
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell’Informazione

Indirizzo: Scienza e Tecnologia dell’Informazione

XXVI Ciclo

Time Lower Bounds for
Parallel Network Computations

Direttore della Scuola

Ch.mo Prof. Matteo Bertocco

Coordinatore d’indirizzo

Ch.mo Prof. Carlo Ferrari

Supervisore

Ch.mo Prof. Gianfranco Bilardi

Dottorando

Nicola Zago

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@research

https://core.ac.uk/display/31144761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ai miei genitori

e a Francesca

Abstract

Direct Acyclic Graphs (DAGs) are a suitable way to describe computations,

expressing precedence constraints among operations. Beyond the representation

of the execution of an algorithm, a DAG can effectively represent the execution

of a parallel network. This last kind of DAG has a regular structure, consisting

in the repetition over time of the original network; these common representations

suggest a possible uniform approach in the study of execution of algorithms and

emulation of networks.

Both in parallel computing and computational complexity, DAGs have been

extensively employed in the study of algorithmic features, as lower bounds for

the execution/emulation time of algorithms/networks, the minimum quantity of

memory needed for computing an algorithm or the minimum I/O complexity of

an algorithm given a certain amount of fast memory cells. Developed techniques

are quite different in their assumptions; one of the more fundamental differences

is that some of them allow recomputation of intermediate results, while others

disallow it, requiring the storage in memory of intermediate results for their

further usages.

In nowadays computations the trade-off between data recomputation and

data storing is important both in parallel and in local elaborations, since in the

former we can increase the bandwidth and reduce the latency with whom data

can be accessed (by computing the same data in several points of the network),

while in the latter we can avoid to pay the latency of the access in memory

to reload data, by recomputing them possibly loading fewer data or using data

already present in memory.

So far it does not exist an universal technique able to foresee the strict lower

bound for each execution of algorithm or emulation of network in each network

i

and the known results derive from several theorems. On the contrary there are

a lot of cases for which it neither exists a tight result; among these there are also

emulations of extensively studied networks, such as multidimensional arrays.

The first part of our thesis starts from this state-of-the-art: we propose a

survey of several known lower bound techniques involving DAGs, followed by

original theorems which clarify or solve open problems. In particular, in our

survey we consider lower bound techniques for execution of algorithms and emu-

lation of networks in parallel networks, showing their principles and their limits.

In the discussion we show relationships among theorems, proving that no one

of them is better of the others in general terms: there are counter-examples in

which each theorem gives better bounds than others. We also exhibit examples

where no bound among the considered techniques is tight. Moreover we gener-

alize some theorems originally suited for network emulations, adapting them to

execution of general DAGs in parallel networks, showing examples of their ap-

plication. We also consider theorems for determining minimum I/O complexity,

presenting similarities and differences with emulation theorems.

One of the main results of the thesis is a new general technique which provides

lower bounds almost tight (except for a logarithmic factor) in a class of network

emulations including multidimensional arrays. We improve previously better

known results which have a polynomial gap between lower bound and actual

emulation time. Our theorem considers emulations with recomputation, giving

results valid in the most general context.

Finally we consider the role of recomputation in performance, trying to un-

derstand when it gives a real advantage respect to storing intermediate results in

memory. In particular we introduce the problem in simple networks, showing a

class of them in which recomputation can not improve I/O performance, ending

in butterfly DAGs where recomputation can save a number of I/O accesses at

least as big as the fast memory available during the computation. The approach

used highlights the difficulty of exploit recomputation in executions of algorithms

when their DAG representation exhibits an high bisection bandwidth.

Sommario

I Direct Acyclic Graphs (DAG, grafi orientati e aciclici) sono dei grafi che de-

scrivono in modo semplice ed efficace le esecuzioni di algoritmi, e permettono di

rappresentare graficamente le relazioni di precedenza tra le operazioni. Al di là

dell’esecuzione di algoritmi, un DAG può anche rappresentare l’esecuzione di una

rete parallela. Quest’ultimo tipo di DAG ha una struttura molto regolare, cor-

rispondente alla ripetizione nel tempo della rete stessa; il fatto che l’esecuzione di

algoritmi e di reti parallele abbiano questa rappresentazione comune ci suggerisce

un possibile approccio unificato nel loro studio.

I DAG sono stati molto usati nello studio di caratteristiche di algoritmi, in

calcolo parallelo e nello studio della complessità computazionale. Ad esempio

sono stati impiegati per ottenere lower bound per il tempo di esecuzione di algo-

ritmi e di emulazione tra reti, per la quantità minima di memoria necessaria al

calcolo di un algoritmo e il numero minimo di accessi in memoria lenta durante

l’esecuzione di un algoritmo con una quantità di memoria veloce predeterminata.

Le tecniche sviluppate in questi studi partono da ipotesi diverse, una delle più

importanti è la possibilità o meno di ricalcolare i risultati intermedi: se ciò non

è possibile infatti è necessario salvarli in memoria per poterli usare in momenti

successivi del calcolo.

Il trade-off tra ricalcolo e salvataggio in memoria dei dati è importante sia in

ambito parallelo che nelle elaborazioni locali; infatti nel primo caso il ricalcolo

può ridurre la latenza ed aumentare la banda con cui possiamo accedere ai dati

in una rete di processori, calcolando gli stessi risultati in più punti della rete,

mentre nel caso di elaborazioni locali il ricalcolo può evitare i problemi di latenza

e banda nel recupero dei dati dalla memoria.

Ad oggi non esiste una tecnica universale in grado di fornire lower bound

stretti per ogni algoritmo od emulazione di rete eseguiti in reti parallele, e i

iii

risultati conosciuti derivano da diversi teoremi. Al contrario, ci sono molti casi

in cui mancano risultati stretti, anche per reti molto studiate e relativamente

semplici com gli array multidimensionali.

La tesi inizia da questo stato dell’arte: la prima parte propone una panora-

mica delle tecniche di lower bound per DAG note, e termina con la presentazione

dei teoremi originali sviluppati con la tesi, che migliorano o risolvono alcuni dei

problemi aperti noti. In particolare, nella panoramica consideriamo tecniche di

lower bound per l’esecuzione di algoritmi e emulazione di reti da parte di reti

parallele, mostrando le idee su cui si basano e i loro limiti. Nello svolgimento

vengono messe in evidenza le relazioni tra i teoremi, mostrando che attualmente

nessuno di essi dà in assoluto risultati migliori: è possibile infatti presentare con-

troesempi in cui ciascun teorema fornisce risultati più stretti degli altri. È anche

possibile mostrare esempi di coppie di reti dove il miglior bound tra le tecniche

considerate non è stretto. Inoltre generalizziamo alcuni teoremi originariamente

pensati per emulazioni di reti e che noi adattiamo all’esecuzione di DAG generici

in reti parallele, mostrandone alcune applicazioni. Consideriamo anche teoremi

per determinare la complessità minima di accessi alla memoria per il calcolo di

un algoritmo, mostrandone similarità e differenze con i teoremi per le emulazioni.

Uno dei risultati più interessanti della tesi è una nuova tecnica generale che

fornisce lower bound quasi stretti – eccetto per un fattore moltiplicativo logarit-

mico – in una classe di emulazione di reti che include gli array multidimensionali.

Precedentemente il miglior risultato noto differiva di un fattore polinomiale dal

miglior tempo di emulazione noto. Il nostro teorema ammette il ricalcolo durante

l’emulazione, ponendosi nel contesto più generale possibile.

Infine consideriamo il ruolo del ricalcolo nelle performance, cercando di capire

quando esso possa dare un reale vantaggio rispetto alla memorizzazione di risul-

tati intermedi. Introduciamo il problema partendo da reti semplici, mostrando

una classe di esse in cui il ricalcolo non migliora la complessità di accessi in memo-

ria, terminando con i DAG a butterfly, dove il ricalcolo riesce a migliorare questa

complessità di un termine almeno pari alla memoria usata durante il calcolo.

L’approccio usato mette in luce la difficoltà di usare proficuamente il ricalcolo

durante l’esecuzione di algoritmi che presentano un’elevata connettività.

Ringraziamenti

Dopo tanti anni e tanta fatica per completare la tesi, i ringraziamenti sono

la parte più emozionante da comporre. Vorrei innanzitutto ringraziare Gian-

franco per avermi seguito durante questo dottorato, trasmettendomi spunti e

tecniche metodologiche che difficilmente i libri possono fornire. Assieme a lui

vorrei ringraziare tutti i componenti dell’ACG, con cui ho trascorso tre anni di

lavoro e di vita di cui conserverò senza dubbio un carissimo ricordo.

Oltre all’ambiente universitario, vorrei ringraziare anche tutti quelli che mi

hanno supportato (e sopportato) durante il dottorato, per primi i miei genitori

Umberto e Giuseppina, seguiti dal gruppo Giavera, Mauro, il gruppo Seisnet

e soprattutto Francesca, mia futura moglie. Grazie a tutte queste persone gli

ultimi quattro anni sono stati importanti quanto e forse più dei precedenti cinque

che mi avevano portato alla laurea: ho completato la mia maturazione sia dal

punto di vista professionale che come persona, partendo da studente universitario

e arrivando all’inizio della mia età adulta. Arrivato a questo punto del mio

percorso, con il bagaglio di esperienze maturate e accumulate negli ultimi anni,

sono certo che le prossime pagine della mia vita che scriverò saranno le più

importanti e le migliori.

Acknowledgements The last part of the acknowledgements is in English. In

fact I would like to thank Markus for the hospitality and the interesting topics

suggested during the three months that I spent at the ETH Zurich in the summer

2013. It has been an important experience in my professional and personal path,

which gave me the opportunity to know the attitude of another nation. I would

like to thank all the guys I knew in that period, expecially Daniele, Victoria,

Georg, François, Alen, Marcela and Luca. Vielen Dank an Sie alle!

v

Contents

1 Introduction 1

1.1 General introduction . 1

1.2 State-of-the-art and purpose of the thesis 7

2 Lower bounds for generic emulations 13

2.1 Background . 13

2.2 Distance-based lower bound . 16

2.2.1 State of the art . 16

2.2.2 Analysis and Critique . 19

2.2.3 Generalization of Theorem 1 22

2.3 Congestion-based lower bound . 27

2.3.1 State of the art . 27

2.3.2 Analysis and Critique . 30

2.4 Bandwidth-based lower bound . 34

2.4.1 State of the art . 34

2.4.2 Analysis and Critique . 36

2.4.3 Summary . 37

2.5 Parallel computing vs hierarchical memories 38

2.5.1 State of the art . 40

2.5.2 Relations with parallel computing 43

3 Lower bounds for specific networks 47

3.1 Lower bounds for multidimensional arrays emulations 47

3.2 Mesh over linear array emulation 52

3.3 Generalization to k-arrays over j-arrays 54

vii

3.4 Considerations . 57

4 Storing-recomputation trade-offs 59

4.1 Basic facts . 60

4.2 Recomputation in tree DAGs . 61

4.3 Recomputation in butterfly DAGs 62

4.3.1 Two general lower bounds 62

4.3.2 Matching the lower bounds 65

4.4 Recomputation in butterfly-like reduction DAGs 71

5 Conclusions 75

5.1 Summary and contributions . 75

5.2 Further research . 76

Bibliography 77

Chapter 1

Introduction

1.1 General introduction

Computer evolution is too slow! Since the introduction of integrated cir-

cuits in the production of computer chips at the end of 1950s, the density of

transistors has doubled every 18 months, according to Moore’s law [M65]. The

increase rates of many other hardware systems, e.g. storage devices’ capabil-

ity and bandwidth, follow similar laws, allowing for the availability of cheap

electronic devices, which pervade almost every aspect of current life. This ex-

ponential evolution leads a constant improvement of the performance of these

devices, although modern demand of data analysis grows with a rate greater

than technological achievements.

Consider for example massive data analysis, coming from scientific fields as

Physics, Astronomy or Biology, as well as related to new information technology

applications, as social networks or search engines. Just technological increases

would not be sufficient to deal with all these data, and computer scientists have

to compensate with new algorithms, often characterized by randomization, since

exact computations on such large inputs would take too much time and resources.

Algorithmic contribution may be crucial also in all day applications; consider

for example the Fast Fourier Transform (FFT) in signal processing or the Merge

Sort algorithm in the sorting. Classical trivial algorithms would be unsuitable for

modern computation requirements, unless using them on hardware much more

performable, while the enhanced algorithms already are up to the situation with

1

Chapter 1. Introduction

current hardware. The main difference between these two classes of algorithms

consists in their computational complexity, which is the relation among the size of

the problem and the number of operations required to solve it. Usually, enhanced

algorithms has a lower asymptotic growth, so the bigger will be the problem the

better these algorithms will perform respect to classical ones.

Study of computer performance To predict algorithms performance, com-

putational complexity can be studied in theoretical computational models. These

models abstract computers capabilities, maintaining the main features and hiding

useless details which would complicate the analysis, allowing us to give general

results, valid in a wide range of machines. Early machine models, e.g. the Tur-

ing Machine [T36], appeared in 1930s but their objective was to study what is

algorithmically computable. Models whose intent was to study the complexity

execution in real computer, appeared from the beginning of the 1970s.

The most prominent among these is the Random Access Machine (RAM)

model [CR73]; it considers a computer as composed of a sequential processor

(with fixed program) operating on a countable number of cells, which can be

accessed in a time independent from their number. This model is very simple still

effective in determining the operational complexity of algorithms. Unfortunately,

the assumptions of infinite random access memory is unrealistic, since a bit needs

a minimum volume to be stored and there is a maximum velocity at which a bit

of information can travel (principles of maximum information density and of

maximum information speed [BP95]), so the wider is the memory and the bigger

is the latency to access a cell far from the processor respect to access a cell near

to it.

To model this feature, which between the end of the 1970s and the beginning

of the 1980s has been sharpened by the introduction of cache memories, several

theoretical memory models have been proposed, in particular the Hierarchical

Memory Model (HMM) [AACS87], the Block Transfer (BT) model [ACS87] and

the two-level memory model [AV88]. These models are very useful to understand

how the program execution is slowed by the interaction with memory and to

promote the development of algorithms exhibiting temporal and spatial locality,

strategies which try to hide or at least reduce the latency effects. Taking into

2

1.1. General introduction

account the data movement introduces a metric different from the number of

operations executed, in particular the metric which considers the number of

accesses performed in the slow memories. Since actually the growth rate of

speed of processors is greater than that of memory speed, for many problems

this second metric is more important than that derived from the classical RAM

model, since input and output operations (I/O operations) in slow memory often

determine the bottleneck for the execution time. More recently, due to the

large diffusion of mobile devices and in general to the increasing interest in the

reduction of power consumption, also the energy aware computing has been

extensively studied, both from architectural and programming points of view

(e.g., [PSZ+02, PKK+04]).

In order to evaluate the performance of a given algorithm, it is useful to know

which is the minimum number of operations or memory accesses required for the

solution of the problem. This aspect of a computation is known as computational

lower bound. The determination of a lower bound is usually an hard task and

usually machine and memory models can not handle it, so we need to consider

frameworks which explicitly target the study of lower bounds.

There are at least two kind of lower bounds: those involving a problem and

those involving an algorithm, which is a particular way of solving a problem. The

formers are very difficult to obtain, since we have to prove the bound for every

possible strategy to solve the problem, and so far very few general and non-trivial

results are known. Literature about lower bounds for algorithms is wider, also

if there is not yet a general way to determine them. A typical example for this

category is the lower bound of Ω(n log n) operations in sorting n distinct number

[CLR01]. It is quite general, since it involves the class of comparison-based

algorithms, but it is no more valid for example if we use numbers as indexes (as

in the Counting Sort [CLR01]); moreover one could argue than having n distinct

elements means having at least n log n bits, and so the lower bound just matches

the trivial one based on reading the whole input. Another example is algorithms

for matrix multiplications using only scalar multiplication and addition, where

a Ω(n3) operations lower bound is known [K70], while in general case only the

trivial Ω(n2) lower bound is known.

As already noted above, nowadays it is fundamental to exploit the fast cache

3

Chapter 1. Introduction

memories, so we could be interested in lower bounds on the minimum number of

accesses in the slow memory (I/O complexity) needed in order to solve a prob-

lem. One of the seminal works in this field is [HK81], followed by [S95, EPR+13],

which provide extensions of the original game respectively in hierarchical memo-

ries and in a context without recomputation. Exactly this aspect of computation

is currently one of the more elusive: it is clear that there is a trade-off between

recomputation and I/O accesses, still it is not yet fully understood. During a

computation, if an intermediate result is used more than once, we can decide

if temporarily store it or recompute it. According to the particular algorithm

could be more convenient the former or the latter strategy; the determination

of the optimal strategy usually is a very difficult problem, also for algorithms

as regular as the FFT. This topic will be examined in depth in Chapter 4. A

similar problem is present also in parallel computing, as will be discussed in next

paragraph.

Birth and evolution of Parallel Computing So far we considered com-

putation only from the sequential point of view, but since the 70s also par-

allel computing has been extensively studied. This term can refer to several

forms of parallelism: bit-level parallelism, which consists in augmenting the num-

ber of bit elaborated per instruction increasing the word-size of the processor,

instruction-level parallelism, which consists in conveniently designing the pro-

cessor to pipeline the execute of instructions, obtaining an higher throughput

and task-level parallelism, which consists in exploiting more processors during

the execution of a program. The first two kinds of parallelism have been part of

the evolution of sequential cores, so they have been transparent to developers. If

we take an old sequential program and make it run on a computer with higher

bit-level or instruction-level parallelism it almost automatically will improve its

performance. Since the limit of VLSI technology is going to be reached, over

the last ten years evolution of sequential processors is getting harder and harder

and it is more advantageous to explicitly design processors with more computa-

tional cores respect to further improve the power of a single core. This kind of

evolution is no more transparent to developers: we have to produce programs

which explicitly use more cores since an old sequential program will just use one

4

1.1. General introduction

of them.

This third kind of parallelism is whom we usually refer to when we talk about

parallel computing: the exploitation of several processing units at once, in order

to reduce the time needed for the solution of a certain problem respect to sequen-

tial computing. This task is not so trivial, in fact the various processors need for

communication and synchronization during the execution. Note that this prob-

lem heavily relies on the network joining the processors (every processor could

be able to communicate with every other processor, or only with a part of them).

The usage of parallel machines has been largely relegated to the research envi-

ronment until few years ago, since, as we said above, before improving sequential

cores was more advantageous. This leads to the fact that nowadays parallel

computing has less established technological and programming standards.

Due to the higher number of freedom degrees of this field, the study of par-

allel machines did not follow exactly in sequential computing footsteps. Initially

performance were not only studied in ideal parallel machine models, but also

in machines with specific network configurations. Among the formers, the main

model is the Parallel Random Access Machine (PRAM) [FW78, G78], consisting

in a collection of processors, sharing a certain amount of memory cells. This

framework allows to understand intrinsic difficulties of problems, but it ignores

the communication complexity in which algorithms incur once they are imple-

mented in a real machine, which also in this field is nowadays the real bottleneck

for computations. Parallel algorithms are usually described by very high level

languages (as the Work-Time Framework [Jaja92]), which aim to express the

maximum parallelism and the minimum number of parallel steps reachable in

the PRAM, and leave the communication problem to the particular implementa-

tions. This description for algorithms is very useful since we can easily see how

their main features scale in different machines thanks to Brent’s theorem [B74].

Conversely to the PRAM case, analysis performed on specific networks of pro-

cessors are not enough general to highlight features of problems without being

influenced by the considered networks. This motivates in the nineties the study of

several high level, still realistic, models like BSP [V90], LPRAM [ACS90], LogP

[CKP+96], D-BSP [DK96]. In these models we can study the communication

complexity of problems without being misled by a particular network.

5

Chapter 1. Introduction

In parallel computing, maybe more than in sequential field, we are very inter-

ested in performance: in fact we are explicitly trying to exploit a new intrinsic

feature of problems: the parallelism. The Amdahl’s law [A67] limits our ac-

tion field only to the fraction of the algorithm which can be parallelized, so if

great part of the problem is strictly sequential, the improvement will be small.

Once determined the leeway, we would like to know which is the minimum time

required for the execution of a problem or of an algorithm with the available

hardware. There is a natural bound on parallel time obtained from the ratio

between the best sequential execution time and the number of processors avail-

able. When the number of processors is high respect to the problem size, this

bound gets weaker and weaker, in fact it does not catch the complexity of the

precedence constraints among the operations executed for the solution of the

problem.

If we suppose to use a machine with infinite processors, executing each opera-

tion as soon as all its predecessors have been computed, we can execute a specific

algorithm in the minimum parallel time possible for it: this quantity is the depth

of the algorithm. The best sequential algorithm not necessarily provides also the

lower parallel depth, so than often sequential algorithms must be rearranged or

totally redesigned to exhibit a lower depth. In parallel computing we are inter-

ested in algorithms with the lowest depth possible, using a reasonable number

of processor. Another optional yet attractive quality for these algorithms is to

be work optimal, that is to have a number of operations similar to the best se-

quential algorithm. The determination of the lowest depth for a problem is a

difficult task, also if for some problems it is feasible reasoning on how much data

can be analyzed with the available processors. Important results of this kind are

the Ω(log n) time required for the computation of the OR function [CD82] and

exact lower bounds for searching, merging and sorting [K83]. If we consider a

specific network of processors, the task gets slightly easier, since we can point

out lower bounds due to the data movement and possible communication bottle-

necks. However this kind of lower bound is not general, since it is due to physical

features of the networks, and it does not provide general information about the

complexity of the problem.

As anticipated in previous paragraph, also in this field we should take into ac-

6

1.2. State-of-the-art and purpose of the thesis

count the possibility of recompute intermediate results in order to avoid commu-

nication among distant processors and possibly obtain better algorithms. Given

the generality of this approach, it is very difficult to obtain general lower bounds

which can tightly catch the computational complexity when this strategy is al-

lowed. This aspect will be extensively discussed in the rest of the thesis.

1.2 State-of-the-art and purpose of the thesis

This thesis makes a critical survey of the known lower bound techniques which

target parallel computation of algorithms and completes some aspects which are

still open.

Literature in this field can be divided according the considered network model,

which can be an ideal PRAM, an high level but realistic model or a specific

network, and according the consideration of recomputation, which can be allowed

or not.

As for ideal PRAM, we can find the already mentioned [CD82], which proves

a Ω(logN) time lower bound for the computation of the OR function in a CREW

PRAM (while a trivial constant time algorithm exists for CRCW PRAM). [PU87]

proposes a trade-off between time and communication required for the compu-

tation of the diamond DAG, showing that the product of optimal lower bounds

for time and communication considered singularly is strictly smaller than lower

bound obtained considering jointly time and communication; this means that in

some DAGs the PRAM can not match both the minimum time and the minimum

communication with the same strategy. Finally [K83] present several tight lower

bound for searching, sorting and merging in the PRAM.

In [VW85] the PRAM(m) model is introduced, which consists in a PRAM

with only m cells of global memory, modeling a bandwidth limit of m data per

time unit. It has been studied both with exclusive read and concurrent read

memory access policies, leading to lower and upper bounds where the execution

time take into account the bandwidth (e.g. [ABK95] for sorting, which also shows

how the technique can be adapted to [CKP+96, V90], cited in the following lines).

Starting from [PU87], [ACS90] considers the LPRAM, a variation of PRAM

which captures also communication costs, providing time and communication

7

Chapter 1. Introduction

lower bounds for several problems as matrix–matrix multiplication, sorting, FFT.

Beyond LPRAM, where we need to exhibit two distinct lower bounds for commu-

nication and time, among general realistic models there are the P-Log [CKP+96]

and the Bulk Synchronous Parallel (BSP) [V90], theoretical machines which can

describe a wide range of real networks thanks to their parametrized structure.

Time lower bounds for these model contain in their formulas parameters for la-

tency and bandwidth of the network which connects the processors, so that the

time lower bound already expresses also the communication complexity. For rela-

tionships between the two models see [BHP+96]. BSP has been extensively stud-

ied and strict results are known in several fundamental problem [BSS12, SS14],

It has been extended to take into account the locality in parallel computation in

[DK96], where the Decomposable BSP is introduced. In this model bandwidth

and latency are variable, and computations take less time for algorithms exhibit-

ing communication among near processors. It is possible to prove which D-BSP

can model processor networks more effectively than BSP, allowing emulations

with only a constant factor slowdown for several networks, e.g. multidimensional

arrays, see [BPP07] for a complete dissertation.

Note that there are several works, e.g. [CGG+95, LP93, FPP06, PPS06,

MZ12], proposing cross-emulations or highlighting similarity among parallel and

memory models, so that computational bounds in memory models are strictly

related to the parallel ones. See section 2.5 for a deepened introduction to the

argument.

Turning our attention on bounds for processor networks, we recall works

on Universal Computer; an universal computer is a parallel machine with fixed

communication network of bounded degree which aims to emulate as efficiently

as possible any other bounded degree network. A N -nodes universal com-

puter can emulate all N -nodes bounded-degree network with slowdown at least

Ω(logN/ log logN) [M83], while if the machine has N1+ε nodes it can emulate

any N -nodes bounded-degree network with slowdown O(1) [M86].

Other works consider different hypothesis, e.g. in [BP99] networks of pro-

cessors are integrated with a local hierarchical memory and in general it target

emulations respecting realistic physical constraints. In this paper no recompu-

tation is allowed.

8

1.2. State-of-the-art and purpose of the thesis

A powerful emulation technique is the definition of an embedding of the guest

network into the host network; in Section 2.1 basic results about embedding are

recalled. Embeddings allow optimal emulation of trees in multidimensional ar-

rays [HKMU91], and are involved as subpart of other optimal emulation tech-

niques. For example a plain embedding can not provide a constant slowdown

emulation between the mesh network and the butterfly network, since any em-

bedding of the former in the latter as at least dilation Ω(logN), but embedding

of sub-meshes in sub-butterflies are exploited in the O(1)-slowdown emulation

proposed in [KLM+97].

In this last paper work-preserving emulations are considered; an emulation

of a guest by an host is work-preserving if work performed by the host is similar

to work of the guest, WH = O(WG). In particular authors prove two theorems

to determine lower bounds of the time required from a network to emulate the

computation of another network when recomputation is allowed. These theorems

are used to investigate the maximum size of an host to obtain a work-preserving

emulation of a guest. In the same paper there is a survey of known emulations

among networks, used to prove the optimality or looseness of lower bounds pro-

vided by the previous theorems. On the same line [KR94] proposes a lower bound

technique for network emulations considering bandwidth of networks, imposing

at most a constant level of recomputation. Also in this case the theorem is used

to investigate maximum size of hosts to perform a work-preserving emulation of

a guest and results reached are the same of [KLM+97] in several cases, but with

a more intuitive approach.

Note that especially when recomputation is allowed, lower bounds not always

are strict. For this reason can be useful to recall the already mentioned work

of Hong and Kung [HK81], which deals with minimum number of accesses in

slow memory when executing an algorithm with finite amount of fast memory

and recomputation enabled. Note that saving I/O accesses replacing it with

recomputation is related to save communication replacing it with recomputation

in parallel environment. Also this field lacks fundamental proofs of the role of

recomputation in performance.

Finding significant lower bounds for problems could also solve important

questions in Computational Complexity field. For example if we could prove a

9

Chapter 1. Introduction

polynomial lower bound for a problem in P (problems for which an algorithm

polynomial in the size of the input is known), we could demonstrate that NC (
P , where NC is the Nick Class, the class of problems solvable in polylogarithmic

time when a number of processors polynomial in the size of the input is available.

This would means that not all the problems which are efficiently solvable in

sequential way are also highly-parallelizable. Even more important, if we could

exhibit a super-polynomial lower bound for some problem in NP , we would

know that P (NP , where NP is the class of problems solvable in polynomial

time with a non-deterministic Turing Machine. This would means that not every

problem is tractable with actual computers, and that exist problems which are

not computable in useful time also for small instances.

The rest of this thesis is divided in two parts: the first one includes Chapters

2 and 3 and it is about time lower bounds for emulations, while the second one

includes Chapter 4 and is about trade-offs between recomputation and storing

of intermediate results. In Chapter 2 we will consider lower bound techniques –

allowing recomputation – valid for a wide gamma of networks from [KLM+97,

KR94]. These techniques model an arbitrary pair of networks through some

parameters which lead to a general formulation of lower bounds. Given a specific

pair of networks we can determine the current value of the lower bound by

just computing the parameters for the specific case. In the treatise, we show

relationships among the techniques, highlighting their weaknesses and extending

them to general DAGs. An important fact proved in the thesis is that among the

considered techniques there is not one strictly more powerful than the others,

in fact we can exhibit cases where each technique gives better bounds than the

others. Moreover we highlight differences between theorems for lower bounds for

I/O complexity and those for parallel computations.

Chapter 3 contains new results for lower bounds of specific emulations, in

particular we consider emulations among multidimensional arrays: actually, the

better known result has a polynomial gap with the better known emulation

when arbitrary recomputation is allowed, while our theorem only suffers from a

logarithmic gap. The proposed strategy can be extended to arbitrary networks

but it is effective only for determinate classes of them.

Chapter 4 addresses the role of recomputation in the execution of algorithms

10

1.2. State-of-the-art and purpose of the thesis

from the point of view of I/O complexity. When recomputation is not allowed,

partial results which have to be used again, must be stored in memory, while with

recomputation in some case it is possible to save memory accesses by recomputing

those results. The main result of this section is the proof that recomputation

gives only a small advantage in the butterfly but asymptotically it has the same

complexity and the same constants of the case without recomputation.

Finally, Chapter 5 concludes the thesis summarizing the contribution and

proposing possible further researches.

I would like to remember that great part of results contained in Chapter 4

have been obtained in the three months that I spent at ETH Zurich, with Markus

Püschel as advisor.

11

Chapter 1. Introduction

12

Chapter 2

Lower bounds for generic

emulations

Given two processor networks, which is the fastest possible emulation of the first

network performed by the second one? Starting from this question, in this chap-

ter we will present a survey of known techniques to obtain time lower bounds for

network emulations, showing the main ideas beneath them, the reciprocal rela-

tions and extending them to more general cases. We will show that actually there

is not a single technique all-comprehensive, but we must consider several tech-

niques to obtain tight lower bounds in networks with different features. Moreover

we analyze weaknesses of the discussed theorems, giving a starting point for a

possible all-comprehensive technique.

Some of the points left open in this chapter will be solved in Chapter 3, as

for example a lower bound for emulations among multidimensional arrays.

2.1 Background

Before proceeding with the exposition, we recall some concepts extensively used

in the rest of the work.

Definition 1. A Parallel Random Access Machine (PRAM) [FW78, G78] is an

abstract parallel machine model, that consisting in a collection of P synchronous

processors and M shared memory locations.

13

Chapter 2. Lower bounds for generic emulations

Beyond ideal machines, where every processor can communicate with each

other in one step by the shared memory (shared memory model), we will con-

sider machines with a given interconnection among their processors and where

communication occurs by sending and receiving messages through edges of the

interconnection network (similarly to the message passing model). In this second

case, each processor has M local memory locations, accessible in one step only

by processors which are joint to it by the network. A network is modeled by a

undirected graph G = (V,E), where vertices in V (also called nodes) represent

processors and edges in E represent connections among processors. We refer to

[KLM+97] for definitions of the topology of butterfly, k-dimensional array and

tree networks.

During the thesis we will consider emulations of a network G by another

network H, which consist in the reproduction of all intermediate results of the

computation of G with H. One possible way to specify an emulation is by means

of an embedding.

Definition 2. Consider a guest network G = (V,E) and an host network H =

(W,F). An embedding of G in H consists in two functions, φ : V → W , which

maps every node of V in a node of W , and ψ : E → {paths in F}, which maps

edges of G in paths in H. An embedding is characterized by its dilation d, which

is the maximum length of a path ψ(e), its congestion c, which is the maximum

number of paths ψ(e) passing on an edge of H and its load l, which is the the

maximum number of nodes of G mapped to a node of H.

If there is an embedding of G in H with parameters c, d and l, then it exists

an emulation of G by H with slowdown O(c+ d+ l) [LMR88].

We will represent a computation as a directed acyclic graph (DAG) where, in-

formally, nodes represent operations and edges represent the dependences among

operations. Following definition is a variation of that in [BP01].

Definition 3. A DAG or computation directed acyclic graph (CDAG) is 4-tuple

C = (I, V, E,O) of finite sets such that:

1. I ∩ V = ∅;

2. E ⊆ (I + V)× V is the set of arcs;

14

2.1. Background

3. G = (I + V,E) is a directed acyclic graph with no isolated vertices;

4. I is called the input set ;

5. V is called the operation set and all its vertices have incoming arcs;

6. O ⊆ I + V is called the output set.

Every node that can reach u ∈ V with a path is a predecessor of u, in

particular if a predecessor of u is directly connected to u than we call it parent

of u. Similarly, every node reached by a path from u is a successor of u, in

particular a successor of u directly connected to u is a son of u. Usually in this

work we will consider nodes without predecessors as inputs, while nodes without

successors as outputs.

Note that a DAG is given by a particular execution of an algorithm. Differ-

ent executions of the same algorithm can give different DAGs. DAGs are very

useful in the analysis of an algorithm, e.g., they can be used to study the space

complexity [HWV77] or the I/O complexity [HK81], in both cases by pebble

games. Next definition recalls the general idea behind pebble games, but games

in [HWV77, HK81] are quite different among them.

Definition 4. A pebble game on a DAG G is the following game. The player has

a certain number of pebbles which he can use to mark (to pebble) nodes of G,

one in any step of the game. As long as there are available pebbles, an input can

always be pebbled. Other nodes can be pebbled only if all their predecessors are

currently pebbled and there are pebbles available. If there are no more available

pebbles, we can unpebble some nodes (one per step of the game), freeing the

pebbles used in them. The game ends when every output has been marked at

least once.

Pebbles in the games represent memory locations used during the compu-

tation. Note that pebble game in [HWV77] aims to determine the minimum

amount of memory required for execute an algorithm, while the game in [HK81],

performed with pebbles of two colors, has the purpose of determine the mini-

mum number of accesses in slow memory required by an algorithm. We can also

think pebbles as parallel processors occupied in the execution of the DAG; in

15

Chapter 2. Lower bounds for generic emulations

this game in the game we can perform as many moves per step as many pebbles

are available.

A certain sequence for the creation of nodes of the DAG G is called schedule,

in particular the greedy schedule assumes infinite pebbles and schedules nodes

as soon as they are ready. The greedy schedule of G in the parallel case defines

a partition p0, p1, . . . , pD−1 of its nodes, where set p0 contains inputs and set

pi contains nodes created at step i. This schedule provides useful features of

G, in particular its depth D – the minimum number of steps required by a

PRAM to compute the DAG – and its maximum parallelism maxi pi. We also

define the work W of G as W = |VG| =
∑D−1

i=0 pi and the average parallelism

p = W/D. Note that if we limit the available processors to p, we can schedule

G in
∑D−1

i=0 dpi/pe ≤
∑D−1

i=0 pi/p+
∑D−1

i=0 1 = 2D.

2.2 Distance-based lower bound

2.2.1 State of the art

Notation

First, we will analyze two techniques from [KLM+97], which consider the em-

ulation of an NG-nodes guest network G, executing for TG time steps, by an

NH-nodes host network H, which requires TH time steps to perform it. Note

that both the techniques are very general, and they are valid also if recomputa-

tion is allowed. The aim of the paper is to investigate in which case a network H

can perform an efficient emulation of G, where the efficiency is the ratio among

works performed by G and H. In particular, authors give two general methods to

determine lower bounds of the inefficiency, defined as I = THNH

TGNG
. In an efficient

emulation THNH

TGNG
= O(1), and it is called work preserving. In this thesis we are

interested in a more general target: the tightness of the bounds.

The computation of G is considered as a DAG, whom H has to pebble.

In particular, nodes of G have a constant memory and in each step they can

communicate their status to every neighbour. Note that the DAG considered,

been produced by a network, has a very regular structure and its features are

related to those of G. If G executes for T steps, the produced DAG has TNG

16

2.2. Distance-based lower bound

nodes and can be thought as T levels, each withNG nodes, one per node ofG (Fig.

2.1). Level τ contains nodes of G at time step τ , and the only edges in the DAG

are those from level i to level i+1, i = 0, 1, . . . , T −1. We refer with (u, τ) to the

G

t=0 t=1 t=2

Figure 2.1: DAG produced by the execution of a network G in 3 time steps.

node of the DAG representing the status of node u of G in the time step τ . Let

δ(u, v) be the length of the shortest path between u and v in a given undirected

graph G; then BG(u, i) = {v ∈ VG : δ(u, v) ≤ i} and bG(u, i) = |BG(u, i)|. Node

(u, τ) receives as input (u, τ − 1) and {(v, τ − 1) : v ∈ BG(u, 1)}, while it is an

input for (u, τ + 1) and for {(v, τ + 1) : v ∈ BG(u, 1)}.

The Theorem

Theorem 1. Let G = (VG, EG) be an NG-nodes guest network and H = (VH , EH)

be an NH-nodes host network. Suppose that there are integers τG and τH such

that

max
u∈VH

τH∑
i=1

bH(u, i) < min
v∈VG

τG∑
j=1

bG(v, j). (2.1)

Then any emulation of TG ≥ τG steps of G by H has slowdown

S >
τH + 1

2τG
.

Here we just sketch the main idea behind the theorem; see [KLM+97] for the

complete proof. Given a node (v, t) of the DAG of G, it has bG(v, 1) predecessors

at time step t − 1, bG(v, 2) in time step t − 2 and so on, until having bG(v, τG)

predecessors at time step t− τG (Fig. 2.2).

We are interested in the node v which has P = minv∈VG
∑τG

j=1 bG(v, j) prede-

17

Chapter 2. Lower bounds for generic emulations

t = T
G

t = T
G
-1

t = T
G
-2t = 0 t = T

G
- τ

G

... ...

CDAG of G

G

τ
G

Figure 2.2: Quantity represented by
∑τG

j=1 bG(v, j).

cessors, the minimum number of predecessors in the previous τG time steps (the

“weaker” node of G). Similarly we can find out the node u in H, which in the

previous τH steps has the maximum number of predecessors respect to nodes in

H, but they are strictly less than P . This means that any node in G, in τG time

steps, can be influenced by P operations, while any node in H needs strictly

more than τH steps to be contacted by such a quantity of information.

Focus on first evaluation of (v, TG) by a node u ofH, at time TH of the network

H. There is at least one node v′ in the region of the DAG of G influencing (v, TG)

during the time [TG−τG, TG] computed by H before TH−τH . We can repeat such

a construction for node v′, obtaining another region of G with predecessors at

most in time step TG− 2τG with a node v′′ computed in H before time TH − 2τH

in H. Repeating this reasoning, we obtain Ω(TG/τG) regions of DAG of G, each

requiring at least Ω(τH) disjoint steps in the emulation performed by H, so that

TH = Ω(TGτH/τG), or S = Ω(τH/τG).

In [KLM+97], Theorem 1 is used to prove the following fact.

Corollary 1. For fixed k, any emulation of a complete binary tree G by a k-

dimensional array H has slowdown at least Ω((NG/ logkNG)1/(k+1)).

In [KLM+97], authors stress the fact that a N -nodes k-array can perform

a work-preserving emulation of a (N (k+1)/k/ logN)-leafs complete binary tree.

One should also note that the known embeddings of a tree on a k-dimensional

array are optimal for each value of NH . In fact when the k-dimensional array

18

2.2. Distance-based lower bound

has diameter Ω((NG logNG)1/(k+1)), it can match the lower bound in Corollary

1 with embeddings proposed in [HKMU91], while for smaller diameters, since

an M -nodes k-dimensional array can emulate in work preserving fashion an N -

nodes one (M < N), we can match the trivial load lower bound Ω(NG/NH) also

provided by the theorem.

2.2.2 Analysis and Critique

Now we will highlight the aspects of the computation catched by the theorem.

We will use as working example the emulation of a k-dimensional array G with a

j-dimensional array H, k > j. If NH = O
(
N

j
k
G

)
, H can perform an emulation of

G with slowdown O(NG/NH), while for bigger values of NH , H can not perform

a work preserving emulation of G and there is an inefficiency more than constant

[KLM+97].

Given an N -nodes x-dimensional array A, we can prove that

τ∑
i=1

bA(u, i) =

{
Θ(τx+1) if τ ≤ diamA

Θ(N
x+1
x) +N(τ − diamA) if τ > diamA

. (2.2)

If the execution time τ considered is smaller than the diameter of the network,

the number of predecessors of u grows as Θ(τx+1), otherwise, if the execution

time is long enough the growth is just linear respect to τ (since the whole network

has already been reached after first diamA steps).

If τG = diamG = N
1
k
G , right term of Equation 2.1 is Θ

(
N

k+1
k

G

)
, while for the

left term, depending on the size of H, we distinguish two cases, which lead to

two different values for τH .

If diamH = Ω

(
N

k+1
k(j+1)

G

)
:

Θ
(
τ j+1
H

)
= Ω

(
N

k+1
k

G

)
⇒ τH = Ω

(
N

k+1
k(j+1)

G

)
,

19

Chapter 2. Lower bounds for generic emulations

while if diamH = o

(
N

k+1
k(j+1)

G

)
:

NH (τH − diamH) = Ω
(
N

k+1
k

G

)
⇒ τH = Ω

(
N

k+1
k

G

NH

)
.

S

N
H

1

N
G

1 N
G

N
G

j/k

N
G
/N

H

Tight LB

N
G
k(j+1)
j(k+1)

Theorem 1

Theorem 2

Figure 2.3: Comparison among tight lower bound, lower bound implied by load
argumentation and lower bound due to Theorem 1 and 3. Tight lower bound is

determined by ratio of bisection bandwidths for NH > N
j
k
G (see Theorem 4 and

Chapter 3).

These values give respectively slowdown S = Ω

(
N

k−j
k(j+1)

G

)
and S = Ω

(
NG

NH

)
.

Note that the theorem considers a region ofH with radius at mostO

(
N

k+1
k(j+1)

G

)
<

N
1
j

G . If H has more than Θ

(
N

j(k+1)
k(j+1)

G

)
< NG nodes, these will not affect the

lower bound, since they are too far to communicate with other parts of the

network without slowing down the computation. Viceversa, if H is small, we

just obtain the trivial slowdown due to ratio among the number of nodes of G

and those of H (average load of H). Note that we are considering the class

of j-dimensional array networks, which has a particular structure, in which the

network A with diameter diamA is a sub-network of the network B with diameter

diamB = diamA+1. When H belong to a class with such property, the technique

emphatizes the diameter of the instance of network in which lower bound due

to average distance of nodes can be improved by an argumentation based on

average load of a region.

20

2.2. Distance-based lower bound

Moreover, lower bound obtained by the theorem in this case is not tight

(see Figure 2.3 and proof of Proposition 4 in next subsection). The main issue

which determines this gap is the fact that the theorem takes into account only

the number of operations which a certain subregion of H can perform, without

considering further communication problems among its nodes. The involved

subregion is considered as an ideal PRAM, so that possible congestion problems

in its edges are ignored.

Note also that for small value of τG, the lower bound could be not tight, since

the theorem first considers the less connected part of G and the more connected

part of H, which could lead to a weak bound. This fact is formalized in the

following proposition.

Proposition 1. Lower bound obtained by the application of Theorem 1 to net-

works G and H is not necessarily tight if

max
v∈VG

τG∑
j=1

bG(v, j) = ω

(
min
v∈VG

τG∑
j=1

bG(v, j)

)
. (2.3)

Proof. We will prove the theorem by counter-example. Consider the network

G consisting in a N/2-nodes 3-dimensional array (a cube) joined with an N/2-

nodes linear array by an edge from a vertex of the cube and a vertex of the

array (it has diameter N/2 + O(N1/3)), and H consisting in an N -nodes 2-

dimensional array. Network H can not emulate the cubic part of G without a

certain amount of slowdown (we know from Theorem 1 that S = Ω(N1/9)). Nev-

ertheless, considering the whole G, the theorem does not highlight any slowdown:

minv∈VG
∑τG

j=1 bG(v, j) = Θ(τ 2
G) for τG < O(N) and maxu∈VH

∑τH
i=1 bH(u, i) =

Θ(τ
3/2
H) for τH < O(N1/2) give only pairs (τG, τH) such that S = Ω(τH/τG) =

Ω(1), since the theorem is biased by the weaker part of G.

Proposition 2. Lower bounds obtained by Theorem 1 are not necessarily tight.

Proof. This result follows by Proposition 1.

Lower bound in Corollary 1 is tight since binary tree is a loosely connected

network and the optimal embedding in a k-dimensional array condenses the sub-

trees near the leaves in just one node of the array. In this case, increasing the

21

Chapter 2. Lower bounds for generic emulations

load of some nodes of H does not increase the congestion of the network (the

sub-trees communicate with just one node with the rest of the network).

Informally, the theorem is likely to be tight as long as the load and dilation

(features of the emulation caught by the theorem) are bigger than the congestion

(feature not considered by the theorem). Theorem 3 of Section 2.3 tries to solve

this lack.

2.2.3 Generalization of Theorem 1

Theorem 1 considers the emulation of a network G by a network H modeling

computation of G as a DAG. This subsection generalizes the theorem to target a

general DAG F in place of the DAG obtained by the computation of a network.

As already noticed, DAG of computation of G for a certain time TG, is very

regular. Consider its greedy schedule: each level i hasNG nodes, corresponding to

the evaluation of all nodes of G at time i; moreover level i has only edges to level

i + 1. Because of this regularity, once we identify mG = minv∈VG
∑τG

j=1 bG(v, j)

in the network G, we know that any node in the DAG of G has at least mG

predecessors in previous τG time step; in particular bG(v, j) counts the number

of predecessors of v exactly j time steps before v. The theorem, as recalled in

Subsection 2.2, identifies k nodes and relative predecessors in the DAG of G

which imply TG < (k + 1)τG, while H needs TH > kτH time steps to emulate

them.

Consider the greedy schedule of a general DAG F : it has TF levels. In this

case each level does not correspond to a time step of execution of a network,

as well TF is not the number of steps but simply the critical path of F . In

analogy to Theorem 1, we can represent a node v of F as v = (u, t), where t

is its level in the greedy schedule and u is a unique name in F . Each level t

could have a different number pt of nodes and its nodes could be input also for

nodes of levels other than t + 1 (see Figure 2.4). Definitions of functions BG

and bG, which in a network G counts neighbors of a node within a certain range,

are valid also in a DAG F . Note that in this case F is the DAG, and nodes in

the set BF (v, i) are all in levels preceding level of v; moreover the meaning of

minv∈VG
∑τG

j=1 bG(v, j) in DAG of G in Theorem 1 is now assumed in DAG F

22

2.2. Distance-based lower bound

simply by bF (v, τH). Let PF (v, i) = {u : δ(u, v) = i} and pF (v, i) = |BF (v, i)|,
then bF (v, τH) =

∑τH
i=1 pF (v, i), similar to the notation for a DAG of a network,

also if nodes in pF (v, i) are not necessarily in the same level. For example in

Figure 2.4, v ∈ BF (u, 1), but v precedes u by three levels.

u

v

Figure 2.4: Greedy schedule of a general DAG: different levels can have different
numbers of nodes and some node (e.g., v) can be used by several levels.

This invalidate the reasoning used in the original theorem to determine TG <

(k+ 1)τG; in fact if we consider the last node v = (u, TF) of F compute by H, it

is not true that it has mF predecessors (u′, t), t ≥ TF −τF . In any case, if there is

a limit ∆ to the maximum distance in level between a node u and an its parent,

we can prove the following theorem.

Theorem 2. Let F = (VF , EF) be a NF -nodes DAG and H = (VH , EH) be an

NH-nodes host network. Consider the greedy schedule of F ; let TF be the critical

path and ∆ be the maximum distance in levels between a node u and the furthest

parent of it. Suppose that there are integers τF and τH such that

max
u∈VH

τH∑
i=1

bH(u, i) < min
v∈VF

bF (v, τF).

Then the number of time step of any computation of F by H is

TH ≥
(
TF
τF∆

− 1

)
(τH + 1).

Proof. Proof follows that of Theorem 1. Consider the last node v0 = (u0, TF) of F

computed by H. Node v0 has bF (v0, τF) ≥ minv∈VF bF (v, τF) = mF predecessors

23

Chapter 2. Lower bounds for generic emulations

between levels TF −∆τF and TF −1 (we are considering predecessors at distance

at most τF and each step could require up to ∆ levels). Consider the node

u of H which computes v0 at host time TH . A predecessor of v0 created by

a node at distance i from u must be created before time TH − i to influence

the computation of u at time TH , so from time TH − τF to TH − 1 at most

maxu∈VH
∑τH

i=1 bH(u, i) < mF operations can influence computation of u and

there is at least one node v1 = (u1, t1) computed by H at time TH − (τH + 1)

which occurs at or after level t1 ≥ TF −∆τF in F .

We can repeat the reasoning on node v1, pointing out a node v2 = (u2, t2), t2 ≥
TF − 2∆τF computed by a node of H before time TH − 2(τH + 1). After k

repetitions, we obtain a certain tk < ∆τF , tk ≥ TF − k∆τF computed by H at

or before host time TH − k(τH + 1) ≥ 0. We can merge TF < (k + 1)∆τF and

TH ≥ k(τH + 1) to obtain:

TH ≥
(
TF
τF∆

− 1

)
(τH + 1). (2.4)

Asymptotically, Equation 2.4 becomes TH = Ω(TF τH/(∆τF)). Note that in

some important DAGs (e.g, tree, butterfly, diamond) ∆ = 1.

Application 1. Consider the execution of an NF -leaves tree DAG F on an NH-

nodes k-dimensional array H. As for tree, when τF ≤ logNF , bF (v, τF) = 2τF +1−
1, while in k-array when τH = O(diamH), maxu∈VH

∑τH
i=1 bH(u, i) = Θ(τ k+1

H), and

maxu∈VH
∑τH

i=1 bH(u, i) = Θ(NHτH) if τH = ω(diamH).

Choosing τF = logNF , if diamH = Ω(k+1
√
NF) we can use τH = Θ(k+1

√
NF),

in fact Θ(τ k+1
H) < 2NF −1 which gives the lower bound TH = Ω(k+1

√
NF). On the

other hand, if diamH = o(k+1
√
NF) from the inequality Θ(NH(τH − diamH)) <

2NF − 1 ⇒ τH = Ω
(
NF

NH

)
which gives TH = Ω(NF/NH). These lower bounds

are strict, as we will show presenting a strategy with TH = Θ(k+1
√
NF) when the

k-dimensional array has diamH ≥ k+1
√
NF ; when diamH < k+1

√
NF we exploit the

fact that a M -nodes k-dimensional array can emulate a N -nodes k-dimensional

array (N > M) with O(N/M) slowdown.

Note that a k-array with diamG = ω(N
1/(k+1)
F) would not be useful since

24

2.2. Distance-based lower bound

communication among nodes further than O(N
1/(k+1)
F) steps would slow down

the computation.

Proposition 3. A Nk/(k+1)-nodes k-dimensional array H can compute a N-

leaves tree-DAG F in O(N1/(k+1)) steps.

Proof. First we show inductively Fact I:

a k-array of Nk/(k+1) nodes can compute a Nk/(k+1)-leaves tree in

O(N1/(k+1)) steps,

showing next how to extend the result to N -leaves trees. The base case for

the induction is k = 1. This case considers a
√
N -nodes linear array H which

compute a
√
N -leaves tree F in

√
N−1 steps with the following strategy S. Node

xj of H has the jth node of level (logN)/2 of F . In the first step nodes x2i and

x2i+1 cooperate to produce in x2i+1 the result of the second level of H (they need

one communication step); in the second step nodes x4i+1 and x4i+3 cooperate

to produce a result of the third level of H (they need two communication step)

and so on, until nodes i√N/2−1 and i√N−1 create the output of H in i√N−1,

requiring
√
N/2 communication steps. The strategy requires

√
N − 1 parallel

communication steps and (logN)/2 parallel computational step.

Note that we can use this strategy to compute a whole N -leaves tree with

a
√
N -nodes linear array in O(

√
N), by assigning nodes {ij√N , . . . , i(j+1)

√
N−1}

of the (logN)-th level of the tree to node xj of H, so that it can compute

sequentially a certain lower sub-tree Lj of F with height (logN)/2 in Θ(
√
N)

steps (see Figure 2.5) and then applying strategy S for the computation of the

upper part U0 of the tree.

Now consider k > 1. The following inductive hypothesis holds: a (k −
1)-array with N

k−1
k nodes can compute a (N

k−1
k)-leaves tree-DAG in Θ(N1/k).

Consider a Nk/(k+1)-nodes k-array H formed by nodes (i1, . . . , ik), 0 ≤ in ≤
N1/(k+1),∀n computing a Nk/(k+1)-leaves tree. Each node u of H contains a node

v of level k/(k+ 1) logN of the tree, in particular node (i1, . . . , ik) contains node

in position
∑k

x=1 ixN
(x−1)/k+1). H computes F in O(N1/(k+1)) steps in this way:

nodes (u, i2, . . . , ik), 0 ≤ u < N1/(k+1) use strategy S to compute a node v of level
k−1
k+1

logN in node (N1/(k+1) − 1, i2, . . . , ik) in N1/(k+1) − 1 steps. At this point

25

Chapter 2. Lower bounds for generic emulations

U
0

L
1

L
√N - 1

L
0

Figure 2.5: Division of tree DAG F in lower sub-trees L0, . . . , L√N−1 and upper
sub-tree U0.

sub-array of H composed by nodes (N1/(k+1) − 1, i2, . . . , ik), 0 ≤ ix < N1/(k+1) is

a k−1-dimensional which has to compute the remaining N (k−1)/(k+1)-leaves tree.

By inductive hypothesis this can be done in O(N1/(k+1)) steps, that jointly with

(N1/(k+1) − 1) steps of first part give a total of O(N1/(k+1)) steps, so that Fact I

is proved.

Note that similarly to base case, we can extend this general case to a N -

leaves tree by allocating N1/(k+1) consecutive leaves of F per each node of H;

each node computes sequentially a (1
k+1

logN)-levels sub-tree of F in O(N1/(k+1))

steps, completing the last part of the computation with strategy used to prove

Fact I. In the following we will refer to the first part of the process, which reduces

the number of leaves of the tree from N to Nk/(k+1) as reduction step of strategy

S.

Note that this lower bound defers from Corollary 1, since it has a different

meaning. In fact in Corollary 1 network H has to emulate the tree-shaped

network G, while now network H is executing a tree-shaped DAG. Note also

that executing logN steps of the optimal embedding of a tree in a k-dimensional

array give TH = Θ((N logN)1/(k+1)), which does not match the lower bound.

Application 2. Consider the execution of an NF -input butterfly by a NH-nodes

k-dimensional array H. We obtain the same lower bound TH = Ω(k+1
√
NF) of

the Application 1, since BF (v, i) = 2i+1− 1. In fact each output of F is the root

of a complete binary tree with NF leaves, corresponding to inputs.

Despite the bigger complexity of the network, we can match the lower bound

with a strategy similar to the previous one. Note that a Nk/(k+1)-nodes region

26

2.3. Congestion-based lower bound

Figure 2.6: Every output of a butterfly is the root for a tree (gray nodes). Nodes
of this tree in level (logN)/2 can be thought as inputs of a

√
N -inputs sub-

butterfly (the shaded nodes).

R of H, after the reduction step of strategy S described in Application 1 (which

lasts O(N1/(k+1))) has in its nodes inputs of a Nk/(k+1)-inputs butterfly (Figure

2.6 shows the case with NF = 16 and k = 1). R can compute it in O(N1/(k+1))

time using the emulation of the descendant hypercube algorithm for butterfly-like

algorithms.

If we consider N1/(k+1) regions of Nk/(k+1) nodes of H, we can exploit N1/(k+1)

times the previous observation to compute all N outputs in O(N1/(k+1)) parallel

steps. Note that this strategy use recomputation.

2.3 Congestion-based lower bound

2.3.1 State of the art

The theorem

The second theorem in [KLM+97], requires some more notation. Given an

undirected graph G = (VG, EH), we define the i-neighborhood of U ⊆ G,

Ni(U) = (∪u∈UBG(u, i)) \ U , the set of nodes not in U within a distance i

from a node in U .

A (R, f(R))-decomposition of a network H = (GH , EH), is a partition of H

in sets Ri, such that each Ri (region) has [R, 2R] nodes and N1(Ri) ≤ f(R).

Informally, we can partition H in regions of approximatively the same size and

with a given upper bound to their bandwidth with the rest of the network.

The (R, f(R))-decomposition is used in the theorem to model H’s features.

As for G, it is modeled through the function zG(a, ε, c), where a ≤ c are integers

27

Chapter 2. Lower bounds for generic emulations

in [0, |VG|] and 0 ≤ ε < 1. To understand the role of function zG, consider

the following situation: suppose that a region R of H has to emulate a set of

a nodes of G for a particular time step t of the guest time. R has to import

or compute predecessors of these nodes before computing them. In particular,

if the nodes to compute are X0 ⊂ VG, it needs Z1 = X0 ∪ N1(X0) for guest

time t − 1. If it imports Y1 nodes among Z1, it will have to compute nodes

X1 = X0 ∪ N1(X0) \ Y1 for time step t − 1. We can iteratively define for time

step t − i, the set Xi = Xi−1 ∪ N1(Xi−1) \ Yi of nodes which R will have to

compute. Consider i = k such that |Xk−1| ≤ c and |Xk| > c, with the constraint∑k
i=0 Yi ≤ εa and k as big as possible. Function zG(a, ε, c) is an upper bound

to k and it is defined so that it is non-increasing in a. Basically, it takes into

account the expansion speed of network G considering how fast a region R of

H, which has to compute a nodes of a guest time t and only imports εa nodes,

must compute c predecessors of a previous guest time step.

Theorem 3. Suppose that H = (VH , EH) is an NH-nodes host network with an

(R, f(R))-decomposition, and that G = (VG, EG) is an NG-node guest network.

Let

β = max

{
zG

(
NG

4
, 0,

3NG

4

)
, zG

(
3NGR

8NH

,
1

2
,
NG

2

)}
.

Then for any emulation of G by H where TG > 3β,

I ≥ min

{
R

32βf(R)
,
NH

192R

}
.

Again, we refer to [KLM+97] for the proof of the result, while here we just

recall the main ideas. Consider the CDAG obtained by the execution of the

network G for TG time steps; the theorem partitions it in blocks of 3β consecutive

steps and classifies each of it as importer block or creator block, depending if it

can point out for some region a certain quantity of imported nodes or a certain

quantity of nodes computed.

Note that each node v ∈ VG must be pebbled at least once for each t ∈ [1, TG],

in particular in [KLM+97] the first pebble for v for time t created by H is called

t-primary pebble of v. For each t, there are NG t-primary pebbles and if we order

them according the order in which they are created by H, we call the first 3NG/4

28

2.3. Congestion-based lower bound

t-early pebbles and the last 3NG/4 t-late pebbles (NG/2 t-primary pebbles are

both t-early and t-late).

Focus on a block of the DAG from guest time t− 3β+ 1 to t. The (R, f(R))-

decomposition of H has at most NH/R regions, so that in average every region

computes p = 3NGR/(4NH) t-early nodes. Consider the following two situations,

which characterize an importer block : every region which produces s ≥ p/2

t-primary nodes also imports at least s/2 predecessors of them of time steps

between t−2β and t−1; a region imports at least 3NG/16 nodes between t−2β

and t − 1. In both cases we can determine a lower bound for the execution of

the block (see [KLM+97]), due to the time needed to import 3NG/16 nodes by

the at most NH/R regions of H, which have a total bandwidth of NHf(R)/R

nodes per step: Tblock ≥ 3NGR/(16NHf(R)). If half of the blocks are importer,

we obtain a lower bound for the execution time of H:

TH ≥
TG

2 · 3β
3NGR

16NHf(R)
⇒ S ≥ NGR

32NHβf(R)
.

If the previous hypothesis are not valid, it means that every region imports

less than 3NG/16 nodes for guest steps t − 2β and t − 1 and there is at least a

region R which produces s ≥ p/2 t-primary pebbles but imports less than s/2

for time steps t − 2β and t − 1. With these limitations, we can show that R
computes βNG/16 pebbles for the considered block (the block is a creator block).

Since R has at most 2R nodes, it needs at least Tblock ≥ βNG/(32R) steps to

create the considered nodes. The creation of all these nodes are subsequent to

creation of any (t−3β)-primary node, in this way the time required by the region

for the creation of its t-primary nodes is disjoint by the time required by other

blocks.

If half of the blocks are creator, we have the following lower bound:

TH ≥
TG

2 · 3β
βNG

32R
⇒ S ≥ NG

192R
.

When TG ≥ 3β, the two lower bounds found can be merged in

S ≥ min

{
NGR

32NHβf(R)
,
NG

192R

}
, (2.5)

29

Chapter 2. Lower bounds for generic emulations

and multiplying both members of inequality by NH/NG we obtain the proposition

of the theorem.

In [KLM+97] the theorem is used to derive several results regarding the

possibility of obtaining work preserving emulations of specific classes of networks

by mean of other classes. For example, authors prove that k-arrays and butterflies

can not perform work preserving emulation of expander networks, while a work

preserving emulation of a butterfly G by a k-array H has at least slowdown

2Ω(N
1/k
H).

Finally, they prove that a work-preserving emulation of a k-dimensional array

G by a j-dimensional array H (j < k) has slowdown at least Ω(N
(k−j)/k
H), so

that such an emulation can not be work preserving (S = O(NG/NH)) if the

j-dimensional array has more than O(N
j/k
G) nodes.

2.3.2 Analysis and Critique

Focus again on the emulation of an NG-nodes k-dimensional array G by an NH-

nodes j-dimensional array H (j < k). In order to apply Theorem 3, we can

obtain β = O(N
1/k
G) and f(R) = R(j−1)/j. Replacing them in Equation 2.5,

slowdown is

S ≥ min

{
N

(k−1)/k
G R1/j

32NH

,
NG

192R

}
;

in particular, lower bounds are both valid when

N
(k−1)/k
G R1/j

32NH

=
NG

192R
⇒ R =

(
N

1
k
GNH

6

) j
j+1

,

which holds to

S = Ω

 NG(
N

1
k
GNH

) j
j+1

 . (2.6)

Figure 2.3 represents the fact that for NH = O(N
j
k
H) the lower bound is matched

by an embedding and that Theorem 3 gives a tighter lower bound respect to 1

when NG > NH (we can obtain this by comparing the lower bound in Equation

30

2.3. Congestion-based lower bound

2.6 and those in previous subsection).

This fact is a counter-example which proves the following proposition.

Proposition 4. Lower bounds obtained by Theorem 3 can be tighter than lower

bounds obtained by Theorem 1.

Now consider the emulation of aNG-nodes treeG by aNH-nodes k-dimensional

array H. From the previous subsection we know that the optimal emulation slow-

down is

S =

Θ
(
NG

NH

)
if NH = o((NG logNG)1/(k+1))

Θ

((
NG

logk NG

) 1
k+1

)
if NH = Ω((NG logNG)1/(k+1))

.

Parameter f(R) for Theorem 3 still is R(k−1)/k, while β is more tricky than in

previous example. In fact zG
(
NG

4
, 0, 3NG

4

)
= O(logNG), while zG

(
3NGR
8NH

, 1
2
, NG

2

)
=

O(NGR/NH + logNG), using a strategy to maximize β that targets a subtree as

starting set and uses all importations available in its root.

Since depending on value of R, 1 ≤ R ≤ NH/2, the term NGR/NH assumes

values in NG/NH ≤ NGR/NH ≤ NG/2, the inequality NGR/NH = ω(logNG)

holds for everyNH = o(NG/ logNG). In this case β = O(NGR/NH) and Equation

2.5 becomes

S ≥ min

{
NGR

32NH
NGR
NH

f(R)
,
NG

192R

}
= min

{
1

32f(R)
,
NG

192R

}
,

and since in a connected network f(R) = Ω(1), we obtain

S = Ω(1),

which is trivial. In this case the lower bound for the emulation of a tree by

a k-dimensional array obtained by Theorem 1 is tight, while that obtained by

Theorem 3 is not, so the following proposition is true.

Proposition 5. Lower bounds obtained by Theorem 1 can be tighter than lower

bounds obtained by Theorem 3.

Now, we consider which elements make lower bounds of Theorem 3 weak.

31

Chapter 2. Lower bounds for generic emulations

Example 1. Consider the emulation of a
√
N ×

√
N 2-dimensional mesh G

by an N -nodes linear array. Theorem 3 gives S = Ω(N1/4) (obtained when

R = Θ(N3/4)), while the strict lower bound is N = Ω(N1/2), by Theorem 4.

A (R, f(R))-decomposition of a linear array has f(R) = O(1),∀R. If we con-

N3/8

N3/8

Figure 2.7: Consider an N -nodes “linear array of meshes” network: it consists of
N1/4 meshes N3/8×N3/8 disposed as in picture. When R = N3/4, the (R, f(R))-
decomposition of this network and that of a N -nodes linear array are the same.

sider the N -nodes network A in Figure 2.7, it has the same parameters of the

(N3/4, f(N3/4))-decomposition of a linear array. Unlike linear array, it is easy to

match the lower bound of Theorem 3 emulating G by means of A. In fact, we

need just to consider one region, which has N3/4 nodes, and perform the well-

known work-preserving emulation of an N -nodes mesh on a N3/4-nodes mesh.

Example 2. Now consider network B in Figure 2.8, when R = N1/4 its regions

are N1/4-nodes linear arrays and f(R) = O(1), so its (R, f(R))-decomposition is

similar to that of an N3/4-nodes linear array, since their regions are linear arrays

and have O(1) edges with the rest of the network. Network B, unlike linear

array, can emulate G in O(N1/4): partition the mesh in sub-meshes 4
√
N × 4

√
N ,

labeled S0, S1, . . . in row-major fashion, and then embed each of them in the

corresponding linear array of network B, one column of the sub-mesh per node

of the linear array. In this way we have an overall embedding with l = c = d =

O(4
√
N) which implies an emulation slowdown O(4

√
N).

Example 3. Consider a N -nodes complete binary tree: when R = O(
√
N), we

can partition it in O(
√
N) regions, one composed by the first (logN)/2 levels

of the tree and the others composed by the remaining sub-trees. In this case

f(R) = O(R), but only one region has this communication strength, while others

just have one edge with the rest of the network. A network of O(
√
N) regions

32

2.3. Congestion-based lower bound

R=

0 ...

0

...

...

...

...

...

...

...

...

...

...

N1/4-1
N1/4-1

N1/4

N1/4

Figure 2.8: Consider an N3/4-nodes “mesh of linear arrays” network: it consists
of a N1/4 × N1/4 mesh of N1/4-nodes arrays. disposed as in picture. When
R = N1/4, f(R) = O(1).

consisting in complete graphs of O(
√
N)-nodes, one communicating with each

other, has the same (R, f(R))-decomposition, while by Theorem 1 we can prove

that a binary tree can emulate it with S = Ω(logN) (just consider τG = 3 and

τH = logN − 1).

These examples show how the (R, f(R))-decomposition does not describe

adequately a network. In particular, it models weakly the following features:

Internal structure of a region. The internal structure of a region is summa-

rized by its number of nodes R, without other elements to model the in-

terconnection of these nodes. The part of lower bound provided by the

computational load of the region, considers (asymptotically) just the triv-

ial ratio NG/R, modeling the region as a Θ(R)-nodes PRAM, with an

all-to-all interconnection among their nodes, while it could be as weak as

a linear array, making the lower bound not strict (see Example 1).

Connection among regions Interconnections among regions are represented

by the maximum number of edges f(R) that there can be between a re-

gion and the rest of the network. This element hides the connection pat-

tern, in fact there are several possibility, from a region communicating

with f(R) edges just with another region or regions communicating with

Θ(f(R)R/NH) edges with any region, with strong implications on the di-

ameter of the network. (see Example 2)

33

Chapter 2. Lower bounds for generic emulations

Moreover it is also possible that only one region has f(R) edges with the

rest of the network, while other regions could have only as few as one

edge (Example 3), so that f(R)NH/R is an overestimation of the real

communication power of H.

Imported data In the part of lower bound derived by argumentations about

the importation of predecessors, each region which computes s ≥ p/2 nodes

imports at least s/2 nodes or a region imports Ω(NG) nodes, both in a

time O(β) (note that in several networks β = Ω(diamG) because of term

zG(NG/4, 0, 3NG/4) in its definition). In several emulations, the estimate

of Ω(NG) nodes for total communication traffic which H has to effort for

the emulation of β step of G is weak, since each region has to accomplish

it, with an overall bandwidth f(R) in place of NHf(R)/R.

When we are studying a lower bound with Theorem 3, to minimize S in

Equation 2.5 we consider R∗ = {R : R2/f(R) = NHβ}, obtaining a particular

S∗. A sufficient conditions for S∗ to be tight is the existence of a work-preserving

embedding of G in a region. In fact if this is true, the Ω(NG/R) term in the

lower bound matches with the O(NG/R) slowdown due to the work-preserving

embedding. More in general, it suffices that the region can perform a general

work-preserving emulation of G, also if this could be harder to find than an

embedding.

2.4 Bandwidth-based lower bound

2.4.1 State of the art

The last technique which we are going to analyze is from [KR94]. Similarly to

[KLM+97], [KR94] studies work-preserving emulations of fixed-connected net-

works, but it uses as main argument the relative communication power.

The paper considers bottleneck-free networks and quasi-symmetric traffic dis-

tributions, stating a lower bound corresponding to the ratio between bandwidths

of the considered networks. We recall fundamental concepts to state the main

result of [KR94], referring to the paper for the complete proof.

34

2.4. Bandwidth-based lower bound

Definition 5. The communication bandwidth β(M) of a machine M corresponds

to the already introduced bisection bandwidth of M .

Definition 6. In a n-nodes machine M , a symmetric traffic distribution is a

pattern of traffic where all source-destination message pairs have the same prob-

ability to occur.

Definition 7. In a n-nodes machine M , a quasi-symmetric traffic distribution

is a pattern of traffic where Ω(n2) of n(n − 1) source-destination message pairs

have the same probability to occur, while the other pairs have zero probability.

Definition 8. A machine H is bottleneck-free if the average message delivery

rate under any quasi-symmetric distribution on m ≤ |H| is at most a constant

factor higher than the message delivery rate under the symmetric distribution

(corresponding to β(H)).

The theorem consider bottleneck-free networks, which means networks where

the communication power is “balanced”; in fact every sufficiently large subregion

of the network is not fast more than a constant factor than the overall network

in the exchange of an uniform communication pattern. For example a network

obtained joining a (N/2)-nodes 2-dimensional mesh with a (N/2)-nodes linear

array is not bottleneck-free (enabling only the mesh part, the networks has an

average delivery rate of Θ(
√
N) nodes per step, while the overall network is

dominated by the linear array bottleneck Θ(1)). The bandwidth of the host

network H is viewed as a form of communication capability which during an

emulation has to execute the communication complexity of the emulated network

G.

Moreover the considered emulation of a network G has a minimum duration

λ(G), required to avoid strategies which through recomputation and local com-

putation of predecessors have few or no communication for “short” emulations.

Parameter λ(G) depends on bandwidth of G. Note that classical networks (k-

arrays, trees, butterflies, etc.) are bottleneck-free, and they have λ proportional

to the diameter.

Theorem 4 (The Efficient Emulation Theorem). Any efficient emulation of a

fixed degree guest graph G on host H has slowdown S ≥ Ω
(
β(G)
β(H)

)
if: 1) the guest

time τ satisfies τ ≥ (1 + Θ(1))λ(G), and 2) H is bottleneck-free.

35

Chapter 2. Lower bounds for generic emulations

Note that this work defines efficient emulation an emulation which produces a

DAG DH with at most a constant factor more nodes than the DAG DG produced

by G. In other words, the work WH performed by H is at most a constant number

of times greater than the work WG of G, WH = O(WG). This means that the

result is specific for computations where each node of G is in average recomputed

at most a constant number of time.

In [KR94] the theorem is used to study maximum sizes of networks to per-

form work-preserving emulation of other networks, matching the same bounds of

[KLM+97], except for expander networks which can not be managed by the the-

orem, while working with parameters much more intuitive than those of Theorem

3.

2.4.2 Analysis and Critique

We want to explore the tightness of the bound provided by the theorem for the

emulation between two network.

First of all, note that emulations where network G has the bandwidth lower

than bandwidth of H, S = Ω(1) and the bound is probably going to be loose.

For example in the emulation of a n-nodes binary tree G (which has β(G) = 1)

on a k-array H, S = Ω(1), while Theorem 1 gives a tight bound (see Corollary

1). This example proves the following proposition.

Proposition 6. Lower bounds obtained by Theorem 4 are not necessarily tight:

lower bounds obtainend by Theorem 1 can be tighter than lower bounds obtained

by Theorem 4.

Now consider Theorem 3; unlike Theorem 4, it manages bottleneck-free host

networks as the “linear array of meshes” of Figure 2.7 in Example 1 for which

Theorem 3 gives a strict bound; on the other hand we can show that in some cases

Theorem 4 can be tighter than the first two Theorems, at least in its domain of

validity.

Proposition 7. When considering computations where partial results are in av-

erage recomputed a constant number of times, lower bounds obtained by Theorem

4 can be tighter than lower bounds obtained by Theorems 1 and 3.

36

2.4. Bandwidth-based lower bound

Proof. Let G be a k-array and H a j-array, k > j, since β(G) = Θ(N (k−1)/k) and

β(H) = Θ(N (j−1)/j), Theorem 4 gives

S = Ω

N k−1
k

G

N
j−1
j

H

which is tight and can be matched by an embedding (see Proposition 10). We

have already see above that Theorems 1 and 3 provide loose lower bounds in this

case.

This result matches the upper bound given by Proposition 10, but it is not

valid when recomputation is allowed to be more than constant.

Finally we prove that for some network pairs the best lower bound among

those provided by Theorems 1, 3 and 4 is not necessarily strict.

Proposition 8. The tightest lower bound among those provided by Theorems 1,

3 and 4 for a network pairs G and H is not necessarily tight.

Proof. Consider as guest network G a N -nodes 3-dimensional array and as host

network H a N -nodes network consisting in a N/2-nodes linear array joined to

a N/2-nodes two-dimensional mesh. Theorem 4 can not handle H since it is

not bottleneck-free (enabling only source-destination pairs of the mesh part we

have an expected average delivery rate asymptotically greater than when all H

source-destination pairs are enabled). Theorem 1 gives a lower bound similar

to the one it provides for the case G 3-dimensional array and H 2-dimesional

array, while Theorem 3 gives a lower bound similar to the case G 3-dimensional

array and H linear array. Both the lower bounds are weak, since it is possible to

obtain tighter lower bounds (e.g., Section 3.3 gives S = Ω(N
2/3
G /(N

1/2
H logNG))

if we consider only the 2-dimensional array part of H and this bound holds also

considering the whole network).

2.4.3 Summary

We recalled three theorems from [KLM+97, KR94], which provide the three main

lower bound techniques for network emulations when recomputation is allowed.

37

Chapter 2. Lower bounds for generic emulations

We proved that they are not mutually-inclusive, in the sense that we can exhibit

pairs of networks where each technique gives a better bound than the others.

Hypotheses and domains of the Theorems 1 and 3 are the most general possi-

ble, while Theorem 4 is valid when H is bottleneck-free and the emulation work

WH is proportional to O(WG), so it does not really answer to the question stated

at the beginning of the Chapter.

The union of results obtained by all the theorems gives tight lower bounds

for most of the “classical” networks (see Table 2.1) but also if we consider them

together, we will not obtain strict bounds for any network pairs (Proposition 8).

In next chapter we present a new technique which considers an arbitrary level

of recomputation and it can exhibit an almost strict lower bound for emulations

among multidimensional arrays in every case.

2.5 Relation between parallel computing and

hierarchical memories

We already hint at similarity between efficiency in memory hierarchies and in par-

allel computating. Modern efficient memory architectures and algorithms exploit

mainly two features, locality and concurrency of memory accesses. Locality orga-

nizes computation to re-use data once it is moved in locations near the processor,

in this way the first (possibly) slow access to a certain operand is amortize by the

(possibly) subsequent fast accesses. Concurrency allows latency hiding through

the overlap of accesses. Locality is extensively discussed and formalized in the

Hierarchical Memory Model [AACS87], in the Block Transfer Memory [ACS87],

which partially deals also with concurrency, and in the Two-Levels Disk Model

[AV88, V98]; as for concurrency, the Pipelined Memory Model [LP93] is a good

introductory study. Recently these two features have been considered jointly in

[BEP09], which introduces a pipelined and hierarchical memory design, comply-

ing with physical constraints. The pipelined and hierarchical memory jointly

with the SPE processor is able to match RAM complexity (O(1) slowdown) on

wide classes of programs, exploiting both concurrency and locality.

Concurrency and locality were already been extensively studied in parallel

38

2.5. Parallel computing vs hierarchical memories

C
as

e
L

ow
er

b
ou

n
d

T
1

L
ow

er
b

o
u

n
d

T
2

L
ow

er
b

o
u

n
d

T
3a

B
es

t
k
n

ow
n

u
p

p
er

b
o
u

n
d

G
=

k
-a

rr
ay

H
=

j−
ar

ra
y

S
=

 Ω
(N

G
/N

H
)

N
H
≤

N
j
(
k
+

1
)

k
(
j
+

1
)

G

Ω

(N
k
−

j
k
(
j
+

1
)

G

) N
H

>
N

j
(
k
+

1
)

k
(
j
+

1
)

G

S
=

Ω

N

G
(N

1 k G
N

H

)j j
+

1

S

=
Ω

(N
k
−

1
k

G

N
j
−

1
j

H

) b
E

m
b

ed
d

in
g
S

=
O

(N
k
−

1
k

G

N
j
−

1
j

H

)
P

ro
p

o
si

ti
o
n

1
0

G
=

b
in

ar
y

tr
ee

H
=

k
−

ar
ra

y
S

=
Ω
(k

+
1√

N
G

lo
g
k
N

G

)
S

=
Ω

(1
)

S
=

Ω
(1

)
S

=
O
(k

+
1√

N
G

lo
g
k
N

G

)
[H

K
M

U
9
1
]

G
=

b
u

tt
er

fl
y

H
=

k
−

ar
ra

y
S

=
Ω
(k

+
1√

N
G

lo
g
k
N

G

)
S

=
Ω

(
N

G

(N
H

lo
g
N

G
)

k
k
+

1

)
S

=
Ω

(
N

G

N
k
−

1
k

H
lo
g
N

G

)

T
ab

le
2.

1:
S
u
m

m
ar

y
co

m
p
ar

is
on

am
on

g
co

n
si

d
er

ed
te

ch
n
iq

u
es

:
lo

w
er

b
ou

n
d
s

ar
e

p
ro

v
id

ed
b
y

T
h
eo

re
m

1
(T

1)
,

T
h
eo

re
m

3
(T

2)
an

d
T

h
eo

re
m

4
(T

3)
.

N
ot

re
p

or
te

d
so

m
e

im
p

or
ta

n
t

em
u
la

ti
on

s
as
k
-a

rr
ay

on
b
u
tt

er
fl
y

an
d

tr
ee

on
b
u
tt

er
fl
y,

si
n
ce

th
ey

h
av

e
a
O

(1
)

em
u
la

ti
on

(s
ee

[K
L

M
+

97
,

G
H

91
])

an
d

al
l

lo
w

er
b

ou
n
d
s

ar
e

ju
st

Ω
(1

).

a
N

ot
va

li
d

if
av

er
ag

e
re

co
m

p
u

ta
ti

on
is

m
or

e
th

e
co

n
st

a
n
t

b
T

h
e

fa
ct

th
at

th
is

lo
w

er
b

ou
n

d
m

at
ch

es
th

e
u

p
p

er
b

o
u

n
d

m
ea

n
s

th
a
t

re
co

m
p

u
ta

ti
o
n

d
o
es

n
o
t

im
p

ro
ve

p
er

fo
rm

a
n

ce
in

th
is

ca
se

.

39

Chapter 2. Lower bounds for generic emulations

computing, since the former allows independent executions among the proces-

sors and the latter limits communication among these. This fact is pointed

out by several works which show how to effectively simulate parallel models in

memory models, partially carrying the knowledge of parallel computing in this

field. For example, in [CGG+95] and [LP93], general Parallel Random Access

Machine (PRAM, the ideal parallel machine model) simulations are proposed

respectively on DM and PM, deriving new upper bounds for some problems on

these memory models exploiting previously known parallel results. In [FPP06]

and [PPS06] is shown how to turn the submachine locality of the Decomposable

Bulk Synchronous Parallel model (D-BSP, a parallel model where also communi-

cation and synchronization costs are considered) in locality of references for the

HMM and in cache-oblivious algorithms in the Ideal Cache Model. Finally in

[MZ12] algorithms for Work-Time Model [VW85] are adapted to the pipelined

hierarchical memory model; in particular when work-optimal parallel algorithms

are involved, the obtained pipelined hierarchical memory algorithm has the same

performance of the ideal RAM algorithm.

All these works are one way: the parallel algorithmic knowledge is used to

have an insight in hierarchical memory setup. In this section, after recalling

the red-blue pebble game of Hong and Kung proposed in [HK81], a general

method to model and obtain lower bounds for I/O accesses during the execution

of algorithms, we show why general results for hierarchical memories do not give

insights in parallel contexts.

2.5.1 State of the art

The red-blue pebbles game is a suitable way to represent a computation on a

machine with a certain amount of fast memory. It is introduced in [HK81],

together with the results recalled in this subsection.

The game is played on a DAG F with S red pebbles, representing fast memory

cells and an infinite number of blue pebbles, representing the slow memory. At

the beginning of the game, the inputs have a blue pebbles, while the other vertices

have no pebbles. The game proceeds by rounds, in each of which we can perform

one of the following moves:

40

2.5. Parallel computing vs hierarchical memories

R1. a red pebble can be placed in any vertex with a blue pebble; this move

corresponds to copy a cell from slow memory to fast memory (input oper-

ation)

R2. a blue pebble can be placed in any vertex with a red pebble; this move

corresponds to copy a cell from fast memory to slow memory (output op-

eration)

R3. a red pebble can be placed in a vertex whose all immediate predecessors

have a red pebble; this move corresponds to the computation of a vertex

(compute operation)

R4. a red or blue pebble can be removed from any vertex; this move corresponds

to the eviction of a vertex from fast/slow memory (delete operation)

The game terminates when all outputs have a blue pebble; we are interested in

the game which minimize the number of input and output operations Q:

Q = minimum number of moves R1 and R2

required by any computation

In the paper is also introduced the S-partitioning of a DAG and relationship

between red-blue games and S-partitioning is proved.

Definition 9. Given a DAG F = (V,E), the family of subsets {V1, . . . , Vh} of

V is a S-partition of F if

P1. {V1, . . . , Vh} is a partition of V , or Vi are disjoint and ∪hi=1Vi = V .

P2. For each Vi, the exists a dominator set Di that contains at most S vertices.

A dominator set for Vi is a set of vertices in V such that every path from an

input of F to a vertex of Vi contains some vertex in the set, which means

that with vertices in Di we can compute the whole Vi without further I/O

operations.

P3. For each Vi, the minimum set Mi has at most S vertices.

41

Chapter 2. Lower bounds for generic emulations

P4. The is no cyclic dependence among vertex sets in {V1, . . . , Vh}, where Vi

depends on Vj if there is an edge in E from a vertex of Vj to a vertex of Vi.

Theorem 5. Let F be a DAG; any complete red-blue pebble game using at most

S red pebbles is associated with a 2S-partition of F such that

S · h ≥ q ≥ S · (h− 1),

where q is the I/O time required by the complete computation and h is the number

of vertex sets in the 2S-partition.

The relation formalized in Theorem 5 is important since it leads to the fol-

lowing lower bound:

Proposition 9. For any DAG F , the minimum I/O time satisfies

Q ≥ S · (P (2S)− 1),

where P (S) is the minimum number of sets that any S-partition of F must have.

This proposition is thought to be the most general framework for I/O com-

plexity lower bounds (it allows for recomputation of vertices of F) and it is the

starting point of several further works (e.g. [S95, EPR+13]).

In [HK81], similarly to S-partition also S-dominator partition of F is defined,

as a family of subset {V1, . . . , Vh} of V which satisfy properties P1, P2 and

P4, while property P3 is not necessarily fulfilled. Since the minimum number

of vertex sets of a S-dominator partition PD(S) is smaller or equal to P (S),

Proposition 9 is valid also for this kind of partitioning.

This result is used to prove the asymptotically tight lower bound for I/O

access in the FFT algorithm.

Theorem 6. The minimum number of I/O accesses during the computation of

a n-points FFT using S fast memory cells is

Q = Ω

(
n log n

logS

)
.

Another useful definition introduced in the paper is the information speed.

42

2.5. Parallel computing vs hierarchical memories

Definition 10. Consider a DAG F where all inputs can reach all outputs through

vertex-disjoint paths, each of these paths is called line. The information speed

function for F is Ω(f(d)) if for each pair (u, v) of nodes of F on the same line

and with a distance of at least d edges one from each other, there are at least

f(d) vertices in F satisfying the properties:

1. vertices belong to different lines

2. each vertex belong to a path from u to v.

We can reverse the last definition, stating that if a dominator has S nodes,

it can involve at most S lines, and we can not compute more than O(f−1(S))

nodes for each line. The maximum number of vertices in a set computable

starting from a dominator set of S vertices is at most O(S · f−1(S)), so there are

at least Ω(L/S · f−1(S)) sets, each requiring S I/O accesses. This leads to the

following lower bound for I/O complexity based on information speed.

Theorem 7. In any DAG F where all inputs can reach all outputs through

vertex-disjoint paths, L is the number of vertices belonging to lines and the in-

formation speed is Ω(f(d)), with f a monotone increasing, invertible function

then

Q = Ω

(
L

f−1(S)

)
.

2.5.2 Relations with parallel computing

Thanks to the relation with the red-blue pebble game, a S-partition of F can be

thought as a computation, topologically ordered, of sets Vi obtained by a repeti-

tion of the two steps: load in fast memory of the dominator set Di, computation

in fast memory of Vi (and possibly recomputation of some vertices of already

computed Vj). If we consider nodes S(Di) which can be computed starting from

Di, every path from nodes in S(Di) to nodes in S(Di) contains only nodes in

S(Di); we refer to this property as set convexity.

In suitable DAGs, we also know that a dominator set of S vertices can not

support a computation for more that f−1(S) vertices in a line.

If we consider similar approaches in parallel computing, our task consist in

mapping subsets of the S-partitioning of the DAG F in nodes or subregions of

43

Chapter 2. Lower bounds for generic emulations

Figure 2.9: DAG produced by the execution of a ring, where nodes at a certain
time step i are deployed in column (not represented wraparound edges among
bottom nodes and top nodes). Subsets 1, 2 and 3 (respectively in dark, mid-
dle and light gray) are part of a S-partitioning where sets are convex but not
topologically sortable. Dark nodes in a subset represent its dominator set.

a parallel network G. Each node/region imports dominator sets of the subsets

which it has to compute, communicating minimum sets to other nodes/regions.

Subsets of the S-partitioning do not require properties P2 and P4, since

more processors can concurrently proceed in the computation of various S(Di),

communicating vertices of Di not yet available when computation of a subset

starts. In Figure 2.9 we can see for example the DAG F due to the execution

of a ring, which can be S-partitioned by convex sets not topologically sortable.

In fact vertices belonging to dominator sets corresponding to execution of nodes

in instants t > 0 are not available at the beginning of the computation, and

they can be loaded in advance unless we can compute them all concurrently.

The partitioning gives information about the work and the imported nodes of a

specific node or subregion of the parallel network.

Note also that without P2 and P4 the maximum size of a subset induced by

a dominator set can not be predicted by information speed theorem. Consider

for example the tree DAG case: in Hong and Kung partitioning each subset has

a O(S logS) upperbound, while the maximum size without P2 and P4 is Θ(S2),

44

2.5. Parallel computing vs hierarchical memories

obtained selecting as dominator set a subtree of S/2 nodes at a specific time

step of the DAG, jointly with the nodes corresponding to the evaluation of the

root of the considered subtree in the following S/2 time step (this dominator set

provides a subset of at least S2/4 nodes).

45

Chapter 2. Lower bounds for generic emulations

46

Chapter 3

Lower bounds for specific

networks

In the previous chapter we saw that in some cases state-of-the-art theorems

are not tight because of their generality or are tight only in specific domains.

In this chapter we present a new technique which is particularly effective in

array emulations, exhibiting an almost tight lower bound for arbitrary levels of

recomputation.

3.1 Lower bounds for multidimensional arrays

emulations

Multidimensional arrays are well-known networks, often the first to be introduced

in Parallel Computing courses. Nevertheless we still lack tight lower bounds for

the slowdown of emulation of a multidimensional array emulated by another

one with a smaller number of dimensions when the emulation has no particular

constraints.

We recall that nodes of a j-dimensional array G can be considered as j-uple

of coordinates in a j dimensional space: (i1, i2, . . . , ij−1, ij) : 0 ≤ in < N1/j, 1 ≤
n ≤ j, where u = (i1, i2, . . . , ij−1, ij) has edges to all nodes which have exactly

one coordinate that differs of one unit from the equivalent of u.

A M -nodes k-dimensional array can emulate a N -nodes k-dimensional array,

47

Chapter 3. Lower bounds for specific networks

M ≤ N , with slowdown O(N/M) as also a M -nodes j-dimensional array H

can emulate a N -nodes k-dimensional array G, k > j, M ≤ N
j
k [FF82]. By

[KLM+97], if M > N there are no work-preserving emulations between G and H,

but the bounds provided in the paper do not match the best known emulations,

namely embeddings. Similarly [KR94] matches the upper bound only if we limit

recomputation to a constant rate.

In this chapter we analyze more specifically the range N
j
k
G ≤ NH ≤ NG, pro-

viding strict bounds under several hypothesis. First of all, we prove that a lower

bound for any embedding is determined by the ratio of bisection bandwidths of

G and H, and this lower bound can be matched.

Theorem 8. Any embedding of an NG-nodes k-array G in an NH-nodes j-array

H, NH = N
(1
k

+h)j

G , 0 ≤ h ≤ k−j
kj

, k > j, has slowdown

S = Ω

N k−1
k

G

N
j−1
j

H

 = Ω

 N
k−j
k

G

N
h(j−1)
G

 .

Proof. A certain embedding e of G in H is given. Network H can be split in two

sets a and b, in the following way. Set a contains (0, 0, . . . , 0), so that it emulates

at least a certain number of nodes of G, mapped in (0, 0, . . . , 0). We continue

to add nodes to a in lexicographical order as long as a emulates at least NG/2

distinct nodes of G.

The bisection bandwidth of G is Ω
(
N

k−1
k

G

)
, while the number of edges be-

tween a and b is O

(
N

j−1
j

H

)
, so that in embedding e at least Ω

(
N

k−1
k

G

)
edges of

G pass through O

(
N

j−1
j

H

)
edges of H giving a congestion

c = Ω

(
N

(k−1)/k
G

N
(j−1)/j
H

)
= Ω

 N
k−j
k

G

N
h(j−1)
G

 .

Proposition 10. The following embedding of a NG-nodes k-array G in a NH-

48

3.1. Lower bounds for multidimensional arrays emulations

nodes j-array H, NH = N
(1
k

+h)j

G , 0 ≤ h ≤ k−j
kj

, k > j, has

S = O

N k−1
k

G

N
j−1
j

H

 = O

 N
k−j
k

G

N
h(j−1)
G

 . (3.1)

Proof. The proof is by construction: first we prove the statement when k ≤ 2j

and then we exploit it in the general case.

Base Case Let j < k ≤ 2j. Consider F 0
G, the j-dimensional surface of G

defined as {(x1, . . . , xk) : 0 ≤ xi <
k
√
NG ∀1 ≤ i ≤ j, xi = 0 ∀i > j}. Each

point (a1, . . . , aj, 0, . . . 0) of this surface has an associated (k−j)-array (k−j ≤ j)

A(a1,...,aj) = {(a1, . . . , aj, xj+1, . . . , xk) : 0 ≤ xi <
k
√
NG ∀i > j}.

Consider a partitioning of H in N
j
k
G regions, each of which is a Nhj

G -nodes

j-arrays. We label each region as a node of F 0
G, in particular region R(a1,...,aj) =

{(x1, . . . , xj) ∈ VH : aiN
h
G ≤ xi < (ai + 1)Nh

G} is in charge for the execution

of A(a1,...,aj) and it can do it with an embedding with l = N
k−j
k

G /(Nh
G)j, d = 1

and c = Θ(N
k−j−1

k
G /N

h(j−1)
G). This case is an embedding of a (k − j)-array in a

j-array, where by hypothesis k− j ≤ j; the same embedding is repeated in every

R(a1,...,aj).

This mapping of As in Rs determines a mapping of each processor of G in

H, moreover edges among near A(a1,...,aj) in G can be embedded in H with d = 1

and c = Θ(N
k−j
k

G /N
h(j−1)
G). The overall embedding has l = N

(k−j)/k
G /(Nh

G)j, d =

1, c = Θ(N
k−j
k

G /(Nh)j−1), with consequent slowdown S = Θ(N
k−j
k

G /(Nh)j−1),

which respects Equation 3.1.

General Case We exploit the fact that a NH-nodes j-array H can emulate a

NG-nodes x-array G, x < k, by embedding with S = O

(
N

x−1
x

G

N
j−1
j

)
to prove the

theorem.

Consider again surface F 0
G of G, its associated (k − j)-dimensional array

A(a1,...,aj) and a partitioning of H in N
j
k
G regions, each of which is a Nh

G-nodes

j-arrays R(a1,...,aj) = {(x1, . . . , xj) ∈ VH : aiN
h
G ≤ xi < (ai + 1)Nh

G} in charge

for the execution of A(a1,...,aj). Since A(a1,...,aj) has k − j < k dimensions, by

49

Chapter 3. Lower bounds for specific networks

the base case R(a1,...,aj) can perform the task with an embedding with slowdown

S = O(N
k−j
k

G /(Nh)j−1). In each region we use the same embedding, so that we

can merge them for the overall embedding of G in H; communication among

adjacent A(a1,...,aj) can be performed in systolic way with consequent d = 1 and

c = Θ(N
k−j
k

G /Nh(j−1)).

These bounds show that emulation time among arrays is determined by ratio

of bisection bandwidths when we are in the range N
j
k
G ≤ NH ≤ NG, while for

NH < N
j
k
G the bound is determined by average load. The results hold only for

embeddings, and they do not consider more general emulations, for examples

those in which a node of G is not always computed from the same nodes of H.

In previous chapter, Theorem 4 from [KR94] shows that if a constant amount

of recomputation is allowed (each node of G is computed at most a constant

number of times by nodes of H) the same bound is still valid. Its proof is no

more valid if recomputation is more than constant; in the following we provide

an alternative proof which allows to understand why recomputing ω(1) times

nodes of DAG of G could improve the speed of the emulation.

Theorem 9. Any emulation of TG ≥ diamG steps of an NG-nodes k-array G

in an NH-nodes j-array H, N
j
k
G ≤ NH ≤ NG, k > j, where any node of G is

computed at most a constant number of times by nodes of H has

S = Ω

N k−1
k

G

N
j−1
j

H

 . (3.2)

Proof. Consider the DAG DAGG of G divided in blocks of diamG steps. Let

focus on a specific block B starting at step t. In a way similar to Theorem 8, we

partition H in n regions ρ0, · · · , ρn−1 where each region computes about NG/2

distinct nodes of time step t of G and has a bandwidth of O(N
j−1
j

H). Regions

have ω(N
j−1
j

H) nodes, otherwise the load during B would imply the stated bound:

a region of N
j−1
j

H nodes requires NG/2

N
j−1
j

H

steps for the computation of nodes of step

t of G (excluding predecessors), so that average slowdown in diamG steps is the

one in Equation 3.2. Since recomputation is constant, n is constant. It exists

50

3.1. Lower bounds for multidimensional arrays emulations

at least a region ρ that computes also Ω(NG) nodes of time step t + diamG,

otherwise the sum of nodes of G computed by H for time step t+ diamG would

be less then NG.

We call a line of B the set of nodes {(u, τ) : u ∈ VG, t ≤ τ ≤ t + diamG},
while (u, t) and (u, t + diamG) are the extreme nodes for a line. Consider the

Ω(NG) lines whose ρ computes the extreme node (u, t+ diamG), they are of two

kinds: lines entirely computed by ρ and lines for which ρ has to import at least

a node. If the latter are Ω(NG) a trivial lower bound

S =
c

bTB
= Ω

 NG

N
j−1
j

H O(N
1/k
G)

 = Ω

N k−1
k

G

N
j−1
j

H

due to communication is valid for block B (c is the imported data, b the band-

width of ρ and TB the duration of B). Otherwise the same bound holds and

the Ω(NG) data is given by disjoint paths from extreme nodes (u, t + diamG)

computed by ρ and extreme nodes (u, t) not computed by ρ.

If there are several blocks, B0, · · · , Bx−1, we repeat this reasoning on the

even ones. Since no node of Bl+2 can be computed until all nodes of Bl have

been computed at least once, lower bounds of even blocks can be sum together,

proving the theorem statement.

If the initial redundancy of nodes were ω(1), maybe we could exploit it to save

communication. Regions could import o(N) data per block, keeping at least a

copy of the state of each processor in the network and refreshing the redundancy

only periodically. We are only speculating on the effectiveness of this strategy,

to highlight that it is not obvious that the best possible emulations suffice of

constant recomputation.

Lower bounds provided by Theorems 1 and 3 from [KLM+97] are valid for

any emulation, but they have a polynomial gap from the upper bound of the

embedding. In particular S = Ω
(
N

k−j
k(j+1)

)
when NH = NG = N ; a complete

graphical comparison among lower bounds is provided in Figure 2.3.

At this point it is not clear if recomputation can generate emulation strategies

faster than Proposition 10 or if the known lower bounds are not strict. Following

sections show a lower bound which differs only of a logarithmic factor in the

51

Chapter 3. Lower bounds for specific networks

denominator from the upper bound determined by embedding emulation.

3.2 Mesh over linear array emulation

In this section we are going to derive a lower bound for the emulation of an

N -nodes two dimensional mesh G on an N -nodes linear array H valid for any

rate of recomputation. Theorems 1 and 3 provide S = Ω(N1/4), which, as we

will see, is not tight; Theorem 4 does not works under these conditions.

Consider G executing for TG = diamG
logN

2
time steps. During this execution,

G performs NTG = Θ(N
√
N logN) work. Let u0, . . . , uN−1 be the nodes of G

labeled in row major order and (ui, tj), 0 ≤ i < N, 0 ≤ j < TG, the nodes of

the DAG DG generated by the execution of G during the considered interval.

As in Chapter 2, let NG(u, i) be the nodes of G whose shortest path from u

has length i, NG(u, i) = {v ∈ VG : dist(v, u) = i}. Then in DG, (u, t − 1) and

(v, t − 1),∀v ∈ N1(u, 1) are the only inputs of (u, t), and (u, t) is an input for

(u, t+ 1) and (v, t+ 1), ∀v ∈ N1(u, 1).

At the beginning of the emulation, there is at least a copy of each (ui, 0)

spreads in H, possibly also every node of H holds all (ui, 0). During the emu-

lation, H produces every node of DG, and the emulation terminates when every

(ui, TG) has been produced at least once. Nodes (u, t) can be computed more

than once (the emulation allows recomputation) in different nodes of H or in the

same node.

The computation is featured by a certain maximum number c of messages

that pass through an edge during the emulation. If c ≥ N/4, the following trivial

lower bound holds:

S ≥ c

TG
=

N/4

diamG
logN

2

=
N

2(2
√
N − 1) logN

= Ω

(√
N

logN

)
.

Now consider c < N/4 and H divided in two subregions, ρ1,0 and ρ1,1, with

the same number of nodes (or at most with a difference of a node). The first

evaluation of at least N/2 outputs of DG occurs in ρ1,0 or in ρ1,1. Let this

subregion be ρ1,0; because of the communication limit only set c1, |c1| ≤ c, of

predecessors can be imported and great part of the last diamG steps of the DAG

52

3.2. Mesh over linear array emulation

diam
G

diam
G

DAG of G

N

H

ρ
1,0

diam
G ...

ρ
1,1

Figure 3.1: Sketches of the DAG of G and of the linear array H. DAG of G is
a 2-dimensional version of DAG in Figure 2.9, where each section contains all
nodes of G at a certain time of the computation. In gray the minimum volume
of the DAG of G computed by ρ1,0 if no communication is allowed.

must be computed by ρ1,0; in particular, at least (N − c) nodes (u, TG− diamG).

In fact, without communication ρ1,0 should compute all nodes {(u, t) : t ∈
[TG−

√
N, TG− diamG]} and with c1 additional communication it can avoid the

computation of at most |c1| nodes of a certain time step t preceding TG −
√
N .

We can repeat this reasoning halving ρ1,0 in ρ2,0 and ρ2,1, where at least

one between them, without loss of generality ρ2,0, computes the first evaluation

(respect to subregion ρ1,0) of at least (N − c)/2 nodes of TG−diamG. Due to the

communication limit, at least N − 2c nodes of TG − 2diamG must be computed

in ρ2,0 (we don’t know when exactly c1 is imported, maybe it is imported with

the set c2 imported by ρ2,0 in the computation of this block).

Again, ρ2,0 can be split in ρ3,0 and ρ3,1, one of them must compute (N−2c)/2

nodes of TG − 2diamG and at least N − 2c nodes of TG − 3diamG (a region can

import at most 2c nodes since it has only 2 edges communication with the rest

of the network).

Repeating (logN)/2 this step, we eventually consider a
√
N -nodes region ρ

which must compute (N − 2c)/2 = N
4

nodes of t = diamG. Having 2c = N/2

nodes imported during [0, diamG], ρ performs at least W = Θ(N
√
N) during

the TG = diamG logN step-long emulation. The reasoning highlights a work

53

Chapter 3. Lower bounds for specific networks

proportional to a block executed by a small subregion during the emulation:

S =
W

|ρ|TG
=

Ω(N
√
N)√

N(
√
N logN)

= Ω

(√
N

logN

)
.

This reasoning proves the following theorem.

Theorem 10. Let G be a two dimensional mesh of N nodes and H be a linear

array of N nodes. Then any emulation of TG ≥ diamG
logN

2
steps of G by H has

slowdown S = Ω(
√
N/ logN).

For computations of G longer than diamG
logN

2
steps, we just apply the theo-

rem to blocks of diamG
logN

2
steps and sum the lower bounds obtained, similarly

to Theorem 9.

Note that Θ(logN) halving of H are needed to reach a region ρ polynomially

smaller than the whole H. If the theorem would consider x = o(logN) block of

diamG steps, we would have a final ρ size N/2x > N1−ε ∀ε > 0, while the work

executed by ρ would remain the same (Θ(N
√
N)).

The case with NH < NG nodes is included in the generalization presented in

next section.

3.3 Generalization to k-arrays over j-arrays

Let G = (VG, EG) be a NG-nodes k-dimensional array and H = (VH , EH) an

NH-nodes j-dimensional array, k > j,NH ≤ NG. We are going to adapt the

strategy of Section 3.2 to the emulation of G in H. Again, DG is the DAG of

the computation of G and node (u, t) of DG represents the computation of node

u of G during the time step t of the computation.

If NH ≤ N
j
k
G the emulation is work-preserving [KLM+97], so consider the

case where H has NH = N
(1
k

+h)j

G nodes, with 0 < h ≤ k−j
kj

. Note that diamH =

jN
1
k

+h

G − 1 and its bisection bandwidth is bH ∼ N
(1
k

+h)(j−1)

G . We consider TG ≥
xdiamG, so that we have a sufficient number x of blocks of diamG-steps to point

out a region of H of O(NH/2
x) nodes, by halving the size of the considered region

in each block when the communication limit is c < NG/(6j), similarly to Section

3.2.

54

3.3. Generalization to k-arrays over j-arrays

The initial splitting of H is obtained removing the central edges from the first

dimension. Let u = (i1, i2, . . . , ij), 0 ≤ in < N
1/j
H ∀1 ≤ n ≤ j, be nodes of H:

edges involved in first splitting are those between nodes (b(N1/j
H −1)/2c, i2, . . . , ij)

and (dN1/j
H /2e, i2, . . . , ij),∀in : n > 1. Note that they are N

(j−1)/j
H and the two

regions ρ1,0 and ρ1,1, obtained removing the edges, have NH/2 nodes if N
1/j
H is

even or (NH −N1/j
H)/2 and (NH +N

1/j
H)/2 if N

1/j
H is odd.

Consider the region, w.l.o.g. ρ1,0, which first computes at least NG/2 nodes

(u, TG). It must compute at least NG−c nodes (u, TG−diamG) and it can be split

again along the second dimension, removing edges between nodes (i1, b(N1/j
G −

1)/2c, i3, . . . , ij) and (i1, dN1/j
G /2e, i3, . . . , ij),∀ix : x 6= 2.

In this case only about N
j−1
j

H /2 edges are involved (depending on the size of

ρ1,0) and again we focus on subregion ρ2,0 which first computes at least (NG −
c)/2 nodes of t = TG − diamG for ρ1,0. It must compute at least NG − 2c

nodes (u, TG − 2diamG). After j similar steps, we have a region ρj,0 where all j

dimensions are about N
1/j
H /2 and we continue this process starting again from

the first dimension.

In each block the cut (edges removed) halves its size or it remains of the

same size (when from dimension j we consider again dimension 1) so that

|cut| ≤ N
(j−1)/j
H ∀blocks. Since ρs are j-arrays, at most 2j cuts participate

to the importation of predecessors. The region ρ considered after x blocks has

O(NH/2
x) nodes and it must compute (NG−c ·2j)/2 > NG/3 nodes of time step

t = diamG, while the importation is of at most c ·2j < NG/3 nodes. This implies

that ρ must compute W = Θ(NGdiamG) nodes for steps [0, diamG] during the

emulation, with a slowdown

S ≥ W

|ρ|TG
=

Θ(N (k+1)/k)

O(NH/2x)xdiamG

= Ω

(
NG2x

NHx

)
.

If more than c = NG/(6j) nodes pass through N
(j−1)/j
H edges of H during the

emulation, then

S ≥
c

|edges|

TG
=

NG/6j

N
(j−1)/j
H · xdiamG

.

55

Chapter 3. Lower bounds for specific networks

Asymptotically, the two lower bounds merge in:

S = Ω

(
min

{
NG2x

NHx
,

NG

N
(j−1)/j
H · xdiamG

})

= Ω

(
min

{
NG2x

N
(1
k

+h)j

G x
,

NG

N
(1
k

+h)(j−1)

G · xdiamG

})
. (3.3)

Working on Equation 3.3, the lower bound is minimum when 2x = Nh
G, or

x = h logNG, providing the lower bound

S = Ω

 N
k−1
k

G

N
j−1
j

H logNG

 .

This proves the following theorem who generalizes Theorem 10.

Theorem 11. Let G be a k-dimensional array of NG nodes and H be a j-

dimensional array of NH = N
(1
k

+h)j

G nodes, 0 ≤ h ≤ k−j
kj

. Then any emulation of

TG ≥ (h logNG)diamG steps of G by H has slowdown

S = Ω

 N
k−1
k

G

N
j−1
j

H logNG

 . (3.4)

By Equation 2.6, we know that Theorem 3 provides

S = Ω

 NG(
N

1
k
GNH

) j
j+1

 ,

which is asymptotic less tight than Theorem 11 ∀h > 0.

Note that in Theorem 11 for h = 0, S = Ω(N
k−j
k

G), which is strict, while

in general it differs only of a factor 1/ logNG from the upper bound given by

embedding of Proposition 10.

56

3.4. Considerations

3.4 Considerations

The general ideas behind previous theorems are the following. The first part

consider a certain amount of communication c which passes through a certain

number of edges of H, bH ; this give an easy lower bound

S ≥ c

bHTG
.

Parameter bH is an upper bound to the maximum number of edges we need to

remove in a halving step of the second part of the theorem; in suitable networks,

bH is proportional to bisection bandwidth.

The second part considers a certain number x of blocks of diamG steps in the

computation of G. During the emulation of the last block, we split H in two

subregions r1 and r2 approximatively of the same size, and we focus on the one

which computes at least half of the outputs of the block. Also importing c nodes

during this process, it must also compute great part of inputs of the block (at

least NG − c). The halving of the considered region of H keeps happening in

each block of G DAG, and the nodes which can be imported are described by a

function fG(c, x) depending on features of G, number of blocks x and the chosen

quantity c. For example in j-arrays f(x, c) = 2xc for x < j and f(x, c) = 2jc for

x ≥ j.

After x such blocks, we point out a small subregion of H (of about NH/2
x

nodes) which must compute a number of nodes proportional to a block, NGdiamG,

during the emulation:

S =
Ω(NGdiamG)
NH

2x
(xdiamG)

.

The lower bound of the theorem is given by taking the minimum of the two

quantities.

S = Ω

(
min

{
c

bHxdiamG

,
NGdiamG

NH

2x
xdiamG

})
. (3.5)

From this parametric formula, we can see that both the terms suffer of a 1/x

factor due to the number of block needed to select the subregion of H with an

high computational load. Moreover value of c depends on features of G DAG.

The first fact suggest that Theorems 10 and 11 are not necessarily tight also

57

Chapter 3. Lower bounds for specific networks

of a factor 1/x, which in particular for these theorems is 1/ logN . The second

fact suggests that the generalization of the theorem is unlikely to be tight with

networks G with low bisection bandwidth, since in this case c must be small; e.g.,

consider the case G = tree network and H = j-array, the first term of Equation

3.5 is trivially Ω(1).

Note that this theorem is quite different from Theorem 4 which provides a

similar bound when recomputation is at most constant. Our theorem makes a

trade-off between communication and computation: the less a region can import

the more predecessors it will have to compute.

These consideration close the chapter, in the next one recomputation contin-

ues to have an important role, but this time it will be considered from the I/O

complexity point of view.

58

Chapter 4

Storing-recomputation trade-offs

During a computation some intermediate results may be used more than once

and we can choose if store them temporary in memory or compute them again

when they are needed. Thus, according to the available memory, there is a

trade-off between storing and recomputation of intermediate results.

This problem has several different but related applications in nowadays com-

putations: in local computations, where the access to stored data could be slower

than the recomputation of the needed result, in parallel computing, where im-

porting data from a neighbor could be slower than the computation of the needed

result, in energy-aware computations, where the cost of storing data could be

greater than the cost of recomputing it. Note that in local computations recom-

putation occurs in subsequent times, while in parallel computations it can occurs

contemporary in different places.

The topic has been studied for decades, from the already introduced [HK81],

where the stress is on minimum number of I/O accesses in a framework consid-

ering recomputation, to nowadays works as [AM10, CLU12], where algorithms

for automatic analysis of DAGs are proposed, in order to find optimal storing-

recomputing strategies for minimizing computation costs in grid or cloud sys-

tems.

In the first section of this chapter we show some basic results about computa-

tions with and without recomputation, analyzing more in detail some important

DAGs in the other sections. Arguments of this chapter have been developed

during the visit period at ETH Zurich.

59

Chapter 4. Storing-recomputation trade-offs

4.1 Basic facts

Let function cIO(S) count the number of I/O accesses occurring in strategy S
and function cc(S) count the number of computational operations of S.

Consider the pebbling strategy SR∗F for a DAG F using recomputation where

number of I/O accesses and computational operations is minimum, and the peb-

bling strategy SW∗F for a DAG F with the same features of SR∗F but where re-

computation is not allowed. We define them respectively the optimal strategy

with recomputation to pebble F and the optimal strategy without recomputation

to pebble F .

A trivial fact is that cIO(SR∗F) ≤ cIO(SW∗F), since SR∗F uses recomputation

only when is advantageous respect to SW∗F .

We recall the following definition in [BPD00], where access complexity of

DAGs is studied from a space point of view.

Definition 11. A strategy S is a parsimonious strategy if outputs are pebbled

exactly once and a pebbling of a node v is used to compute at least a son of v

before another possible evaluation of v.

We similarly define a parsimonious strategy with recomputation.

Definition 12. A strategy R is a parsimonious strategy with recomputation if

outputs are pebbled exactly once and a pebbling of a node v is used to compute

at least a son of v before another possible recomputation of v.

Proposition 11. The optimal strategy with recomputation SR∗F is a parsimonious

strategy with recomputation.

Proof. Let R = SR∗F . Suppose there is an output ox computed at least twice. We

can find a new schedule R′ where ox is computed just the first time. R′ has less

computational operations of R, while it has at most the same I/O complexity,

so R was not optimal, which is a contradiction.

If there is a node v recomputed, whose a particular pebbling vy is not used

before the following one, we can consider a new scheduling R′′ where vy is not

computed and vy+1 is used in place of vy. R′′ has at most the same I/O complexity

ofR and less operations, obtaining again a contradiction with the hypothesis.

60

4.2. Recomputation in tree DAGs

As we’ll see in Section 4.2 and 4.3, there exist both DAGs in which the optimal

pebbling strategy does not use recomputation and DAGs where recomputation

gives advantage respect to storing-based strategies.

4.2 Recomputation in tree DAGs

In this section we use the complete binary tree DAG to prove the existence of

DAGs where recomputation does not give better results than strategies without

recomputation. Moreover the result will be extended to the class of DAGs where

each node has only a child.

Proposition 12. Consider the complete binary tree DAG F where the root is

the only output and leaves are the inputs. In the optimal strategy to pebble F

every node is computed only once.

Proof. Consider the optimal strategy with recomputation S to pebble F . By

Section 4.1 it is a parsimonious computation with recomputation, that is the root

is computed only once and a pebbling of a node v is used to compute at least a

son of v before being possibly recomputed.

Since every node has only a child, we can show that there is no need to

recompute any node. In fact the first time a node u is computed, it is used to

compute its only child u′, which must be used to compute its only child u′′ before

a possible recomputation and so on until we compute the root. If u is computed

twice, we have to compute a second time also u′, u′′, . . . , the root, contradicting

the fact that S is a parsimonious computation.

This means that in S every node is computed just once.

In this case optimal strategy with recomputation for F does not really exploit

recomputation and it coincides with optimal strategy without recomputation.

This fact can be generalized in the following proposition.

Proposition 13. Consider a DAG F where each node has a single child. In the

optimal strategy to pebble F all nodes are computed only once.

Proof. F is a collection of disjoint trees not necessarily complete and with an

arbitrary number of sons. With the same demonstration of Proposition 12 we

61

Chapter 4. Storing-recomputation trade-offs

can prove that computing twice a node implies computing twice an output, con-

tradicting the fact that the strategy used is parsimonious.

4.3 Recomputation in butterfly DAGs

In this section we prove that strategies with recomputation are more efficient

that strategies without recomputation in the computation of butterfly DAGs.

A butterfly DAG F is a graph (VF , EF) where VF = {(ui, j) : 0 ≤ i < N, 0 ≤
j ≤ logN} and, considering the bit representation of ui = ulogN−1

i . . . u1
iu

0
i , each

(ui, j) has an edge to (ui, j + 1) and to (ulogN−1
i . . . uj+1

i ujiu
j−1
i . . . u0

i , j + 1).

Nodes Lj = {(ui, j), 0 ≤ i < N} are level j of F , while nodes li = {(ui, j) :

0 ≤ j ≤ logN} are line i of F . Level L0 contains inputs of F , while LlogN

contains outputs of F .

4.3.1 Two general lower bounds

Consider the pebbling of a N -inputs butterfly DAG F according to the Hong

and Kung pebble game rules [HK81], using S red pebbles. We recall that in

this model nodes of the DAG with a blue pebble can be thought as located in

slow memory, while nodes with red pebbles can be thought as located in fast

memory; the operation of pebbling with a red pebble a node with a blue pebble

is equivalent to a load from slow to fast memory (input operation, or I) and the

reverse operation, that is pebbling with a blue pebble a node with a red pebble,

is equivalent to a writing from fast memory to slow memory (output operation,

or O). In the following we exploit this analogy in our description. Note that

since inputs are loaded from slow memory and outputs must be saved in slow

memory, the minimum number of I/O accesses is at least Q ≥ 2N .

A line is covered if at least one node of the line is in fast memory. When we

pebble the first output of F at most S−1 lines are covered, so that at most S−1

lines can be computed and stored in slow memory with just one O operation,

while the remaining N − (S − 1) lines need at least 2 I/O operations (an input

or an intermediate node of the line have to be read again from slow memory and

the output has to be saved in slow memory).

62

4.3. Recomputation in butterfly DAGs

According to this, the following general lower bound holds:

Q ≥ 2N︸︷︷︸
inputs and outputs

+ N − S + 1︸ ︷︷ ︸
lines uncovered

when computing u

= 3N − S + 1

This is a “warm-up” lower bound, presented to take confidence with this kind

of reasonings. It can be strengthen as follow. We know that when first output

is computed, at most S − 1 lines are covered (set c) and their outputs can be

computed without further memory accesses. Each of the remaining N − S + 1

lines has at least to store an intermediate node of the line or it is uncovered.

We partition these lines in those with nodes stored in secondary memory (set s)

and uncovered lines (set u). If a line is uncovered it requires the load of some

inputs (at least the one of the line) to be computed. With the proceeding of

the computation its output can be computed without further memory accesses,

an its intermediate node can be stored in slow memory or the line can become

again uncovered before the computation of its output. When the first output of

a line in u is computed, at most S − 1 lines of u can be covered, so that lines

which are still uncovered, require a further reading of their input to be computed

or they have been stored in slow memory. We have distinguished three kind of

line: S − 1 line of set c which require at least two I/O operations, for the load

of their input and the store of their output, at most S − 1 lines of u which can

possibly be computed with two reading of their input and the storing of their

output (three I/O ops), and all the other lines which beyond the reading of the

input and the storing of the output, require an intermediate storing or two other

reading of their input (four I/O ops). These considerations imply the following

lower bound:

Q ≥ 2(S − 1)︸ ︷︷ ︸
inputs and outputs of c

+ 3(S − 1)︸ ︷︷ ︸
lines in u which require

two reading of inputs

+ 4(N − 2S + 2)︸ ︷︷ ︸
all the other lines

= 4N − 3(S − 1).

(4.1)

63

Chapter 4. Storing-recomputation trade-offs

In this lower bound some nodes could be computed more than once; if recom-

putation is not allowed, then at least one pebble must stay on a line from when

its node in second level is computed until an O operation occurs. The computa-

tion in that line will continue from that node only when it will be loaded again.

Note that when two inputs are loaded to compute a node in the second level we

can have three situations:

1. both sons are computed with that pebbles of inputs;

2. one son is computed, one parent is unload and then reloaded to compute

the other son;

3. both parents are unload and reload before compute the other son.

a) b)

u

Figure 4.1: a) Tree of predecessors of u in F ; b) Gray shaded nodes are inputs of
sub-butterfly A (in gray), while white shaded nodes are inputs of sub-butterfly
B (in white, excluding the input of the complete butterfly).

When pebbling the first output u, it means that the whole tree whose u is

the root has been pebbled, in particular at least N/2 of the nodes of the second

level of the butterfly (those on the tree whose u is the root, see Figure 4.1.a) and

all the inputs.

Refer to sub-butterfly with inputs highlight in shaded gray in Figure 4.1.b

as A and the one with shaded white inputs as B. Inputs of A and B are in

the second level of F and two inputs of F are needed to compute the first node

of a line of A or B. When computing u there are c1 covered lines in A, while

x1 = N/2−c1 lines have an intermediate write in slow memory with a subsequent

reload (once a node of a line is computed the first time, it can not be computed

again, so the only way to avoid the recomputation is saving and reloading it; note

64

4.3. Recomputation in butterfly DAGs

that x1 can be 0). During the computation of u, in sub-butterfly B there are

c2 covered lines and x2 lines have been temporary saved in slow memory (each

of them has already required an O operation and will require a I operation to

continue its computation). Moreover, there are at least N/2− c2− x2 uncovered

of B whose input has not yet been computed. These lines are of three kinds: t2

of them have both inputs of F pebbled, i2 have only one input pebbled and v2

have no input pebbled (equations c2 + x2 + v2 + i2 + t2 = N/2 holds). These

lines require respectively at least zero, one and two I operations to start their

computation. Sub-butterfly A does not need such distinction since all its inputs

have already been computed.

Note that lines in B do not have inputs of F in common, moreover c1 + c2 +

i2 + 2t2 ≥ S − 1.

Q ≥ 2N + 2(x1 + x2) + i2 + 2v2

= 2N + 2(x1 + x2) + i2 +N − 2c2 − 2x2 − 2i2 − 2t2

= 3N + 2x1 − i2 − 2c2 − 2t2

= 3N +N − 2c1 − i2 − 2c2 − 2t2

= 4N − 2(c1 + c2)− i2 − 2t2

Since 2(c1 + c2 + i2 + 2t2) ≥ 2c1 + 2c2 + i2 + 2t2, also −(2c1 + 2c2 + i2 + 2t2) ≥
2(S − 1) is true, and we obtain the lower bound

Q ≥ 2N + 2(N − S + 1) = 4N − 2(S − 1) (4.2)

which holds for computations with no recomputation in the second level of F .

4.3.2 Matching the lower bounds

We present two strategies, one with and one without recomputation, which al-

most match the previous lower bounds.

65

Chapter 4. Storing-recomputation trade-offs

Strategy without recomputation If no recomputation is allowed, if the

number of fast memory cells is 2d
logN

2
e + 2b

logN
2
c + 2 ≤ S ≤ N + 2 we can

consider the following strategy. The number S is such that a sub-butterfly of

2d
logN

2
e-inputs can be computed, while at least 2b

logN
2
c nodes are kept in memory.

First consider the 2b
logN

2
c lower 2d

logN
2
e-inputs sub-butterflies Li of F (see

Figure 4.2).

U
0

U
1

U
2

U
3

L
0

L
1

L
2

L
3

a)

b)

Figure 4.2: a) Division in Li and Ui of a 16-inputs butterfly; in b) lower sub-
butterfly L0 (in gray) and upper sub-butterfly U0 (shaded) are represented.

Each Li is computed individually, requiring 2d
logN

2
e reading operations for the

inputs. As for outputs, we save all of them but (S − 2d
logN

2
e − 2)/2d

logN
2
e, which

are maintained in memory. In particular, inputs of upper sub-butterfly U0 have

the precedence in staying in memory, followed by U1, U2 and so on. Note that

outputs of lower sub-butterflies are inputs for upper sub-butterflies and after

this phase N − S + 2 outputs of the sub-butterflies Li are stored temporary in

memory, while S − 2 of them are already in memory.

Now we focus on the 2d
logN

2
e upper 2b

logN
2
c-inputs sub-butterflies Ui of F . At

least inputs of U0 are in memory and we can compute it with no I/O compu-

tation but the storing of its outputs. With the 2b
logN

2
c pebbles freed after the

computation of U0 we can compute the other Ui, loading the inputs not yet in

memory and saving the computed outputs.

This strategy requires Q = 2N + 2(N − S + 2) I/O operation, differing of

only 2 operations from the lower bound of Equation 4.2.

66

4.3. Recomputation in butterfly DAGs

Strategy with recomputation We are presenting a pebbling strategy with

recomputation using S red pebbles, which requires Ω(S) I/O accesses less than

lower bound 4.2, valid for Ω(
√
N) < S < O(N).

Proposition 14. Let F be a butterfly DAG F with N inputs, x, kx and Sx

be integers, kx = 2x, 2 ≤ x ≤ b(logN)/2c, Sx = N
kx

+ (kx − 1)N
k2x

+ kx. DAG

F can be pebbled with a strategy with recomputation using S = Sx + m,m <

Sx−1 − Sx pebbles which requires Ω(S) I/O accesses less than any strategy with

recomputation.

Proof. DAG F can be decomposed in kx lower sub-butterflies L0, . . . , Lkx−1 with

N/kx inputs and N/kx upper sub-butterflies U0, . . . , UN/kx−1 with kx inputs,

where outputs of Ls are inputs of Us (in Figure 4.2 the case N = 16, k = 4

is represented).

A possible strategy S1 which satisfies the thesis consists in these steps:

1. Computation of Lkx−1, maintaining its first N/k2
x outputs in fast memory,

evicting all the others (N/kx I operations).

2. Computation of L1, . . . , Lkx−2, maintaining in memory (kx−2)N
k2x

+kx−2+m

outputs in memory (at least the first N
k2x

+ 1 inputs of each Li, while the

distribution of the remaining m is not important, saving the others in slow

memory) ((k−2)N/kx I operations and (k−2)N/kx−(k−2)N/k2
x−m−xk+2

O operations)

3. Computation of L0 maintaining all input in memory (N/kx I operations).

4. At this point there are only 2 red pebbles free and all inputs of U0, . . . , UN/k2−1

are in memory, so that we can compute these Uis without further memory

accesses except those needed for saving output of U0 in slow memory. This

phase performs N/kx O operations and after it N/kx + 2 red pebbles are

free.

5. Computation of Lkx−1, maintaining all outputs in memory (N/kx I opera-

tions)

6. All inputs of UN/k2x are in memory, so we can compute its outputs and save

them in slow memory, freeing kx red pebbles (kx O operations).

67

Chapter 4. Storing-recomputation trade-offs

7. Inputs of the remaining Us can be or not in memory, in any case we have

sufficient memory to load all inputs of a U at once, computing it and storing

in slow memory its outputs, for a total of (k − 2)N/kx − (k − 2)N/kx −
m−xk + 2 I operations (corresponding to the O operations of point 2) and

kx(N/kx −N/(k2
x + 1)) O operations.

The number of I/O operations required by the strategy with S = Sx+m,Sx ≤
S < Sx+1 pebbles is

QS = 2N︸︷︷︸
inputs and outputs

+
N

kx︸︷︷︸
second reading of

inputs of Lkx−1

+ 2

(
(kx − 2)

N

kx
− (kx − 2)

(
N

k2
x

+ 1

)
−m

)
︸ ︷︷ ︸

storing and second reading of

outputs of L1, . . . , Lkx−2

not maintained in memory

= 4N − 5
N

kx
+ 4

N

k2
x

− 2(k − 2 +m)

By lower bound 4.2, strategies without recomputation require at least

QNR(S) ≥ 2N − 2(N − S + 1) = 4N − 4
N

kx
+ 2

N

k2
x

− 2(k +m− 1)

giving a difference of

∆Q = QNR(S) −QS =
N

kx
− 2

N

k2
x

+ 2.

Since by hypotesis N
kx

+(kx−1)N
k2x

+kx ≤ S < N
kx−1

+(kx−1−1) N
k2x−1

+kx−1, x ≥ 2

and kx ≤
√
N , ∆Q is about in the range [S/10, S/2], proving the thesis.

This I/O saving is not the best possible: suppose S = N/kx+(k−1)yN/k2
x+

(kx − y − 1) +m+ 2, m ≥ 0 stategy S1 can be improved in the following way.

1. Computation of Lkx−y, . . . , Lk−1, maintaining its first yN/k2
x outputs in fast

memory, evicting all the others.

2. Computation of L1, . . . , Lkx−y−1, maintaining in memory (kx− y− 1)(N
k2x

+

1)+m outputs in memory (at least the first y N
k2x

+1 inputs of each Li, while

68

4.3. Recomputation in butterfly DAGs

the distribution of the remaining m is not important, saving the others in

slow memory).

3. Computation of L0 maintaining all input in memory.

4. At this point there are only 2 red pebbles free and all inputs of U0, . . . , UyN/k2−1

are in memory, so that we can compute these Uis without further memory

accesses except those needed for saving output of U0 in slow memory. This

phase performs yN/kx O operations and after it yN/kx + 2 red pebbles are

free.

5. Computation of Lkx−y, . . . , Lk−1, maintaining all outputs in memory.

6. All inputs of UyN/k2x are in memory, so we can compute its outputs and

save them in slow memory, freeing kx red pebbles.

7. Inputs of the remaining Us can be or not in memory, in any case we have

sufficient memory to load all inputs of a U at once, computing it and storing

in slow memory its outputs.

The I/O accesses required by the strategy are

QS = 2N︸︷︷︸
inputs and outputs

+
yN

kx︸︷︷︸
second reading of

inputs of Lkx−y , . . . , Lk−1

+ 2

(
(kx − y − 1)

(
N

kx
− yN

k2
x

− 1

)
−m

)
︸ ︷︷ ︸

storing and second reading of

outputs of L1, . . . , Lkx−y−1

not maintained in memory

= 4N − (3y + 2)
N

kx
+ 2

y(y + 1)N

k2
x

− 2(k − y − 1 +m)

while the lower bound for strategies without recomputation is

QNR(S) = 2N + 2

(
N −

(
N

kx
+ (k − 1)y

N

k2
x

+ kx − y − 1 +m

))
= 4N − (2y + 2)

N

kx
+ 2

yN

k2
x

− 2(kx − y − 1 +m).

69

Chapter 4. Storing-recomputation trade-offs

The difference is

∆Q = QNR(S) −QS = y
N

kx
− 2

y2N

k2
x

,

which in the case N >> kx >> y >> 1 leads to ∆Q = y
y+1

S; this result is

better of the one in Proposition 14 of a constant factor, but asymptotically has

the same valence. This result almost much lower bound of Equation 4.1, except

for a S/(y + 1) term.

Results of this section can be summarized as follows.

Proposition 15. The pebbling of an N-inputs butterfly DAG with S red pebbles

according to rules in [HK81] requires at least

Q ≥ 4N − 3(S − 1)

memory accesses, and the lower bound can be refined to

Q ≥ 4N − 2(S − 1)

if no recomputation is allowed.

In particular these bounds are almost strict in the range Ω(
√
N) < S < N

and the first one is almost matched (gap of S/(y + 1) I/O accesses) by strategy

of Preposition 14, while the second one is matched (except for 2 I/O accesses)

by the first strategy of Subsection 4.3.2.

In [EPR+13] there is an enhancement of pebble game thought for the case

without recomputation, which allows to show the following theorem.

Theorem 12. For the n-point FFT graph, the minimum I/O cost, Q, satisfies

Q ≥ 2n logn
logS

(1 − εn,S), where S is the number of red pebbles, and εn,s tends to 0

for large values of n, S and n
S

.

Our analysis inspects the range Ω(
√
N) < S < N , where we show a sep-

aration between performance reachable with and without recomputation. The

results suggest that a bound similar to Theorem 12 holds also for the case with

recomputation, probably with a ε′n,s > εn,s, but further studies in the range

1 ≤ S < O(
√
N) are required.

70

4.4. Recomputation in butterfly-like reduction DAGs

4.4 Recomputation in butterfly-like reduction

DAGs

We introduce a class of DAGs where I/O complexity can take advantage from

recomputation exploiting strategies similar to previous section. The results con-

tained in this section are still incomplete, so the concepts and the proofs will be

just sketched.

Definition 13 (Butterfly-like reduction DAG). A (k, j, L)-blr (butterfly-like re-

duction) DAG is a DAG with the following construction:

• a (k, j, 1)-blr DAG as k inputs and j outputs. Each input is connected to

each output.

• a (k, j, L)-blr DAG, L > 1, is constructed joining k (k, j, L− 1)-blr DAGs

D0, . . . , Dk−1 with an additional level as follows: fixed x, the set of outputs

(L − 1, x) of all Di are inputs for nodes {(L, xjL−1) : 0 ≤ x < j} of the

additional level.

Note the following features of the defined DAG:

• it has L+1 levels labeled from 0 to L; level 0 contains inputs of the network,

while level L its outputs.

• nodes of level i have only input nodes from the level i− 1

• nodes of level i are input only for nodes of the level i+ 1

• level i has kL−iji nodes, numbered from (i, 0) to (i, kL−iji − 1)

Moreover given suitable parameters k, j and L in (k, j, L)-blr DAG recomputation

can improve I/O complexity respect to the case without recomputation (e.g.

k = j = 2, the butterfly case), or can be not useful (e.g., j = 1,∀k, k-ary trees

case).

In Figure 4.3 there are some examples of blr DAG for small values of k and

j.

71

Chapter 4. Storing-recomputation trade-offs

1

2

3

k
j 1 2 3

4

Figure 4.3: Examples of blr DAG, varying k and j, when L = 2.

Note that the (2, 2, L)-blr DAG is a butterfly with L levels, while a (k, 1, L)-

blr DAG is a complete k-ary tree of height L.

Note also that (k, j, L)-blr DAG requires Q ≥ kL + jL I/O accesses in slow

memory (to read inputs and to store outputs) and at least S ≥ k+ 1 red pebbles

are needed. Another interesting fact about these DAGs is that they can be

pebbled without intermediate storings if S is proportional to the number of

outputs (when j > 1) or to the depth of the DAGs (for trees).

Proposition 16. DAG F , a (k, j, L)-blr DAG, can be pebbled in Q = kL + jL

I/O operations if S ≥ (k − 1) j
L−1
j−1
− 1 + k + j for j > 1 or S ≥ (k − 1)L + 2 if

j = 1.

Proof. Let indicate with Sk,j,L the number of red pebbles to pebble F without

intermediate node storings, with the additional property that outputs remain in

fast memory once they have been computed. We establish a recurrence equation

72

4.4. Recomputation in butterfly-like reduction DAGs

for Sk,j,L which prove the proposition.

If L = 1 and Sk,j,1 = k + j, we have trivially Q = k + j since we must load

all inputs and store all output after they have been computed. Note that all

outputs can stay in fast memory after their computation.

We recall that a (k, j, L)-blr DAG consists in k (k, j, L− 1)-blr DAGs and an

additional level. With Sk,j,L−1 red pebbles a (k, j, L−1)-blr DAG can be pebbled

with all its outputs in fast memory at the end of the process, so if we consider

Sk,j,L = (k − 1)jL−1 + Sk,j,L−1 we can compute all k the (k, j, L − 1)-blr DAGs

having their outputs in fast memory and at least Sk,j,L−kjL−1 ≥ 1 available red

pebbles to easily complete the last level of F . The process only requires the load

of inputs and the store of outputs, then

Q = kL + jL

and {
Sk,j,1 = k + j

Sk,j,L = (k − 1)jL−1 + Sk,j,L−1

⇒ S = (k − 1)

(
L∑
i=2

ji−1

)
+ k + j

which closes the proof.

In Section 4.3 we exploit the fact that in a butterfly DAG a lower sub-butterfly

A of
√
N inputs also has

√
N outputs: in opportune strategies the computation of

few outputs of A the first time that we read its inputs, with a consequent second

reading of inputs, is advantageous respect to store and reload all the outputs of

A. In particular, in the first case the computation needs
√

2N input operations

due to two loads of inputs of A, while the second case needs
√
N + 2(

√
N − x),

where x is the number of outputs of A that do not need temporary storing.

Recomputation strategy pays off when 2
√
N <

√
N + 2(

√
N − x)⇒ x <

√
N/2,

which means that the available memory must constrain the strategy based on

storing to store and reload more than half outputs per sub-butterfly.

In (k, j)-blr DAGs when j < k outputs are less than inputs, and by Propo-

sition 16 we need approximately kjL−1 fast memory cells (the number of nodes

of the penultimate level) to compute without intermediate storings the whole

DAG. In these DAGs is more difficult to exploit recomputation to reduce I/O

73

Chapter 4. Storing-recomputation trade-offs

complexity; in fact we already know that in some cases it is not possible (e.g.,

for trees). If we try to apply the same reasoning of previous paragraph to a sub-

region of a (k, j)-blr DAG with i inputs and o outputs, recomputation requires

2i input accesses, while strategies without recomputation needs i+ 2(o− x) I/O

accesses to read once the inputs and store the o − x outputs, if x outputs can

be used without intermediate storing. In this case the gain for strategies with

recomputation occurs when x < 2o− i.
Since when L = 1 inputs and outputs are respectively i = k and o = j,

this inequality let us suppose that when k ≥ 2j the existence of strategies with

recomputation more effective than strategies with only I/O accesses is unlikely.

Probably the second term is even more near to k if we consider that the number

of outputs decreases exponentially in L respect to inputs. Since when k = j only

S I/O accesses are saved, it would not be surprising if recomputation does not

improve performance for any j < k.

On the other hand when k < j recomputation has an easy task. For example

consider the case k = 1, j > 1, which corresponds to a reverse j-tree, with the

root as input and leaves as outputs. In this case S = 3 would suffices to compute

all the DAG with the optimal 1+number of leaves I/O complexity, but it would

involve an exponential computational complexity. This decreases very fast and

S = logN is sufficient to require a linear work on the size of the DAG with no

recomputation and optimal I/O complexity.

Note that when k > j there is a sort of compression of the information, we

need a lot of inputs to compute few outputs and in general it is more efficient to

store few intermediate nodes instead of reload several inputs. On the contrary

when k < j few nodes allow to compute a lot of data and in general it is more

convenient to load few inputs than store a lot of outputs.

74

Chapter 5

Conclusions

5.1 Summary and contributions

This thesis has pursued two distinct directions. The former is a critic overview of

known results about lower bound for the emulation time among fixed-connected

networks, with our original results for the topic. The latter considers the trade-off

between recomputation and storing of intermediate results in a computation.

As for the first, we analyze theorems from [KLM+97, KR94], which are the

best results known lower bounds for emulations, valid under the most general

conditions; in particular they consider emulations where recomputation is al-

lowed. In Chapter 2 we underline their features, weaknesses and the mutual

relationships, showing actually there is not a theorem summarizing the others

and also considering the tightest bound obtained by the three theorems we are

not sure to obtain a strict lower bound. Theorem 1 has been extended to target

general DAGs, and its results are tight in examples as tree DAG and butterfly

DAG on k-array. We have also shown that theorems providing lower bounds for

I/O complexity in hierarchical memory can not be easily adapted to the parallel

case since the features of subsets in which we can decompose the computation

are very different. In Chapter 3 we propose a new theorem to determine time

lower bounds for emulation among multidimensional arrays, admitting arbitrary

recomputation; our technique match the upper bound determined by embed-

ding emulation unless for a logarithmic factor (improving the polynomial gap

of Theorems 1 and 3, while Theorem 4 considers only at most constant average

75

Chapter 5. Conclusions

recomputation).

In the second part, in Chapter 4 we discuss about the trade-off between

recomputation and storing of the intermediate results, in an offset similar to

[HK81], and the main result is the demonstration that in N -input the butterfly

DAG the use of recomputation gives strictly better performance than the case

without recomputation, but only about S accesses are saved when Ω(
√
N) <

S < N . We also define (k, j)-blr DAGs to show how in DAGs which tend to

“compress” data the exploitation of recomputation is difficult, while in DAGs

which generate a lot of data from few inputs recomputation is advantageous

from an I/O complexity point of view.

5.2 Further research

The first part of the thesis presents various strong and weak points of known

lower bound theorems for network emulations and algorithm execution; it would

be a great progress in the understanding of parallel computation to join all the

highlighted elements, possibly managing the known results in an unique theory.

As for the second part, it would be interesting to find strict upper and lower

bounds for butterfly DAG for S in the range 1 ≤ S < O(
√
N) to confirm or reject

the hypothesis of a strict lower bound similar both in case of recomputation

allowed or disallowed (end of Section 4.3). Moreover Section 4.4 lacks of exact

lower and upper bounds for k 6= j. It would be interesting also the study of

a more general framework to provide bounds when recomputation is or is not

allowed in a general DAG, considering intrinsic features of it.

76

Bibliography

[A67] Amdahl, G.: Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities. AFIPS Conference Proceedings, 30,

483–485, 1967.

[AACS87] Aggarwal, A., Alpern, B., Chandra, A. K., and Snir, M.: A model for

hierarchical memory. In Proceedings of the 19th ACM Symposium on Theory

of Computing. ACM, New York, 305–314, 1987.

[ABK95] Adler, M., Byers, J. W., Karp, R. M.: Parallel sorting with limited

bandwidth, Proceedings of the seventh annual ACM symposium on Parallel

algorithms and architectures, p.129-136, June 24-26, 1995, Santa Barbara,

California, USA.

[ACS87] Aggarwal, A., Chandra, A. K., and Snir, M.: Hierarchical memory with

block transfer. In Proceedings of the 28th Annual Symposium on Foundations

of Computer Science. IEEE Computer Society Press, Los Alamitos, 204–216,

1987.

[ACS90] Aggarwal, A., Chandra, A.K., and Snir, M.: Communication complex-

ity of PRAMs. Theoretical Computer Science, 71:328, 1990.

[AM10] Adams, I. F., Madden, B. A.: Automating Analysis of the Computation-

Storage Tradeoff, Thesis. UC Santa Cruz, 2010.

[AV88] Aggarwal, A. and Vitter, J. S.: The input/output complexity of sorting

and related problems. Communications of the ACM, 31(9):1116–1127, 1988.

[B74] Brent, R. P.: The Parallel Evaluation of General Arithmetic Expressions.

Journal of the ACM 21, 2, 201–206, April 1974.

77

Bibliography

[BEP09] Bilardi, G., Ekanadham, K., Pattnaik, P.: On approximating the ideal

random access machine by physical machines, J. ACM, 56(5), August 2009,

27:1–27:57, ISSN 0004-5411.

[BHP+96] Bilardi, Herley, K. T., Pietracaprina, A., Pucci, G., Spirakis, P.; BSP

vs LogP, Proceedings of the eighth annual ACM symposium on Parallel al-

gorithms and architectures, p.25-32, June 24-26, 1996, Padua, Italy.

[BP01] Bilardi, G., Peserico, E.: A Characterization of Temporal Locality and

Its Portability across Memory Hierarchies. ICALP 2001 : 128–139, 2001.

[BP95] Bilardi, G., and Preparata, F.: Horizons of parallel computation. J. Par-

all. Distrib. Comput., vol. 27, n. 2, pp. 172–182, 1995.

[BP99] Bilardi, G., and Preparata, F.: Processor–Time Tradeoffs under

Bounded–Speed Message Propagation: Part II, Lower Bounds. Theory Com-

put. Syst. 32(5): 531–559, 1999.

[BPD00] Bilardi, G., Pietracaprina, A. and D’Alberto, P.: On the space and ac-

cess complexity of computation dags. In Proc. 26th International Workshop

on Graph-Theoretic Concepts in Computer Science, WG 2000, LNCS 1928,

47–58, June 2000.

[BPP07] Bilardi, G., Pietracaprina, A. and Pucci, G.: Decomposable BSP: A

Bandwidth-Latency Model for Parallel and Hierarchical Computation, in

Handbook of Parallel Computing (J. Reif and S. Rajasekaran Eds.), CRC

Press, Boca Raton Fl USA, 2007.

[BSS12] Bilardi, G., Scquizzato, M. and Silvestri, S.: A Lower Bound Technique

for Communication on BSP with Application to the FFT, Euro-Par 2012 :

676-687.

[CD82] Cook, S. A. and Dwork, C.: Bounds on the Time for Parallel RAM’s to

Compute Simple Functions. STOC 1982: 231-233

[CGG+95] Chiang, Y., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff,

D. E., Vitter, J. S.: External-memory graph algorithms, Proceedings of

78

Bibliography

the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA 95,

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

1995, ISBN 0-89871-349-8.

[CKP+96] Culler, D.E., Karp, R., Patterson, D., Sahay, A., Santos, E.,

Schauser, K.E., Subramonian, R., and Eicken, T.V.: LogP: A practical

model of parallel computation. Communications of the ACM, 39(11):7885,

November 1996.

[CLU12] Cole-Mullen, H., Lyons, A., Utke, J.: Storing Versus Recomputation on

Multiple DAGs, in Recent Advances in Algorithmic Differentiation, Lecture

Notes in Computational Science and Engineering Volume 87, pp 197–207,

2012.

[CR73] Cook, S. A., Reckhow, R. A.: Time Bounded Random Access Machines.

J. Comput. Syst. Sci., vol. 7, n. 4, pp. 354–375, 1973.

[CLR01] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction

to Algorithms, second edition. MIT Press, 2001.

[DK96] P. De la Torre and C.P. Kruskal. Submachine locality in the bulk syn-

chronous setting. In Proc. of EUROPAR 96, LNCS 1124, pp. 352–358, Au-

gust 1996.

[EPR+13] Elango, V., Pouchet, L. N., Ramanujam, Rastello, F., J. and Sa-

dayappan, P.: Data access complexity: The red/blue pebble game revisited,

Technical report, OSU/INRIA/LSU/UCLA, Sept. 2013. OSU-CISRC-7/13-

TR16

[EPR+15] Elango, V., Pouchet, L. N., Ramanujam, Rastello, F., J. and Sa-

dayappan, P.: On Characterizing the Data Access Complexity of Programs,

in Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’15, pp. 567–580, 2015. 1

[FF82] Fishburn, J. P., and Finkel, R. A.: Quotient networks, IEEE Trans.

Comput., C-31, 4 (Apr.), 288–295, 1982.

79

Bibliography

[FPP06] Fantozzi, C., Pietracaprina, A., Pucci, G.: Translating submachine lo-

cality into locality of reference, J. Parallel Distrib. Comput., 66(5), May

2006, 633–646, ISSN 0743-7315.

[FW78] Fortune, S., and Wyllie, J.: Parallelism in Random Access Machines. In

Proceeding STOC ’78 Proceedings of the tenth annual ACM symposium on

Theory of computing, pp. 114–118, 1978.

[G78] Goldschlager, L. M.: A Unified Approach to models of Synchronous Paral-

lel Machines. In Proceeding STOC ’78 Proceedings of the tenth annual ACM

symposium on Theory of computing, pp. 89–94, 1978.

[GH91] Gupta, A., K. and Hambrusch, S., E.: Embedding Complete Binary

Trees into Butterfly Networks, IEEE Transactions on Computers, vol. 40,

pp. 853–863, 1991.

[HK81] Hong, J., and Kung, H. T.: I/O complexity: The red-blue pebble game.

In Proceedings of the 13th ACM Symposium on Theory of Computing, pp.

326–333, New York, NY, USA, 1981. ACM.

[HKMU91] Heckmann, R., Klasing, R., Monien, B., Unger, W.: Optimal Em-

bedding of Complete Binary Trees into Lines and Grids, Proc. 17th Int.

Workshop on Graph-Theoretic Concepts in Computer Science, WG91, 1991.

[HWV77] Hopcroft, J. E., Wolfgang, J. P., Valiant, L. G.: On Time Versus

Space. J. ACM 24(2): 332–337, 1977.

[Jaja92] Jájá, J. F.: An introduction to parallel algorithms. Addison Wesley

Longman Publishing Co., Inc. Redwood City, CA, USA, 1992. ISBN:0-201-

54856-9.

[K70] Kerr, L. R.: The Effect of Algebraic Structure on the Computational Com-

plexity of Matrix Multiplication, Ph.D. Thesis, Cornell University, New York,

1970.

[K83] Kruskal, C. P.: Searching, Merging, and Sorting in Parallel Computation.

IEEE Trans. Computers 32(10): 942–946, 1983.

80

Bibliography

[KR94] Kruskal, C. P. and Rappoport, K. J., Bandwidth-based Lower Bounds

on Slowdown for Efficient Emulations of Fixed-connection Networks, Pro-

ceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and

Architectures, SPAA ’94, 132–139, ISBN 0-89791-671-9, 1994.

[KLM+97] Koch, R. R., Leighton, F. T., Maggs, B. M., Rao, S., Rosenberg,

A. L., Schwabe, E. J.: Work-preserving emulations of fixed-connection net-

works. J. ACM 44(1): 104–147, 1997.

[LMR88] Leighton, T., Maggs, B., Rao, S.: Universal packet routing algorithms.

In Proceedings of the 29th Annual Symposium on Foundations of Computer

Science (Oct.). IEEE, New York, pp. 256–271, 1988.

[LP93] Luccio, F., Pagli, L.: A Model of Sequential Computation with Pipelines

Access to Memory, Mathematical Systems Theory, 26(4), 1993, 343–356.

[M65] Moore, G. E.: Cramming more components onto integrated circuits. Elec-

tronics Magazine, p. 4, 1965.

[M83] Meyer auf der Heide, F.: Efficiency of Universal Parallel Computers, Acta

Inf. 3(19), 269–296, 10.1007/BF00265559, Springer-Verlag, 1983.

[M86] Meyer auf der Heide, F.: Efficient Simulations Among Several Models of

Parallel Computers, SIAM J. Comput., 15(1) , 106–119, 1986.

[MZ12] Milani, E. and Zago, N.: Exploiting Fine Grained Parallelism on the

SPE. ICTCS, 2012.

[PKK+04] Parikh, A., Kim, S., Kandemir, M. T., Vijaykrishnan, N. and Irwin

M. J.: Instruction Scheduling for Low Power. In Journla of VLSI Signal

Processing 37(1): 129–149, 2004.

[PPS06] Pietracaprina, A., Pucci, G., Silvestri, F.: Cache-oblivious simulation

of parallel programs, 20th International Parallel and Distributed Processing

Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island,

Greece, IEEE, 2006.

81

Bibliography

[PSZ+02] Parikh, D., Skadron, K., Zhang, Y., Barcella, M., and Stan. M.: Power

Issues Related to Branch Prediction. In Proc. of the 2002 International

Symposium on High-Performance Computer Architecture, February, 2002,

Cambridge, MA.

[PU87] Papadimitriou, C. H. and Ullman, J. D.: A Communication-Time Trade-

off. SIAM J. Comput. 16(4): 639–646, 1987.

[S95] Savage, J.: Extending the Hong-Kung Model to Memory Hierarchies. In

Computing and Combinatorics, v. 959 of LNCS, pp. 270–281. 1995.

[SS14] Scquizzato, M. and Silvestri, S.: Communication Lower Bounds for

Distributed-Memory Computations. STACS 2014 : 627–638.

[T36] Turing, A.M.: On Computable Numbers, with an Application to the

Entscheidungs problem, Proceedings of the London Mathematical Society,

2 (42): 230–265, 1937.

[V90] Valiant, L.G.: A bridging model for parallel computation. Communica-

tions of the ACM, 33(8):103111, August 1990.

[V98] Vitter, J. S.: External Memory Algorithms, Algorithms - ESA 98, 6th

Annual European Symposium, Venice, Italy, August 24-26, 1998, Proceed-

ings (G. Bilardi, G. F. Italiano, A. Pietracaprina, G. Pucci, Eds.), 1461,

Springer, 1998, ISBN 3-540-64848-8.

[VW85] Vishkin, U. and Wigderson, A.: Trade-Offs between Depth and Width

in Parallel Computation, SIAM Journal of Computing, 14(2): pp. 303–314,

1985.

82

	Introduction
	General introduction
	State-of-the-art and purpose of the thesis

	Lower bounds for generic emulations
	Background
	Distance-based lower bound
	State of the art
	Analysis and Critique
	Generalization of Theorem 1

	Congestion-based lower bound
	State of the art
	Analysis and Critique

	Bandwidth-based lower bound
	State of the art
	Analysis and Critique
	Summary

	Parallel computing vs hierarchical memories
	State of the art
	Relations with parallel computing

	Lower bounds for specific networks
	Lower bounds for multidimensional arrays emulations
	Mesh over linear array emulation
	Generalization to k-arrays over j-arrays
	Considerations

	Storing-recomputation trade-offs
	Basic facts
	Recomputation in tree DAGs
	Recomputation in butterfly DAGs
	Two general lower bounds
	Matching the lower bounds

	Recomputation in butterfly-like reduction DAGs

	Conclusions
	Summary and contributions
	Further research

	Bibliography

