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Exact Multivariate Permutation Tests for Fixed Effects in
Mixed-Models

Dario Basso, Livio Finos

Department of Statistical Sciences
University of Padua
Italy

Abstract: A test for the fixed effect in mixed-models is proposed. It is based on permu-
tation strategy and is exact. The testing approach presented is very general and the class
of model covered is very broad.

Multivariate responses with different type of variables (e.g. continuous, categorical and

ranks) are usually tested with separated models and the overall test are usually reached

trough Bonferroni-like combinations, i.e. without taking in account the joint distribution of

the tests statistics. On the contrary in this approach the joint distribution is immediately

obtained and the dependence among tests is taken in account in the overall test.

Keywords: Mixed Model, Permutation Tests

1 Introduction

Mixed models are an extension of regression models that allow for the incorporation
of random effects. The random effects are usually adopted when the available obser-
vations are taken from a random sample of a population, and allow for peculiarities
within subjects.

To describe the kind of test considered in this work we use (part of the data) col-
lected by [4] in an experiment of Visual Search for Faces among Objects in Complex
Visual Displays. Here twelve adults were recorded under two possible viewing con-
ditions (one face among four/six objects). Each subject was subjected to thirty-two
randomly selected images, half for each viewing condition. Two response variable
were considered among many others: first fixation (Primafix) a dichotomous variable
that records whether the face is fixed at first sight or not, and the proportion of face
fixation among total fixation time (Prop), i.e. the proportion of the total trial-time
spent looking at the face. The aim of the study was to compare the performances
of the subjects under the two experimental conditions.

This paper investigates the problem of testing the within subject fixed effects in
a multivariate mixed model. To illustrate the method we have chosen the example
above because the within subject two-levels factor is a very simple model, but in
general any number and kind of predictors can be used to model the multivariate
response. By ‘within’ we mean the effect of an explicative variable inside one sample,
whereas we refer to the multi-sample comparison as the ‘between’ effect.
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We focuse on the within effects although a preliminar proposal to test fot the
between group effects has been recently introduced in [2] and [3], but this testing
strategy is not a goal of this paper.

This is an example of stratified bivariate problem with a continuous (Prop)
and a dichotomous (Primafix) variable. Despite the multivariate problem, in the
parametric mixed-model framework it is usually assumed that the total variance of
the response is given by the sum of the variance of the random effect and that of
the error term, which is usually assumed to be common, i.e. the error components
are assumed to be i.i.d. random variables. Even with this strong assumption, if
one considers a location parameter estimator such as the subject mean under each
experimental condition, its variability depends on the number of trials, so in our
example heteroscedasticity would arise again a continuous variable, such as Prop.
Moreover, if we focus on the dichotomous variable, then the variance of the subject’s
means is itself a function of an unknown parameter (the true proportion of time the
subject looks at the face), even if the experiment is balanced, i.e. when all the
subject have the same amount of trials.

The widely most used approach in most applied filed is to separately model and
test the two responses in an univariate way, later summarizing the two inferences
in a global p-value. The univariate models used are usually parametric and MLE
approach is used to make inference on the parameter estimates. For linear mixed
models the Wald-type test on a single effect rely on a t-student distribution with
unknown degrees of freedom. Therefore, even in relatively simple models, inference
is available only asymptotically. Also in the more general context of generalized
mixed models the inference are limited to an approximate level. When parameter
estimation is performed through Full (i.e. not Restricted) Maximum Likelihood
approach, LRT approach is available. Even in this case the test controls the type I
error only asymptotically and the inference is limited to the two-sided alternative.
As an alternative, a p-value can be obtained trough MCMC methods [Mixed-effects
modeling with crossed random effects for subjects and items [1]. In this case the
prior (multivariate) distribution for all error terms are assumed to be well known
and the computational (i.e. time) costs are elevate.

The multivariate inference, that usually combines the p-values of the univariate
models in a overall test, shows some weakness as well. The univariate tests cannot
be assumed to be independent and the strategy usually available is the Bonferroni
correction which is known to be very consevative when the correlation among p-
values is strong. An adequate multivariate extention seems to be not finalixed yet
for neither the MLE methods nor for the MCMC approach.

A relevant results aimed to overcome part of these weakness is due to [6]. Here we
restate the approach in a fully nonparametric way providing an exact multivariate
test that is suitable for more general models, that allows for directional alternatives
and efficiently combines univariate p-values for a multivariate inference. This is
the aim of this paper, which is organized as follows: in Section 2 we introduce the
model assumptions and discuss some examples; Sections 3 deals with the proposal,
its theoretical justification and some possible extensions. Section 4 is devoted to a
practical application and Section 5 to the discussion.
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2 The model

In order to illustrate the model, recall that in the example above we have a multi-
variate response measured repeatedly on a set of N subjects (clusters) under two dif-
ferent conditions (treatments/predictors). The aim of the study is to assess whether
the treatment has a significant effect on the response. For the moment, let’s also
reduce the description to an univariate response, we will discuss its extension to a
multiavariate framework at the end of the section.

We assume yi to be a ni × 1 vector of measurements such that:

yi|(µi,Ri) ∼ φ(µi,Ri) i = 1, . . . , N ; (1)

where ni is the number of observations (trials) on subject i, φ(·) is a density/proba-
bility function,

µi = h(Xi,βi) (2)

and Ri is the variance/covariance matrix of each subject’s observations, with βi

being a p× 1 vector of coefficients and Xi a ni × p matrix of (fixed) predictors. For
instance, in the univariate usual mixed linear model, if normality assumptions hold
(hence φ(·) is the multivariate normal density), yi = µi + εi, where εi ∼ N(0,Ri),
with Ri = σ2i Ini , and µi = Xi(β + ui), where β is a vector of fixed terms, ui ∼
N(0,Σ2

u) and COV (εi,ui) = 0. Here ui is a p × 1 vector of random effects with
variance/covariance matrix Σ2

u that is common for all the subjects and it is assumed
to be independent of εi. We can write the whole model as:

yi = Xi(β + ui) + εi,

so E[yi] = Xiβ and V [yi] = XiV [β + ui]X
′
i + V [εi] = XiΣuX′i + Ri.

This specification extends the classical mixed linear model allowing the Ri to
be different for each subjects, while usually the assumptions require Ri = R ∀i.
Of course the definition in (1) and (2) comprise much more complex and general
models, we will detail some of them later on.

Further we assume that ti is an estimator of βi conditionally on each subject is
available, so

ti|ui ∼ (β + ui,Σi),

where Σi is the p × p variance/covariance matrix of ti within each subject. Note
that Σi depends only on Ri and on Xi; for the linear model defined above it holds
Σi = σi(X

′
iXi)

−1. This part of the model describes the within-subject variability.
Finally, we assume that

βi = β + ui ∼ (β,Σu),

that is the true vector of parameters is drawn from a common distribution for all
subjects. This part of the model describes the between-subject variability due to
the presence of random effects. Putting all together we have that, unconditionally,

ti ∼ (β,Σu + Σi), (3)
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indeed E[ti] = E[E(ti|ui)] = E[β+ui] = β and V [ti] = V [E(ti|ui)]+E[V (ti|ui)] =
Σu+Σi. Note that here the estimators ti are obtained conditionally on each subject.

For instance, if the assumptions for a linear model hold on each subjects and
h(Xi,βi) = Xiβi, conditionally on realization of the random effect ui the esti-
mators of βi can be obtained through the Ordinary Least Squares, that is ti =
(X′iXi)

−1X′iyi. This lead, unconditionally, to:

V [ti] = (X′iXi)
−1X′i[XiΣuX′i + Σi]Xi(X

′
iXi)

−1 = Σu + Σi.

Let now t = [t′1, t
′
2, . . . , t

′
N ]′ be the N × p matrix where each line contains the

estimators of the fixed coefficients related to each cluster. The model assumptions
can be summarized as:

(a1) f(ti − βi|βi) = f(−ti − βi|βi);

(a2) g(βi − β) = g(−βi − β);

(a3) ti|(βi) ⊥ βi;

(a4) ti is independent of t` for 1 ≤ i < ` ≤ N .

Note that (a1) and (a2) imply the assumption of symmetry of the unconditional
joint estimator distributions, f(ti − β) = f(−ti − β) ∀i (here f is an unspecified
density function). This is ensured if the usual assumptions for mixed models hold,
including (a3). This basically corresponds to assuming symmetry and independence
for the conditional distribution of the estimators and for the distribution of βi;
the last assumption deals with the assumption of independence among subjects.
Let’s also remark that these conditions only focus on the coefficients estimators t,
symmetry is not assumed with respect of the original data yi.

The generalized linear model [5] and the generalized linear mixed models are
therefore special cases of this model by letting µi = g−1(Xi[β + ui]) where g is the
link function for the distribution of yij . In these case Ri shall be more properly
written Ri = Ri(µi) since in model specification such as binomial and Poisson
regressions the dispersion parameter depends on the true mean effect. This play a
direct role on Σi so that we shall write Σi = Σi(Ri(µi)).

This model is also suitable for more general cases, such as rank based statistics.
For example if the ith subject is measured under two different conditions, the dif-
ference of the ranks means can be considered: ti = r̄1− r̄2, where r̄k = n−1k r(yi)Xk,
and Xk is the vector of indicators of the kth experimental condition, k = 1, 2, and
r(·) is the rank transformation of vector of observations within the subject i. In this
example ti estimates the true ‘difference between average ranks’ µi, which is a lin-
earized function of predictors in (2), while φ in (1) remains a unknown, unspecified
function. Outside the estimator ti based on linear combinations, further extensions
can be considered. As an example in the two-condition-per-subject case we could
consider the median difference of all observations among the two conditions. In this
case µi = h(Xij ,θi) in (2) cannot be written as linear combination of predictors.

It is also worth to remark that between subjects effects can be taken in account
in this framework. The sum of all effects between is included in the overall mean
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estimate of each subject i, therefore any generalized linear model with an intercept
will accomplish the work.

A further generalization is represented by the multivariate model with q de-
pendent variables: in this case each ti becomes a p × q matrix whose rows con-
tain the estimates of the model for each variable (or as the concatenated vector
ti = [t11, . . . , t1p|, . . . , |t1q, . . . , tpq]), Ri becomes an nq×nq matrix, and Σi becomes
the pq × pq variance/covariance matrix of the predictors (Note that dependence
among the predictors of each variable is also considered here). The models can be
estimated separately for each variable (as it will heppen in our example) or jointly
(e.g. in multivariate normal models). Assumptions (a1)-(a3) are to be thought with
respect to the concatenated vector. The partial tests on each variable’s model are
done simultaneously and a global p-value can be obtained combining these informa-
tions, as we will discuss in the example of section 4.

Within this model we are interested on testing

H0 : β = β0 against H1 : β 6= β0.

More precisely, we are interested on testing the null hypothesis component-wise

H0k : βk = β0k against H1k : βk 6= β0k.

so that
H0 = ∩pk=1H0k.

3 The test

From the assumptions of the previous section, we know that the set of {ti; i =
1, . . . , N} has independent elements. In spite of this they are not identically dis-
tributed even under the null hypothesis, since they have variance matrix Σu + Σi.
The special case of Σi = Σ` ∀ (i, `) is reached for example when the subjects have
same number of observations (ni = n ∀ i), and Ri is assumed to be the same for
all subject (i.e. Ri = R). In this case a very simple but effective approach uses
a parametric one-sample t-test on the k-th columns of t to test H0k, k = 1, . . . , p.
When the group estimators ti’s are etheroscedastic we need to adopt a more com-
plex test. This is because the estimate of the residual variance becomes biased and
this reflects on a wrong reference distribution of the test statistic. The classical
maximum likelihood approach for mixed models estimates the residual variance in
an unbiased way, but the fail in the pit of defining the correct number of degrees of
freedom for the (approximate) distribution of the test statistic.

On the contrary, an exact test can be obtained following McNemar’s lines: let
Tob = s′(t − 1β′0) be the observed value of the test statistic, where 1 is a N × 1
vector of ones, and s is a N × 1 vector of values equal to 1/N .

To define its permutation distribution (or orbit, the set of points with the
same likelihood under H0), define S to be the collection of 2N points of the space
{+1/N,−1/N}N rearranged in a 2N × N matrix. Then the permutation space
is given by T = S(t − 1β′0). Despite naive, this test is unbiased, consistent
and exact. The generic element T ∗ of the permutation space T is then given
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by the point whose coordinates are the p × 1 vector
∑N

i=1 Si(ti − β0)/N , where
Pr{Si = −1} = Pr{Si = 1} = 1/2. Note that the inner dependence among the pa-
rameter estimators of each subject (typically described by Σi) is maintained since all
the components of the vector (ti−β0)/N are multiplied by the same sign. This per-
mutation strategy applies also in the multivariate case: here the dependence among
the variables is translated into the dependence among each variable’s estimators,
and we do not require to explicate the remaining elements since the correlations are
handled nonparametrically by the permutation strategy. Once the joint (multivari-
ate) permutation space has been obtained, it is straightforward to assess the global
null hypothesis on the kth predictor by applying the nonparametric combination of
dependent tests (as proposed in ).

The observed value of the test statistic for the kth component of β is given
by Tk =

∑N
i=1(tik − βk)/N , whose expected value and variance are respectively

equal to zero and [Σu/N +
∑N

i=1 Σi/N
2]kk = [

∑n
i=1 V (ti)/N

2]kk, k = 1, . . . , p under
H0k. Note that this variance involves only the diagonal elements of the matrix∑n

i=1 V (ti)/N
2.

The assumptions of symmetry fulfill the exactness of the test despite the correct
specification of the model: e.g. if one considers a linear model instead of a linear
mixed model. A concern may regard the power of the test since big differences in
the Σi components can affect the sensitivity of the test. Indeed, if we let Ri vary on
each subject, if the design is unbalanced then Σi will vary for each subject as well.
A possible solution is represented by pre-weighting the estimators of each subject by
the inverse of their standard errors, similarly to what happens in the General Least
Square method, but here we directly weight the estimators rather than the original
observations.

If we knew the true value Σu+Σi for each subject we could standardize the values
of T dividing them by their standard deviations. Since these matrices are generally
unknown, we would need to estimate diag(Σu +Σi). As it can be easily figured out,
there are several alternatives strategies to estimate the residuals variances. They can
leads to different inferential conclusions of course. However, the only characteristic
of the test from a procedural point of view is if estimate is done assuming H0 to be
true or not. Here we discuss the two choices trough the two most simple methods.

We assume we have an estimate of diag(Σi) (e.g. the variances of the parameter
estimators in subject i, say σ̂2ik, k = 1, . . . , p), then we try to estimate Σu. We
make use of the Moments Method under the null hypothesis (i.e. the mean of each
estimator is equal to 0). In this case V (T) = E[T′T] = E[

∑N
i=1 tit

′
i]/N

2. Then

diag

(
E

[
N∑
i=1

tit
′
i

])
= diag

(
NΣu +

N∑
i=1

Σi

)
.

Let σ2uk
denote the k element of diag(Σu); for each element in the diagonal we get

N∑
i=1

t2ik =

(
Nσ2uk

+

N∑
i=1

σ2ik

)

where σ2ik is the true variance of tik. By replacing the σ2ik’s with their estimates we
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obtain:

σ̂2uk
=

(
N∑
i=1

t2ik −
N∑
i=1

σ̂2ik

)
/N,

where the estimate is forced to zero in case it is negative. This implies that no
random effect is estimated to be present on the kth component of the model. Note
that the estimate of σ2uk

is permutationally invariant (i.e. it is not affected by the
permutations of the estimate’s signs), indeed [Si(tik − βk)]2 = (tik − βk)2 wheter Si
is positive or not. We call this the null estimate of the variance, since it is obtained
by assuming that H0k holds.

Once the estimators of the variance are available, one can consider the test
statistic: T′ = s′t̃i, where each element of t̃i is the standarize version of the elements
of ti:

t̃ik =
tik√

σ̂2uk + σ̂2ik

=

√
Ntik√∑N

i=1 t
2
ik −

∑
`6=i σ̂

2
`k + (N − 1)σ̂2ik

Note that this transformation just modifies the variances of the conditional dis-
tributions, but does not affect the means under H0 (which is always null), so the test
remains exact even in case the variances are over/under estimated. This is the case
when a mixed effect model is chosen instead of a simple linear model. Moreover, the
denominator of t̃ik is permutationally invariant.

The alternative, possible, strategy is to estimate the estimators variances when
the alternative hypothesis is assumed to hold. This is because, when the alternative
is true, the variances are over-estimated. In this case the estimates of the random
effect variance components are based on the variances of ti, rather than on their
second moment. Using again the moment estimation, the kth diagonal elements
becomes:

N∑
i=1

t2ik −Nt̄2k =

(
Nσ2uk

+

N∑
i=1

, σ̂2ik

)
, t̄k =

1

N

N∑
i=1

tik.

Applying this choice on the estimates, the (observed) modified coefficient estimators
become equal to:

˜̃tik =

√
Ntik√∑N

i=1(tik − t̄k)2 −
∑

` 6=i σ̂
2
`k + (N − 1)σ̂2ik

.

Now, since the value of t̄k changes at each permutation, the denominator must be
re-estimated at each permutation.

Summaryzing the possibilities we have illustrated, we can conclude that

i) The original test has been thought on the fixed coefficient estimators as they
are. The permutation strategy involves independent changes on the signs of
the vectors ti; this test is exact although it might be little sensitive;

ii) A first modification contemplates to weight the initial coefficient estimators
by the inverse of their standard error, when H0 is assumed to be true. The
permutation strategy is obtained by modifying the signs of the vectors t̃i;
therefore, the weighting process is applied only at the beginning.
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iii) A further modification contemplates to weight the coefficient estimators at
each permutation, since the estimates of their standard errors change at each
permutation.

We remark that, the whole procedure can be repeated by forcing Σu = 0, i.e. by
considering (generalized) linear models instead of (generalized) mixed linear models.
This make strategy ii) equal to strategy iii). More remarkably, the choice does not
affect the exactness of the test, this clarifies why we assert that this test is not
affected by wrong model assumptions, while MLE methods do.

Which kind of test to use depends on the model assumptions which are, in
general, subjective, therefore we suggest the original version in case the design is
balanced and the within subject variability can be assumed to be equal, whereas
the solution (ii) would be more adequate when random effects can be considered
negligible, and solution (iii) covers all the remaining cases (some further studies are
required to compare solutions ii and iii). Whatever will be the choice, we remark
that these test are all exact, although they might differ in performances (i.e. power).

4 Example

Recall the mitivating example of section 1: we have 12 adults measured in ni = 32
trials (randomly selected images) under two experimental conditions. The predictor
‘Item’ is coded as 0 = one face among 4 objects and 1 (6 objects) on two variables.
The first variable (Primafix) is dichotomous (1 = ‘looking at the face first’) and
hence a GLM with two parameters:

Yij ∼ Bi(1, πij) logit(πij) = β0i + β1ixij j = 1, . . . , 32,

is taken as the model for each subject, where xij = 0/1 depending on the treatment,
and βi = [β0i, β1i]

′ is the vector of parameters of the ith subject. The second variable
(Prop) is continuous and therefore a simple linear regression model Zi = γ0i+γ1ixij+
εij has been chosen here. We remark that the estimates of the parameters are done
conditionally within each subject (i.e. conditionally to the random effect realization).
The estimates of the parameters and their standard deviations (the square roots of
the diagonal of Σ̂i) have been obtained from the R functions glm and lm separately
for ‘Primafix’ and ‘Prop’, respectively. A comparison with the MLE solution has
been obtained with the lmer function of the lme4 package (http://lme4.r-forge.r-
project.org/). We considered two nested models with the same random effects and
compare them through the likelihood ratio test (LRT); the estimates of the effect
have been done with the full likelihood approach. Table 1 reports the estimates of
the slopes for each model and each subject. Note that the twelveth sybject appear to
behave as an outlier (β̂1,12 is much bigger in absolute value than the slopes estimated
in the other subjects, and so is its standard deviation). The assumption of within
subject’s homoschedasticity Ri = R seems to be inadequate for at least this subject.

Table 2 shows the p-values obtained with each testing procedure introduced in
the previous section for each model and each variable. We focus the attention on
the slopes, as usual. The p-values obtained with the ‘naive’ solution (i) show that
the effect of Item is significantly decreasing the proportion of time that the subjects
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Primafix (Dichotomous) Prop (Continuous)

Subject b̂1 s.e.(b̂1) γ̂1 s.e.(γ̂1)

1 -0.310 0.790 -0.059 0.046
2 0.278 0.747 -0.107 0.055
3 -0.788 0.735 -0.174 0.042
4 -0.511 0.719 -0.115 0.052
5 -1.695 0.909 0.084 0.068
6 -0.260 0.722 -0.108 0.070
7 0.000 0.763 0.001 0.054
8 -0.678 0.837 -0.015 0.077
9 0.260 0.722 -0.105 0.051
10 -0.537 0.738 -0.032 0.060
11 -0.278 0.747 -0.062 0.043
12 17.858 4432.593 -0.099 0.067

Table 1: Slopes coefficients and related s.e. within each subject for both responses.

spend looking at the face, whereas there seems not to be any significant effect on
the Primafix variable. This might be explained recalling that the test statistic is
basically a mean of the slope estimates, and that subject twelve has an opposite,
very strong behaviour, compared with the other subject. Also note that the MLE
results confirm the extremely significant influence of ‘Item’ on ‘Prop’, but not on
‘Primafix’.

Naive Null Estimate Alternative Estimate LRT

PrimaFix 0.9902 0.0253 0.0254 0.1151
Prop 0.0088 0.0078 0.0059 0.0037

Overall 0.0383 0.0007 0.0007 0.0074

Table 2: P-values for univariate and overal null hypotheses

The second part of the table reports the results of our test when the estimates
of the slope had previously been standardized under H0 (proposal (ii) - ‘Null Esti-
mate’): note that here the test on β1 becomes highly significant, showing the positive
effect of taking into consideration each estimator’s variance, i.e. assuming the obser-
vations to be heteroschedastic between subjects. In fact, if the twelveth subject is
not included in the study, the MLE solution of ’Primafix’ would become significant
as well (and so would the ‘Naive’ solution).

A similar result is obtained with proposal (iii), named ‘Alternative Estimate’ in
the table, probably meaning that here the random effect variability is negligible with
respect to each subject’s variability.

Finally, our global test’s results rely on Fisher’s combination [7] applied to the
joint permutation distribution of the partial p-values, while the combined p-value
from MLE has been obtained through Bonferroni’s combination, i.e. without taking
into account the dependency among the variables.
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5 Conclusions

The tests proposed here depict a very general approach for univariate and multi-
variate tests. As detailed in section 2), the class of models covered here is very
broad and the generalized theoretical linear mixed-models are just a special case of
it. Rank-based and more complex models are covered by this approach as well. Also
multivariate responces - possibly mixing categorical, ranks and continuos responses-
are included in the model without further extentions.

All the tests proposed are exact. In this perspective,Re: conferenze mix and
permute they are more safe since they mitigates the consequences of miss-modeling,
while in parametric approach this mispecification can lead to dramatic conseguences
on type I error control. Of course the quality of the estimates of Σ̂u and Σ̂i will
affect the power and further works will be addressed on definition of more reliable
estimators.

Last but not least, the test is immediately extended to multivariate inference
since the joint distribution of the test statistics is always available without further
assumptions on the model.
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