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A B S T R A C T

In this thesis we study from a physics perspective two problems re-
lated to biological interactions. In the first part of this thesis we con-
sider ecological interactions, that shape ecosystems and determine
their fate, and their relation with stability of ecosystems. Using ran-
dom matrix theory we are able to identify the key aspect, the order
parameters, determining the stability of large ecosystems. We then
consider the problem of determining the persistence of a population
living in a randomly fragmented landscape. Using some techniques
borrowed from random matrix theory applied to disordered systems,
we are able to identify what are the key drivers of persistence. The
second part of the thesis is devoted to the observation that many liv-
ing systems seem to tune their interaction close to a critical point. We
introduce a stochastic model, based on information theory, that pre-
dict the critical point as a natural outcome of a process of evolution
or adaptation, without fine-tuning of parameters.
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A S T R AT T O

In questa tesi studiamo da una prospettiva fisica due problemi legati
alle interazioni biologiche. Nella prima parte della tesi consideriamo
le interazioni ecologiche, che danno forma agli ecosistemi e deter-
minano la loro sorte, e la loro relazione con la stabilità degli stessi.
Usando la teoria delle matrici aleatorie, siamo in grado di identi-
ficare gli aspetti chiave, i parametri d’ordine, che determinano la
stabilità degli ecosistemi. Quindi consideriamo il problema di de-
terminare la persistenza di una popolazione che vive in un terri-
torio frammentato aleatoriamente. Usando alcune tecniche prese in
prestito dalla teoria delle matrici aleatorie applicata ai sistemi disor-
dinati, riusciamo a identificare quali sono gli ingredienti chiave per
la persistenza. La seconda parte della tesi è dedicata all’osservazione
che molti sistemi viventi sembrano essere calibrati precisamente vi-
cino a un punto critico. Indroduciamo un modello stocastico, basato
sulla teoria dell’informazione, che predice i punti critici come risul-
tato naturale di un processo di evoluzione e adattamento, senza una
calibrazione dei parametri.

iv



P U B L I C AT I O N S

Some ideas and figures have appeared in the following publications:

S. Allesina, J. Grilli, G. Barabas, S. Tang and A. Maritan. The Stability
of Large Food Webs. Submitted to Nature Communications.
Section 2.7

S. Suweis, J. Grilli and A. Maritan. Disentangling the effect of hybrid
interactions and of the constant effort hypothesis on ecological com-
munity stability. Oikos. 123(5):525-532. 2014.
Section 2.8

J. Grilli, M. Adorisio, S. Suweis and A. Maritan. Structural Stability in
empirical and random mutualistic systems. In preparation.
Chapter 3

J. Grilli, G. Barabás and S. Allesina. Metapopulation persistence in
random fragmented landscapes. Submitted to Plos Computational Biol-
ogy.
Chapter 4

J. Hidalgo, J. Grilli, S. Suweis, M.A. Muñoz, J.R. Banavar and A. Mar-
itan. Information-based fitness and the emergence of criticality in liv-
ing systems. Proceedings of the National Academy of Sciences. 111(28):10095-
10100. 2014.
Chapter 6

Other publications by the same author:

M. Adorisio, J. Grilli, S. Suweis, S. Azaele, J.R. Banavar and A. Mari-
tan. Spatial maximum entropy modeling from presence/absence trop-
ical forest data. Preprint on Arxiv: 1407.2425

J. Grilli, M. Romano, F. Bassetti and M. Cosentino Lagomarsino. Cross-
species gene-family fluctuations reveal the dynamics of horizontal
transfers. Nucleic Acids Research. 42(11):6850-6860. 2014.

J. Grilli, S. Suweis and A. Maritan. Growth or reproduction: emer-
gence of an evolutionary optimal strategy. Journal of Statistical Me-
chanics: Theory and Experiment. 2013(10):P10020. 2013.

v



J. Grilli, S. Azaele, J.R. Banavar and A. Maritan. Absence of detailed
balance in ecology. Europhysics Letters. 100:38002. 2012.

J. Grilli, S. Azaele, J.R. Banavar and A. Maritan. Spatial aggregation
and the species-area relationship across scales. Journal of Theoretical
Biology. 313:87-97. 2012.

L. Grassi, J. Grilli and M. Cosentino Lagomarsino. Large-scale dynam-
ics of horizontal transfers. Mobile Genetics Elements. 2(3):163-167. 2012.

J. Grilli, B. Bassetti, S. Maslov and M. Cosentino Lagomarsino. Joint
scaling laws in functional and evolutionary categories in prokaryotic
genomes. Nucleic Acids Research. 40(2):530-540. 2012.

vi



A C K N O W L E D G M E N T S

I thought of how many places there are in the world that belong in this way
to someone,

who has it in his blood beyond anyone else’s understanding.

— Casare Pavese

Amos Maritan has been much more than a supervisor and a men-
tor in these years and I am thankful to him for a lot of reasons. From
his curiosity and his desire to go beyond the borders of knowledge
to his great lessons about small, yet very interesting, details on ob-
scure statistical mechanics models. From the time spent in front of
a blackboard to the belly laughs in his office. Above all, I want to
thank Amos for the trust and the freedom he gave me. While he did
that in a very natural way, it is something that is far from being obvi-
ous. Samir Suweis has being a constant presence during my graduate
studies in Padova and I owe him a lot. I want to thank him for his
sincere friendship and his ability to stay in front of the unknown and
of the difficulties with a smile on his face. People in Padova have
been great fellows in these years, and I want to thank all the people
that populated my office (Denise and Laura expecially) and all the for-
mer, present and future members of Amos’ lab: Claudio Borile, Marco
Formentin, Milo Abolaffio (and his abdomen) and all the others. In
particular, I am very thankful to meu irmão Rodrigo Pereira Rocha,
for being so in love with life and for having taught me what saudade
is, and to Matteo Adorisio, for his friendship, for being on the same
wavelength on so many things (from vincisgrassi to eleuthera) and for
reading this thesis.

Marco Cosentino Lagormasino has been the first person proposing
me a research project, almost six years ago. I feel deeply thankful to
him for many reasons. For the trust he put on me at the first time, for
the trust he is still putting on me, for the way he collaborates with
people and with me, for many advises he gave me during these years,
for involving me in many projects and, most than everything, for the
fun I have collaborating with him. I want to thank Bruno Bassetti for
his unique, elegant, self-ironic and modest way of being a teacher, a
researcher and a mentor. I wish also thank all the people in Marco’s
(enlarged) group I had the fun to collaborate with, and in particular
Marco Gherardi and Matteo Osella.

Stefano Allesina welcomed me in his lab and I want to thank him
for his enthusiasm and (together with Elena, Luca and Marta) for
having let me feel at home while I was in Chicago. I wish also to thank
all the members of Allesina’s lab, and in particular Gyuri Barabás, for
all the passionate discussions.

vii



I am very thankful to the Andalusian collaborators. Miguel Muñoz
for his enthusiasm and his inteligencia emocional and Jordi Hidalgo,
for his great friendship and for the fun I always have when I work
with him.

I am very grateful to all the people I had the pleasure to collaborate
with (Sergei Maslov, Jayanth Banavar, Sandro Azaele and Federico
Bassetti in particular) and to all the ones that I met at conferences
and schools.

There are several people that are not directly involved in my re-
search, but made it indirectly to be possible, fun and different. I wish
to thank all the people I studied with in Milan, all my friends (espe-
cially all the green dots), my parents-in-law and siblings-in-law, and
Aldo, who taught me how to love the universe behind any small ob-
ject. I will be eternally grateful to my parents, Daniela and Emilio, to
my sister Ilaria and to Filippo for the support and the patience. Last,
but not least, to Sara, for nothing and for everything, that always
coincide.

viii



C O N T E N T S

0 introduction 1

0.1 A stochastic overture 1

0.2 What is in this thesis 2

i stability and randomness in ecological inter-
actions 3

1 ecological interactions and stability of ecosys-
tems 5

1.1 Ecological Interactions 5

1.2 Interactions as networks 6

1.3 Structure of ecological interactions 7

1.4 Describing the interactions in an ecosystem 12

1.5 Stability of an ecosystem 13

2 random matrices and stability 15

2.1 Will a large complex system be stable? 15

2.2 Random Matrix ensembles 16

2.3 Semicircular law 17

2.4 Non-Symmetric random matrices 18

2.5 Effect of different interaction types on stability 18

2.6 Nestedness and stability 21

2.7 Stability in structured food-webs 22

2.8 Different Interaction Types 26

3 structural stability 27

3.1 From local stability to structural stability 27

3.2 Dynamics and interactions of mutualistic systems 28

3.3 Feasibility and global stability 29

3.4 Quantification of structural stability 31

3.5 Fast and reliable numerical calculation of structural sta-
bility 33

3.6 Possible biases in previous analysis of structural stabil-
ity 35

3.7 Dependence of structural stability on structure, inter-
action strength and asymmetry 37

3.8 Structural stability of empirical mutualistic networks 37

3.9 Direction of minimal structural stability: definition and
calculation 42

3.10 Dependence of minimal structural stability on parametriza-
tion 44

3.11 Conclusion 46

4 persistence of a metapopulation in a randomly

fragmented landscape 47

4.1 Metapopulation Theory 47

ix



x contents

4.2 Dispersal matrix as a random matrix 50

4.3 Metapopulation capacity in fragmented landscapes 53

4.4 Conclusions 65

ii criticality in biological interactions 69

5 criticality in living systems 71

5.1 Brief primer on critical phenomena 71

5.2 Are biological systems poised at criticality? 72

5.3 Scale invariance and criticality 75

5.4 What needs to be done 76

6 information-based fitness and criticality 79

6.1 Introduction 79

6.2 Model framework 80

6.3 Analytical results 85

6.4 Co-evolutionary Model 88

6.5 Evolutionary Model 95

6.6 Effective criticality of the environment 100

6.7 Discussion and conclusions 102

7 conclusion and perspectives 105

iii appendix 107

a from stochastic equation to asymptotic linear

stability 109

a.1 Deterministic equation 109

a.2 Stochastic equation 109

a.3 Kramers-Moyal expansion 110

a.4 Van Kampen’s ansatz 110

a.5 Van Kampen feat. May 111

b demonstration of wigner semi-circular law 113

bibliography 117



0
I N T R O D U C T I O N

Philosophy is written in this grand book
– I mean the universe –

which stands continually open to our gaze,
but it cannot be understood unless one first learns to comprehend the

language in which it is written.
It is written in the language of mathematics.

— Galileo Galileo

0.1 a stochastic overture

This thesis is about interactions in biological systems. While we have
a deep a understanding and an elegant theory (or perhaps elegant
theories) on the forces that shape the universe, from quarks to galax-
ies, we still lack a comprehensive view of how interactions between
molecules make things to be alive.

We do not want to go into definitions and face the problem of defin-
ing life [2]. Life. There is something clearly different in life, as we
immediately recognize the difference between what is animate and
what inanimate. We do not believe that a “life force” able to animate
the inanimate is the explanation. As physicists studying life as a phe-
nomenon, we are trying to understand how the microscopic forces
between inanimate objects generate life as an emergent property.

Physicists, as natural scientists, as always been interested in the
phenomenon of life and in its quantitative description. Helmholtz,
Maxwell, Rayleigh did not raise barriers on their interests and seemed
less interested in what we are on distinguish physics, chemistry or bi-
ology. Delbrück is the shining example of how much physicists con-
tributed to biology.

We are pretty far from having any elegant, concise and comprehen-
sive theory of life. Yet, we have principles, that sustains and guide
hypothesis [3]. Randomness is important. From DNA trascription to
population dynamics noise plays an important role, is the driving
source of mutations and variability of the environment force living
organisms to be flexible. No fine-tuning. Life is a robust phenomenon
in a noisy and variable world. Information and representation. Survive
and procreate is always about extract information from an environ-
ment, represent it and pass the information to others individuals or
next generations.
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2 introduction

0.2 what is in this thesis

This thesis is about randomness, fine-tuning and information passing
in biological interactions and it is divided in two self-consistent part.

In the first part we consider explicitly one specific class of interac-
tions, ecological interactions and we will try to make a connection
between interactions and stability of ecosystems. Chapter 1 will de-
fine what are ecological interactions and their different types. We will
describe them as networks identifying different topological structures
that characterize empirical ecological interactions and we finally intro-
duce the problem of stability of ecosystems. In chapter 2 we describe
an approach to study the relation between interactions and stabil-
ity, based on random matrices. We will also present original results
about the stability of large structured food-webs and the stability in
presence of different interaction types. Chapter 3 is completely origi-
nal and is about mutualistic systems and the size of stability domain.
In this chapter we introduce a numerical way to compute how big
is the domain of conditions that leads to stable ecosystems and we
put in relation with the structure of empirical networks. In chapter 4

we do not consider interactions between species but interactions be-
tween spatial locations. We introduce an original way to estimate the
persistence of a population in a randomly fragmented landscape base
on random matrices.

If the first part was mainly about noise in interactions, as inter-
actions were modeled using random matrices, the second part is
about fine-tuning of interactions and their role in information pass-
ing. Chapter 5 will propose some evidences that living systems oper-
ate close to a critical point. We will also suggest some possible biases
that could affect this observation. In chapter 6 we propose an original
model trying to suggest a mechanism that connects criticality with
information passing, showing how the former can emerge without
fine-tuning of parameters.



Part I

S TA B I L I T Y A N D R A N D O M N E S S I N
E C O L O G I C A L I N T E R A C T I O N S

Perhaps randomness is not merely an adequate description for
complex causes that we cannot specify.

Perhaps the world really works this way, and many events are
uncaused in any conventional sense of the word.

Perhaps our gut feeling that it cannot be so reflects only our
hopes and prejudices, our desperate striving to make sense of a

complex and confusing world, and not the ways of nature.

— Stephen J. Gould





1
E C O L O G I C A L I N T E R A C T I O N S A N D S TA B I L I T Y O F
E C O S Y S T E M S

The first law of ecology is that
everything is related to everything else.

— Barry Commoner

1.1 ecological interactions

Individuals living in an ecosystems are not independent entities. From
microscopic viruses to gigantic plants, from bacteria to mammals, ev-
ery living form interacts with the environment and with other living
forms. Viruses need microbes or other cells to reproduce, plants need
bacteria in the soil to grow and mammals have to eat plants or other
animals to survive. An ecosystem is therefore not just a sum of in-
dividuals and species, but also a set of interactions and interdepen-
dences.

As we already mentioned in the introduction of this thesis, interac-
tions in biology and in ecology have not (yet) the simple and elegant
form they have in the physics of inanimate matter. Interactions be-
tween individuals and species depend, at least as far as we know, on
the peculiar characteristics of the organisms we are considering, on
their evolutionary history and on all the possible contingencies that
affect their life and their evolution. It could seem therefore hopeless
to study this kind of systems from any general perspective and that
the only description possible is an enumerations of differences. As
we show in sections 1.2 and 1.3 this is fortunately not the case. When
interactions are described in terms of networks, striking regularities
emerge, revealing the universal properties that shape ecological inter-
actions.

Ecological interactions define the interdependence between species
or groups of individuals. In section 1.4 we introduce a dynamical
description of species, where populations are coupled by interactions.
One can therefore study the dynamical properties of ecosystems when
they are seen as dynamical systems. As one is not typically interested
to transients, the stationary properties are the main focus of research.
The natural question that has to be asked when dealing with station-
ary properties is whether they are stable or not. Since we are dealing
with ecosystems determine the stability is very relevant, as it coin-
cides with the theoretical side of the problem of conservation. In sec-
tion 1.5 we introduce the problem of stability in ecology, that will be
fully explained and described in chapter 2.

5



6 ecological interactions and stability of ecosystems

1.2 interactions as networks

Complex systems interact in a complex way. The standard way to look
at interactions in a complex world is to look at them as networks.

A network (or a graph) is a collection of N nodes and L edges (or
links), where pairs of nodes are connected by edges. A social network
is just an example, where people (nodes) are connected by friendship
(edges). Social networks are an example of an undirected network,
where edges have not an orientation (friendship is a mutual relation).
If edges have orientation, e.g. in the world wide web, where nodes
represent Web pages and edges are the hyperlinks between pages,
the networks is directed.

A network of N nodes can be represented as a N×N matrix, called
adjacency matrix. Each element of the matrix represents the presence
or the absence of a connection between nodes. If A is the adjacency
matrix, the element Aij is equal to zero if there is not a connection
from node i to j, while it is equal to 1 if there is a link between them.
If the network is undirected the adjacency matrix is symmetric, as a
link between node i and node j always corresponds to a link between
j and i.

Properties of networks have been studied from several different
point of views. Physics, and in particular statistical mechanics, have
contributed a lot in recent years. These studies has mainly focused
on finding non-null regularities in empirical networks and explain
them using simple models. Regularities has been found across sev-
eral different empirical networks and what clearly emerges is that
their are complex, where complex means that their structure and their
topological properties are non-trivial being very different from what
one would expect for simple graph.

The definition of complex relies then on the definition of simple. Ex-
ample of simple graphs are regular graphs, where each node have ex-
actly the same properties than any other (e.g. a d-dimensional lattice),
and Erdös-Rényi (ER) random graphs, that are built by assigning a
link between two nodes independently and with equal probability. In
these simple networks all nodes have the same or similar degree (the
number of links starting from each node, e.g. the number of friends if
we are considering a social network) and the distribution of degrees
(i.e. the probability of finding a node with a given degree) is a well be-
haved distribution peaked around a value (e.g. a Poisson distribution
in the case of ER random graphs). Simple networks are well diluted,
meaning that different groups of nodes have similar properties. ex-
ample. The number of friends each person have is strongly related to
its social status, varying a lot between people [5] and people having
a common friend are more likely to be friend than what expected by
random [6]. Example of properties that identify a network as com-
plex are: scale-free degree distribution (the degree distribution has
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a power-law tail), modularity (groups of nodes that have more con-
nections between nodes of the same group than between nodes of
different groups), assortativity or dissortativity (nodes with high de-
gree tend to have more connections with nodes of high/low degree)
and many others. Going back to our example, social networks show a
power-law degree distribution [5], are modular [6] and assortative [7].

Ecological interactions can be represented as networks. Species are
nodes and a link between two nodes represents an interaction. As
there are different types of ecological interactions there are different
types of interaction networks. In the next section we will introduce
different interaction types and their properties in terms of networks.

1.3 structure of ecological interactions

Ecological interactions are not of the same type. Both lions and gazelles
and bees and flowers interact, but they do that in very different ways.
There are three main types of interactions, depending on the effect
they have. If the interaction is beneficial for both the individuals, it
is said to be mutualistic (e.g. between bees and flowers), while if the
interaction is disadvantageous for both, then it is competitive (e.g. be-
tween hyenas and lions competing for a prey). If the the interaction
is beneficial for one and disadvantageous for the other, the interac-
tion is said to be antagonistic and can be either predation (e.g. lions
eating gazelles) or parasitism (e.g. viruses and bacteria). As will be
explained in section 1.4, being advantageous or disadvantageous is
related to an increasing or a decreasing of the population abundance
of the individuals that are interacting.

Observational data gives the possibility to build an interaction net-
work between species describing their interactions. The structure and
the properties of these empirical networks are the focus of this section.
We analyze in detail two types of networks corresponding to two
interaction type: mutualistic networks and predator-prey networks
(food-webs). There will be also discussed possible models that try to
reproduce empirical networks.

1.3.1 Mutualistic networks

Empirical mutualistic networks are typically undirected bipartite net-
works. The nodes of a bipartite network can be divided in two dis-
jointed sets, such that every edge connect one node of a set to one
node of the other, and two nodes of the same set are never linked.
A bipartite graph can be equivalently defined as graph that does not
contain any cycle of odd length.

The empirical networks available are typically plant-pollinator net-
works or plant-seed disperser networks. In the former case the two
sets of the bipartite mutualistic network are species of plants and



8 ecological interactions and stability of ecosystems

species of pollinators, where a link between them indicates a mutual-
istic interaction (plants have an advantage as the disperse their pollen,
while pollinators get food). In a very similar way, in plants-seed dis-
perser networks, plants get their seed dispersed by animals that eat
their fruits.

Mutualistic networks do not have a random structure [8, 9]. Their
degree distribution is highly heterogeneous: there are specialistic species
(interacting with few other species) and generalist ones (that seem to
interact with many others). Moreover these networks are said to be
nested, with specialists interacting more likely with generalists than
with other specialist [8]. This statement, “specialists interacting more
likely with generalists”, is a relative statement, meaning that “more
likely” refers to what we should expect by chance. Defining the null
expectation, i.e. what we should expect by chance, requires the defi-
nition of a null model. Even more trivially we have to define a mea-
sure of what nestedness is. Despite there is a general consensus that
mutualistic network are nested, there is still a debate around these
two problems: how to measure nestedness and what is the right null
model. The commonly accepted measure is NODF [10], even though
it presents several issues. A simpler version of it, known as η, is also
used. Recently it as been propose to use the spectral radius of the
adjacency matrix [11].

The debate around the correct null model to use is probably more
subtle. The simplest null model consists in rewiring the links, conserv-
ing therefore only the dimensionality of the network and its num-
ber of links, constraining the randomized network to be fully con-
nected. This randomization corresponds to generate Erdös-Rényi ran-
dom graphs with a given number of links, and it usually called Erdös-
Rényi (ER) randomization. All the measures of nestedness have val-
ues significantly much larger in empirical networks than in their ER
randomizations. Figure 1 shows the empirical nestedness (NODF)
measured in emprical netwroks compared with the distribution of
values found out of ER randomization. Except very few cases, all the
networks show a NODF larger than what expected by chance.

This fact could be a consequence of the heterogeneity of degrees.
Therefore, nestedness has been studied in relation to the degree dis-
tribution of empirical network. Typically degrees are conserved “on
average” in randomizations [12], meaning that a connection between
i and j is considered with probability proportional to kikj (where
ki is the empirically observed degree of the node i). Again these ran-
domizations show a tendency of networks to be nested [12]. This type
of randomization has been criticized, since it biased the result toward
more dissortative network [13, 12]. The most conservative random-
ization conserves exactly the degree sequence (i.e. the observed ki).
Being a very conservative randomization it produces very few net-
works, and there are in principle cases where there is only one graph
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Figure 1: Nestedness in 85 empirical mutualistic networks. Each panel refers
to a network (either a plant-pollinator if the name starts with M_PL
or plant-seed disperser if the name starts with M_SD). The x-axis
represents NODF [10] and the blue line is the value measured in
the empirical network. The black bars are the histogram obtained
by measuring the NODF over the ER randomizations. Panels with
the red label indicate an empirical value of NODF significantly
larger than randomizations (p−value smaller than 0.025), while
gray ones mean that the results are not significant. Empirical net-
works are significantly more nested than what expected by chance,
when only the number of links is conserved.
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Figure 2: Nestedness in 85 empirical mutualistic networks. Each panel refers
to a network (either a plant-pollinator if the name starts with M_PL
or plant-seed disperser if the name starts with M_SD). The x-axis
represents NODF [10] and the blue line is the value measured in
the empirical network. The black bars are the histogram obtained
by measuring the NODF over the randomizations that conserve
the exact degree sequence. Panels with the green label indicate an
empirical value of NODF significantly lower than randomizations
(p−value smaller than 0.025), while gray ones mean that the re-
sult are not significant. network not significantly more nested than
what expected by chance, when the degree sequence in conserved.

having the observed degree sequence [11]. Figure 2 shows that em-
pirical networks are not more nested than networks with the same
degree sequence.

A lot of speculations have been made on why nestedness could be
beneficial for empirical networks [14], and different mechanisms lead-
ing to nested graph have been [15, 16, 17, 18] proposed. In particular
nestedness has been showed to emerge from an adaptive/evolution
dynamics in which species rewired their links in order to maximize
their population abundance [18].

1.3.2 Food-webs

Food-webs represent the connections between species via the food
chain. They are directed networks, where a link from species i to
species j indicates that i predates j (sometimes the opposite notation
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is used, where a link indicate the flow of energy/biomass from an
organism to the other).

Despite the first food-web was graphically represented by Lorenzo
Camerano in 1880, they have been studied quantitatively as networks
only recently, with the goal of identifying common properties rather
than peculiarities. Many properties that classify them as complex net-
works have been identified, such as non-poisson degree distribution
(even if it is not power-law [19]), non-null network motifs [20], show-
ing some universal properties [21].

Since the big fish (usually) eats the small(er) fish, food-webs are
more directional than random directed networks. They contains few
directed loops [21] and species tend to be ordered in levels (trophic
levels), with incoming links (predators) from upper levels outgoing
links to lower levels (preys). A simple quantitative model that consid-
ers directionality is called cascade model [22]. In the cascade model,
S species are ranked and for each species j, a link from one of the
species with lower rank is drawn with probability C. If K is the ad-
jacency matrix, when C = 1, the upper-triangular part of K is com-
pletely filled with ones. The cascade model produces directed acyclic
graphs, so that all the non-zero coefficients of K are contained in its
upper-triangular part.

The cascade model considers the directionality of empirical food-
webs, but ignore one other important ingredient that is intervallity.
If it is true that the big fish eats the small fish, it is also true that
sharks do not eat shrimps. Most of the species (with some exceptions)
tend to predate species that are smaller but not too much. The niche
model [23] takes inspiration from this fact. Building an adjacency ma-
trix using the niche model requires four steps:

1. Each species j is assigned a “niche value”, ηj, sampled from
a uniform distribution U[0, 1], and the species are sorted in in-
creasing order.

2. A “niche radius” is obtained for each species: rj = ηjB, where
B is a value sampled from the beta distribution B(1,β).

3. A “niche center”, cj, is sampled from U[rj/2, min(ηj, 1− rj/2)].

4. Species j consumes all species k whose niche value is included
in an interval: (cj − rj/2) 6 ηk 6 (cj + rj/2).

To ensure that we obtain a number of links that is about right [24], one
has to set β = S(S− 1)/L− 1. The niche model well reproduces the
main features of empirical food-webs [23], being also very parsimo-
nious in parametrization (as depends only on the number of species
and the number of links).
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1.4 describing the interactions in an ecosystem

One can think of an ecosystem as a stochastic dynamical system. The
populations of species change in time because of stochasticity of the
environment, demographic processes and the fact that different pop-
ulations are coupled via interactions. In this section we will not intro-
duce stochastic dynamics, and we will describe the dynamics of an
ecosystem as it was purely deterministic. The equations that follow
can therefore be interpreted as an appropriate deterministic limit of
stochastic equations or an equation for the average population under
a proper mean-field approximation.

The fundamental equation of population growth of a single species
is the logistic equation

dN

dt
= rN

(
1−

N

K

)
, (1)

that models the growth of a population in presence of limiting re-
sources. The parameter K is known as carrying capacity, and repre-
sents the maximum population size that the resources can sustain,
while r is the per-capita growth rate. If the resources were infinite
(K → ∞), the population would grow exponentially, with rate equal
to r. The resulting dynamics in presence of limiting resources is quite
simple, if r > 0, the population converges to a globally stable equilib-
rium N∗ = K, while if r < 0, the stable equilibrium is N∗ = 0.

The logistic equation, even if it considers only one species, already
contains some ecological information. The self-limitation term can in-
deed be considered as the result of a competitive interaction between
individuals of the population. In a word with infinite resources there
is no competition, and every individual would have the same prob-
ability to die/have progeny independently of the size of the popu-
lation. When the resources are limited, the more the individuals are
the less the resources per individual are, giving rise to a decreasing
of the growth.

The most celebrated equation describing multiple species is proba-
bly the Lotka-Volterra equation. It describes the growth of two pop-
ulations, a predator and a prey. Instead of writing it in its original
formulation, we consider its generalization to multiple species and
multiple interaction types

dni
dt

= rini +ni

S∑
j=1

AijHi(nj) , (2)

where ni is the population of species i. The matrix A is called inter-
action matrix. Its element Aij describes the effect of the population
abundance of one species j on the species i, and their sign completely
identify the interaction type. If both Aij and Aji are positive the in-
teraction is mutualistic, if both are negative the interaction is com-
petitive, while if one is positive and the other one is negative we are
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dealing with an antagonistic interaction. The diagonal elements are
usually negative and represent the competition between individuals
of the same species. The function Hi(·) is a positive function and is
called functional response. Suppose that we are dealing with predator-
prey interaction. The functional response quantifies how much the
per-capita growth rate of a predator changes as we change the pop-
ulation abundance of preys. We can expect in principle this response
not to be always linear: if the number of preys is much larger than
the number the predators can handle, further increasing it does not
have any effect on the population of predators. This function is mod-
eled in several different ways. The simplest case is a linear functional
response Hi(nj) = nj, that does not take into account the expected
saturation. This is also called Holling type-1 functional response. The
most used functional form is called Holling type-2, where

Hi(nj) =
nj

1+ hinj
, (3)

where the parameters hi are called handling times, and can be inter-
preted as the time needed for a predator to handle a prey. The number
of possible complications and details that one can introduce is clearly
very large. More the complications are more is difficult to deal with
the dynamical properties of the model. In the next section we will
introduce the problem of stability of these dynamical systems.

1.5 stability of an ecosystem

The ecosystems around us seems to be fairly stable, at least on our
time scales. One would like to know how much they are stable and
how the stability depends on the interactions between species. The
word stability refers always to a stationary property and to a type of
perturbation. In this thesis we will refer to stationary fixed point and
to small perturbations on it in chapters 2 and 4, while in chapter 3

we will explore the effect of perturbations on parameters. In the first
case stability means local asymptotically stability, i.e. the ability of a
stationary fixed point to return to its equilibrium value after a small
perturbation.

The hypothesis of fixed points and small perturbations seems to be
a brutal approximation, even more brutal if we use deterministic and
not stochastic equations. The deterministic hypothesis can be justified
by the fact that for any stochastic dynamics we can write determinis-
tic equations for their moments (see Appendix A). The equations for
the average populations will depend on their variances and correla-
tions, but one can always write enough complicated close equations
involving only the averages (mean-field equations being the most bru-
tal approximation). Any dynamics results in one of three possible sta-
tionary outcome: fixed-points, limit-cycles or chaos. Despite it is dif-
ficult to detect it, chaotic behaviors have almost never been identified
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in empirical population time-series. Limit cycles and fixed points are
completely different from a dynamical perspective, but in empirical
time series (where fluctuations play a role) do not look very different.
It is not that brutal to consider only fixed points and stability un-
der small perturbation is the necessary condition for stability under
largest ones.

At this point one could imagine that in order to study the stability
of an ecosystem, one would need to choose a set of dynamical equa-
tions, complicated enough to be ’realistic’, but not too much, as they
must be tractable, and then study the dynamical properties of the sys-
tem. In the next chapter we will introduce a different approach to the
problem of stability based on random matrix theory. This approach
does is not assume anything on the underlying dynamics and it is
based on parameterizing interactions and properties closed to a fixed
point as random variables, allowing us to identify few key ’order’
parameters that determine the stability of an ecosystem.



2
R A N D O M M AT R I C E S A N D S TA B I L I T Y

The Edge...
There is no honest way to explain it

because the only people who really know where it is
are the ones who have gone over.

— Hunter S. Thompson

2.1 will a large complex system be stable?

In principle, to study the stability of an ecosystem one would have
to consider its dynamics in fully generality. This task becomes very
difficult as the system becomes sufficiently large and as one intro-
duces many details in the dynamics. Moreover it would require the
full specification of all the parameters defining the dynamics.

In his seminal paper of 1972 [25], Robert May introduced with sim-
ple arguments a new way to look at stability in ecological systems.
The original idea was based on considering an arbitrary dynamics
describing the population dynamics of an ecosystem

dn
dt

= f(n) , (4)

Let assume the existence of a stationary point n∗ (defined as f(n∗) =
0) and linearize the dynamics around it

dδxi
dt

=
∑
j

Aijδxj , (5)

where δxi = ni−n∗i and the matrix A is the Jacobian evaluated at the
equilibrium point

Aij =
dfi(n)

dnj

∣∣∣
n=n∗

. (6)

The matrix A contains all the information about the dynamics as
its state is sufficiently close to the stationary one. In particular it de-
scribes the stability of the stationary point n∗, being the latter stable
if all the eigenvalues of A have negative real part. The elements of A
of course depend on the dynamics and the stationary point (i.e. the
function f(n)). This matrix is known in ecology as community matrix.

May’s original idea was to model A as a random matrix. In partic-
ular one can imagine that it reflects the interactions between species.
The diagonal elements of A represents a signature of intra-specific in-
teractions (e.g. self-limitation), and therefore their average was fixed

15
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equal to −1 without loss of generality. The matrix B = A + 1 is a
random matrix, whose elements have mean equal to zero. With prob-
ability 1−C an element of B is equal to zero, while with probability
C it is drawn from a probability distribution with null mean and
variance σ2 The only assumption on the probability distribution is to
have a finite fourth moment. Under these assumptions one can obtain
a criterion for the stability of the system, by studying the distribution
of eigenvalues of the random matrix and in particular the eigenvalue
of the largest real part.

In particular (see section 2.4) one can prove that, if the probability
distribution is a Gaussian and C = 1, the eigenvalues of B are dis-
tributed uniformly inside a circle in the complex plane of radius σ

√
S

(Girko’s law). Due to universality (see section 2.2) this distribution
does not depend on the choice of the distribution of matrix elements
(if few mild assumptions on higher moments are satisfied [26, 27])
and we can therefore easily consider the case C = 1 by noticing that
the variance of the matrix elements is equal to Cσ2. Therefore, since
A = B− 1, the largest real part of the eigenvalues is, in the limit of
large S, equal to〈

λr
〉
= σ
√
CS− 1 , (7)

where the average is taken over the randomness of the matrices. Nev-
ertheless in this case the average value is also the typical one. In
particular one can compute the probability of being unstable, and
it turns out to be, in the large S limit, P → 0 if σ

√
CS < 1 and P → 1

if σ
√
CS > 1. The transition between stability and instability is very

sharp. In particular its relative width scales as 1/S2/3 [28].
This result has very important consequences. Firstly it predicts a

sharp transition between stability and instability governed by few pa-
rameters (in this case S, C and σ). Therefore it clearly indicates what
are the relevant parameters that control stability and what is their
relative contribution. Secondly, it predicts that largest and more con-
nected systems tend to be less stable. This point has been considered
by many ecologist as a paradox, since one would expect that biodi-
versity increase stability, and have triggered a huge debate that is not
yet resolved.

In the next sections we review some results obtained in the context
of random matrix theory and their application to stability of dynami-
cal systems (with a particular focus on ecology).

2.2 random matrix ensembles

Random matrices are matrices whose elements are randomly drawn
from a distribution P(M). The main object of research in random ma-
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trix theory is the distribution of eigenvalues (also known as density
of states), which is defined by

p(λ) =
1

N

N∑
i=0

〈δ
(
λ− λMi

)
〉 , (8)

where λMi is an eigenvalue of a N×N matrix M and the average is
taken over the random matrices. There main goal is typically to find
the distribution p(λ) in the large N limit. In appendix B it will be
shown an example of such a calculation.

Interestingly there is an increasing evidence that many properties
of random matrices (e.g. the distribution of eigenvalues) are univer-
sal. Universality in this context means that those properties do not
depends on the full distribution of P(M) but only on few moments
of the distribution.

2.3 semicircular law

The simplest and most known random matrix ensemble is the Gaus-
sian orthogonal ensemble. It consists of symmetric matrices whose
elements are drawn from a Gaussian distribution, with zero mean
and variance equal to σ2 (typically is considered, without loss of gen-
erality, a variance equal to 1/S).

P(M) =
1

Z
exp(−

S

4
tr(M2)) . (9)

The density of eigenvalues was firstly obtained by Wigner. It con-
verges, in the large S limit for σ2 = 1/S, to Wigner’s semicircular law

p(λ) =
2

π

√
1− λ2θ(1− λ2) . (10)

This results was firstly obtained by Wigner by solving all the mo-
ments of the distribution and can be obtained with several methods.
Notably, in this case it is also possible to obtain [29], not just the dis-
tribution at large S, but the exact distribution of eigenvalues at any
S. In appendix B we show an example of calculation leading to this
solution (see appendix B).

The semicircular law plays a crucial role in random matrix the-
ory. Matrices are peculiar random variables since they are non com-
muting objects. Independence for commuting variables implies lack
of correlation. It is simple to realize that correlation between non-
commuting random variables is an odd-defined quantity. This fact is
a simple expression of a much more fundamental difference between
commuting and non-commuting random variables, that requires new
concepts in probability theory. In particular a new definition of in-
dependence need to be introduced for non-commuting random vari-
ables (known as free probability). Free probability [30] is the theory that
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studies non-commuting random variables, and free independence is the
concept generalizing independence in ordinary variables. In this con-
text semicircular law plays a crucial role, specifically it plays the very
same role that the Gaussian distribution plays in ordinary probabil-
ity theory. The Gaussian distribution is the stable distribution respect
to convolution, the distribution of the sum of independent random
variables tends to a Gaussian, it is the distribution that maximizes
the entropy constrained to a mean and variance, all the cumulants of
degree larger than two are zero if and only if they are Gaussian dis-
tributed. In free probability theory, one can naturally introduce the
concept of free cumulant, free convolution and free entropy. Using
these concepts, the semicircular law is the stable distribution respect
to free convolution, the distribution of the sum of free independent
symmetric random matrices tends to a semicircular law, it is the dis-
tribution that maximizes the free entropy constrained to a mean and
variance of the eigenvalue distribution, all the free cumulants of de-
gree larger than two are zero if and only if they are distributed as a
semicircular law.

For symmetric Gaussian matrices it is possible to calculate not only
the distribution of eigenvalues, but also the probability distribution of
the largest eigenvalue of a matrix. It is distributed accordingly to the
Tracy-Widom distribution (which was introduced exactly to describe
this quantity).

2.4 non-symmetric random matrices

The results on non-symmetric (or non-hermitian) random matrices
are much more difficult to obtain. A simple case that can be solved
consists in random matrices with Gaussian entries and arbitrary cor-
relation between off diagonal elements. In this case the distribution
describing this ensemble is

P(M) =
1

Z
exp(−

N

2(1− τ2)
tr(MMt − τM2)) . (11)

Mt is the matrix transpose of M, while τ is the correlation between
elements opposed to the diagonal (i.e. Mij and Mji).

In this case the eigenvalues are uniformly distributed in an ellipse
in the complex plane (see Figure 3). The semi-axes of the ellipse are
equal to 1+ τ (real axes) and 1− τ (imaginary axes). In the case of τ =
0 (absence of correlation between all the elements) the distribution is
uniform in a circle, which is known as Girko’s Law [31].

2.5 effect of different interaction types on stability

As explained in chapter 1 species interact in an ecosystem in many
different ways. Mutualistic interactions are positive for both the inter-
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Figure 3: Distribution of eigenvalues in the complex plane. Random matri-
ces were drawn from the distribution of equation 11, with different
values of τ. The distribution of eigenvalues is uniform in an ellipse
as predicted by [28], whose semi-axis depend on τ. The case τ = 0
correspond to a circle. One can note that there is a deviation from
the uniform density on the real axes, where there are on average
more eigenvalues. As shown in [28], the fraction of real eigenval-
ues decrease as a power-law of the size, being an observable effect
also at relatively large size. This figure was obtained by averaging
over 50 matrices 500× 500.

acting species, competitive interactions are disadvantageous for both
while predation and parasitism favors one and disfavors the other
one. These sign of interactions reflect to the way populations (and
their fluctuations) are dynamically coupled. In particular, using the
same approach explained in section 2.1, one can imagine a dynamics
linearized around a proper stationary point. The linearization matrix
A will reflect the sign of the interactions between the corresponding
species.

The result obtained by May is the simplest possible scenario, in
which the interaction between two species are independently drawn.
In particular the entries of the matrix B had zero mean and there was
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no correlation between elements opposed to the diagonal. Allesina
and Tang [32] generalized May’s condition to different interaction
types. In particular they considered the case of a community matrix
whose elements are drawn from a distribution with non zero mean
and arbitrary correlation between elements opposed to the diagonal.
Following May’s parametrization, with probability 1−C a pair of ma-
trix elements (Bij,Bji) is set equal to zero, while with a probability C
the pair is drawn from a given distribution (having each element of
the pair the same marginal distribution). In the original paper [32], it
was considered the norm of a Gaussian distribution, but the results
can be generalized to any distribution. In this case the relevant param-
eters that shape the distribution of eigenvalues are three: the average
of the distribution µ, the variance σ2 and the correlation between the
two elements of the pair τ. May’s results reduces to the case µ = 0

and τ = 0.
In the case of µ = 0 the random matrix ensemble reduces to the

ones analyzed in section 2.4. One can prove [32] that the effect of a
non-zero mean is trivial: it shifts the distribution of eigenvalues and
a new eigenvalue (approximately) equal to µCS appears. The other
eigenvalues are still uniformly distributed in an ellipse with same
sami-axis as in section 2.4, but with a center in −µC.

Specifically the stability criterion can be expressed in the following
way [32, 33]

max{SE1,−E1
√
SE2(1+ Ec)} < d , (12)

where d is the diagonal part of the community matrix (that can be
fixed to 1 as done by May), while the other terms correspond to

E1 :=

S∑
i=1

∑
j6=i

Bij

S(S− 1)

E2 :=

√√√√ S∑
i=1

∑
j6=i

B2ij

S(S− 1)
− E21

Ec :=
1

E2

√√√√ S∑
i=1

∑
j6=i

BijBji

S(S− 1)
− E21

.

(13)

One can introduce the dependence of E1, E2 and Ec on C, µ, σ and τ
in these expressions in order to study its direct dependence on those
quantities (in particular, in the case C = 1, E1 = µ, E2 = σ and
Ec = τ).

Different roles of different interaction types can be obtained di-
rectly considering equation 12. Competitive interaction will be charac-
terized by a negative E1 and (typically) a positive Ec, mutualistic inter-
actions by a positive E1 and (typically) a positive Ec, while predator-
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prey interactions by a close-to-zero mean (which depends on the con-
version efficiency, see section 2.7) and a negative Ec. Mutualistic net-
works are dominated by an eigenvalue ∼ SE1, that scales linearly with
S and depends only on the average of interactions strengths. For this
reason mutualistic interactions are expected to be the less stable ones.
Competitive interactions are characterized by a positive correlation
Ec which contribute to make them less stable respect to May’s case.
Predator-prey (and more generally antagonistic ones), being charac-
terized by a very negative correlation [34], are instead typically more
stable than what predicted by May’s criterion.

The interaction type is determined by its sign and these results are
able to take into account this. Another, at least in principle, impor-
tant aspect that should be taken into account is the structure of the
interaction network. In all the case analyzed here, the presence/ab-
sence of interactions in the interaction network was randomly and
independently drawn. This correspond to choose a Erdös-Rényi struc-
ture of the graph describing who interacts with whom. Empirical net-
works have typically highly non-random features. As explained in
section 1.3.1 mutualistic networks are said to be nested, while food-
webs have a heterogeneous degree distribution, are hierarchical and
interval (see section 1.3.2). All those non-random features, related to
network structure, contribute to change the distribution of eigenval-
ues and then the stability properties of the system. In section 2.6 we
review some results obtained studying the effect of empirical (nested)
structure on the stability of mutualistic systems. In 2.7 we focus on
food-webs, showing new results obtained considering a hierarchical
structure of the interaction networks.

2.6 nestedness and stability

As explained in section 1.3.1 mutualistic networks do not have a ran-
dom structure. In many context it has been proposed that nested net-
work were more stable, suggesting a possible advantage of ecological
interactions in being nested. In those studies “stability” referred to
many different properties of the network structure itself or to an as-
sociated dynamics.

When resilience is considered, the results are completely different.
The approach is based on the assumption that the community ma-
trix, which governs the dynamics around equilibrium points, have the
same structure (in terms of presence-absence of interactions) as the in-
teraction matrix. In particular, nested networks are characterized by
larger eigenvalues [11, 18, 32] than their random (ER) counterparts.
This negative relation between resilience and nestedness seems very
robust.

Resilience defines stability respect to small changes. In chapter 3 we
use a global measure of stability, which measures the range of param-
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eters that correspond to stable ecosystems. In particular in section 3.8
we study the effect of nested structure. Results depend on parame-
ters, but it emerges quite clearly the secondary role of structure in
determining stability.

2.7 stability in structured food-webs

Food-webs are known to be very different from random networks. As
explained in section 1.3.2 predator-prey networks have a strong direc-
tionality, descending biologically from mass constraints in predation.
Despite these properties make these webs very different from random
networks, in this section we are able to derive a stability criterion for
structured food-webs.

In section 1.3.2 we briefly described two models describing the
structure of empirical food-webs, the cascade [22] and the niche model
[23]. In the former model an interaction network is built by ordering
the species and assigning a prey to a predator if the former has a
lower rank than the latter (possibly with a given probability). Also in
the niche model species are ordered on a proper axis, but the inter-
actions are assigned only if the prey lies in a proper interval around
the predator. Niche model is known to perform quite well with data,
as it reproduces most of the features observed in empirical networks.
In this section we will obtain the distribution of eigenvalues for in-
teraction matrix generated using cascade model. We also show that
the eigenvalue obtained in this way well approximates the one of net-
works generated using the niche model and the empirical ones.

The adjacency matrix K of a network generated via a cascade model
can be ordered in such a way that all the elements below the diagonal
are null. The cascade model depend only on one parameter determin-
ing the number of links present, i.e. the connectance C. We therefore
assume that the elements (Aij,Aji)i<j of the community matrix A are
drawn from a given bivariate distribution if Kij = 1 and set to zero
otherwise. The random variables (X, Y) drawn from this distribution
have given marginal means µX and µY , marginal variances σ2X and σ2Y
and Pearson correlation ρXY . As µX and µY represent average interac-
tion strengths of a predator-prey system they will have opposite sign,
with µX > 0 and µY < 0. Moreover we will typically consider the case
of −µY/µX < 1, as this ratio is related to the ’efficiency’ of predation
(measuring the conversion of prey biomass into predator biomass)
and the ratio between prey and predator biomass that are both lower
than one, with some interesting exception in the ratio between the
two biomasses. The goal of this section is to find the dependence of
the leading eigenvalue on these parameters.

Let us consider the case C = 1 and σX = σY = 0. In this case
the matrix A is a deterministic matrix having all the elements equal
to µX above the diagonal and equal to µY below and can be diago-
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Figure 4: Distribution of eigenvalues of a deterministic matrix generated via
a cascade model, with C = 1 and σX = σY = 0. The eigenvalues
lay on a circumpherence in the imaginary plane with center and
radius obtained in equations 14 and 15.

nalized exactly. It turns out to have the eigenvalues distributed on a
circumference in the imaginary plane centered in

c =
µY − µX(−µY/µX)

2/S

(−µY/µX)2/S − 1
, (14)

and with radius

r =
(µX − µY)(−µY/µX)

1/S

(−µY/µX)2/S − 1
. (15)

Going back to the random matrix we introduced before, we can no-
tice that it can be written as a sum of two matrices A = D+ R, where
D is a deterministic matrix and R a random one. We built D simply
by considering a matrix with all the elements on the upper diagonal
part equal to µU, while all the elements on the lower diagonal part
equal to µL. We chose µU (µL) to be equal to the average over the ma-
trix elements of the upper (lower) part the matrix A. In this way the
resulting random matrix Rwill have zero average and given variances
on the upper and lower diagonal part.

Since D and R do not commute, the eigenvalues of A = D + R

are not a simple combination of the eigenvalues of the two. As we are
dealing with random matrices we are not interested in the value of the
eigenvalues, but in their distribution. Surprisingly the distribution of
eigenvalues of A results as a simple combination of the distributions
of eigenvalues of D and R (see fig. 5).

We already know the eigenvalues of D, as they are distributed on a
circumference on the complex plane with center and radius obtained
in equations 14 and 15, with µU = µX and µL = µY . The distribution
eigenvalue of R is not known in fully generality, but it reduces to the
elliptic law in the case σX = σY . Numerical simulations show that
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Figure 5: Distribution of eigenvalues of the community matrix A, determin-

istic matrix D and the random one R, related via A = D+ R. De-
spite the fact that D and R do not commute, the distribution of the
eigenvalues of their sum seems to be a simple combination of the
distribution of the two.

also in the case σX 6= σY the eigenvalues are uniformly distributed
in an ellipse. We determined the axis of the ellipse using extensive
numerical simulations, finally obtaining the horizontal axis

rh =
α+ (S− 1)σLσUρUL√

α
, (16)

and vertical axis

rv =
α− (S− 1)σLσUρUL√

α
. (17)

The value of α, determined using numerical simulations, resulted to
be

α =
S− 1

12
(σU + σL)(σU + σL + 4

√
σU + σL) . (18)

Using all these results together we are able to obtain the spectral
distribution of a matrix generated via a cascade model. Figure 6 show
that the distribution and the leading eigenvalue is well predicted by
our formulas. One can argue how well the eigenvalue predicted with
the cascade model works for other structures, e.g. for the niche model
or for the structure of empirical networks. In these cases not all the
elements above and below the diagonal are positive and negative re-
spectively. We need therefore to determine the parameters µU, µL, σU,
σL and ρUL that best reproduces the matrix using a cascade model.
In order to do so, we looked for the order of species having the
minimum amount of wrong signs in the matrix and determine the
parameters with this ordering. The distribution of eigenvalues and
the leading one determined using our approximation performed well
also for structures generated using the niche model and for empirical
structures (see Figure 6).

Finding the stability criterion for an empirical food-web could seem
an impossible goal, as they are far from being random networks. In
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Figure 6: The three panels on the top compare the expected leading eigen-
value calculated using our approximation and the actual one. The
three panels on the bottom show the eigenvalue distributions for a
particular parametrization. Colors of symbols and lines represent
different approximations for the eigenvalues: circular law (purple),
elliptical law (green) and the approximation presented in this sec-
tion. The two panel on the left refer to the cascade model, and
show that our approximation works reproducing the eigenvalues.
The two on the center compare our prediction with networks gen-
erated using a niche model. In the right panel we used the struc-
ture of 15 empirical food-webs, each parametrized 10 times. De-
spite a difference is still present, the stability criterion obtained
with our approximation is able to reproduce the eigenvalues ob-
tained parameterizing empirical structures.
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this section we have obtained a stability criterion for networks gen-
erated via a cascade model, showing that it also well approximates
the one valid for empirical webs. To obtain this result we make some
approximations one the eigenvalue distribution. This also opens the
possibility to deep investigate our hypothesis in the context of ran-
dom matrix theory.

2.8 different interaction types

The results presented here typically are formulated modeling an ecosys-
tem as a single interaction type was present. Clearly, multiple inter-
action types shape an ecosystem and their diversity and interdepen-
dence could be crucial for stability. To be precise, the original formu-
lation by May (see section 2.1) allows multiple interaction types to co-
exists in the same ecosystem. In this case, there is no structure within
the interaction matrix, and different interaction types are randomly
assigned.

It has been proposed [35] that multiple interaction types increase
the stability of an ecosystem. In particular it was shown that an
ecosystem characterized by two interaction types (e.g. mutualism and
predation) was expected to be more stable than an ecosystem with
only one interaction type. Moreover it was shown that, with the parametriza-
tion used in that work, complexity and diversity increased stability of
those communities.

These results seem surprising given the generality of random ma-
trix approach. We investigated [33] the keys assumptions responsi-
ble for the results obtained in [35]. In particular the inverse rela-
tionship between complexity and stability was a consequence of the
parametrization used and not of the presence of multiple interaction
types, since the interactions where rescaled such that their average
and variance scaled with S and C. This produced the inverse scaling.

On the other side, the observed increase of stability in mixed com-
munities was a consequence of the parametrization used in that work.
In particular the authors rescaled the interactions in order to take into
account a finite ability of individuals to get resources. The rescaling
could be parametrized in many different ways. The observed increase
was consequence of this choice, that induced a dependence of the in-
teractions on the intensity of the “mixing” that produced more stable
mixed communities. Other choices do not produce this effect.

Also in the case of mixing interaction types, the results obtained
with random matrix theory are qualitatively valid. Further results
coming from random matrix theory, could make possible to consider
more realistic structure and make more precise predictions.



3
S T R U C T U R A L S TA B I L I T Y

The World State’s motto,
COMMUNITY, IDENTITY, STABILITY.

— Aldous Huxley

3.1 from local stability to structural stability

In the previous chapter we considered mainly the problem of local
stability of ecological systems. Local stability is defined in terms of
perturbations on the populations of interest. Assuming that a system
is in a stationary state, the question was the response to small pertur-
bation of the stationary state. For small perturbations it is possible to
linearize the dynamics around the stationary point and the problem
of local stability reduces to find the leading eigenvalue of a Jacobian
evaluated at the stationary point.

In this chapter we consider the response of the system to a differ-
ent type of perturbation. Specifically we consider how the stationary
point responds to a change of the parameters defining the dynamics.
In particular one is interested in quantifying how much is possible
to vary them without changing the dynamical properties of the sys-
tem. This property of being stable respect to change of parameters is
known as structural stability.

In the case of LV equations introduced in section 1.4, one is inter-
ested in knowing how much the intrinsic growth rates of species can
be varied without varying the property of the system, and in partic-
ular without leading any species to extinction. This is in principle a
very difficult task, as one has to know the dynamical properties for
any value of parameters, in systems where the dimensionality of this
parameter space is very large.

The main result of this chapter is a method to calculate the struc-
tural stability and the size of the domain of intrinsic growth rates
leading to positive abundances. This method allows to quantify the
role of interactions strength and structure of interaction network in
determining the structural stability. We finally show a new relation
between local stability and the response of the system to the change
of a single species’ growth rate.

27



28 structural stability

3.2 dynamics and interactions of mutualistic systems

We consider a bipartite mutualistic system described by the following
dynamical model

dNAi
dt

= NAi

(
αAi −

A∑
j=1

βAijN
A
j +

∑P
j=1 γ

A
ijN

P
j

1+ hAi
∑P
j=1 γ

A
ijN

P
j

)
dNAi
dt

= NPi

(
αPi −

P∑
j=1

βPijN
P
j +

∑A
j=1 γ

P
ijN

A
j

1+ hPi
∑A
j=1 γ

P
ijN

P
j

) , (19)

where NAi and NPi are the abundances of the animal and plant i,
respectively. The other parameters appearing in the equation corre-
spond to the number of animal and plant species (A and P, respec-
tively) the intrinsic growth rates (αAi and αBi ), the intra-guild compe-
tition strenghts (βAij and βPij), the benefits received from mutualistic
competiton (γAij and γPij) and the handling times (hAi and hPi ) fixing
the saturating constant of the non-linear functional responses. Matri-
ces βA and βP and A×A and P× P matrices, respectively, while γA

and γP are A× P and P×A matrices.
We can rewrite equation 19 in a more compact way, by introducing

a vector N, whose components are the abundances of both animals
and plants. Specifically, it has S = A+ P components, where the first
A components are abundances of animals (NAi ), while the remaining
P = S−A are the abundances of plants (NPi ). We then obtain

dNi
dt

= Ni

(
αi −

S∑
j=1

βijNj +

∑S
j=1 γijNj

1+ hi
∑S
j=1 γijNj

)
. (20)

Both α and h are vector with S = A + P components, where the
first A components corresponds to αA and hA, while the remaining
one correspond to αP and hP. The matrices β and γ are both S× S
matrices, with the following form

β

(
βA 0

0 βP

)
, (21)

and

γ =

(
0 γA

γP 0

)
. (22)

If not explicitly stated, we use the same parametrization used in [37,
38]. All the components of the handling times are set equal to h (i.e.
hi = h, ∀i). We use a mean-field approximation for the competition
parameters, setting βAii = βPii = 1 and βAij = βPij = ρ if j 6= i. The
mutualistic benefits are parametrized in the following way

γAij = γ0
aij

(kAi )
δ

γPij = γ0
aji

(kPi )
δ

, (23)
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where aij is the non-zero block of the adjacency matrix of the inter-
action network, i.e. aij = 1 if there is an interaction between animal
i and plant j, and zero otherwise. kAi and kPi are the degree (number
of interactions) of animal i and plant i respectively, i.e kAi =

∑P
j=1 aij

and kPi =
∑A
j=1 aji. The two remaining quantities, γ0 and δ, are two

parameters quantifying the level of mutualistic strength and the mu-
tualistic trade-off [37].

Therefore, once the interaction matrix (aij) and the instrinsic growth
rates (α) are specified, the model depends on four free parameters: γ0
(level of mutualistic strenght), ρ (level of interspecific competition), δ
(mutualistic trade-off) and h (handling time). In the most part of this
section we will consider the case h = 0.

3.3 feasibility and global stability

Let N∗ be stationary solution of equation 20, then, by definition

N∗i

(
αi −

S∑
j=1

βijN
∗
j +

∑S
j=1 γijN

∗
j

1+ hi
∑S
j=1 γijN

∗
j

)
= 0 ∀i . (24)

The stationary solution is feasible if it corresponds to positive abun-
dances, i.e. N∗i > 0 ∀i. Note that, if N∗i is a feasible solution, then it
solves

αi −

S∑
j=1

βijN
∗
j +

∑S
j=1 γijN

∗
j

1+ hi
∑S
j=1 γijN

∗
j

= 0 ∀i . (25)

A stationary solution is locally stable if the system returns to it after
any (sufficiently) small perturbation. This condition is equivalent to
asking that all the eigenvalues of the Jacobian have negative real-part.
A stationary solution is globally stable if the system returns to it after
any (arbitrarily large) perturbation.

In a Lotka-Volterra (LV) equation with linear functional response
response (h = 0), we can introduce the matrix B := β − γ and the
Jacobian evaluated at the stationary point (community matrix) has
components Jij = −N∗iBij. If B has all the eigenvalues with positive
real part it is said Lyapunov stable. The matrix B is D-stable if, for any
diagonal matrix D with positive entries, the matrix DB is Lyapunov
stable. Since in the case h = 0 the Jacobian has the form J = −N∗B,
it follows that D-stability implies local stability of any feasible station-
ary point. The matrix B Lyapunov diagonally stable if it exists a diagonal
matrix D with positive entries such that all the eigenvalues of the ma-
trix DB+BTD are positive. It can be proved that Lyapunov diagonal
stability implies global stability of any feasible equilibrium point.

Lyapunov diagonal stability implies D-stability and D-stability im-
plies Lyapunov stability, while the opposite is not generally true. More-
over, it is generally difficult to verify Liapunov diagonal stability. It
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has been conjectured [38] that, using the parametrization introduced
in section 3.2, Lyapunov stability implies D-stability and Lyapunov
diagonal stability. This statement was proven only in the case δ = 0

or ρ = 0, and verified numerically in the most general case. In sec-
tion 3.3.1 we prove that Lyapunov stability implies D-stability and
Lyapunov diagonal stability in the most general case of δ > 0 and
ρ > 0.

3.3.1 Proof of conjectures for the global stability of feasible equilibria

In this section we proof that, using the parametrization introduced
in section 3.2, Lyapunov stability implies D-stability and Lyapunov
diagonal stability, as conjectured in [38].
Lyapunov stability implies D-stability. This is true not only using
parametrization of section 3.2, but for any matrix B representing a
system with only competitive or mutualistic interactions. In fact, if a
matrix is sign-symmetric (i.e. Aij and Aji have the same sign) then
Lyapunov stability implies D-stability [39, 40].
Lyapunov stability implies Lyapunov diagonal stability. One can
easily verify that, when parametrized as done in section 3.2, the ma-
trix B is normal, i.e. BBT = BTB. When a matrix is normal then all
its eigenvalues are real and it and its transpose are diagonalized by
the same eigenvectors. This implies that B and (B+ BT )/2 have the
same eigenvalues. If this is the case, then Lyapunov stability implies
Lyapunov diagonal stability since we are able to find at least one diag-
onal matrix D such that DB+ BTD are all positive, this matrix being
simply (proportional to) the identity matrix.

The parametrization used here is not the most general one, and one
could wonder how much the results obtained in this case are general.
To explore the robustness of these results, we considered different
parametrization. In particular we drawn the off-diagonal elements
βAij and βPij from a given probability distribution (see below) and
parametrized γAij = gAijaij/(k

A
i )
δ and γBij = gPijaji/(k

P
i )
δ, where gAij

and gPij are random values and checked weather Lyapunov stability
implied Lyapunov diagonal stability.

As B is generally not symmetric (and does not commute with its
transpose BT ), the eigenvalues of B and B+ BT are not trivially re-
lated. The parameters of the probability distribution defined above,
were drawn in such a way that B was Lyapunov stable but B+ BT

had at least one eigenvalue with negative real part (otherwise the B
would be automatically Lyapunov diagonally stable and then diago-
nally stable). This last condition corresponds to consider a reactive
system [41]. Note that this choice already reduces a lot the space of
parameters leading to a non equivalence between Lyapunov stabil-
ity and Lyapunov diagonal stability. We then tried to find a diagonal
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positive matrix D such that DB+ BTD had all the eigenvalues with
positive real part, by randomly drawn the diagonal elements D from
a specified probability distribution. If such a diagonal matrix was
found, then the matrix was Lyapunov diagonally stable. We were al-
ways able to find such a matrix with few (< 1000) random steps. We
stress that in this case B is very far from being a normal matrix, and
our previous demonstration does not hold. This results implies that
the equivalence of Lyapunov stability and Lyapunov diagonal stabil-
ity is valid in a more general scenario for mutualistic systems, that
would be interesting to explore in a more systematic way.

To perform this analysis we used the following parametrization.
Each pair (βij,βji) was set equal to zero with a probability 1 − Cc
while with probability Cc it was randomly drawn from a pair of
lognormally distributed random variables with given mean, variance
and correlation. Each pair (gAij,g

P
ji) was set equal to zero with a prob-

ability 1−Cc while with probability Cc it was randomly drawn from
a pair of lognormally distributed with given mean, variance and cor-
relation. We tuned the parameters in order to have a matrix B = β−γ

with only positive eigenvalues, and B+ BT having at least one neg-
ative eigenvalue. The S diagonal elements of D were drawn from a
lognormal distribution with mean equal to one 1 and fixed variance
(we used a variance equal to 3). We checked whether DB+ BTD had
only positive eigenvalues. If that was the case, then B was Lyapunov
diagonally stable, otherwise we considered a new diagonal matrix D
and check again the condition. We were always able to find a D such
that DB+ BTD had only positive eigenvalues after less than 1000 in-
dependent random extractions of D.

3.4 quantification of structural stability

A system is said structurally stable if a (small) change of parameters
does not change its dynamical behavior (i.e. the existence and the sta-
bility properties of fixed point, limit cycles and chaotic phases). In our
context, the interesting dynamical behavior is a feasible stable fixed
point. For the equations introduced in section 3.2 we have proved that
feasibility implies stability, and therefore we have to deal only with
feasibility.

A possible quantification of structural stability is the volume of pa-
rameters leading to feasible stable fixed points. In particular in [38]
structural stability has been introduced in the context of Lotka-Volterra
equations as the volume of the domain of intrinsic growth rate lead-
ing to a feasible and stable equilibrium point.

It is important to observe that if a vector of intrinsic growth rates α
correspond to a feasible stationary solution, also cα, being c a positive
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constant corresponds to a feasible solution. In a LV equation with
linear functional response, the stationary solution is given by

N∗i =

S∑
j=1

B−1
ij αj , (26)

therefore the stationary solution corresponding to cαi is simply cN∗i .
Since c is a positive constant, then also cN∗i is feasible. This fact im-
plies that the feasibility domain is convex.

Since the feasibility domain is convex, we can quantify it as the
solid angle identified by intrinsic growth rate corresponding to posi-
tive abundances. This corresponds to quantify the structural stability
as the fraction of growth rates vectors that correspond to a feasible
solution. We can consider, without loss of generality, only the growth
rates lying on the unit sphere. We quantify structural stability as

Ξ =
2S

SpS−1

∫
dSα 2‖α‖δ(‖α‖2 − 1)

S∏
i=1

Θ(N∗i (α)) . (27)

Up to the factor 2S this expression exactly quantifies fraction of growth
rates vectors on the unit sphere that correspond to a feasible solution.

In this expression we integrate a function on the unit sphere in
S dimensions. The integral of a function f(x) on the unit sphere is
defined by∫

dSx 2‖x‖δ(‖x‖2 − 1) f(x) , (28)

The factor SpS−1 is the solid angle in S dimensions, i.e. the surface of
a unitary sphere in S dimensions

SpS−1 :=
∫
dSx 2‖x‖δ(‖x‖2 − 1) = 2πS/2

Γ(S/2)
, (29)

where Γ(·) is the Gamma function. The term 2‖x‖δ(‖x‖2 − 1) that ap-
pears in the integrations express the constraint for x of lying on the
unit sphere. In equation 27 two other terms appear: 2S and

∏S
i=1Θ(N

∗
i (α)).

The former is just an arbitrary constant (this choice will be justified
later), while the latter expresses the constraint of N∗i of being positive.
The function Θ(·) is the Heaviside function and it is equal to 1 if the
argument is positive and zero otherwise. Therefore

∏S
i=1Θ(N

∗
i (α))

is equal to 1 if and only if the stationary solution N∗(α) is feasible.
N∗(α) is a function of α via equation 25, that in the case h = 0 re-
duces to equation 26. Therefore the integral of

∏S
i=1Θ(N

∗
i (α)) on the

unit sphere quantifies the volume of the domain of intrinsic growth
rates corresponding to a feasible solution.

The factor 2S that appears in equation 27 is an arbitrary choice,
and it has been introduced in order to have Ξ = 1 when species are
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not interacting (ρ = γ0 = 0). In the case of ρ = γ0 = 0, equation 20

reduces to S uncoupled logistic equations and the stationary solution
is feasible and stable if and only if αi > 0.

Unfortunately equation 27 cannot be compute exactly and is very
difficult to be evaluated numerically even in the case of linear func-
tional response. In fact to evaluate this integral numerically, we would
have to drawn at random intrinsic growth rates on the unit sphere
and count the fraction of growth rates corresponding to feasible abun-
dances. As suggested in [38], when S is sufficiently large this evalu-
ation is practically impossible. Fortunatly, equation 27 can be evalu-
ated also in an alternative way, explained in section 3.5.

3.5 fast and reliable numerical calculation of struc-
tural stability

Equation 27 defines Ξ the volume of the domain of intrinsic growth
rates leading to feasible solutions. Using the results proved in sec-
tion 3.3.1 we know that if the matrix B is Lyapunov stable then any
feasible stationary point is globally stable. Therefore Ξ is the volume
of the domain of intrinsic growth rates leading to feasible and (glob-
ally) stable solutions.

Unfortunately the numerical computation of Ξ is unfeasible when
the number of species S is sufficiently large. To evaluate the integral
in equation 27, e.g. via Montecarlo integration, one should draw at
random intrinsic growth rates and count how many of them, out of
the total, lead to a feasible equilibrium. In order to have a reliable
estimate of this fraction, one should sample the space in such a way
that the number of feasible intrinsic growth is much larger than one.
This goal would require an exponentially increasing sampling effort
as S grows. In this section we provide an alternative, much faster and
reliable, way to estimate Ξ.

If h = 0, the stationary solution and the intrinsic growth rates are
linearly related via αi =

∑S
i=1 BijN

∗
j . The strategy is to perform a

change of variables in equation 27 and integrating over N∗ instead
of α. Using αi =

∑S
i=1 BijN

∗
j we perform the change of variable,

obtaining

Ξ =
2S det(B)

SpS−1

∫
dSN∗ 2δ(

∑
ijk

N∗iB
T
ikBkjN

∗
j − 1)

S∏
i=1

Θ(N∗i ) , (30)

where det(B) is the determinant of the Jacobian of the change of vari-
ables. The advantage of this passage is that the integration is now on
the feasible stationary points and the condition of feasibility is now
automatically implemented. Note that it is always possible to per-
form this change of variable as B is not singular (since it is Lyapunov
stable).
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The previous expression is still difficult to be evaluated numerically,
because of the constraint that appear in the delta function. One can
further simplify it by introducing polar coordinates. In particular we
write the vector N as Ni = rui, where r is the norm of N, while ui
are vectors of unit norm. We can perform a new change of variables,
passing from Ni to r and ui. Specifically, for any function f(N) we
can write∫

dSN f(N) =

∫
dr rS−1

∫
dSu 2δ(‖u‖2 − 1)f(r,u) . (31)

Introducing this expression in equation 30 we obtain

Ξ =

2S det(B)
SpS−1

∫∞
0

dr rS−1
∫
dSu 2δ(‖u‖2 − 1) 2δ(r2

∑
ij

uiAijuj − 1)

S∏
i=1

Θ(ui) ,

(32)

where we used the fact that Θ(Ni) = Θ(ui), since r is positive by
definition, and we have introduce the matrix A, defined by Aij =∑
k B

T
ikBkj =

∑
k BkiBkj. We can now perform the integration over r

obtaining∫∞
0

dr rS−1 2 δ(r2
∑
ij

uiAijuj − 1) =∫∞
0

dr rS−1 2 δ
(
r−

1√∑
ij uiAijuj

) 1

2r
∑
ij uiAijuj

=
(∑
ij

uiAijuj

)−S/2
,

(33)

and therefore the integral of equation 27 finally reads

Ξ =
2S det(B)

SpS−1

∫
dSu

S∏
i=1

Θ(ui) 2δ(‖u‖2 − 1)
(∑
ij

uiAijuj

)−S/2
=

2S det(B)
SpS−1

∫
S>

dSu
(∑
ij

uiAijuj

)−S/2
,

(34)

where S> means that the integration is carried over the vectors lying
on the unit sphere with all the component positve.

As written above, when the integral is written in the form of equa-
tion 27 it is unfeasible to evaluate it numerically via Montecarlo inte-
gration, since it would require an exponentially increasing sampling
to get a given precision. Fortunately, this is not more the case when
the integral is written as in equation 34. The main difference is that,
after changing variables, one is directly sampling the space of feasible
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solutions, without losing computational time in randomly exploring
the space of intrinsic growth rates looking for feasible solutions.

In particular Montecarlo integration consists in writing the integral
as an average (or a sum) over random points

1

T

T∑
a=1

(∑
ij

uai Aiju
a
j

)−S/2
→ 1

SpS−1

∫
S>

dSu
(∑
ij

uiAijuj

)−S/2
,

(35)

where T → ∞. In this expression ua are independent random vec-
tors uniformly distributed on the hypersphere of radius 1 and with
only positive components. These two conditions are introduced to
satisfy the constraints

∏S
i=1Θ(ui) and 2δ(‖u‖2 − 1) that appear in

the integral. T is the sample size, and the average on the left side of
equation 35 converges to the right side in the limit of large T .

Clearly one has always a finite sample T used to approximate the
integral. It is therefore important to have an estimate of the error
made due to a finite sample. Since the left side of equation 35 is an
average of a functions over random vectors, this error can be simply
estimated using the variance over the sampling, in particular the error
is defined as

σMC =
1√
T

√√√√ 1

T

T∑
a=1

(∑
ij

uai Aiju
a
j

)−S
−
[ 1
T

T∑
a=1

(∑
ij

uai Aiju
a
j

)−S/2]2
.

(36)

3.6 possible biases in previous analysis of structural

stability

In section 3.5 we showed how it is possible to estimate numerically
the structural stability in a fast and reliable way. This method allows
to compute the size of the domain of conditions leading to a stable
and feasible equilibrium. In previous approaches [38], structural sta-
bility was not directly calculated, but approximately inferred using a
regression method. Using the first approach we obtain partially dif-
ferent results respect to the ones obtained in [38]. In this section we
show why the method used in [38] could be biased and not always
applicable.

The method proposed in [38] was based on structural vectors. The
authors defined it as the center of feasibility domain and it was calcu-
lated by transforming the mutualistic dynamics in an effective com-
petitive dynamics. Using this effective dynamics it was possible to
calculate an effective structural vector, that was then transformed
back to the one of the mutualistic system. Starting from the structural
vectors the authors considered different perturbations (by generating
different growth rate vectors at a given angular difference with the
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structural vectors). The dynamics was then integrated and the prob-
ability that all the species survived given an angular perturbation
was calculated. Running this several times and for several different
perturbations, it was possible to perform a regression between the
probability, the angular perturbation, nestedness and other param-
eters. Using the coefficient calculated with the regression, one was
then able to calculate the effect of nestedness and other parameters
on structural stability.

Here we present some possible issues emerging using that approach.
We do not investigate explicitely which one of them determines the
differences we observe. Some of these issues could be relevant, while
others could be irrelevant for the practical goals they were introduced
for.

3.6.0.1 It is not always possible to find the structural vector

In order to calculate the structural vector, one needs to transform the
mutualistic system into an effective competitive one. In order to do
so one defines the matrix T = 1+ γβ−1, and multiplies both side of
the equation

αi =

S∑
j=1

BijN
∗
j , (37)

by T . The effective interaction matrix is then Beff = TB. In order to
calculate the structural vector one has to assume that the eigenvector
associated with the largest eigenvalue has only positive components.
This is not generally true. Since this assumption does not hold in
general, it is not always possible to calculate the structural vector.
In section 3.9.1 we propose an alternative method. Notice that our
approach (see section 3.5) does not need to calculate the structural
vector.

3.6.0.2 The structural vector is not the center of the feasibility domain

When is possible to calculate the structural vector for the effective
competitive system, one has to transform it back to a vector of the
mutualistic system. The structural vector was the center in the feasi-
bility domain of the effective system. For volume in more than two di-
mension a “center” could be defined in different ways, if the volume
has not particular symmetries. The transformation from the effective
to the original system is not a rotation (since it is just a multiplication
the matrix by T−1) and therefore it does not preserve the angles be-
tween vectors. If a vector is the center of the feasibility domain in the
effective system, it will be not in general the center in the original do-
main. In particular its distance respect to the actual center of original
domain will be dependent on parametrization and network structure,
as the transformation matrix depends on them.
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3.6.0.3 The regression procedure can in principle produce biases

The relation between structural stability and network structure was
obtained by calculating the probability of coexistence given an an-
gular perturbation respect to the structural vector and was then per-
formed a regression between the logit of the probability and the angle
of perturbation, the parameters ρ, γ, δ and nestedness. In order to per-
form a regression, one has to assume a functional dependence. The
functional dependence used to perform the regression cannot be jus-
tified a priori. An uncorrect functional dependence produce a depen-
dence of the fitted parameters on the parameters, via different data
that are used to perform the fit and therefore it cannot be reliable in
the poorly sampled regions. Moreover it cannot provide a method to
calculate the structural stability for a given network and parametriza-
tion, as one can calculate only the probability of coexistence given an
angle of perturbation.

3.7 dependence of structural stability on structure ,
interaction strength and asymmetry

The volume of the feasibility domain depends on all the parameter
that we consider in the definition of the model. In this section we
analyze the dependence of Ξ on γ, ρ and δ. Finally we study how it
depends on nestedness.

Figure 7 show the dependence of structural stability Ξ on interac-
tion strengths γ and ρ and on mutualistic trade-off δ.

3.8 structural stability of empirical mutualistic net-
works

Using the approach explained in section 3.5 we can directly compute
the structural stability Ξ of any given network. In particular we can
study the effect of structure of empirical mutualistic networks on
structural stability.

Empirical networks are different from random networks 1.3.1. In
particular they are more nested than random counterparts. In sec-
tion 3.7 we explore directly the effect of nestedness on structural sta-
bility. In this section we use empirical network, and compare their
structural stability with respect to the structural stability of their ran-
domizations.

We randomize empirical networks in two ways. We randomize only
the structure of the underlying networks, and the corresponding in-
teraction matrices are obtained using the parametrization explained
in section 3.2.
ER randomization. In this case we conserve the numbers of species
(S1 and S2) and the number of links (L), generating Erdős-Rényi ran-
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Figure 7: Structural stability Ξ of random networks vs. mutualistic strenght
γ and different values of δ and γ.
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Figure 8: Structural stability Ξ of random networks vs. nestedness (nodf)
and different values of δ and γ.
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dom graphs. Among all the possible graphs we keep only the graphs
that are fully connected (i.e. they have only one connected compo-
nent). The graphs generated in this way are connected graphs having
the same S1, S2 and L of the corresponding empirical networks.
FD randomization. In this case we conserve the numbers of species
(S1 and S2) and the degree on all the nodes in the network (i.e. we
are conserving the exact degree sequences of the bipartite graph) and
we require the graph to be fully connected. In order to generate these
randomized networks we used the Curveball algorithm [42] adding
a condition on the connectedness of the graph. Specifically we check
connectedness at every move, accepting it only if it does not discon-
nect the graph. The relaxation time (i.e. the number of randomiza-
tions moves) was chosen to be 10min(S1,S2) (in [42] was shown that
5min(S1,S2) moves were enough).

In order to determine the system, we have to specify three param-
eters: the competition strength (ρ), the mutualistic strength (γ), and
the mutualistic trade-off (γ). As shown in section 3.7.

3.8.1 Parametrization of empirical mutualistic networks

We ran 100 simulations for each empirical network and each triplet
of values (ρ, δ and γ0). We considered two values for each parame-
ter (ρ = 0, 0.4 and δ = 0, 0.5), while the mutualistic strength was set
to values such that the interaction matrix is Lyapunov stable. As ex-
plained in [38], as γ0 increases the real part of the leading eigenvalue
decreases and eventually crosses zero, resulting in an unstable matrix.
Since this critical value of the mutualistic strength γc0 depends on the
network structure, we chose two different values of the mutualistic
strength, accordingly to the procedure explained in the following. We
start from a value of the mutualistic strenght large enough to corre-
spond to an interaction matrix that is not Lyapunov-stable. Then we
decreased γ0 by multiplying it to a constant factor lower than one (in
the simulations shown here we used 0.9). We stop when the value of
γ0 found had crossed γc0 leading to a stable matrix. This value was
therefore guaranteed to lie between 0.9γc0 and γc0. We ran simulation
for the value of γ0 found in this way and for a value equal to it di-
vided by 10. In these way all the simulation were ran for two values of
γ0: one close and one much smaller than the critical value γc0. We call
these two values γa and γb, where γa is guaranteed to lie between
0.9γc0 and γc0, while γb belongs to the interval [0.09γc0, 0.1γc0].

It is very important to notice that γa and γb were obtained using
the empirical networks. Randomized version of them have in princi-
ple very different values of γc0. Even if we expect random networks to
be more stable than the empirical ones [11, 18], it was possible that a
randomized version of the original network was not stable using γa
and γb. Since the structural stability has no meaning for an unstable
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system, we keep track of those network but we did not compute the
value of Ξ and these networks are not shown when the empirical data
are compare with randomized networks.

3.8.2 Results

For each parametrization (ρ, δ and γ0), empirical network and ran-
domization procedure (ER or FD) we ran 1000 randomizations. We
compute for each matrix (empirical or randomized) the value of Ξ
and the corresponding error σΞ as explained in section 3.5. Since the
distribution of Ξ across randomizations could be skewed, as done in
section 3.7, we considered log10 Ξ (and the corresponding error) and
we compared it with the value of log10 Ξe obtained with the empirical
networks. Two compare the values obtained with the randomization
and the empirical one, we compute both the z−score and the p value.

The z−score was computed by calculating the average value of
structural stability over randomizations: 〈log10 Ξ〉 and its correspond-
ing variance 〈(log10 Ξ)

2〉− 〈log10 Ξ〉2

z =
log10 Ξe − 〈log10 Ξ〉√
〈(log10 Ξ)2〉− 〈log10 Ξ〉2

. (38)

We computed the p-value as the probability to find in the random-
ization a value larger (smaller) than the empirical one. The empirical
value was consider significantly larger (smaller) than the ones ob-
tained with the randomizations if it was in the larger (smaller) than
97.5% of data. This correspond to choose a two-tailed threshold for
the p value equal to 0.05.

Note that the value of the z−score depends on the choice of using
log10 Ξ instead of Ξ, while the p-value, is irrespective of this choice.

Figure 9 and 10 show the results obtained using ER and FD ran-
domization respectively. In these two figures we reported only the
results for which σΞ < 0.1Ξ, to select for networks with very reliable
results.

When compared with ER randomizations (see Figure 9), the empir-
ical networks can be more or less structurally stable depending on
parameters. In particular only in the cases ρ = 0, δ = 0 and γ = γb
empirical networks are significantly more structurally stable than ER
random networks. Moreover there are other cases where empirical
networks are less structurally stable than random counterparts.

FD randomizations (see Figure 10) show a much clearer scenario.
In all the cases, with very few exceptions, empirical networks are
not more structurally stable than random counterparts. This fact im-
plies that any difference between empirical and random networks is
a consequence of the degree sequence and not of any other structural
difference (such as nestedness).
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Figure 9: Structural stability Ξ of empirical networks and ER randomiza-
tions. z−score is computed as defined in equation 38 and is plot-
ted vs. the number of links of the network. Each panel represents
a combination of values of δ and ρ. Each symbol is a network, cir-
cles represents γ0 = γb while triangles correspond to γ0 = γa.
Colors represent significance of difference with respect to random-
izations: red stands for Ξ significantly larger than randomizations,
green means significantly smaller while black symbols are not sig-
nificant. Significance was computed with a two-tailed threshold
equal to 0.5. In this figure are reported only empirical network for
which σΞ < 0.1Ξ.
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Figure 10: Same as in Figure 9, but using FD randomizations. In this figure
are reported only empirical network for which σΞ < 0.1Ξ.

3.9 direction of minimal structural stability : defini-
tion and calculation

In section 3.4 we show how the volume of the domain of the intrinsic
growth rates leading to a feasible equilibrium could be written as an
integral. This volume Ξ is not the only interesting quantity that is
worth to compute. In particular one could think at how the system
respond when the intrinsic growth rate of a single species is modified.
The volume Ξ quantifies how large is the total volume of feasible
intrinsic growth rate, in this section we introduce the quantity ξi, that
measures how much the growth rate of the species i can be modified
without having extinctions (i.e unfeasible populations).

In [38] the authors introduced the structural vector as a “center”
of the domain of feasible intrinsic growth rates. As explained in sec-
tion 3.6, the calculation of this vector is in general an issue, since it
cannot be simply computed from the interaction matrix. The method
we introduced in section 3.4 and 3.5 does not require the knowledge
of this vector. In order to study ξi we need to define and compute the
structural vector for any given matrix and parametrization. In [38] the
structural vector was defined as the “center” of the domain of feasi-
ble intrinsic growth rates. There are several possible way to define a
center of a hypervolume and, without specific assumptions, they are
all different. The most natural choice is to define the structural vector
as the barycenter of the domain of feasible intrinsic growth rates. In
section 3.9.1 we explain why this is a convenient and reasonable def-
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inition and how to compute the coordinates of the barycenter in the
case of study.

For what follows it is necessary to assume that the domain of feasi-
ble intrinsic growth rates is a convex volume. This statement is always
true in the case of a linear functional response. It is trivially true since
any linear combination of feasible intrinsic growth rates results in a
feasible intrinsic growth rate (because of linearity of the equation).

Let αc be the structural vector, defined as in section 3.9.1. The quan-
tity ξi is defined as

ξi =
1

2π

∫2π
0

dθ

S∏
j=1

Θ(N∗j (α̃(θ, i))) , (39)

where α̃(θ, i) is a vector in the intrinsic growth rate space, whose
components are defined as

α̃j(θ, i) := αcj cos(θ) + δij sin(θ) . (40)

The quantity θ is the angle between the structural vector αcj and the
perturbed growth rate vector. The integral 39 quantifies the maximal
pertubation angle θ, or more precisely, the size of the region of θ’s cor-
responding to a feasible equilibrium. In particular ξ is always lower
than one. In the case of a linear functional response it is always lower
than 1/2. In fact, in this case, since the equation is linear, if an intrinsic
growth rate correspond to a feasible equilibrium its reciprocal does
not.

The quantity ξi is different for different species. More robust species
(respect to changes in growth rates) will correspond to the ones hav-
ing larger ξi, while the less ones are characterized by a small ξi.
When ξi approaches 0, there are not values of intrinsic growth rates
that can sustain a positive population of the species i.

3.9.1 Computation of the structural vector

We define the structural vector as the barycenter of the domain of
feasible intrinsic growth rates. There are several properties that are
valid in full generality. Any plane passing from the barycenter divides
the volume in two subvolumes of equal size.

The coordinates of the barycenter can be found as the center of
mass of the volume considered. In our case, the i-th component of
the center of mass would be

αci :=

∫
dα 2δ(‖α‖2 − 1)

∏S
j=1Θ(N

∗
i (α)) αi∫

dα 2δ(‖α‖2 − 1)
∏S
j=1Θ(N

∗
i (α))

. (41)

This integrals are generally difficult to be computed and can be in
principle be evaluated in a very similar way to the one we introduced
in section 3.5. We instead used a different (and faster) approach.
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The basic idea behind this second approach, was to generate a
random-walk on the domain of intrinsic growth rates and calculate
the barycenter averaging over all the positions visited in the random-
walk. These approach coincides with evaluation of the integral in
equation 41 since the random-walk covers uniformly the space. To
be more precise a random-walk in a confined volume does not oc-
cupy uniformly the space. In order to avoid this problem we imposed
periodic boundary conditions. Specifically, the random-walk was im-
plemented in the following way. An initial vector α(0) of intrinsic
growth rate was considered such that it corresponded to a feasible
population. We randomly drawn a direction (a random vector αri(0)
orthogonal to the first one ). We move the original vector of a small
angle in that direction

αi(1) = αi(0) cos(η) +αri(0) sin(η) , (42)

where η is a Gaussian random variable with small variance. If the
new vector αi(1) correspond to a feasible equilibrium, then we ac-
cept the move. If it does not, we have to implement periodic bound-
ary conditions. Specifically, given a vector αi(0) that belongs to the
feasibility domain and a random vector αri(0), we can calculate the
conditions that the perturbation need to satisfy in order to correspond
to a feasible equilibrium. Let assume that to be feasible the perturba-
tion η must belong to an interval [ηmin,ηmax], with ηmin < 0 and
ηmax > 0. We stress that these two values, ηmin < 0 and ηmax > 0,
depend on both αi(0) and αri(0). We impose periodic boundary con-
ditions simply by considering

η ′ = η− ηmin + [(η− ηmin) mod (ηmax − ηmin)] , (43)

where mod is the modulo operation. Considering η ′ we are guaran-
teed to perform a random walk inside the of feasible intrinsic vectors.

We simulate this dynamics, using equation 42, and we compute
the barycenter as average over vectors αi(t). Since the dynamics of
equation 42 produces correlated vectors, we introduce a relaxation
time of the random walk τ and we include in the average only vectors
with a temporal lag equal or larger than τ. In particular

αci =
1

N

N∑
m=1

αi(mτ) , (44)

where N is the number of independent vector considered. In all the
results shown in this work we considered N = 200S and τ = 5S (or
larger values), where S is the total number of species.

3.10 dependence of minimal structural stability on parametriza-
tion

In section 3.9 we introduced the structural stability ξi of a single
species i, that measured the range of growth rates leading to a posi-
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Figure 11: Dependence of minimal structural stability on extremal eigen-
value. The structural stability of a single species ξi, defined in
section 3.9, quantifies the range of growth rates leading to a fea-
sible population of the species i. Here we plot this value for the
species having the smallest value vs the smallest eigenvalue of
the matrix B, which determines the Lyapunov stability of the sys-
tem. Each inset refers to a given combination of the competition
ρ and the mutualistic trade-off δ. Different points where obtained
varying lambda. The interaction matrix γ where drawn as inde-
pendent 50× 50 random matrices with 500 links. The eigenvalue
was computed as the minimal eigenvalue of the corresponding
interaction matrix B obtained with the parametrization discussed
in section 3.2. Each point is an average over 10 random indepen-
dent realizations.

tive population of the species i. It is of particular interest the species
having the smallest value of ξi as it represents the species at most
risk or the direction of minimal structural stability.

In principle this minimal value of ξi depends on all the parameters
in the model. Figure 11 shows that it is striclty related to an a-priori
very different quantity. In fact it is very correlated to the value of the
smallest eigenvalue of the interaction matrix, which is the quantity
determining the Lyapunov stability of the system.

This result shed a new light on the role of the eigenvalue in deter-
mining the stability. As the eigenvalue crosses zero, also the minimal
structural stability tends to zero.
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3.11 conclusion

In this chapter we have studied the structural stability of large mutu-
alistic ecosystems. We have introduced a method to calculate directly
this quantity and determined the effect of network structure and in-
teraction strength on it.

The effect of network structure strongly depends on the values of
interaction strengths. Empirical network can be more or less struc-
turally stable depending on which between competition and mutu-
alism dominates. Moreover this effect solely depends on the degree
sequence of the network and not on further structural properties of
empirical networks.

We have then explicitly studied the effect of nestedness on struc-
tural stability by generating synthetic networks with arbitrary nested-
ness showing that their relation is strongly dependent of the interac-
tion strength and the effect of structure is negligible.

Structural stability depends on the response of all the system to the
change of parameters. We have then considered the case where only
one species was affected. In this case we quantify for each species the
range of growth rates leading to a feasible solution. Interestingly we
found a strong relation between the minimal range across the species
and the eigenvalue of the Jacobian determining the local stability
properties of the system. This relation suggests a deep connection
between local stability and robustness of the system to perturbations
of parameters.



4
P E R S I S T E N C E O F A M E TA P O P U L AT I O N I N A
R A N D O M LY F R A G M E N T E D L A N D S C A P E

Remember, remember always that all of us,
and you and I especially,

are descended from immigrants and revolutionists.

— Eric Hoffer

4.1 metapopulation theory

We live in a fragmented patchy world [44]. The individuals of a
species do not occupy space homogeneously, since the spatial loca-
tions that support life are discrete and fragmented. The typical ex-
ample is an archipelago and a population of some terrestrial species
living on islands. A similar scenario can be also found in a forest,
where the resource distributions in not uniform. Moreover human
activity typically increase the fragmentation of the landscape. The
term metapopulation refers to a population living in such fragmented
landscapes, composed of isolate patches. The main goal of metapop-
ulation theory is to relate the level of fragmentation in the landscape
to the persistence (or extinction) of the population considered.

We can imagine to consider a single species, with subpopulations
that potentially can be present in each patch. The main assumption of
metapopulation is that patches are isolated, i.e. the typical timescale
of dispersal between patches is much larger than the timescale in-
volved in the local population dynamics (e.g. the typical lifetime of
an individual). Under these assumptions, one can model the dynam-
ics of a metapopulation separating the two timescales. On the shorter
timescale, the population in each patch follow its dynamics. We can
imagine that, due to fluctuations, the subpopulation in a single patch
can go extinct. If there was not dispersal, the subpopulations in sin-
gle patches go extinct one by one, and in a finite time the whole
population would go extinct. Dispersal between patches, by repopu-
lating empty patches, can balance local extinctions, and, if it is strong
enough can avoid global extinctions.

The problem of persistence is therefore a problem of balance be-
tween local extinctions and dispersal. In subsection 4.1.1 we will intro-
duce a dynamical model for metapopulations [45, 46, 47], that specify
in more rigorous term how to quantify this balance. This model, and
all its possible generalizations, requires the specification of how the
landscape is fragmented (e.g. in the archipelago case, the positions
and the sizes of all the islands). The goal of this chapter is to deter-

47
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mine the condition for persistence of a metapopulation in a random
fragmented landscape, i.e. where positions of patches are randomly
distributed in space and their sized drawn from a probability distri-
bution. We show how this problem can be mapped into the problem
of finding the expectation of the leading eigenvalue of a random ma-
trix ensemble, known as Euclidean Random Matrices. We are able
to derive a persistence criterion showing that a handful of quanti-
ties drives persistence: the density of patches, the variability in their
value, the shape of the dispersal kernel, and the dimensionality of
the landscape. We also demonstrate that metapopulations close to ex-
tinction are spatially localized, with few patches clustered in space
contributing disproportionately to persistence.

4.1.1 Metapopulation dynamical models

The starting point for metapopulation models is Levins’ model [48].
The model assumes a large number of identical patches of suitable
habitat that may or may not be occupied by a local population. The
proportion of patches p(t) that are occupied at time t is governed by
the equation

dp(t)
dt

= cp(t) (1− p(t)) − ep(t) , (45)

where c is the colonization rate and e is the extinction rate. The
metapopulation is persistent whenever the stable solution of the equa-
tion above is positive. Levins’ model has two stationary solutions:
p∗ = 0 and p∗ = 1− e/c. The latter is a positive stable solution, i.e.
the metapopulation is persistent, if δ := e/c < 1.

This model is spatially implicit: individual patches and local pop-
ulation persistence probabilities are not modeled explicitly. To make
the model spatially explicit, one should specify the location of the
patches in the landscape. The geometry of the landscape will then
dictate the rate at which individuals in a patch colonize other patches,
with colonization rates typically decreasing with the distance between
the patches. Moreover, patches can differ in size or suitability such
that the dynamics of a local population depends on the patch “value”.

Hanski & Ovaskainen [45, 46, 47] proposed a model in which the
colonization and extinction rates depend both on the particular patch
under consideration and the occupancy state of all the other patches:

dpi(t)
dt

= (1− pi(t))Ci − pi(t)Ei , (46)

where pi(t) is the probability that patch i is occupied at time t, and
Ci = Ci (p1(t), . . . ,pN(t)) and Ei = Ei (p1(t), . . . ,pN(t)) are the col-
onization and extinction rates of patch i as a function of the current
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distribution of the population over the landscape (N is the total num-
ber of patches).

The model also incorporates the notion of patch “value” (e.g., a
function of the patch size and the density of available resources),
which measures the probability of incidence on a given patch without
any immigration from other patches, and can therefore be interpreted
as the carrying capacity of the patch. The colonization rates are as-
sumed to be directly proportional to this value, while the extinction
rates are assumed to be inversely proportional to it. Denoting the
value of patch i by Ai, the extinction rate in patch i is Ei = δ/Ai,
where δ is the extinction rate per unit patch value. Without loss of
generality we assume that, up to a rescaling of δ, the mean patch
value (averaged over all the N patches) is one, i.e.,

∑
iAi/N = 1.

The colonization rate of patch i is composed of the contribution of
all other patches, with the contribution of each patch being a function
of the distance between the patches. This function is called dispersal
kernel and is denoted f

(
|xi − xj|/ξ

)
, where xi is the spatial position

of patch i, |xi − xj| is the Euclidean distance between patches i and
j. In the following we will consider the case of f depending on one
parameter with length dimensions, specifically we will consider the
case f(|xi − xj|), where ξ is the dispersal distance, i.e., the character-
istic distance the population can traverse in a unit of time. The col-
onization rate is therefore Ci =

∑N
j6=i f

(
|xi − xj|/ξ

)
Ajpj. Hanski &

Ovaskainen [45] studied the special case of an exponential dispersal
kernel f

(
|xi − xj|/ξ

)
= exp

(
−|xi − xj|/ξ

)
, but for a general kernel, we

have:

dpi(t)
dt

=

N∑
j6=i

(1− pi(t)) f

(
|xi − xj|

ξ

)
Ajpj(t) −

δ

Ai
pi(t) . (47)

This equation can be obtained from a stochastic process describing
the occupation of the N patch. One can indeed consider N random
variables σi, taking value 1 if the species of interest is present in
patch i and 0 if it is not. The stochastic dynamics is fully specified
once transition rates are specified. In this case one can imagine that
in each patch the σ goes from 1 to 0 with a rate proportional to δ
(and depending on patch value), while it flips to 1 depending on a
rate of migration and the occupancy of other patches. This process is
known as contact process [49] in stochastic dynamics literature or as
SIS model in epidemiology. One can obtain a deterministic equation
for 〈σi〉, which depends on the correlations 〈σiσj〉. If we neglect the
correlations, assuming 〈σiσj〉 = 〈σi〉〈σj〉, we obtain a close set of
equations for 〈σi〉 that turn out to have exactly the same form of
equation 47, with pi = 〈σi〉.
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Introducing the matrix M with the definition

Mij =

 f

(
|xi − xj|

ξ

)
AiAj, i 6= j,

0, i = j,
(48)

Hanski & Ovaskainen [45] derived a simple persistence rule: the metapop-
ulation persists as long as the extinction rate δ < λ, where λ is
the leading (largest, rightmost) eigenvalue of M. Thus, the criterion
for metapopulation persistence has the same form found in Levins’s
model, with the leading eigenvalue λ (dubbed the “metapopulation
capacity” [45]) playing a key role for persistence.

4.2 dispersal matrix as a random matrix

4.2.1 Euclidean Random Matrices

Euclidean Random Matrices [50] were introduced to study the large
class of physical system where disorder has a spatial origin. The vi-
bration spectra of glasses [51] or instantaneous normal modes in liq-
uids [52] are just two of the possible applications.

Consider a regionΩ in a d-dimensional Euclidean space. Take a set
of N points xi randomly and uniformly distributed over this region
(the patches). Let f(xi− xj) be an arbitrary function of any two points
xi, xj in Ω. Then the matrix A with Aij = f(xi − xj) − uδij

∑
k f(xi −

xk) is called a Euclidean Random Matrix [50]. The function f is typi-
cally considered to depend only on the distance between xi and xj:
f(xi, xj) = f(|xi − xj|).

The spectrum of an Euclidean random matrix has not been fully
solved. It is possible to obtain two approximation, expanding the so-
lution at low and high density respectively.

In the following we will consider only the case u = 0. Sometimes,
instead of working with the Euclidean Random MatrixA, we consider
the matrix B = A − f(0)I, where I is the identity matrix. Since f is
assumed to depend only on the distance between points, all diagonal
elements of A are equal to f(0). Therefore the only difference between
A and B is that the latter has its diagonal entries set to zero. The effect
of this is simply to shift the eigenvalues by a constant: if

Awα = λαwα (49)

(where wα, λα are the αth eigenvector and eigenvalue of A, respec-
tively), then

Bwα = (A− f(0)I)wα = (λα − f(0))wα. (50)

meaning that the eigenvectors of B are the same as those of A, and
that the eigenvalues of A are those of B shifted by f(0).
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In the special case when f is equal to one for |xi−xj| < ξ and to zero
otherwise (i.e. a theta function, where ξ is parameter), the Euclidean
Random Matrix generated this kernel is called a Random Geometric
Graph [53]. We sometimes make use of Random Geometric Graphs, as
they provide the most intuitive case of Euclidean Random Matrices,
and they can be seen as the adjacency matrix of an undirected graph.

4.2.2 The dispersal matrix

The dispersal matrix M (Eq. 48) has special properties as long as the
dispersal rate depends only on the distance between patches, which
we will assume throughout. In this case M is symmetric (Mij =Mji)
and nonnegative (Mij > 0). Symmetry implies that all the eigenval-
ues of M are real. Then, as long as M is irreducible (a condition
typically met by the matrices studied here), M will have a unique
largest eigenvalue [54, 55], which is the leading eigenvalue λ referred
to above. Moreover, the eigenvector associated with this eigenvalue
can be chosen with strictly positive components. Note that, since
we are interested in the largest eigenvalue overall as opposed to the
largest in absolute value, primitivity of M is not required.

Moreover, using the symmetry of M, one can derive a lower bound
for the magnitude of λ. Since by definition

λ = max
θi 6=0

(∑N
i=1

∑N
j=1 θiMijθj∑N
k=1 θ

2
k

)
, (51)

we may arbitrarily set θi = 1 for every i to obtain

λ >
1

N

N∑
i=1

N∑
j=1

Mij (52)

(e.g., [56]). This sum can be interpreted as the arithmetic mean of the
row sums of the matrix M. Therefore, the average row sum provides
a lower bound for the leading eigenvalue of symmetric matrices.

This approximation is in fact a special case of the more general
formula

λ >

∑N
i=1

∑N
j=1 (M

q)ij∑N
i=1

∑N
j=1 (M

q−1)ij
(53)

where q is a positive integer. Note that (M0)ij = δij and for q = 1 we
recover Eq. (52).
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4.2.3 The dispersal matrix as a ERM

When developing a general theory of persistence in fragmented land-
scapes, we are faced with the problem that no two landscapes are
alike. The situation is reminiscent of complex network theory, in which
any two food webs, transportation, or gene-regulation networks are
different, making it difficult to pinpoint the salient features of each
system. In these cases, much progress has been made by contrasting
empirical networks with those generated by simple models such as
the Erdős-Rényi random graph or the Barabási-Albert model [5]. Our
main goal is to propose and study a reference model for metapopula-
tions dispersing in fragmented landscapes.

One could be tempted to simply take the Erdős-Rényi model and
apply it to metapopulations [57]. However, this model lacks a funda-
mental feature of real dispersal networks: two patches close in space
are more likely to exchange individuals than two that are far away.
A more fruitful avenue is to take N patches, distribute them ran-
domly in space, and connect any two patches that are closer than
some threshold distance [58]. This defines a so-called Random Geo-
metric Graph [53], for which it has been shown that the number of
edges per node required to make the graph connected (i.e., the graph
is composed of just one “piece”) is much higher than that for Erdős-
Rényi graphs, with the two converging for high-dimensional land-
scapes [59]. However, natural populations exist in low-dimensional
environments. As such, Erdős-Rényi random graphs are inadequate
descriptors of natural dispersal networks [57].

Random Geometric Graphs can be generalized even further. In-
stead of treating the connectedness of two patches in an “either/or”
manner, we may think of it as a smooth function of distance. This
function is what we refer to as the “dispersal kernel”. Such networks
have been introduced in the physics of disordered systems [50] and
are called Euclidean Random Matrices. As explained above, a Ran-
dom Geometric Graph is but one special case, in which the dispersal
kernel is rectangular (Figure 12), yielding a dispersal rate of either 0

or 1, while generic Euclidean Random Matrices cover the broad spec-
trum of intermediate cases where dispersal rates decrease smoothly
with distance (Figure 12).

Here we use Euclidean Random Matrices to study metapopulations
dispersing in random fragmented landscapes. We derive a condition
for metapopulation persistence analytically, highlighting that number
of spatial dimensions, number of patches, shape of the dispersal ker-
nel, and the variability in patch value are all key to determining per-
sistence. We also show that a metapopulation can persist in two dif-
ferent regimes, localized and nonlocalized, giving rise to completely
different responses to habitat loss. We finally obtain a counterintuitive
result: if we arrange the patches in a perfect grid (as often considered
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Figure 12: Fragmented landscapes as networks. Different panels represent dif-
ferent dispersal kernels (top to bottom: Rectangular, Gaussian and
Exponential—panel insets) for increasing dispersal lengths ξ (left to
right). The size of the points stands for the patch value Ai, while the
color measures the probability of occupancy pi (gray→ low probability,
red → high probability). The color of the edges measures their strength
(white to blue). In all the panels δ = 0.9λ, where λ is the metapopulation
capacity.

in the design of protected areas [60, 61, 62]), we obtain a lower likeli-
hood of persistence compared to the case in which we distribute the
patches randomly.

4.3 metapopulation capacity in fragmented landscapes

Knowing the number of dimensions (d) and size (L) of the landscape,
the number of patches N, the dispersal kernel f(|xi − xj|/ξ), and the
distribution of the values of the patches (σ2), we want to approximate
λ, the metapopulation capacity.

Take the patch values to be one for all patches, and assume a rectan-
gular kernel (Random Geometric Graph). Then, the average row sum
is simply the average number of neighbors each patch has (the aver-
age degree of the network). When using another kernel (Euclidean
Random Matrix), the row sum can be interpreted as the average num-
ber of “effective neighbors”, ne, meaning that patches that are closer
contribute more to the sum than those that are far away. As such,
when all patches have value one, λ > ne. When the patch values
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are sampled from a distribution with mean one and variance σ2, as-
suming N large, we obtain λ > ne(1+ σ

2) (see next sections). This
provides a conservative criterion for metapopulation persistence:

ne(1+ σ
2) > δ . (54)

Next, we want to approximate ne for different parameterizations.
In fact, ne is influenced by the dispersal kernel, the dispersal length,
the number of dimensions, the number of patches, and the size of the
landscape. The formula reads

ne ≈
N

Ld
Gf(d)ξ

d , (55)

(see section 4.3.1), where the first term measures the patch density,
obtained dividing the number of patches N by the volume Ld (area if
d = 2, or length if d = 1), while the second term

(
Gf(d)ξ

d
)

measures
the typical volume accessible via dispersal from a patch. Their prod-
uct ne represents therefore the typical number of patches accessible
via dispersal. The numerical factor Gf(d) depends on the functional
form of the dispersal kernel and on d. For example, Gf(d) = (2π)d/2

for the Gaussian kernel (see next sections).
Figure 13 shows that λ depends on all the factors that are needed

to estimate ne: the number of patches N, the kernel f, the dispersal
length ξ, and the number of dimensions d. Moreover, λ depends on
the variance in the value of the patches, σ2. However, when plotting λ
versus ne(1+σ2), all curves collapse into the same one, meaning that
two very different fragmented landscapes, having the same value of
ne(1+ σ

2), have approximately the same metapopulation capacity.

4.3.1 Lower bound for metapopulation capacity

Whether a metapopulation can persist depends on the metapopula-
tion capacity λ, which in turn depends on the dispersal kernel f, the
number of spatial dimensions d, and the density of suitable habi-
tat patches. Using the Euclidean Random Matrices introduced in sec-
tion 4.2.1, in this section we derive the metapopulation persistence
criterion reported in equation 55.

In this section we examine the case when all patches have equal
value Ai = 1, and therefore the matrix M defined by Eq. (48) is a Eu-
clidean Random Matrix, with diagonal entries set to zero. Therefore
the lower bound Eq. (52) can be used to approximate its leading eigen-
value. This bound is expressed as a double sum over the indices i and
j which, in our case, means summing over the randomly distributed
points in space:

λ >
1

N

N∑
i=1

N∑
j=1

Mij =
1

N

N∑
i=1

N∑
j6=i

f

(
|xi − xj|

ξ

)
. (56)
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Figure 13: Dependence of the metapopulation capacity on different factors. The four
panels on the left show the metapopulation capacity λ vs. the dispersal
length ξ. λ depends on the number of dimensions d (1, 2, 3), the number
of patches N (500, 1000, 2500, 5000), the dispersal kernel f (Gaussian,
Exponential and Rectangular), and the heterogeneity of patch value σ
(varied between 0 and 1). Different symbols correspond to different com-
binations of f and d, while different colors correspond to different values
ofN. The color scale from blue to light blue refers to different values of σ.
The right panel shows the collapsing of the various curves into a single
one. The dependence on all the parameters (namely d, N, ξ, f and σ) is
amalgamated in ne(1+σ2), where ne is a simple function of all the pa-
rameters (computed via Monte Carlo integration). The region of largest
discrepancy (small ne(1+ σ2)) corresponds to the localized case, where
only few patches contribute to the persistence of the metapopulation.

As discussed in Section 4.2.3, the expression above can be seen as
the average row sum of matrix M. When M is a Random Geometric
Graph (Section 4.2.1), each entry Mij is either equal to 1 if patch i
can be reached from patch j, or to 0 otherwise. Then, the sum of all
entries in row i is the number of patches that are reachable from the
ith patch. In other words, it is the number of neighbors of patch i.
The average row sum is then the average number of neighbors of the
patches over the landscape.

For other dispersal kernels, we do not have such a clear distinction
between patches that are reachable and those that are not. Still, the
row sum of row i can be thought of as the effective number of neighbors
of patch i, because patches that are more likely to be reached from
i contribute more to the sum than those that are difficult to reach.
Therefore, we interpret the average row sum of matrix M as the aver-
age effective number of neighbors, denoted ne.

When the number of patches is large, i.e., N � 1, we can approx-
imate a summation over random points in a finite region Ω by a
continuous integral:

1

N

N∑
i=1

g(xi)
N→∞−−−→ 1

VΩ

∫
g(x) dx, (57)

where g is an arbitrary function, VΩ is the volume of the region Ω (or
area for d = 2, length for d = 1), the integral runs over all of Ω, and
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it is understood that “dx” refers to integration for all d components
of x. Hence, for N→∞

1

N2

N∑
i=1

N∑
j6=i

f

(
|xi − xj|

ξ

)
N→∞−−−→ 1

V2Ω

∫∫
f

(
|x− y|

ξ

)
dx dy. (58)

The effective number of neighbors ne can therefore be written, using
the right hand side of Eq. (56), as

ne =
ρ

VΩ

∫∫
f

(
|x− y|

ξ

)
dx dy , (59)

where ρ = N/VΩ is the density of patches over the landscape when
N� 1. Then, from Eq. (56), we have λ > ne. Since λ must be greater
than δ for metapopulation persistence, this is a conservative estimate
for the persistence condition: the metapopulation is expected to per-
sist whenever the effective number of neighbors, estimated by the
above integral, is larger than δ.

If we assume that the region Ω is the whole d-dimensional Eu-
clidean space, the integration becomes especially simple. More pre-
cisely, we take the limit N → ∞ and VΩ → ∞ such that ρ = N/VΩ
remains finite. We then perform the change of variables z = x− y to
obtain

ne = ρ

∫
f

(
|z|

ξ

)
dz, (60)

a much simpler integral than in Eq. (59).
Given the dispersal kernel, we can now derive the persistence con-

dition. We illustrate how this is done using three different kernel
forms assuming Ω is the whole d-dimensional Euclidean space. The
same calculation can be done for arbitrary other kernels in an analo-
gous way.

• Exponential kernel. This kernel is given by

f

(
|xi − xj|

ξ

)
= exp

(
−
|xi − xj|

ξ

)
, (61)

where ξ is the dispersal distance. Let the points ofΩ be denoted
by xwith x(k) being its kth coordinate (k = 1 . . . d). Since we are
integrating over the whole space, we can use Eq. (60), yielding

ne =ρ

∫
exp

−

√∑d
k=1 x

2
(k)

ξ

 dx(1) · · ·dx(d)

=
2πd/2Γ(d)

Γ(d/2)
ρξd ,

(62)

where Γ is the gamma function.
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• Gaussian kernel. This is given by

f

(
|xi − xj|

ξ

)
= exp

(
−
|xi − xj|

2

2ξ2

)
(63)

with dispersal distance ξ. Again, we apply Eq. (60) to obtain

ne =ρ

∫
exp

(
−

∑d
k=1 x

2
(k)

2ξ2

)
dx(1) · · ·dx(d)

=(2π)d/2ρξd .

(64)

• Rectangular kernel. This kernel is the basis for Random Geomet-
ric Graphs [53]. It reads

f

(
|xi − xj|

ξ

)
=

{
1, |xi − xj| 6 ξ,

0, |xi − xj| > ξ,
(65)

with ξ again being the dispersal distance. Integrating over the
whole Euclidean space, we are actually obtaining the volume
of a d-dimensional sphere of radius ξ. The effective number of
neighbors is therefore given by

ne =
πd/2

Γ (d/2+ 1)
ρξd . (66)

Since the effective number of neighbors ne is an approximation
for the average row sum of M, and this quantity itself is a lower
bound for the metapopulation capacity λ, we used simulations to
see how well the approximation works in practice. Figure 13 shows
that when plotted against ne the eigenvalues obtained with different
parameterizations collapse. Figure 14 shows λ against ne for various
dispersal kernels and number of dimensions d. The region Ω is taken
to be a d-dimensional cube of unit volume, and the dispersal distance
ξ is varied between 0 and 0.2. The effective number of neighbors
ne is obtained by evaluating the integral Eq. (59) numerically within
the unit cube, while λ is numerically calculated as the actual leading
eigenvalue of the Euclidean Random Matrix M.

Figure 14 shows that, unless the effective number of neighbors is
very low, the approximation is very good. Even when ne is small, the
approximation errs on the conservative side: the actual leading eigen-
value is in fact larger than predicted, leading to a greater likelihood
of persistence than ne predicts.

To better show the difference between the two quantities, Figure 15

shows the value (λ − ne)/ne against ne, i.e., the relative deviation
of λ from ne. Interestingly, this relative deviation seems to satisfy a
simple power-law relationship

λ−ne
ne

≈ Qf(d)n
−1/4
e , (67)
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Figure 14: Approximating the metapopulation capacity λ using the effective
number of neighbors ne. There are 4× 3 insets; the rows corre-
spond to the dimension d, and the columns to different dispersal
kernels. Each curve is obtained from a set of simulations with
given d, kernel, number of patches (colors), and dispersal dis-
tance ξ (varied between 0 and 0.2). For each parameter combina-
tion, we performed 1000 simulations. In each simulation patches
of identical value are scattered uniformly in the d−dimensional
unit cube, M is calculated using the parameters, λ is obtained by
numerically finding the leading eigenvalue of M, and ne is ob-
tained by performing the integral in Eq. (59). The approximation
is conservative when ne is small, and is very accurate for larger
values.
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Figure 15: Relative deviation of the metapopulation capacity λ from the ef-
fective number of neighbors ne. Zero deviation means the ef-
fective number of neighbors provides a perfect estimate of the
metapopulation capacity. Methods and notation as in Figure 14.
The gray dashed lines indicate a power-law relationship with ex-
ponent −1/4. The actual results approximate this ideal curve very
well, suggesting the simple rule (λ−ne)/ne ≈ Qf(d)n

−1/4
e . The

factor Q depends on the number of dimensions d and the general
form of the dispersal kernel, but not on the dispersal distance ξ or
the number of patches N. Rearranging, we get the improved ap-
proximation λ ≈ ne+Qf(d)n

3/4
e for the metapopulation capacity

in place of λ ≈ ne. Efficient practical usage of this improved for-
mula would of course require a knowledge of the function Q.
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where the exponent −1/4 is universal being independent of the dis-
persal kernel and the dimensionality d. Despite the fact that we do
not have an analytic explanation for this empirical result, Figure 15

shows that this seems to be a very robust pattern, with potential impli-
cations for further developments in the theory of Euclidean Random
Matrices.

4.3.2 Localization

In this section we discuss two further features of metapopulation
structure over random fragmented landscapes. The first is variance
in patch importance, meaning that some habitat patches are more im-
portant for the metapopulation’s persistence than others. The second
is spatial localization: patches with high occupancy probabilities pi
tend to be close together in space.

The components of the leading eigenvector of M provide a mea-
sure of the importance of a patch for persistence. It can be shown [63]
that the relative change in the metapopulation persistence due to the
removal of patch i is approximately equal to w2i , where wi is the ith
component of the leading eigenvector. As we have shown above, the
eigenvector is also related, in the limit δ ≈ λ, to the stationary patch
occupancy probabilities pi. High variance in the eigenvector compo-
nents therefore corresponds to heterogeneity in patch importance.

To study the variance in patch importance quantitatively, we use a
metric applicable to any nonzero vector w with nonnegative compo-
nents that is normalized to have length 1,

N∑
i=1

w2i = 1, (68)

where wi is the ith component of the vector w. The inverse participa-
tion ratio (IPR [64]) is defined as

IPR =

N∑
i=1

w4i , (69)

and measures the heterogeneity of eigenvector components. Here we
rescale this metric so that its values fall between 0 and 1:

Ψ =
N× IPR − 1

N− 1
=
N
∑N
i=1w

4
i − 1

N− 1
. (70)

When patches are arranged in a perfect grid, we do not expect any
variance in the wi (with the exception of the possible small influence
of boundary effects). To measure how patch occupancies changes for
disordered systems, we first perturbed a regular grid of patches, by
adding to each position a random vector whose component are drawn
from a uniform distribution between −η and η. In Figure 16 we show
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the scaled inverse participation ratio Ψ of the normalized leading
eigenvector w against the metapopulation capacity λ for various val-
ues of the perturbation size η. We see that increasing randomness
leads to higher variation in all cases.
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Ψ
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0.25
0.50
0.75
1.00

η

Figure 16: The effect of a grid structure versus randomly distributed patches
on the variance in patch occupancies. The scaled inverse partici-
pation ratio Ψ of the normalized leading eigenvector w, defined
by Eq. (70), is plotted against the metapopulation capacity λ. Dif-
ferent colors represent different values of η, which quantifies the
level perturbation of the perfect grid (η = 0 correspond to a grid,
η = 1 to a random distribution of points). Ψ increases with the
perturbation size (increasing randomness increases Ψ), and de-
creases with the metapopulation capacity. Note that, since our
formula for Ψ depends on the approximation Eq. (52), i.e., the
λ ≈ δ limit, the metapopulation is still close to extinction even for
large values of the metapopulation capacity.

This simulation sheds light on the cause for the discrepancy be-
tween λ and ne observed in Figures 14 and 15. We have shown that
ne approximates λ very well, except when ne is very small. The re-
lationship between the two quantities is of course not expected to be
perfect since the effective number of neighbors only provides a lower
bound for λ, as discussed in Section 4.3.1. The only case when the
lower bound actually holds with strict equality is when w is com-
pletely uniform, i.e., is proportional to the vector (1, 1, . . .). But this
implies that Ψ = 0, corresponding to the lack of any variation in patch
occupancies. Any deviation from this situation leads to more variance
and therefore a worse approximation due to Eq. (56). Therefore, any
discrepancy between λ and ne is strictly due to this variance.

Instead of relating Ψ to the degree of randomness in the distribu-
tion of patches across the landscape, one may also ask how it relates
to the metapopulation capacity itself. To answer this question, we gen-
erated 1000 matrices M for each combination of the following param-
eters: N (which could take on the values 500, 1000, 2500, and 5000), d
(between 1 and 4), kernel (Exponential, Gaussian, and Rectangular),
and dispersal distance ξ (taking on 84 possible values between 0 and
0.2). In each case we determined Ψ and λ for each M. The scaled in-
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verse participation ratio Ψ was then calculated. Figure 17 shows the
results. We can see that Ψ is inversely related to λ in all cases: a larger
metapopulation capacity leads to less variance in patch occupancies.
Though this result might seem self-evident, we have assumed λ ≈ δ,
and therefore high values of the metapopulation capacity do not in
any way imply strong metapopulation persistence—on the contrary,
regardless of the magnitude of λ, the metapopulation is very close to
the extinction threshold.

Having established that there is variation in the importance of
patches for metapopulation persistence, we can also ask whether patches
with similar importance tend to form spatial clusters, i.e. whether
patches of similar importance are close together on the landscape. To
answer this question, we measured the correlation between closeness
and importance using Moran’s index [65]. Independent of ne, this
index turns out to be positive and significant (p-value always less
than 10−6), i.e. close patches have similar importance. This positive
correlation is expected, since in terms of network theory, the impor-
tance of a node is measured by the eigenvector’s components (the
so-called eigenvector centrality). It directly follows from the defini-
tion of eigenvector centrality (important nodes are nodes connected
with important nodes) that strongly connected patches have similar
importance. But the patches that are going to be strongly connected
are the ones close in space, since the strength of connection depends
only on the distance between patches in our Euclidean Random Ma-
trix framework. This argument already implies a positive Moran’s
index—which we indeed do find.

4.3.3 Effect of patch heterogeneity

So far we have assumed that all patches have the same value, i.e., in
Eq. 48 the Ai are all equal. In fact, we have assumed Ai = 1; however,
for any constant patch value Ai = a one can rescale the equilibrium
equation Eq. 47 by dividing both sides by a2 and treating δ/a2 as a
new effective δ. Here we introduce variable patch values.

To explore their effects on metapopulation structure and persis-
tence, we randomized the Ai by drawing them independently from a
scaled beta distribution with mean 1 and variance σ2 (again, without
loss of generality).

We can use Eq. (53) with q = 2 to derive an improved approxi-
mation for the metapopulation capacity when the patch values are
variable:

λ >

∑N
i=1

∑N
j=1

(
M2
)
ij∑N

i=1

∑N
j=1Mij

, (71)
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Figure 17: The scaled inverse participation ratio Ψ as a function of the
metapopulation capacity in the λ ≈ δ limit. Methods and notation
as in Figure 14. Ψ diminishes with an increasing metapopulation
capacity in all cases.
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or, writing out the matrix multiplication in the numerator,

λ >

∑N
i=1

∑N
j=1

∑N
k=1MikMkj∑N

i=1

∑N
j=1Mij

. (72)

Substituting in Eq. (48) and using the notation fij = f
(
|xi − xj|/ξ

)
when i 6= j and 0 for i = j,

λ >

∑N
i=1

∑N
j=1

∑N
k=1AiAjA

2
kfikfkj∑N

i=1

∑N
j=1AiAjfij

, (73)

where the matrix f is a Euclidean Random Matrix.
The matrix f has zeros on the diagonal, and therefore the sum in

the numerator always yields zero whenever k = i or k = j. Since f
is a function of independently drawn random points in space, and
the patch values are also independently drawn, the numerator can be
treated as an averaging over the patches via the index k. Let us define
the quantity

Lk =

N∑
i=1

N∑
j=1

AiAjfikfkj. (74)

We then have

λ >

∑N
k=1A

2
kLk∑N

i=1

∑N
j=1AiAjfij

, (75)

or

λ >
NA2L∑N

i=1

∑N
j=1AiAjfij

, (76)

where the bar denotes averaging over the patches. Due to indepen-
dence, we have A2L = A2L. The quantity L can be written

L =
1

N

N∑
k=1

N∑
i=1

N∑
j=1

AiAjfikfkj =
1

N

N∑
k=1

(
N∑
i=1

Aifik

) N∑
j=1

Ajfkj


=
1

N

N∑
k=1

(
A

N∑
i=1

fik

)A N∑
j=1

fkj

 =
(A)2

N

N∑
i=1

N∑
j=1

(
f2
)
ij

,

(77)

where we used the independence of A and f again. The denominator
of Eq. (76) can be written

N∑
i=1

N∑
j=1

AiAjfij =

N∑
i=1

Ai

N∑
j=1

Ajfij = A

N∑
i=1

N∑
j=1

Ajfij

=(A)2
N∑
i=1

N∑
j=1

fij.

(78)
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Substituting Eqs. (77) and (78), we obtain

λ > A2

∑N
i=1

∑N
j=1

(
f2
)
ij∑N

i=1

∑N
j=1 fij

. (79)

We discussed in Section 4.2.3 that, while both Eq. (52) and Eq. (53)
(with q = 2) approximate λ, the latter is always greater than or equal
to the former:∑N

i=1

∑N
j=1

(
f2
)
ij∑N

i=1

∑N
j=1 fij

>

∑N
i=1

∑N
j=1 fij

N
. (80)

Therefore we may substitute this into Eq. (79) and the inequality will
still hold with

λ >
A2

N

N∑
i=1

N∑
j=1

fij. (81)

But the above sum divided by N is simply the effective number of
neighbors ne, as discussed in Section 4.3.1. We therefore have

λ > A2 ne. (82)

Since we are drawing the patch values independently from a distribu-
tion with mean 1 and variance σ2, and A2 = (A)2 + Var(A), we have
A2 = 1+ σ2. We therefore obtain

λ > (1+ σ2)ne. (83)

We tested how the original λ > ne and the new λ > (1 + σ2)ne
approximations perform as a function of the patch variability σ. The
left panel of Figure 18 shows the former, the right panel the latter
approximation. On the left panel, for small values of σ we see exactly
the same situation found in Figure 14, but for large values of σ the
effective number of neighbors starts to severely underestimate the
metapopulation capacity. On the right panel however, we see that as
long as (1+ σ2)ne is not very small, this quantity approximates the
metapopulation capacity very well even for large patch variability.

4.4 conclusions

By modeling fragmented landscapes as networks [66, 67] in which
the nodes are patches and the weighted edges represent dispersal,
we have shown that metapopulation persistence can be studied an-
alytically for the case in which patches are randomly distributed in
the landscape, and patch values are independently sampled from a
distribution.

The derivation highlights that a few key quantities determine the
metapopulation capacity: the density of the patches, with denser land-
scapes yielding a higher probability of persistence; the shape of the
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Figure 18: The effect of nonconstant patch values on the approximation
λ ≈ ne. On the left panel we plot the metapopulation capacity
(obtained by computing λ numerically) against the effective num-
ber of neighbors ne, calculated via the integral in Eq. (59). The
patch values were drawn from a rescaled beta distribution with
mean 1 and standard deviation σ. The matricesMwere generated
with N = 2500, d = 2, a Gaussian dispersal kernel, the dispersal
distance ξ varying between 0 and 0.2, and σ varying between 0

and 1. For every parameter combination, 1000 simulations were
performed. As seen on the plot, the greater the variability in patch
value, the more ne underestimates λ. The right panel shows the
exact same information, except the metapopulation capacity is
plotted against ne(1+ σ2) instead of just ne (section 4.3.1). The
approximation is significantly improved by including the term
(1+ σ2).

dispersal kernel; the number of dimensions; and the variability in
patch value, with higher variance being beneficial.

Our analysis provides a null model for metapopulation persistence.
For a given empirical landscape, in which the patches positions are
not necessarily described by a uniform distribution and patch val-
ues are not independent of patch position[68, 57], the effect of these
features on persistence can be disentangled from the effects of other
factors by contrasting the metapopulation capacity of the empirical
landscape with what expected according to our framework.

Interestingly, we found that disorder and variation are beneficial for
persistence. First, the variance in patch values has a very strong pos-
itive effect on the metapopulation capacity, meaning that highly het-
erogeneous patch values yield higher λ that homogeneous ones. Sec-
ond, we found that more “disordered” arrangements of the patches
increase both the metapopulation capacity and the expected propor-
tion of occupied patches. This is especially relevant when metapopu-
lations are close to extinction, as localization becomes key for main-
taining the metapopulation viable, albeit in a spatially confined re-
gion. Note that these analytic results shed light on previous simula-
tions suggesting that unequal spacing between the patches is bene-
ficial for populations close to extinction[62], and are consistent with
what found when considering stochastic dynamics[69].
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Although we have examined the case of randomly distributed patches
using a uniform distribution, the same approach holds when the dis-
tribution is not uniform[68]. For example, riparian plants in a land-
scape crossed by a river will be concentrated in the vicinity of the
water, leading to a non-uniform distribution. Fortunately, in the limit
of many patches, any distribution can be taken into account, by eval-
uating analytically or numerically the integral defining ne in the gen-
eral case (see eq. 67). Similarly, we accounted for an integer number
of dimensions, but a fractional d (e.g., in a fractal-like river basin)
would not alter the framework. Finally, we assumed that species can
disperse equally in all directions, with no preference. When there is a
clear preferential direction of dispersal (e.g., wind-dispersal of seeds,
or fish larvae dispersing in a river), the theory of Euclidean Random
Matrices can be extended to account for this lack of symmetry[70].

The derivation of a criterion for metapopulation persistence bears
a striking resemblance to the derivation of stability criteria for large
ecological communities[25, 32], as in both cases the use of random
matrix theory led to the identification of the few basic parameters
responsible for the large-scale behavior of the systems. The advan-
tage of this approach is that, once the modeling of the matrices is
in place, the derivation of the results requires only elementary alge-
bra. Random matrix theory is currently experiencing an impressive
growth[71], greatly expanding the potential for biological applica-
tions.





Part II

C R I T I C A L I T Y I N B I O L O G I C A L
I N T E R A C T I O N S

Perhaps our ultimate understanding of scientific topics is
measured in terms of our ability to generate metaphoric

pictures of what is going on.
Maybe understanding is coming up with metaphoric pictures.

— Per Bak





5
C R I T I C A L I T Y I N L I V I N G S Y S T E M S

Facts have to be discovered by observation,
not by reasoning .

— Bertrand Russell

5.1 brief primer on critical phenomena

Critical phenomena are well understood in physical systems. The
great lesson learned from statistical physics is that, even though the
elementary constituents can be as simple as spheres or spins sitting
on a lattice with pair-wise interactions, criticality and scale invari-
ance emerge as the collective behavior of a many-body system with
its characteristics depending only on just a few essential attributes
such as the dimensionality of the system and symmetries of the prob-
lem. Remarkably, this universality results in the critical behavior of
an Ising model with nearest neighbor interactions on a cubic lattice
being identical to that of a liquid-vapor system at its critical point.
Likewise, the critical behavior of a binary alloy that is about to order
is the very same as the two other cases. This is because all these sys-
tems are three dimensional and have the same “up-down” symmetry.
The underlying details: the fact that spins sit on an idealized lattice,
the chemistry of the liquid, or the atomic interactions in an alloy are
irrelevant in determining the critical behavior.

A classical Ising spin can point up or down. An interaction between
neighboring spins results in favoring a parallel relative orientation
over an antiparallel one. This is captured through an interaction en-
ergy that is lower and thus more favorable when neighboring spins
are parallel compared to when they are antiparallel. Note that our
description of the model favors parallel over antiparallel but up and
down are treated symmetrically. The ground state or the lowest en-
ergy state of such an Ising system is one in which all spins are parallel
and, by necessity, are all up or all down. This choice between up and
down breaks the up-down symmetry spontaneously. The advantage
of lowering the energy through a mostly parallel alignment and thus
breaking the symmetry, favored at low temperatures, competes with
the tendency to increase the entropy at high temperatures through a
restoration of the symmetry and having roughly equal numbers of
up and down spins. While there are just two states with perfectly par-
allel spins –all up or all down– there are many states and therefore
a higher entropy when approximately half the spins are up and the
other half are down. The magnetization of such an Ising system is pro-

71
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portional to a suitably normalized imbalance between the numbers of
up and down spins. It provides a measure of the ordering and is zero
at high temperatures and is 1 at zero temperature. On lowering the
temperature from a very high value, the magnetization remains zero
until a critical temperature is reached at which point the magnetiza-
tion rises continuously and becomes non-zero. The critical point is
then a special temperature at which there is an onset of a non-zero
magnetization and the up-down symmetry is spontaneously broken.
There are two phases that emerge: at any temperature higher than Tc,
the magnetization is zero for an infinite sized system whereas, below
Tc, the magnetization is non-zero. The critical point, which separates
these two phases, is obtained by tuning the temperature just right
to its critical value. At a critical point, there are domains of up and
down spins of all sizes thoroughly interspersed among one another.
Scale invariance occurs because there is no dominant size scale asso-
ciated with these domains and power law correlations between spin
orientations are observed.

In inanimate matter is well understood how to reach the critical
point, in terms of control parameters, and what are the relevant prop-
erties that allow to identify a state of the matter as critical. When
one considers biological systems the situation is radically different.
Living systems (from flocks [74] to ecosystems themselves [75]) are
inherently out of equilibrium and there is not yet any fundamental
understanding of the control parameters of those systems. In this con-
text the critical point could be an odd defined property. Despite this
fact, there are a lot of examples where biological systems has prop-
erties that remind of the critical behaviors that we are familiar of. In
the next section we will introduce and discuss some of those possible
examples.

5.2 are biological systems poised at criticality?

Most of the complex biological phenomena emerge from interactions
among many constituents [76]: the interactions among many genes
determine how cells look like and behave, the interactions among
neurons determine how we think and have memories, the interactions
among species determine the fate of an ecosystem. Despite their con-
stituent role, we have not a fundamental understanding of the princi-
ples behind those biological interactions.

One possible approach to study interactions is via an inverse prob-
lem. This is a data-driven way to build an effective Hamiltonian and
give a statistical mechanics description of the system of interest. This
approach is based on maximum entropy principle (maxent). In a nut-
shell, one choose some observables (constraints) from the data and
find the probability distribution that maximize the entropy condi-
tioned to reproduce the constraints as averages. More precisely, one
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has a series of data {s} and some functions of the data Oµ({s}) (ob-
servables). The goal is to find a probability distribution P({s}) that
reproduces the data. In the maxent approach this is achieved by max-
imizing the entropy of the probability

S[P] = −
∑
{s}

P({s}) logP({s}) , (84)

constrained to reproduce the observables

O
µ
data = 〈Oµ({s})〉 =

∑
{s}

P({s})Oµ({s}) , (85)

where Oµdata is the value of Oµ({s}) computed from the data. The dis-
tribution that maximizes the entropy constrained to the observables
has the form

P({s}) =
exp(
∑
µ gµO

µ({s}))

Z
, (86)

where Z is a normalization constant, while gµ are the Lagrange mul-
tipliers that are fixed to satisfy the constraints of equation 85. The
probability in equation 86 has the same form of the probability of sta-
tistical mechanics system with Hamiltonian equal to −

∑
µ gµO

µ({s})

(up to a factor β).
Given a dataset and an arbitrary set of constraints one can obtain

a full probability distribution using maxent. If one chooses the right
constraints, the probability distribution obtained from equation 86

well reproduces the data and not only the imposed constraints. In
this way one has a parametrization for the system of interest, where
the tunable parameters are gµ and the empirical system corresponds
to the value of the parameters reproducing the constraints. It is im-
portant to stress that this is a very important assumption, as these
tunable parameters of the model gµ do not need to correspond to
any realistic parameter tunable in an experiment.

Maxent analysis has been performed on many biological systems
(from neurons [77] to ecosystems [78, 79]). One question that naturally
arises when this analysis is performed is the position of the empirical
system in the phase space obtained from the system of equation 86.
Many biological system turn out to have parameters corresponding
to the critical ones. Here below we will consider explicitly some ex-
amples.

5.2.1 Network of neurons

In the nervous system of all the animals, neurons communicate with
one another through discrete pulses of electrical activity known as
spikes. One can therefore imagine to discretize the electric signal mea-
sured from a group of neurons. By looking at the temporal series di-
vided in small windows of time, the continuous temporal series of the
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neuron i is transformed into a series of discrete variables σti taking
values 1 if the neuron is spiking in that window and 0 if it is not.

In order to apply maxent one has to choose constraints and a natu-
ral choice in this case is to fix the average activity and the correlation
between neurons, that result in the following probability

P({s}) =
exp(
∑
i hiσi +

∑
ij Jijσiσj)

Z
, (87)

which corresponds to the Gibbs distribution of an Ising model. The
parameters hi are related to the constraints of the average activity,
while Jij can be interpreted as an effective interactions between neu-
rons.

Do the inferred interactions have any peculiar property? In ref. [76]
it was shown that the values of the parameters seem to be poised
at the critical point. In order to do that they introduced an effective
inverse temperature β and considered the probability

P({s}|β) =
exp(β(

∑
i hiσi +

∑
ij Jijσiσj))

Z
. (88)

When β = 1 one recovers the model fitted from the data, while tuning
that parameters one effectively changes the value of parameters. The
authors studied the “specific heat” of the model, defined as the vari-
ance of the Hamiltonian (in this case the argument of the exponential),
in relation with β. In an equilibrium system the specific heat diverges
at the critical point in the thermodynamic limit. If the system is finite
but large enough we know that the maximum of the specific heat is
located closer and closer to the critical point as the size of the system
increases. Retinal ganglion neurons show a peak at β = 1, indicating
that the system is possibly close to a critical point [76].

The one described above is just one example of observables sug-
gesting that empirical neural networks operate close to the critical
point, and many other observables suggest, or at least are compatible,
with a dynamics at the critical point [80, 81, 82].

5.2.2 Animal collective behavior

Flocks of birds are a remarkable example of collective behavior. The
flock acts as a unique organism, responding in a very coordinated
way to external perturbations.

In recent years both experimental and theoretical effort have in-
creased our understanding of flocks and swarms [83, 84, 85, 86, 87].
Many evidences suggest that the interaction between individuals is
somewhat tuned to a critical point [88, 89]. Here we briefly review
some of them.

Maximum entropy has been applied to flocks of birds to study the
orientation of velocities of individuals. When the correlation between
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the velocity of birds is used as a constraint, the resulting model is
equivalent to an Heisenberg model in 3 dimensions.

P({s}|β) =
exp(
∑
ij Jijsisj)

Z
, (89)

where si = vi/‖vi‖, being vi the velocity of individual i. The coef-
ficient Jij can be interpreted by using the correlation of orientation
across individuals. The orientation shows a very strong polarization,
i.e. ‖

∑
i si‖/N is very close to one. This suggests that the parameter

of the Heisenberg model are set in the ferromagnetic phase and the
system has broken the symmetry. What is therefore relevant are the
fluctuations around the polarized direction. Interestingly the correla-
tions among these fluctuations display a long range correlation [85].
Empirical data shows that the correlation length increases with the
system size [85], which is a signature of a critical point. Note that
in this case the fact that the correlation between fluctuations is scale-
free is not just a suggestive analogue of critical phenomena, but is
predicted correctly by the model obtained via maxent.

Very similar results applies to swarm of midges [89, 87], that dis-
plays similar correlation, with a correlation length that grows with
the system size. Moreover in this case, one can introduce a dynami-
cal description, the Vicsek model [90], that well reproduces the data
and predict a transition between a low-density disordered phase to
a polarized ordered one. Empirical data lies on values of parameters
corresponding to the maximum of the correlation length and the max-
imum of the susceptibility.

5.3 scale invariance and criticality

Most of the arguments suggesting that living systems operate close
to a critical point are based on scale invariance. While it is true that a
(second order) critical point implies scale-invariance, the opposite is
not generally true.

In many context data are indeed scale-free and a signature of this
is the Zipf’s law. Zipf’s law was firstly introduced to describe the
distribution of word in texts and it states that, if σ is a word and P(σ)
is its frequency, than

P(σ) ∝ 1

r(σ)
, (90)

where r(σ) is the rank of the word σ. Zipf’s law can be generalized
to an arbitrary power-law relation between P and r and it has been
observed in many context, from the distribution of gene family con-
tent in genomes [91, 92] to the sizes of cities [93], from the income
distribution of companies [94] to earthquakes [95].

It has been proposed a connection between Zipf’s law and equilib-
rium system at the critical point [76]. One can indeed show that an
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equilibrium model at the critical point has a distribution of configu-
rations following a power-law. Self-organized criticality [96, 72] is a
different, yet similar, possible explanation behind the emergence of
Zipf’s law in many systems. In this case scale invariant phenomena
emerge as properties of an attractor of a dynamical system, without
fine-tuning of any parameter. Zipf’s law has also been proposed to
be originated by the interaction of the system with unknown hid-
den variables [97]. When the distribution of external variables is suf-
ficiently broad, Zipf’s laws emerges.

It is interestingly to note that the Zipf’s law was introduced to de-
scribe the word distribution in text. Notably in this case Zipf’s law is
not an expression of any interesting interactions or critical properties
in linguistics, but just a consequence of the simple fact that words are
made of letters [98]. Random text, simply generated by assembling
letters and spaces, show a Zipf’s law in word count. Scale-invariance
phenomena could be a consequence of other processes than criticality.

Criticality is interesting (mainly) because of fine-tuning. To sit at
the border of a critical point and be able to observe critical phenom-
ena one has to carefully tune the temperature or any other control pa-
rameter. In this context it is important to note that fine-tuning means
that the region of critical temperatures is very small (and tends to
zero in the thermodynamic limit) respect to the typical range we are
used to. When we deal with complex systems we have no knowledge
of what are the control parameters and their relation with the param-
eters that are really tunable in the system. That is to say that critical
behavior can, at least in principle, correspond to a large range of pa-
rameters the system has access to and being effectively described by
a model with parameters tuned at the critical point.

The other side of the coin is the richness of behaviors that appear
at the critical point. Close to the critical point there are many more
distinguishable models than far from it. If we think in terms of param-
eters, the region corresponding to critical phenomena is very small,
while in terms of distinguishable models, the most of them are close
to the critical point. In particular, one can show that the density of
different models is proportional to the generalized susceptibility [99],
that diverges at the critical point.

5.4 what needs to be done

As explained in previous sections many properties that are reminis-
cent of critical phenomena are observed in several biological systems.
Whether the interactions between the fundamental constituents of
these system are or not poised at the critical point, is still an open
problem. In this section we speculate on the possible way to shed
light on why these systems have these critical-like properties.
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Experiments. Most of the system where critical-like behaviors are
observed are non controllable systems. In some system that is practi-
cally impossible, one cannot tune the parameters governing the inter-
actions between birds in flocks, while in others is more feasible, e.g.
one can tune the interactions between neurons in a proper designed
in-vitro experiment. Being able to tune some control parameters al-
lows to check weather the original, natural, value of those parameters
is more critical than the modified system.

Simple null model. Some of the critical-like properties could be in
principle null properties, as in the case of Zipf’s law and random text.
Having proper null models able to describe the observed pattern does
non necessarily mean that the system is out of the critical point, but
give an idea of the effective parameters (that are non necessarily the
same as the controllable one) governing the system.

In the next sections we describe a different approach to the problem.
Instead of describing a specific system, we try to understand why a
generic community of individuals, under very general assumption,
could show critical-like properties.





6
I N F O R M AT I O N - B A S E D F I T N E S S A N D
C R I T I C A L I T Y

If the doors of perception were cleansed
everything would appear to man as it is,

infinite

— William Blake

6.1 introduction

In this chapter we describe a very abstract framework trying to ex-
plain why many systems could opertate close to a critical point and
how the critical point can be reached as a stable point of a proper
dynamics.

As conjectured long ago, the capability to perform complex com-
putations, which turns out to be the fingerprint of living systems, is
enhanced in “machines” operating near a critical point [101, 102, 103],
i.e. at the border between two distinct phases: a disordered phase, in
which perturbations and noise propagate unboundedly –thereby cor-
rupting information transmission and storage – and an ordered phase
where changes are rapidly erased, hindering flexibility and plastic-
ity. The marginal, critical, situation provides a delicate compromise
between these two impractical tendencies, an excellent trade-off be-
tween reproducibility and flexibility [81, 104, 105] and, on larger time
scales, between robustness and evolvability [106]. A specific example
of this general framework are genetic regulatory networks [103, 107].
Cells ranging from those in complex organisms to single-celled mi-
crobes such as bacteria respond to signals in the environment by
modifying the expression of their genes. Any given genetic regulatory
network, formed by the genes (nodes) and their interactions (edges)
[108]– can be tightly controlled to robustly converge to a fixed almost-
deterministic attractor –i.e. a fixed “phenotype”– or it can be config-
ured to be highly sensitive to tiny fluctuations in input signals, lead-
ing to many different attractors, i.e. to large phenotypic variability
[109]. These two situations correspond to the ordered and disordered
phases respectively. The optimal way for genetic regulatory networks
to reconcile controllability and sensitivity to environmental cues is to
operate somewhere in between the two limiting and impractical lim-
its alluded to above [103] as has been confirmed in different experi-
mental set-ups [110, 111, 112]. Still, it is not clear how such tuning to
criticality comes about.

79
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6.2 model framework

Living systems operate in a highly variable and largely unpredictable
external environment. In our framework, we describe living systems
and the external environment in terms of probability distribution
functions. Living systems need to modify their internal state to cope
with external conditions. We represent an environmental signal “per-
ceived” and processed by a living system as a string of N (binary)
variables, s = (s1, s2, . . . sN). A specific environmental source is mod-
eled by the probability distribution Psrc that specify the frequency
of each of the 2N possible environmental signals. This distribution
is assumed to depend on a set of parameters, α = (α1, α2, . . . ),
accounting for environmental variability. An individual living sys-
tem or “agent” seeks to adapt itself to cope with the perceived stim-
uli/signals produced by a given environmental source. This is accom-
plished by changing its internal state, encapsulated in a second prob-
ability distribution function, Pint, specified by a different –smaller in
principle– parameter set β = (β1, β2, . . . ). We will denote the exter-
nal source and its internal representation by Psrc(s|α) and Pint(s|β)
respectively. The latter aims at capturing the essential features of
the former in the most efficient –though in general imperfect– way
(see Figure 19A). The external distribution Psrc(s|α) could therefore
be also interpreted as the best representation possible, that typically
is not accessible by living systems.

Considering again the example of regulatory networks, the exter-
nal signals are environmental conditions (temperature, pH,...), that
are variable and can only be probabilistically gauged by a cell. The
binary vector s = (s1, s2, . . . sN) can be thought of as the on/off state
of the different N genes in its (Boolean) genetic regulatory network
[103, 107, 108]. In this way, Psrc(s|α) can be interpreted as the probabil-
ity that the most convenient state aimed by the system to cope with a
given environmental condition is s, while Pint(s|β) is the actual prob-
ability for the genetic-network state (attractor) of a given individual
–with its limitations– to be s. Without loss of generality, we consider
that there is at least one control parameter, say β1, such that –other
parameters being fixed– it determines in which phase the network is
operating.

Our thesis is that the capacity of living systems to tune their in-
ternal states to efficiently cope with variable external conditions pro-
vides them with a strong competitive advantage. Thus, the internal
state Pint(s|β) should resemble as closely as possible the one most in
agreement with the environmental signal Psrc(s|α); in other words,
one seeks the distribution that the system should express in order
to best respond to the external conditions. Information theory pro-
vides us with a robust measure of the “closeness” between the aimed
(source) and the actual (internal) probability distribution functions.



6.2 model framework 81

Indeed, the Kullback-Leibler (KL) divergence [113], D(α|β), quanti-
fies the information loss when the internal state is used to approxi-
mate the source (see section 6.2.1). The KL divergence is asymmetric
in the two involved probability distributions, it is non-negative, and
it vanishes if and only if the two distributions are identical. Minimiz-
ing the KL divergence with respect to the internal-state parameters,
β, generates the optimal, though in general imperfect, internal state
aimed at representing or coping-with a given source (see Fig. 19A).

More generally, in an ever-changing world, the requirement for an
individual is not just to reproduce a single source with utmost fidelity
but rather to be able to successfully cope with a group of highly di-
verse sources (see Fig. 19B). A particularly interesting example of this
would comprise a community of similar individuals which together
strive to establish some kind of a common collective language (see
Fig. 19C).

In any of these complex situations, our working hypothesis is that
an individual has a larger “fitness” when a characteristic measure,
e.g. the mean, of its KL divergences from the set of diverse sources is
small, i.e. fit agents are those whose internal states are close to those
required by existing external conditions.

We have developed both analytical calculation (see section 6.3) and
(see sections 6.4 and 6.5) computational evolutionary models inves-
tigating the ideas explained above. The dynamical rules employed
in these models are not meant to, necessarily, mimic the actual dy-
namics of living systems, rather they are efficient ways to optimize
fitness. In particular, the result prestented here are also valid in the
case of an adaptive dynamics (instead of an evolutionary one) [114]
In the evolutionary models a community of M individuals –each one
characterized by its own set of internal parameters β– evolves in time
through the processes of death, birth, and mutation. Individuals with
larger fitness, i.e. with a smaller mean KL divergence from the rest
of sources, have a larger probability to produce an offspring, which
–apart from small random mutations– inherits its parameters from its
ancestor. On the other hand, agents with low fitness are more likely
to die and be removed from the community. These evolutionary rules
result in the ensemble of agents converging to a steady state distri-
bution, that we characterize in the next sections. We obtain similar
results in two families of models, which differ in the way in which
the environment is treated. In the first (see section 6.4), the environ-
ment is self-generated by a community of co-evolving individuals,
while, in the second (see section 6.5), the variable external world is
defined ad hoc.

As an illustrative example, consider two individual agents A and
B –the source for A is B and vice versa– each of them with its own
probabilistic gene network. The relative fitnesses of A and B are de-
termined by how well the set of cues (described by the probability
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Figure 19: Living systems coping with the environment. Panel A illustrates
a living system responding to an environmental source (e.g. a bacte-
ria responding to some external conditions such as the presence
of some nutrients, pH, temperature, . . . ). A given source, labeled
by the set of parameters α, can only be probabilistically gauged
by the system. Psrc(s|α) is the most accurate representation that
the system can potentially generate in terms of the Boolean vari-
ables (or bits) s. However, such a representation might not be
accessible to the system by merely changing its internal-state pa-
rameters, β, and the actual internal state, Pint(s|β), (e.g. the prob-
ability of a gene expression pattern) is usually an imperfect proxy
for Psrc(s|α). The optimal choice of parameters β –aiming at cap-
turing the most relevant features of the environment– is obtained
by minimizing the Kullback-Leibler divergence of Pint(s|β) from
Psrc(s|α) (see section 6.2.1). In genetic networks, changing internal
parameters is equivalent to changing the interactions between the
different (Boolean) variables (nodes of the networks in the figure).
Panel B shows a more complex scenario, where the system has to
cope with multiple and diverse sources. The internal state has to
be able to accommodate each of them. In panel C, the environ-
ment is not imposed ad hoc but instead, it is composed of other
individuals, and every agent needs to cope with (“understand”)
the states of the others. Each agent evolves similarly to the oth-
ers in the community, trying to exhibit the same kind of state,
generating in this way a self-organized environment.
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distribution Psrc) of one organism is captured by the other with min-
imum information loss, and vice versa (for utter simplicity, we could
assume that the distributions associated with A and B correspond to
equilibrium distributions of an Ising model [115] at similar inverse
temperatures βA and βB). If βA = βB, the two distributions would
be identical and the KL divergence would vanish. However, this is
not a stable solution. Indeed, if the two parameters are not identi-
cal but close, the difference between their respective KL divergences
from each to the other is (see section 6.3):

DKL(βA + δβ|βA) −DKL(βA|βA + δβ) ' 1
6
∇χ(βA)δβ3 , (91)

where χ is the generalized susceptibility also known as “Fisher in-
formation” (see section 6.2.2). This implies that the individual whose
parameters correspond to the state with larger χ has a smaller KL
divergence and is thus fitter. But it is well-known that χ peaks at
the critical point, and thus our key finding is that, for a family of
individuals with similar parameters, the fittest possible agent sits ex-
actly at criticality, and it is best able to encapsulate a wide variety
of distributions. As we illustrate in what follows with a number of
examples, the optimal encoding parameters of stable solutions lie al-
ways around the peak of the generalized susceptibility χ which is the
region of maximal variability, where different complex sources can be
best accounted for through small parameter changes.

6.2.1 Information theory and Kullback-Leibler divergence

Given two probability distributions P(s) andQ(s) the Kullback-Leibler
(KL) divergence of Q(s) from P(s) is defined as

D(P(·)|Q(·)) :=
∑

s

P(s) log
P(s)
Q(s)

, (92)

and quantifies the loss of information obtained when Q(s) is used to
approximate P(s) [116, 113]. The KL divergence is non-negative and
vanishes if and only if the two distributions are equal. It is important
to stress that the KL divergence is not symmetric and therefore is not
a properly-defined distance.

The KL divergence can be better understood when related to max-
imum likelihood principle via the Sanov’s theorem [117, 113, 118].
Consider a long sequence of empirical data consisting of T indepen-
dent measurements. Let C(s) be the number of times a certain event
s is repeated in the sequence. Suppose that the actual, though un-
known, empirical distribution of those events is P(s). In the large
T limit, the frequencies C(s)/T converge to P(s), by the Glivenko-
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Cantelli theorem [113]. Let then Q(s) be probability distribution that
defines a model The (multinomial) likelihood is defined as

L =
T !∏

sC(s)!

∏
s

Q(s)C(s) , (93)

which is nothing but the probability that the model Q(s) generates
the T observations (i.e. C(s)). The previous equation can be rewritten
as

L = T ! exp
∑

s

(
C(s) log

(
Q(s)

)
− log

(
C(s)!

))
, (94)

which, in the large T limit, using T !→ TT and C(s)→ TP(s) becomes

L ∼ exp
(
−TD(P(·)|Q(·))

)
, (95)

up to leading order. Therefore, maximizing the likelihood of a trial
probability distribution function Q is equivalent to minimizing its
KL divergence with respect to the original one, P. This result is also
known as Sanov’s theorem [117] in the context of large deviations
theory.

6.2.2 Fisher Information

Given a probability distribution P(s|γ) –where γ is a set of parameters
– the Fisher Information is defined as

χµν(γ) :=

〈
∂ logP(·|γ)

∂γµ

∂ logP(·|γ)
∂γν

〉
γ

, (96)

where µ and ν are parameter labels and the average 〈·〉γ is performed
with respect to P(·|γ). It measures the amount of information encoded
in the states s about the parameters γ [113]. This follows from the
Cramér-Rao inequality, which states that the error made when we
estimate γ from one state s is, on average, greater (or at least equal)
than the inverse of the Fisher information [113]. In particular, if χ hap-
pens to diverge at some point, it is possible to specify the associated
parameters with maximal precision [99].

A generic probability distribution can be rewritten to parallel the
standard notation in statistical physics

P(s|γ) = exp
(
−H(s|γ)

)
/Z(γ) , (97)

where the factor Z(γ) is fixed through normalization. The function H
can be generically written as

H(s|γ) =
∑
µ

γµφ
µ(s) , (98)



6.3 analytical results 85

where φµ(s) are suitable functions (“observables”) of the variables s.
With the parametrization used in equation 97, the Fisher informa-

tion is the generalized susceptibility in statistical mechanics terminology
and measures the response of the system to parameter variations:

χµν(γ) = −
∂〈φµ〉γ
∂γν

= 〈φµφν〉γ − 〈φµ〉γ〈φν〉γ , (99)

and is well-known to peak at critical points [115].

6.3 analytical results

The KL divergence between the distributions characterized by generic
parameter sets α and β respectively, D(α|β) = D(Psrc(·|α)|Pint(·|β)),
can be easily written by using the generic parametrization of equa-
tions 97 and 98:

D(α|β) =

I∑
µ=1

βµ〈φµint〉α + logZint(β) − Ssrc(α) , (100)

with

〈φµint〉α :=
∑

s

φ
µ
int(s)Psrc(s|α) (101)

Ssrc(α) := −
∑

s

Psrc(s|α) log
(
Psrc(s|α)

)
, (102)

where the last expression is the entropy of the distribution Psrc.
To proceed further, we have to define the optimal choice of param-

eter β given the distribution of external parameters ρsrc(α).
We define the optimal value of β as the one having the lowest

average KL divergence over the parameters α. Formally, it is written
as

β
opt
a = arg min

β

[∫
dαD(α|β)

)
ρsrc(α)

]
(103)

and the system adopts the single value of β, βopt
a , that better describes

on average the varying environment.
Here we analyze the model defined via equation 103, the optimal

choice corresponds to the value of the internal parameter β which
minimizes the average KL divergence to the sources α, defined as

d(ρsrc|β) :=

∫
dαρsrc(α)D(α|β) . (104)

Using equation 100, into this, we obtain an equation for the stationary
points

0 =
∂

∂βµ
d(ρsrc|β) = −〈φµint〉β +

∫
dα ρsrc(α) 〈φµint〉α . (105)
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This equation can be interpreted in an alternative way; introducing
the “averaged environment”

P̄src(s|ρsrc) :=

∫
dαρsrc(α)Psrc(s|α) , (106)

the KL divergence respect to Pint(s|β) is

D(P̄src(·|ρsrc)|Pint(·|β)) = d(ρsrc|β)−

∫
dαρsrc(α)D(Psrc(·|α)|P̄src(·|ρsrc)) .

(107)

Since the last term on the right hand side does not depend on β, the
minimization of the KL divergence between the “averaged environ-
ment” and the internal mapping Psrc(s|β) leads to the same result
as the minimization of d(ρsrc|β) given by eq. 104. In both cases, the
Hessian matrix turns out to be strictly positive, and therefore the sta-
tionary points are local minima.

In the particular case in which the internal and the source prob-
abilities Pind(s|α) and Psrc(s|β) have the same structure, i.e. φµsrc =

φ
µ
int = φ

µ, the optimal internal parameters β is given by the solution
of eq. (105), which can be simply written as

〈
φµ
〉
β
=

∫
dα ρsrc(α)

〈
φµ
〉
α

. (108)

We then study how the distance to the critical point is modified
by an internal representation. We consider a narrow distribution of α
values, characterized by a given average value, ᾱ, at some distance to
criticality, and investigate how do the distance to criticality changes
when the optimal internal representation is build.

For this purpose, we analyze the local behavior of the internal pa-
rameters, taking a distribution ρsrc(α) which is significantly different
from zero only in a small region U. We can therefore expand both of
the left and the right hand sides of eq. 108 around the mean value
ᾱ :=

∫
U dα ρsrc(α)α, and then we obtain

(βµ − ᾱµ) =(
χ−1(ᾱ)

)µν (1
2

∣∣ ∂
∂αν

χγδ(α)
∣∣
ᾱ

) ∫
U

dα ′ρsrc(α
′)(α ′γ − ᾱγ)(α

′
δ − ᾱδ) ,

(109)

where we are summing over repeated indices and χµν(α) is defined
in section 6.2.2. This equation quantifies the deviation of internal pa-
rameters β respect to ᾱ. To understand its relation with the critical
point, we rewrite eq. 109 as

(β− ᾱ) = χ−1(ᾱ) · ∇Ω(ᾱ), (110)
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where we have defined the scalar field Ω(α) as

Ω(α) :=
1

2

∫
U

dα ′ ρsrc(α
′)(α ′ − ᾱ)T · χ(α) · (α ′ − ᾱ) . (111)

As χ(α) is a symmetric positive-definite matrix, Ω(α) is a positive
quantity. If we introduce a base of eigenvectors of χ(α), vγ(α) with
eigenvalues λγ(α), we get

Ω(α) =
1

2
λγ(α)

∫
U

dα ′ ρsrc(α
′)
[
vγ(α)T · (α ′ − ᾱ)

]2 . (112)

At the critical point, at least one λγ(α) diverges (in the thermody-
namic limit), so Ω(α) has a maximum at the critical point. Note that
vγ(α) cannot vanish because it is an unitary vector. Therefore, the
gradient of Ω points to the critical point (at least if ᾱ is not too far
from it in a such a way that there are not other local maxima).

Finally, we project both sides of eq. 110 over the gradient of Ω(ᾱ),
obtaining

(∇Ω(ᾱ))T · (β− ᾱ) = (∇Ω(ᾱ))T · χ−1(ᾱ) · ∇Ω(ᾱ) . (113)

As χ is positive-definite, also its inverse χ−1 is a positive-definite ma-
trix, and the projection of (β − ᾱ) on the gradient of Ω(ᾱ) (which
points to the critical point) is also positive.

Consequently, the internal parameters α that are closer to the criti-
cal point than ᾱ have larger fitness, indicating that there is an overall
drift towards parameter regions with larger Fisher information, i.e. to-
ward criticality. Equation 91 is a simple example of this general case,
where just two individuals are considered instead of a continuous
distribution.

6.3.1 Example: Ising mean field

We analyze numerically a simple case, inspired by the archetypical
(mean-field) Ising model, in which

Hsrc(s|α) = −
N

2
α1

(∑
i

si
N

)2
−
N

4!
α2

(∑
i

si
N

)4
(114)

and

Hint(s|β) = −
N

2
β1

(∑
i

si
N

)2
= −

1

N
β1

N∑
i,j>i

sisj+ constant. (115)

Numerical factors (−N/2) and (−N/4!) have been introduced for con-
venience. The last form of the Hint visually relates this internal repre-
sentation with the classic problem of Boltzmann learning [119].

We take a specific distribution ρsrc(α) –in this case a uniform dis-
tribution in the range [−10, 10]– and we compute the mean distance
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Figure 20: Annealed choice. The orange line is the averaged KL divergence
d(ρsrc|β) of the internal parameters β, defined in eq. 104. The
dashed line is proportional to the susceptibility of the internal
model. The minimum of the distance is located close to the crit-
ical point (defined by the peak of the generalized susceptibility).
In this case both the source and the internal representations are
modeled by equation 115 withN = 50, and the source parameters
are uniformly distributed in the range [−10, 10].

between a distribution parametrized by an α (drawn from ρsrc) and
an internal parameter β. Fig. 20 show that the parameter β that mini-
mizes this distance is close to the one that maximize the Fisher infor-
mation, i.e. the critical point.

,

6.4 co-evolutionary model

The environment perceived by each individual consists of the other
M− 1 systems in the community, which it aims at “understanding”
and coping with. In the simplest computational implementation of
this idea, a pair of individual agents is randomly selected from the
community at each time step and each of these two individuals consti-
tutes the environmental source for the other. Given that the KL diver-
gence is not symmetric (see section 6.2.1), one of the two agents has
a larger fitness and thus a greater probability of generating progeny,
while the less fit system is more likely to die. This corresponds to a
fitness function of agent i which is a decreasing function of the KL
divergence from the other. In this case, as illustrated in Fig. 21, the
co-evolution of M = 100 agents –which on their turn are sources–
leads to a very robust evolutionarily-stable steady-state distribution.
Indeed, the different left panels show that for three substantially dif-
ferent initial parameter distributions (very broad, and localized in
the ordered and in the disordered phases, respectively) the commu-
nity co-evolves in time to a unique localized steady state distribu-
tion, which turns out to be peaked at the critical point (i.e. where
the Fisher information peaks, see Fig. 21 right panel). This conclusion
is robust against model details and computational implementations:
the solution peaked at criticality is an evolutionary stable attractor
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of the dynamics. The same conclusions hold for an analogous “Co-
adaptive model” in which the systems adapt rather than dying and
replicating [114].

In this model the k-th agent of the community is described by a
probability distribution Pint(s|βk) ∝ exp{−Hint(s|βk)}, depending on
parameters βk.

We consider as initial state an ensemble of M individuals whose
coupling parameters are extracted from an arbitrary distribution, p(β, t =
0). The evolutionary dynamics proceeds as follows:

1. At each time step, two individuals, i and j, are randomly se-
lected.

2. Their relative fitnesses f(j)i and f(i)j are defined as

f
(j)
i = D(βi|βj) =

∑
s

Pint(s|βi) log
Pint(s|βi)
Pint(s|βj)

f
(i)
j = D(βj|βi) =

∑
s

Pint(s|βj) log
Pint(s|βj)
Pint(s|βi)

,
(116)

i.e. the respective KL divergences. As the KL divergence is not
symmetric, f(j)i 6= f

(i)
j unless βi = βj.

3. An offspring of one of the two individuals –selected with prob-
ability proportional to its relative fitness– is added, while the
other individual is removed from the community.

4. Offspring mutate with a probability ν, modifying its parameters
from β to β+ξ, where ξ is randomly drawn from a multivariate
Gaussian distribution with zero mean and standard deviation
σ.

5. Time is updated to t→ t+ 1/M.

6. Another pair of individuals i and j is picked, and the process is
iterated.

To compute the stationary distribution of parameters p(β) ≡ p(β, t→∞), we iterate Ti time steps and then perform measurements during
Tf − Ti steps. Results are averaged over R realizations of the evolu-
tionary process.

We now present some specific realizations of these general co-evolutionary
rules. The “internal” probability distributions of a single individual
are considered of the following form

Hint(s|β) = −
N

2
β1

(∑
i

si
N

)2
−Nβ2

(∑
i

si
N

)
(117)
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with a linear and a quadratic coupling. We will also discuss the sim-
pler, particular case in which β2 vanishes (i.e. only the quadratic cou-
pling is present), as well as the quadratic-quartic case:

Hint(s|β) = −
N

2
β1

(∑
i

si
N

)2
−
N

4!
β2

(∑
i

si
N

)4
(118)

Parameter Value

N 100

M 100

ν 0.1

σ 0.1

σ1,σ2 1σ, 0.1σ

Ti 104

Tf − Ti 105

Init. Distribution N(−3, 0.25) ·N(−0.25, 0.05)

N(3, 0.25) ·N(0.25, 0.05)

U([−4, 4]× [−0.8, 0.8])

R 100 (10000 for transients)

Table 1: Parameter values in the simulation of the Co-evolutionary Model in
Figure 21. See also Table 2.

6.4.0.1 Results

As for the Evolutionary Model, we first study the stationarity of the
final distribution of parameters β in the community and its depen-
dence on the number of spins, N, number of individuals, M, the mu-
tation probability, ν, and the deviation of the mutations, σ.

Figure 21 shows the distribution of individual parameters, p(β) for
the linear-quadratic case, eq. 117, for three different initial distribu-
tions and different transient periods, together with the final stationary
distribution which is the same for all of them. Numerical parameters
are summarized in Table 1.

The main result is very robust under reparametrization: results for
the case of a community with individuals whose probability distribu-
tion is characterized by the linear-quadratic case, eq. 117 are summa-
rized in Figs. 22 and 23, whereas Figs. 24 and 25 correspond to the
one-parameter case (eq. 115) and the quadratic-quartic case (eq. 118),
respectively.
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Figure 21: Co-evolutionary model leads self-consistently to criticality: A
community of M living systems (or agents) evolves according to
a genetic algorithm dynamics [120]. Each agent i (i = 1, ...,M)
is characterized by a 2-parameter (βi1,βi2) internal state distri-
bution Pint(s|βi1,βi2) and the rest of the community acts as the
external environment it has to cope with, i.e. the agents try to
“understand” each other. At each simulation step, two individ-
uals are randomly chosen and their respective relative fitnesses
are computed in terms of the Kullback-Leibler divergence from
each other’s internal state probability distribution. One of the two
agents is removed from the community with a probability that
is smaller for the fitter agent; the winner produces an offspring
which (except for small variations/mutations) inherits its param-
eters. These co-evolutionary rules drive the community very close
to a unique localized steady state. As shown in the right panel,
this is localized precisely at the critical point, i.e. where the gen-
eralized susceptibility or Fisher information of the internal state
distribution exhibits a sharp peak (as shown by the contour plots
and heat maps). The internal state distributions are parameter-
ized as Pint(s|β1,β2) ∝ exp {β1

N
2 (
∑N
k=1

sk
N )2 +β2

∑N
k=1 sk} rep-

resenting a global (all-to-all) coupling of the internal nodes (see
MM). Much more complex probability distributions in which all
units are not coupled to all other units –i.e. more complex net-
worked topologies– are discussed in the SI Appendix, sec. S4.
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Figure 22: Time evolution in the Co-evolutionary Model (in the linear-quadratic
case, i.e. eq. 117). Plot of the mean values 〈β1,2〉 := 1

M

∑M
k=1 β

k
1,2

(top two panels) of the community, and parameter variance (bot-
tom panel) for three different realizations started with different
initial conditions p(β, t = 0): Gaussian distributions with two dif-
ferent averages and variances, N(−3, 0.25)N(−0.8, 0.05) (red line)
and N(3, 0.25)N(0.8, 0.05) (green line), and uniform distribution
in the range [−4, 4]× [−0.8, 0.8] (blue line).
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Figure 23: Parameter dependence in the Co-evolutionary Model: stationary dis-
tribution p(β1,β2) as a function of parameters (for the linear-
quadratic case, eq. 117). Different colored lines in each plot cor-
respond to different values of N, community sizes M, mutation
parameters ν, and σ. For larger communities sizes the stationary
distribution becomes sharper. Parameter values are listed in Ta-
ble 1 (unless otherwise specified).
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Figure 24: Stationary distribution p(β) in the Co-evolutionary Model, eq. 115: we
compare the stationary distribution (orange line) with the gener-
alized susceptibility (purple dashed line). As in the example in
the main text, the individual parameters converge to the neigh-
borhood of the peak of the Fisher information. Parameters are set
to N = 100, M = 100, ν = 0.1, σ = 0.1.
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Figure 25: Stationary distribution p(β1,β2) in the Co-evolutionary Model, eq.
118: as above, we compare the stationary distribution (right panel)
with the generalized susceptibility (left panel). Again, the com-
munity evolves toward the global maximum of the Fisher in-
formation. Parameter values: N = 100, M = 100, ν = 0.1, and
σ1 = σ2 = 0.1.
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Figure 26: Time evolution in the Co-evolutionary Model with K-body interactions
(with parametrization of eq. 115). Solid lines represent the time
evolution of mean values 〈β〉 :=

∫
dβ p(β, t)β. The relaxation to

the stationary state depends on the effective number of individu-
als K with which each single agent interacts. The larger the value
of K the larger the relaxation time. The community evolves very
close to the maximum of the generalized susceptibility (plotted
with dashed lines). The initial condition is β = 3 for all of the
individuals and parameters are N = 100, M = 100, ν = 1 and
σ = 0.1.

6.4.1 Co-evolutionary Model with K-body interactions

In the previous section we considered the case of pairs of individuals
considered at each time step. In this section we study a variant of
the co-evolutionary model in which K individuals (i1, ..., iK) are ran-
domly picked at each time step. The probability of each individual to
die is proportional to its (normalized) average KL divergence to the
remaining ones, i.e.

Pkill(ik) =

K∑
l=1

D(βil |βik)

K∑
m=1

K∑
l=1

D(βil |βim)

. (119)

When one individual dies it is replaced by a copy of one of the remain-
ing K− 1 individuals (and mutations are introduced with probability
ν).

We have implemented the simulation with parametrization of eq. 115.
Results are summarized in Fig. 26 where we plot the mean value of
the parameter over the entire community and 103 realizations of the
same initial condition. It can be seen that the time to reach station-
arity increases with K. When K increases, the drift which moves the
system towards the criticality is lower. This is related to the fact that,
by averaging over more and more individuals, the source effectively
becomes more and more homogeneous.
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6.4.2 Co-evolutionary Model with complex internal networked topologies

We now consider a different variant of the model in which the internal
probability distribution of each individual/agent is not mean-field, in
the sense that every si variable is coupled to all others. Instead, possi-
ble interactions are encoded in a network, such that each si interacts
only with other sj directly connected to it, i.e. for which the adjacency
matrix, element aij 6= 0.

The evolutionary dynamics is as above, with the only difference
that now the structure of the probability characterizing each individ-
ual is as follows:

• Given N spin variables, we generate a fixed adjacency matrix of
interactions â. The probability to find a certain configuration s
in the k-th individual is Pâint(s|β

k) ∝ exp{−Hâint(s|β
k)} with

Hâint(s|β
k) = −βk

1

N

N∑
i,j>i

aijsisj. (120)

• The system is iterated as in the Co-evolutionary Model, leaving
â fixed in time and identical for all individuals.

As the structure of â is an arbitrary one, the calculation of the dis-
tances between distributions needs to be explicitly computed by sum-
ming over the 2N possible states (which severely limits the maximum
size in computer simulations; N ∼ 20).

Results for the stationary distribution of parameters p(β) and dif-
ferent types of network architectures, together with the correspond-
ing curves of generalized susceptibilities computed as

χâ(β) =

〈 1

N

N∑
i,j>i

aijsisj

2〉
Pâ(s|β)

−

〈
1

N

N∑
i,j>i

aijsisj

〉2
Pâ(s|β)

(121)

are shown in Fig. 27. In all cases, the main result of this chapter holds:
the resulting internal parameters distributions peak around the criti-
cal point.

6.5 evolutionary model

We model a community of individuals receiving external stimuli from
an outer and heterogeneous environment. We describe every source
of the environment by a generic distribution, as parametrized by
equation 97 with

Hsrc(s|α) =
E∑
µ

αµφ
µ
src(s), (122)
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Figure 27: Stationary parameter distributions for three different network
structures â of N nodes. Three cases are studied: (left) Random
Boolean network: connections are not weighted, i.e. aij = aji =

{0, 1}, with mean connectivity N/2, (center) Random weighted
network: in this case, aij = aji = η, where η is a random number
between 0 and 1(right) Regular 2D lattice with periodic bound-
ing conditions. In all cases, parameters have been set to ν = 0.1,
σ = 0.5, M = 100. In the first two examples, N = 20, while
N = 25 for last one. In dashed line, the generalized susceptibility
has been plotted and re-scaled for visual comparison.

where the parameters α are drawn from the distribution ρsrc(α).
In the community, each agent has a representation of the observed

source (constructed as explained in previous sections). The internal
state of the k-th agent is modeled with an internal system described
by equation 97, with

Hint(s|βk) =
I∑
µ

βkµφ
µ
int(s), (123)

We consider the following dynamics:

1. We start with M individuals each one characterized by its pa-
rameters drawn from some arbitrary (broad) distribution. p(β, t =
0).

2. At every time step, we generate S external sources, {αu}u=1,...,S,
from the distribution ρsrc(α).

3. We compute the average KL divergence of every individual’s
internal representation to the external sources

d({αu}|βk) :=
1

S

S∑
u=1

∑
s

Psrc(s|αu) log
Psrc(s|αu)
Pint(s|βk)

. (124)

4. One of the individuals of the community is removed with a
probability proportional to its average KL divergence

Pkill(k) =
d({αu}|βk)∑
l d({α

u}|βl)
(125)

and it is replaced by a copy of another individual (offspring),
which is picked randomly with uniform probability.
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5. The offspring inherits its parameter set from its parent or, in-
stead, mutates with a probability ν, altering the original param-
eter set, β → β+ ξ, where ξ is a random Gaussian number of
zero mean and deviation σ.

6. Time is incremented as t→ t+ 1/M.

7. Another set of parameters {αu}u=1,...,S is generated from ρsrc(α),
and the process is iterated.

We are interested in measuring the stationary distribution of the
individual parameters, p(β) ≡ p(β, t → ∞) when t → ∞ (we start
measuring at some time Ti and stop at time Tf), for which the dis-
tribution is averaged over R independent realizations of the initial
distribution p(β, t = 0).

We have simulated the simple case in which both the external
sources and internal representations correspond to the simple choice
given in equation 114 with α2 = 0 and equation 115 respectively.
Similar results can be obtained for other parametrization of sources
and internal representations, for instance by considering equation 114

with non-vanishing α2.

Numerical computation of the Kullback-Leibler divergence

We explore the dependence of the stationary distribution p(β) on
parameter values (see Table 2).

Parameter Value

N 100

M 100

S 10

ν 0.1

σ 0.1

ρsrc(α1) U([−10, 10])

(not used in Fig. 3 of main text)

Ti 104

Tf − Ti 105

R 100

Table 2: Parameters of the simulation of the Evolutionary Model in Fig. 3 of the
main text and Fig. 29: N is the number of spins composing each
of the individuals, M is the community size, S is the number of
stimuli received in every interaction with the environment, ν is the
mutation probability, σ is the deviation of the mutated offspring, Ti
and Tf are the initial and final time steps used for the measure and
R is the number of independent realizations.



98 information-based fitness and criticality

Figure 28: Evolutionary model leading to near to criticality in complex en-
vironments. A community of M agents undergoes a genetic al-
gorithm dynamics [120]. Each agent is simultaneously exposed
to diverse stimuli s provided by S different sources, each one
characterized by a probability Psrc(s|αu) with u = 1, . . . ,S, fully
specified by parameters αu. At each time step, S sources are ran-
domly drawn with probability ρsrc(α

u) (in this case a uniform
distribution with support in the colored region). Each agent i
(i = 1, ...,M) has an internal state Pint(s|βi) aimed at represent-
ing –or coping with– the environment. Agents’ fitness increases
as the mean Kullback-Leibler divergence from the set of sources
to which they are exposed decreases. An agent that is killed is
replaced by a new individual with a parameter β inherited from
one of the other agents (and, with some probability, a small vari-
ation/mutation). The community dynamically evolves and even-
tually reaches a steady state distribution of parameters, p(β). The
six panels in the figure correspond to different supports (colored
regions) for uniform source distributions, ρsrc(α

u). The dashed
line is the generalized susceptibility (Fisher information) of the
internal probability distribution, which exhibits a peak at the crit-
ical point separating an ordered from a disordered phase. Hetero-
geneous source pools (upper and middle panels) lead to distri-
butions peaked at criticality, whereas for homogeneous sources
(lower panels), the communities are not critical but specialized.
Stimuli distributions are parametrized in a rather simplistic way
as Psrc(s|αu) ∝ exp{αuN2 (

∑N
k=1

sk
N )2}, while internal states are

identical but replacing αu by βi. In the guiding example of ge-
netic regulatory networks, this example corresponds to an ex-
tremely simple fully-connected network in which the state of each
gene is equally determined by all the other genes and, hence, the
probability of a given state depends only on the total number of
on/off genes, controlled by a single parameter.
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For sufficiently large values of N, the sum in eq. 124 cannot be
explicitly computed because of the diverging large number of states,
2N. However, since equations 115 and 114 depend on s only through
the magnetization m =

∑
i si/N,

Hsrc(s|α) = −
N

2
α1m

2 (126)

and

Hint(s|β) = −
N

2
β1m

2, (127)

we can compute the sum as follows. Defining Γ(m) as the number of
states with

∑
i si/N = m, and using the Stirling approximation, one

readily obtains:

Γ(m) =

(
N

N(1+m)
2

)
=
N�1

exp
{
−N

(
1+m

2
log

1+m

2
+
1−m

2
log

1−m

2

)}
.

(128)

Then, the KL divergence can be computed as

D(α|β) =
N�1

∫1
−1
Γ(m)P̂src(m|α) log

P̂src(m|α)

P̂int(m|β)
dm. (129)

The same type of approximation can be used to calculate the normal-
ization of Psrc and Pint.

6.5.0.1 Results

Having computed the KL as a function of parameter values we can
iterate the evolutionary dynamics, as described before. Figure 29 il-
lustrates that starting from different initial conditions p(β, 0) after
some (sufficiently long) times the ensemble of individuals converges
to a unique steady state p(β, t → ∞). The resulting distribution is
sharply peaked very near the critical point, at the very same location
at which the Fisher information or generalized susceptibility peaks.
This peak approaches the critical point β = βc in the limit N→∞.

First, we proceed to analyze the relaxation of the initial distribution
of parameters p(β, t = 0) at the stationary one p(β), and its depen-
dence on the initial condition. These results are plotted in Fig. 29.
Fig. 30 illustrates the dependence of the results on parameters.

The main conclusions are:

• The system becomes closer and closer to the critical point as the
system-size N is enlarged.

• The distribution reaches an asymptotic shape as the ensemble
size grows.

• The distribution becomes sharper for smaller mutation rates.
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Figure 29: Time evolution in the Evolutionary Model (with parametrization of
eq. 114 with α2 = 0 and eq. 115): Panels on the left represent the
evolution of three different initial distributions of the parameter
β in the community. In all cases the environment is described
by the uniform distribution of parameters ρsrc(α) = U([−10, 10]).
The distributions converge to the same stationary state –points
and red line on the right panel–, which is peaked at the maxi-
mum of the generalized susceptibility (dashed line curve). The
red line corresponds to an initial uniform distribution U([−4, 4]),
and blue and purple lines to Gaussian distributions N(4, 0.25)
and N(−4, 0.25), respectively. Parameters are the same as in Table
2, and R = 104 independent realizations.

• The distribution becomes much sharper for small mutation vari-
ances.

• The distribution reaches an asymptotic shape as the number of
external sources is increased.

6.6 effective criticality of the environment

As we have shown in section 6.5, minimizing the KL divergence to
the “averaged environment” –i.e. the distribution of sources resulting
by averaging over different environmental parameters– leads to the
same result as minimizing the mean KL divergence to the sources,
which is what we implement in the simulations. Therefore, agents
seeing a complex “averaged environment” tend to become critical.

It has been recently suggested that marginalizing a distribution
over some parameters can generally lead to effective critical distri-
butions [97]. Thus it may not be surprising that individuals tune
their parameters near the criticality to minimize the KL divergence
with respect to such a critical environment.

Here we show that our results cannot be generically explained in
terms of this phenomenon. For the cases in which the individuals
end up near criticality, the averaged environment is not necessarily
critical. To illustrate this, we consider each of the pools of sources
used in Fig. 3 of the main text to illustrate the evolution of agents in
the presence of complex environments. As it is not possible to identify
the criticality of the “average environment” by looking at the peak of
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Figure 30: Dependence on parameters in the Evolutionary Model: Stationary dis-
tribution p(β) as a function of diverse parameters; different colors
in each plot stand for different values of (from top to bottom and
from left to right): N, community size M, mutation probability ν,
mutation deviation σ, and number of external sources S. Unless
otherwise stated, other parameters take the same values as in Ta-
ble 2. The dashed lines indicate the critical point location (in the
limit N→∞)
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a susceptibility, following the seminal paper by Mora and Bialek[76]
we say that a particular distribution is critical if it obeys Zipf’s law. To
check this, for each particular environment, we plot the probability
of states ordered by their rank and the energy as a function of the
entropy (see [76]). At the critical point, the energy should be a linear
function of the entropy, and the rank ordering should obey the Zipf’s
law [76, 97].

The results are shown in Fig. 31, where we have kept the same
relative position and color code as in the original plot (Fig.3 of the
main plot). Only two of the six averaged environments presented in
Fig. 3 of the main text turn out to be critical in the sense of Zipf’s
law (upper panels in Fig. 31). Furthermore, in the two central cases,
the averaged environment is not critical, but the optimal internal dis-
tribution peaks around criticality (right panels in Fig. 31). This case
corresponds to an environment composed, essentially, of two very dif-
ferent type of sources, and individuals have to accommodate to the
critical point to respond to both of them efficiently. This demonstrates
that our approach works in a general scenario of heterogeneous en-
vironmental sources, without requiring the environment to be itself
critical.

6.7 discussion and conclusions

Under the mild assumption that living systems need to construct
good though approximate internal representations of the outer com-
plex world and that such representations are encoded in terms of
probability distributions, we have shown –by employing concepts
from statistical mechanics and information theory– that the encoding
probability distributions do necessarily lie where the generalized sus-
ceptibility or Fisher information exhibits a peak [113], i.e. in the vicinity
of a critical point, providing the best possible compromise to accom-
modate both regular and noisy signals.

In the presence of broadly different ever-changing heterogeneous
environments, computational evolutionary and adaptive models vividly
illustrate how a collection of living systems eventually cluster near
the critical state. A more accurate convergence to criticality is found in
a co-evolutionary/co-adaptive set-up in which individuals evolve/adapt
to represent with fidelity other agents in the community, thereby cre-
ating a collective “language”, which turns out to be critical.

These ideas apply straightforwardly to genetic and neural networks
–where they could contribute to a better understanding of why neural
activity seems to be tuned to criticality– but have a broader range of
implications for general complex adaptive systems [107]. For exam-
ple, our framework could be applicable to some bacterial communi-
ties for which a huge phenotypic (internal state) variability has been
empirically observed [121]. Such a large phenotypic diversification



6.7 discussion and conclusions 103

Figure 31: Heterogeneity and criticality of the averaged environment. Each panel
of the figure refers to the corresponding panel, with the same po-
sition and color code, in Fig. 3 of the main text. In each panel, the
main plot shows the probability of states in the “averaged envi-
ronment” Penv(s|ρsrc) with the states s ranked in order of decreas-
ing probability. The inset shows the energy associated to P̄env as a
function of the entropy. The black lines define the expected linear
behavior in the critical case [76]. Only the red and green settings
correspond to a critical distribution obeying also Zipf’s law (1/x).
The more interesting cases are the blue and the orange ones: for
these, the internal distribution is critical even though the average
environment is not.
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can be seen as a form of “bet hedging”, an adaptive survival strategy
analogous to stock-market portfolio management [122], which turns
out to be a straightforward consequence of individuals in the commu-
nity being critical. Usually, from this point of view, generic networks
diversify their “assets” among multiple phenotypes to minimize the
long-term risk of extinction and maximize the long-term expected
growth rate in the presence of environmental uncertainty [122]. Sim-
ilar bet-hedging strategies have been detected in viral populations
and could be explained as a consequence of their respective com-
munities having converged to a critical state, maximizing the hedg-
ing effect. Similarly, criticality has been recently shown to emerge
through adaptive information processing in machine learning, where
networks are trained to produce a desired output from a given input
in a noisy environment; when tasks of very different complexity need
to be simultaneously learned, networks adapt to a critical state to en-
hance their performance [123]. In summary, criticality in some living
systems could result from the interplay between their need for pro-
ducing accurate representations of the world, their need to cope with
many widely diverse environmental conditions, and their well-honed
ability to react to external changes in an efficient way. Evolution and
adaptation might drive living systems to criticality in response to this
smart cartography.



7
C O N C L U S I O N A N D P E R S P E C T I V E S

Si finis bonus est, totum bonum erit.

— Gestæ Romanorum, Tale LXVII

In these thesis we have discussed two main problems, both related
with biological interactions.

In the first part we have shown how random matrix theory can be
extremely useful to model biological interactions. While most of eco-
logical models are focused on the details and consider few species at
a time, this method start from an equivalent of the thermodynamic
limit and identify the effective order parameters determining the sta-
bility of ecosystems. The main result is the quantification of the role
of network structure and interaction strengths in determining stabil-
ity or the persistence in a randomly fragmented landscapes.

The second part was dedicated to the fact that many phenomena
observed close to a critical point are seen in living systems. We have
introduced a model based on the needs of individuals of building a
reliable representation of the external world, that explains how criti-
cal phenomena can emerge without fine-tuning any parameter.

What to do next? There are several theoretical problems that stem
from both the two parts, but probably the most important perspec-
tives are the experimental ones. In both the cases, natural systems
are too complicated and too uncontrollable to be a good test for the
model and the methods explained in this thesis. For instance it is im-
possible to control the perturbations in a natural food-web in order to
study the effect of the structure or the path leading to instability. In
a very similar way, one cannot have a control on the birds of a flock
and tune their interactions and see the effect on the system. Having
controllable systems in necessarily in both the cases.

105





Part III

A P P E N D I X





A
F R O M S T O C H A S T I C E Q U AT I O N T O A S Y M P T O T I C
L I N E A R S TA B I L I T Y

a.1 deterministic equation

We know (almost) everything about the deterministic generalized
Lotka-Volterra equation. If we have a community of S species, the
evolution of their population is defined by

∂tni = ni

(
ri +
∑
j

Iij(n)nj
)

, (130)

where I(n) is the interaction matrix which may also depend on the
populations n to take into account for non-linear functional responses
(e.g. Holling type II). Very generally we can disentangle three terms
contributing to I(n): a non-negative matrix M(n) (mutualistic inter-
actions), a non-positive matrix C(n) (competitive interactions) and a
(sign)-skew-symmetric matrix P(n) (predator-prey interactions). We
also impose the ecological (obvious?) condition that given a pair of
species i and j at most one of the three elements Mij, Cij and Pij
is non zero (i.e. the species i cannot interact in two different ways
with the species j). The self-interaction is a competition interaction,
if one does not consider any exotic self-interaction (e.g. cannibalism),
therefore Cii = 1/Ki and Mii = Pii = 0.

a.2 stochastic equation

Let us consider a very general multi-species birth-death process

∂P(n, t)
∂t

=
∑
i

[
(E−i − 1)Di(n)P(n, t)+ (E+i − 1)Bi(n)P(n, t)

]
, (131)

where the operators E±i act as explained in [124]. There are several
ways to define the rates Di(n) and Bi(n) and obtain equation 138

as deterministic limit. One way is to define some “chemical reac-
tions” [124]. We consider a simpler way. The deterministic equation
corresponding to eq. 131 is

∂t〈n〉i = Bi(〈n〉) −Di(〈n〉) := Ri(〈n〉) . (132)
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If one consider that n can take values in Zn (this one is the real differ-
ence with the “chemical reaction” approach), there is a very natural
way to define Bi(n) and Di(n)

Bi(n) = ni
(
bi +

∑
j

Mijnj +
∑
j

Θ(Pij)Pijnj

)
Di(n) = ni

(
di −

∑
jCijnj −

∑
jΘ(−Pij)Pijnj

)
.

(133)

The only arbitrary things that cannot be measured by a deterministic
analysis are the rates bi and di, given the fact that in the deterministic
equation it appears only ri = bi−di. Now we have all the ingredients
to play with.

a.3 kramers-moyal expansion

Master equations are beautiful but analytically intractable. To get
something tractable we have to make some approximations. The sim-
plest things to do is to approximate equation 131 with the Kramers-
Moyal expansion, promoting n to be a continous variable y, obtaining
the following Fokker-Plank equation

∂P(y, t)
∂t

=
∑
i

{ ∂

∂yi

[(
Ri(y)

)
P(y, t)

]
+
1

2

∂2

∂y2i

[(
Fi(y)

)
P(y, t)

]}
,

(134)

where Ri(y) = Bi(y) −Di(y) and Fi(y) = Bi(y) +Di(y).

a.4 van kampen’s ansatz

We will consider the system size expansion [125, 126] (SSE) which is
typically very useful because it allows analytical considerations. What
it is crucial in the SSE is the Van Kampen’s ansatz

yi = y
∗
i + xi , (135)

where y∗i is the average population (i.e. the solution of the determin-
istic equations Bi(y∗) = Di(y∗)), while xi are fluctuations around
the average (of order

√
y∗i ). The strong assumption is that the fluc-

tuations are small around the average. The main drawback of this
approach is therefore that one cannot study anything which is not
fluctuation around the average (e.g. one does not see the trajectories
to the absorbing points). In any case SSE returns much more informa-
tions than the ones obtained with the deterministic analysis.

The SSE, once applied to eq.131, returns two equations, one de-
fines the evolution of y∗i (i.e. is the deterministic equation, in our
case eq. 138), while the other one is a Fokker-Plank equations for
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the fluctuations xi, which correspond to the following Langevin (Ito
prescription)

∂txi =
∑
j

Aijxj +
√
Qiξi , (136)

where ξi are white uncorrelated noises (i.e. 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t ′)〉 =
δijδ(t− t

′)), while

Qi := Fi(y∗) = 2Di(y∗)

Aij :=
∂Ri(n)
∂nj

∣∣∣
y∗

,
(137)

where y∗ is the solution of the stationary deterministic equation, i.e.

Bi(y∗) = Di(y∗) . (138)

Note also that Aij is the Jacobian evaluated at the fixed point, i.e. it
is exactly the community matrix studied by May.

a.5 van kampen feat. may

As we are interested in the fluctuations around the the fixed point,
we can study eq 136. By applying the Fourier transform, we obtain

iωx̂i =
∑
j

Aijx̂j +
√
Qiξ̂i , (139)

obtaining

x̂i(ω) =
∑
j

(iω−A)−1ij
√
Qjξ̂j(ω) . (140)

One can write the solution of equation 140 as

x̂i(ω) =
∑
jk

UikU
−1
kj

iω− λk

√
Qjξ̂j(ω) , (141)

where U−1
ik AksUsj = λiδij. Note that we can aplly the SSE only if

the fixed point (the deterministic solution) is stable, otherwise the
fluctuation would not be small. Therefore all the eigenvalues λk have
a negative real part.

We can immediately obtain the correlation matrix

Ĉij(ω) :=
〈
x̂i(ω)x̂j(−ω)

〉
=
∑
skl

UikU
−1
ksUjlU

−1
ls

(λk − iω)(λl + iω)
Qs =

∑
kl

UikUjl

(λk − iω)(λl + iω)
Fkl ,

(142)



112 from stochastic equation to asymptotic linear stability

where Fkl =
∑
s

[
U−1
ksU

−1
ls Qs

]
. The power-spectrum is simply

Sj(ω) = Ĉjj(ω) =
∑
kl

UjkUjl

(λk − iω)(λl + iω)
Fkl . (143)

From eq. 142 we can obtain the temporal correlation by calculating

Cij(t) :=
〈
xi(0)xj(t)

〉
=

∫
dω

e−iωt

2π

〈
x̂i(ω)x̂j(−ω)

〉
, (144)

and therefore

Cij(t) =
∑
kl

UikUjlFkl

∫
dω

e−iωt

2π(λk − iω)(λl + iω)
=

∑
kl

UikUjlFkl

[eλkt + eλlt
λk + λl

]
.

(145)
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D E M O N S T R AT I O N O F W I G N E R S E M I - C I R C U L A R
L AW

The matrix ensemble distribution is defined over random matrices
with the following density

P(M) =
1

Z
exp(−

S

4
tr(M2)) , (146)

The distribution of eigenvalues is defined as

ρ(z) := 〈
∑
i

δ(z− λi)〉 , (147)

where the average is calculated over the distribution of matrices of
equation 146.

Introducing δ(x) = limε→0+ 1/(x+ iε), one has

ρ(z) = lim
ε→0+

=〈Gε(z)〉 , (148)

where the resolvent is defined as

Gε(z) :=
1

N
tr

1

z−M+ iε
. (149)

We introduce the partition function

Z(J) :=
〈det(z−M+ J)

det(z−M)

〉
, (150)

from which it is possible to obtain the resolvent by deriving over J
and dividing by N.

We can write both the determinants that appear in eq. 150 as two in-
tegrals over anti-commuting (Grassman) variables and ordinary com-
muting variables

det(z−M+ J) :=

∫ N∏
i=1

dχkdχ
∗
k exp

(
− i
∑
kl

χ∗k(zδkl− Jδkl+Mkl)χl
)

,

(151)

where χ are Grassman variables. The other term will be

1

det(z−M)
:=

∫ N∏
i=1

i

2π
dφkdφ

∗
k exp

(
− i
∑
kl

φ∗k(zδkl +Mkl)φl
)

.

(152)
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Combining the two terms, we obtain

Z(J) =

∫
[dΨ] exp

(
− i
∑
k

(zφ∗kφk + (z+ J)χ∗kχk)
) ∫

[dM] exp
(
−
N

2

∑
jk

M2
jk

)
exp

(
i
∑
jk

Mjk(φ
∗
jφk + χ

∗
jχl)

)
,

(153)

where [dΨ] =
∏N
j=1

i
2πdφ

∗
kdφkdχ

∗
kdχk and [dM] =

∏
jkMjkδ(Mjk−

Mkj). By integrating over M we obtain

Z(J) =

∫
[dΨ] exp

(
− i
∑
k

(zφ∗kφk+(z+ J)χ∗kχk)
)

exp
(
−
1

2N

∑
jk

(φ∗jφk+χ
∗
jχk)

2
)

.

(154)

The last exponential is quartic in the fields. One can rewrite it in the
following way

∑
jk

(φ∗jφk+χ
∗
jχk)

2 = trg

( ∑
jφ
∗
jφj

∑
j χ
∗
jφj∑

j χjφ
∗
j

∑
j χ
∗
jχj

)2
=: trg Γ2 , (155)

where trg is the supersymmetric trace [127]. Note that Γ is a super-
matrix, i.e. its diagonal elements are commuting variables, while off-
diagonal elements are anticommuting. The partition function is there-
fore

Z(J) =

∫
[dΨ] exp

(
−
1

2N
trg Γ2 − i

∑
jk

Ψ∗j ζΨj
)

, (156)

where we have introduced the superfield Φj =
(
φj,χj

)t and the 2× 2
matrix ζij = (z+ Jδi2)δij.

The argument in the exponential of equation 156 is quartic in the
fields. In order to make it quadratic we can introduce a Hubbard-
Stratonovich transformation

exp
(
−
1

2N
trg Γ2

)
=

∫
[dσ] exp

(
−
N

2
trgσ2− i

∑
jk

Ψ∗jσΨk
)

, (157)

where σ in a supermatrix such that

∑
jk

(φ∗jφk + χ
∗
jχk)

2 = trg

(
a α

β ib

)
, (158)

where a and b are commuting variables, while α and β are Grassman
variables. We obtain

Z(J) =

∫
[dΨ][dσ] exp

(
−
N

2
trgσ2 − i

∑
jk

Ψ∗j (σ+ ζ)Ψk
)

. (159)
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We can now integrate over the fields Ψ, since it is a Gaussian integral.
We obtain

Z(J) =

∫
[dσ] exp

(
−
N

2
trgσ2 −N trg log(σ+ ζ)

)
. (160)

By introducing the parametrization of σ shown in equation 158 we
obtain

Z(J) =
1

2π

∫
dadbdαdβ

(ib+ J+ ζ− αβ
a+z)

N

(a+ z)N
exp

(
−
N

2
(a2+b2+2αβ)

)
.

(161)

We can make two change of variables x = a+ z and y = b− iJ− iz,
obtaing

Z(J) =
1

2π

∫
dxdydαdβ (

iy

x
−
αβ

x2
)N exp

(
−
N

2
((x−z)2+(y+ iz+ iJ)2+2αβ)

)
.

(162)

We can expand the Grassmann variables, obtaining

Z(J) =
1

2π

∫
dxdydαdβ (

iy

x
)N(1−N

αβ

x
)(1−Nαβ) exp

(
−
N

2
((x−z)2+(y+ iz+ iJ)2)

)
,

(163)

and we can finally integrate over α and β, obtaining

Z(J) =
1

2π

∫
dxdy

iy

x
)N(1+

1

ixy
) exp

(
−
N

2
((x− z)2+(y+ iz+ iJ)2)

)
.

(164)

At this point it is possible to perform the integration over x and y and
obtain an expression for eigenvalues density at any N [127]. Since we
are interested at the largeN behavior, we use the saddle point method.
We can write the resolvent as〈
Gε(z)

〉
:=
dZ(j)

dj

∣∣
J=0

=
1

2π

∫
dxdy (z− iy) exp(−NS(x,y, z, J)) , (165)

where the leading term of S is

S(x,y, z) = − log(y/x) +
1

2
((x− z)2 + (y+ iz)2)

)
. (166)

We can then minimize S with respect to y and x, obtaining that the
minimum is given by the solution of 1/ym = ym + iz and 1/xm +

xm − z = 0. Introducing this in equation 165, we obtain〈
Gε(z)

〉
= z− iym =

z

2
−
1

2

√
4− z2 , (167)

and using the definition of equation 148 we finally get

ρ(z) =
1

2π

√
4− z2 , (168)

which coincides with Wigner’s solution.
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