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ature. Despite modified profile likelihood methods have better properties than those based

on the profile likelihood, the signed likelihood ratio statistic based on the modified profile

likelihood has a standard normal distribution only to first order, and it can be inaccurate in

particular in models with many nuisance parameters. In this paper we propose an adjust-

ment of the profile likelihood from a new perspective. The idea is to resort to suitable default

priors on the parameter of interest only to be used as non-negative weight functions in order

to modify the modified profile likelihood. In particular, we focus on matching priors, i.e.

priors on the parameter of interest only for which there is an agreement between frequentist

and Bayesian inference, derived from modified profile likelihoods. The proposed modified

profile likelihood has desiderable inferential properties: the corresponding signed likelihood

ratio statistic is standard normal to second order and the correponding maximizer is a re-

finement of the maximum likelihood estimator, which improves its small sample properties.
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1 Introduction

Let us consider a model with a scalar parameter of interest ψ, a d-dimensional
nuisance parameter λ and likelihood function L(ψ, λ) = L(ψ, λ; y), where y =
(y1, . . . , yn) is a random sample of size n. Standard first-order methods for in-
ference about ψ are based on the profile likelihood Lp(ψ) = L(ψ, λ̂ψ), where λ̂ψ is
the maximum likelihood estimator of λ for fixed ψ, and can be seriously inaccurate,
in particular when the dimension of λ is substantial relative to n. Starting from
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Barndorff-Nielsen (1980, 1983), various modifications of the profile likelihood of the
form

Lmp(ψ) = Lp(ψ)M(ψ) (1)

have been proposed, for suitably defined correction terms M(ψ); see Barndorff-
Nielsen and Cox (1994, Chapter 8) and Severini (2000, Chapter 9) for detailed ac-
counts. Reduction of the score bias is the key basic motivation for adjusting Lp(ψ)
in McCullagh and Tibshirani (1990) and in Stern (1997), while the other propos-
als, from Barndorff-Nielsen (1980, 1983) up to Fraser (2003) and Pace and Salvan
(2006), aim to approximate some target likelihood. All the available adjustments
to the profile likelihood are equivalent to second order, share the common feature
of reducing the score bias to O(n−1) (DiCiccio et al., 1996), and in general provide
accurate inferences on ψ. However, the signed likelihood ratio statistic based on
Lmp(ψ) is standard normal only to first order, and it can be inaccurate in particular
in models with many nuisance parameters (Sartori et al., 1999).

The aim of this paper is to discuss a modification of the profile likelihood from a
new perspective, based on a non standard frequentist approach which makes use of
Bayesian inferential procedures. More precisely, we use a suitable default prior on
the parameter of interest only, which can be interpreted as a non-negative weight
function on ψ, as a convenient device for adjusting the modified profile likelihood
of Barndorff-Nielsen (1983). The possibility of adjusting a likelihood function using
priors, even if quite differently motivated, is suggested also in Efron (1993), Liseo
(1993), and Reid (1995). Here, we focus on the class of strong matching priors for
ψ only derived from Lmp(ψ) (Ventura et al., 2009, Ventura and Racugno, 2010), i.e.
priors for which there is an agreement between frequentist and Bayesian results and
which validate the use of Lmp(ψ) for Bayesian inference in the presence of nuisance
parameters. We then suggest to modify Lmp(ψ) with its corresponding matching
prior, given by

π(ψ) ∝ iψψ.λ(ψ, λ̂ψ)1/2 , (2)

where iψψ.λ(ψ, λ) = iψψ(ψ, λ) − iψλ(ψ, λ)iλλ(ψ, λ)−1iλψ(ψ, λ) is the partial infor-
mation, with iψψ(ψ, λ), iψλ(ψ, λ), iλλ(ψ, λ), and iλψ(ψ, λ) blocks of the expected
Fisher information i(ψ, λ) from L(ψ, λ). The implied modified profile likelihood is
thus defined as

L∗

mp(ψ) = Lmp(ψ) iψψ.λ(ψ, λ̂ψ)1/2 . (3)

We will show that L∗

mp(ψ) has better inferential properties than Lmp(ψ). In partic-
ular, for tests or for confidence intervals, the signed likelihood ratio statistic based
on (3) is standard normal to second order, giving quite accuarate inferences also for
small sample sizes. Moreover, for point estimation, the maximizer of (3) is the solu-
tion of an estimating equation obtained from an higher-order pivot for the parameter
of interest, i.e. it is a refinement of the maximum likelihood estimator ψ̂, improving
some small sample properties and keeping equivariance under reparameterisation
(Pace and Salvan, 1999, Giummolé and Ventura, 2002).
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The plan of the paper is as follows. Section 2 gives some background on matching
priors derived from modified profile likelihoods and on signed likelihood ratio statis-
tics based on Lp(ψ) and Lmp(ψ). In Section 3 it is shown that the signed likelihood
ratio statistic based on (3) is standard normal to second order, and is equivalent to
the modified signed likelihood ratio statistic of Barndorff-Nielsen and Chamberlin
(1994). Moreover, the properties of the maximizer of (3) are highlighted. In Sec-
tion 3 simulation results are presented to confirm that the proposed modified profile
likelihood improves on its counterparts.

2 Background theory

Bayesian versus frequentist interface in statistical inference has been the subject
of considerable recent interest. For instance, this has lead to the investigation of
integrated likelihood functions for non-Bayesian inference (Liseo, 1993, Berger et

al., 1999, Severini, 2007, 2010, 2011), to the development of matching priors that
ensure approximate frequentist validity of posterior credible regions (see e.g. Datta
and Mukerjee, 2004), to the use Bayesian expansions for frequentist computations
(see, for instance, Mukerjee and Reid, 2000), and to the use of pseudo-likelihood
functions for Bayesian inference (see, among others, Severini, 1999, Lazar, 2003,
Chang and Mukerjee, 2006, Lin, 2006, Greco et al., 2008, Ventura et al., 2009, 2010,
Racugno et al., 2010, Pauli et al., 2011, and references therein).

In particular, the agreement between the frequentist and posterior coverage prob-
abilities of credible regions, arising from matching priors on ψ only derived from
Lmp(ψ), provides a validation for these priors, and hence their study is of interest
from the frequentist viewpoint as well. Let us consider the modified profile likelihood
of Barndorff-Nielsen (1983), given by

Lmp(ψ) = Lp(ψ)C(ψ) , (4)

where

C(ψ) =
|jλλ(ψ, λ̂ψ)|1/2|jλλ(ψ̂, λ̂)|1/2

|`λ;λ̂(ψ, λ̂ψ)|
, (5)

jλλ(ψ, λ) is the (λ, λ)-block of the observed Fisher information j(ψ, λ), `λ;λ̂(ψ, λ) =

∂`(ψ, λ)/∂λ∂λ̂T , with `(ψ, λ) = logL(ψ, λ), is a sample space derivative, and (ψ̂, λ̂)
is the maximum likelihood estimator of (ψ, λ). The modified profile likelihood (4)
depends only on the data and the parameter of interest ψ and thus it can be used also
in the Bayesian framework as a genuine likelihood function to construct a posterior
distribution for ψ; see Severini (1999), Chang and Mukerjee (2006), Chang et al.

(2009), Ventura et al. (2009), Racugno et al. (2010) and references therein. In
particular, treating Lmp(ψ) as a genuine likelihood, the posterior distribution

πmp(ψ|y) ∝ π(ψ)Lmp(ψ) (6)

can be obtained, where π(ψ) is the matching prior (2) (Ventura et al., 2009).
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Integration of (6) over the parameter space gives the derivation of a tail area
approximation, following standard Bayesian expansions (see, e.g., Reid, 2003, Braz-
zale et al., 2007, Chapter 8). In particular, for (6) it can be shown that (Ventura
and Racugno, 2010)

∫ ψ0

−∞

πmp(ψ|y) dψ =̇ Φ(r∗p) , (7)

where Φ(·) is the standard normal distribution function and r∗p(ψ) is the modified
signed likelihood ratio statistic

r∗p(ψ) = rp(ψ) +
1

rp(ψ)
log

q(ψ)

rp(ψ)
, (8)

with

rp(ψ) = sign(ψ̂ − ψ)

√

2(`p(ψ̂) − `p(ψ))

signed likelihood ratio statistic, `p(ψ) = logLp(ψ), and

q(ψ) =
`′p(ψ)

|jp(ψ̂)|1/2

|iψψ.λ(ψ̂, λ̂)|1/2

|iψψ.λ(ψ, λ̂ψ)|1/2

|`λ;λ̂(ψ, λ̂ψ)|

|jλλ(ψ, λ̂ψ)|1/2|jλλ(ψ̂, λ̂)|1/2
, (9)

where jp(ψ) is the profile observed information and `′p(ψ) = ∂`p(ψ)/∂ψ. The statistic
(8), with q(ψ) given in (9), corresponds to the expression derived in Barndorff-
Nielsen and Chamberlin (1994). In view of this, since a frequenstit p-value coincides
with a Bayesian tail area probability, the prior (2) is a strong matching prior (Fraser
and Reid, 2002).

The modified signed likelihood ratio statistic r∗p(ψ) is a higher-order pivotal
quantity, which allows to obtain frequentist p-values, confidence limits and accurate
point estimators for ψ (see, e.g., Barndorff-Nielsen and Cox, 1994, Chapter 6). In
particular, an accurate confidence interval for ψ with approximate level (1−α) based
on r∗p(ψ) is

{

ψ : |r∗p(ψ)| ≤ z1−α/2
}

, (10)

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. In
view of (7), (10) is also a highest posterior density credible set for ψ based on
πmp(ψ|y) (Ventura and Racugno, 2010). Moreover, the modified signed likelihood
ratio statistic r∗p(ψ) can also be used to derive a point estimator for ψ defined as a
zero-level confidence interval, as explained in Skovgaard (1989). More precisely, the
modified signed likelihood ratio statistic (8) gives rise to a simple estimating equation
of the form r∗p(ψ) = 0 (Pace and Salvan, 1999, Giummolé and Ventura, 2002). The

corresponding estimator ψ̂∗ is a refinement of ψ̂, that improves its small sample
properties, respecting the requirement of parameterisation equivariance. with the
estimating equation r∗p(ψ) = 0 giving implicitly a higher-order correction to the
maximum likelihood estimator.

Finally, note that the adjustment term of the modified directed likelihood r∗p(ψ)
can be decomposed into two parts, with different interpretations (see Barndorff-
Nielsen and Cox, 1994, Section 6.6). In particular, r∗p(ψ) can be expressed as

r∗p(ψ) = rp(ψ) + NP + INF , (11)
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where NP is the nuisance parameters adjustment

NP = −
1

rp(ψ)
logC(ψ) (12)

and INF is the information adjustment

INF =
1

rp(ψ)
log

q(ψ)C(ψ)

rp(ψ)
. (13)

The NP part adjusts for estimating the nuisance parameters, whereas the INF part
improves the standard normal approximation. Pierce and Peters (1992) and Sar-
tori et al. (1999) indicate that the NP adjustment is often appreciable, and it
may yield a more substantial effect than the INF adjustment. In addition, let
rmp(ψ) = sgn(ψ̂mp − ψ)[2(`mp(ψ̂mp) − `mp(ψ))]1/2, be the signed likelihood ratio
statistic based on the modified profile likelihood Lmp(ψ), with `mp(ψ) = logLmp(ψ)

and ψ̂mp maximiser of Lmp(ψ). Then, Sartori et al. (1999) show that rmp(ψ) is
standard normal only to first order and that rmp(ψ) = rp(ψ) + NP + O(n−1). This
means that in those instances where most of the asymptotic error comes from the es-
timation of the nuisance parameters, rmp(ψ) may represent a step ahead over rp(ψ)
(see for example DiCiccio and Martin, 1993, DiCiccio and Stern, 1994).

3 A new modified profile likelihood

The agreement in (7) suggest to modify the profile likelihood as in (3) to define
L∗

mp(ψ). In this section we study the properties of L∗

mp(ψ). In particular, we show
that `∗mp(ψ) = logL∗

mp(ψ) can be written, to second asymptotic order, as a function
of r∗p(ψ), i.e.

`∗mp(ψ) = −
1

2
(r∗p(ψ))2 +O(n−1) ,

with r∗p(ψ) given in (8).
Using results in Sartori et al. (1999), we have that, ignoring additive constants,

`∗mp(ψ) = `mp(ψ) + log π(ψ)

= −
1

2
(rmp(ψ))2 + log π(ψ)

= −
1

2
(rp(ψ))2 − rp(ψ)NP + log π(ψ)

= −
1

2
(rp(ψ))2 − rp(ψ)

[

NP +
1

rp(ψ)
log

1

π(ψ)

]

= −
1

2
(rp(ψ))2 − rp(ψ) [NP + INF∗] (14)

with NP given in (12) and INF∗ = −rp(ψ)−1 log π(ψ). Since rp(ψ) = `′p(ψ)/jp(ψ̂)1/2+

op(1) and π(ψ) ∝ iψψ.λ(ψ, λ̂ψ)1/2, we have that INF=INF∗ +Op(n
−1) and thus

`∗mp(ψ) = −
1

2
(rp(ψ) + NP + INF)2 +O(n−1)

= −
1

2
(r∗p(ψ))2 +O(n−1) . (15)
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This shows that `∗mp(ψ) is equal, to second asymptotic order, to a r∗-type statistics,
and the quantity π(ψ) can thus be interpreted as a further adjustment to the profile
likelihood to accommodate for deviations from normality due to a small amount of
information available in the sample.

In view of expansion (15), for the proposed modified profile likelihood (1) we
have that the associated signed likelihood ratio statistic

r∗mp(ψ) = sgn(ψ̂∗

mp − ψ)[2(`∗mp(ψ̂
∗

mp) − `∗mp(ψ))]1/2 ,

with ψ̂∗

mp maximizer of `∗mp(ψ), corresponds to r∗p(ψ) and thus is standard normal to
second order. Moreover, the maximizer of L∗

mp(ψ) can be computed as the solution

of the estimating equation r∗p(ψ) = 0, and thus corresponds to ψ̂∗.

4 Examples and numerical illustrations

The aim of this Section is to provide simulation studies and an illustration of the
proposed modified profile likelihood in the context of group models and exponential
families. In particular, it is shown that the modified profile likelihood L∗

mp(ψ) may
represent a step ahead over Lmp(ψ).

Example 1: Exponential family. Consider a sample y = (y1, . . . , yn) of n independent
and identically distributed observations from an exponential family model

p(y;ψ, λ) = exp{ψ t(y) + λTs(y) −K(ψ, λ)}h(y) ,

where t(·), s(·), h(·) and K(·) are given functions. Let (t, s) = (
∑

t(yi),
∑

s(yi)) be
the minimal sufficient statistic, with t and s associated with ψ and λ, respectively.
Moreover, we denote with Kλ(ψ, λ) = ∂K(ψ, λ)/∂λ, Kψ(ψ, λ) = ∂K(ψ, λ)/∂ψ,
Kλλ(ψ, λ) = ∂2K(ψ, λ)/(∂λ∂λT ), and so on, the partial derivatives of K(ψ, λ).

The profile likelihood function for ψ is Lp(ψ) = exp{ψ t + λ̂T

ψs − nK(ψ, λ̂ψ)},

where λ̂ψ is the solution of the likelihood equation s = nKλ(ψ, λ̂ψ). It is easy to
show that the modified profile likelihood of Barndorff-Nielsen (1983) reduces to

Lmp(ψ) = Lp(ψ)|Kλλ(ψ, λ̂ψ)|1/2 ,

and that the proposed modified profile likelihood (1) is

L∗

mp(ψ) = Lp(ψ)|Kλλ(ψ, λ̂ψ)|1/2jp(ψ)1/2 ,

with jp(ψ) = iψψ.λ(ψ, λ̂ψ) = nKψψ(ψ, λ̂ψ) − nKψλ(ψ, λ̂ψ)Kλλ(ψ, λ̂ψ)−1Kλψ(ψ, λ̂ψ).

Example 2: Gamma distribution. Consider a random sample (y1, . . . , yn) from the
gamma density p(y;ψ, λ) = λψyψ−1 exp(−λy)Γ(ψ)−1, y > 0, ψ, λ > 0. We take
the parameter of interest as the shape parameter ψ, with the scale parameter λ as
nuisance. The profile loglikelihood is `p(ψ) = ψ(t − n) − n log Γ(ψ) + nψ log(ψ/ȳ),
with t =

∑

log yi and ȳ sample mean, and the modified profile loglikelihood (4) is
`mp(ψ) = `p(ψ) − 0.5 log ψ. Simple calculations give iψψ.λ(ψ, λ) = (n/ψ)(ρ(ψ) − 1),
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n = 5 n = 10 n = 15 n = 20

rp 0.899 0.931 0.933 0.942
rmp 0.937 0.944 0.944 0.947
r∗mp 0.944 0.948 0.949 0.950

r∗p 0.946 0.951 0.949 0.949

Table 1: Emprirical coverages of 0.95% confidence intervals under the gamma model.

n = 5 n = 10 n = 20

ψ̂ 1.21 (4.77) 0.35 (0.81) 0.15 (0.37)

ψ̂mp 0.82 (3.82) 0.24 (0.73) 0.09 (0.35)

ψ̂∗

mp 0.03 (1.91) 0.01 (0.56) 0.002 (0.31)

Table 2: Bias (and standard deviations) of the maximizers of `p(ψ), `mp(ψ) and
`∗mp(ψ), under the gamma model.

with ρ(ψ) = (∂2/∂ψ2) log Γ(ψ), and thus the proposed modified profile loglikelihood
is

`∗mp(ψ) = `p(ψ) − logψ +
1

2
log(ψρ(ψ) − 1) .

The behaviour of `∗mp(ψ) under the gamma model is illustrated through a simula-
tion study based on 10000 Monte Carlo trials. Table 1 gives the empirical coverages
for equi-tailed 95% confidence intervals from rp(ψ), rmp(ψ), r∗mp(ψ) and from the
r∗p(ψ) statistic of Barndorff-Nielsen (1991), with q(ψ) given by

q(ψ) = |`;θ̂(ψ̂, λ̂) − `;θ̂(ψ, λ̂ψ)`λ;θ̂(ψ, λ̂ψ)|/(|j(ψ̂, λ̂)|1/2|jλλ(ψ, λ̂ψ)|) .

From Table 1 we observe that, even for small n, r∗mp(ψ) improves on rmp(ψ) and
exhibits a similar behaviour than r∗p(ψ). Larger sample sizes show, as one would
expect, rather little differences between the results of all the procedures.

Table 2 evaluates the finite-sample properties of the maximizers of `p(ψ), `mp(ψ)
and `∗mp(ψ). The estimators are compared in terms of the usual centering and
dispersion measures, i.e. bias and standard deviation. From Table 2 it can be noted
that the maximizer of `∗mp(ψ) is always preferable to ψ̂ and ψ̂mp. This result is due
to the fact that the maximizer of `∗mp(ψ) is a r∗-based estimator.

Example 3: Group model. Consider a sample y = (y1, . . . , yn) of n independent and
identically distributed observations from a group model, with density p(y; k, g) =
p0(g(y); k), where g is the group element, k the index parameter and p0(·) is a given
density. We also assume that k is the parameter of interest, while g is the nuisance
parameter. A well-known example of group model is the composite location and
scale model, with k shape parameter and g = (µ, σ) location-scale parameters.
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The modified profile likelihood of Barndorff-Nielsen (1983) for the index param-
eter k can be expressed as (see Barndorff-Nielsen and Jupp, 1988)

Lmp(k) = h(ĝk)|jgg(k, ĝk)|
−1/2Lp(k) ,

where h(g) is the right invariant Haar measure on the group of transformations.
Using results in Datta and Ghosh (1995), it can be shown that the adjustment
needed to compute L∗

mp(k) can be written as

π(k) ∝ ikk.g(k, e)
1/2 , (16)

with ikk.g(k, e) = ikk(k, e)−ikg(k, e)igg(k, e)
−1igk(k, e), where e is the group identity.

Note that π(k) does not depend on g, and thus on the data through ĝk. Note also
that (16) coincides with the marginal prior density which asymptotically maximizes
the expected Kullback-Leibler divergence between the marginal posterior and the
prior density functions, given in Datta and Ghosh (1995).

The modified profile likelihood (3) reduces to

L∗

mp(k) = h(ĝk)|jgg(k, ĝk)|
−1/2Lp(k) ikk.g(k, e)

1/2 .

Example 4: Inverse Gaussian distribution. Consider a random sample (y1, . . . , yn)
from the inverse Gaussian distribution with density

p(y;ψ, λ) = [ψ/(2πy3)]1/2 exp(−ψ(y − λ)2/(2λ2y)) ,

y > 0, ψ, λ > 0. The parameter of interest ψ is a scale parameter. The profile
loglikelihood is `p(ψ) = (n/2) log ψ − (ψt)/(2ȳ2), with t =

∑

(yi − ȳ)2/yi, and the
modified profile loglikelihood (4) is `mp(ψ) = ((n− 1)/2) log ψ− (ψt)/(2ȳ2). Simple
calculations give iψψ.λ(ψ, λ) = n/(2ψ2), and thus the proposed modified profile
loglikelihood is

`∗mp(ψ) =
(n− 3)

2
logψ −

ψt

2ȳ2
.

As in Example 2, the behaviour of `∗mp(ψ) under the inverse Gaussian distribution
is illustrated through a simulation study based on 10000 Monte Carlo trials. Table
3 gives the empirical coverages for 95% confidence intervals from rp(ψ), rmp(ψ),
r∗mp(ψ) and r∗p(ψ). From Table 3 we observe that, also in this case, r∗mp(ψ) improves
on rmp(ψ) and exhibits a similar behaviour than r∗p(ψ).

Table 4 summarizes the finite-sample properties of the maximizers of `p(ψ),
`mp(ψ) and `∗mp(ψ). From Table 4 it can be noted that, as in Example 2, the

maximizer of `∗mp(ψ) always performs better than ψ̂ and ψ̂mp.

Example 5: Skew-normal distribution. Let us consider the scalar skew-normal model
(Azzalini, 1985) with density function p(y;ψ, µ, σ) = (2/σ)φ((y − µ)/σ)Φ(ψ(y −
µ)/σ), y ∈ IR, where φ(x) denote the N(0, 1) density. Let the shape parameter ψ
be the parameter of interest and let λ = (µ, σ), with µ and σ unknown location and
scale parameters respectively, be the nuisance parameter. Estimation of the shape
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n = 5 n = 10 n = 15 n = 20

rp 0.894 0.924 0.934 0.939
rmp 0.939 0.944 0.947 0.948
r∗mp 0.944 0.945 0.949 0.949

r∗p 0.948 0.948 0.950 0.949

Table 3: Emprirical coverages of 0.95% confidence intervals under the inverse Gaus-
sian model.

n = 5 n = 10 n = 15 n = 20

ψ̂ 1.966 (6.77) 0.548 (1.14) 0.337 (0.69) 0.239 (0.54)

ψ̂mp 1.373 (5.42) 0.393 (1.02) 0.248 (0.64) 0.177 (0.52)

ψ̂∗

mp 0.186 (2.71) 0.083 (0.79) 0.069 (0.55) 0.053 (0.46)

Table 4: Bias (and standard deviations) of the maximizers of `p(ψ), `mp(ψ) and
`∗mp(ψ), under the inverse Gaussian model.

parameter ψ is a quite challenging problem since the profile likelihood function, as
well as the modified profile likelihood (4), can be monotone increasing, giving an
infinite maximum likelihood estimate. Some recent solutions, both in the frequentist
and Bayesian settings, are Sartori (2006), which suggests to madify the score func-
tion for ψ, and Liseo and Loperfido (2006) and Cabras et al. (2010), which show,
respectively, that the Jeffreys prior and the matching prior (2) for ψ are proper. In
addition, Cabras et al. (2010) give the expressions of the modified profile likelihood
Lmp(ψ) and of π(ψ), which is shown to be independent on λ in view of (16).

We illustrate our proposal with a quite challenging data set for the estimation of
ψ. In particular, consider the Frontier data set, available at the package sn of the R

software, which is a random sample of size n = 50 from a skew-normal model, with
µ = 0, σ = 1 and ψ = 5. This dataset has some interest and has been analyzed in
several papers since it leads to an infinite ψ̂, with both Lp(ψ) and Lmp(ψ) monotone
functions in ψ. Sartori (2006) obtains a modified maximum likelihood estimate equal
to 6.24, and the maximum likelihood estimate from L∗

mp(ψ) is ψ̂∗ = 6.3. Figure 1
shows the modified profile likelihoods Lmp(ψ) for ψ, which is monotone, and L∗

mp(ψ).
Our procedure gives (2.05,44.48) as a 0.95 confidence interval based on r∗mp(ψ).

5 Discussion

We propose an adjustment of the modified profile likelihood based on a matching
prior for the parameter of interest only. By construction, the proposed modified
profile likelihood has the corresponding signed likelihood ratio statistic standard
normal to second order. A similar result has been discussed by Severini (2010) for
an integrated likelihood for frequentist inference.

Moreover, the maximizer of the proposed modified profile likelihood is a refine-
ment of the maximum likelihood estimator, which improves its small sample prop-
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Figure 1: Frontier data: Plot of normalized Lmp(ψ) (dashed) and L∗

mp(ψ) (solid).

erties. In addition, also the results of the simulation studies for L∗

mp(ψ) are quite
good. Other results in favour of L∗

mp(ψ), even if from a Bayesian perspective, can be
found in Ventura and Racugno (2010) in the context of inference on the reliability
of a stress-strength model.

As a final remark, we note that a difficulty in the application of L∗

mp(ψ) could
be the computation of the sample space derivatives involved in (5). However, in
these situations, `λ;λ̂(ψ, λ̂ψ) can be replaced in C(ψ) by the approximation de-

veloped in Severini (1998), and thus using C(ψ) = |jλλ(ψ, λ̂ψ)|1/2/|I(ψ, λ̂; ψ̂, λ̂)|,
where I(ψ, λ;ψ0, λ0) = E(ψ0,λ0)(`λ(ψ, λ)`λ(ψ0, λ0)

T ), with `λ(ψ, λ) = ∂`(ψ, λ)/∂λ,
in L∗

mp(ψ). In this case, also in the expression of q(ψ) given in (9) the sample space
derivatives have to be replaced using Severini’s approximation.
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