and then exposed, 

respectively, to 0.1 mM and 1 mM NO3
- for 48 hours (Zhao et al., 2007). A model for an 

interaction between nitrate and L-glutamate (Glu) signalling pathway mediated by the 

“transceptors” CHL1/NRT1.1 in regulating meristematic activity at the root tip has been 

proposed (Walch-Liu and Forde, 2008). According to these Authors, Glu, after being sensed 

at the primary root tip by an unknown receptor, would trigger a reduction in primary root 

growth and stimulate branching behind the root tip. Conversley, nitrate sensed by NRT1.1 

would antagonises the Glu signalling pathway and alleviates the effect of Glu on root 

architecture. In fact, this action of NO3
- is lost in chl1 mutants, indicating the key role of 

NRT1.1 in mediating this effect (Forde and Walch-Liu, 2009).  
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Unlike to the nitrate-regulation of the primary root growth, which is for many aspects 

still unclear, more is known on the molecular and morphological mechanisms governing 

lateral roots (LR) formation and development in response to nitrate. LR elongation by 

localized supply of high NO3
- patches is a classical example of the stimulatory effects of 

external NO3
- availability, starting from the early studies by Drew et al. (1973) and Drew 

(1975) in barley. The proliferation of LRs within a localized nitrate-rich zone is a response 

that occurs in many plant species and can be considered a common adaptation phenomenon 

(Hodge, 2004). ANR1 (ARABIDOPSIS NITRATE-REGULATED1), a MADS box transcription 

factor, and the NO3
- “transceptor” CHL1/NRT1.1, were identified as key components 

governing this response in Arabidopsis (Zhang and Forde, 1998; Remans et al., 2006a). ANR1 

is specifically expressed in root, especially in LR primordia and at the tip of LRs; the 

transgenic plants, in which ANR1 expression is down-regulated or suppressed, are less 

responsive to the localized NO3
- signal and consequently displays a strongly altered ability to 

preferentially colonize nitrate-rich patches (Remans et al., 2006a). Interestingly, tissue 

localizations of ANR1 and NRT1.1 mRNAs overlap. Furthermore, considering also that chl1 

mutants have strongly reduced ANR1 mRNA levels (Rahayu et al., 2005) it has been 

suggested that ANR1 acts downstream of the NRT1.1 in the signaling pathway stimulating LR 

development in response to nitrate (Remans et al., 2006a). In addition, the high-affinity 

uptake complex NRT2.1/NAR2.1 also participates in regulating LR development. Under N-

limiting conditions, both of them are positive regulators of LR initiation, even in nitrate-free 

conditions, suggesting their involvement in the regulation of LR growth is independent from 

their uptake function (Remans et al., 2006b; Orsel et al., 2007). However, in conditions of 

high C/N ratio, they function as repressors, indicating that the NRT2.1/NAR2.1 complex has a 

dual effect on LR development (Little et al., 2005).  

As far as the role of phytohormones in regulating RSA in response to nitrate is 

concerned, the IAA long-distance transport from shoot to root was proposed to be involved 

in the inhibition of early LR development by high rates of NO3
- in Arabidopsis (Forde, 2002; 

Walch-Liu et al., 2006). A role of auxin (IAA) was also evidenced in maize, in which the 

inhibition of root growth by high NO3
- supply was correlated with reduced IAA concentration 

in the roots (Tian et al., 2008). More recently, the possible involvement of IAA in the 

stimulation of LR growth by NO3
- was reconsidered, when it was found that the nitrate 

“transceptor” NRT1.1 was able to transport IAA as well as NO3
- (Krouk et al., 2010b). 
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According to these Authors, IAA moves from the primary root vascular tissues to the tip of 

the lateral root through the pro-vascular tissue, and it is redirected back to the primary root 

through a basipetal transport route in the epidermis. NRT1.1 is expressed in the epidermis, 

and under low NO3
- is able to transport IAA. Thus, NRT1.1 seems to be involved in the 

repression of LR growth at low NO3
- concentrations by promoting lateral basipetal transport 

of IAA out of the lateral root. Conversely, high NO3
- levels seem to inhibit NRT1.1-dependent 

basipetal IAA transport, thus inducing IAA accumulation in the LR tip thus stimulating growth 

of these roots.  

In addition, both miR167 and its target the AUXIN RESPONSE FACTOR 8 (ARF8) and 

miR393 and the auxin receptor AFB3 (AUXIN SIGNALING F-BOX PROTEIN 3) were also 

proposed as crucial components of regulating the ratio between initiating and emerging LRs 

(Gifford et al., 2008) and in modulating both LR and primary root growth in response to NO3
-  

(Vidal et al., 2010) in Arabidopsis roots respectively. . AFB3 belongs to a group of F-box 

receptors for auxin and was found to be the unique IAA receptor transcriptionally induced by 

NO3
-, suggesting that besides modulating IAA gradients in roots, through the NRT1.1 dual 

NO3
-/IAA transport activity (Krouk et al., 2010b), NO3

- also increases root IAA sensitivity by 

affecting AFB3 expression (Bouguyon et al., 2012). In fact, analysis of both afb3 insertional 

and miR393 overexpressors mutants demonstrated that NO3
- is able to transcriptionally 

induce the expression of AFB3 in both primary and lateral roots, while metabolites of NO3
- 

assimilation pathway were able to down-regulate AFB3 due to the induction of miR393 

(Vidal et al., 2010). Thus, according to these Authors, stimulation of AFB3 by NO3
- is only 

transient because the AFB3 transcript is rapidly targeted by miR393 for degradation as soon 

as NO3
- enter the assimilation pathway, showing an interesting NO3

--responsive feed-forward 

mechanism in controlling RSA in Arabidopsis, as summarized in Fig. 6.  

There are also evidences that abscisic acid (ABA) could play a central role in 

mediating the regulatory effects of high NO3
- levels on root branching in A. thaliana (Signora 

et al., 2001), as well as brassinosteroids (Kiba et al., 2011). A crosstalk between IAA and 

cytokinins (CK) signaling in coordinating the requirement and acquisition of NO3
- and their 

effects on root branching in Arabidopsis has been also suggested (Kiba et al., 2011). Finally, a 

novel role for nitric oxide (NO) in regulating plant root growth is emerging in the last few 

years, despite the current knowledge about its signaling pathway, especially in regulating 

root system architecture, is still fragmentary. Thus, considering the large number of key 
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developmental processes signalled by this gaseous molecule, in the next section the state of 

the art on NO biology is reviewed. 

 

 

 

 
Figure 6. Schematic representation of the signaling pathways specifically involved in changes in root architecture 
in response to nitrate, from López-Arredondo et al., 2012. 
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2.5 Nitric oxide as a new regulator of root growth in response to nitrate 

 

The participation of nitric oxide (NO) in root response to NO3
- has been recently 

postulated in maize (Trevisan et al., 2011). In this work, through a cDNA-AFLP approach, the 

transcript profiling of maize seedlings roots grown with different NO3
- availabilities was 

exploited and the expression of a number of selected genes was analysed in depth by both 

quantitative real-time polymerase chain reaction (qPCR) and in situ hybridisation (ISH). A 

new model for nitrate-induced signaling in maize roots involving the coordinate spatio-

temporal expression of nitrate reductase and non-symbiotic hemoglobins for NO production 

and scavenging, respectively, was thus postulated. Considering that this gaseous free radical 

is involved in a variety of plant growth and developmental processes. These preliminary 

findings opened a very interesting scenario in studying plant root responses to nitrate.  

Plant hemoglobins (Hbs) are hemeproteins that reversibly bind molecular oxygen (O2) 

and were first identified in the 1930s as symbiotic hemoglobins (also known as 

leghemoblobins) in legume root nodules, in which it is universally accepted they function to 

facilitate the diffusion of O2 to bacteroids, whereas the discovery of non-symbiotic 

hemoglobins (nsHbs) is a more recent uncovering (Garrocho-Villegas et al., 2007). The 

kinetic constants and localisation of nsHbs in metabolically active tissues as well as the over-

expression of nshb genes in stressed plants suggest that nsHbs have functions other than or 

additionally to O2 transport, such as to bind other gaseous ligands, including NO (Garrocho-

Villegas et al. 2007; Dordas, 2009). A key role of nsHbs in NO detoxification under hypoxic 

conditions was first demonstrated in Arabidopsis (Dordas et al., 2003; Perazzolli et al., 2004), 

and now the participation of this class of Hbs in NO scavenging is widely recognized 

(Crawford and Guo, 2005; Hill, 2012). In addition, in the last few years nsHbs have been 

found to function in many crucial plant processes, such as seed development and 

germination, flowering, root development and differentiation, abiotic stress responses, 

pathogen invasion and symbiotic bacterial association (reviewed in Hill, 2012) as well as, 

very recently, plant nsHbs have been also identified as master regulators during Arabidopsis 

(Elhiti et al., 2013) and in vitro maize embryogenesis (Huang S. et al., 2014a,b). Non-

symbiotic hemoglobins have been shown to be induced by nitrate (Wang R. et al., 2000; 

Ohwaki et al., 2005; Shimoda et al., 2005). The conversion of nitrite (NO2
-) to NO by the 

activity of nitrate reductase (NR) was documented since the 1980s in Leguminosae family 
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(Dean and Harper, 1988) and has been successively demonstrated in detail in other plant 

species (Wildt et al., 1997), including maize (Yamasaki et al., 1999; Yamasaki and Sakihama, 

2000), implying a putative responsibility for NR as NO signal emitter. Hence, in addition to its 

physiological role in nitrogen assimilation, NR is also required for the control of the 

production of active nitrogen species (Yamasaki and Sakihama, 2000) and, in this scenario, 

nsHbs could thus play a protective function against NR-derived NO, thus contributing to the 

modulation of NO-mediated signaling (Hebelstrup et al., 2007). The increasing evidence of 

the role of NO in hormone responses and the known involvement of nsHbs in scavenging NO 

provide a new and fascinating field of research, as summarized in Fig. 7. 

 

Figure 7.The relationship between NO, hormones and biological function, from Hill et al., 2012. 

 

Nitric oxide, in fact, is gradually becoming established as a central regulator of many 

physiological and developmental processes, such as growth, cell differentiation, immunity 

and environmental interactions (Siddiqui et al., 2011). In plants, seven sources have been 

proposed as putative routes for NO generation, which depend upon either reductive or 

oxidative chemistry (reviewed in Gupta et al., 2011; Mur et al., 2013), including NR. As 

bioactive molecules in plants, NO takes part to the control of a variety of key cellular 
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processes. For example, NO acts in plant immunity and in hypersensitive cell death, as well 

as, a number of independent papers have suggested a role of NO in stress responses, 

including drought, salt, heat and cold stress (reviewed in Yu M. et al., 2014). In comparison 

to what observed in the other kingdoms, findings obtained in the last decade revealed a 

striking NO role in regulating plant development programmes, such as germination (Beligni 

and Lamattina, 2000), flower development (Lee et al., 2008; Kwon et al., 2012), flowering 

time (He et al., 2004; Kwon et al., 2012), and apical dominance (Lee et al., 2008; Kwon et al., 

2012) processes. However, it is the influence of NO upon root growth and development that 

has gathered the most attention in plant biology research, including the connection existing 

between NO and the phytohormones auxin (IAA) in regulating root system architecture. 

Root growth and development are complex processes involving and integrating 

several exogenous and endogenous signals, including NO. A physiological role for NO in 

regulating negatively primary root (PR) growth and promoting lateral root (LR) development 

has been described in tomato (Correa-Aragunde et al., 2004) and Arabidopsis (Méndez-

Bravo et al., 2010); however, it has been suggested that NO probably acts in a dose-

dependent manner in PR regulation (Fernández-Marcos et al., 2011). Furthermore, NO is 

also able to induce adventious root (AR) development in a variety of plant species, including 

monot, dicot and gymnosperm (Lanteri et al., 2008). In this content, a number of second 

messengers implicated in AR development are involved in signaling cascades regulated by 

NO, and two parallel and independent pathways have been unravelled so far. The first of 

these is thought to utilize cGMP through an NO-mediated activation of the enzyme 

guanylate ciclase (Pagnussat et al., 2003). A second pathway that involved a MAPK cascade 

has been also reported (Pagnussat et al., 2004). As far as LR formation is concerned, this 

process is associated with IAA action and is generally linked to the inhibition of PR 

elongation; NO is thought to be a downstream messenger in IAA signalling, promoting LR 

formation (Correa-Aragunde et al., 2004). Concerning primary root growth, the participation 

of NO in modulating PR development is still controversial. It has been previously mentioned 

that NO acts differentially in a dose-dependent manner: exogenous application of high levels 

of NO donors inhibits PR growth, whereas applications of lower NO donor concentrations 

promotes it (Fernández-Marcos et al., 2011). Interestingly, an investigation of plant 

gravitropic responses, which involved various endogenous NO levels, seems to confirm the 

hypothesis that NO promotes root elongation at low concentration, with opposite inhibitory 
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effects on PR growth at higher NO levels (Hu X. et al., 2005). In Arabidopsis, it has been 

proposed that elevated (> 100 µM) NO concentrations reduce auxin transport and responses 

via a PIN1-dependent mechanism and polar auxin transport is impacted negatively by over-

accumulation of NO, considering that PIN1 protein levels appear to be reduced dramatically 

after application of exogenous NO (Fernández-Marcos et al., 2011). In this work, by using 

microscopic analysis, it has been also shown that the organization of primary root meristem 

is very sensitive to changes in NO levels and that increasing NO concentrations decrease PR 

growth by reducing the number of dividing cells in the meristem. In addition, they 

demonstrated that during early root development endogenous NO accumulates mainly in a 

zone situated between the apical meristem and the elongation zone (i.e. the “root transition 

zone”). Cytoskeleton proteins seem to be good candidates for these NO-related structural 

modifications and interestingly, in this scenario, a study published by Kasprowicz et al. 

(2009) reported that actin cytoskeleton acts as a downstream effector of NO signal 

transduction in root cells and that the extent of such modifications is cell-type and 

developmental stage-specific. Additionally, fluctuating NO concentrations can also modulate 

cellulose synthase activity and cell wall biosynthesis contributing to modification of cell 

growth (Yu M. et al., 2014). Taken together, these data showed that NO could act as a 

master regulator of primary root growth, by both modifying polar auxin transport, being 

PIN1 a target of NO signaling, and by affecting the functioning of the actin cytoskeleton and 

actin-dependent mechanisms.  

To summarize, in order to link the need to study the molecular and physiological 

responses to nitrate in roots with a parallel analysis of the effects of NO upon root growth is 

clearly evident after this short review explaining the role of this gaseous molecule as 

emerging regulator of these processes. This is also vital in the view of better understanding 

the mechanisms underlying the nitrogen use efficiency in plants, considering that the 

assimilation of nitrate is strictly connect via nitrate reductase to the generation of NO. It 

therefore cannot be excluded that NO could operate at the interface between NO3
- 

perception and transduction, taking part in the overall physiological and developmental 

plant adaptation to nitrate. In fact, as previously mentioned, the detection of NR and HB 

transcripts in tissues devoted to nutrient uptake and their spatial distribution in epidermal 

cells, the first layer of living cells in the root in contact with the external environment, 

strongly suggests that they could play an important role during the early perception and 
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signaling of nitrate in the rhizosphere (Trevisan et al., 2011). Moreover the co-localization of 

mRNA for NR and HB observed in the root apex matches with the major sites of NO 

accumulation, suggesting that these two genes may represent the pivotal elements of a fine-

tuning system for NO homeostasis and signaling. Thus, deciphering how NO biosynthesis, 

turnover and downstream signaling pathway is interconnected with nitrate assimilation in 

roots, is a field of research that is worthy of much attention. 

To conclude, this brief review on nitrate signal transduction and nitrate-dependent 

regulation of RSA showed the high complexity of the NO3
- signaling cascades, which we 

should consider as parts of networks integrating multisignal responses, including striking 

connections with auxin and NO. Although many efforts to better understand the genetic 

basis of NUE in crops by identifying individual genes or gene clusters that are responsible for 

the variability of this complex trait have been made, attempts to improve crop NUE by 

directly regulating the activity of one or a few number of NO3
- transport/assimilation gene, 

or by modulating phytohormones balance to coordinate root architecture is still likely too 

challenging. In the next paragraph, several approaches that are being taken to meet this goal 

are discussed.  

 

3. Approaches to improve nitrogen use efficiency 

 

Recently, systems biology has been demonstrated to be a promising tool to dissect 

the plant response to nitrate in order to improve NUE. With the aim of improving NUE, many 

genetic and molecular approaches based on either targeted approaches or quantitative 

genetics have been used during the past decade. A critical overview on these attempts is 

provided below. 

 Several experiments have allowed the identification of specific genes involved in the 

regulation of NO3
- uptake, translocation and assimilation, as well as, amino acid biosynthesis 

and C/N homeostasis, as candidate genes to improve NUE. Transgenic approaches based on 

either overexpressing or knockout mutants for improving NUE, mainly by making use of 

CaMV35S promoter, have been carried out in both Arabidopsis and main crops in the last 

few years.  However, in many cases, overexpression of these genes did not result in a direct 

effect on these traits (Hirel et al., 2011). Regarding nitrate transporters, despite they are the 

first components of the NO3
- assimilation pathway in the roots, only few studies have been 
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carried out to check the effect of their overexpression on NUE to date. In Arabidopsis, 

overexpression of AtNRT1.1 resulted in increasing NO3
- uptake, but no improvement on net 

NUE was observed (Liu et al., 1999). Similar results were obtained when overexpressing the 

high affinity NRT2.1 transporter in tobacco (Fraisier et al., 2000). Similarly in rice, increased 

expression of NRT2.1 slightly improved seedling growth, but did not have any effects on NUE 

(Katayama et al., 2009). 

Nitrate and nitrite reductase are key regulatory checkpoints for improving NUE. 

However, overexpression of the tobacco NR-encoding gene NIA1 and NIA2 in different 

plants, such as potato (Dejannane et al., 2002), lettuce (Curtis et al., 1999) and Nicotiana 

plumbaginifolia (Lillo et al., 2003) showed no NUE-phenotype associated under N-limiting 

conditions. Regarding nitrite reductase, transgenic plants by overexpressing NiR in 

Arabidopsis and tobacco did not show any phenotypic differences (Crété et al., 1997). The 

lack of positive effects by overexpressing genes encoding NR and NiR has been associated 

with the known tight regulation of these two enzymes at the translational and post-

translational levels.       

     As far as nitrate assimilation genes are concerned, changes in the expression of 

glutamine synthetase (either GS1 or GS2 isoforms) could have an effect on nitrate and N 

metabolism in plants, potentially affecting NUE (Fei et al., 2003; Brauer et al., 2011). In 

maize, GS single and double mutants show significant phenotypic effects on kernel size and 

yield, indicating that GS has a role in grain filling (Martin et al., 2006). However, in this 

investigation, NO3
- uptake and assimilation were not analysed. Further studies carried out by 

overexpressing cytosolic GS1 in maize leaves (Hirel et al., 1997) and the leaf-specific GS2 in 

tobacco (Migge et al., 2000), showed changes in the amino acids concentration but no 

significant changes were observed on growth and morphology of plants. In rice, by 

comparing two varieties with different levels of GS2 activities, Kumagay and colleagues 

(2011) found that the variety with high GS2 activity has only a better ability to recycle and 

re-assimilated NH3, indicating that the overexpression of GS genes may play a role in the 

general N economy within the plant by improving N recycling but not necessarily primary N 

assimilation. In addition, most of these experiments have not directly measured NUE, as well 

as, many of them have not grown plant on varying NO3
- levels, making it difficult to provide 

an undoubtedly role of GS in modifying NUE by these transgenic approaches (Hirel et al., 

2011).  
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The GOGAT isoenzymes conversely, (both Fd-GOGAT and NADH-GOGAT), seem to be 

a major candidate for improving NUE in crops. For example in rice, over-expression of NADH-

GOGAT has been linked with enhanced grain filling (Yamaya et al., 2002; Tabuchi et al., 

2007), while knockout mutations of NADH-GOGAT1 result in decreasing yield, overall 

biomass and panicle production (Tamura et al., 2010). Likewise, by suppressing both Fd-

GOGAT and NADH-GOGAT in rice, the resulting phenotypes show that tilled number, total 

shoot dry weight and yield are decreased significantly respect to the control plants, and 

these results were also confirmed in plants grown in field conditions (Lu et al., 2011). 

However, given these observed phenotypes and those observed for GS enzymes, the 

interactions between isozymes of GOGAT with the GS isozymes and how this affects NUE, as 

well as post-transcriptional regulation of these enzymes, needs to be further investigated 

(McAllister et al., 2012). 

Arabidopsis plant overexpressing asparagine synthetase (AS) were reported to have 

enhanced NUE, showing higher tolerance to N-limiting conditions (Lam et al., 2003), 

however these results, similarly to that obtained by the other transgenic approaches 

overexpressing enzymes involved in nitrate uptake and N assimilation pathway, need other 

investigations to assess whether AS could be used effectively to enhance NUE in crops. 

Finally, regarding the two aminotransferase enzymes AspAT and AlaAT, Cañas and 

collaborators (2010) suggest that both can serve as markers of NUE in maize. Conversely, no 

effects on phenotypes, biomass or yield were detected when a soybean AspAT was 

constitutively overexpressed in Arabidopsis as well as by overexpressing AspAT in Brassica 

napus (Murooka et al., 2002 and Wolasky et al., 2005, respectively).   

Genetic modifications involving transcription factors and other regulatory elements 

are a further promising approach to modify plant metabolism for NUE improvement. For 

example, overexpression of the DNA-binding with One Finger1 (Dof1) TF appears to improve 

N uptake and assimilation, considering that maize Dof1-overexpression in Arabidopsis 

revealed increased growth, amino acids and total N contents under low N-conditions 

(Yanagisawa et al., 2004). More recently, ZmDof1-overexpressing experiments in rice 

showed enhanced N and C accumulation and photosynthesis rates in transgenic rice plants 

under N-limiting conditions, especially in roots that had also a higher biomass than the 

control plants (Kurai et al., 2011). In rice, overexpression of the endogenous EARLY 

NODULIN93-1 (ENOD93-1) gene, which is potentially involved in amino acids transport, 



 53 

resulted in increased shoot dry biomass and higher concentrations of total amino acids and 

total N in roots, especially under N stress (Bi et al., 2009). Finally, ANR1 overexpression 

induces a stronger LR initiation and elongation in Arabidopsis (Gan et al., 2012), potentially 

enhancing the exploratory capacity of the root system, which is one of the main critical steps 

limiting the efficient use of N fertilizers in modern crops.  

Over the last decade, quantitative genetics through the detection of quantitative trait 

loci (QTL) has also became an important approach for identifying key regulatory or structural 

genes involved in crops NUE (Hirel et al., 2007). When QTLs for NUE phenotypic traits are 

located on a genetic map, it is possible to look for their genetic significance by establishing 

the co-localization of QTLs for physiological or biochemical traits with genes putatively 

involved in the control of the traits of interest (candidate genes). Validation of candidate 

genes can be carried out by transgenic technologies (forward genetics) and mutagenesis 

(reverse genetics), as discussed before and also reviewed more in detail in Kant et al. (2001) 

and references therein, or by studying the relationship between allelic polymorphism and 

the traits of interest (association genetics). One of the first QTL study in order to analysing 

NUE in crop plant was performed by Obara and colleagues (2001) in rice. They looked at 

QTLs associated with NUE and determined whether cosegregated with GS1 and NADH-

GOGAT in rice. The analysis identified seven loci that cosegregated with GS1 and six with 

NADH-GOGAT. In a more detailed investigation by Bertin and Gallais (2001) using maize 

recombinant inbred lines, coincidences between QTLs for yield and two genes encoding 

cytosolic GS were detected, and more recently, an extensive QTL analysis in wheat has 

shown that the genome regions containing GS and GOGAT are linked to NUE traits (Quraishi 

et al., 2011). However, the role of the GS enzyme and other N-related physiological traits in 

the control of NUE still remains to be clearly established, considering that overexpressing 

these genes for improving NUE did not give unequivocal results (Hirel et al., 2011), as 

discussed before. Thus, it is probably necessary to identify other nitrate-responsive genes by 

transcriptomic data set (Hawkesford and Howarth, 2011) or using systems biology 

approaches (Simons et al., 2014). 

In conclusion, many important crop traits like NUE are considered to be very 

complex, with no single gene contributing more than a small percentage to the phenotypes. 

Thus, it is questionable whether a single transgene approach could have a significant enough 

effect on NUE, considering that these targeted approaches does not adequately take in 
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account the variation in complex traits such as those controlling NUE. In addition, the 

components of NUE interact in multiple and complex ways with other signaling and 

metabolic pathways and therefore, in order to understand the complexity of the control of 

NUE of model crop species such as maize, this requires a holistic insight of nitrate and 

nitrogen flow within plant and the associated regulation at cellular, organ and whole-plant 

levels.   
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4. Aim of work 

 

The involvement of NO in the nitrate signaling pathway has been recently proposed 

to be implicated in plant adaptation to environment, but its exact role in the response of 

plants to nutritional stress is still under evaluation. Aim of this work is to evaluate the 

contribution of NO in the nitrate-regulated pathway that directs maize root system 

architecture, unravelling the role of NO as a nitrate-related signal. To do this, firstly, the 

study has been focused on both the characterization of the expression profiles of selected 

genes putatively involved in NO homeostasis and on the determination of NO in vivo 

production by roots in response to nitrate. Secondly, in order to deepen the spatial 

regulation of NO homeostasis balance, the expression of few selected genes, those involved 

in NO production and scavenging, was analysed in four different root zones (meristem, 

transition zone, elongation zone, maturation zone). Additionally, this work has been also 

focused on deepening the knowledge of the effect of nitrate on root growth and especially 

on root elongation. In order to characterize the adaptive morphological strategies, the 

different root phenotypes in response to changing nitrogen availability and to unravel 

whether the nitrate-induced root length increase is dependent on a NO signalling pathway, a 

series of root morphological analyses has been performed. In conclusion, since it has known 

from the literature that NO signaling alters cell polarity and cytoskeleton-mediated vesicle 

trafficking processes, as well as, that NO and auxin act synergically to control diverse aspects 

of root biology, the final part of this work has been dedicated to analyse cytoskeleton-

mediated cell wall xyloglucans recycling and PIN1-mediated auxin transport in the transition 

zone.   
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1. Abstract 

 
Crop plant development is strongly dependent on the nitrogen availability in the soil 

and on the efficiency of its utilization. However, knowledge about molecular responses to 

nitrogen availability derives mainly from the study of model species. The understanding of 

the molecular events underlying the root adaptation to nitrogen fluctuations is a primary 

goal to develop biotechnological tools for sustainable agriculture.  

Nitric oxide (NO) has been recently proposed to be implicated in plant response to 

environmental stresses, but its exact role in the response of plants to nutritional stress is still 

under evaluation. 

In this work the role of nitric oxide production by maize roots after nitrate perception 

was investigated by focusing on the regulation of transcription of genes involved in the NO 

homeostasis and by measuring the NO production in roots. Moreover, its involvement in the 

root growth response to nitrate was also investigated. 

Our results provided evidence that NO is produced by nitrate reductase, as an early 

response to nitrate supply, and that the coordinated induction of ns-haemoglobins could 

finely regulate the NO steady-state. This seems to be implicated on the modulation of the 

root elongation in response to nitrate perception. 

Moreover an improved agar-plate system for growing maize seedlings was 

developed. Thanks to this system, which allows to perform localized treatments on specific 

root portions, it has been possible to discriminate between localized and systemic effects of 

nitrate supply to roots.  

 

Keywords: Maize, Nitrate (NO3
-), Nitrate reductase (NR), Nitric oxide (NO), Ns-

haemoglobin (Hb), Root, Transition zone (TZ).  

 

Abbreviations: 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide 

(cPTIO); L-NG-Nitroarginine methyl ester (L-NAME); non-symbiotic haemoglobin (nsHb); (±)-

(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR); Sodium nitroprusside (SNP); 

Sodium tungstate dihydrate (Na2WO4•2H2O). 
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2. Introduction 

Soil nutrients acquisition intensely affects global crop production (Forde and 

Clarkson, 1999; Robertson and Vitousek, 2009). In poor nations drought and low soil fertility 

cause low yields and food insecurity, while in rich nations intensive fertilization leads to soil 

leaching and/or greenhouse gas emission (Donner and Kucharik, 2008). The development of 

new crop cultivars with enhanced soil resource acquisition is therefore an important 

strategic goal for modern agriculture (Lynch, 1998; Vance et al., 2003; Lynch, 2007). 

Understanding nutrient responses at the organism level will be useful to modify plant 

metabolism, physiology, growth and developmental programs to improve nutrient use 

efficiency and productivity in crops. 

The macronutrient nitrogen is essential for plant growth and development as it is a 

component of proteins, nucleic acids, many co-factors and secondary metabolites. In aerobic 

soils nitrate is the major source of nitrogen for most plant species (Ahmad et al., 2007; 

Nischal et al., 2012). 

Plants have the potential for adaptation to dramatic fluctuations of nitrogen 

availability by modulating their capacity for nutrient acquisition and by alteration of whole-

plant morphology and metabolism, such as increasing the root/shoot ratio (Rubio et al., 

2009). Developmental adaptive mechanisms stimulate growth in organs that directly 

participate in nutrient acquisition, such as primary roots (Walch-Liu and Forde, 2008). A dual 

effect of external nitrate on root system architecture (RSA) development has been depicted 

in the model species Arabidopsis thaliana: (i) a systemic inhibition of lateral primordia by 

uniformly high nitrate concentrations at a post-emergence stage and (ii) a localized 

stimulation of elongation on N-starved roots at the site of contact with a nitrate rich supply, 

known as the foraging capacity (Zhang and Forde, 1998; Zhang et al., 1999; Linkohr et al., 

2002; Zhang et al., 2007; Ruffel et al., 2011). Apart from a few known pathways that involve 

transcription factors, micro-RNAs, hormonal signals and, more recently, nitrate transporters 

with dual affinity for nitrate and auxin (Little et al., 2005; Remans et al., 2006; Miller et al., 

2007; Chiou, 2007; Gifford et al., 2008; Krouk et al., 2010; 2011; Vidal et al., 2010; Castaings 

et al., 2011; Rubio-Somoza and Weigel, 2011; Ruffel et al., 2011; Trevisan et al., 2012; Xu et 

al., 2012), our understanding of sensing external nitrate conditions and of the signal 

transduction system that leads to an altered development of root is still poor. 
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To trigger adaptive responses and to induce fast switching from starvation 

metabolism to nutrient assimilation, the nitrate itself or its primary assimilation products 

serve as signalling molecules (Schulze et al., 1994; Crawford, 1995; Scheible et al., 1997; 

Stitt, 1999). Significant advances have been made during the recent period concerning the 

molecular mechanisms of NO3
- sensing and signalling in Arabidopsis, and the striking action 

of NO3
- as a signal in regulating genome expression has been unravelled (Bouguyon et al., 

2012). 

A prolonged nitrate starvation was demonstrated to largely affect gene transcription, 

producing effects on the early nitrate signalling mechanisms. Transcriptomic analyses 

evidenced co-regulated transcriptional patterns in maize root epidermal cells for genes 

putatively involved in nitric oxide synthesis/scavenging (Trevisan et al., 2012). 

Nitric oxide is a free radical that is considered to be a general plant signal, since it 

regulates both normal developmental processes and biotic or abiotic stress responses 

involving cross-talk with phytohormones (for reviews, see: Durner and Klessig, 1999; 

Wojtaszek, 2000; Beligni and Lamattina, 2001; Lamattina et al., 2003).  

NO has been reported to be required for root organogenesis (Pagnussat et al., 2002), 

formation of adventitious roots (Pagnussat et al., 2003), lateral root (LR) development 

(Correa-Aragunde et al., 2004) and root hair formation (Lombardo et al., 2006). Recently 

Correa-Aragunde et al., (2004) suggested the possibility that auxin and NO might be on a 

linear signalling pathway in the process of LR formation in tomato. However, our knowledge 

of the molecular mechanisms by which NO regulates growth and development is still 

fragmentary. 

NO is produced in plant tissues by two major pathways, one enzymatic and the other 

non enzymatic (Wendehenne et al., 2004). The NO-producing enzymes identified in plants 

are nitrate reductase (NR), and several nitric oxide synthase-like proteins, including one 

localized in peroxisomes that has been biochemically characterized (del Rıó et al., 2004). 

Interestingly, it was recently shown that non-symbiotic haemoglobin 1 enzyme could reduce 

NO2
- to NO with a constant rate that was far in excess of that reported for haemoglobins 

(Hbs) (Sturms et al., 2011). Plant Hbs are able to regulate several NO effects, as recently 

reviewed by Hill (2012). Class II nsHbs contributes to NO removal when over-expressed 

(Hebelstrup et al., 2006; 2012). Moreover, several studies have demonstrated a role for 
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plant Hbs in catalysing the turnover of nitric oxide to nitrate (Dordas et al., 2003a; b, 2004; 

Perazzolli et al., 2004; Hebelstrup et al., 2006; 2012).  

The nitrate-regulated expression and spatial distribution in epidermal cells of NR and 

Hb transcripts which have been recently evidenced in maize roots, strongly suggests that 

they could play an important role during the early perception and signalling of nitrate in the 

rhizosphere (Trevisan et al., 2011). Moreover the co-localization of mRNAs for NR and Hb 

observed in the root apex matches with the major sites of NO accumulation, as shown in 

Arabidopsis (Stöhr and Stremlau, 2006), suggesting that these two genes may represent the 

pivotal elements of a fine-tuning system for NO homeostasis and signalling. 

The involvement of NO in the pathway of nitrate signalling opens a wide field of 

research. In this report we evaluated the contribution of NO in the nitrate-regulated 

pathway that directs RSA, unravelling the role of NO as a nitrate-related signal.  

The present study is focused on both the characterization of the expression profiles 

of selected genes putatively involved in nitric oxide homeostasis and the determination of 

NO production by roots in response to different N treatments. In addition, since the genes 

therein selected have proved to be very good candidates for monitoring nitrate sensing in 

maize roots, we propose them as early physio-molecular markers for the response to this 

anion. Furthermore, the effect of nitrate on root growth and especially on root elongation 

was also deepened. Moreover, an improved agar-plate culture system for studying the Zea 

mays L. root response to nutrients has been developed. Thanks to this system it has been 

possible to discriminate between localized and systemic effects of nitrate supply to roots. 

Overall, our data provided evidence that in maize roots NO is produced by nitrate 

reductase as an early response to nitrate supply. Moreover, the coordinated induction of 

nsHbs, finely regulate the steady-state level of this molecule, which in turns seems to be 

involved in the modulation of the root growth in response to nitrate perception. 

 

3. Materials and Methods 

3.1 Maize growth and experimental design 

Seeds of maize inbred line B73 were sown and then transferred to nutrient solution 

as described by Quaggiotti et al. (2003). For a first set of expression analyses seedlings were 

grown in different nutrient solutions for five days and then treated few hours as described in 

Fig. 1. For the analysis of root parameters with WinRhizo, seedlings were grown in the 
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nutrient medium for eight days. Nitrate, ammonium or ammonium-nitrate were supplied at 

a concentration of 1 mM. In the nitrogen depleted nutrient solution KNO3 was replaced by 1 

mM KCl and NH4SO4 by MgSO4, respectively.  

For nitric oxide content measurement, for subsequent expression analyses and for 

the analysis of root elongation rate, seedlings were grown only 24 h in the nutrient solution, 

to allow the manipulation of younger roots. To deepen the role of NO in the maize root 

response to nitrate Tungstate (1 mM), cPTIO (1 mM), L-NAME (0.2 mM), SNP (0.01 mM) and 

NOR (1 mM) were supplied to the nutrient solution (either NO3
- -supplied or NO3

--deprived) 

depending on the treatment.  

Seedlings of the same age were also utilized to evaluate the expression of selected 

genes in four different portions of roots, as indicated by Baluska et al. (2010), after nitrate 

supply. The four zones sampled were: the root meristem (M, 4 mm), the transition zone (TZ, 

1 cm), the elongation zone (EZ, 1 cm) and the maturation zone (MZ, residual portion). Roots 

were harvested after two hours of nitrate provision and the four fragments were 

immediately cut and frozen, both for root treated and for the negative control (-NO3
-). 

 

 

 
Figure 1. Workflow model of the experimental conditions. Seeds were sowed on filter paper, and three days after 
germination seedlings were divided into four groups and transferred for five days to four different hydroponic 
solutions: ‘+N’ solution (+NO3

- and +NH4
+, as reported in Materials and Methods section) and ‘–N’ solution (NO3- 

and NH4+ - depleted nutrient solution, as reported in Material and Methods section). After five days, seedlings 
were transferred to eight different nutrient solutions, four ‘+N’ solutions (two  + NO3

- and two + NH4
+ groups) and 

four ‘–N’ solutions (two - NO3
- and two - NH4

+ groups), and treated for different time (30 min, 2 h and 6 h). At the 
end of the treatments the eight groups of seedlings grown in different nitrogen availabilities were used to compare 
the effects of long/short term of nitrogen supply/depletion by means of a multifaceted transcriptomic approach. 
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3.2 Growth of maize seedlings in agar medium 

A novel method was developed to grow maize seedlings on agar. To this aim specific 

plastic boxes (17.9 x 12.9 x 2.6 cm) modified with suitable holes on one side were utilized 

(Fig. S1). This system permits the insertion of young roots, which can grown vertically along 

the agar medium allowing the shoot to develop outside of the box, and enabled us to 

perform localized treatments to single portion of roots, as described in Fig. 2. The agar 

concentration utilized was 1%, after a preliminary test with concentrations ranging from 0.8 

to 1.2%. The nutrients were supplied as indicated for hydroponics. 

Roots of seedlings grown 24 h in a nitrate-depleted agar plate were transferred on an 

identical medium to which, in correspondence of specific root regions, round slices (about 1-

1.5 cm in diameter) of agar were removed and substituted with new ones containing nitrate 

1 mM. For the negative control the slices were substituted with new nitrate-depleted ones, 

to subject roots to a similar mechanical stress, thus avoiding false positives due to the 

perception of the discontinuance of agar and not to the nitrate presence.  

 

3.3 Morphological analyses 

For the analysis with WinRhizo, germinated seeds of maize inbred line B73 were 

transferred to 2-l-tanks containing five different aerated nutrient solutions (changed every 

two days) according to the treatments: a) + NO3
-, b) – NO3

-, c) + NH4
+, d) – NH4

+, e) +NH4NO3 

and then placed in a growth chamber for eight days. The morphological analyses including 

total root length (cm), total surface area (cm2), average root diameter (mm) and number of 

root tips were performed on thirty randomly chosen plants for each treatment (two 

biological replicates) by means of a STD-1600 EPSON scanner set and an image analysis 

software (WinRhizo Pro, Regent Instruments, QC, Canada). Statistical analyses were 

performed by using R software (version 2.14.2). 

For the analysis of primary root elongation rate, seedlings were grown 24 h in a 500-

ml beaker and subjected to six different treatments according to the growing medium, as 

follows: a) +NO3
-, b) +NO3

- +cPTIO, c) +NO3
- +Tungstate, d) –NO3

-, e) –NO3
-+SNP, f) +NH4

+. The 

measures of primary root length were made with a ruler on sixteen seedlings for each group, 

in four independent biological repetitions. To investigate possible effects of toxicity due to 

the use of chemicals, both total root weight and leaf weight were also measured. Statistical 

analyses were performed by using R software (version 2.14.2). 
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Figure 2. Design of the split-root system used to investigate the localized effects of nitrate on the intact root apex 
of maize seedlings. Seeds of maize inbred line B73 were sowed in paper and then seedlings were transferred to 
a vertical plate system. Plate prepared with N-depleted solution and 1% agar were either supplied with nitrate 1 
mM (+N plants) or depleted (-N plants) by cutting and replacing a rounded portion of the agar, thus only apical 
portion of the root system could perceive the change of treatment. Seedlings continued to grow after the 
replacement of the rounded portion of agar, and at the end of the treatment they were removed from the system 
and harvested. 

 

3.4 RNA extraction and cDNA synthesis  

Tissues used for gene expression analyses were collected and immediately frozen in 

liquid nitrogen and kept at −80 °C for subsequent RNA extraction.  

Total RNA was extracted as described by Trevisan et al. (2011) starting from 250 mg 

of frozen tissue and using the TRIzol method as described by the manufacturer (Invitrogen, 

San Giuliano Milanese, Italy). An aliquot of total RNA was treated with RQ1 RNAse-free 

DNAse (Promega, Milano, Italy) as described by Falchi et al. (2010). One μl of total RNA was 

quantified using a Nanodrop 1000 (Thermo Scientific, Nanodrop Products, Wilmington, DE, 
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USA). cDNA was synthesized starting from 500 ng of total RNA mixed with 1 μl of Oligo dT 10 

μM as described by Manoli et al. (2012). 

 

3.5 Selection of genes to be evaluated, maize sequences identification and primers 

design  

The list of genes analyzed is reported in Table S1, together with the primers utilized 

for RT-qPCR expression analysis. They were chosen according to previously published results 

(Trevisan et al., 2011; 2012).  The Hb (NCBI: AF236080.1), the NR1 (NCBI: AF153448.1) were 

then chosen for further more detailed analysis and the analysis was extended to the 

expression of Hb2 (NCBI: NM_001112349.1), NiR (NCBI: ACG29734.1), NOA1 (NCBI: 

NM_001174573) genes which were selected by screening the B73 genome database 

(http://www.maizesequence.org/index.html) and to Nrt2.1 (NCBI: AY129953.1, Quaggiotti et 

al., 2003), that was used as a positive control for nitrate perception. The NOA1 sequence 

was identified based on its similarity with the AtNOA1 (At3g47450.1) gene of Arabidopsis.  

Primers were designed with Primer3 web tool (ver. 0.4.0; 

http://frodo.wi.mit.edu/primer3/; Rozen and Skaletsky, 2000) and further verified with the 

PRATO web tool (Nonis et al., 2011; http://prato.daapv.unipd.it). 

 

3.6 Real time qPCR 

Relative quantification of transcripts by Real-Time PCR (RT-qPCR) was performed in a 

StepOne Real-Time PCR System (Applied Biosystems, Monza, Italy) as described by Nonis et 

al. (2007). Experiments were conducted using SYBR Green chemistry (Applied Biosystems, 

Monza, Italy) according to the manufacturer’s instructions. For each reaction 2.5 ng of 

retrotranscribed RNA were used as template. Three technical replicates were performed on 

six independent biological replicates using the conditions described by Trevisan et al. (2011). 

Melting curve analysis was performed to confirm the absence of multiple products or primer 

dimers formation. Data were exported and analyzed according to the Livak and Schmittgen 

(2001) method using LUG (leunig primers, forward 5’-TCCAGTGCTACAGGGAAGGT and 

reverse 5’- GTTAGTTCTTGAGCCCACGC) and MEP (Membrane protein PB1A10.07c, primers: 

forward 5’-TGTACTCGGCAATGCTCTTG and reverse 5’- TTTGATGCTCCAGGCTTACC) as 

reference genes according to Manoli et al. (2012). For each transcript, the ratio between the 

expression measured for a given treatment and that of its own control was used to estimate 
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up or down-regulation of genes. The ratios obtained were then expressed as base-2 

logarithm to build the graphs. 

 

3.7 NO detection 

Germinated seeds were transferred to a nitrogen-depleted nutrient solution, and 

after 24 h root apices of 2 cm length ca. were excised and incubated for 30 min in 2 ml 

detection buffer (10 mM Tris-HCl, pH 7.4) added with 15 μM of DAF-2DA. Subsequently the 

apices were washed twice for 5 min with fresh detection buffer and placed on a microscope 

slide fixed with a Secure-Seal™ hybridization chamber gasket (Life Technologies, Carlsbad, 

CA, USA) (20-mm diameter, 0.8-mm deep) and analysed for NO production by stereo- and 

confocal microscopy. For each chamber one apex was incubated as described below. 

For stereomicroscope analyses the chambers were immediately filled with nutrient 

solution containing 1 mM KNO3
 (+NO3

-), or nitrogen-depleted nutrient solution containing 1 

mM KCl (negative control, -NO3
-), and examined by epi-fluorescence with a SteReo Lumar 

V.12 (Carl Zeiss, Oberkochen, Germany). Images were captured with an MRc5 Axiocam Zeiss 

color camera every five min for 50 min and processed with Adobe Photoshop CS4 (Adobe, 

San Jose, CA, USA). 

Confocal NO measurements were carried out filling the chambers alternatively with: 

a) the +NO3
- solution; b) -NO3

-solution; c) +NO3
- nutrient solution supplied with the NO 

scavenger cPTIO; d) -NO3
- nutrient solution supplemented with the NO donor NOR-3; e) 

+NO3
- solution with sodium tungstate. The incubation in DAF-2DA was carried out as 

previously described.  

All apices were observed with a Leica TCS-SP2 confocal microscope (Leica 

Microsystems CMS, Mannheim, Germany) and images were acquired every five min for 45 

min form the beginning of the incubation. Images were then analysed using the Leica 

Confocal Software application. Normalization of the data and ratios of average fluorescence 

intensities were calculated as described by Calcagno et al. (2012). Five root pieces were 

tested for each condition and five independent repeats were analyzed for each treatment. 

 



 83 

4. Results 

4.1 Nitrate exerts specific effects on genes involved in NO homeostatic control 

The expression of a number of previously identified genes (Quaggiotti et al., 2003; 

Trevisan et al., 2011; 2012) together with that of some new ones (Table S1), was measured 

in roots and leaves of seedlings grown five days in a nutrient solution containing 1 mM 

nitrate (+NO3
-) or 1 mM ammonium (+NH4

+) or N-deprived (both -NO3
- and -NH4

+) (Fig. 3).  

The transcriptional response of five of them (NR1, Hb, Hb2, Nrt2.1, NiR) evidenced a 

very strong nitrate responsiveness in roots. A similar behaviour was observed in leaves, even 

if to a lower extent. The rest of genes selected, on the contrary, did not evidence specific 

nitrate responsiveness.  

The expression of the same set of genes was also assessed on root and leaf tissues of 

five-days old seedlings, but after only 30 min, 2 and 6 h of nitrate/ammonium provision or 

depletion. The time-course of the expression of the five nitrate specific targets in both roots 

and leaves after few hours of nitrate/ammonium supply/starvation is shown in Fig. 4 (the 

expression patterns of the other genes tested is reported in Fig. S2). 

The nitrate supply induced a significant increase of transcript accumulation for all the 

five genes both in roots and in leaves (Fig. 4A and 4B, upper side), even if in roots it was 

much more noticeable (from 4-16 fold already after 30 min of NO3
- supply, to 8->100 fold 

after six hours). Conversely, the transcription of the five genes did not show a similar 

increase when ammonium was supplied as unique nitrogen form, neither in roots nor in 

leaves (Fig. 4A and 4B, lower side), confirming the specificity of responsiveness to nitrate. 

Also in the case of N-deprivation all five genes displayed a more evident response (decrease 

of expression) to nitrate deprivation in comparison to that measured for ammonium 

removal (Fig. 4A and 4B, left column), both in leaves and in roots.  

These five genes specifically nitrate inducible were thus selected for the subsequent 

and more detailed expression analyses. 
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Figure 3. Heat map showing gene expression of 14 genes significantly regulated by long-term nitrate or 
ammonium supply and depletion in Zea mays L. roots and leaves. Seedlings were grown for five days in a 
nutrient solution containing 1 mM nitrate (+NO3

-) or 1 mM ammonium (+NH4
+) or N-deprived (both -NO3

- and -
NH4

+). At the end of the treatment seedlings were harvest and roots were separated from leaves. The colour 
scale represents the level of a gene expression. Values are reported as arbitrary unit and are the means of 3 
technical repetitions performed on six independent biological replicates. 

 

4.2 Root growth responds specifically to nitrate availability 

The effect of nitrate supply on root development was evaluated in comparison to 

that of both ammonium and NO3NH4 in plants grown in nutrient solution for eight days 

(Table 1). The analysis of root length, root surface area and number of tips evidenced a 

similar pattern, showing the strongest root growth stimulation in seedlings grown with 

nitrate 1 mM (treatment 1). Values measured for these three parameters in plants grown 

with ammonium (treatment 3) were significantly lower (50-60%) then those observed for 

nitrate-supplied roots and closest to rates observed for NO3
--depleted roots (treatment 2, 

nitrate negative control). Furthermore, an inhibitory effect of ammonium supply was visible 

for both root length and tips number, which showed values even lower with respect to 

negative control (treatment 4). The supply of NO3NH4 (treatment 5) slightly stimulated these 

three parameters, even if to a significantly lower extent with respect to nitrate.  

The average root diameter showed an opposite trend with the maximum rate 

observed for ammonium treated roots (treatment 3) and the lowest one for nitrate-supplied 

plants (treatment 1), which evidenced values even lower than those observed for nitrate-

depleted roots (treatment 2). These observations, beside suggesting a compensatory 
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mechanism between the growth in length and in thickness in maize root, highlight the 

specificity of nitrate in affecting the root growth, which conversely did not showed any 

similar response when nitrogen was supplied as ammonium.  

 

 

 
Figure 4. Time course of the expression of 5 genes significantly regulated by short-term nitrate/ammonium 
treatments in Zea mays L. roots (A) and leaves (B). The expression values were investigated at 30 min, 2 h and 6 
h. 
Data are expressed as base-2 logarithm of the ratio between the expression measured for a treatment and that of 
its own control. The same expression analyses were carried out in nutrient solution either supplied or depleted 
with nitrate or ammonium. In the left column the time course analyses of gene expressed in nitrogen-starved 
seedling are reported  (-), while values correspondent to nitrogen supplied system (+) are reported in the right 
column.
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Table 1. Effects of nitrate supply on root development. Root length, root surface area and number of tips were 
evaluated in plants grown in nutrient solution for eight days. The treatments investigated were 5: nitrate supplied 
roots (treatment 1); NO3

--depleted roots (treatment 2); ammonium supplied roots (treatment 3); ammonium 
depleted roots (treatment 4); NO3NH4 supplied roots (treatment 5). Different letters indicate statistically significant 
differences among samples (p<0.05, ANOVA Test). 

 

Treat. Lenght (cm) Surface Area (cm
2
) Av.diameter (mm) Tips (n°) 

1 79.48±3.98 
a
 12.58±0.55 

a
 0.50±0.01 

d
 91.20±5.07 

a
 

2 51.61±2.96 
c
 8.60±0.46 

c
 0.55±0.01 

c
 67.40±4.57 

b
 

3 36.59±1.39 
d
 8.18±0.28 

c
 0.70±0.01 

a
 55.43±3.34 

c
 

4 51.34±2.15 
c
 9.03±0.43

 c
 0.52±0.01

d
 72.90±2.75 

b
 

 

4.3 NR-dependent NO production after nitrate supply 

To better understand the role of NO in nitrate signalling, its production was 

monitored by measuring the DAF-2T fluorescence in stereomicroscopy.   

Seedlings grown for 24 h without nitrate were supplied with 1mM nitrate and the 

fluorescence produced was observed (Fig. 5A, panels I-P) in comparison to that measured in 

negative control (Fig. 5A, panels A-H). The nitrate supply caused a slight but consistent 

increase in DAF fluorescence since the first minutes after treatment (panels J and K). No 

fluorescence increase was induced by NO3
--deprived control treatments, where by contrast a 

signal decrease was observed after ten minutes, probably due to the decay of the probe 

(panels A-H). Based on these observations the increment of fluorescence was mainly 

localized immediately above the meristematic apex and more precisely in the transition 

zone, as defined by Verbelen et al. (2006) and Mugnai et al. (2012).  

In order to get a more detailed imaging and quantification of DAF fluorescence, we 

repeated the experiment in confocal microscopy and also evaluated the effects of a NO 

donor (NOR), a NO scavenger (cPTIO) and a NR inhibitor (tungstate).  

Fig. 5B shows two pictures for both –NO3
- and +NO3

- treatments at T0 and after 30 

min of observation. Figure clearly evidences a difference between the two treatments, with 

a strong increase in the DAF fluorescence in response to nitrate provision (panel D), which 

was not observed in the case of negative control (-NO3
- roots) (panel C).  

Moreover, higher magnification analyses (Fig. S3) revealed a few cytological details 

on the different cell types observed, which typically distinguish the transition zone (TZ). In 

the distal part of the portion of root examined nuclei are positioned in the centre of the cell, 

similarly to the meristem, whereas the more distal zone cells resembled those of the 

elongation zone with large central vacuoles and nuclei pushed to the side cell walls.  
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The same observations were performed in the presence of tungstate, NOR and cPTIO. 

Results obtained on five biological repetitions are reported in Fig. 5C. Data were expressed 

as relative fluorescence increase/decrease after 30 min of observation. Results showed a 

significant increase of fluorescence for nitrate supplied and for NOR-treated roots. On the 

contrary, when seedlings were supplied with a –NO3
--solution (negative control) or treated 

with both nitrate plus tungstate and nitrate plus cPTIO, the fluorescence did not increase 

throughout the experiment. These results globally suggest that a NO burst is produced 

immediately after nitrate supply to roots and that this is probably due to the nitrate 

reductase activity, which is activated in response to the anion, as also supported by the 

expression analysis data. 

 

4.4 Genes putatively involved in the control of NO homeostasis are involved in the 

early response to nitrate 

To allow the NO content determination via both stereomicroscope and confocal 

analyses roots were harvested from 24 h-old seedlings, in order to obtain root segments of 

size compatible with the mini-chamber utilized. For this reason for the following expression 

analyses we decided to shift the experimental plan to younger seedlings and to focus only on 

the early events after nitrate provision. Plants were, thus, grown 24 h in a –NO3
- solution and 

then transferred to a +NO3
- medium for two hours. The transcript accumulation of the 

previously selected genes (NR1, Hb, Hb2, NiR) together with a new one (NOA1) encoding a 

putative AtNOA1 orthologous was examined after nitrate supply and in the presence of 

cPTIO, tungstate and L-NAME. The expression of Nrt2.1 was also included among the 

analyses, as a positive control of the nitrate perception.  

The nitrate addition induced strong increments of transcription for all the genes 

analyzed, except for NOA1 (Fig. 6, first two columns of each gene). The expression of nitrate 

reductase gene reached rates six/nine fold higher in comparison to that measured in –NO3
- 

roots, whereas the two isoforms of ns-haemoglobin increased their transcription even by 27-

72 fold. The NiR and the Nrt2.1 showed an induction of their expression of 21 and six fold 

respectively.  
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Figure 5. NO detection on 2 cm maize root apices excised from seedlings grown for 24 h in nitrogen-depleted 
nutrient solution. A) Stereomicroscope time course imaging of DAF-2T fluorescence (T0-T50’) on apices treated 
for 30 min with 1 mM KCl (negative control, -NO3-) (A-H) and 1 mM KNO3 solution (I-P). Scale bar 500 µm. B) 
Confocal detection of DAF-2T in the transition zone of nitrate treated and untreated apices at T0 and T30’. Arrows 
indicate two different type of cells of this root zone: small square shape cell with central nucleus and elongated 
cell with a more developed vacuole (V) Scale bar 50 µm. 
C) DAF-2T fluorescence intensity values at 30 min after treatment of root segments with NO3-; NO3- and 
tungstate (W); NO3- with the NO scavenger cPTIO; KCl (-NO3-); KCl (-NO3-) and NO donor NOR. 
Average fluorescence values are reported as a ratio of the fluorescence intensity at 30 min to the fluorescence 
intensity at time 0 (a.u.). Different letters indicate statistically significant differences among samples (p<0.05, 
Kruskal–Wallis test) 

 

When the cPTIO was given together with nitrate (third column), the expression of 

both Hb and Hb2 was very strongly inhibited, whereas the other genes analyzed did not 

evidence significant differences of expression in comparison to the positive control (+NO3
-). 

Similarly, the addition of tungstate (fourth column), led to an inhibition of the 75-90% of the 

transcription of all genes, with the exception of NOA1. Conversely, the provision of L-NAME, 

an inhibitor of the nitric oxide synthase, induced only slight and rarely significant decreases 

of the expression of these genes.  
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These results confirmed the role of the regulation of NR1, Hb and NiR genes in the 

early response to nitrate even in younger roots. Moreover the use of chemicals interfering 

with NO biosynthesis and scavenging provided further evidence of the involvement of NR-

derived nitric oxide as a key signal in the nitrate signalling in roots of maize. 

 

 

 
Figure 6. Effects of five different chemicals interfering with NO biosynthesis and scavenging on the expression 
profile of five genes differentially regulated by nitrate supply/depletion. Plants were grown 24 h in a –NO3

- solution 
and then transferred to a +NO3

- medium for two hours The transcript accumulation of six genes (NR1, Hb, Hb2, 
NiR, Nrt2.1, and NOA1 was examined after nitrate supply and in the presence of cPTIO (1 mM), tungstate (W; 1 
mM), and L-NAME (0.2 mM). 

 

4.5 The transcription for genes involved in NO production and scavenging is 

maximally induced in the transition zone (TZ) of roots after nitrate induction 

Results on NO measurements suggest that the production of this molecule after 

nitrate provision is preferably localized immediately above the meristematic apex, and more 

precisely at the level of the transition and elongation zones. The expression of the genes 

encoding nitrate reductases, haemoglobins, nitrite reductase and of Nrt2.1 was, therefore, 
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studied in four different root portions (M: meristem, TZ: transition zone, EZ: elongation 

zone, MZ: maturation zone; as schematized in Fig. 7A), both in nitrate-depleted roots and 

after 2 h of nitrate provision. 

All the five genes considered evidenced a significant change of localization when 

seedlings grown without nitrate were treated with the anion (Fig. 7B). In fact, in nitrate-

starved root (left columns of Fig. 7B) the 70-80% of the mRNA was concentrated in the 

meristematic cells (M) for all five genes, with the remaining 20-30% of mRNAs prevalently 

localized in the elongation (EZ) and maturation zones (MZ). In these conditions the amount 

of transcript detected at the transition zone level (TZ) was extremely low or even negligible. 

On the contrary, in seedlings supplied with 1 mM nitrate for two hours (after being grown 24 

h in a –NO3
- solution), the transcripts of all five genes were more equally distributed 

between the apical meristem (M) and the transition zone (TZ), with a significant increase of 

accumulation in the TZ which showed an amount of mRNA for each gene ranging from 20 to 

40% of the total. Moreover, after nitrate supply the maturation zone also evidenced an 

increase in terms of gene expression if compared with nitrate-depleted roots.  

Fig. 7C describes the increases of transcription for each gene in each of the four 

portions, independently from their relative abundance. All five genes evidenced an induction 

of their expression in all the four portions sampled, with the maximum in the TZ, that 

showed a transcription rate more then 30 times higher if compared with that measured in 

the same portion of nitrate-depleted roots (except the case of Nrt2.1 that increased more 

then 10 times). In the MZ and EZ of nitrate-supplied roots the amount of mRNAs increased 

by around 8-20 and 4-8 times respectively. On the contrary, in the meristematic cells the 

increase of gene transcription measured was very low or insignificant.  

In general, it would seem that the nitrate supply induces a redistribution of 

transcripts in zones of roots different from the meristem, which in turns appears to be the 

main site of their accumulation in conditions of nitrate starvation.  

 

4.6 The nitrate induced root length increase is dependent on a NO signalling 

pathway 

After germination seedlings were transferred to six different nutrient solutions 

(+NO3
-, -NO3

-, +NH4
+, +NO3

- +tungstate, -NO3
- +SNP, +NO3

- +cPTIO, +NO3
- +L-NAME) and the 

growth of primary root was monitored for 24 h (Fig. 8). Nitrate-supplied seedlings and –NO3
-



 91 

+SNP-seedlings showed the more elevated rate of root elongation, with values significantly 

higher in comparison to all the remaining treatments. The supply of ammonium did not 

produce any increase in the elongation rate, which was similar to that measured for negative 

control plants, as already observed also for older seedlings. The provision of tungstate 

together with nitrate inhibited even more significantly the root growth in comparison with 

nitrate-depleted roots. A similar decrease was also observed in roots supplied with nitrate 

plus cPTIO. On the contrary, the addition of SNP to nitrate depleted roots stimulated the 

root growth to levels comparable to those measured for positive control. Conversely, as also 

observed in the case of gene transcription, the supply of L-NAME, that inhibits the NOS 

activity, did not produce significant effects on root lengthening. 

These results besides suggesting the involvement of NO in the regulation of nitrate 

induced root elongation, clearly confirm the key role of nitrate reductase for this signalling 

pathway. 

The fresh weight of both roots and shoots were also determined to exclude toxicity 

effects of chemicals utilized (Table S2). 

 

 

Figure 7. Spatial distribution of five genes differentially regulated by supply/depletion of nitrate. A) Graphical 
representation of the different part of primary root analyzed: M (Meristem), TZ (Transition Zone), EZ (Elongation 
Zone) and MZ (Maturation Zone). (B) Gene expression values in the different zones are reported as percentage 
in both nitrate starved and supplied roots. Increases of transcription for each gene in each of the four portions 
were reported in panel C. Data are reported as log2 of the ratio +N/-N of the values recorded. 
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Figure 8. Effect of different nitrate treatments on primary root growth. After germination seedlings were 
transferred to six different nutrient solutions (+NO3

-, -NO3
-, +NH4

+, +NO3
- +tungstate, - NO3

- +SNP, +NO3
- +cPTIO, 

+ NO3
- + L-NAME) and the growth of primary root was measured for 24 h with a ruler on sixteen seedlings for 

each group. Each value represents the average ± S.E. of four independent biological repetitions. 
 

4.7 The nitrate-induced NO signalling pathway is a localized effect 

The setup of a method to grow maize seedlings on a semisolid agar medium allowed 

us to perform targeted treatments to single zone of root, as illustrated in Fig. 2 of the 

methodological section.  

This system permits to treat only specific zones of root allowing thus to discriminate 

local from systemic effects on gene expression.  

As a preliminary experiment, to test the validity of this method as an alternative to 

hydroponic, seedlings were grown in the agar plates which were nitrate-supplied or nitrate-

deprived, by using the same timing and concentrations described for experiments in 

hydroponics and the expression of the previously selected genes was evaluated. RT-qPCR 

were carried out on both roots and shoots and for all the genes and the nutritional 

conditions described in the first paragraph of the Results (data not shown), but for simplicity 

in Fig. 9A we decided to show only those closely related to the induction of NO pathway in 

roots after nitrate supply. Results fully confirmed those obtained for seedlings grown in 

hydroponics. Furthermore, the root growth, analyzed by means of WinRhizo software, 

evidenced the same behaviour of plants grown in nutrient solution (data not shown), further 

confirming the validity of this method. 
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Seedlings were then submitted to a treatment with nitrate localized only to the 

meristematic apex (4 mm, for details see the M&M). The transcription of the five genes 

previously chosen was evaluated independently in the four different root zones (M, TZ, EZ, 

MZ) in both seedlings whose tip was treated with 1 mM nitrate and negative control (Fig. 

9B). NR1, Hb1, Hb2 strongly increased their expression in apex of nitrate supplied roots, 

whereas NiR transcription increased to a lesser extent. On the contrary, the mRNA 

abundance of Nrt2.1 did not evidence any increase, indicating that this high affinity nitrate 

transporter is not involved in the influx of nitrate by root meristem. Furthermore, in all the 

other three root zones (TZ, EZ and MZ) no differences in terms of transcript accumulation 

were detected after local nitrate provision to apex, suggesting that the NO signalling 

activation by nitrate should represent a localized effect of nitrate. 

 

 

 
Figure 9. Expression analysis of NO and nitrate 
metabolism related genes NR1, Hb, Hb2, NiR, 
Nrt2.1 on roots of 24 h old seedlings grown on 
nitrate-depleted agar medium and treated in a 
fresh medium added with nitrate in the whole 
plate or locally at the root tip. In panel A the RT-
qPCR on roots at two (black bar) and six hours 
(grey bar) after treatment. Data are expressed as 
log2 ratios of the normalized expression levels 
measured in treated roots with respect to the 
control (no nitrate) grown at the same conditions. 
The results are averages ± SE of six 
independent biological replicates, each 
performed in three technical repetitions. In panel 
B the fold change (reference: untreated 
meristem) in expression of the genes along the 
root treated locally at the meristem zone with 
nitrate. The size of the different zones (Meristem; 
TZ transition zone; EZ elongation zone; MZ 
maturation zone) doesn’t reflect the real values of 
length; please refer to the material and methods 
for the exact measures. Values of fold change 
are expressed by means of a grey scale. The 
authors arbitrarily choose the size of each block 
occupied by single gene investigated and it does 
not refer to any quantitative value.  
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5. Discussion 

Nitrogen is a major element for plant life and crops strongly depend on intense 

fertilization programmes throughout the world. However N fertilization seriously affects 

environment quality and the identification of crop cultivars better adapted to low nitrogen 

input continues to be a real priority for plant scientists (Robertson and Vitousek, 2009; Xu G. 

et al., 2012). 

Nitrate represents the principal nitrogen form in a standard agricultural soil and it is 

able to act also as a signal, triggering a number of molecular and physiological events leading 

to the overall plant’s response to its availability.  

The control of nitric oxide homeostasis through the spatio-temporal coordination of 

nitrate reductase and haemoglobin gene expression has been recently hypothesised to 

participate to nitrate sensing in maize roots (Trevisan et al., 2011). In the present work we 

tried to more deeply characterize the role of nitric oxide in the maize root response and 

adaptation to nitrate fluctuations.  

To better discriminate nitrate specific effects from those more generally N-

dependent, the expression of a list of previously selected genes (Quaggiotti et al., 2003; 

Trevisan et al., 2011, 2012) was evaluated in response to nitrate or ammonium supply and 

deprivation. This first screening allowed us to focus later in this work only on genes 

responding exclusively to nitrate (and not to ammonium), which coincided with those 

involved in the control of NO biosynthesis and scavenging. In particular, genes encoding the 

cytosolic nitrate reductase and two different ns-haemoglobins, together with a gene 

encoding nitrite reductase evidenced both in short-term and long-term experiments a clear 

and noticeable responsiveness to nitrate supply or starvation, but did not change their 

expression in response to ammonium. A gene encoding a high affinity root nitrate 

transporter was also used as internal control, in light of its putative role in the nitrate influx 

and of its transcriptional inducibility during the first phases of nitrate supply (Quaggiotti et 

al., 2003). The expression profile recovered for this gene provided indirect evidence of the 

entry of nitrate into the root epidermal cells, hence enabling the activation of the signalling 

pathways in which nitrate is involved.  

Besides being the first enzyme of nitrate assimilation, NR represents also one of the 

most important sources of NO in plants (Mur et al., 2012). It is a cytosolic enzyme that could 

both reduce nitrate to nitrite and nitrite to nitric oxide, even if it shows a better affinity for 
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nitrate than for nitrite. However, NR seems to be switched to the latter reaction when high 

nitrite levels are produced (Gupta et al., 2011; Mur et al., 2012). This occurs, for example, as 

a consequence of an increased NO3
- influx, as it might be happened in this case study. Once 

inside the root cells, nitrate is promptly converted to nitrite by NR leading to nitrite 

accumulation. The NiR transcript increase observed in roots already after 30 min of nitrate 

supply is an indirect evidence of nitrite formation. Besides serving as substrate for NiR, 

nitrite accumulation could also shift the NR equilibrium toward its second mode of action, 

promoting thus the biosynthesis of nitric oxide in response to nitrate. This scenario seems 

consistent with the main findings showed in this paper. 

Nitrate reductase is involved in the NO production during bacteria induced defence 

(Modolo et al., 2005), disease development in certain pathogenic interactions (Shi and Li, 

2008), drought (Freschi et al., 2010), cold (Zhao et al., 2009), osmotic stress response in 

roots of Arabidopsis (Kolbert et al., 2010), stomatal regulation (Srivastava et al., 2009) and 

many developmental processes as, for example, the initiation of flowering (Seligman et al., 

2008).  

The parallel strong increase of the expression of both the nsHbs genes observed 

already after 30 min of nitrate supply, is not surprising if considering the high reactivity of 

NO, which besides serving as a signal in regulating several physiological events, must also be 

kept at a steady state level to avoid damages due to its toxicity. Recently, several studies 

have indicated a role for haemoglobins in the detoxification from high intracellular NO 

concentrations (Dordas et al., 2003a, b; Perazzolli et al., 2004; Vieweg et al., 2005). The 

patterns of expression of non-symbiotic haemoglobins vary depending on tissues and in 

response to different types of stress (Hunt et al., 2001). Perazzolli et al. (2004) provided 

evidence that Arabidopsis non-symbiotic haemoglobin AtHb1 functions as a NO dioxygenase, 

metabolizing NO to nitrate. Moreover plant haemoglobins seem to be involved in the control 

of NO accumulation during rhizobial and mycorrhizal symbioses (Vieweg et al., 2005) and in 

the response to hypoxia in different tissues such as seeds, roots, and stem tissue (Dordas et 

al., 2003a, b). Plant Hbs can control developmental and physiological reactions by 

modulating cellular NO levels (Hill 2012) and should be considered to be as important as NO 

generation in regulating in planta NO signalling (Mur et al., 2012). 

Our results, besides confirming our previous hypothesis of an involvement of nitric 

oxide control homeostasis in the maize root response to nitrate (Trevisan et al., 2011), 
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demonstrate also that this is a prerogative of NO3
--signalling, since ammonium did not 

produce any similar effects on “NO genes” transcription. On the contrary, the expression of 

the other genes here analysed did not show similar specific nitrate responsiveness. In 

addition, data obtained by analysing root morphological parameters by the WinRhizo 

software highlighted the same specificity of nitrate, which significantly affected root growth 

when supplied to N-deprived roots, in contrast to what happens when the same 

concentration of ammonium is given to roots.  

According to these results it would seem that nitric oxide might be produced by roots 

as an early signal of nitrate perception. To deepen this hypothesis an in vivo NO detection 

was carried out. Results obtained by using the DAF-2DA probe (Kojima et al., 1998) at both 

stereo- and confocal microscope evidenced a clear induction of fluorescence after nitrate 

provision. The main zone of NO production seems to be located immediately above the 

meristematic apex. A similar localization has been recently observed in this same species by 

Mugnai et al. (2012) as a response to hypoxic conditions.  

The fluorescence detected after nitrate supply was not relieved in the presence of 

tungstate or cPTIO, giving support to the role of nitrate reductase in this process and 

confirming the specificity of NO detection by the probe utilized. This was also corroborated 

by the strong increase of fluorescence measured when the NOR was supplied to nitrate-

depleted roots. Even if the DAF specificity has been recently questioned (Mur et al., 2011), 

well-established alternative methods to reveal tissue-specific patterns of high NO generation 

are not available yet. To give more strength to our results, we have tried to operate by 

following the steps indicated by Mur et al. (2012), being well conscious that it should be 

always preferable to employ parallel approaches for NO measurements.  

The NR-dependent NO production observed after nitrate supply was then 

corroborated by the expression analyses performed on roots of one day olds seedlings. In 

particular, our results proved the strong induction of NR1, NiR and nsHbs transcription in the 

early phases of nitrate perception. As also observed in the case of NO production, the 

transcription of all genes was significantly inhibited after tungstate and cPTIO addition, 

confirming the cooperation between nitrate reductase and haemoglobin activities in the 

fine-tuning control of NO homeostasis. However, to avoid excluding the possible 

involvement of sources of NO other than NR, the study was extended also to the 

orthologous of the Arabidopsis NOA1 (Guo et al., 2003), which encode the Nitric Oxide 
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Associated 1 protein (Zemojtel et al., 2006). NOA1 was previously named AtNOS1 and it has 

been described as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite 

lack of sequence similarity to animal NOSs. It has been, successively, established to be a 

GTPase (Moreau et al., 2008) and not to possess NOS activity and for this reason it has been 

renamed AtNOA1. Previous studies have shown that NOA1-dependent NO synthesis is 

involved in hormonal signaling, stomatal movement, flowering, pathogen defence, and 

oxidative stress (Guo et al., 2003; He et al., 2004; Zeidler et al., 2004; Zhao et al., 2007). The 

transcription of the AtNOA1 orthologous in maize did not evidence any alteration neither in 

response to nitrate nor to the other chemicals utilized.  

Moreover, to exclude the involvement of a more generic nitric oxide synthase (NOS) 

activity, nitrate supplied seedlings were also treated with L-NAME, which is commonly used 

to inhibit NOS activity in mammalians and also in plants. No effects nor on transcription of 

nitrate-responsive genes (especially with regards to nsHbs), neither on the nitrate induced 

root lengthening were evidenced, giving more strength to the idea that the nitric oxide 

production after nitrate provision is predominantly dependent on the activity of nitrate 

reductase.  

To deepen the spatial regulation of NO homeostasis balance, the expression of the 

five genes was analysed in four different root zones (M, TZ, EZ, MZ) both in nitrate-depleted 

and in nitrate-treated (1 mM) seedlings. In N-starved roots all five transcripts evidenced 

their maximum accumulation at the meristem level. This pattern radically changed when 

nitrate was furnished to roots with a very significant increase of transcript abundance in the 

transition zone (TZ), which is located between the meristem (M) and the region of fast cell 

elongation (EZ). 

Cells of the TZ undergo a series of fundamental changes in their cytoarchitecture and 

physiology, and accomplish dramatic rearrangements of the actin cytoskeleton (Baluska et 

al., 1997; 2001). This is essential for the developmental switch into rapidly elongating root 

cells that expand strictly uniaxially (Baluska et al., 1997). The distal part of this zone in 

characterized by a prevalence of cells that optionally can re-enter the cell cycle, whereas the 

proximal part is equipped with cells competent to rapidly enter into the fast cell elongation 

zone. As this developmental passage of cells can be differentially regulated at the opposite 

root flanks, this unique zone provides the root apices with an effective mechanism to re-

orientate growth in response to environmental stimuli (Verbelen et al., 2006). A number of 
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experimental proofs suggest that the TZ should be considered as a sort of sensory and 

information processing zone, enabling the growing root apex to monitor environmental 

parameters continuously and to trigger appropriate responses (Mugnai et al., 2012). If this is 

true and hypothesizing a role for NO homeostasis control through the combined action of 

NR and nsHB in the early perception of nitrate by roots, our results on transcript 

accumulation re-distribution along root apex are not surprising. Based on our finding it 

would seem that nitrate supply could activate its own sensing by stimulating the NO 

production by the TZ cells, thus initiating a signalling pathway contributing to the 

physiological adaptation (e.g. root growth) to nitrate fluctuations. 

The most important example of the plasticity that plant express to fit with nutrients 

withdrawal in soil is, in fact, represented by the capability of rearranging root architecture to 

maximize their capture (Lόpez-Bucio et al., 2003; Hermans et al., 2006; Zhang et al., 2007; 

Zolla et al., 2010; Giehl et al., 2012; De Pessemier et al., 2013). Nitrate affects root 

development by finely regulating the growth of lateral roots depending on its external 

concentration and localization, as described above (Péret et al., 2009; Mounier et al., 2013; 

Yu et al., 2013) and as also showed by our findings obtained with the WinRhizo software.  

Based on our preliminary results showing the preferential localization of NO 

production at the level of the transition zone, we decided to focus on nitrate effects on root 

elongation, which takes place in the zone immediately above and neighbouring the TZ. Our 

results evidenced a strong and specific induction of root elongation of young maize seedlings 

supplied with 1 mM nitrate and a drastic inhibition in the presence of ammonium, cPTIO and 

tungstate. No effects were recorded in the presence of L-NAME. On the contrary, when the 

negative control (-NO3
-) was supplied with a NO donor (SNP) the root length increased 

significantly. These results strongly suggest that the NO generated through nitrate reductase 

should significantly contribute to the root lengthening noticed after nitrate provision.  

The involvement of NO in root development has been observed in numerous studies, 

as for example those published by the Lamattina group (Pagnussat et al., 2002; Pagnussat et 

al., 2003; Corre-Aragunde et al., 2004; Lombardo et al., 2006), but it had already been 

hypothesised in 1997 by Gouêva et al., who found that NO was able to induce cell elongation 

in a way similar to auxin.  

Besides this, NO is involved in the regulation of actin cytoskeleton, endocytosis, 

vesicle trafficking and the polarity of growing tip cells (Prado et al., 2004; Lombardo et al., 
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2006; Salmi et al., 2007; Prado et al., 2008; Kasprowicz et al., 2009; Wang et al., 2009), which 

are all prerequisites to acquire competence for cell to elongate. 

Considering also that NO is widely implicated in the plant response to environmental 

stresses (Beligni and Lamattina 2001; Dat et al., 2004), it seems to play crucial functions in at 

the cross-roads between developmental and abiotic stress tolerance. For this reason, it 

should also represent a very good molecular candidate to regulate root development in 

response to abiotic stresses, as for example nutrients or oxygen deprivation (Mugnai et al., 

2012), but also an early player in symbiotic interactions establishment, which also need root 

architecture to be adapted to the environment.  

In the present research, thanks to the set-up of a method allowing to grow maize 

seedlings in vertical plates with an agar medium, some major details on NO-mediated nitrate 

signalling have been attained. Our results suggest that the mechanism underling the root 

response to nitrate and involving NO signalling is directly activated on cells that enter in 

contact with external nitrate. Moreover, this alert system does not seem to be turned on by 

some nitrate derived compounds or by the nitrate that move up through the root. In fact, 

when only the meristematic apex was treated with nitrate, the induction of the transcription 

of NR1 and Hb was exclusively restricted to the apex itself, whereas in the upper zone of the 

roots no differences were detected in comparison with the negative control. This is even 

more remarkably considering that, conversely, when the entire root gets in touch with 

nitrate, the apex is the portion that show the lower responsiveness to this anion in terms of 

induction of gene expression, being instead the transition zone the most receptive.  

Moreover, these results indicate that nitrate transporters other than Nrt2.1 should 

be implicated in the nitrate perception at the root meristem, since the transcription of the 

gene encoding Nrt2.1 is not activated at all by nitrate, in contrast to what observed in all the 

other three root zones when the whole root was supplied with nitrate. Basing on these data, 

it would seem that the NO mediated pathway here described represents an early alert 

system for external nitrate sensing by root cells, which seem to individually posses the 

competence to activate this pathway when external nitrate is perceived.  

Since, root growth is modulated by the convergence of multiple environmental inputs 

which are integrated by specific signal pathways to decide how to explore the surrounding 

environment, additional experiments will be needed to better understand the functioning of 
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this NO-mediated pathways and to identify the downstream events linking the NO burst with 

the physiological re-direction of root growth.  

Even if a high number of specific and comprehensive issues on the NO role in the 

complicated cross-point between root and nitrate (and more in general root and abiotic 

stress perception) need to be further deepened, our findings suggest that the triggering of a 

NO burst is a direct response to external nitrate and that it could mediate the root 

elongation observed after nitrate provision (Fig.  10). 

 

 

Figure 10. Model for the NO-mediated nitrate induction of root elongation. NO3
- influx is performed by specific 

nitrate transporters (e.g. Nrt2.1 in the TZ, EZ and MZ). Once inside the root cells NO3
- is able to act as a signal to 

induce its own sensing via the NR/Hb-dependent NO fine-tuning, which in turns seems to be involved in the root 
elongation stimulation. The cytological events and molecular targets linking the NO biosynthesis to root growth 
response could be involved in the rearrangements of the actin cytoskeleton (Baluska et al., 2001) and need to be 
further studied and characterized. 
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8. Supplementary data 

 

 

 

Figure S1. The new improved agar-plate culture system for studying the Zea mays L. root response to different 
nutrient availability. 
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Table S1. List of the genes analyzed by means of Real Time qPCR. Maize GDB and NCBI accessions are reported together with the gene functions and the primer sequences. 

       

 
Maize GDB 
Accession ID 

NCBI 
 

Name 
 

Gene Function 
 

Fw 
 

Rv 
 

       

 GRMZM2G067402 T02 AF236080.1 Hb haemoglobin GGAGCCTCGAGATGAAGAAA ACAATACACGCTCCCTCCAG 

 GRMZM2G168898_T01 NM_001112349.1 Hb2 haemoglobin 2 GGCTGTTGATGCTTCCTAGC ATGACGGGCCTTTTCTGAAT 

 GRMZM2G568636 AF153448.1 NR1 nitrate reductase ATGATCCAGTTCGCCATCTC  GTCCGTGGTACGTCGTAGGT 

 GRMZM2G079381 EU957616.1 NiR ferredoxin--nitrite reductase CTTCATGGGCTGCCTCAC CGCTTGACGAAGGTCCTACT 

 GRMZM2G010280 T01 AY129953.1 nrt2.1 putative high affinity nitrate transporter GAGAAGAGCAAGGGACTCCA CTCATGTCAACGGAGCACAC 

 GRMZM2G426953_T01 DQ855284.1 rbohA respiratory burst oxidase protein A CAGCGCACACAAGAACTCTC CCCCGCATACATCAAAACTT 

 GRMZM2G138152_T03 EU807966.1 rbohB respiratory burst oxidase protein B TTGGGTTACACGTGAGCAAG AATGGAGCAAAGGCAACTGT 

 GRMZM2G043435_T01 DQ897930.1 rbohC respiratory burst oxidase protein C GGCACAGGAACTAAGCAAGC AAACTCATCGCCAAGAAAGC 

 GRMZM2G032852_T03 AY109304.1 CaK Calcium-dependent protein kinase AACCACTTCCCAAGGAGACC CTGTGCGTCAGGAACTTGC 

 GRMZM2G015933_T01 EU954960.1 BRI1 
BRASSINOSTEROID INSENSITIVE 1-associated 
receptor kinase 1 precursor 

TCCTCTCCCTTGTCGTTGTT AGCCTTGATCCAGGACTCTTC 

 GRMZM2G002100_T01 EU965114.1 MAPK6 mitogen-activated protein kinase 6 CACACCCTTACTTGGCATCA ATCACCGGCTGAAATTGAAC 

 GRMZM2G106928_T01 EU959272.1 SOD superoxide dismutase CAGCGCACACAAGAACTCTC CCCCGCATACATCAAAACTT 

 GRMZM2G089850_T01 NM_001156658.1 DOF dof zinc finger protein MNB1A  CTCCTGCTTTGCTCTGCTCT AATGGAGCAAAGGCAACTGT 

 GRMZM2G400470_T03 BT065734.1 MAPKK(1/2) Mitogen-Activated Protein Kinase Kinase (1/2) CAACGAGCTTGTGGAGAACA TCTGACCGTCCTGGTAGTCC 

 GRMZM2G384293_T02 NM_001174573   NOA1 putative nitric oxide synthase ATTCTACCTTCCGTGCGTGA GACAACCCAGTCGCCTATACA 
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Table S2. Merged effects of different chemicals interfering with NO biosynthesis/scavenging and nitrate 
supply/depletion on root and leaf fresh weight. 
 
Treatment Total Root Weight (g) Leaf Weight (g) 

+NO3
-
 0.07    a 0.131  a 

+ NO3
-
 +cPTIO 0.057  bc 0.124  a 

+ NO3
-
 +W 0.049  c 0.127  a 

+ NO3
-
 + L-NAME 0.069  a 0.131  a 

+ NH4
+
 0.057  bc 0.128  a 

- NO3
-
 0.051  bc 0.116  a 

- NO3
-
 +SNP 0.059  b 0.132  a 

 P < 0.01 ns 

 

 
Figure S2. Time course of the expression of genes following short-term nitrate/ammonium treatments in maize 
roots (A) and leaves (B). The expression values were investigated at 30 min, 2 h and 6 h. Data are expressed as 
base-2 logarithm of the ratio between the expression measured for a treatment and that of its own control. The 
same expression analyses were carried out in nutrient solution either supplied or depleted with nitrate or 
ammonium. 
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Figure S3. Confocal detection of DAF-2T in the transition zone of nitrate treated apices. Arrows indicate two 
different types of cells of this root zone: small square shape cells (red arrows) with central nucleus (N) and 
elongated cells (white arrows) with a more developed vacuole (V). Image was obtained by zooming the 40x lens. 
 
 
 

 
 
Figure S4. Root and leaf fresh weight and relative root/shoot ratio in seedlings grown in nutrient solution for five 
days (A, B, C). Total root length (L), total surface area (SA), average diameter (AD), number of root tips and leaf 
fresh weight in seedlings grown five days in agar medium containing or not 1 mM NO3

- (D).
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1. Abstract 

 
Roots are considered to be a vital organ system of plants due to their involvement in 

water and nutrient uptake, anchorage, propagation, storage functions, secondary metabolite 

(including hormones) biosynthesis and accumulation. Crops are strongly dependent on the 

availability of nitrogen in soil and on the efficiency of nitrogen utilization for biomass 

production and yield. However, knowledge about molecular responses to nitrogen 

fluctuations mainly derives from the study of model species. Nitric oxide (NO) has been 

proposed to be implicated in plant adaptation to environment, but its exact role in the 

response of plants to nutritional stress is still under evaluation. Recently a novel role for NO 

production and scavenging, thanks to the coordinate spatio-temporal expression of nitrate 

reductase and non-symbiotic hemoglobins, in the maize root response to nitrate has been 

postulated. This control of NO homeostasis is preferentially accomplished by the cells of the 

root transition zone (TZ), which seem to represent the most nitrate responsive portion of 

maize root. The TZ is already known to function as a sensory centre able to gather 

information from the external environment and to re-elaborate them in an adequate 

response. These results indicate that it could play a central role also for nitrate sensing by 

roots. A lot of work is still needed to identify and characterize other upstream and 

downstream signals involved in the “nitrate-NO” pathway, leading to root architecture 

adjustments and finally to stress adaptation. 

 

Key words: Zea mays L., nitrate, root, transition zone, nitric oxide 

 

Abbreviations: 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide 

(cPTIO); indole-3-acetic acid (IAA); sodium nitroprusside (SNP). 
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2. Introduction 

 

To search for nutrients and water, roots need to efficiently explore large soil 

volumes. To this aim they generate complex root systems, allowing them to maximize their 

resource allocation efficiency.1 

Despite the vital importance of roots, the difficulty in accessing intact root systems 

for analysis, particularly under field conditions, have slowed down the breeding programs 

for plant’s adaptation to environmental restrictions.2,3 The capacity of plants to take up 

nutrients and water is mainly determined by changes in the architecture of the root system.1 

Three major processes affect the overall architecture of the root system: the rate of 

cell division, the rate of cell differentiation, and the extent of expansion and elongation of 

cells.4-6 Disturbs in any of these three processes can affect the whole root-system 

architecture and the capacity of plants to survive and develop in adverse environments 

(Giehl et al. 7 and references therein). 

The root system results from the coordinated control of both genetic endogenous 

programs (regulating growth and organogenesis) and the action of abiotic and biotic 

environmental stimuli.8,9 The dynamic control of the overall root system architecture (RSA) 

throughout time finally determines root plasticity and allows plants to efficiently adapt to 

environmental constraints.10 

The soil-environment from which plants extract nutrients and water is extremely 

heterogeneous, both spatially and temporally.11 Among the nutrients present in soil, nitrate 

(NO3
−) may vary by an order of magnitude within centimetres or over the course of a day.12 

The effects of NO3
− on the root system are complex and depend on several factors, such as 

the concentration available to the plant, endogenous nitrogen status and the sensitivity of 

the species.10,13,14 

A considerable part of the studies aimed to unravel the mechanisms controlling RSA 

growth and development in response to nitrate have been focused on lateral roots (LR), 

8,13,15-20 while the nitrate-regulation of the primary root growth is still unclear. Beside NO3
−, 

auxin has been demonstrated to strongly affect and control the LR development, 21-24 and an 

increasing number of studies suggests an overlap between auxin and NO3
− signalling 

pathways in controlling LR development.25-33 
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3. NO3
− has a doubtful role in regulating the growth of primary roots 

Despite the high amount of reports published on nitrate effects on root elongation, the 

lack of univocal results make it difficult to clearly decipher this response (Table 1). In 

Arabidopsis thaliana, inhibition of primary root growth has been observed when nitrate is 

applied homogeneously at high concentrations (50 mM) for seven days, but not in a range 

between 0.1 and 10 mM.34 On the contrary, in this same species Linkohr et al.35 showed an 

inhibition of primary root elongation with the increase of nitrate concentration already 

beyond 0.01 mM, but in this case seedlings were grown in the nutrient medium either for 17 

or 18 days. This is in contrast with results previously obtained by Zhang and Forde, 36 which 

did not observe changes in primary root length in a range of nitrate concentrations from 

0.01 mM to 100 mM. 

However, if nitrate supply was localized only to the apex, primary root growth of a 

number of Arabidopsis accessions was significantly stimulated, even if to a different extent 

according to the line responsiveness.13 More recently Gifford et al.37 demonstrated a 

stimulatory effect on primary root elongation in Arabidopsis seedlings grown for 12 days on 

a nitrate concentration ranging from 0 to 20 mM. Conversely, a reduction of primary root 

growth has been observed in both Capsicum chinense Jacq.,14 and Medicago truncatula38 in 

response to a prolonged exposure to nitrate. 

In maize (Zea mays L.) a consistent inhibitory effect on primary root length was 

observed by Tian and co-authors after 12 days of growth at a nitrate concentration of 20 

mM.39 Few years later a more detailed study was published by the same authors who 

demonstrated that nitrate concentrations lower than 0.5 mM had no effect on elongation of 

primary, seminal and crown roots, while concentrations above 5 mM affected more 

significantly the root elongation after 12 days of treatment.40 Moreover, by investigating the 

effect of different nitrate concentrations on root cell sizes, they found that high 

concentrations of nitrate had no effect on the length of the meristem, but did result in 

reduced cell elongation in the root elongation zone. Interestingly, the different types of 

roots considered in this study displayed different sensitivities to high nitrate, suggesting a 

specific regulation for each of them.40 

Unlike what is known on the nitrate regulation of lateral root development, the 

mechanisms underlying the nitrate effects on primary root elongation are still controversial 

and poorly known. Future studies are thus needed to try to shed light on this aspect that 



 119 

could highly affects plant adaptation to an external environment characterized by a spatio-

temporal non constant nutrient accessibility 

 

Table 1. Overview of the papers reporting results on primary root (PR) response to nitrate treatments. 
 

Authors Species Treatments Effect on PR length 

Zhang and Forde36 
Arabidopsis 

thaliana 

Seedlings were grown on agar plates containing a range 
of NO3- concentration (0.01-100mM) and the lengths of 
the primary roots were measured after 14d.  
 

No effects 

Signora et al.34 
Arabidopsis 

thaliana 

Seedlings were grown on agar plates containing a range 
of NO3- concentrations (0.1-50mM). The lengths of the 
primary roots were recorded after 7d. 
 

No effects (0.1-10mM) 
Inhibition (>50mM) 

Linkohr et al.35 
Arabidopsis 

thaliana 

Seedlings were grown either for 17 or 18d on agar plates 
containing a range of NO3- concentrations (0.01-1.0mM). 
The lengths of the primary roots were collected after the 
treatments. 
 

Inhibition 

Walch-Liu & Forde13 
Arabidopsis 

thaliana 

Primary root growth was measured 9d after transfer of 5-
d-old seedlings to segmented plates where NO3- (0.05-
5mM) was present only in the bottom segment (localized 
treatments). 
 

Stimulation 

Gifford et al.37 
Arabidopsis 

thaliana 

Seedlings were grown on agar plates containing a range 
of NO3- concentration (0-20mM). The primary root lengths 
were measured after 12d. 
 

Stimulation 

Celis-Arámburo et al.14 
Capsicum 
chinense 

Jacq. 

Seedlings were grown on agar plates with 0.01mM NO3- 
and transferred to segmented. NO3- concentrations in the 
middle segment were adjusted to 0.01-10mM (localized 
treatments). For the homogeneous treatment the 
concentration was 1mM NO3-. The primary root lengths 
were recorded after 10d. 
 

Inhibition 

Yendrek et al.38 
Medicago 
truncatula 

Plants were grown on a N-free medium for 1 week, 
transferred to plates with increasing concentrations of 
NO3- (1-20-50mM) and grown for 3 weeks. The lengths of 
the primary roots were recorded after the treatments. 
 

Inhibition 

Tian et al.39 Zea mays L. 

Plants were grown in nutrient solution containing several 
NO3- concentration (0.05-20mM). The lengths of the 
primary roots were recorded after 12d.  
 

Inhibition (> 5mM) 

Tian et al.40 Zea mays L. 

Seedlings were incubated in the solutions containing 
different concentrations of NO3- (0.05-20mM) and the 
root length was measured after 12d of incubation. 
 

No effects (0- 0.5mM) 
Inhibition (> 5mM) 

Zhao et al.63 Zea mays L. 

Seedlings were grown in varying concentrations of NO3- 
(0.1-10mM) for 7d and then exposed to 0.1 and 1mM 
NO3- for 48h. The root length was measured after the 
incubation. 
 

Inhibition 

Manoli et al.68 Zea mays L. 
Primary root growth of 8-d-old seedlings grown in six 
different solutions (1mM NO3-, - NO3- and NO-
donors/scavengers) were monitored for 24-48h. 

Stimulation 
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4. The root transition zone 

The root apex represents the first part of the plant getting in touch with unknown 

regions of the soil, and it functions as a dynamic sensory organ, able to both perceive the 

external environment and to adequately reorganize the root growth in response to the 

stimuli received.41 

In 1990 Baluška et al.42 invented the term transition zone to describe a unique part of 

the maize root apex, in which cells after leaving the meristem and before entering the 

elongation zone undergo slow isotropic-like growth, but do not still elongate, in fact 

resembling meristematic cells in many aspects. In particular, the apical part (distal) of this 

region seems to be characterized mainly by cells that optionally can reenter the cell cycle, 

whereas cells of the basal (proximal) part of this zone are able to readily enter into the fast 

cell elongation region.41,43,44 This developmental feature could be differentially regulated at 

the opposite root flanks, providing the root apices with an effective mechanism to re-

orientate growth in response to environmental stimuli.43 

The transition zone is a unique zone being competent for integration of diverse 

endogenous and exogenous signals, and translating them into adaptive differential growth 

responses. It plays crucial functions for the perception and response to a range of external 

factors, as for example mechanical stimuli41 and aluminium toxicity.45-48 

This capability seems to be, at least in part, linked to the complex system of a polar 

auxin transport circuit.41 Actually, since 1993 it has been evidenced that cells belonging to 

this zone are strongly auxin-responsive and accomplish dramatic rearrangements of the 

cytoskeleton, being subjected to a series of fundamental changes in their cytoarchitecture.49 

A recent study conducted on maize demonstrated that the transition zone plays 

central roles in both sensing and adapting to root hypoxia.50 The authors also observed that 

the oxygen deprivation of roots induces local NO emission in the TZ, that is essential for the 

successful acclimation of the entire maize root to oxygen deprivation.50 

A number of experimental data globally indicate that the transition zone of the root 

may be considered as a sort of sensory center, enabling the root apex to continuously 

monitor environment parameters and to trigger appropriate responses.50-62 Future studies 

will be needed to deepen the role of this unique root zone in translating the external stimuli 

in motoric responses. 
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5. Nitrate affects root elongation through NO-elicited actions 

Recently nitric oxide (NO) was proposed to be involved in the regulation of the 

nitrate-dependent primary root growth. 63 The authors showed that high nitrate supply may 

reduce IAA levels and subsequently inhibits NO synthase activity, leading to a decrease in the 

endogenous NO level, which serves as a trigger to elicit nitrate-dependent root growth. A 

regulatory role for NO in the inhibition of primary root growth has also been suggested in 

tomato64 and Arabidopsis.65,66 

Furthermore, a recent study carried out in maize provided evidences that NO is 

produced by nitrate reductase (NR) as an early response to nitrate supply and that the 

coordinated induction of non-symbiotic hemoglobins (nsHbs) could finely regulate the NO 

steady state.67,68 Both nitric oxide biosynthesis and gene regulation were preferentially 

accomplished by cells of the transition zone of roots, which would seem the most nitrate 

responsive portion of maize root. 68 NsHbs play important roles in plant physiology by 

regulating a number of downstream physiological events involved in plant developmental 

processes and stress responses, also interacting with many hormonal signalling (for a review 

see refs 69,70). They catalyse the conversion of nitric oxide to nitrate, contributing to the 

control of nitric oxide homeostasis in plant cells. They should be considered to be as 

important as NO generation in regulating in planta NO signalling.70 

Moreover, in this same study,68 a stimulatory effect of a low concentration of nitrate 

(1 mM) on root elongation after one/two days of treatment was measured in very young 

seedlings. Nevertheless, when an inhibitor of nitrate reductase activity (tungstate) or a nitric 

oxide scavenger (cPTIO) were supplied together with the nitrate, no effects on root 

elongation were observed. On the contrary the treatment of nitrate-depleted roots with a 

low concentration (10 µM) of a nitric oxide donor (SNP) stimulated root elongation to an 

extent similar to that measured after nitrate supply. These results strongly suggest that the 

mechanism through which nitrate affects root elongation is dependent on nitric oxide, as 

also observed by Zhao et al.63 even if these authors found some different and in some way 

opposite results. This apparently contradictory finding could derive from the very different 

experimental plan and growth conditions utilized in these two works, making difficult to 

compare results obtained. Furthermore, our unpublished results suggest that nitrate is able 

to affect the root elongation in a contrasting mode according to their concentration, acting 

as a stimulatory signal for concentration equal or below 1 mM, and as a negative regulator 
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at higher concentration, suggesting the existence of a multifaceted concentration/time-

dependent mechanism of regulation of root elongation by nitrate availability. 

NO is considered a key regulator of plant developmental processes and defence (for a 

reviews see refs 70-74), although the mechanism and direct targets of NO action remain 

largely unknown (for a review see ref 75 and references therein). 

In the case of NO-dependent nitrate regulation of root elongation, the downstream 

events triggering the root to elongate have still to be identified. Cytoskeletal proteins seem 

to represent a highly probable molecular target for NO signal76-78 and accumulating 

evidences place NO among the key elements in the control of a number of cytoskeleton-

mediated processes in plants, such as root growth and development,79 guard cell dynamic,80 

vesicle trafficking,76 pollen81 and root hair tip growth82 or gravitropic bending.83 In particular, 

Kasprowicz et al.76 demonstrated that the actin-dependent endocytosis and organization of 

the actin cytoskeleton are modulated by NO levels in maize root apices, according to cell-

type and developmental stage with the most remarkable effects noticed at level of the 

transition zone. Thus, the involvement of cytoskeletal rearrangements in the NO-mediated 

nitrate regulation of primary root elongation is highly conceivable. 

Moreover, since NO and auxin act synergically to control diverse aspects of root 

biology (for a review see Freschi et al.84) and lateral root development in response to nitrate 

is strongly auxin dependent,85 a role of NO as a coordinator of nitrate and auxin signaling to 

control the overall root response to the anion cannot be excluded. The involvement of nitric 

oxide homeostasis control in the root elongation response to nitrate68 adds a novel 

component to the complicated puzzle of the root adaptation to nitrate fluctuations in soil 

(Fig. 1). Furthermore, the prominent role of the maize transition zone in the accomplishment 

of this sensing pathway widens the range of signal/molecules which are sensed and decoded 

by this particular region of root, which seems to transversally operate to translate in motoric 

behaviour a large number of endogenous and exogenous clues. 
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Figure 1. Model of the NO-mediated nitrate regulation of primary root elongation. A) The transfer of seedlings 
from a NO3

--deprived media to a NO3
--supplied solution results in a elongation of the primary root. The stimulatory 

effect of NO3
- (1mM) was demonstrated to be dependent on the control of nitric oxide (NO) homeostasis thank to 

the coordinate regulation of cytosolic nitrate reductase (NR) and non-symbiotic hemoglobins (nsHbs) (B).67,68 The 
preferential localization and the strong transcriptional responsiveness of both NR and nsHbs in the transition zone 
of the apex straightened the hypothesis of a role of this root portion in translating the environmental stimuli in 
developmental response.67,68 Because of the role of NO in several cytoskeleton-mediated processes in plants,76-83 
the actin-dependent endocytosis and the organization of the actin cytoskeleton are proposed as candidates in 
transducing the NO-dependent nitrate regulation of root elongation. 
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Chapter IV - Immunofluorescence labeling of maize root cells reveals effects on 

cell wall deposition and PIN1-mediated auxin accumulation in the transition 

zone in response to nitrate.
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1. Introduction  

In the last few years, the transition zone (TZ) of root is gradually becoming 

established as a central regulator of root growth, since this unique zone, located between 

the apical meristem and the fast elongation zone, is thought to be responsible for integrating 

several endogenous and exogenous signals, translating them into adaptive differential root 

phenotypes (Baluška and Mancuso, 2013). In fact, a number of investigations suggest that 

the transition zone of the growing root apex is some kind of sensory centre, enabling the 

growing apex to continuously monitor diverse environmental parameters and to effect 

appropriate responses (Baluška et al., 2010). For instance, cells of the TZ are very sensitive to 

touch and extracellular calcium, gravity and auxin, water and salt stress, as well as, to 

aluminium (Baluška et al., 2001a and references therein). Moreover, the transition zone is 

also critical with respect to the “steering” of root extension, enabling the advancing root tip 

to “navigate” towards nutritionally rich areas of soil and, otherwise, to avoid unfavourable 

areas (Barlow and Baluška, 2000; Verbelen et al., 2006). The high sensitivity of transition 

zone cells, which are not engaged in mitotic divisions, seems to be related to their specific 

cyto-architecture, in which post-mitotic nuclei occupy a central position within the cell, 

suspended in networks of F-actin and radial arrays of perinuclear microtubules extending to 

the cell periphery (Baluška et al., 2001a). The centred cell bodies (i.e nuclei surrounded by 

microtubules and actin filaments) of TZ in fact, in contrast to the mitotically active cell 

bodies of meristematic root cells, which are continually assembling and disassembling 

mitotic spindles, are not engaged in such activities and thus, are free to pursue new 

activities, such as environmental sensing (Baluška et al., 2000). Conversely, during cell 

elongation, cells become filled with vacuoles and the metabolically less active nuclei become 

appressed against the cell walls, not allowing efficient interactions with environmental 

signals and developmental cues (Baluška et al., 1998; Baluška and Mancuso, 2013), as 

showed in Fig. 1.  
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Figure 1. Schematic views of cellular architecture in 
meristem, transition zone and elongation region. 
Cells in the meristem are characterized with 
centrally positioned nuclei suspended in networks of 
F-actin and radial arrays of perinuclear 
microtubules. In the transition zone, nuclei still keep 
their central position, but fine F-actin networks are 
replaced by bundles of F-actin organized via the 
nuclear surface and the end-poles enriched with 
myosinVIII. In the elongation region, cells start to 
elongate very rapidly and develop their central 
vacuole which is pushing their nuclei toward the 
side walls. F-actin bundles obtain longitudinal and 
wrinkled/loosened appearances, from Baluška and 
Mancuso, 2013. 

In addition to that, also the establishment of cell polarity has unique features in the 

transition zone (Baluška et al., 2001a and references therein). In the transition zone in fact, 

the cells that have ceased mitotic division continue to expand laterally and longitudinally. 

This post-mitotic cell growth terminates with the onset of rapid cell elongation; after passing 

this developmental stage, the cellular root-growth machinery is focused exclusively on rapid 

and polarized cell elongation. In this context, the switch-point in cell growth polarity and 

accelerated root elongation are two key events succeed within the transition zone, driven by 

unique configuration of cortical microtubules and actin filaments in this root zone (Baluška 

et al., 2003). The establishment of cell polarity is an essential feature not only for plant cells 

but also for almost all prokaryotic and eukaryotic cells (Huang and Ingber, 1999). In regard to 
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plants, organ polarity is closely related to the properties of cell walls (Fowler and Quatrano, 

1998; Wojtaszek, 2000). The mechanical robustness of the plant cell walls constrains 

expansion of the cytoplasm and thus, cell walls not only set, but also maintain, the growth 

polarity of plant cells (Baluška et al., 2001a). Interestingly in this scenario, cell wall acidic 

pectins undergo internalization in meristem and transition zone cells of maize root apices, 

suggesting that internalization of cell wall pectins could play a key role in the dynamic 

turnover of pectins in dividing and fast elongating cells (Baluška et al., 2002).  Moreover, 

data obtained both in maize and Arabidopsis also showed in root transition zone cells the 

highest activities of xyloglucan endotransglycosylase (XET) (Pritchard et al., 1993 and 

Vissenberg et al., 2000, respectively). This enzyme cleaves xyloglucan chains and seems to 

play a predominant role in cell wall expansion. Similarly to pectins, also XETs could be 

involved in cell wall loosening during cell expansion (Vissenberg et al., 2000).  

In contrast with most of eukaryotic cells, in plants polarity results from the 

establishment of non-growing domains, which are actively maintained at opposite end-poles 

(known also as cross-walls or transverse walls) of the cell (Baluška et al., 2003). In fact, 

whereas the cells in the meristem grow diffusely around the whole of their perimeter, the 

end-poles portions of their perimeter progressively cease to expand in the basal part of the 

transition zone to cease definitely to expand at all in the elongation zone (Baluška et al., 

2001a). Interestingly, the available data indicate that these non-growing end-pole domains 

of plant cells are sites of intense endocytosis and recycling (Baluška et al., 2010). In this 

scenario, it is not surprising that the cells of the transition zone have the highest rate of 

vesicle recycling activity and of auxin transport activity (Schlicht et al., 2006; Baluška et al., 

2010). A number of papers reported the localization of the auxin efflux transporter PIN1 and 

auxin influx transporter AUX1 at the plasma membrane of root apical and basal end-poles, 

respectively (for PIN1 see Steinmann et al., 1999; Geldner et al., 2001, 2003; Grebe et al., 

2002; for AUX1 see Swarup et al., 2001). In addition to that, cells of the root transition zone 

are unique also because they assemble F-actin enriched plasma membrane domains at these 

end-poles (Schlicht et al., 2006). This in turn serve as dynamic platforms for rapid 

endocytosis and high rate of vesicle recycling, allowing this root zone to be more sensitive 

not only to internal developmental cues, but, importantly, to environmental inputs, 

including nutrient availability in the soil. Very interestingly, cell wall pectins and xyloglucans 
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of maize root cells seem to use the same endocytosis-based recycling pathway during their 

cell wall remodelling (Baluška et al., 2005). 

Consequently, in order to shed light on these key biological aspects and on the role of 

the transition zone in maize response to nitrate, here we reported a series of confocal laser 

scanning microscope analysis by using immunofluorescence microscopy. In this regard, 

embedding techniques using Steedman’s wax permit to monitor diverse antigens both in 

cytoplasm and within cell walls of maize root apices. Combined with the currently available 

antibodies we first tested antibodies against the cell wall constituent xyloglucans. Moreover, 

monoclonal antibodies against IAA as well as against the efflux IAA carrier PIN1 were used in 

our investigation. In addition, as vesicle trafficking inhibitor, the fungal metabolite Brefeldin 

A (BFA) was used. Our preliminary data suggest that nitrate has an important role in 

modifying cell wall recycling in the transition zone. Also PIN1-mediated auxin accumulation 

seems to be interfered in response to nitrate.  

 

2. Materials and methods 

 

2.1 Plant material, chemicals and experimental layout 

Maize grains (Zea mays L., inbred line B73) were soaked for 6 hour and germinated in 

well moistened rolls of filter paper for three days in darkness at 25°C, and then transferred 

to different nutrient solution, according to the plot reported in Fig. 1. Young seedlings with 

straight primary roots, 50–70 mm long, were selected for inhibitor treatments and 

subsequent immunolabeling studies. Unless stated otherwise, all chemicals were obtained 

from Sigma Chemicals (St. Louis, Mo, U.S.A.). For Brefeldin A (BFA) treatment, we used a 

diluted in in phosphate-buffered saline (PBS) solution to achieve an effective working 

solution of 1mM immediately before submergence of root apices for 2 h. 

 

2.2 Indirect immunofluorescence labeling 

Apical root segments (7 mm) encompassing the major growth zones were excised 

into 3.7% formaldehyde prepared in stabilizing buffer (SB) (50 mM piperazine-N,N’-bis(2-

ethanesulfonic acid), 5 mM MgSO4, 5mM EGTA, pH 6.9) and fixed for 1 h at room 

temperature. Following rinsing in SB, the root apices were dehydrated in a graded ethanol 

series diluted with PBS. They were then embedded in Steedman’s wax and processed for 
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immunofluorescence (for details, see Baluška et al., 1992). To enable efficient penetration of 

antibodies, sections were dewaxed in absolute ethanol, passed through a graded ethanol 

series diluted with PBS, and then placed in SB for 30 min. After a 10 min rinse with absolute 

methanol at -20°C, the sections were transferred to SB containing 1% BSA for 30 min at 

room temperature.    

Sections were then incubated with the following primary antibodies: anti-XG 

antibodies diluted 1:200, anti-IAA monoclonal antibodies diluted 1:20 and anti-PIN1 

polyclonal antibodies diluted 1:40. All primary antibodies were diluted in PBS. The buffers 

were supplemented with 1% BSA. Sections were incubated in primary antibody for 1 h at RT. 

After rinsing in PBS, the sections were incubated for 1 h with anti-rabbit IgGs, each raised in 

goat and diluted 1 : 100 in appropriate buffer containing 1% BSA. A further rinse in PBS (10 

min) preceded a 10 min treatment with 0.01% Toluidine Blue to diminish autofluorescence 

of the root tissues. The sections were then mounted using an anti-fade mounting medium 

containing p-phenylenediamine (Baluška et al., 1992). Sections were examined with an 

Axiovert 405M inverted microscope (Zeiss, Oberkochen, Germany) equipped with 

epifluorescence and standard fluorescein isothiocyanate excitation and barrier filters. 

 

 

Figure 2. Workflow model of the experimental conditions. Seeds were sowed on filter paper, and 3 days after 
germination seedlings were transferred for 1 h to a nitrate-depleted hydroponic nutrient solution (for details see 
Trevisan et al., 2011). Then, the seedlings were divided into two groups and transferred for 2 h to two different 
solutions (with or without nitrate). Finally, some seedlings from both the nitrate-supplied group and the nitrate-
depleted one were treated with BFA for 2 h. 

 

2.3 Measurements and statistical analysis 

For measurements and statistical analysis images were analysed with ImageJ 

software. For statistical analysis, measurements for each experimental variant were 

performed in duplicate on 50 randomly selected cortex cells from the root transition zone. 
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The areas of cells and BFA compartments were free-hand traced and measured, and number 

of compartments per cell was counted. All vesicular structures visible after labelling with 

anti-XG antibodies under fluorescence microscope were considered as BFA compartments. 

Finally, for each cell, the percentage of cell area covered by BFA compartments was 

estimated. The statistical analyses were performed by using R version 2.14.2. Due to non-

normality within treatments and to variance inequality among treatments, data were 

analysed by the non-parametric Kruskal–Wallis test. All data given are means ± SE.  

 

3. Results 

3.1 Xyloglucans immunolocalization  

Previous works have shown as xyloglucan endotransglycosylase, a key enzyme in 

cleaving XGs chains, had the most prominent activity in the transition zone in both maize 

and Arabidopsis (Pritchard et al., 1993 and Vissenberg et al., 2000, respectively). Beside this, 

root transition zone also shows the highest rate of vesicle recycling activity in removing XGs 

from cell walls into BFA-compartments, as demonstrated by Baluška et al. (2005). 

Xyloglucans visualized by labelling with antibodies were abundant, especially at the cross 

wall (end-poles) of xylem elements and of cells.   
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Figure 3. Immunolocalization of xyloglucans in cells of root transizione zone. A Xyloglucans are very abundant at 
the cross wall of xylem elements and of cells in the middle and outer cortex of maize root transition. B Nitrate 
treatment results in very abundant accumulation of XGs, especially in cross walls, in comparison with the 
negative control (C). D-H In BFA-treated cells, almost all XGs internalize into BFA compartments. D-E Roots 
grown in a nitrate-resupply or (F-H) nitrate-depleted solution. Bar in C: for A, 40 µm; for B, C and G, 25 µm; for D 
and F, 30 µm; for E, 20 µm; for H, 8 µm.  
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Figure 4. The presence of nitrate affects vesicle 
formation and trafficking in cortex cells in the 
transition zone of maize root apices. The treatment 
of root apices was identical to that described in Fig. 
1. A The number of BFA compartments and veiscle 
per cell. B Total size of BFA compartments and 
vesicles expressed as a percentage of the cell area. 
For statistical analysis, measurements for each 
experimental variant were performed in duplicate on 
50 randomly selected cortex cells from the root 
transition zone. The areas of cells and BFA 
compartments were free-hand traced and 
measured, and number of compartments per cell 
was counted. All vesicular structures visible after 
labelling with anti-XG antibodies under fluorescence 
microscope were considered as BFA 
compartments. Finally, for each cell, the percentage 
of cell area covered by BFA compartments was 
estimated. The statistical analyses were performed 
by using R version 2.14.2. Due to non-normality 
within treatments and to variance inequality among 
treatments, data were analysed by the non-
parametric Kruskal–Wallis test. All data given are 
means ± SE. 

 

3.2 Auxin and PIN1 immunolocalization  

Similarly to previous XG immunolabeling observations, we focused our attention in 

analysing auxin and PIN1 proteins on root transition zone cells, according to several papers 

that reported the highest degree of auxin transport and PIN1 activity in the transition zone 

(Schlicht et al., 2006, Baluška et al., 2010, Baluška and Mancuso, 2013). As far as auxin 

immunolabeling is concerned, the localization of IAA in -N maize roots showed that a 

prominent IAA signal was visible at the cytoplasm while weaker signal was also localized 

within nuclei (Fig. 4A). Exposure of root apices to nitrate resulted in a slightly increased 

signal within nuclei on one hand, and in a strong immunofluorescence at the cross walls 

(end-poles), on the other hand, as showed in Fig. 4B. Regarding PIN1 immunolocalization, a 

prominent PIN1 signals was scored within nuclei in -N maize root TZ cells (Fig. 4C). In the 

nitrate treated roots, auxin and PIN1 seem to co-localize, since PIN1 labeling within nuclei 

slightly vanished while almost all end-poles were strongly enriched with PIN1. Finally, to test 

the polar auxin transport (PAT) via vesicle recycling of PIN1 proteins, according to the 

endosomal model of PAT proposed by Schlicht et al. (2006), we also performed maize PIN1 
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antibody in root samples treated with BFA. In this regard, BFA-treatments unfortunately 

failed in inducing BFA compartments and for this reason no images are shown.   

  

 

Figure 5. Immunolocalization of auxin (A-B) and PIN1 (C-D) in cells of root transition zone. A The localization of 
IAA in -N maize roots showed that a prominent IAA signal was visible at the cytoplasm while weaker signal was 
also localized within nuclei. B Exposure of root apices to nitrate resulted in a slightly increased signal within nuclei 
and in a strong immunofluorescence at the cross walls (end-poles). C A prominent PIN1 signals was scored 
within nuclei in -N maize roots. D In the nitrate treated roots, PIN1 labeling within nuclei slightly vanished while 
almost all end-poles were strongly enriched with PIN1. Bar in C: for C 13 µm; for A,D 16 µm; for B 24 µm. 
 

4. Discussion   

 

Root apex of higher plants shows very high sensibility to a number of environmental 

stimuli; however, the motoric responses to these stimuli do not succeed in the root apex but 

in the adjacent elongation zone (Baluška et al., 2010). This spatial discrepancy was explained 

after the discovery and characterization of the transition zone, which has unique role as the 

determiner of cell fate and root growth due to a very high degree of activity in cytoskeletal 

rearrangements, endocytosis and endocytic vesicle recycling, as well as, high rates of auxin 

fluxes (Baluška et al., 2010). In this scenario, the root transition zone perceives and 

integrates diverse external and internal inputs to translate them into motoric outputs in the 

elongation zone. Regarding environmental stimuli, the competence of roots to efficiently 

respond to different nutrient availability and to develop suitable root phenotypes is vital to 

allow effective soil exploitation in searching for nutrients. Here, in order to shed light on 
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some aspects relating to maize responses to nitrate, a series of confocal laser scanning 

microscope analyses by using immunofluorescence microscopy were carried out in the 

maize root transition zone. According to some authors (Pritchard et al., 1993 and Vissenberg 

et al., 2000) xyloglucan endotransglycosylase (XET), a key enzyme in XGs cleaving that plays 

an important role in cell wall expansion, show its highest activity in cells of root transition 

zone of both maize and Arabidospis. We used specific antibodies against XGs and Brefeldin A 

(BFA) drug to study nitrate responses in maize transition zone. 

Xyloglucans are hemicellulosic polysaccharides, found in dicots and monocots, they 

locate in primary cell walls and firmly associate with cellulose microfibrils through hydrogen 

bonds to maintain the cell wall architecture (Fry, 1989a; Hayashi, 1989; Sonobe et al., 2000). 

In addition to such structural role, physiological and molecular studies suggested that cell 

wall XGs should have certain regulatory functions in elongation of the cell walls (Baluška et 

al., 2005). In contrast to cellulose, which is synthesized on the plasma membrane, XGs are 

synthesized in the Golgi apparatus (Moore and Staehelin, 1988) and they can be actively 

internalized in root apex cells since, after BFA treatment, almost all XGs were removed from 

cell walls into BFA-compartments, revealing a high rate of XGs recycling in the root apex cells 

(Baluška et al., 2005). Additionally to that, xyloglucans accumulated abundantly in the early 

cell plates of cytokinetic maize root cells (Sonobe et al., 2000). As suggested by these 

authors, one possible role of internalized cell wall XGs is to serve as a ready source of 

material for the rapid cell plate formation that occurs during plant cytokinesis. Beside plant 

cytokinesis, Baluška et al. (2005) suggested that these internalized cell wall XGs could be also 

considered as storage compartments temporarily placed within the cytoplasm, allowing 

rapid recruitment of ready-to-use cell wall material in situations where rapid secretion is 

needed, such as root cell elongation that occurs after ceasing mitotic division. In this 

scenario, looking for a connection between xyloglucans and nitrate is exceedingly promising, 

considering that the molecular and physiological effects of nitrate in modifying root system 

architecture are well known in many plant species, including the model plant Arabidopsis 

(Walch-Liu P and Forde, 2008; Gifford et al., 2013) and maize (Tian et al., 2005, 2008 and 

references therein).  

Interestingly in this work, xyloglucans visualized by labelling with antibodies were 

very abundant, especially in maize roots cross walls (end-poles) of xylem elements and of 

cells in the middle and outer cortex of maize root transition zone cells (Fig. 2A). 
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Immunofluorescence signal in fact, was generally stronger in the sample subjected to nitrate 

treatment (Fig. 2B), when compared to the negative control (Fig. 2C), suggesting a higher 

rate of XGs synthesis in response to the anion in maize root transition zone. After BFA 

treatment, cross walls of root transition zone cells showed very weak signal in the -N 

samples (Fig. 2F-H), since almost all XGs were removed from cell walls into BFA-

compartments, according to BFA action (reviewed by Nebenführ et al., 2002; Geldner et al., 

2003; Šamaj et al., 2004), which prevents vesicle formation in the exocytosis pathway while 

allowing endocytosis, thus resulting in the cytoplasmic accumulation of all recycling 

molecules. Intriguingly, BFA treatment partially failed in removing all XGs from cell walls in 

+N samples, since a marked immunofluorescence was still visible at cross walls (Fig. 2D-E), 

despite the strong effect of the drug that resulted in the abundance of BFA-compartments 

also within these cells (Fig. 3A). Taken together, these data open a fascinating scenario in 

which nitrate might act in promoting rapid cell elongation of root apex by regulating, in a 

mechanism as yet unknown, the synthesis or the turn-over (or both) of xyloglucans within 

root transition cells, and some evidences support this hypothesis.  

For instance, immunolocalization of xyloglucan endotransglycosylase (XET) activity 

showed most prominent fluorescence in the transition zone in both maize and Arabidopis 

roots (Pritchard et al., 1993 and Vissenberg et al., 2000, respectively). Xyloglucan 

endotransglycosylases enzyme, as mentioned before, cleaves a xyloglucan chain (the donor 

substrate) endolytically and forms a covalent polysaccharide–enzyme complex (Sulová et al., 

1998). Although the cell wall contains numerous enzymes that can modify polysaccharides, 

XET seem well suited to play a predominant role in cell expansion (Fry, 1995). For plant cells 

to expand in fact, cellulose micro-fibrils in parallel alignment need to move apart or past one 

another, and this movement may create the possibility for newly synthesized XG molecules 

to become hydrogen-bonded (Fry, 1989b). In this scenario, because XG tethers are thought 

to be the principal tension-bearing molecules in the cell wall, breaking of the tethers has 

been proposed as a mechanism for achieving reversible cell wall loosening in elongating cells 

without compromising strength (Fry, 1989b; Hayashi, 1989). Besides the proposed role of 

XETs in cell wall loosening, these enzymes may also favour integration of newly synthesized 

XGs into the cell wall, another necessary element for continued cell expansion.  (Xu et al., 

1996; Nishitani, 1997). In addition to that, Baluška and colleagues’ data (2005) showed that 

cell wall pectins and xyloglucans internalize in endosome in meristem and transition zone 
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cells of maize root apex. According to these authors, internalize cell wall macromolecules 

such as xyloglucans can be related to tight control of the mechanical properties of cell walls 

in the transition zone. In order to maintain a loosened wall structure to enable extensive 

elongation after ceasing mitotic divisions, it is necessary to actively maintain low levels of 

pectins and XGs within cell walls. Endocytosis of pectin-xyloglucan complexes and 

subsequent recycling would fulfill this requirement without loss of molecules and expending 

energy. In this context, endocytic vesicles filled with ready-to-use cell wall macromolecules 

would be ideally suited to provide “building blocks” for rapid formation of cell walls in cells 

that have ceased mitotic division and start to elongate.  

As far as the role of phytohormone auxin in regulating root system architecture in 

response to nitrate is concerned, a number of papers have reported a strictly regulatory 

connection in both the control of lateral root development and primary root growth, as 

summarized in the Chapter I of this work. Auxin acts as a pivotal regulator of many cellular 

responses crucial for plant development, including playing a key role in establishing and 

elaborating patterns in root meristems (Jiang and Feldman, 2003).  Auxin is synthesized 

predominantly, even though not exclusively, in the aerial parts of plants and is redistributed 

within the plant body through a complex long- distance IAA transport network, mediated by 

IAA influx and efflux carriers (Friml, 2003; Blakeslee et al., 2005). These processes are 

essential for root cell division and elongation and, thus, for regulating root growth (Casimiro 

et al., 2001; Blilou et al., 2005). In this context, investigations on the root transition zone are 

very promising, considering that both in the model specie A. thaliana and maize transition 

zone cells show IAA fluxes significantly higher than those measured in the meristem and the 

elongation zone (Mancuso et al., 2005, 2007). In fact, F-actin networks at the end-poles are 

very abundant especially in cells of the transition zone (Baluška et 

al., 2009) and their abundance correlates closely with the amounts of auxin transported 

across these cell–cell adhesion domains (Schlicht et al., 2006). Importantly, F-actin is not 

essential for cell expansion in the transition zone (Baluška et al., 2001b), but it is critical for 

both endocytosis and endocytic vesicle recycling, which is inherent part of polar auxin 

transport (Baluška et al., 2008). Further studies in fact (Šamaj et al., 2004; Schlicht et al., 

2006), also indicate that PIN1 proteins support IAA flux via vesicular secretion of IAA 

together with its transporter, since the hormone is “trapped” within the recycling vesicles 

together with recycling PIN1 proteins, according to the endosomal polar auxin transport 
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proposed by Schlicht and colleagues (Fig. 6). In this scenario, looking for a link between auxin 

and nitrate within the root transition zone is extremely crucial, considering the master role 

of the transition zone as determiner of cell fate and root growth on one hand, and the 

multifunctional signaling properties of IAA on the other hand. However, it remains unclear in 

some respects, how IAA levels in root transition zone are modulated by nitrate supply.  

 

 

Figure 6. Schematical representation of the 
endosomal models for the polar auxin transport 
(PAT), modified from Schlicht et al., 2006. 
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In the present study, antibodies against IAA as well as against the efflux IAA carrier 

PIN1 were used in order to better understand these connections. As far as auxin 

immunolabeling is concerned, the most interesting result was obtained by observing IAA 

immunolocalization in response to nitrate treatments (Fig. 4B). In these root sections in fact, 

IAA signal was strongly localized at the cross wall (end-poles) of transition zone cells. In 

contrast, no cross wall labelling was detected in roots not treated with nitrate (Fig. 4A), thus 

suggesting that IAA end-poles labelling was probably due to increased IAA fluxes triggered 

specifically by nitrate. In support of this hypothesis we also observed that IAA and its 

transporter PIN1 protein colocalize in NO3
--treated roots (see Fig. 4B and 4D, respectively) at 

the cross walls (end-poles), thus providing further, although preliminary, evidences that 

nitrate in the maize root transition zone is able to increase IAA-fluxes, in a mechanism as yet 

unknown that involved also PIN1 proteins. As mentioned before, auxin is asymmetrically 

distributed in the root tip, with the transition zone showing the most active zone with 

respect to auxin flux (Baluška et al., 2010). Moreover, it has been reported that a decrease in 

auxin concentration in roots alters cell growth and reduces root elongation (Jiang and 

Feldman, 2003). Taken together, the stimulatory effect of nitrate on primary root growth in 

maize (as reviewed in this work, see Chapter I, par. 2.4, and also confirmed by our data, see 

Chapter II, par. 4.2) might be explained by increasing auxin levels in the transition zone. 

Consistent with this hypothesis, Tian and colleagues (2008) found that primary root length 

showed a positive correlation with IAA content in roots in maize. These data are crucial 

because showed that nitrate resulted in modifying root cells elongation without affecting 

cell division. Very interestingly, xyloglucans turnover is correlated with auxin-induced 

elongation and the gene expression of XETs and XET-related (XTP) proteins are also 

regulated by auxin (Vissenberg et al., 2000 and references therein). 

In conclusion, in this work we showed that cross walls (end-poles) of maize root 

transition zone were particularly active in response to nitrate both in the accumulation and 

turn-over of cell wall materials (i.e. xyloglucans) and in modifying auxin fluxes via PIN1-

mediated IAA transport. These preliminary results collectively point to the hypothesis that 

nitrate-induced primary root elongation might involve either the synthesis or recycling of 

XGs (as BFA-treatments have revealed) or both, in order to provide “building blocks” for 

rapid cell wall formation required by cells to initiate elongation. In addition to that, nitrate 

seems to trigger increased auxin fluxes PIN1-mediated in the transition zone. However, to 
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better understand this latter data, IAA and PIN1 immunolabeling experiments in BFA-treated 

roots are needed, in order to clarify some aspects of PAT in response to nitrate. In this 

regard, our findings are very promising considering that at the end-poles of maize transition 

zone cells internalized cell wall materials, such as pectins and xyloglucans, accumulate within 

the same BFA-compartments as the auxin efflux carrier PIN1 (Baluška et al., 2005; Schlicht et 

al., 2006). Thus, future studies should focus on both endosomes and vesicular recycling in 

order to unravel further critical details of the polar auxin transport in response to nitrate in 

the root transition zone.  
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Nitrate (NO3
−) is not only a major nutrient for plants but also acts as a signal, 

regulating gene expression and several physiological and developmental processes. Crops 

are strongly dependent on the availability of NO3
− in soil and on the efficiency of nitrogen 

utilization for biomass production and yield. Roots are able to sense NO3
− in their 

environment, allowing them to quickly respond to the dramatic fluctuations of its 

availability. However, knowledge about molecular responses to NO3
− fluctuations mainly 

derives from the study of model species. Nitric oxide (NO) has been recently proposed to be 

implicated in plant adaptation to environment, but its exact role in the response of plants to 

nutritional stress is still under evaluation, as reviewed in detail in Chapter I. 

Here we suggest a novel role for NO production and scavenging, thanks to the 

coordinate spatio-temporal expression of nitrate reductase and non-symbiotic hemoglobins, 

in the maize root response to nitrate. This control of NO homeostasis is preferentially 

accomplished by the cells of the root transition zone, which seems to represent the most 

nitrate responsive portion of maize root. This new signaling route seems to be an interesting 

case study to illustrate the master role of the root transition zone in integrating diverse 

inputs from exogenous and endogenous stimuli and translates them into signalling and 

motoric outputs as adaptive differential growth responses. Thus, we proposed here a model 

for the NO-mediated nitrate regulation of primary root elongation in maize, as shown in Fig. 

1. 

During my first part of this Ph.D. project, we demonstrated that the maize root 

response to NO3
− depends, at least in part, on the control of NO homeostasis, thank to the 

coordinate regulation of cytosolic nitrate reductase (NR) and non-symbiotic hemoglobins 

(nsHbs), as discussed in Chapter II. In fact, besides being the first enzyme of nitrate 

assimilation, reducing NO3
− to nitrite (NO2

−), NR represents also one of the most important 

sources of NO in plants (Yu et al., 2014). Nitrate reductase seems to be switched to the latter 

reaction when high NO2
− levels are produced (Gupta et al., 2011; Mur et al., 2013), for 

example, when the external nitrate rapidly increases after a nitrate starvation, thus 

promoting the biosynthesis of NO in response to NO3
−. Due to its toxicity, NO is rapidly 

inactivated by nsHbs, a class of proteins that is well known to control developmental and 

physiological reactions by modulating cellular NO levels (Hill, 2012). They should be 

considered to be as important as NO generating enzymes in controlling in planta NO 

signalling (Mur et al., 2013). In this scenario, NO3
− would seem to act as a signal to induce its 
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own sensing via the NR/nsHb-dependent NO fine-tuning, likely regulating down-stream root 

architecture adjustments (see also Chapter II, Fig. 8).  

The preferential localization and the strong transcriptional responsiveness of both NR 

and nsHbs in the root transition zone, straightened the already hypothesized role of cells of 

TZ in perceiving and translating the environmental stimuli, as widely discussed in Chapter III. 

A  number of experimental proofs suggest that the transition zone should be considered as a 

sort of sensory and information processing centre, enabling the growing root apex to 

monitor environmental parameters continuously and to trigger appropriate responses 

(Baluška et al., 2010; Baluška and Mancuso, 2013). Based on our finding, we suggest that 

nitrate could activate its own sensing by stimulating NO production by the transition zone 

cells, thus initiating a signalling pathway contributing to the physiological adaptation (e.g. 

root growth) to nitrate fluctuations. 

In the case of NO-dependent nitrate regulation of root elongation, the downstream 

events triggering the root to elongate have still to be identified. However, cytoskeletal 

proteins seem to represent a highly probable molecular target for NO signal and increasing 

evidences place NO among the key elements in the control of several cytoskeleton-mediated 

processes in plants (Kasprowicz et al., 2009; Wang et al., 2009; Yao et al., 2012). Preliminary 

data showed in the last part of this work (discussed in Chapter IV) and obtained by means of 

immunofluorescence microscopy, point out the hypothesis that nitrate might regulate root 

elongation, by modulating cytoskeleton-mediated cell wall deposition and recycling in the 

transition zone. Additionally, also PIN1-mediated auxin accumulation seems to be affected in 

response to nitrate. Since it has been proposed that in the transition zone cells auxin is 

transported via endocytosis of IAA molecules embedded within cell wall material like pectins 

and xyloglucans (Baluška et al., 2005; Schlicht et al., 2006), the actin-dependent endocytosis 

and the organization of the actin cytoskeleton are proposed as candidates in transducing the 

nitrate regulation of root elongation in the transition zone. This hypothesis is also 

corroborated by the observation made in BFA treated roots, which showed that nitrate 

strongly affects the rate of xyloglucans removal into BFA-compartments, stimulating a higher 

recycling rate in comparison to the NO3
−-depleted roots. A schematic representations of all 

our finding is reported in Fig. 1. 

However, a number of open questions still remain to be answered and additional 

microscopy experiments must be carried on to better understand the exact involvement of 
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auxin transport and PIN functions in this signalling pathway. In this regard, crucial 

confirmations could come by using NO donors/scavengers and IAA donors / inhibitors in 

both NO3
−-treated/untreated root apices in presence of BFA, thus allowing us to better 

decipher the link existing between NO3
−, NO, auxin and cytoskeleton modifications. 

Furthermore, recently an untargeted approach based on both transcriptomic and proteomic 

analyses (data not shown) has been pursued to better characterize the overall response of 

the maize root transition zone to nitrate, thus enabling us to broaden the number of 

components involved in this scenario. The output of emerging data offers a rough snapshot 

of the molecular events occurring in cells of TZ after few hours of nitrate provision, thus 

providing an informative template on which seek for other novel components of nitrate 

sensing and signalling by roots.  

 

 

 
Figure 1. Schematic representation of NO-mediated nitrate regulation of maize root architecture. 
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