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Abstract: This paper considers how well the approach of combining forecasts extends to

the context of electricity prices. With the increasing popularity of regime switching and

time-varying parameter models for predicting power prices, the multi model and evolution-

ary considerations that usually support the combining of simpler time series methods may

be less applicable when the individual models incorporate these features. We address this

question with a backtesting analysis on British day-ahead prices. Furthermore, given the

volatility of power prices and concerns about accurate forecasting under extreme price excur-

sions, we evaluate the results using various error metrics including expected shortfall. The

comparisons are furthermore carefully simulated to consider model selection uncertainty in

order to realistically test the value of combining as an ex ante policy. Overall, our results

support combining for both accurate operational planning and risk management.
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1 Introduction

The value of combining forecasts to achieve accurate predictions is now well-established,
with extensive research and convincing applications extending back over 50 years to
the work of Granger and his colleagues at Nottingham, Reid (1968, 1969), Bates and
Granger (1969) and Newbold and Granger (1974). Despite this body of knowledge,
it is quite surprising to observe the absence of substantial research on combining
in the context of forecasting electricity prices. Since the established research on
electricity markets suggests a wide variety of candidate methods for price forecast-
ing (see, for example, Bunn, 2004; Weron, 2006; Serati et al., 2008) but without
any predominant method having emerged, and with model selection varying over
time (Chen and Bunn, 2010), the benefits of combining would appear to be very
propitious. However, given that the approaches of regime switching, which has an
implicit multimodel structure, and time-varying parameter models, which capture
model evolutions, have become widely advocated to represent power price dynamics,
it is possible that these specifications, to the extent that such models are included
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in the candidate set of predictive models, may encapsulate and thereby preclude
any benefits of simple combinations. We therefore investigate this open question
through a detailed study of the effectiveness of combining a set of four carefully
specified models, ARMAX, linear regression, Markov regime switching and time-
varying regressions, as applied to day-ahead forecasting of British half-hourly power
prices.

Methods of increasing sophistication followed the simple adaptive time series ap-
proach of Bates and Granger (1969), including Bayesian (Bunn, 1975, 1977), and
econometric (Granger and Ramanathan, 1984), as well as extensions to large data
sets (Stock and Watson, 2001, 2004), but, for robust forecasting, it has appeared
hard to improve upon simple averaging (Makridakis and Winkler, 1983; Clemen,
1989; Stock and Watson, 2001, 2004; Smith and Wallis, 2009). We therefore do not
address the question of developing combining methods to improve on simple averag-
ing. We do, however, consider the less commonly addressed question of effectiveness
at extreme outcomes. Because the spiky nature of power prices has been one of the
motivations for regime switching methods, it seems appropriate that, when combi-
nations include regime switching methods, the accuracy of the combination should
be assessed not only in terms of the expected value, but also on a quantile defined
value-at-risk (”expected shortfall”) measure. In this research, we are therefore mo-
tivated to analyse the results using a number of error metrics including expected
shortfall.

Many research papers have suggested that combining will perform better than
individual methods (Clemen, 1989; Clements and Hendry, 1998; de Menezes et al.,
2000; Riedel and Gabrys, 2005; Altavilla and De Grauwe, 2006; Timmermann, 2006;
Chen and Yang, 2007; Clark and McCracken, 2009), including some applications to
electricity demand forecasting (see Taylor and Majithia, 2000; Taylor, 2010). In the
context of electricity prices, Garćıa-Martos et al. (2007) similarly advocate combin-
ing, but within a single model class (ARIMA), to deal with specification uncertainty.
Despite the volume of comparisons published, it is an open question how many of
the results in favour of combining are actually statistically significant. Moreover, in
addition to this question, we are careful in our comparisons to consider, not simply
the usual ex post evaluation of whether combining would have outperformed the
best individual methods, but the more realistic setting of whether combining would
have performed better than the individual method which would have be chosen ex
ante. Given that part of the motivation for combining is that individual model per-
formances are unstable, it is important to evaluate the procedures with a backtesting
experiment that incorporates this unstable model selection aspect in a simulated ex
ante way.
The paper is organized as follows. In Section 2 we present the price data from the
UK Power Exchange (UKPX). The individual models and price drivers included
therein as regressors are described in Section 3. Section 4 introduces the combina-
tion methodology and explains how the forecasts are evaluated. Section 5 contains
the experimental design and the results of our work. Section 6 concludes.
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2 The data

This work considers price data from the UK Power Exchange (UKPX) for the period
April 1st, 2005 - September 30th, 2006: the choice of the starting date is important
because it refers to the market that had just been extended to include Scotland.
The British power market is considered to be a fully competitive market and one
of the most mature in the world (see Karakatsani and Bunn, 2008b for a detailed
exposition).
The price series have half-hourly frequency, so that each day consists of 48 observa-
tions, one for each load period. We denote by Pjt the spot price at day t and load
period j (t = 1, 2, ..., N , j = 1, 2, ..., 48). Since our interest lies mainly in price mod-
elling and prediction during working days, weekends and holidays were removed from
the data following the approach used by Ramanathan et al. (1997) and Karakatsani
and Bunn (2008a), among others. Moreover, in adopting an intradaily approach,
we consider separately each load period, according to a well-established precedent
for electricity loads and prices (Ramanathan et al., 1997; Bunn, 2000; Bunn and
Karakatsani, 2003). Results were analysed in detail for five representative periods of
the day: load periods 6 (02:30-03:00am), 18 (08:30-09:00am), 28 (13:30-14:00pm), 38
(18:30-19:00pm) and 44 (21:30-22:00pm). The night-time load period 6 is the least
volatile; periods 18, 28 and 38 represent peak hours, and show a high volatility with
sudden peaks during winter and summer in both 2005 and 2006. Finally, period
44 is relatively stable, with moderate volatility. These characteristics are common
in electricity price dynamics as indicated, amongst others, in Huisman and Mahieu
(2003) and Knittel and Roberts (2005).
Each series has length n = 380. Figure 1 contains the plots of the five log-price
time series considered; the logarithmic transformation was used to stabilize vari-
ance. The log-price series show neither a well-defined long-run behaviour nor a clear
seasonal dynamics. However, levels change with the seasons, with an increase dur-
ing the winter season. Moreover, the application of unit root tests indicates that
the series are not stationary. In fact, the Augmented Dickey-Fuller test (Said and
Dickey, 1984) rejects the null hypothesis of unit root only for period 28 and KPSS
test (Kwiatkowski et al., 1992) always rejects the null hypothesis of stationarity (see
Table 1).
Since some of the models considered or analysis require stationarity, in order

to meet this requirement we assume that each series is the sum of a non station-
ary level component Djt, describing level changes and/or long term and/or semi-
periodic behaviour, and a residual stationary stochastic component pjt, formally
logPjt = Djt + pjt.
In the present work, the Djt component has been estimated once for all by using
a nonparametric technique based on the nearest neighbors method, also known as
Friedman supersmoother (Friedman, 1984). The resulting series pjt = logPjt −Djt

are clearly stationary as can be seen in the right panel of Figure 1 and confirmed by
both the ADF test and the KPSS test (see Table 1). In the following they will be
referred as adjusted series.
Moreover, since here we are mainly interested in the relative predictive performance
among a set of models and their combinations, we will focus on the prediction of
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Table 1: Unit root tests for logPjt and pjt. Symbols ∗, ∗∗ mean that the null hypoth-
esis is rejected at 1% and 5% significance level respectively. In the ADF test, lag
lengths are chosen following Ng and Perron (1995) method.

logPjt pjt
Load Period ADF KPSS ADF KPSS

6 (02:30-03:00am) −1.981 0.958∗ −7.795∗ 0.015
18 (08:30-09:00am) −2.973 0.829∗ −6.917∗ 0.017
28 (13:30-14:00pm) −3.537∗∗ 0.417∗ −6.372∗ 0.015
38 (18:30-19:00pm) −2.442 1.002∗ −7.309∗ 0.014
44 (21:30-22:00pm) −2.455 0.914∗ −7.555∗ 0.016

pjt, whereas the Djt component is fixed and equal for all models and combinations.

3 Individual forecasts

The individual models involved in this study are chosen because each of them is,
potentially, very suitable to describe some specific features of the price dynamics.
All models are based on a set of explanatory variables (in the log scale) that are
strongly linked with the price evolution (see, Karakatsani and Bunn, 2008a among
others), namely:
- the Demand Forecast, the national day-ahead demand forecast published by the
system operator for each load period at time t− 1;
- the Indicated Margin, the available capacity margin, defined as the difference be-
tween the sum of the maximum export limits nominated by each generator prior
to each trading period, as its maximum available output capacity, and the demand
forecast;
- the Gas Price, the daily UK natural gas one-day forward price, from the main
National Balancing Point (NBP) hub. This is included because of its strong rela-
tion with power prices, especially during winter spikes. In particular, the series of
deviations of gas prices from its deterministic component was considered;
- Past Prices, in particular, lags 1 and 5, corresponding to the previous day price
and to the previous week price;
- Volatility, an indicator of instability and risk for both the electricity price series and
for the demand forecast series. It is defined as the coefficient of variation computed
on a rolling windows of the last 5 days.

The values at time t − 1 of the first three variables represent forecasts for the
next day. To face possible non linear relations between price and demand, and price
and margin, quadratic polynomials of demand and margin were introduced. The
individual forecasting models used in this study are:

• an ARMAX(p, q, r) model, where p and q are respectively the orders of the au-
toregressive and moving average parts, r is the order of the exogenous variable.
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Figure 1: Left panel: log-price time series, logPjt, with superimposed Djt for the
period April 2005 - September 2006. Right panel: the adjusted series pjt.
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In particular, for our dataset the identified model is the ARMAX(1,1,1).

pjt = ϕjpj(t−1) + εjt + θjεj(t−1) + βjzj(t−1), εjt ∼ WN(0, σ2
j ), (1)

where zj(t−1) is the indicated margin representing the exogenous variable, εjt
is the error term and ϕj , θj , βj are constant coefficients. This model captures
gradual adaptation through the the serial correlation in the adjusted log price
series and immediate shocks in pricing caused by scarcity. It was estimated
through maximum likelihood methods.

• a conventional constant parameter regression model (LR), which accounts for
relations between prices and the various price drivers. The model is specified
as:

pjt = β′
jXjt + εjt, εjt ∼ WN(0, σ2

j ) (2)

where βj is a k × 1 vector of constant coefficients, Xjt is the k × 1 vector of
regressors and εjt is an error term. The regressors are selected with stepwise
backward techniques (AIC criterion) among the variables described above.
The estimation was performed through maximum likelihood methods.

• a time-varying parameter regression model (TVR), with random walk param-
eters, allowing for price driver effects that continuously evolve:

pjt = β′
jtXjt + εjt, εjt ∼ WN(0, σ2

εj ), (3)

βj(t+1) = βjt + νjt, νjt ∼ WNk(0,Hj), (4)

where βjt is a vector of time-varying coefficients, Xjt is the vector of regres-
sors, εjt is the error term of the measurement equation and νjt is the error
term vector of the transition equation. It is assumed that E(εjtνjt) = 0 and
Hj = diag{σ2

νjk
}. For this model parameters were estimated using state space

methods and the Kalman filter (Hamilton, 1994 and Durbin and Koopman,
2001).

• a Markov regime switching model (MS) which should capture spikes and
discontinuities in price series, distinguishing between normal and high-price
regimes. It is defined as:

pjt = β′
jSt

Xjt + εjt, εjt ∼ WN(0, σ2
jSt

), (5)

Pr(St = i|St−1 = h) = πih, ∀i, h ∈ S (6)

where St is the latent regime at time t, S = {1, 2} the set of possible states
(say, base and peak), βjSt

is the vector of coefficients in regime St, Xjt is the
vector of regressors, σ2

jSt
the error variance in regime St and πih the transition

probability between states i and h.
Maximum likelihood estimates of βjSt and σ2

jSt
are performed using the EM

algorithm while for smoothed inferences of regimes, Kim’s algorithm was used
(Hamilton, 1994; Kim, 1994). The estimation procedure was applied referring
both to the expanding dataset case (MS) and to the 6 month rolling windows
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case (MS6). Once a MS model has been estimated, price forecasts are calcu-
lated as the linear combination of predicted prices across regimes weighted by
predicted regime probabilities.

The regressors that were significant, at the 5% level, in the five different load periods
are listed in Table 2. As can be seen, different periods have different significant
specifications.

Table 2: Final sets of regressors obtained with stepwise backward techniques.

Period 6 Period 18 Period 28 Period 38 Period 44

intercept
√ √ √ √ √

pt−1
√ √ √ √ √

demFt−1 —
√ √ √

—
demF 2

t−1 —
√

—
√

—
margint−1

√ √ √ √ √

margin2
t−1

√
— —

√
—

gasF.rest−1
√ √

— —
√

demV olt
√

— — — —
priceV olt — — — —

√

4 Combining forecasts

In general, a forecast combination based upon a set of K competing spot price

predictors producing forecasts P̂
(1)
t , ..., P̂

(K)
t of Pt, based on the information available

up to time t− 1, is given by:

P̂C
t = f

(
P̂

(1)
t , ..., P̂

(K)
t ;θ

)
(7)

with f a generic function, possibly nonlinear, and θ a parameter vector. Using linear
functions, expression (7) becomes

P̂C
t =

K∑
k=1

θkP̂
(k)
t . (8)

where the vector θ optimizes some criterion. Several studies have shown that, due
to the effect of finite-sample error in estimating the combining weights, an equally
weighted mean is often the best choice (Makridakis andWinkler, 1983; Clemen, 1989;
Stock and Watson, 2001, 2004; Smith and Wallis, 2009). We follow this conclusion
and in the rest of the paper we assume θk = 1/K.

In our case, the forecasts derive from the models described in the previous sec-
tion1, and thus, for each trading period there are five forecasts of the same spot

1Here we consider as different predictive models, the Markov switching models based on the
expanding dataset (MS) and the 6 months rolling windows (MS6)
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price, Pjt that can be considered singularly or combined.
Although the final price predictions would be given by

P̂jt = exp(Djt + p̂jt) (9)

with p̂jt the prediction of pjt, when we refer to out-of-sample predictions we mean
that we are considering out-of-sample forecasts of pjt. Note that, although this is
not a real out-of-sample prediction of Pjt because Djt has been estimated with a
smoother and not predicted, in our context this approach does not affect relative
conclusions because all models are equally favoured or penalized by Djt.
The whole dataset (April 1st, 2005 - September 30th, 2006) was divided into three
parts. The first part, covering the period April 1st, 2005 - December 31th, 2005, is
used only for individual model estimation. The remaining period (January 1st, 2006
- September 30th, 2006, 189 data) has been divided in further two parts: 1/3 is used
to calibrate combined forecasts, i.e. to select the constituents of the combination,
and 2/3 to out-of-sample forecasts evaluation (see Figure 2). Moreover, to compare
the relative forecasting performances between individual models and combinations
of the forecasts, 4 forecasting (sub-)periods were considered: the first three are
associated with the different seasons (January-March, 44 data; April-June, 41 data;
and July-September, 44 data) while the fourth includes the three seasons (January
1st, 2006 - September 30th, 2006, 125 data). The reason is to detect how much the
forecasting accuracy of the predictions is influenced by the period of the year as well
as by the considered trading period.
In our analyses comparisons are made on two levels: firstly we considered the

Figure 2: The framework of the prediction experiment (numbers in bold are sample
sizes).
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forecasting performance with respect to the following four statistics

MSE =
1

m

m∑
t=1

(Pjt − P̂jt)
2 MSPE =

1

m

m∑
t=1

(
100× Pjt − P̂jt

Pjt

)2

MAE =
1

m

m∑
t=1

∣∣∣Pjt − P̂jt

∣∣∣ MAPE =
1

m

m∑
t=1

∣∣∣∣∣100× Pjt − P̂jt

Pjt

∣∣∣∣∣
with m the length of the forecasting period. We considered the significance of the
difference in forecasting accuracy by means various tests, i.e. the Diebold and Mari-
ano test (Diebold and Mariano, 1995), whose null hypothesis is that of no difference
in the accuracy of two competing forecasters; a test based on the MCS (Model Confi-
dence Set) procedure of Hansen et al. (2003, 2005) that, for two models, is similar to
the Diebold and Mariano test but it estimates the distribution of the test statistic by
a bootstrap procedure; and a test of forecast encompassing, whose null hypothesis is
that predictions based on a model (for example CC) do not contain additional infor-
mation with respect to those based on a second model (for example CI; in this case
we say that CI encompasses CC). In the research literature, several formulations of
encompassing test have been suggested (Newbold and Harvey, 2004; Clements and
Harvey, 2007); here we adopted the specification given by Harvey et al. (1998), i.e.
the modified Diebold and Mariano test statistic with demeaned forecasting errors.
In the first two tests the equivalence between predictors is assessed with respect
to some specified loss functions: here we considered mean square error (MSE) and
mean absolute error (MAE). All tests were reported at the 5% significance level.

5 Comparing individual model forecasts and combinations
of forecasts

Forecasting performances of the individual models and combinations are evaluated
distinguishing among the 5 load periods (j = 6, 18, 28, 38, 44) referring to the trad-
ing hour of the day, 4 forecasting ’seasons’ (3 ’seasons’ and the whole period) 4
prediction error statistics (MSE, MSPE, MAE, MAPE) and, when the Diebold and
Mariano and/or the MCS tests are involved 2 loss functions (squared errors and
absolute errors).
According to the approach followed by Hibon and Evgeniou (2005), all compar-
isons are performed from two different perspectives. Firstly we compare ex post
the predictive performance of the best individual model (BI) with that of the best
combination (BC). Since the evaluation is made ex post, this is not an out-of-sample
prediction and it only allows us to check if there exists a combination giving better
predictive performance than individual forecasts. Obviously, results are related to
the specific models we considered.
In a second step, the comparisons are made considering models that have been
selected in-sample and, thus, they account for possible misspecifications and/or es-
timation errors. We denote by CI the chosen individual model and by CC the chosen
combination. In this case, out-of-sample predictions are involved.
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The model selection is performed minimizing, in the validation period, one of the
prediction error statistics described above and thus the models selected with respect
to different indicators are not necessarily the same and, indeed, usually differ. When
the descriptive indicators are involved, our study involves 80 cases (5 load periods ×
4 ’seasons’ × 4 indicators). The number of cases scales consequently if some element
(load period, ’season’ or indicator) is kept fixed.
The results are graphically summarized, for the whole period case, in Figures 3-4.
For example, the panel in position (1,1) of Figure 3 shows for the load period 6
and the MSE indicator the predictive performances in the out-of-sample forecasting
period. The five points on the left represent the values of MSE corresponding to
our five models, while the 26 points on the right relate to the MSE associated to
the 26 possible combinations of 2, 3, 4 or 5 individual forecasts. The best/worst ex
post individual model and combination, corresponding to the minimum/maximum
value of the indicator, are reported in the figure. In this case the best performance
is obtained with the forecasts combination of three models TVR, MS and ARMAX,
which outperforms the best individual model MS. The arrows denote the MSE asso-
ciated with the model/combination chosen in-sample. Note that, although there are
26 possible combinations and only 5 models, the comparison is fair because, in both
categories, we consider only the model selected in-sample. The range of the MSE
values can be interpreted as a measure of selection risk among individual forecasts
or among combinations.
Detailed results are given, for all cases, in Tables 3-7, where we list the exact pre-
diction error indicators and the p-values i) of the one-sided Diebold and Mariano
test for the null hypothesis that best (chosen) individual forecasts have the same
accuracy of the best (chosen) combined forecasts; ii) of the MCS test for the same
hypothesis and iii) of the forecast encompassing for the null hypothesis that in-
dividual model predictions contain all the information contained in the combined
predictions. Diebold and Mariano and MCS tests are performed with respect to loss
functions based both on squared (rows MSE) and absolute errors (row MAE). This
implies that the total number of comparisons is 160. Since the chosen models are
different for different indicators, we have different p-values corresponding to different
indicators. Table 8 lists a summary of the comparisons.
Table 9 contains the differences of performances of individual and combined fore-
casts with respect to the best possible performance (B), that is the minimum value
of the prediction error statistics chosen ex post among all individual and combined
forecasts. In particular, it lists the difference of performance, with respect to the
best case, of the worst and of the chosen individual and combined forecasts. This
gives us information about the riskiness of the two approaches.

5.1 Ex post analyses

In this first battery of analyses we compare, ex post, the best individual forecasts,
among our five models, and the best combination of the predictions based on these
models. The findings (see Figures 3-4 and Tables 3-7) highlight that, in general,
combined models show better prediction ability in terms of prediction error statis-
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tics. If we consider all the 80 comparisons2, in 76% of them, the best possible
forecasting model, obtained among all the individual models and all the combina-
tions for each measure, is a combination (see also Table 8). Moreover, the worst
performance - among all individual and combined forecasts - is always given by an
individual model, so that selecting among combinations seems to be less risky than
among individual models.
However, when we analyze the significance of the forecasting performance by means
of tests (DM, MCS, encompassing), the predictive accuracy of the best combination
is significantly better than that of the best individual model in only 8.75% of the
160 comparisons3, according to the DM test and in 3.75% according to MCS test.
On the contrary, however, for both tests the individual model accuracy never signif-
icantly outperforms that of the best combination (see also Table 8).
In general, our analyses indicate that the best performances are obtained combin-
ing predictions of only two or three models. For example, considering the MAPE
indicator in Figure 4, the best performing combination for the least volatile load
period 6 and for the peak load period 38 is obtained with the models TVR, MS and
ARMAX. This agrees with previous research: it has been argued that, rather than
combining the full set of forecasts, it is often advantageous to discard the models
with the worst performance (see, for instance, Aiolfi and Favero, 2005; Granger and
Jeon, 2004; Marcellino, 2004; Stock and Watson, 2001, 2004). However, in our study
some exceptions emerge when the worst predictive model is the TVR. In 7 cases,
for the whole forecasting period (load periods 6, 18 and 44), and in 2 cases, during
summer (load period 6), the best combination contains this (the worst performing)
model.

5.2 Ex ante analyses

We focus now on the forecasting comparison of models chosen ex ante, as it might
happen in practice. Thus, when models have to be selected, there is the risk that
the chosen model is much worse than the best possible choice in terms of out-of-
sample accuracy. For each period, the ex ante selection process considers individual
methods and combinations.
For these analyses the series have been divided into three parts (see also Figure 2):
an estimation period, coinciding with the in-sample period for the ex post analysis; a
validation period, of length 1/3 of the remaining data4, used to enable the selection
of the best individual model and combination ex ante and a forecasting period given
by the last 2/3 of data5, used for out-of-sample comparisons among models.
With respect to the indicators, the results are similar to those of the ex post case:
the selected combined predictions produce forecasting error statistics lower than the
selected individual model predictions in about 79% of cases (for detailed results see
Tables 3-8).
However, the situation is quite different from the corresponding ex post case when

25 load periods × 4 ’seasons’ × 4 indicators
35 load periods × 4 ’seasons’ × 4 indicators × 2 loss functions
464 data for the whole period and 20 data for the subperiods
5125 data for the whole period and 44 or 41 data for the subperiods
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we consider the statistical significance of the difference in out-of-sample forecasting
accuracy. Indeed, combined predictions are significantly more accurate than indi-
vidual model predictions in 33.13% of cases for D-M test and 18.13% for MCS test.
The contrary is true only in 1.25% of cases for DM test and only in 0.63% of cases
for MCS test (for detailed results see Tables 3-8). This points out the benefit in
choosing among combinations in ex ante situations: our findings indicate that, in
general, we obtain forecasts that are more accurate than selecting among the individ-
ual models, and when they are not more accurate, they are almost always not worse.
Similar conclusions can be drawn with respect to the encompassing test: globally,
the hypothesis that the chosen single forecasts contain the same information as the
chosen combined forecasts is rejected 1/3 of times.

5.3 Risk analysis

Our third way to compare individual forecasts and combined forecasts is through
the analysis of risks. In this regard, two interpretations of risk were considered. The
first one refers to the risk of an incorrect individual model or combination selection,
that is the risk of choosing a model or a combination that is not the best. We
call this selection risk. The second kind of risk is that related to the probability of
incurring in large prediction error and we call it prediction risk.
With respect to the selection risk, Table 9 shows that - in terms of performance
indicators - the distance from the globally best predictor (that is, the best predictor
among combinations and individual models, B) is generally smaller for the combi-
nation (compare column ”CC-B” of Table 9 with respect to column ”CI-B”). This
suggests that combining forecasts is less risky.
As a measure of prediction risk the so-called Expected Shortfall (ES), the average
forecasting error exceeding a specified quantile of the forecasting error distribution,
was considered. To have reliable results, this kind of analysis was performed only
for the whole period and for the quantiles, 95% and 97.5%. Moreover, in order to
compare the Expected Shortfalls a simple rule was adopted: we say that the forecast
combination is better than individual forecasts if the reduction in the ES is at least
5% (and viceversa). Interpreting our results, although in most of cases the differ-
ences are smaller than 5%, the combination led to improvements which are larger
than 5% in about 35% of cases, while improvements larger than 5% for individual
models occur only in about 7.5% of case.

6 Summary and conclusions

We have compared the relative forecasting performances of five individual models
and simple average combinations. The summary findings are as follows:

- in ex post comparisons, although the combined forecasts perform better than
individual forecasts in 76% of cases, only in a few cases they are also signifi-
cantly more accurate at the 5% level;

- in ex ante comparisons, when out-of-sample predictions are involved, the gen-
eral indications are not very different but quite different in terms of the signifi-
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cance of the improvements. Indeed, when the analyses are based on individual
and combined forecasts obtained through in-sample selection, the latter is sig-
nificantly more accurate than individual forecasts in about 33% of cases. On
the contrary, individual forecasts are more accurate in only 1% of cases. Thus,
within the limit of our data and of the considered models, we can conclude
that in about 99% of cases, seeking a combination of forecasts leads to predic-
tions more accurate than or equivalent to those obtained through seeking to
identify the individually best forecasts;

- our study stresses also that choosing an individual model out of a set of models
is more risky than choosing among combinations of their forecasts and that
combining is effective under value at risk criteria as well as for average accuracy.

In terms of the sensitivity of these results, it is worth noting that very similar
results were obtained by considering adaptive weights, following Bates and Granger
(1969), rather than simple averaging. Interestingly, similar results can be obtained
by using all five methods in the combination rather than a chosen subset, but only if
the adaptive weights are used instead of simple averaging. It is intuitive that if the
task of optimising a subset is avoided, there is a compensating need to use optimal
weights.

Finally, these analyses provide further indications of the specification difficulties
in modelling electricity prices. The fact that a simple combination of a subset
of quite sophisticated methods such as Markov regime switching and time varying
regressions, as well as ARMAX and linear regression, provides a more accurate
forecasting procedure, points to the inadequacies in each of these methods and/or
the ability to select the best performing one reliably.
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Table 3: Load period 6. Prediction error statistics values and p-values for the
Diebold-Mariano, MCS and encompassing tests. BI = best individual model (ex
post); BC = best combination (ex post); CI = chosen (ex ante) individual model;
CC = chosen (ex ante) combination.

Whole Winter

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 4.092 71.521 1.627 6.419 56.454 266.751 5.291 12.089
BC 3.366 65.598 1.415 5.803 56.140 236.093 5.222 11.944
CI 5.466 108.583 1.764 7.278 69.946 368.523 5.972 14.267
CC 3.987 70.496 1.632 6.735 68.598 318.663 5.599 12.736

BI vs. BC

Loss Function D-M test p-values
MSE 0.014 0.051 0.034 0.034 0.480 0.408 0.480 0.480
MAE < 0.001 0.057 0.019 0.019 0.435 0.321 0.435 0.435

MCS test p-values
MSE 0.025 0.108 0.072 0.083 0.961 0.785 0.962 0.963
MAE 0.001 0.111 0.044 0.041 0.866 0.650 0.865 0.856

CI vs. CC

Loss Function D-M test p-values
MSE 0.006 < 0.001 0.018 0.018 0.341 0.438 0.155 0.155
MAE 0.015 < 0.001 0.078 0.078 0.386 0.458 0.104 0.104

MCS test p-values
MSE 0.008 0.001 0.034 0.032 0.702 0.777 0.257 0.248
MAE 0.031 0.003 0.173 0.179 0.780 0.918 0.236 0.228

H0 Encompassing test p-values
CI encompasses CC 0.001 < 0.001 0.002 0.002 0.419 0.479 0.097 0.097

Spring Summer

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 2.401 37.200 1.170 4.724 4.054 94.443 1.549 7.128
BC 2.419 40.024 1.280 5.280 3.755 94.321 1.391 6.558
CI 6.163 107.967 2.153 8.949 4.363 104.202 1.681 7.707
CC 3.813 68.011 1.662 6.956 4.099 101.553 1.391 6.558

BI vs. BC

Loss Function D-M test p-values
MSE 0.463 0.463 0.463 0.463 0.121 0.234 0.301 0.301
MAE 0.058 0.058 0.058 0.058 0.039 0.229 0.037 0.037

MCS test p-values
MSE 0.920 0.921 0.923 0.924 0.204 0.465 0.578 0.576
MAE 0.226 0.215 0.219 0.219 0.108 0.421 0.078 0.067

CI vs. CC

Loss Function D-M test p-values
MSE < 0.001 < 0.001 < 0.001 < 0.001 0.185 0.065 0.149 0.149
MAE < 0.001 < 0.001 < 0.001 < 0.001 0.290 < 0.001 0.002 0.002

MCS test p-values
MSE < 0.001 < 0.001 < 0.001 < 0.001 0.302 0.101 0.342 0.358
MAE < 0.001 < 0.001 < 0.001 < 0.001 0.540 0.001 0.004 0.005

H0 Encompassing test p-values
CI encompasses CC < 0.001 < 0.001 < 0.001 < 0.001 0.037 0.081 0.196 0.196
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Table 4: Load period 18. Prediction error statistics values and p-values for the
Diebold-Mariano, MCS and encompassing tests. BI = best individual model (ex
post); BC = best combination (ex post); CI = chosen (ex ante) individual model;
CC = chosen (ex ante) combination.

Whole Winter

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 66.670 172.855 3.822 9.050 280.442 330.798 8.908 13.517
BC 65.758 165.096 3.795 8.863 276.851 313.603 9.099 13.237
CI 70.780 230.445 4.597 9.050 355.069 378.061 10.476 14.738
CC 71.037 195.548 4.054 9.753 321.389 321.217 9.369 13.530

BI vs. BC

Loss Function D-M test p-values
MSE 0.182 0.119 0.392 0.343 0.377 0.284 0.495 0.181
MAE 0.312 0.005 0.437 0.499 0.236 0.305 0.355 0.323

MCS test p-values
MSE 0.609 0.159 0.711 0.540 0.756 0.520 0.991 0.277
MAE 0.668 0.007 0.853 0.998 0.400 0.587 0.671 0.619

CI vs. CC

Loss Function D-M test p-values
MSE 0.482 0.011 0.011 0.449 0.070 0.081 0.081 0.081
MAE < 0.001 < 0.001 < 0.001 0.021 0.070 0.071 0.071 0.071

MCS test p-values
MSE 0.954 0.028 0.030 0.893 0.089 0.091 0.091 0.086
MAE < 0.001 < 0.001 < 0.001 0.039 0.152 0.092 0.097 0.092

H0 Encompassing test p-values
CI encompasses CC 0.740 0.003 0.003 0.479 0.034 0.097 0.097 0.097

Spring Summer

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 11.382 91.653 2.509 7.453 9.407 93.710 2.136 6.817
BC 11.396 83.109 2.543 7.439 9.740 95.559 2.031 6.499
CI 17.814 91.653 2.509 7.453 14.503 101.057 2.136 6.817
CC 13.169 92.395 2.578 7.598 15.219 95.797 2.146 6.874

BI vs. BC

Loss Function D-M test p-values
MSE 0.497 0.482 0.497 0.497 0.335 0.172 0.300 0.300
MAE 0.433 0.423 0.433 0.433 0.264 0.395 0.239 0.239

MCS test p-values
MSE 0.993 0.965 0.995 0.995 0.456 0.345 0.601 0.598
MAE 0.863 0.836 0.868 0.855 0.480 0.747 0.415 0.411

CI vs. CC

Loss Function D-M test p-values
MSE 0.003 0.314 0.314 0.314 0.301 0.191 0.191 0.191
MAE 0.001 0.365 0.365 0.365 0.454 0.442 0.442 0.442

MCS test p-values
MSE 0.003 0.655 0.664 0.673 0.608 0.415 0.417 0.420
MAE < 0.001 0.721 0.708 0.722 0.897 0.879 0.874 0.868

H0 Encompassing test p-values
CI encompasses CC 0.005 0.640 0.640 0.640 0.797 0.326 0.326 0.326
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Table 5: Load period 28. Prediction error statistics values and p-values for the
Diebold-Mariano, MCS and encompassing tests. BI = best individual model (ex
post); BC = best combination (ex post); CI = chosen (ex ante) individual model;
CC = chosen (ex ante) combination.

Whole Winter

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 523.078 471.771 9.816 16.658 924.282 590.634 15.881 19.254
BC 669.886 469.162 10.392 16.740 913.736 617.322 15.842 19.328
CI 523.078 643.093 12.145 19.377 934.600 590.634 15.881 19.254
CC 719.774 497.826 10.392 16.740 936.435 621.086 16.690 20.626

BI vs. BC

Loss Function D-M test p-values
MSE 0.095 0.095 0.095 0.095 0.432 0.386 0.424 0.424
MAE 0.190 0.141 0.190 0.190 0.455 0.291 0.466 0.466

MCS test p-values
MSE 0.259 0.268 0.264 0.266 0.843 0.731 0.839 0.835
MAE 0.378 0.218 0.370 0.388 0.907 0.593 0.918 0.925

CI vs. CC

Loss Function D-M test p-values
MSE 0.101 0.082 0.082 0.082 0.434 0.424 0.157 0.157
MAE 0.152 0.010 0.010 0.010 0.130 0.466 0.074 0.074

MCS test p-values
MSE 0.282 0.133 0.127 0.121 0.896 0.839 0.395 0.410
MAE 0.235 0.028 0.032 0.029 0.424 0.928 0.135 0.139

H0 Encompassing test p-values
CI encompasses CC 0.228 0.151 0.151 0.151 0.990 0.765 0.449 0.449

Spring Summer

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 68.973 433.676 6.382 16.075 60.680 382.361 5.513 14.849
BC 73.274 406.469 6.140 15.318 55.241 369.110 5.279 14.363
CI 88.021 448.339 6.382 16.509 81.937 545.883 6.561 17.682
CC 73.274 408.630 6.140 15.318 79.430 433.093 6.318 16.971

BI vs. BC

Loss Function D-M test p-values
MSE 0.207 0.191 0.207 0.005 0.256 0.297 0.297 0.385
MAE 0.139 0.411 0.139 0.030 0.139 0.266 0.266 0.281

MCS test p-values
MSE 0.558 0.449 0.541 0.050 0.422 0.584 0.571 0.746
MAE 0.417 0.855 0.417 0.151 0.354 0.491 0.487 0.580

CI vs. CC

Loss Function D-M test p-values
MSE 0.005 0.207 0.207 0.207 0.395 0.099 0.395 0.395
MAE 0.030 0.139 0.139 0.139 0.221 0.063 0.221 0.221

MCS test p-values
MSE 0.047 0.543 0.544 0.539 0.744 0.032 0.743 0.746
MAE 0.140 0.420 0.418 0.416 0.424 0.101 0.433 0.440

H0 Encompassing test p-values
CI encompasses CC 0.001 0.998 0.998 0.998 0.323 0.023 0.323 0.323
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Table 6: Load period 38. Prediction error statistics values and p-values for the
Diebold-Mariano, MCS and encompassing tests. BI = best individual model (ex
post); BC = best combination (ex post); CI = chosen (ex ante) individual model;
CC = chosen (ex ante) combination.

Whole Winter

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 104.403 321.991 6.114 13.793 2373.833 622.140 23.497 19.307
BC 124.260 290.172 5.927 12.646 2316.932 614.194 23.339 19.126
CI 164.629 458.370 7.238 16.509 2795.410 903.622 26.675 22.443
CC 162.906 343.986 6.385 14.896 2431.601 696.829 24.507 20.160

BI vs. BC

Loss Function D-M test p-values
MSE 0.170 0.173 0.173 0.173 0.403 0.460 0.460 0.460
MAE 0.282 0.282 0.282 0.282 0.130 0.444 0.444 0.444

MCS test p-values
MSE 0.452 0.551 0.560 0.560 0.783 0.920 0.923 0.924
MAE 0.596 0.606 0.597 0.600 0.207 0.896 0.893 0.895

CI vs. CC

Loss Function D-M test p-values
MSE 0.377 0.002 0.002 < 0.001 0.014 0.027 0.424 0.424
MAE 0.256 < 0.001 < 0.001 0.001 0.004 0.021 0.035 0.035

MCS test p-values
MSE 0.744 0.070 0.075 0.030 0.017 0.035 0.841 0.841
MAE 0.515 0.004 0.003 0.010 0.007 0.042 0.035 0.035

H0 Encompassing test p-values
CI encompasses CC 0.131 < 0.001 < 0.001 < 0.001 0.012 0.012 0.598 0.598

Spring Summer

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 39.878 236.531 4.298 11.162 29.902 254.507 4.023 12.019
BC 39.751 216.672 4.063 10.533 25.076 216.955 3.760 11.092
CI 55.925 314.892 4.872 12.845 36.825 292.681 4.673 13.588
CC 39.751 216.672 4.063 10.643 32.603 292.619 4.465 13.387

BI vs. BC

Loss Function D-M test p-values
MSE 0.480 0.032 0.032 0.053 0.101 0.167 0.101 0.101
MAE 0.178 0.154 0.154 0.107 0.076 0.055 0.076 0.076

MCS test p-values
MSE 0.963 0.091 0.105 0.244 0.130 0.250 0.118 0.126
MAE 0.300 0.294 0.300 0.233 0.315 0.071 0.322 0.310

CI vs. CC

Loss Function D-M test p-values
MSE 0.031 0.031 0.031 0.031 0.269 0.269 0.269 0.231
MAE 0.047 0.047 0.047 0.047 0.327 0.327 0.327 0.379

MCS test p-values
MSE 0.038 0.039 0.043 0.044 0.459 0.452 0.452 0.400
MAE 0.072 0.069 0.070 0.076 0.622 0.601 0.608 0.713

H0 Encompassing test p-values
CI encompasses CC 0.020 0.020 0.020 0.020 0.081 0.081 0.081 0.066
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Table 7: Load period 44. Prediction error statistics values and p-values for the
Diebold-Mariano, MCS and encompassing tests. BI = best individual model (ex
post); BC = best combination (ex post); CI = chosen (ex ante) individual model;
CC = chosen (ex ante) combination.

Whole Winter

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 16.462 90.904 2.592 7.203 309.909 276.057 7.840 11.983
BC 16.366 79.345 2.438 6.762 329.600 266.004 7.609 11.472
CI 18.478 90.904 2.592 7.203 360.028 284.415 8.885 12.126
CC 16.944 87.873 2.590 7.177 355.264 287.700 8.026 12.159

BI vs. BC

Loss Function D-M test p-values
MSE 0.480 0.417 0.480 0.417 0.183 0.183 0.183 0.183
MAE 0.130 0.170 0.130 0.170 0.152 0.152 0.152 0.152

MCS test p-values
MSE 0.960 0.803 0.956 0.813 0.564 0.569 0.571 0.569
MAE 0.320 0.343 0.320 0.361 0.424 0.420 0.418 0.422

CI vs. CC

Loss Function D-M test p-values
MSE 0.148 0.356 0.356 0.356 0.270 0.270 0.090 0.270
MAE 0.127 0.494 0.494 0.494 0.417 0.417 0.017 0.417

MCS test p-values
MSE 0.198 0.669 0.677 0.682 0.490 0.482 0.245 0.489
MAE 0.199 0.986 0.985 0.987 0.820 0.819 0.020 0.816

H0 Encompassing test p-values
CI encompasses CC 0.188 0.964 0.964 0.964 0.304 0.304 0.090 0.304

Spring Summer

MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Models Prediction error statistics values
BI 5.238 54.940 1.842 5.963 5.103 46.259 1.710 5.186
BC 5.136 52.830 1.905 6.170 5.072 45.764 1.684 5.089
CI 6.137 65.836 2.169 7.102 5.256 47.856 2.034 6.201
CC 6.144 64.316 2.064 6.682 5.072 49.075 1.845 5.817

BI vs. BC

Loss Function D-M test p-values
MSE 0.413 0.413 0.413 0.413 0.431 0.424 0.424 0.424
MAE 0.229 0.229 0.229 0.229 0.337 0.320 0.320 0.320

MCS test p-values
MSE 0.826 0.827 0.822 0.822 0.777 0.861 0.863 0.860
MAE 0.488 0.487 0.493 0.479 0.709 0.644 0.647 0.651

CI vs. CC

Loss Function D-M test p-values
MSE 0.496 0.496 0.496 0.496 0.154 0.292 0.009 0.112
MAE 0.231 0.231 0.231 0.231 0.061 0.040 < 0.001 0.032

MCS test p-values
MSE 0.992 0.992 0.994 0.991 0.136 0.581 0.010 0.153
MAE 0.475 0.464 0.465 0.467 0.175 0.105 0.003 0.080

H0 Encompassing test p-values
CI encompasses CC 0.139 0.139 0.139 0.139 0.114 0.508 0.004 0.058
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Table 8: Summary of comparisons on the whole: percentage and, in brackets, number
of cases. BI = best individual model (ex post); BC = best combination (ex post); CI
= chosen (ex ante) individual model; CC = chosen (ex ante) combination.

Prediction error statistics values

Whole Winter Spring Summer Totals

BC better than BI 80.00% (20) 80.00% (20) 55.00% (20) 90.00% (20) 76.25% (80)

BI better than BC 20.00% (20) 20.00% (20) 45.00% (20) 10.00% (20) 23.75% (80)

CC better than CI 85.00% (20) 70.00% (20) 80.00% (20) 80.00% (20) 78.75% (80)

CI better than CC 15.00% (20) 30.00% (20) 20.00% (20) 20.00% (20) 21.25% (80)

Significance of differences with D-M test (MSE and MAE loss functions)

Whole Winter Spring Summer Totals

BC better than BI 17.50% (40) 0.00% (40) 10.00% (40) 7.50% (40) 8.75% (160)

BI better than BC 0.00% (40) 0.00% (40) 0.00% (40) 0.00% (40) 0.00% (160)

CC better than CI 50.00% (40) 17.50% (40) 50.00% (40) 15.00% (40) 33.13% (160)

CI better than CC 2.50% (40) 0.00% (40) 0.00% (40) 2.50% (40) 1.25% (160)

Significance of differences with MCS test (MSE and MAE loss functions)

Whole Winter Spring Summer Totals

BC better than BI 12.50% (40) 0.00% (40) 2.50% (40) 0.00% (40) 3.75% (160)

BI better than BC 0.00% (40) 0.00% (40) 0.00% (40) 0.00% (40) 0.00% (160)

CC better than CI 47.50% (40) 15.00% (40) 37.50% (40) 12.50% (40) 28.13% (160)

CI better than CC 2.50% (40) 0.00% (40) 0.00% (40) 0.00% (40) 0.63% (160)

Encompassing test

Whole Winter Spring Summer Totals

CI encompasses CC 55.00% (20) 85.00% (20) 50.00% (20) 85.50% (20) 67.50% (80)
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