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Abstract

The fate of water and solutes introduced into a watershed and sampled at the catchment

outlet depends on a number of factors that include the underlying climatic forcing and

the heterogeneity of subsurface environments. After a storm event, the hydrologic

response of a watershed is known to rapidly displace large amounts of water that had

been contained in the system storage prior to the arrival of the storm. The actual

time spent by non-event water particles within the catchment spans a large range of

timescales and typically exceeds the characteristic times of the hydrologic response by

at least two orders of magnitude. Inferring water age is crucial for our understanding

of streamflow generation and catchment-scale dispersion processes. Water travel time

distributions can be used to address a number of environmental challenges, such as

modeling the dynamics of river water quality, quantifying the interactions between

shallow and deep flow systems and understanding nutrient loading persistence. The

need for robust yet simple mathematical tools to describe water age dynamics is here

addressed using a catchment-scale approach. In this context, water particles can be seen

as a dynamic population whose evolution can be described through suitable partial

differential equations. Novel theoretical solutions are here proposed, with extensive

applications to real-world case studies that include the transport of chloride, isotopic

content and silica. Coupling transport models to high-quality hydrochemical datasets

allows for inferences on water age distributions and proves able to explain different

features of measured water quality dynamics. The applications allowed an improved

understanding of the underlying transport processes and many further developments

can be foreseen along the path here pursued, inching towards a watershed theory.
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Sommario

Le dinamiche dell’acqua e dei soluti introdotti nei bacini idrografici e campionati alle

rispettive sezioni di chiusura dipende da numerosi fattori, tra cui l’influenza del clima

e l’eterogeneità dell’ambiente sotterraneo. In seguito a un evento di precipitazione, la

risposta idrologica di un bacino innesca lo spostamento di volumi di acqua che in gran

parte si trovavano già immagazzinati nel sottosuolo prima dell’inizio della precipitazio-

ne. Il tempo da cui tali particelle d’acqua si trovavano nel bacino può variare su un

ampio intervallo di scale temporali e tipicamente supera i tempi caratteristici della ri-

sposta idrologica di almeno due ordini di grandezza. La stima dell’età dell’acqua ricopre

notevole importanza nella comprensione dei meccanismi di deflusso e di dispersione alla

scala di bacino. Le distribuzioni dei tempi di residenza, utilizzate in questa tesi, possono

essere utilizzate per affrontare numerosi problemi ambientali, tra cui la modellazione

idrochimica dei corsi d’acqua, la quantificazione degli apporti di deflusso superficiali o

profondi e la stima della persistenza dei nutrienti nelle acque. La necessità di disporre di

strumenti matematici semplici e robusti viene qui affrontata utilizzando un approccio

a scala di bacino. In tale contesto, le particelle d’acqua si possono vedere come una

popolazione dinamica che evolve nel tempo e descrivibile mediante opportune equazioni

differenziali. Questa tesi propone nuovi sviluppi teorici e molteplici applicazioni a casi

di studio reali, tra cui il trasporto di cloruri, deuterio e silice. Associando modelli di

trasporto a misure idrochimiche è possibile ottenere una stima delle distribuzioni dei

tempi di residenza, permettendo di spiegare diverse caratteristiche delle dinamiche dei

soluti nei corsi d’acqua. Le applicazioni hanno consentito una migliore comprensione

dei processi di trasporto a scala di bacino e segnano la strada verso ulteriori sviluppi

orientati a una teoria generale del bacino.
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Chapter 1

Introduction

This thesis investigates novel developments in the formulation of transport by travel

time distributions and proposes theoretical advances (Chapters 2 and 3) as well as

applications to real-world transport problems (Chapters 4, 5 and 6).

Travel time distributions (TTDs) are key descriptors of catchment-scale transport

processes as they provide fundamental information on water storage dynamics, flow

pathway heterogeneity, sources of water in space and time within a catchment and on

the chemistry of water flows through the outlet. The early formulation of the so-called

old-water paradox first recognized that a notable part of the streamflow released in

response to a given rainfall event is supplied by water volumes already in storage within

the catchment prior to the event. Since that time, the issue of the age of runoff water

has attracted many theoretical and observational studies [Rinaldo and Marani , 1987;

Rinaldo et al., 1989; Beven, 2010, 2012; Weiler et al., 2003; Kirchner , 2003] and the

spate of papers dedicated to the subject was justified by the true paradigm shift implied

by the role of non-event water.

The age of streamflow strongly impacts the chemical composition of river flows as it

reflects the memory of hydrologic systems to rainfall or soil moisture compositions and

is thus crucial for our understanding and modeling of the chemical composition of runoff

waters. The issue has long been disregarded by hydrologists dealing with the quantifi-

cation of input/output water fluxes, and has now rightfully become a cornerstone of

hydro-chemical studies. Typical applications include both atmospheric compounds en-

tering the catchment through precipitation [Shaw et al., 2008; Godsey et al., 2010] or

anthropogenic compounds injected onto the catchment e.g. due to farming activities

[e.g. Basu et al., 2010; Rouxel et al., 2011; Kennedy et al., 2012]. The emerging need for

tracking the time spent by water particles traveling through a catchment brought mul-

1
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tifaceted implications, including the identification of flow pathways, catchment storage

capacity, water quality and bio-geochemistry [McGlynn et al., 2003; Liu et al., 2004;

McGuire and McDonnell , 2006; McGuire et al., 2007; McDonnell et al., 2010].

While early studies focused on data-driven, parametric identifications of average

travel time distributions, the recent developments explicitly incorporated the time-

variability of climatic conditions [Hrachowitz et al., 2010; Brooks et al., 2010], topo-

graphic controls [McGuire et al., 2005] and the spatial heterogeneity of soil properties

[Fiori and Russo, 2008; Russo and Fiori , 2009]. The need for new tools that can cap-

ture the dynamic nature of catchments has led to the development of novel theoretical

formulations [Botter et al., 2010, 2011; Rinaldo et al., 2011; van der Velde et al., 2012;

Hrachowitz et al., 2013; Benettin et al., 2013a; Harman, 2014] and a number of time-

variant approaches for estimating water age in real-world applications [van der Velde

et al., 2010a; Birkel et al., 2012; McMillan et al., 2012; Davies et al., 2013; Benettin

et al., 2013b; Harman and Kim, 2014]. One of the key results of these new approaches is

that instantaneous travel time distributions are intrinsically non-smooth curves. Their

erratic character stems from the vagaries of nature in injection, retention and leach-

ing to streamflow, and could be captured by analytic descriptions that employ in- and

out-fluxes as forcings.

The increased availability of hydrochemical data, jointly with the improved mea-

surement accuracy, makes it feasible to overcome the simplistic modeling of long-term

transport features, allowing to focus on transient dynamics and fluctuations taking

place at multiple time-scales, from single storm events to inter-annual timescales. The

methodological procedure comparing chemical and hydrological data with the novel

conceptual framework represents an interesting advancement of our understanding of

catchment-scale transport processes.
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Chapter 2

A Novel kinematic framework

2.1 Introduction

In recent years, several papers contributed to the development and clarification of key

theoretical issues underlying the formulation of transport by travel time distributions.

In this context, important theoretical and practical implications arise from a proper

distinction between backward or forward age distributions, which are based on the

definition of diverse reference variables. The ‘age’ of a water particle represents the time

elapsed since a previous injection, and as such it is intrinsically a backward concept. A

forward approach, instead, requires the introduction of the particle’s ‘life expectancy’,

which quantifies the time a water particle will spend within the system before being

sampled by one of the outflows. The sum of age and life expectancy is the particle’s

travel time.

Despite forward and backward approaches are different, and only coincide in the

special case of stationary systems, a proper distinction of these formulations has been

sometimes overlooked in the literature. In this contribution, the recent backward formu-

lations is reviewed using a unified notation and a novel forward formulation is discussed.

The note illustrates how age and life expectancy distributions naturally evolve in re-

sponse to unsteady hydrologic fluxes.

The concept of travel time distributions (TTDs) was initially developed for chemical

reactors [Danckwerts , 1953; Nauman, 1969; Chen, 1971; Niemi , 1977] using both for-

ward and backward TTDs, but the approach mostly focused on the distributions that

characterize the outflows of a system, leaving the time distributions of the water storage

unexplored. The forward-backward issue was later refined by Cornaton and Perrochet

[2006], who defined the governing age and life expectancy equations for spatially-explicit

3
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time

age TR

time of
injection

t time of
exit

life expectancy TE

travel time TT

Figure 2.1: Definition of the time variables.

frameworks governed by advection and dispersion. At catchment scales, the relationship

between backward and forward distributions has remained mostly unexplored (for no-

table exceptions see [e.g. Cvetkovic et al., 2012]). A coherent formulation which makes

use of catchment-scale forward distributions is still missing in the literature and is here

addressed by coupling age to life expectancy for the water particles that reside within

the catchment storage. This theoretical clarification is necessary to properly interpret

tracer/solute data, and can be useful to develop models and drive experimental design.

2.2 Tracking age and life expectancy

The evolution of a water population within a catchment intimately depends on the

forcing in- and out-fluxes and on the (complex) structure of the velocity field that

characterizes the system at any time. Time tracking is useful to identify water particles

with common features (e.g. those that enter/leave the catchment at the same time)

and requires the use of precise definitions and notation. Absolute time is here indicated

with the lowercase symbol t, while time intervals are all indicated with capital T . Let

us follow a water particle that enters the catchment at a time t = tin and exits at a later

time t = tex. At any time t the parcel is characterized by two fundamental properties:

its age (or residence time), indicated as TR, which is defined as the time elapsed since

the entrance, and its life expectancy (or time to destination), indicated as TE , which is

the time remaining before getting to an outlet. The sum of age and life expectancy is

the particle’s travel time (or transit time) through the system (Figure 2.1):

TT = TR + TE . (2.1)

It follows from these definitions that the travel time can be seen either as the life

expectancy at the entrance (when TR=0) or as the age at the exit (when TE=0). Age
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is intrinsically a backward concept, as it is defined with respect to a previous time. Life

expectancy, instead, is intrinsically a forward concept [Nauman, 1969; Cvetkovic et al.,

2012], as it is computed with respect to a later time. As the travel time can be either

seen as a special case of age or life expectancy, it can be seen from both a forward and

a backward perspective.

Hydrologic fluxes and storage are defined with respect to a control volume (CV).

The CV definition can be sometimes uncertain because the subsurface environment

is partially unknown and the flow field can change with time. Typical examples of

hydrologic CVs can be a hillslope draining to a stream, a soil column in a lysimeter or

an entire catchment defined by no-flow borders (Figure 2.2).

When the CV can be satisfactorily defined, the elementary water balance reads:

dS(t)

dt
= J(t)− ET (t)−Q(t) (2.2)

where S is the water in storage and J , ET and Q are precipitation, evapotranspiration

and discharge fluxes, respectively. Deep losses are here neglected for simplicity, but can

be included in the formulation as well as any other hydrologic in/out flux.

Age and life expectancy can be handled as a property that is transported along with

water. Note that the property is not conservative because age increases with time (e.g.

every day water particles get one-day older), while life expectancy decreases with time

(e.g. every day particles get one-day closer to destination), according to:

dTR

dt
= 1 ,

dTE

dt
= −1 . (2.3)

The terms of Eq. (2.3) can be seen as a celerity c with unit value, whose sign determines

which property is described. If we denote the probability distribution of a property

T (either age or life expectancy) with p(T, t), every term of equation (2.2) can be

associated with its distribution: S 7→ SpS(T, t), J 7→ JpJ(T, t), ET 7→ ETpET (T, t),

Q 7→ QpQ(T, t). Once the distributions are introduced, the total derivative at lhs of eq.

(2.2) can be developed as:

d [S(t) pS(T, t)]

dt
=

∂[S(t) pS(T, t)]

∂t
+

dT

dt

∂[S(t) pS(T, t)]

∂T
(2.4)

where the term dT/dt at rhs represents the celerity c of propagation of the property and

can only assume unit values with positive or negative sign, as prescribed by eq. (2.3).

The evolution of the property distribution in the water balance is then completely

described by the following equation:

∂[S(t) pS(T, t)]

∂t
+ c

∂[S(t) pS(T, t)]

∂T
=

J(t) pJ(T, t)− ET (t) pET (T, t)−Q(t) pQ(T, t) (2.5)

5
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Q(t)

ET(t)

J(t)

Q(t)

ET(t)J(t)J(t)
ET(t)

Q(t)

a) b)

c)

Figure 2.2: Examples of typical control volumes.
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Note that a more general form of the equation can be written, where Fi(t) can be

any mass flux with its positive or negative sign (possibly including reactive terms) and

pFi
(T, t) its property distribution:

∂[S(t) pS(T, t)]

∂t
+ c

∂[S(t) pS(T, t)]

∂T
=

∑

i

Fi(t) pFi
(T, t) (2.6)

Other forms of eq. (2.6) can be formulated, that use cumulative distributions and

do not need an explicit determination of the storage [Harman, 2014], but the meaning

of the equation remains unchanged.

So far, the most general formulation was used to stress the general character of the

processes, and to show that the evolution of ages and life expectancies in a hydrologic

system can be described through the same equation. In the following, age and life

expectancy equations will be treated separately and focus will be placed on applied

concepts.

2.2.1 Backward distributions

The use of backward distributions complies with the problem of how a sample of water

taken at a time t is the result of transport processes that involve inputs generated from

all previous times.

The mathematical formulation is obtained from equation (2.5) by using c = 1 and

T = TR. In the notation, a left arrow is added to the distributions to denote their

explicit backward character [see Harman, 2014]. In most cases precipitation comprises

by definition water particles with age zero, hence ←−p J(TR, t) turns into a Dirac-delta

function centered in TR = 0 which can be removed from the equation to be used as a

Dirichlet Boundary Condition. The resulting Master Equation, as first introduced by

Botter et al. [2011], reads:

∂[S(t)←−p S(TR, t)]

∂t
+

∂[S(t)←−p S(TR, t)]

∂TR

= −ET (t)←−p ET (TR, t)−Q(t)←−p Q(TR, t) (2.7)

The equation has been extensively studied in the last years [Botter et al., 2011; Bot-

ter , 2012; van der Velde et al., 2012; Hrachowitz et al., 2013; Benettin et al., 2013b,a;

Harman and Kim, 2014; Harman, 2014] and its physical interpretation is rather intu-

itive: water particles enter the system through precipitation (BC of the equation) and

are gradually depleted by the outflows removal (rhs of eq. 2.7) while they get older

(second term at lhs). The equation is illustrated in Figure 2.3.
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0 TR

aging

age

outflows

precipitation

Figure 2.3: Illustration of the Master Equation for the backward TTDs. Water particles

enter the system through precipitation (age TR = 0) and move rightwards along the age axis.

While ageing, particles are selected by discharge and evapotranspiration and removed from the

system.

One implication of Eq. (2.7) is that the age distribution ←−p S is primarily controlled

by the precipitation forcings i.e., mathematically, the BCs. For this reason, the dis-

tribution resembles the precipitation timeseries (suitably modulated by the outflows

removal) and contains gaps corresponding to dry periods (see Figure 2.3).

A great advantage of using backward distributions is that they allow for a direct

representation of tracer concentration in the outflows:

Cout(t) =

∫

∞

0

CS(TR)
←−p out(TR, t) dTR (2.8)

where the subscript out refers to a general outflow (e.g. discharge) and CS(TR) is the

concentration of particles in storage with age TR. Eq. 2.8 shows that the outflowing

concentration is the result of a composition of parcels of different ages (as evidenced

by the TTD) and that every particle brings its own solute contribution. In many cases

of interest, the concentrations CS(TR) of the resident parcels can be related to their

initial concentration Cin as CS(TR) = f(TR)Cin where f(TR) can be any function of

time (e.g. a decay). The particular case of a conservative tracer implies f(TR) = 1, and

Eq. 2.8 can be expressed as:

Cout(t) =

∫

∞

0

Cin(t− TR)
←−p out(TR, t) dTR (2.9)

Equations (2.8) and (2.9) can be used to compute solute chemographs and to assess

the memory of discharge for previous injections of the solute (e.g. fertilizations in

agricultural catchments). Note that such memory can be change with time because

the trace of older injections might be visible in dry periods only. This behavior can be

reproduced by using time-varying backward TTD ←−p out(TR, t). A numerical example

that makes use of Eq. (2.9) is proposed in section 2.4.1.
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0

aging

outflows

precipitation

TElife expectancy

Figure 2.4: Illustration of the Master Equation for the forward TTDs. Water particles with

different life expectancies are introduced in the system through new precipitations and move

leftwards along the life expectancy axis. When particles reach their destination (hence TE = 0)

they are removed from the system by the outflows.

2.2.2 Forward distributions

The forward formulation focuses on life expectancy concepts and complies with the

problem of how each water input is transported and dispersed through the system after

its injection.

The governing equation is obtained from equation (2.5) by using c = −1 and T = TE .

In this case a right arrow is used to recall the forward character of the distributions.

It is reasonable to assign a null life expectancy TE = 0 to parcels leaving the system,

so discharge and evapotranspiration can be removed from eq. (2.5) and be inserted as

Dirichlet Boundary Condition, (analogous to precipitation in eq. (2.7)). The resulting

Master Equation reads:

∂[S(t)−→p S(TE , t)]

∂t
− ∂[S(t)−→p S(TE , t)]

∂TE

= J(t)−→p J(TE , t) (2.10)

Equation (2.10) represents a rather new concept because it shows that the system

evolution can be completely described by forward distributions. The equation can be

intuitively interpreted as follows: water particles enter the system with different life

expectancies (rhs of Eq. 2.10) because, owing to dispersion processes, particles will

reach the system boundaries at different times. While transported along the system,

particles’ time to destination constantly decreases because all particles get older (second

term at lhs, which has negative sign). When the particles reach the outlet, their life

expectancy drops to zero as they are removed by the outflows (BC of Eq. 2.10). A

graphical representation of Eq.2.10 is provided in Figure 2.4.

Analogous to the age distributions, the life expectancy distribution −→p S(TE , t) is
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primarily controlled by the BCs of Eq. (2.10), which in this case correspond to the

out-flux Q(t) + ET (t). Hence, the distribution resembles the outflows timeseries and

only contains gaps in case evapotranspiration and discharge are null (see Figure 2.3).

The forward travel time distribution can be used to build a tracer breakthrough

curve, which is the concentration signal produced at the outlet after the tracer injection.

In the case of a conservative solute, the curve reads:

C(t) =
M(t)

Q(t)
= J0C0

−→p Q (t− t0, t0)

Q(t)
(2.11)

where t0 is the time of injection, M(t) the mass flux at the outlet and J0C0 the mass

input. The breakthrough curve can be interpreted as the relative contribution of the

input J0 to discharge. As such, it is very different from a TTD (which is the abso-

lute contribution) unless Q(t) is constant in time. The breakthrough curve is easily

measurable in a tracer experiment and can be useful to test the theoretical apparatus.

The formulation is somehow more complicated in case one wants to make an explicit

distinction among particles that leave the system through different exits. In such a case

the problem can be formulated (and solved) by introducing proper partitioning terms

θ(TE , t) as shown by Botter et al. [2010] and Harman [2014].

2.2.3 Formulation symmetries

The forward and backward approaches exhibit interesting symmetries, as one formula-

tion can be obtained from the other by simply reversing time and thus the flow field

direction [see Cornaton and Perrochet , 2006, Figure 1]. Just like pressing a rewind but-

ton, in the reversed picture output fluxes become inputs and exit times become entrance

times.

Whereas each of the Master Equations (eq. (2.7) and (2.10)) either deals with

forward or backward distributions, some relationships can be developed that involve

both forward and backward distributions. A first relationship stems from the fact that

the travel time of a water particle is the sum of its age and life expectancy (eq. (2.1)

and Figure 2.1), which are independent variables. Hence, each distribution of travel

times can be obtained from a convolution of age and life expectancy distributions, as:

−→p Q(TT , tin) =

∫ TT

0

←−p S(TR, tin + TR)
−→p S(TT − TR, tin + TR) dTR (2.12)

←−p Q(TT , tex) =

∫ TT

0

−→p S(TE , tex − TE)
←−p S(TT − TE , tex − TE) dTE (2.13)
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Equations (2.12) and (2.13) show that i) the convolution structure is the same for the

two equations and each integral includes both a backward and a forward distribution,

ii) the role played by age in eq. (2.12) is the same as that played by life-expectancy in

eq. (2.13), iii) the symmetry between the formulations is preserved and one equation

can be obtained from the other by reversing time and the flow direction (tin becomes

tex and TR becomes TE).

A useful relationship that links forward and backward travel time distributions is

the so-called “Niemi relation” [Niemi , 1977; Botter et al., 2010; Harman, 2014], which

follows from continuity:

J(t)−→p Q(T, t) = Q(t+ T )←−p Q(T, t+ T ) (2.14)

Equation (2.14) shows that, in case the system is stationary (J(t) = Q(t) = const.),

the forward and backward formulations coincide.

2.3 Linking fluxes to storage

The Master Equations (eq. (2.7) and (2.10)) could be solved if distributions in the

fluxes were known or could be reasonably assumed. However this is almost impossible

in real-world applications because the system evolution is primarily forced by hydrologic

fluxes which are naturally erratic and time-variant [Botter et al., 2010]. Moreover,

in/outflowing and resident distributions are hardly independent (e.g. if an age is not

present in the system, say after a dry period, it cannot be present in the outflows),

inducing the need for establishing a dependence of in/outflowing classes of particles on

the resident ones. This problem has been solved for backward distributions following

two equivalent approaches [Botter et al., 2011; van der Velde et al., 2012], and is here

extended to a more general case, which is valid for forward distributions also.

The first approach introduces a functional relation between the distributions (either

age or life expectancy) in the fluxes and those in the storage [Botter et al., 2011],

expressed by:

pF (T, t) = ωF (T, t) pS(T, t) , (2.15)

where ω(T, t) are called ‘StorAge-Selection’ (SAS) functions and can be given any shape

provided that they are normalized according to the non-linear constraint:
∫

∞

0

pF (T, t) dT =

∫

∞

0

ωF (T, t) pS(T, t) dT = 1 (2.16)

which is necessary to ensure that pF is a probability density function (pdf).

11



2.3. Linking fluxes to storage Chapter 2.

1

age

ω
[-

]

preference for
younger ages

no preference
(random sampling)

preference for
older ages

young old

backward

life expectancy

high priority
release

no priority
(random sampling)

low priority
release

> 1ω

< 1ω

short long

forward

1

ω
[-

]

> 1ω

< 1ω

Figure 2.5: Backward and forward StorAge-Selection functions.

The use of Eq. (2.15) has several advantages because it makes the approach con-

sistent with the system mass balance [Botter , 2012], basically ensuring that outflows

cannot extract more than what is available. The irregular shape of the TTDs is auto-

matically taken into account through the term pS(T, t), hence one can impose a shape

on the SAS function using a smooth curve that is representative of the transport pro-

cesses involved (see below). Figure 2.5 shows how to interpret different shapes of the

SAS functions. In the backward case, SAS functions essentially describe how the out-

fluxes remove particles among those available within the storage [Botter et al., 2011].

The selection of the particles, based on their age, can have three characteristic shapes:

i) preference for younger ages (as e.g. due to preferential pathways like macropores), ii)

no preference (random sampling, occurring when mixing and dispersion are enhanced

[Benettin et al., 2013a]), iii) preference towards older ages (as e.g. when younger wa-

ter is present but is hydrologically far from the outlet). In the forward case, instead,

the role of the fluxes is switched and the relevant hydrologic flux that is considered

is precipitation. The SAS functions are to be interpreted in terms of life expectancy

and they basically describe the priority that is given to the particles of the new inputs

with respect to the resident particles. The same three shapes that were described for

the backward approach can now be interpreted as follows: i) high priority to the new

input, which is soon released to the outlets, ii) no priority (random sampling) meaning

that the new input and the resident particles are discharged at the same rate, iii) low

priority, meaning that the new input has to wait before being released. Note that the

name ‘StorAge Selection’ was originally designed for the backward approach [Harman,

2014] and in the forward approach there is no ‘selection’ anymore, but the term is kept

here for simplicity.

The second approach derives suitable TTDs by introducing a transformed domain.
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A convenient transformation proposed by van der Velde et al. [2012] uses the cumulative

storage distribution:

T 7→ PS(T, t) =

∫ T

0

pS(τ, t)dτ , (2.17)

which maps T from its absolute position (e.g. age 5 days or life expectancy 1.2 years) to

its relative position in storage (e.g. age that is not exceeded by the 1% of the resident

particles or time to destination that is not exceeded by the 70%). The new domain is

bounded in [0, 1] as implied by the cumulative pdf. The resulting transformed TTD is

a derived distribution, hence in the new domain it keeps the properties of a pdf:

pF (T, t) dT = p∗F (PS , t) dPS (2.18)

The transformed domain introduces two major advantages: i) it is focused on the

relative position in the storage, which is not affected by the ageing of the particles and

allows for a continuous PS domain even when the absolute T domain contains gaps; ii) all

the natural variability of the distributions is accounted for in the change of variables, and

p∗F can be easily parametrized by using smooth pdf’s over a bounded domain (e.g. the

beta distributions [van der Velde et al., 2012, 2014]). In some circumstances [Harman,

2014] even a pdf defined over a semi-infinite domain (like a gamma) can be employed.

The two approaches are fully equivalent because, if the change of variables is applied

to the SAS functions, one gets:

pF (T, t) dT = ωF (T, t) pS(T, t) dT = ω∗

F (PS , t) dPS (2.19)

which implies:

p∗F (PS , t) ≡ ω∗

F (PS , t) (2.20)

Hence, the only practical difference between the two approaches relies on the use of

a regular or transformed domain for the SAS functions. For this reason and to simplify

the notation, I will always refer to SAS functions as ω and will indicate the different

domain in the argument of the functions. Alternatively, one can use the terminology

aSAS, fSAS and rSAS to refer to the different possible domains, as described by Harman

[2014]. The meaning of Figure 2.5 applies to all the approaches.

2.4 Numerical examples and implications for water-age

modeling

In the following, two simple numerical applications are shown to illustrate some practical

consequences of the theory described so far.
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2.4.1 Tracer injection experiment

Any tracer injection into a control volume can be seen as a forward experiment where the

(forward) travel times of the solute mass can be measured at the system outlet. Typical

real-world examples are conducted in fully controlled systems [Stumpp et al., 2009;

Harman and Kim, 2014] but can be applied to catchment scales in case a distributed

injection can be marked with a distinctive tracer.

A synthetic hydrologic system is here modeled where, for the sake of simplicity,

discharge is the only outflow. Two different injections are simulated, to evaluate the

potential time-variance of the response and the dependence on the climatic forcings.

The mass response of the tracer at the system outlet is computed by solving the life-

expectancy Master Equation (Eq. (2.10)). The three emblematic types of SAS function

described in Figure 2.5 are tested.

The simulation details are as follows. 2000 days of hourly precipitation J were taken

from the USGS Four Mile Run weather station (Alexandria, VA, USA). A virtual hydro-

logic balance dS/dt = J −Q was computed by assuming a non-linear storage-discharge

relationship Q(t) = aSn(t)
b where Sn is the storage S normalized by a reference vol-

ume of 500 mm, a = 100 mm/h, b = 12. A further residual storage S0 = 200 mm was

added to the system to account for the volume of water in storage that is not visible in

the hydrologic response [Kirchner , 2009]. Two injections of 100 grams of conservative

solute per squared meter were introduced in the system at days 300 and 395. The

Master Equation was solved with a finite differences scheme using stationary SAS func-

tions taken from a beta distribution with parameter β constantly equal to unity and α

parameters equal to 0.5 (high priority), 1 (random sampling) and 2 (low priority).

The results of the simulation are reported in Figure 2.6. The top panel shows

the hydrologic fluxes timeseries and the three fSAS functions used in the simulation.

The different mass behaviors induced by the SAS functions are mostly visible for both

the injections in the early part of the response and can be summarized as follows:

high priority means high release rate in the upcoming storms (and hence high mass

peaks). However, as soon as other storms arrive and receive the new priority, the

remaining part of mass injection is highly retarded causing long delays in the late mass

recovery. This can be representative of a system with important preferential pathways

(e.g. large fractures or macropores), where most of the response is drained by the

macropores and a little component moves slowly through the soil matrix. Low priority

is the opposite. Solute particles have to wait before being released, but then they are

discharged in relatively short time interval. This resembles systems with dominant
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convective conditions as e.g. the purely vertical flow in a lysimeter. Random sampling

represents a situation in-between, where the injected solute is sensitive to the subsequent

storm events on a large range of times, indicating a sort balance between fast and slow

response components.

The dependence on the climatic forcings is visible in both the injections because

the peaks in the mass flux correspond with the peaks in the discharge (the more the

discharge, the more the particle removal). Moreover, as injection a takes place right

before a very wet period, its mass response (for all three SAS functions) is faster. This

also shows that, even using a stationary SAS function, the resulting solute response can

be very time-variant as it depends on time-variable fluxes.

This numerical exercise can be easily adapted to real-world injection experiments,

where fluxes and storages can be measured or computed. A number of different SAS

functions (which can be made time-variant and dependent on the system’s wetness as

shown by Harman [2014]) can be tested, making the approach suitable to capture the

relevant transport processes in a broad range of problems.
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Figure 2.6: Forward experiment - tracer injection simulations according to different SAS

functions.
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2.4.2 Tracer sampling at an outlet

This second numerical experiment deals with concentration samples at a catchment (or

lysimeter) outlet. Each sample is a collection of solute parcels that entered the system

in previous injections and can thus be described by modeling backward TTDs. It will

be shown how different choices of the SAS functions affect the concentration signal in

the streamflow.

The same hydrologic system as the previous exercise was used for this simulation,

with the addition of a solute concentration Cin to each input flux. Input concentration

was randomly distributed among the injections but was inversely related to precipitation

intensity, to simulate the effect of atmospheric washouts. Discharge concentration was

computed through Eq. 2.9, using the backward TTDs resulted from the solution of the

backward Master Equation (2.7) using different SAS functions.

The simulation is illustrated in Figure 2.7. The top axis shows the rainfall con-

centration timeseries and the bottom axis reports the discharge during the synthetic

experiment. The simulated concentration corresponding to each SAS function shows

the role of the age selection concept. The high-frequency fluctuations in stream concen-

tration are closely related to the selection of the youngest water particles in the storage

(PS ≈ 0), corresponding to the latest precipitation events. Hence, when discharge pref-

erentially samples younger particles (blue and green curves in Figure 2.7), the stream

concentration is very sensitive to precipitations. In the simulation, this causes a dilution

of the baseflow during high discharge because rainfall concentration is lower. The ran-

dom sampling scheme (red curve) is characterized by a neutral affinity for all the ages,

hence some younger particles are sampled and the signal shows a moderate sensitivity

to new precipitation events. The opposite holds when older ages are mainly selected

(yellow and orange curves). The yellow curve, in particular, is close to zero for the

youngest ages, hence it only reacts to longer term (e.g. seasonal) variations. Note that

even when the signals are strongly influenced by recent precipitations, the majority of

the water, at any time, is “old” and mean travel times always exceed 50 days.

The age-selection concept can be given a physical interpretation. The affinity for

the youngest ages quantifies the presence of preferential pathways and overland flow

processes, that can quickly convey an input to the outlet. The random sampling is

representative of highly heterogeneous environments and dense drainage networks, that

enable the stream (or the plant roots) to collect water particles from the whole catch-

ment. The affinity for older water particles portrays the cases where advective processes

are dominant, such as in a lysimeter. The ability of the SAS functions to reproduce a
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broad range of processes at different time-scales makes the approach easily applicable

to catchment water-quality measurements, particularly where high-frequency timeseries

are available [e.g. Neal et al., 2012; Aubert et al., 2013].

2.5 Final remarks

• Tracking the age (time since injection) and life expectancy (time to exit) of labeled

water parcels allows for a coherent and comprehensive description of the fate of

rainfall injections at catchment scales. Two complementary formulations, based

on mass conservation, allow age and life expectancy to be treated as a scalar

property that is transported along with water. Notably, the sum of the age and

life expectancy is the particle’s travel time through the system;

• The backward formulation tackles how a sample of water taken at any time within

the outflows relates to the transport processes experienced by the system in all

previous times. The forward formulation stems from the concept of life expectancy

concepts and addresses how each water pulse disperses through the system after

its injection. Exact symmetries are established between the two formulations;

• While the backward formulation had already been described in terms of the master

equation relating particles in storage with particles that cross the exit surfaces, a

novel description has been identified in this contribution for the forward problem

focusing on life expectancy concepts. The related master equation shows that the

system evolution can be completely described in terms of forward distributions

only inasmuch as the backward approach had proved. Moreover, the relationship

between backward and forward formulations has been analyzed.

• StorAge Selection functions have finally been introduced in various forms to pro-

pose a closure suited for general applications to catchment transport. Examples

of application show the flexibility and potential of the approach for hydrologic

practice, where both forward and backward formulations can be used to contrast

tracer experiments.
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Chapter 3

Kinematics of Age Mixing in

Advection-Dispersion Models

3.1 Introduction

Advection-dispersion models have received massive attention in the geosciences. Their

ubiquitous applicability stands from the generality of the underlying continuum- and

statistical-mechanical foundations [e.g. Allen et al., 1988; Gardiner , 1983], the only re-

quirement being continuity of the trajectories. An appealing property of dispersion

mechanisms is the additive nature of dispersion processes operating at different scales,

which allows for the definition of a hierarchy of macro-dispersion coefficients (say, from

molecular diffusion to turbulent, hydrodynamic and geomorphological dispersion) em-

bedding the relevant heterogeneity of flow pathways through the underlying displace-

ment covariances [Dagan, 1989; Rodríguez-Iturbe and Rinaldo, 1997]. Such property

makes advection-dispersion models a tool suited to handle large-scale settings like those

involved in the transport of chemicals across river basins, whose dispersive features are

primarily related to geomorphologic and kinematic properties [Rinaldo et al., 1991; Snell

and Sivapalan, 1994; Rinaldo et al., 1995; Robinson et al., 1995; Botter and Rinaldo,

2003; Saco and Kumar , 2004]. However, even though first passage times in dispersive

models are a well known mathematical problem [Gardiner , 1983; Cox and Miller , 1978],

generalized applications to environmental systems are far from straightforward owing

to the effects of complex geometries and boundary conditions.

Tracking the age of water (or solute) particles in the context of advection-dispersion

models first interested chemical engineers [Danckwerts , 1953] and soon spread into the

geosciences, where traditionally it has been pertaining to marine and groundwater stud-
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ies. In ocean science, the basic theoretical apparatus was introduced in early works by

Delhez et al. [1999] and Deleersnijder et al. [2001]. In groundwater studies, the gen-

eral framework introduced by Dagan [1989] for describing transport in porous media

by means of age distributions has been extensively adopted in later works [e.g. Rinaldo

et al., 1991; Fiori , 1996; Cvetkovic and Dagan, 1994]. The foundation of a general age

theory for groundwater, instead, originated from Ginn [1999], who derived a groundwa-

ter age equation by augmenting the physical space with an additional dimension (the

age). The theory was revisited and complemented in later papers [Cornaton and Per-

rochet , 2006; Ginn et al., 2009] which posed the basis for a range of applications [e.g.

Cornaton, 2012; Cvetkovic et al., 2012; Engdahl et al., 2012, 2013; Gomez and Wilson,

2013].

Based on these premises, this chapter investigates age mixing processes arising in

advection-dispersion models, where spatially-integrated travel and residence time dis-

tributions can be derived from the local velocity field, thereby unraveling the kinematic

origin of age mixing. This emblematic problem yields theoretical and practical impli-

cations for solute transport through geophysical systems, where the velocity field is

typically unknown and explicit mixing hypotheses need to be introduced.

3.2 Age dynamics in advection-dispersion models

The transport and mixing of conservative solutes is investigated within a control volume

V , which represents a generic set of hydrologic pathways involved in the terrestrial part

of the hydrologic cycle. Examples are the root zone of a plot where infiltration occurs, a

hillslope transect fed by rainfall, a gaining channel reach, a small headwater catchment

or a combination of hillslopes arbitrarily arranged around a complex river network

(Figure 3.1).

Following a setting analogous to that employed by Dagan [1989], solutes are in-

troduced into the control volume through a given atmospheric or hydrologic carrier,

and are then temporarily stored into V until they eventually leave the control volume

through its boundaries ∂V . The portion of ∂V through which the water particles are

allowed to leave is termed ∂Vout. Other portions of ∂V , instead, can be characterized by

a no-flux boundary condition which incorporates the effect of physical barriers and/or

confining units (e.g., deep impervious surfaces or divides for hillslopes/catchments, re-

goliths and bedrocks). The input/output solute fluxes (φin(t) and φout(t)) are linked

to the solute storage M(t) through the mass balance equation, which in the absence
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Figure 3.1: Sketch and Lagrangian representation of a catchment control volume.

of reaction/degradation processes can be written as: dM(t)/dt = φin(t) − φout(t).

In what follows, reactive transport is not considered, in order to focus on mixing pro-

cesses. Moreover, the mass input to the system is assumed to be known, whereas the

time-variable solute storage and the mass outflow can be computed from the underlying

Eulerian velocity field v(x, t), which is in general dependent on a 3D space coordinate

x and time t. The Lagrangian equation for the trajectory Xt(t) of a single particle

injected in t0 from a prescribed initial position x0 thus obeys the implicit equation [see

Cvetkovic and Dagan, 1994]: dXt/dt = v(Xt, t), with Xt = x0 for t = t0 (where the

dependence of Xt on t0 and x0 has been omitted for simplicity). The velocity field can

be suitably decomposed into a mean advection u, resulting from the integration of v

over a given time-lag and within prescribed regions of V , plus some fluctuations u′. The

vector u′ represents the variability of the velocity field at spatial and temporal scales

smaller than those employed to define the mean advection. When the mean flow u is the

(constant) long-term expectation of v over the whole control volume, the fluctuations

are in general both space- and time-dependent and incorporate the dispersive effect of

all processes contributing to the spreading of the solute plume within V . This includes

molecular diffusion, pore-scale dispersion, turbulence in channels, space-time patterns

of velocity as well as catchment-scale geomorphologic and kinematic dispersion [Rinaldo

et al., 1991; Rodríguez-Iturbe and Rinaldo, 1997]. Typically, however, due to the hierar-

chical nature of dispersive processes, the effect of large-scale mechanisms overwhelms the

ones produced by smaller-scale velocity fluctuations. In other circumstances, instead,

the mean advection u may be a local (spatially and temporally distributed) velocity

field resulting from the integration of v over smaller-scale representative elementary

volumes (REVs), and the fluctuations u′ embed the local diffusion within each REV,

which bears a negligible effect on large-scale transport properties in most cases [Fiori ,
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1996; Jankovic et al., 2009].

In hydrologic pathways, the spatially distributed nature of injections (which typically

occur over entire catchment areas through precipitation, or along the course of complex

river networks through lateral subsurface flow), jointly with the heterogeneity of the

trajectories, determines the spreading of the solute plume within V , which is here

quantified through the displacement distribution for the solute particles g(x, t|t0) [L−3].

The distribution is here intended as a probability density function (pdf), such that

g(x, t|t0)dx quantifies the probability for solute particles injected in the control volume

in t0 to be at time t within the infinitesimal volume dx around x ∈ V . The conditioning

of the pdf on t0 highlights the general transient character of the formulation, but will

be hereafter avoided in the notation unless strictly necessary.

In the presence of continuous particles’ trajectories, the displacement pdf g obeys

the Forward Fokker-Planck equation [e.g. Gardiner , 1983], which can be written as:

∂g(x, t)

∂t
+∇ · [u(x, t) g(x, t)] = ∇ · [D(x, t) ∇g(x, t)] (3.1)

where D(x, t) is a space-time dependent dispersion tensor related to the covariance ma-

trix of the velocity fluctuations u′ with respect to the mean convection (see, for a hy-

drologic perspective, Rinaldo and Rodriguez-Iturbe [1996]). According to the advection-

dispersion model given in equation (3.1), the output flux is given by the integral through

the boundaries ∂Vout of convective and dispersive flux:

φout(t) =

∫

∂Vout

[u(x, t) g(x, t)−D(x, t) ∇g(x, t)] ·n dσ , (3.2)

where n is the unit vector normal to ∂V . For passive solutes which are simply advected

by the flow field, solute molecules are only dispersed by the heterogeneity of the velocity

field. Hence, the concentration field is directly related to the displacement distribution.

In particular, the solute concentration observed in x at time t, C(x, t), due to an

impulsive input in t0, is proportional to the relative number of particles residing in x

at time t: C(x, t) = mg(x, t|t0), where m is the solute mass injected in t0 and g the

displacement distribution, derived by solving equation (3.1) with a delta-Dirac initial

condition. In case of continuous mass input, instead, the linearity of the equation

allows the overall concentration field to be expressed as the convolution between the

displacement distribution of a single pulse injection (g(x, t− t0|t0)) and the underlying

input forcing (φin(t)):

C(x, t) =

∫ t

−∞

φin(t0)g(x, t− t0|t0)dt0 . (3.3)
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The primary focus of this work is on the age of solute particles moving within the

control volume, which can be quantified by means of their residence time, TR. The

residence time of each particle stored in V is defined as the time spent by the particle

inside V since its entry up to current time. Hence, the residence time of the stored

particles grows in time due to aging. In the case of a single instantaneous injection taking

place at t0, the age of the particles traveling through V is uniform and independent of the

position, thereby implying that TR = t−t0 for all stored particles. In case of a continuous

mass input, however, particles with different ages are found in the same position at a

given time. In this instance, a proper characterization of the age distribution of the

particles residing in a prescribed position at a given time can be achieved using the

mass age density, ρ(x, TR, t) [M L−3 T−1], first introduced by Ginn [1999]. Formally,

ρ(x, TR, t) dx dTR quantifies the solute mass with age TR ∈ (TR, TR+dTR) contained at

time t in the infinitesimal volume dx around the position x ∈ V . Here, to stress the link

with solute particles displacement, ρ is seen as a time-dependent bivariate distribution

of residence times and (stochastic) displacements, hence investing ρ with a probabilistic

meaning as well. The link between ρ and g is provided by the following equation:

ρ(x, TR, t) = φin(t− TR)g(x, t|t− TR) , (3.4)

which states that the particles residing around x at time t have an age nearly equal to

TR if and only if they entered V in t− TR. Equation (3.4) represents the fundamental

link between the formulation of transport proposed by Dagan [1989] and the water age

theory developed by Ginn [1999]. In fact, combining equations (3.1) and (3.4), after

some manipulation (Appendix A.1), yields:

∂ρ(x, TR, t)

∂t
+

∂ρ(x, TR, t)

∂TR

+∇ · [u(x, t) ρ(x, TR, t)] = ∇ · [D(x, t) ∇ρ(x, TR, t)] . (3.5)

which takes the same mathematical form as the water age equation derived by Ginn

[1999]. Equation (3.5) defines the combined dynamics of age and position of solute

particles moving within V by means of continuous trajectories (thus obeying Fokker-

Plank equation). This equation has a form similar to the advection-dispersion equation,

the major difference being that an extra-dimension (the residence time) is added to the

problem, requiring the introduction at the left-hand side of a convective term with unit

speed in the age domain which accounts for the aging of the stored particles. Note

also that, owing to the general transient formulation, the same equations are suitable

to describe the age dynamics of water (instead of solutes), provided that solute mass

fluxes are replaced with water mass fluxes.
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3.3 Travel/residence time distributions and age selection

The formulation described in the previous section quantifies in a spatially explicit setting

the coupled dynamics of solute (or water) age and displacement based on the knowledge

of the velocity field, which induces solute dispersion and age mixing. Such a framework

proves useful in tracking the spreading of solute plumes in groundwater and oceans.

However, in some circumstances one may not be interested in the pointwise specifica-

tion of the underlying concentration field, the primary focus being the identification of

large-scale patterns. This can be done by shifting the focus from the age distribution of

the particles residing at any point x ∈ V , to the age distribution of particle samples be-

longing to prescribed large-scale regions of V , which thus represent spatially-integrated

descriptors of the underlying transport processes.

Hydro-chemical studies usually focus on two different types of large-scale sampling

of the solute storage: i) the whole collection of particles stored within V at a given

time, and ii) the fraction of particles leaving the system as φout at a given time t. In

the first case, we are interested in quantifying the distribution of the ages in storage

within the control volume V at a given time, independently on their specific position.

This distribution is typically indicated in catchment hydrology as the residence time

distribution, pS(TR, t) [Botter et al., 2011]. The distribution of residence times at a

given time t can be obtained from the integration of ρ over V as:

pS(TR, t) =
1

M(t)

∫

V

ρ(x, TR, t)dx . (3.6)

where the overall solute storage M(t) represents the proper normalization constant,

which allows to comply with condition
∫

∞

0
pS(TR, t)dTR = 1. In the latter case, instead,

the considered sample is constituted by those particles leaving the system at a given time

t. In this case, sampled particles cannot grow any older because they leave the system.

Hence, their residence time at time t (the time of exit) is their maximum residence time

in V , which is usually termed travel (or transit) time (TT ) in catchment hydrology.

The travel time is thus the time elapsed from entrance to exit of a given solute particle

in the control volume V . The distribution of travel times for the particles leaving the

system at time t, hereafter termed (backward) travel time pdf pQ(TT , t, quantifies the

ages sampled by the output flux through the control surface ∂Vout. pQ(TT , t) can be

obtained by integrating over ∂Vout the age distribution associated with the (convective

and dispersive) output fluxes at time t (see equation (3.2)):

pQ(TT , t) =
1

φout(t)

∫

∂Vout

[u(x, t) ρ(x, TT , t)−D(x, t) ∇ρ(x, TT , t)] ·n dσ, (3.7)
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where φout(t) represents the size of the sample and acts as a time-variant normalizing

constant. Note that, based on the link between g and ρ given by eq. (3.4), travel and

residence time distributions can be equivalently expressed as function of g (Appendix

A.2). These alternative expressions will be later used for the computation of travel and

residence time distributions shown in Section 3.5.

The family of time variant residence and travel time distributions are key descrip-

tors of large-scale transport properties and can be used to calculate the mean solute

concentration of the storage and the concentration of the output fluxes, based on the

knowledge of the solute input [Rinaldo et al., 2011, equations (2) and (5)]. From a

kinematic viewpoint, these distribution provide important integral information on the

age of the solute particles residing within V and near its boundaries.

If equation (3.5) is integrated over the whole control volume V (similarly to Chen

[1971] in chemical reactors context), after using the divergence theorem and equations

(3.6) and (3.7), we obtain the so called Master Equation for the residence time distri-

bution, which reads [Botter et al., 2011]:

∂[M(t)pS(TR, t)]

∂t
+

∂[M(t)pS(TR, t)]

∂TR

= −φout(t) pQ(TR, t) (3.8)

Equation (3.8) has the same meaning of equation (3.5), the only difference being its

spatially integrated nature. Note that, by definition, particles composing the input flux

are characterized by TR = 0 at the moment of their entrance. Hence, differently from

what happens in a spatially distributed setting, the input flux is only involved in the

boundary conditions on the residence time domain of eq. (3.8). The Master Equation for

the residence time distribution provides a robust linkage between the temporal evolution

of the ages stored and those removed from the system by the output fluxes. Equation

(3.8) shows that the travel and residence time distributions are mutually dependent,

and that their shape is strongly affected by the dynamical nature of the underlying

fluxes and storages.

A second independent linkage between residence and travel time distributions can

be deduced directly from the kinematic relationship defining pT and pS (equations (3.6)

and (3.7)). Whenever at time t there exists an age τ for which all over the control

volume ρ(x, TR = τ, t) = 0 (i.e., the age τ is not represented in the storage, e.g.

because φin(t− τ) = 0), then pS(τ, t) shall be be necessarily null, which in turn implies

pQ(τ, t) = 0. The ages sampled by the output flux must be indeed chosen among those

available in the storage. The above ansatz can be mathematically expressed as [Botter
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et al., 2011]:

pQ(τ, t) = pS(τ, t)ω(τ, t) (3.9)

where ω is called StorAge Selection (SAS) function, and represents the preference of

the output flux toward the different ages τ potentially available in V . Equation (3.9)

states that the chance that any age has of being sampled by φout at a given time t can

be thought of as the product between the availability of that age (expressed by pS) and

the preference of the output for sampling that age (expressed by the SAS function ω).

Either low availability or low preference thus imply that a given age should be poorly

represented in the output flux. In cases where u and D are known, the SAS functions ω

can be explicitly linked to the underlying flow field. If we divide both sides of equation

(3.9) by pS , and we make use of equations (3.6) and (3.7) to specify pS and pQ as a

function of ρ, the following result is obtained:

ω(τ, t) =
pQ(τ, t)

pS(τ, t)
=

M(t)

φout(t)

∫

∂Vout
[u(x, t) ρ(x, TR, t)−D(x, t) ∇ρ(x, TR, t)] ·n dσ

∫

V
ρ(x, TR, t)dx

.

(3.10)

Equation (3.10) (which holds for pS(τ, t) 6= 0) explicitly shows that the SAS functions

are linked to the heterogeneity of the mass age density. In particular, equation (3.10)

suggests that even though ρ is not spatially uniform, whenever the surface integral at the

numerator is well representative of the volume integral at the denominator, the resulting

SAS functions can be nearly constant with τ , implying that the age distribution of the

particles leaving V is similar to that of the whole storage (pQ(τ, t) ≃ pS(τ, t)). In the

following, the relationship between the kinematics of the flow field and the mixture of

ages in the output fluxes is analyzed through the underlying SAS functions ω.

Besides theoretical importance, practical implications of the kinematics of age mix-

ing should not be underestimated. The emergence of universal behaviors for the SAS

functions under simplified controlled settings, can significantly improve our ability to

model complex hydrologic pathways where the spatial distribution of the velocity field

is typically unknown and the underlying SAS functions need to be specified based on

some assumptions. Simplified geometries and kinematic fields of the type investigated

here clarify the link between dispersion and age selection and may ultimately lead to

general analytical expressions for the SAS functions (eq. (3.9)). This would allow

to solve equation (3.8), yielding the related residence/travel time distributions, which

could eventually be tested against hydrochemical observations in different real-world

hydrologic settings [van der Velde et al., 2012; Bertuzzo et al., 2013; Benettin et al.,

2013b].
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The advantage of this general procedure is threefold. First, robustness to impact

of heterogeneity and computational efficiency is significantly improved with respect to

standard distributed modeling approaches, owing to the spatially integrated setting

and the use of analytical expressions. Second, differently from standard approaches

where the shape of the underlying travel time distribution is pre-specified, the temporal

fluctuations of residence and travel time distributions and their reciprocal consistency

(equation (3.8)) are automatically taken into account. Third, the SAS functions can be

easily interpreted on physical grounds, giving insight on age selection processes taking

place in catchments e.g. by facing even scanty hydrochemical observations. For instance,

ω ≃ const(τ) implies no selective preferences for the different ages available, while

increasing (or decreasing) SAS functions would imply enhanced preference toward older

(or younger) ages in storage.

3.4 Application to 1D advection-dispersion models

In this section, an illustrative example of the theory described in Sections 3.2 and 3.3

is provided. As the purpose is that of revealing some leading age dynamics, equation

(3.1) is solved over a one-dimensional spatial domain and under the assumption of uni-

form and constant velocity and dispersion. This is a common assumption in catchment

hydrology for the description of single hillslopes or channels [e.g. Beven et al., 1993;

Kirchner et al., 2001], even though to develop a diffusive regime with constant D in

any heterogeneous flow field, one has to travel several correlation lengths of heteroge-

neous properties [Dagan, 1989]. Nevertheless, more involved solutions could be derived

numerically for the desired domains and velocity fields [see e.g. Soltani and Cvetkovic,

2013]. Note that as the carrier flows steadily, travel time analysis is only allowed for

carried solutes. Within this setting, the solution for g(x, t) is a function of two variables

and equation (3.1) simplifies to:

∂g

∂t
+ u

∂g

∂x
= D

∂2g

∂x2
. (3.11)

Analytical expressions for the displacement distribution g(x, t) are thus derived for

suitable initial and boundary conditions and then used to calculate all related

travel/residence time distributions. The classic solution to equation (3.11) refers to

the case of an impulse injection of mass into x = x0 advected and diffused over an

infinitely-long domain, where the solution goes to zero at the boundaries. The basic
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solution g0(x, t) reads:

g0(x, t) =
1√
4πDt

exp

[

−(x− x0 − ut)2

4Dt

]

(3.12)

Equation (3.12) is derived for an infinite domain and may not be appropriate for most

practical applications, where the solution needs to be confined (say, to [0, L]) due to

the finite size of the control volume. Moreover, the computation of travel times is only

meaningful in the presence of a first-passage time boundary at the domain outlet [Cox

and Miller , 1978]. The choice of proper boundary conditions (BC) for finite domains is

discussed in the literature [see Kreft and Zuber , 1978; Delhez et al., 2004; Charbeneau,

2006], but it is often overlooked in catchment hydrology. Here, a no-flux condition

is imposed in x = 0 to represent any upstream physical impediment. This reflecting

barrier condition can be neglected in case of high advection compared to dispersion

(i.e. Péclet numbers Pe > 10) [Rinaldo et al., 1991], but becomes crucial in case of

Pe ≤ 1, a likely occurrence in subsurface environments. If no reflecting barrier is used,

a considerable mass loss occurs at low Pe due to the upstream dispersive flux, which

can be quantified by integrating g0 over [0,+∞]. The boundary condition at x = L,

instead, must be representative of the outlet where the outflows are typically measured.

This BC is here described introducing an absorbing barrier in x = L. Such a condition is

the necessary basis for a proper identification of travel times [see Dagan, 1989; Rinaldo

et al., 1991] because if particles were allowed to re-enter the volume after they left,

travel time would be indeed undetermined. The effects of the absorbing barriers are

relevant at any Péclet number.

The initial condition (IC) that will be explored is the impulse injection in x = x0 = 0

at t = t0 (with t0 = 0, for simplicity). This IC forms the basis for successive extensions to

continuous and/or spatially distributed injections. The problem that will be addressed

is then defined by the following set of IC and BCs:

g(x, 0) = δ(0); ug(0, t)−D
∂g(0, t)

∂x
= 0; g(L, t) = 0. (3.13)

The solution to this linear problem is fully developed in Appendix A.3.

Based on the solution g(x, t), the breakthrough curve (or normalized mass flux at

the outlet) can be calculated for each injection [see Dagan and Nguyen, 1989]. The

stationarity of the flow field implies that each mass injection is transported towards the

outlet regardless of the specific injection time. Indeed, the solution g is stationary and

each input produces the same (normalized) mass flux, which is a function of t− t0 only.

Normalized mass fluxes are shown in Figure 3.2 for different Péclet numbers (Pe =
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Figure 3.2: Breakthrough curves of the system described in section 3.4, for different Péclet

numbers. The x-axis is scaled to mean advection time L/u.

Lu/D). Note that, due to the specific boundary conditions used in the simulation, in

case of low Pe particles are rapidly dispersed throughout the domain, so they rapidly

reach the absorbing barrier resulting in early breakthrough curves.

3.5 Results

The setting described in section 3.4 allows for the analytical solution of g(x, t). Hence,

the corresponding travel and residence time distributions can be readily calculated by

using expressions from Appendix A.2. Stationarity of the normalized mass flux (shown

in the previous section) does not imply, in general, stationary travel time distributions

pQ , as the latter depend not only on the flow field but also on the sequence of injections

and the implied temporal evolution of the storage [van der Velde et al., 2010a; Rinaldo

et al., 2011; Heidbuechel et al., 2012; Hrachowitz et al., 2013]. Stationary distributions

are instead obtained in case of stationary injection (φin = const), where pQ equals the

normalized mass flux (equation A.5). This is emphasized in figure 3.3a, where different

distributions are calculated at different times in a conceptual experiment where mass

input varies according to a damped oscillation in time. The shape of pQ is strongly

influenced by the sequence of previous mass inputs, thereby resembling a sinusoidal

shape. Moreover, as soon as stationarity is reached (i.e. when outflows balance inflows,

implying constant mass within the volume), distributions collapse into the stationary

breakthrough curve of the system. Residence time distributions, pS (eq. (A.4)), behave

similarly because the relative abundance of each age within the control volume is driven
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Figure 3.3: Travel (a) and residence (b) time distributions evaluated at different times for a

system characterized by Pe = 1 and forced by oscillating non dimensional input. Insets show

fluxes/storage evolution during the entire simulation and indicate the four instants at which

distributions were extracted.

by mass inputs, thus making the distributions highly time-variant (Figure 3.3b).

The shape of the ω-functions can be tracked by comparing the behavior of pQ and

pS at the same times (eq. (A.6)). Note that, as the dependence on the input flux

vanishes, the shape of the functions is only driven by g(x, t), which is time- independent

in this case. The presence in eq. (A.6) of both resident and outflowing mass only

acts as a scaling factor and in most of the analyzed cases it displays a small range

of variation, making ω almost stationary. This is clearly shown in Figure 3.4, where

travel/residence time distributions and SAS functions are calculated for different types

of input fluxes. The Figure evidences how the same SAS functions can underlie radically

different travel time distribution shapes. Indeed, as SAS functions are governed by the

characteristics of the flow field (namely, the stationary solution g), their shape depends

on the relationship between dispersion and advection which is quantified by the Péclet

number. This concept is further reinforced by the plots shown in Figure 3.5, where the

functions pQ, pS and ω corresponding to different Pe numbers are reported in case of

Poissonian injections of mass. At any Pe, the youngest resident ages are not sampled

by the outflows because of the time-lag required to travel from injection point x0 to

the absorbing barrier. Therefore, the youngest ages contribute to the residence time

distribution (as they are available in the storage), but are not represented in the travel

time distribution because they are poorly sampled by φout. For high dispersion (say,

Pe ≤ 1), the range of ages where this discrepancy is significant is narrowed. For higher

Pe, the shift between the two distributions increases, resulting in ω functions that are

progressively shifted to the right and markedly peaked, indicating preferential affinity

for older resident particles.
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Figure 3.4: Travel/residence time distributions and SAS functions for a system characterized

by Pe = 1 and forced by oscillating (a) and poissonian (b) input. Insets show input sequence

up to sampling times (t = 1.6 and t = 2 in (a), t = 2 in (b))

3.6 Discussion

The results shown in Section 3.5 indicate that the structure of age selection emerging in

advection-dispersion models is primarily controlled by the relative magnitude of the dis-

persion coefficient, quantified by the underlying Péclet number. Figure 3.6 summarizes

the pattern exhibited by the SAS function defined through equations (3.9) and (3.10)

for selected representative values of Pe. The ages along the x-axis are normalized to a

reference timescale, corresponding for each case to the time required to recover 99% of

the solute mass. The plot has been obtained under steady state conditions (φin = φout),

implying that the age-selection functions are time-invariant, but a similar pattern can

be observed also in transient input conditions. The horizontal line ω = 1 corresponds

to the random sampling [see Benettin et al., 2013b, par. 18] where all ages are sampled

according to their relative abundance in the control volume. Figure 3.6 evidences that

convection processes dominate for high Pe, such that the age selection is reduced. Un-

der such circumstances, only the oldest solute particles in storage are flushed out of the

control volume, as implied by the sharp increase of the age function ω (in analogy to

what happens in piston-flow conditions [Botter , 2012]). Conversely, for decreasing Pe

numbers, the shape of the SAS functions flattens, and most of the ages available in the

control volume are sampled in the same proportion as their availability (with the excep-

tion of the youngest ages, which are systematically undersampled due to the distance

between the injection point and the absorbing barrier). Figure 3.6 thus shows that the

assumption according to which residence and travel time distributions have the same

shape - first introduced by Botter et al. [2010] and later used in Bertuzzo et al. [2013] and
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Figure 3.5: Travel/residence time distributions and SAS functions for different Péclet num-

bers, forced by poissonian inputs.
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Figure 3.6: SAS functions for different Péclet numbers. To allow comparisons, residence

times were rescaled to the relative time required to recover 99% of the solute mass.

Benettin et al. [2013b] - may be a reasonable approximation for advection-dispersion

models with enhanced dispersivity (say, Pe < 5).

A second point worth clarifying relates to the key differences found between the

random-sampling scheme mentioned above and an idealized well-mixed reactor where

the spatial gradients of solute concentration are disregarded and the output concentra-

tion is equal to the average concentration in the control volume. A well-mixed system

of the latter type behaves by definition as a random sampler. Nevertheless, outflows

may sample stored ages proportionally to their relative abundance even in systems far

from resembling well-mixed reactors. Hydrologic media with enhanced dispersion (e.g.

a hillslope) represent a noteworthy example [Rinaldo et al., 2011]. Indeed, even though

for Pe < 5 the age-selection functions ω become almost uniform (suggesting that most

of the available ages in the control volume are randomly sampled by the output flux),

the concentration profile C(x, t) is not uniform at all (Figure 3.7) owing to the temporal

variability of the mass input and to the effects of boundary conditions. The similarity

of residence and travel time distributions in time-variant flow systems, hence does not

imply at all the existence of a single perfectly-mixed compartment where the solute

inputs are instantaneously mixed into the pre-existing storage. This is the essence of

the kinematics of age mixing.

In all the simulations discussed above, solute injection is assumed to take place

pointwise, at a given location along the considered hydrologic pathway. This setting may
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Figure 3.7: Concentration profiles (a) over a normalized spatial domain. Profiles are calcu-

lated at different times, in case of oscillating input. The inset shows the evolution of stored

mass. For the same times, SAS functions (b) are also reported. The simulation is run at Pe = 1.
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be appropriate to describe the sub-vertical movement of solutes in the root-zone (where

the solute injection takes place in correspondence to the soil surface), or to model the

spreading of solutes/contaminants originating from a point source [e.g. Harman et al.,

2011]. However, in other circumstances (like e.g. for the sub-horizontal displacement

of solutes in groundwater receiving inputs as leakage from a root-zone, or for in-stream

transport of chemicals originating from diffuse sources along a complex river network)

the appropriate setting is a spatially distributed injection along the entire domain.

To investigate the impact of spatially distributed solute inputs on the shape of the

SAS functions, a sequence of conceptual experiments was performed in which the mass

input is provided to the system along the entire simulation domain according to a set

of representative patterns (insets of Figure 3.8). For a uniform injection along the

domain (Figure 3.8a) the resulting age-selection function exhibits an evident affinity

for the younger ages, while intermediate and old ages are quite uniformly removed by

the output, exactly as in a random sampling scheme. The observed preference for

younger ages is due to the fact that a fraction of the solute input is introduced into

the control volume very close to the outlet, implying reduced residence times for a

significant fraction of solute mass injected. Indeed, when the specific (per unit length)

mass flux is made linearly increasing along with x (Figure 3.8b), the preference for

younger ages is enhanced, due to the increased number of particles injected in proximity

of the absorbing barrier. Conversely, when the specific mass input is linearly decreasing

with x (Figure 3.8c), the resulting SAS function is remarkably uniform, implying that

the various ages are flushed in the same proportion as they are available in the storage,

with the exception of a limited range of young ages. The most appropriate setting that

needs to be considered in real-world hydrologic applications is strongly dependent on

the physical and morphologic properties of the control volume, and on the nature of

the considered processes (e.g. channel routing, surface/subsurface flow). For instance,

several previous studies have linked the spatial variability of the input to the hillslope

geometry in simple first-order catchments [e.g. Kirchner et al., 2001]. In Figure 3.8d,

instead, the solute spreading along a complex river network is considered, where the

input is uniformly originating from the whole catchment surface. The resulting mass

flux along the river is represented by the downstream increment of total contributing

area whose distribution is known and universal [Rodríguez-Iturbe and Rinaldo, 1997].

This distributed input function (calculated through a Digital Elevation Map of the

upper portion of the Piave river, Italy) exhibits a complex pattern, with a number of

spikes in correspondence of the major tributaries to the main reach. However, such
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Figure 3.8: SAS functions resulting from the application of distributed mass inputs over the

whole domain length. Insets show spatial distributions. Simulations are run for Pe = 1.

heterogeneous inputs are not mirrored by the underlying SAS function, which appears

to be remarkably uniform except for the smallest residence times, which are flushed out

in a larger proportion with respect to their availability due to the presence of a tributary

close to the outlet.

This last example is deemed to be especially relevant to complex catchments where

the overall dispersion is linked to morphological and kinematic heterogeneity [Rinaldo

et al., 1991; Snell and Sivapalan, 1994; Rinaldo et al., 1995; Robinson et al., 1995;

Saco and Kumar , 2004; Botter and Rinaldo, 2003]. The large-scale effect of such het-

erogeneity can be tackled through nested convolutions, which mirror the geomorphic

arrangement of diverse landscape elements around the river network.

3.7 Final remarks

The outlined formulation bridges previous theoretical results from diverse fields, namely

i) the Lagrangian travel time formulation of transport in heterogeneous porous forma-

tions [Dagan, 1989]; ii) the Eulerian groundwater age theory [Ginn, 1999]; and iii) the

Master Equation for spatially integrated residence and travel time distributions [Botter

et al., 2011]. Travel/residence time distributions and age-selection functions have been
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explicitly linked to the kinematics of the flow field, thereby unraveling the nature of

large-scale age mixing in domains where solutes are advected and dispersed.

In spite of the enhanced non-stationarity of travel and residence time distributions

implied by unsteady solute inputs, the type of mixing was found to be markedly in-

variant, and independent on the temporal evolution of the mass input and the storage.

The resulting SAS functions are controlled by the relevant Péclet number. For Pe < 5,

despite the significant spatial gradients of solute concentration along the entire domain,

the resulting mixing functions were found to be substantially uniform, implying that

the different ages available in the control volume are removed at a rate which is nearly

proportional to their relative abundance (random sampling).

The theoretical tools have been illustrated through the application to a simplified

one-dimensional domain characterized by constant advection and dispersion. The same

approach however can be adapted to heterogenous 3D models, to seek characteristic

shapes of the age-selection functions arising from complex (and more realistic) domains.

The observed trends of age mixing dynamics originated in dispersive processes pro-

vide clues for the development of general catchment-scale transport models for hetero-

geneous geophysical systems (like hillslopes, catchments or entire watersheds), where

the velocity field is typically unknown and the definition of explicit, large-scale mixing

assumptions could significantly improve our ability to characterize observed hydrochem-

ical patterns.
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Chapter 4

Modeling the Hupsel Brook

Catchment (NL)

4.1 Introduction

In this chapter, analytical, time-variant travel time distributions are used to model the

leaching of chloride from a small and well-instrumented agricultural catchment in the

Netherlands. The aim of the study is twofold: i) demonstrate the suitability of the

general formulation of transport by travel time distributions to describe a real-world

case study where empirical hydrologic and chemical information is simultaneously avail-

able; ii) identify the uncertainty in the model structure/parameters, and the additional

information gathered when chemical data are added to the hydrologic data during cal-

ibration. The key role played by the time-variance of transport processes (emerging at

different temporal scales) is also highlighted.

4.2 The Random Sampling (RS) scheme

Among the possible age-selection schemes (see Chapter 2), a noteworthy case is the

one where ages are randomly sampled by the output fluxes in the same proportion as

they are stored in the control volume (random sampling). Under this hypothesis, the

age distribution of the outflows is fully representative of the age distribution of the

whole storage, and the solution to the master equation gets particularly simple and

instructive [Botter , 2012]. This framework has been previously called complete mixing

(or well-mixed case), which is however a misleading term in that it seems to imply spa-

tially uniform concentrations in the control volume, as a byproduct of the instantaneous
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mixing of each input with the existing storage. Instead, even though a well-mixed sys-

tem behaves by definition as a random sampler, yet there exist systems far from being

completely mixed where the output fluxes may still sample stored ages proportionally

to their relative abundance. Hence, this mixing scheme is termed random-sampling

(RS), to emphasize that spatial gradients of resident ages (or solute concentrations) are

not necessarily neglected. Physically, the situation is representative of control volumes

where mixing of ages and macro-dispersion are significant. The assumption of random

sampling was proved to be quite robust in single hillslopes characterized by heteroge-

neous soils [Rinaldo et al., 2011]. Moreover, the non-point source nature of the inputs

and the integrative nature of the network geometry [Rinaldo et al., 1991] seem to fa-

vor the robustness of this assumption also in larger catchments with complex network

structures.

Mathematically, the RS assumption implies that the distributions pQ and pET co-

incide with pS (i.e. ωQ = ωET = 1), leading to a major simplification in eq. (2.7) that

gives:
∂pS(TR, t)

∂t
+

∂pS(TR, t)

∂TR

= −J(t)

S(t)
pS(TR, t) (4.1)

and whose general solution is readily available [Rinaldo et al., 2011]. Though relatively

simple, the random-sampling hypothesis has a broad range of applications, especially

when the catchment is schematized as a combination of different water storages in series

or in parallel (as customary on conceptual modeling of the interactions of, say, the root

zone and groundwater). The RS scheme could then be applied to each compartment,

providing an overall non-RS storage. The overall travel time pdf’s would be obtained

from those pertaining to each sub-storage by means of weighted averages (parallel reser-

voirs) or convolutions (in-line reservoirs). This makes the scheme flexible to different

types of applications. In relatively small lowland catchments of the type considered in

this paper, reasonable results can be obtained through the use of two storages, as shown

in Section 4.4.

An advantage of applying RS schemes pertains the computation of the flux concen-

tration of solutes transported through the hydrologic cycle. The equivalence between

travel and residence time distributions implied by the RS hypothesis allows the use of

pS as the convolution operator in equation (2.8). Thus the flux concentration in the

runoff is given by the composition of the different water particles’ concentrations that

are stored within the catchment at any time, yielding:

CQ(t) =

∫

∞

0

C(t− TR, t)pS(TR, t)dTR = C̄(t) (4.2)
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where C̄(t) is the average storage concentration. This brings notable simplifications

in the calculations because the outflowing concentration can now be computed as

C̄(t) = MS(t)/S(t), where MS is the solute mass contained within the storage and

can be obtained, as well as S(t), from a mass balance. Equation (4.2) shows that be-

hind such an apparently easy scheme there is a rather complex process, driven by time-

variant TTD’s. Therefore, the use of the mean concentration does not imply that all the

water particles have the same concentration, but rather that the global concentration

can be used to characterize the outflows. This makes transport modeling easier from a

computational point of view, because all mass leaving a RS storage can be computed

as the product between the output water flux Q(t) and the average storage concentra-

tion C̄(t). Were this approach extended to a multi-storage system, each compartment

would be characterized by a different average concentration that also characterizes the

corresponding outflows.

4.3 The Hupsel Brook Catchment

The Hupsel Brook catchment is a small lowland watershed of about 6.5 km2 located in

the eastern part of the Netherlands (Figure 4.1). Due to its geological and hydrogeo-

logical characteristics it has been used as a research catchment since the 1960’s [Wosten

et al., 1985; van Ommen et al., 1989; van der Velde et al., 2009, 2010a,b; Brauer et al.,

2011]. Data series regarding rainfall, discharge, solar radiation, temperature, chemical

concentration, water levels, etc. are available at different time scales. In particular,

more than 25 years of hourly discharge data at the outlet are available.

Typical of much of the Netherlands, the climate of the study area is semi-humid

(annual rainfall about 700-1000 mm) with rare snowfall events in winter. Seasonality

is quite marked. Summers are relatively dry and evapotranspiration is predominant,

while winter is wet and characterized by a soil water content that is close to saturation.

Intense agricultural use dominates the hydrologic and biochemical characteristics of the

catchment. The crop fields are densely drained by ditches and almost 50% of the land

is artificially drained via a tile drain network. Overland flow is mainly due to satura-

tion excess, which is frequently observed in winter and it is estimated to contribute,

depending on the period, between 25% and 40% of total catchment discharge [van der

Velde et al., 2010c, 2011]. The response of the catchment is quickened also by the high

efficiency of the tile drainage network. Due to the small size of the catchment, discharge

is relatively low (average flow is about 0.070 m3/s) with highest peaks rarely reaching
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Figure 4.1: Sketch of the Hupsel Brook catchment.

2 m3/s. Nutrients like nitrates, phosphates and chlorides are introduced into the soil

in the form of manure and fertilizers during the fertilization period (March to Octo-

ber). Regional estimates of the inputs clearly show a decreasing trend in agricultural

loads: chloride decreased from about 250 kg/ha in 1983 to less than 130 kg/ha in 2008

(-48%) [van der Velde et al., 2010a]. Chlorides stemming from atmospheric sources are

expected to be around a few mg/L, providing a negligible contribution if compared to

uncertainty in anthropogenic loads.

In this study, one year of available chloride measurements in the discharge, from

May 2007 to May 2008, are considered. Therein, samples have been taken with irreg-

ular frequencies of about one week. The mean over the measured period is about 30

mg/L, which is higher than the estimated input concentration during the preceding

five yers (about 18 mg/L). Since chlorides are known to be non-reactive, the apparent

imbalance between input and output is to be first addressed. This is a classical problem

when dealing with chlorides [Neal et al., 1988] and can be caused by a set of different

reasons such as dry and occult deposition [McMillan et al., 2012; Page et al., 2007],

presence of forested areas [Guan et al., 2010; Oda et al., 2009] or evapoconcentration

during dry seasons. In the Hupsel Brook Catchment, forests are almost absent and as
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wet deposition is very low (1-2 mg/l), also dry deposition is expected to be of the same

order of magnitude, thus not sufficient to explain the 12 mg/l gap between output and

input. The presence of some chloride concentration in soil waters can have a positive

influence on vegetation [Xu et al., 1999], but a potential toxicity is expected at such

high concentrations. Under stress conditions, the plant metabolism can cause the tran-

spiration of chlorides at a lower rate than water, resulting in a global increase of stored

water concentration. Given annual water balance, according to which approximately

50% of annual rainfall goes into evapotranspiration, if plants uptake concentration were

on average not higher than 10 mg/l, discharge concentration would increase up to

approximately 30 mg/l, which would be amply sufficient to close the mass balance.

Following similar conjecture, a successful approach was adopted by van der Velde et al.

[2010a] who assumed plants to uptake chlorides at a fixed concentration, whose value

was derived through calibration. Resulting value was significantly lower than discharge

concentration and allowed balance closure. On a similar approach, a time-dependent

uptake rate was used here to simulate time-variant evapoconcentration dynamics, as

explained in section 4.4. In addition to its theoretical basis, such an approach can be

an effective tool to take into account the uncertainties in input estimation.

Observed concentration, besides flat long-term mean, shows short-term fluctuations

that, compared with discharge, suggest a negative correlation between Q and C (Figure

4.2). This is a typical behavior of chlorides in case water injections have lower con-

centration than baseflow [see Neal et al., 2012], indicating that most of the discharge

right after intense rainfall events is comprised of event water contributions. This further

confirms the general affinity of lowland catchment responses for relatively new water

suggested by van der Velde et al. [2012]. Finally, it is noted that concentration remains

high even in winter period when fertilizations are suspended and discharges (that result

in solute depletion) are higher.

4.4 Model

4.4.1 Hydrologic Model

A key-feature of the test catchment is the strongly non-linear dependence of the outflows

on soil moisture content [Brauer et al., 2011]. A soil moisture balance for the root zone

[Rodriguez-Iturbe et al., 1999; Laio et al., 2001] was set up as :

nZr
ds(t)

dt
= I(t)− L(s(t))− ET (s(t), t) (4.3)
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Figure 4.2: Measured discharge and chloride concentration from May 2007 to May 2008.

Vertical bars highlight the matching between discharge peaks and flux concentration troughs

where n is porosity, Zr the root zone depth [L], s the soil moisture content, I is infil-

tration into the root zone [L/T], L is the leakage to lower horizons [L/T] and ET is

evapotranspiration flux [L/T]. The notation for L and ET stresses the dependence on

s. The stored volume in the root zone (nZrs) is named Srz hereafter. As described

in Section 4.3, fast hydrological response is due to artificial tile drainage network and

to overland flow (mainly driven by soil water saturation excess). In both these two

processes, water flux can be associated with soil moisture content, so all runoff con-

tributions flowing out of the root zone were grouped together in a single non-linear

leakage term, that was modeled through the Clapp-Hornberger equation [Clapp and

Hornberger , 1978]. The redundancy of a separate modeling of the overland flow was

confirmed by preliminary numerical experiments. Infiltration flux I was then set equal

to rainfall intensity J .

Starting from eq. (4.3), four different models with increasing degree of non-linearity

were tested (Figure 4.3). Model (a) is made of a single root zone storage that directly

leaks into discharge. The other three models include deep storage that accounts for

groundwater flow. This is obtained by partitioning the leakage from the root zone

into two components: one producing the subsurface discharge Qrz and one feeding

the groundwater storage. Slow flows Qgw originating from groundwater are modeled

according to the linear reservoir scheme: Qgw = kSgw, while the overall discharge is the
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Figure 4.3: Tested models representation. Mass terms are colored in red. Mass fluxes are

always associated with a corresponding water flux (e.g. φrz is mass flux corresponding to Qrz).
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Figure 4.4: Summary of model equations for the 4 models tested in this paper

sum of subsurface and deep components Q(t) = Qrz(t) + Qgw(t). The key difference

between the three multi-storage models lies in leakage partitioning. Model (b) uses a

constant partition, while model (c) uses a time-variant partition that is a function of

the soil moisture content. Finally, model (d) has two separate leakages from the root

zone, to separate the processes giving birth to fast response flows (preferential pathways,

drainage network, etc) from those that produce deep percolation and groundwater flow.

The main equations implemented within each model are summarized in Figure 4.4.

4.4.2 Transport Model

A transport model for chloride was coupled to the hydrologic model on the following

premises. Solute main input to the catchment is the mass introduced through fertiliza-

tion. Mass loads were calculated by dividing annual estimates into the total number

of hours characterizing fertilization season. Loads were introduced during every hour

of the fertilization season but were assumed to remain immobile in the topsoil until

a new rainfall pulse mobilized them through infiltration. Therefore, the concentration

of a new rainfall pulse was obtained as the total mass loaded since previous precipita-

tion, divided by rainfall depth. An additional constant chloride concentration in rainfall

(wet deposition), though very low compared to uncertainty in fertilization loads, was

accounted for and set to 1.5 mg/L [van der Velde et al., 2010a].

The main assumption of the transport model is that both root zone and groundwater

storage are random sampled. This allows the numerical computation of the outflowing
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concentrations to be simplified by the introduction of mass balances that implicitly

incorporate the time-variant structure of the convolution operations, as shown in eq

(4.2). Such a convenient implementation is used throughout the calibration process

(see Section 5). Travel time distributions are then calculated on the calibrated model,

to infer their time-variant properties.

Under the RS hypothesis, the two modeled storages can be characterized by average

concentrations C̄rz(t) (root zone) and C̄gw(t) (groundwater) respectively. Chlorides are

assumed to be conservative (no reaction takes place along with the transport), but they

are assumed to be only partially uptaken by plants because of their potential toxicity

on plants metabolism [Xu et al., 1999; Taiz and Zeiger , 2010]. Plants are assumed to

sample particles from the root zone with concentration CET that is proportional to

the average concentration of soil moisture: CET (t) = αC̄rz(t), with α ∈ [0, 1]. During

evapotranspiration, solutes leave the system at a lower rate than water, resulting in an

increase of the average storage concentration. This yields a higher flux concentration

in the runoff offering a possible explanation to the apparent chloride imbalance, as

discussed in Section 4.3.

Mass balance in the root zone yields:

dMrz(t)

dt
= φJ(t)− φL(t)− φET (t) (4.4)

where Mrz is the chloride mass contained in the root zone and the terms φJ , φL and

φET are mass flows attached to rainfall, leakage and evapotranspiration respectively.

All mass fluxes in eq. (4.4) can be expressed as water fluxes times the corresponding

flux concentrations. Recalling the random-sampling hypothesis for the leakage flow

(CL = C̄rz(t)) and the selective evapotranspiration assumption (CET = αC̄rz(t)) one

gets:
d

dt
(C̄rz(t)Srz(t)) = C0(t)J(t)− C̄rz(t)L(t)− αC̄rz(t)ET (t) (4.5)

where C0 is the initial concentration of rainfall pulses. By expanding the derivative of

the product at left-hand side of equation (4.5) and rearranging the equation, one gets

the differential equation that governs the average concentration C̄rz(t) in the root zone

storage as:
dC̄rz(t)

dt
=

J(t)

Srz(t)
(C0 − C̄rz(t)) +

ET (t)

Srz(t)
(1− α)C̄rz(t) (4.6)

Equation (4.6) shows that average storage concentration is increased/decreased when

initial concentration of rainfall pulses is higher/lower than the resident concentration

C̄rz(t) (first term at right-hand side). Moreover, selective evapotranspiration (second
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Table 4.1: Constant parameters of the four tested models

Parameter Symbol model (a) model (b)(c)(d)

soil porosity [-] n 0.35 0.35

root zone depth [mm] Zr 750 750

soil moisture at wilting point [-] sw 0.11 0.11

soil moisture for runoff triggering [-] s∗ 0.35 0.35

saturated soil conductivity [mm/h] Ksat 100 100

initial groundw. saturated depth [mm] Sgw0
/n – 1000

initial groundw. conc. [mg/L] C̄gw0
– 40

term at right-hand side) induces an increase in C̄rz(t) (recall (1 − α) > 0) which is

stronger when evapotranspiration is more intense.

Models (b), (c), and (d) also employ a groundwater storage that is assumed to

be randomly-sampled with no evapotranspiration occurring within the groundwater

compartment. Provided that output fluxes do not change the storage concentration,

the evolution of average concentration in the groundwater storage is due only to the

leakage input:
dC̄gw(t)

dt
=

Lgw(t)

Sgw(t)
(C̄rz(t)− C̄gw(t)) (4.7)

and the final flux concentration is the weighted average of subsurface and groundwater

flow concentrations:

CQ(t) =
Qrz(t)

Qrz(t) +Qgw(t)
C̄rz(t) +

Qgw(t)

Qrz(t) +Qgw(t)
C̄gw(t) (4.8)

The related water travel time distributions are derived in detail in Appendix A.4.

4.5 Parameters, Calibration and Ranking Methods

Each of the four models tested in this paper requires the determination of the related

parameters. Some of these parameters, common to all the models, were chosen according

to previous works and are summarized in table 4.1. The remaining free parameters

(hydrologic ones plus the selective evapotranspiration factor α) are in number 5 in

model (a) and 6 in models (b, c, d) and have been derived through calibration.

To fully explore the parameters space, a Montecarlo approach is employed [Beven

and Freer , 2001]. For each model, 107 simulations were run with combinations of random

parameters sampled from a uniform prior distribution. The length of the simulation
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Table 4.2: Setup of Montecarlo calibration (CH = Clapp-Hornberger, LS = leakage separa-

tion; GW = groundwater)

Parameter Symbol Parent model min max

max ET warm periods [mm/h] ETmaxw a-d 0.05 0.15

max ET cold periods [mm/h] ETmaxc a-d 0.01 0.06

plants selectivity coeff. [-] α a-d 0 0.6

CH parameter [mm/h] b a, b, c 8 18

CH parameter [mm/h] brz d 5 15

CH parameter [mm/h] bgw d 10 20

LS coefficient [-] ls1 b 0.1 0.9

LS coefficient [-] ls2 c 0.5 1.5

GW coefficient [h−1] k b, c, d 0.1× 10−4 3× 10−4

period is 350 days (from May 2007 to May 2008), which, at an hourly timescale, results

in 8400 simulated timesteps for each run. Initial groundwater average concentration

C̄gw0
was derived from preliminary simulations starting approximately 22 years before

the start of the measurements. The resulting value (40 mg/l) was observed to be quite

stable under different reasonable model settings and initial conditions. Other details

about the setup of the calibration procedure are summarized in table 4.2. In order

to rank model performances, the Nash-Sutcliffe model efficiency was first evaluated for

discharge (NSQ = 1 −
∑n

i=1
(Qi,meas − Qi,calc)

2/
∑n

i=1
(Qi,meas − Qmeas)

2) over 8400

discharge measurements. The Residual Sum of Squares was used instead for chloride

concentration in discharge (RSSC =
∑n

i=1
(Ci,meas − Ci,calc)

2) over the 50 available

chloride concentration measurements.

Models and parameters were accepted if NSQ > 0.75, and the accepted models

were then ranked according to their RSSC score (the lowest RSSC corresponds to the

best performance). The behavioral subset of simulations for the sensitivity analysis was

defined by the first 100 performances of the ranking.

4.6 Results

After calibration, each of the four models was associated with a ranking of the 100 best

RSSC scores. This makes it easy to compare the models in order to select the most

suitable one. A representation of the scores versus the ranking position is shown in

Figure 4.5.
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Figure 4.5: Ranking of model performance according to first 100 Residual Sum of Squares

scores.
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Model (a) performed the worst (i.e. possessed the highest RSS scores), especially

for the first positions of the ranking, showing that the single storage proves too rough

a scheme to correctly reproduce the main mechanisms responsible for the measured

concentration data. Moreover, the score function shown in Figure 4.5 is quite flat,

meaning that the differences in score among different parameter combinations is low,

thus implying that optimal parameter identification is uncertain. Remarkably, were the

focus limited to discharge alone, model (a) would be as performant as the double storage

models. This issue is further discussed in Section 3.6. Models (b) and (c) have similar

performances and clearly outperform the single random-sampling (a) and the double-

leakage (d) models. The pronounced slope of the score function in the region of the

first positions of the ranking indicates that optimal parameter identification is reliable.

Model (d) allows for a clear identification of its parameters, but the performances are

not satisfactory. After the first twenty positions of the ranking it is even worse than

the single random-sampling model. Even though the double leakage was designed to

be flexible enough to simultaneously capture fast and slow subsurface flow processes,

the number of free parameters proved inadequate to meet this purpose. As model

(c) has, on average, the best scores, it is selected as the choice model to describe the

hydrochemistry of the Hupsel Brook catchment.

The posterior parameter distribution of the selected model is represented in Fig-

ure 4.6, suggesting the robustness of the identification procedure in this case. The

corresponding discharge and chloride concentration series from the best 100 model pa-

rameterizations are then compared to observations in Figure 4.7 and Figure 4.8. Mod-

eled discharge series shows a general agreement with the measurements. For low flows

(O(10−2) mm/h, approximately equivalent to 20 l/s) the model tends to underpredict

discharge, with no significant effect on its chemical composition and travel time distri-

butions, because of the negligible impact of low flows on the storage and residence time

distributions. Modeled chloride concentration (Figure 4.8) is able to reproduce the two

main observed features, that are the general fluctuations pattern and the mean value

of about 30 mg/l. The mean value is a direct consequence of the employed evapocon-

centration scheme, which proved effective in simulating the observed difference between

input and output concentrations. The model is less accurate during periods where sep-

aration between fast and slow flow contributions to discharge is more uncertain. This

is visible in the period June-July 2007, as also underlined by the larger deviations of

model simulations among each others.

The reliability of the model allowed a meaningful analysis of the travel time distri-
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Figure 4.6: Sensitivity plots for 100 best performances of the selected model. Parameter

description and range is described in table 4.2.

Figure 4.7: Discharge series modeled according to the selected model (model C). All simula-

tions have Nash-Sutcliffe (NS) score ≥ 0.75. Figure (4.7a) shows best performance in natural

axis while figure (4.7b) shows 100 best performances in semi log-scale
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Figure 4.8: Modeled chloride concentrations for the 100 best performances of the selected

model.

butions that enabled to match the observed concentrations. TTD’s were first calculated

for the two storages separately, and then combined together to get the overall distribu-

tions (eq. (A.17)). As each distribution retains the memory of the hydrologic history

of the system for years, the calibrated model was started 20 years before the beginning

of the available measurements, to ensure the tails of the distributions were properly

calculated. A startup period of 16 years was observed before discharge was made for

more than 99% by water injected into the system after the start of the simulation. This

assured that, over the period 2004-2008, TTD’s were computed over more than 99%

of their age-domain. For this period, the mean value of each distribution was used for

further analysis.

A look into the temporal evolution of mean travel times in the two storages allows an

assessment of the difference in the corresponding characteristic time-scales (Figure 4.9).

The root zone is characterized by a low ratio between storage and flows, meaning that

it is relatively dynamic. Therefore, the storage has short memory of past rainfall events

and mean travel times are easily affected by single events, producing high frequency

fluctuations in the transport features, including the mean (Figure 4.9). Groundwater,

on the contrary, has a much larger ratio between storage and flows, meaning that it

is only affected by long term variability of climate conditions and it is likely to be

characterized by seasonal and inter-annual fluctuations.

The TTD’s of the root-zone and groundwater storages were then combined together

to yield the overall travel time distributions. The mean of the overall TTD shows

a rather irregular behavior, reflecting the continuous interplay between fast and slow

flow contributions to discharge. In contrast with stationary distributions, that are
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Figure 4.9: Mean travel time computed over a four-year period.

characterized by a single mean value, a whole pdf of mean travel times is note here,

with a Coefficient of Variation CV of 0.77 (Figure 4.10). The two peaks of the pdf of the

mean travel times recall the fact that streamflows are a suitable combination of young

(O(100 d)) water from the root zone and old (O(1000 d)) water from groundwater.

The average travel time, though not representative of the actual travel time of the

transported water particles (its frequency is practically zero), is of the order of 1.45

years. This turns out to be slightly lower but very similar to the value of 1.8 years

estimated by van der Velde et al. [2010a]. This difference is due to the different model

structures and to the non-stationarity of the distributions over the years, (TTD’s were

calculated here during a shorter time window with respect to van der Velde et al.

[2010a]).

The highly non-stationary behavior renders rather meaningless, for transport com-

putations, the characterization of catchment travel times through stationary distribu-

tions, as frequently pursued in the literature. Nevertheless, stationary distributions are

entirely meaningful in the context of peak discharges and where no basin-scale transport

is attached to the hydrological component (as the age paradox is immaterial as long as

only the quantity of the runoff water is pursued).

4.7 Discussion

The analysis of TTD’s allows for proper understanding of large-scale, multi-state control

volumes hosting transport processes. Here, it was shown that root zone (i.e. near-
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Figure 4.10: Empirical probability distribution function of the mean travel time in the Hupsel

Brook catchment.

surface) residence times are affected by short-term events, leading to the relatively fast

release of solutes associated with regimes entailing transport times ranging from weeks

to months. Moreover, solutes in the root zone (or whatever is conveniently modeling

the behavior of a near-vertical water and solute circulation) are likely to be quickly

diluted in case of intense rainfall events and almost completely removed in periods with

no fertilization. On the contrary, solutes that reach groundwaters are released at lower

rates and tend to accumulate and persist for much longer times. The combination of

these separate behaviors, together with the time-variant partitioning between discharge

contributions, fully captures the behavior of solutes transported along the catchment.

The framing of this particular model into the general scheme of the Master Equation

for residence and travel time distributions clarifies a mathematical position that may

seem arcane unless dressed by a proper physical meaning.

After intense rainfall events, large amounts of new water enter the root zone. In this

case new water is almost solute-free (even in the presence of fertilization because solutes

get largely diluted), so it causes the average concentration in the root zone outflows C̄rz

to suddenly decrease. According to the model(s), because the main discharge component

right after rainfall events is subsurface flow, solute concentrations in the global discharge

also quickly decreases. This corresponds rather well with the observed concentration

decreases (recall Figure 4.2). Note that this dilution mechanism could be simulated by

a single storage model. However, in such a case, concentration would remain low until

solutes are replenished by new fertilizations. Even so, this would take a long time to

occur and would not happen at all in periods with no fertilization.
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What makes it possible for the model to allow re-growth of the flux concentration is

the presence of deep storage. Solutes in the groundwater tend to persist and accumulate,

so at any time chlorides mainly belong to older fertilizations from many years before.

Also, during wet winter periods the average groundwater concentration remains high

(around 40 mg/L) because past fertilizations are speculated to be more intense [van der

Velde et al., 2010a]). As soon as subsurface contribution to discharge is depleted, the

main discharge source is groundwater flow, which increases solute concentration again.

The use of travel time distributions fosters a deeper understanding that can be of

practical use. It often happens in rural catchments [Aquilina et al., 2012; Ruiz et al.,

2002] that stopping fertilization loads for one or more years does not result in a signifi-

cant permanent decrease of average stream concentrations. According to these results,

the same would occur in the Hupsel Brook catchment. Ceasing fertilizations would af-

fect the root zone storage, mainly because of its short hydrologic memory as underlined

by its relatively short mean travel times. For the same reason, groundwater storage

would hardly be affected. As the average concentration is the byproduct of long-term

dynamics, it is mainly governed by the groundwater storage which hardly responds to

just one or two non-fertilized seasons.

The single-storage model was able to reproduce measured discharge with the same

accuracy as double-storage models. This means that it is appropriate, as commonly

held, in describing the hydrological response but not in describing transport, making

clear the different nature of the two problems. Hence, the ability of the model to

reproduce measured concentration data lies in the double-storage schematization. It

seems reasonable for relatively small and densely drained catchments to schematize both

the root zone and groundwater as separate but randomly-sampled storages. Then the

non-linear and non-stationary partitioning among the storages makes the overall system

strongly non randomly-sampled. In hydrologic practice, however, more storages could

be employed (e.g a “saturated area” storage which can capture the very fast response

of the catchment). This would potentially yield better model performance, but it is

unclear whether improved performance would be justified by the added complexity,

say via Akaike testing. It is remarked, however, that this goes beyond the scope of

this study, centered, as it is, on the inferences of non-stationary travel time tools and

comparative field data analysis on the basic transport mechanisms operating in a typical

catchment setting.
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4.8 Final remarks

The Master Equation for the residence time distribution, keeping track of the temporal

evolution of the ages in storage, has the central role of generator of all the other involved

distributions. What is needed for application is a reasoned choice of input-output

flows, possible chemical reactions and an age-selection scheme. The random-sampling

assumption employed in this study is one of the many possible choices having some key

operational advantages. Results can be tested with different hydro-chemical models and

mixing schemes, at no loss of generality.

Besides theoretical aspects, the theory has found in the Hupsel Brook catchment

a broad space for application. Modeling chloride concentration in discharge led to

understanding and reproducing long term and short term transport dynamics. The

schematization of the catchment by separate randomly-sampled compartments is com-

putationally easy and proved reliable in reproducing measured signals.

As one of the first applications to real catchments, the model was tested on simple

non-reactive solutes. Future applications can be extended to solutes that undergo differ-

ent transport processes, by including proper chemical, physical or biological reactions.
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Chapter 5

Modeling the Hafren Catchment

(UK)

5.1 Introduction

High-frequency datasets prove particularly important for understanding event-scale dy-

namics which may cause rapid fluctuations in stream concentrations [Kirchner and

Neal , 2013]. High-frequency measurements allow the identification of shifts in catch-

ment behavior associated with variations in catchment connectivity caused by drying

and wetting [Tetzlaff et al., 2014; Smith et al., 2013]. Similarly, stream hydro-chemistry

can be used to investigate the role of non-linearities and thresholds in runoff generation

[Detty and McGuire, 2010a; Gannon et al., 2014]. This is especially true in headwater

catchments, where geomorphic effects of river networks [Rinaldo et al., 1991] can be

disregarded and the critical role of hillslope processes is dominant. Hence, the view on

catchments as stochastic dynamical systems [Kirchner , 2009; Botter et al., 2009] favors

the use of a time-variant approaches [Botter et al., 2010; Rinaldo et al., 2011; Botter

et al., 2011; van der Velde et al., 2012; Benettin et al., 2013a; Harman, 2014] towards

travel time distributions.

The availability of high-quality datasets, jointly with extensive information on soil

features and biogeochemistry, make the Plynlimon watersheds an ideal place to test

recent advances in water age theory. In particular, the focus here is analyzing and mod-

eling chloride concentrations at the catchment outlet during one year of high-frequency

measurements, with a view toward clarifying physical processes.

Chloride has been extensively used to investigate transport processes at the catch-

ment scale [Kirchner et al., 2000; Page et al., 2007; Shaw et al., 2008; Oda et al., 2009;
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Godsey et al., 2010; Kirchner et al., 2010; van der Velde et al., 2010a; Hrachowitz et al.,

2013; Benettin et al., 2013b], because it can be often considered as a conservative tracer

[see Svensson et al., 2012]. At Plynlimon, chloride mainly originates from sea salt in

rainfall, cloud water, and aerosol dry deposition, resulting in mean streamflow concen-

trations of about 5−7 mg/l [Neal and Kirchner , 2000; Kirchner and Neal , 2013]. Such a

concentration is significantly higher than background noise, but lower than the toxicity

threshold for vegetation uptake [Xu et al., 1999], implying some active role of plant

uptake in the underlying solute circulation. Still, the impact of vegetation on tracer

transport is poorly understood [Brooks et al., 2010; Penna et al., 2013] and catchment

mixing processes cannot be quantified directly. Thus, hydrochemical models represent a

useful tool to test hypotheses concerning physical processes that drive solute circulation

in river basins.

As in the previous chapter, this study is developed using backward travel time dis-

tributions under the assumption of multiple randomly-sampled (RS) storages. However,

the concept of catchment storage is advanced by introducing the ‘residual’ storage, which

is the portion of storage that does not emerge from simple water balances [Kirchner ,

2009; Birkel et al., 2011].

5.2 Data and study area

The data of this study are from the Upper Hafren catchment, mid-west Wales (UK),

where the Centre for Ecology and Hydrology (CEH) conducted intensive measurement

campaigns (2007-2009), aimed at taking high-frequency water quality measurements in

precipitation and streamflow, spanning more than 40 elements of the periodic table [Neal

et al., 2012, 2013; Kirchner and Neal , 2013]. The watershed is part of the Plynlimon

catchments, which have been extensively studied for the last 40 years, resulting in a

notable body of literature that documents their climatic and morphologic features and

explores their hydrological and hydrochemical behavior [see Kirby et al., 1991, 1997; Neal

et al., 2001; Neal , 2004; Brandt et al., 2004; Marc and Robinson, 2007, and references

therein].

The Hafren catchment (3.7 km2) is subdivided into an upper and lower part (Figure

5.1) corresponding to two distinct landscapes [Neal et al., 2010]. The Lower Hafren

(LH) is a Sitka spruce forest plantation underlain by peaty podzol soils, whereas the

Upper Hafren (UH) is a relatively undisturbed moorland catchment with some wetland

areas. Both UH and LH catchment outlets were monitored during the measurement
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Figure 5.1: Map of the Plynlimon watersheds, obtained from a DTM.
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campaign. Our analysis focuses on the UH because its high-frequency water quality

record is longer. Further information describing the UH can be found in Neal et al.

[2010, 2011]. The contributing catchment is small (1.2 km2) with elevations ranging

from 533 m at the gauging station to 738 m at the upper divides. A peat soil of about

40 cm overlies highly fractured mudstone and shale bedrock. The bedrock gets progres-

sively less weathered with depth, but borehole investigations revealed volumetrically

significant water at depths up to 35 meters and hydrologically active fracture flow at

depths up to 95 meters [Neal et al., 1997; Haria and Shand , 2004; Shand et al., 2005].

The climate is generally wet, with annual average precipitation about 2650 mm.

Although detailed evapotranspiration estimates are not available for UH, extrapola-

tions from surrounding catchments [see Marc and Robinson, 2007] and a simple water

balance based on precipitation and discharge measurements suggest that evapotranspi-

ration may be 15% or less of precipitation. The hydrologic response is fast, with peak

flows typically occurring within one hour of precipitation and with a marked non-linear

relation between storage and discharge, as described by Kirchner [2009].

Chloride inputs are due to sea salt aerosols coming from the Atlantic Ocean, whose

concentration can vary prominently from one storm to the next. The signal is much

damped in discharge due to catchment transport processes that act as a fractal filter and

convert white noise inputs into 1/f noise outputs [Kirchner et al., 2000; Kirchner and

Neal , 2013]. As shown by Neal et al. [2012], streamflow concentration displays time-

varying correlations with discharge (Figure 5.2), with discharge peaks corresponding

to both positive and negative fluctuations in chloride concentrations. This suggests

the presence of a base-flow concentration that is temporarily increased/decreased when

high-flow components are characterized by a higher/lower concentration [Neal et al.,

2012]. The rationale behind this idea will be further explored with the aid of the model

results (Section 5.4).

To avoid some large gaps that occurred in the water quality measurements, the

analysis spans the period from 22 December 2007 to 24 November 2008 (338 days)

and comprises 1161 samples at 7-hour intervals, including a few minor gaps. Over the

same period, hourly rainfall measurements from the Carreg Wen station and 15-minute

discharges at the outlet are available. All water quality data are property of CEH and

are freely available through their Information Gateway (https://gateway.ceh.ac.uk/).
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November 2008).
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Figure 5.3: Conceptual catchment representation.

5.3 Hydrochemical model of Upper Hafren and its param-

eter calibration

A simple hydrochemical model was developed to simulate chloride transport at Upper

Hafren. The model is similar to that used in Benettin et al. [2013b] and is made up of

a hydrological and a chemical component: the hydrological model is needed to estimate

water fluxes and storages over the simulation period, while the chemical model describes

the evolution of chloride concentrations within the catchment and in the outflows.

5.3.1 Hydrologic Model

Previous studies of the Hafren catchment [e.g. Shand et al., 2005; Haria and Shand ,

2006] inspired the schematization of the catchment as a two-layers system, characterized

by a shallow and a deep component (Figure 5.3).

The shallow layer includes both the upper portion of the fractured bedrock and the

soil, where precipitation (J) infiltrates and water leaves as evapotranspiration (ET )
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and leakage (L) (including both lateral and vertical flows, as explained below). All

precipitation is assumed to infiltrate into the soil except when the system is fully sat-

urated. Leakage production is modeled through a non linear storage-discharge rela-

tionship [Brutsaert and Nieber , 1977] of the kind L = aSbrz
rz , where Srz represents the

dynamic water storage of the shallow layer, i.e. the volume of water which is mobilized

during the hydrologic response and can be computed through a hydrologic balance

[Birkel et al., 2011]. A fraction β(t) of the leakage is assumed to flow laterally and

discharge directly into the stream as shallow subsurface flow Qrz, while the remaining

fraction (1− β(t)) recharges the deep groundwater system. Overland flow never occurs

in the model simulation, hence subsurface flow results as the only shallow component.

To ensure that during wet periods a higher fraction of the leakage drains directly into

the stream, the partitioning term β(t) is made storage-dependent and it is computed

as the product between a coefficient β0 and the dynamic storage normalized by the

root zone pore volume Srz(t)/(nZr). Evapotranspiration has a minor role in the Upper

Hafren catchment and was simply assumed equal to a reference value ETref , multiplied

by a temperature-based term that accounts for daily and seasonal variations in vapor

pressure deficit and net radiation. The main model equations are summarized in Figure

5.4.

The groundwater flow from the deep system is likewise modeled through a non-

linear storage-discharge relationship Qgw = aS
bgw
gw , where in this case Sgw represents the

dynamic groundwater storage. The use of four independent parameters to define the

two storage discharge relations (for the shallow storage and the groundwater) leads to

equifinality because different combinations of a and b provide very similar Q-S curves in

the relevant range of discharges that pertain to each partition of the storage. Hence, to

improve the identifiability of the parameters (and reduce their number), the coefficient

a was assumed to be the same in the two storage-discharge relations, thereby removing

one degree of freedom in the system characterization. The different behaviors of the

two systems are then completely defined by the exponents brz and bgw. This arbitrary

choice has little impact on the overall model performance. The deep system is fed by

vertical flow from the shallow storage, while the only output is groundwater discharge,

because evapotranspiration from the deep storage is assumed to be negligible. Note

that, even though for purely hydrologic purposes one non-linear storage would provide

satisfying results, the second storage is crucial to reproducing the observed chemical

transport dynamics [see Benettin et al., 2013b, section 7]. For ease of computation, the

shallow and deep dynamic storages were made dimensionless. The former was scaled to
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Figure 5.4: Hydrologic model equations.

the specific pore volume nZr, while the latter was scaled to a constant, Smax, explicitly

designed to be larger than the maximum modeled Sgw. The normalization also allows

the units of the a coefficient to be mm/h.

5.3.2 Chloride Circulation Model

The chemical component of the model aims at describing chloride concentration dy-

namics in storages and outflows.

The measured rainfall concentration CJ was used as model input after some ad-

justments to account for the adopted sampling arrangement, as described in Appendix

A.6. A second chloride input to the Plynlimon catchments is dry deposition, which is

enhanced by the higher surface area of vegetation [Neal and Kirchner , 2000]. However,

dry deposition was not modeled explicitly because, due to the large size of the funnel,

sampled precipitation is likely to include its contribution.

The measured rainfall concentration CJ was used as model input after some ad-

justments to account for the adopted sampling arrangement, as described in Appendix

A.6. A second chloride input to the Plynlimon catchments is dry deposition, which is

enhanced by the vegetation surface area [Neal and Kirchner , 2000]. However, dry depo-

sition was not modeled explicitly because, due to the large size of the funnel, sampled

precipitation is likely to include its contribution.

As water infiltrates into the soil, it mixes with water already contained in the shallow

storage. The size of this storage has a huge influence on solute circulation, because it

defines the storage capacity of the shallow system (and thus its chemical memory).

The total storage size cannot be computed from hydrologic models, which are sensitive

only to the dynamic storage that is mobilized during the hydrologic response. The

remaining portion of storage, which is not hydrologically active, is usually referred to

as residual storage [Kirchner , 2009] or passive storage [Birkel et al., 2011] and plays

a critical role in the chemical response of watersheds. Hence, in both the shallow and

the deep system the actual storage W (t) is modeled as the sum of a dynamic storage

68



Chapter 5. 5.3. Hydrochemical model of Upper Hafren and its parameter calibration

S(t) and a residual storage W0, which is assumed to be constant for simplicity. The

residual storage is assessed through calibration and, because it has no influence on the

hydrologic response, it can be effectively considered as a chemical parameter.

The outflowing chloride concentration depends on how the outflows sample water

parcels from the storage. This is simulated in the model by assigning the StorAge

Selection function ω(T, t) to the relevant outflows from each compartment. The random

sampling scheme involves a selection function constantly equal to unity (see section

2.3), implying that every age is sampled based on its relative abundance (the larger the

volume of water in storage that shares a given age, the more that age is sampled). Under

this assumption, and neglecting possible effects due to evapoconcentration (see later

discussion on this issue), outflow concentrations can be expressed through Eq. (4.2),

which can be conveniently computed by means of a mass balance [Benettin et al., 2013b].

Each outflow was assumed to randomly sample water particles from the corresponding

storage. Hence, leakage and groundwater flow concentrations are obtained from the

average concentration in the shallow system C̄rz(t) = Mrz(t)/(Srz(t)+W0rz) and in the

groundwater C̄gw(t) = Mgw(t)/(Sgw(t) +W0gw), respectively.

Evapotranspiration was initially assumed to randomly sample water from the root-

zone with a concentration that is a fraction α ≤ 1 of the average storage concentration.

This coefficient is designed to include the possible effects of selective evapotranspiration

in case of potentially toxic solutes, which would lead to an increased storage concen-

tration during warmer periods. However, when chloride concentration in soil moisture

is low it is not toxic for plants and it is instead useful for biochemical functioning [see

Xu et al., 1999]. Preliminary calibrations suggested optimal values of α in the range

0.9 − 1 and in the measured time series there is no evidence of evapoconcentration in

the warmer months (May to August 2008). Hence, to reduce the number of parameters,

evapoconcentration was not modeled by keeping α = 1 (thus implying that transpired

water has the same chloride concentration as the average shallow storage), leaving the

two residual storages W0rz and W0gw as the only chemical parameters that require

calibration.

It is important to note that even though the two storages are individually randomly

sampled, the overall catchment is not, because water is distributed differently between

the upper and lower reservoirs. For example, younger ages can be a small fraction of

the overall storage as they are mainly confined in a smaller shallow reservoir, yet they

can dominate the catchment discharge if stormflow is mainly made of soil water. This

key issue is described in detail in Section 5.5.
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Table 5.1: Constant parameters

Parameter Symbol value

soil porosity [-] n 0.35

root zone depth [mm] Zr 400

max gw storage [mm H2O] Smax 1000

initial gw conc. [mg/l] C̄gw0
5.4

5.3.3 Model calibration

The hydrochemical model was implemented using a forward semi-analytical approach.

For both the storages (shallow and groundwater), the hydrologic balance is solved at

any time step implementing the analytic solution of the mass balance equation based on

the underlying storage-discharge relationship. In the shallow system, a little component

of the storage is also removed by evapotranspiration. The mass balance is computed

by multiplying each hydrologic flux by the corresponding chloride concentration at the

considered time step. In doing so, measured chloride in precipitation is uniformly down-

scaled from 7 hours to 1 hour time step. All the outflows are assumed to be characterized

by the mean storage concentration at the previous time step, which is a by-product of

the RS assumption. The mass in storage is then updated according to the computed

fluxes and then divided by the water storage (also including the constant residual com-

ponent) to obtain the updates mean storage concentration. Chloride contained within

the catchment storage before the start of the analyzed period is accounted for through

the initial conditions of the system. A warm-up period is employed at the beginning of

the simulations to reduce the influence of the initial conditions.

The estimate of internal fluxes and storages in the system requires the determination

of the model parameters. Some of them were set a priori based on previous analyses

and field surveys [e.g. Neal et al., 2010] as summarized in Table 5.1. The remaining

parameters were estimated through a Markov Chain Monte Carlo (MCMC) calibration

procedure using DREAMZS [Vrugt et al., 2009; ter Braak and Vrugt , 2008]. The

calibration parameters comprise 5 hydrologic parameters (3 for the storage-discharge

relationships, 1 for the leakage partitioning and 1 for evapotranspiration) and 2 chemical

parameters (the 2 residual storages), as summarized in Table 5.2. The hydrological and

chemical parameters were calibrated separately, according to the procedure described

in the following.

Hydrologic parameters were calibrated against hourly discharge data. The objective
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Table 5.2: Calibration parameters. (SD=storage-discharge relationship)

Parameter Symbol Type Low. bound Upp. bound

reference ET [mm/h] ETc hydrol. 0 0.15

leakage partitioning [-] β0 hydrol. 0 2.5

SD coeff. [mm/h] a hydrol. 10−1 104

SD exponent rz [-] brz hydrol. 0 30

SD exponent gw [-] bgw hydrol. 0 80

residual storage rz [mm H2O] Wrz chemical 100 1000

residual storage gw [mm H2O] Wgw chemical 100 5000

function that is implemented in the MCMC is the standard log-likelihood function:

logL =
N

2
log(2π)−N log(σe)−

N
∑

i=1

ǫ2i
2σ2

ǫ

(5.1)

where N is the number of measurements, ǫi is the model error at time i (calculated

as the residual Q(i) − Qobs(i)) and σe is the error standard deviation. The use of eq.

(5.1) is based on the assumption of independent and identically distributed Gaussian

errors. Even though these assumptions (especially the lack of error correlation) are

unlikely when dealing with discharge or concentration time series, more sophisticated

objective functions would require more parameters to be estimated, without completely

avoiding the problem of introducing arbitrary assumptions at some point. To account

for the loss of degrees of freedom induced by serial error correlation, an increased error

standard deviation σe = 1 mm/h is employed. As 5 years of discharge measurements

are available at the Upper Hafren, the parameters’ posterior distributions resulting

from the calibration of individual years could be compared. The obtained distributions

mostly overlap (Figure 5.5a), indicating mutual consistency of our estimates across

different years and serving as a verification tool to support the reliability of the model

parameters. Consistently, a single calibration for the entire dataset of 5 years resulted

in a narrower distribution, peaking where individual distributions overlap. Moreover,

the optimal set obtained during the 5-year calibration performs well in each individual

year (see Table 5.3), so it was selected and kept constant for chemical calibration and

for the travel time analysis.

Chemical parameters were calibrated against chloride measurements using the like-

lihood function provided by eq. (5.1) with σe = 1.5 mg/l. Again, the error standard

deviation was adjusted to account for the observed serial correlation in the residuals. As
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Table 5.3: Nash-Sutcliffe efficiencies (for hourly discharge) of the calibrated hydrologic model.

year E (1-year calib) E (5-years calib.)

05/06 0.89 0.88

06/07 0.92 0.91

07/08 0.94 0.94

08/09 0.87 0.85

09/10 0.82 0.82

05/10 - 0.90

just one year of high-frequency chloride measurements is available, it has been entirely

used for calibration. In the absence of validation periods, calibrated chemical parame-

ters are less suitable for longer-term transport processes. The posterior distributions of

the chemical parameters (Figure 5.5b) show that the residual component of the shallow

storage is well identified (W0rz ≈ 500 − 600mmH2O) and consistent with field obser-

vations of the fractured bedrock depth [Shand et al., 2005]. In contrast, groundwater

residual storage is much more uncertain (W0gw > 1500mmH2O), owing to the strong

filtering of high-frequency information in the input signal by groundwater storage. The

uncertainty in the size of the groundwater storage may be aggravated by the brevity

of the simulation in our modeling exercise (approximately 1 year). Implications of the

uncertainty in the deep residual storage are discussed in Sections 5.4 and 5.5.

5.4 Results

The calibrated hydrochemical model was run over the December 2007 - November 2008

period. Simulated discharge and its partition into root-zone and groundwater contribu-

tions are shown along with observed flows in Figure 5.6. Nash-Sutcliffe (NS) efficiencies

are 0.94 for discharge and 0.91 for log-discharge, indicating that the model is able to

capture both the peaks and the recessions of the observed hydrograph. The flow parti-

tioning shows that hydrograph peaks are dominated by drainage from the rooting zone,

while the groundwater, though quite reactive during wet periods, accounts for most of

the recessions. The simulated chloride concentration is shown in Figure 5.7. Besides

the first negative peak in the observed timeseries, which might be due to overland flow

or other processes that could not be properly simulated by this simple model, all dilu-

tions taking place in summer and fall are well reproduced by the model. Similarly, the

positive concentration peaks around January 2008 are properly caught in the simula-
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Figure 5.6: Measured and simulated discharge timeseries.

tion indicating that, in general, both behaviors (increased/decreased concentrations in

response to floods) are reasonably represented by the model. NS efficiency of the best

performance is 0.69.

The intuitive picture suggested by the model results is the following: during baseflow

conditions, discharge and solute concentrations are mostly sustained by groundwater

flow, whereas right after storm events, water from the soil and highly fractured bedrock

is mainly responsible for runoff formation, so the concentration at the outlet promptly

shifts towards the concentration in the shallow storage (which may be either higher or

lower than groundwater’s, depending on the season). Our analysis thus reinforces the

conceptual hypothesis of Neal et al. [2012]. During recessions, streamflow concentration

gradually shifts back to the groundwater concentration. Hence, high-frequency dynam-

ics originate at the transition between shallow and deep water control on streamflow,

induced by incoming storm events. Depending on whether shallow storage concentra-

tions are higher or lower than that of groundwater, new storms may cause dilutions

(e.g. August-November 2008 period) or positive concentration peaks (e.g. January-

April 2008). This can be observed in Figure 5.7, where average storage concentration

in the two compartments can be identified as the end-members of the observed chloride

fluctuations. Figure 5.7 also explains the reason for groundwater size is highly uncertain:

a bigger storage would result in nearly the same constant groundwater concentration, so

the size of residual groundwater store is difficult to constrain by calibration. Nonetheless

it is encouraging that the calibrated residual storage in the shallow and deep reservoirs

implies a mean travel time of roughly 1.5 years, broadly consistent with the mean travel

time of 0.9 years estimated independently for the Hafren catchment by Kirchner et al.
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[2000] using spectral analysis of longer-term (but less detailed) chloride time series.

Though very simple, our model is able to reproduce the main chloride dynamics

reasonably well, suggesting that the resulting flow partitioning is a reasonable represen-

tation of the catchment behaviors. Our results indicate that streamflow concentration

dynamics can be inferred from spatially integrated storage concentrations within pre-

scribed hydrologic compartments, even though these may not necessarily be mixed.

From a physical viewpoint, this can be attributed to the pronounced heterogeneity of

water velocities and flow paths that supply water to the stream network, resulting in

enhanced mixing of waters originating from different source areas [Kirchner et al., 2001].

Note that, as shown by Neal et al. [2012], the presence of both positive and negative

peaks in the concentration is peculiar to chloride in this system because it is a conser-

vative tracer whose input concentration fluctuates around a nearly constant long-term

average. This implies that modeled shallow and deep storage concentrations cross each

other during the year (see e.g. Figure 5.7 before and after day 190). For other solutes

this might not be the case, because the concentration could be persistently lower in

groundwater than in shallow storage (e.g. due to degradation processes, like for phos-

phorus), leading to positive concentration peaks in stormflow, or persistently higher in
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groundwater than in shallow storage (because of e.g. rock weathering, like for silica),

leading to negative peaks (i.e., dilution) in stormflow. Even for non-reactive tracers,

one might observe persistent positive or negative concentration peaks if the input loads

exhibit long-term non-stationarity. This was observed for chloride in the Hupsel Brook

Catchment [van der Velde et al., 2010a], where soil water is systematically less concen-

trated than groundwater because of the reduction of fertilization loads during the last

decades, induced by environmental policies.

5.5 Travel time Analysis

Backward travel time distributions over the simulation period 2007-2008 were re-

constructed based on the equations (A.14), (A.15), (A.17), using the total storage

W = S + W0 as the storage term. Because backward distributions are based on pre-

cipitation events that happened up to many years before the considered period, the

hydrochemical model was run from 1985 to 2008, to provide an estimate of all the hy-

drologic fluxes required for TTD computation. In order to balance between numerical

efforts and accuracy in calculating TTDs, distributions were computed at 6-hours time

step.

For each individual storage (shallow and deep), the age distributions in the storage

and in the outflows coincide, as prescribed by the adopted RS mixing scheme. In the

root zone, TTDs (and hence RTDs) show enhanced time-variance due to the high vari-

ability in flows and storages. Groundwater TTDs are, by contrast, relatively constant

because flow variability is damped owing to the large storage size. This can be seen in

Figure 5.8, where a few TTDs are reported for individual points in the time series and

compared to the stationary marginal distributions. While root zone individual distribu-

tions show large departures from the corresponding marginal distribution, groundwater

distributions are almost indistinguishable.

It is worth highlighting that when one considers the catchment as a whole, the overall

system is far from being randomly sampled. This is because the shallow storage makes

only a small contribution to total storage, but it is preferentially sampled by discharge,

especially during high flows. The difference between the age distributions of the overall

storage and discharge can be seen in Figure 5.9, where all cumulative distributions

obtained during the simulation period are plotted. Two main features clearly emerge:

i) cumulative TTDs are generally shifted upward with respect to their corresponding

RTDs, meaning that discharge is mostly made up of younger water than storage; ii)
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storages, compared to the corresponding marginal distribution pm(T ). The distributions are
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days) and 20/11/2008 (mean values 53 and 795 days)
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Figure 5.9: Cumulative age distributions in the overall water storage and discharge (i.e. con-

sidering the combined effect of the shallow and deep systems). The distributions are computed

over the whole simulation period. The inset reports the pdf of mean values.

TTDs are much more variable over time, as shown by the larger range spanned by

their mean values (inset). Discharge can release both very young waters (during storm

events) and old waters (during dry periods), while total storage is always dominated by

old waters contained in the deep storage.

The difference between discharge and storage age dynamics is best explained by

looking at the corresponding SAS functions ω (eq.(5.10)). The functions were computed

as the TTD/RTD ratio and then rescaled over the transformed residence time domain

proposed by van der Velde et al. [2012] and shown in Appendix. Such a change of

variables conveys notable advantages because, in the new transformed domain, the

StorAge Selection functions turn into probability density functions and display a more

regular and smooth shape. The functions are reported in Figure 5.10, where different

colors are used for different shapes. The same color is used to identify the corresponding

shallow storage level (inset). The plot suggests that during wet conditions outflows have

a preference for younger waters and that this tendency is enhanced with catchment

wetness. Conversely, when the catchment becomes dry, older water parcels tend to be

preferentially sampled because the shallow system becomes almost inactive. The link
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Figure 5.10: SAS functions computed over the whole simulation period. The color scheme

links the functions with their corresponding (shallow) storage state.

between age-selection and storage, however, is not one-to-one because the system is

characterized by some degree of hysteresis. The same storage can correspond to different

catchment conditions, depending on whether the catchment is wetting or drying. This

is visible in Figure 5.10 where similar age-selection functions (i.e., similar colors of

curves) correspond to different shallow storage states (e.g. during peaks or recessions).

Therefore, SAS functions can provide useful insights for the characterization of the

catchment state.

So far each TTD is representative of one simulation time step, regardless of the

amount of discharge water it refers to, but one may want to get flow-weighted distri-

butions that are more representative of the masses of water that leave the catchment.

As higher discharges are characterized by younger water, flow-weighted average travel

times are younger than time-weighted averages [Peters et al., 2013]. Marginal travel time

distributions are intrinsically flow-weighted functions because individual TTDs are aver-
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Figure 5.11: Marginal travel time distributions for the root zone, groundwater and overall

discharge. The overall marginal distribution is also compared to a gamma pdf with shape

parameter alpha = 0.5 and mean value 400 days (which is the same as the overall distribution).

aged out by weighting them by the corresponding discharge value. The marginal distri-

butions were calculated using eq. (A.18) over the whole simulation period to explore the

time-integrated behavior of the TTDs. Distributions computed for the shallow storage,

groundwater and overall discharge are compared in Figure 5.11. The plot shows that

shallow-storage and groundwater distributions are characterized by different time scales

(a few months and a few years respectively), while the overall marginal distribution dis-

plays a smooth transition between shallow-storage and groundwater distributions, and

hence spans a wide range of time scales. Interestingly, the overall marginal TTD closely

resembles a Gamma pdf with shape parameter α = 0.5, which has often emerged from

analyses of tracer time series using spectral methods to estimate stationary travel time

distributions [Kirchner et al., 2000, 2001; Godsey et al., 2010; Kirchner and Neal , 2013].

Notwithstanding uncertainties involved in the spatial variability of chloride deposi-

tion, the travel time analysis allows for preliminary inferences about the catchment mass
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balance. The measurements suggest that during the study period a total of 15.7 g/m2

enter the catchment through atmospheric deposition and 16.0 g/m2 leave the catchment

as discharge (very close to the value of 16.5 g/m2 predicted by the calibrated model).

However, the close match between input and output mass only reflects the equilib-

rium between deposition and mass displaced from the catchment during the considered

11 months, without implying any balance closure in a kinematic sense. Indeed, the

kinematic picture provided by the travel time analysis suggests that 55% of the total

mass removed by discharge during the simulation period was already stored within the

catchment before the start of that period.

A word of caution is needed at this point. The travel time analysis is based on

the underlying hydrochemical model, so one may want to assess the impact of model

parameters and the related uncertainty on estimated travel times. While a complete sen-

sitivity analysis would be a time-consuming task left for future work, informal analyses

showed general stability of travel time distributions under different parameter combina-

tions. The only parameter which could have a substantial impact on travel times is the

groundwater residual storage W0gw , because it does not have a clearly definable upper

bound (see Section 5.3.3). However, larger W0gw values would leave the fundamental

interaction between shallow and deep system (hence the age-selection) unchanged and

its effect would be limited to increased groundwater ages, without affecting the overall

patterns of behavior outlined by our results.

5.6 Final remarks

The hydrochemical model, based on a reasonable conceptualization of the Upper Hafren

catchment, could accurately reproduce its hydrologic and chemical response. This al-

lowed for the estimation of the storages involved in solute mixing, and enabled to infer

dynamic travel time distributions.

Most of the high-frequency fluctuations in the measured chloride concentration can

be explained by the sharp transition between groundwaters (with an almost constant Cl

concentration) and faster flows originating from shallower storage layers (with higher or

lower concentration, as driven by the inter-seasonal variability of atmospheric inputs).

The same transition in dominance between deep and shallow storage also drives large

fluctuations in the mean age of stream water.

Emerging age-selection patterns indicate a clear preference of discharge for the

youngest ages in storage. Such a preference is enhanced when the catchment is wet
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and faster flows dominate the hydrologic response, thereby implying that discharge is

always younger than storage.
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Chapter 6

Modeling the Hubbard Brook

Watershed 3 (USA)

6.1 Introduction

The Hubbard Brook Experimental Forest (HBEF) is a research area established in New

Hampshire (USA) that has pioneered ecosystem studies since the 1960s. Research based

on the extensive available datasets has led to the publication of more than 1000 journal

papers on topics that span from biology to forest chemistry and hydrology [Likens ,

2013].

As in the previous applications (Chapters 4 and 5), this study is based on the use of

backward travel time distributions obtained from different compartments of the catch-

ment, where the random-sampling (RS) scheme can be reasonably assumed. The water

fluxes needed to compute the TTDs were calculated by means of a hydrochemical model

that was calibrated against discharge and isotopic data. The innovative contribution

of this application is the use of TTDs to simulate, in a first-order kinetic framework,

the export of geogenic solutes produced by mineral weathering. This is complementary

to several papers that related silica dynamics to catchment hydrologic conditions and

travel times [e.g. Hornberger et al., 2001; Scanlon et al., 2001; Asano et al., 2003; Stelzer

and Likens , 2006; Maher , 2011; Clymans et al., 2013]. The results suggest that sodium

and silica stream concentrations at HBEF result as being driven by the contact time

between the water and mineral interfaces.
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Figure 6.1: Map of WS3 (0.42 km2). Elevation is expressed in m.a.s.l.
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6.2 Data and study area

The study site is Watershed 3 (WS3, 0.42 km2) of the Hubbard Brook Experimental

Forest (HBEF), which is located within the southern White Mountains of central New

Hampshire, USA (43◦56′N, 71◦45′W, Figure 6.1). WS3 is the hydrologic reference

catchment for a series of long-term paired catchment studies [McGuire and Likens ,

2011; Likens , 2013] and has been a center for hillslope hydrology studies [Hooper and

Shoemaker , 1986; Cedarholm, 1994; Detty and McGuire, 2010a,b; Gannon et al., 2014] at

HBEF. Aerially-averaged daily precipitation and continuous stream discharge records

for WS3 date back to 1957. The climate is humid continental with mean monthly

temperatures ranging from -9 to 18◦C and annual precipitation of about1400 mm of

which a quarter to a third falls as snow [Bailey et al., 2003a]. Bedrock of the catchment

is sillimanite-grade pelitic schist and calc-silicate granulite of the Silurian Rangeley

Formation. The catchment was glaciated by the sequence of Pleistocene glaciations,

with the latest Wisconsinan glacial period leaving basal tills and water worked glacial

drift of granitic composition and varying thickness, texture, and hydraulic conductivity

[Bailey et al., 2003a, 2014]. Plagioclase feldspar of oligoclase composition is present

in both the bedrock and glacial deposits, and is likely the major source of Na+ and

H2SiO4 and released by primary mineral weathering reactions [Bailey et al., 2003b].

Bailey et al. [2014] and Gannon et al. [2014] describe the soils as podzols with distinct

variations in horizonation supporting a hydropedological functional classification with

a broad range of drainage classes, soil morphology, and soil development history. Slopes

in WS3 are about 20-30% and the aspect is dominantly southern with elevation ranging

from 527-732 m. The site is northern hardwood forest dominated by Fagus grandifolia

Ehrh. (American beech), Acer saccharum Marsh. (sugar maple), Betula alleghaniensis

Britt. (yellow birch) and with Picea rubens Sarg. (red spruce), Abies balsamea (L.) Mill.

(balsam fir), and Betula cordifolia Regel (mountain white birch) in upper elevations and

shallow-to-bedrock areas.

Streamflow has a marked seasonality due to the snow accumulation and snowmelt

cycles (Figure 6.2). During dry summer periods, most of the first and second order

streams get dry and streamflow is mostly sustained by a number of perennial seeps that

are characterized by a different chemical composition [Zimmer et al., 2013].

Water sampling for isotopic analysis occurred in W3 from November 2006 to Novem-

ber 2010 (4 years total). Precipitation and snowmelt samples were collected biweekly

and stream samples were collected at least weekly. Isotopic data are shown in Figure

6.3. Deuterium in precipitation varied seasonally, with lower values in winter and higher
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Figure 6.2: Measured hydrologic flows from November 2006 to November 2009.

values in summer. This temporal pattern reflects the isotopic composition of the source

water and factors that influence moisture in the air mass during transport, such as

temperature, the amount of rainout, and prevailing weather patterns [Dansgaard , 1964;

Gat , 1996]. The seasonal increases in deuterium in precipitation that were observed

during summer are typical of the northeastern U.S. and in part reflect atmospheric wa-

ter that has been recycled/recondensed and evaporated at warm temperatures during

summer [see Ingraham, 1998]. The amplitude of the deuterium signal tends to be rel-

atively large at Hubbard Brook because of the greater climatic variability associated

with the higher latitude and elevation of the site.

6.3 Hydrochemical model

6.3.1 Model description

The conceptual representation of an idealized hillslope soil catena presented by Bailey

et al. [2014] provides a framework to conceptualize the catchment as a composition of a

soil storage and a groundwater storage, plus a “buffer zone” where waters from the two

storages are likely to come together upon entering the stream (Figure 6.4). The model

is similar to that employed in [Benettin et al., 2013b] but differs in the presence of a

snowmelt component and the buffering zone. The model is briefly described below.
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Figure 6.3: Timeseries of measured isotopic content in precipitation, snowmelt and stream-

flow.

Csl(t)
soil

storage

groundwater
storage

Cin

Q (t)sl

buffer zone

Q(t)

S (t)sl

Figure 6.4: Illustration of the conceptual hydrochemical model.
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The soil compartment is meant to include O to upper C soil horizons. Main hy-

drologic processes describing the soil compartment of the model are: infiltration from

precipitation and snowmelt, evapotranspiration and lateral and vertical flow genera-

tion. A threshold Tth on daily-mean temperature T was used to distinguish between

snowfall and rainfall. T ≤ Tth resulted in water infiltration IR into the soil, while

T < Tth resulted in snow accumulation. Snowmelt infiltration IS was determined using

a Degree-Day approach [see Rango and Martinec, 1995], which computes snowmelt flux

as the product between a Degree-Day factor Df and the temperature difference T −Tth

. Potential evapotranspiration was computed as the product between a reference value

ETref and a temperature-based term that could account for daily and seasonal evap-

otranspiration patterns. Actual evapotranspiration ET was limited by the available

water in the normalized root-zone storage Ssl(t)/(nZr) [see Laio et al., 2001] assuming

an average root zone depth Zr of 500 mm. Leakage L production was modeled through

a non linear storage-discharge relationship of the kind L = aSb
sl. A fraction β(t) of

the leakage is responsible for lateral flow and discharges directly into the stream as soil

discharge Qsl, while the remaining (1−β(t)) fraction recharges the deeper groundwater

system. The partitioning term β(t) is computed as the product between a coefficient β0

and the normalized root-zone storage Ssl(t)/(nZr). δD isotopic composition measured

in precipitation and snowmelt was used to characterize infiltrating water. Fractionation

in the subsurface flow and evaporation was assumed to be negligible, so the isotopic

compositions were kept as conservative. The storage could thus be characterized at any

time by its average Deuterium content δD as:

δD(t) =

∫

∞

0

δDin(t− T ) pS(T, t) dT , (6.1)

where pS(T, t) is the soil storage age distribution at time t [Botter et al., 2011].

All water fluxes leaving the soil were assumed to randomly sample water particles

from the storage, hence their isotopic composition is the same as the storage composition

[Botter et al., 2010; Hrachowitz et al., 2013] δDL(t) = δDET (t) = δD(t).

To account for water flowing in the deep C horizon down to the bedrock, a deeper

groundwater storage was modeled. The input flux to the deep system is the vertical

flow from the shallow storage, characterized by its modeled isotopic composition. The

only output of the system is groundwater flow, which was modeled through the linear

relationship Qgw = c Sgw, where Sgw represents the dynamic component of the ground-

water storage. Evapotranspiration has been neglected as it is unlikely to occurr at such

depths. The random-sampling scheme in the groundwater storage implies that deep
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Table 6.1: Constant parameters

Parameter Symbol value

soil porosity [-] n 0.35

root zone depth [mm] Zr 500

max gw storage [mm H2O] Smax 200

buffer area fraction [%] fbuf 5

buffer storage [mm H2O] Wbuf 100

initial sl δD [%�] − -65

initial gw δD [%�] − -75

discharge has the same isotopic composition as the average groundwater composition.

Soil- and ground-water eventually mix in the riparian area and in the stream. This

effect was reproduced in the model by introducing a ‘buffering zone’ fbuf (5% of the total

catchment area), roughly corresponding to the stream network and part of the riparian

Bh podzol area. For the sake of simplicity, the buffering zone does not induce any

storage effect and at any time water entering the buffer Qpb is equal to water displaced

from the buffer Q+ fbuf ET , implying that the storage Wbuf remains constant in time.

6.3.2 Model calibration

Model parameters were set a priori when previous work and field surveys [e.g. Bailey

et al., 2014] were available (Table 6.1). The remaining parameters were estimated

through a Markov Chain Monte Carlo (MCMC) calibration procedure using DREAMZS

[Vrugt et al., 2009; ter Braak and Vrugt , 2008].

The calibration parameters comprise 7 hydrologic parameters (2 for the Degree-Day

model, 3 for the storage-discharge relationships, 1 for the leakage partitioning and 1 for

evapotranspiration) and 2 transport parameters (the 2 residual storages), as summarized

in Table 6.2. Following the procedure used in Sectionn 5.3.3, the hydrological and

chemical parameters were calibrated separately (see below).

An intermediate approach was used to calibrate the buffer zone storage parameter

Wbuf . The parameter only affects the chemical component of the model and basically

controls the smoothness of the modeled signal. Weekly data contain little information

on the higher-frequency component of the signal, hence optimization procedures tend

to favor very smooth modeled signals, featured by higher values of the storage. After

preliminary runs, the value was forced to be 100 mmH2O, which is lower than the opti-
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Table 6.2: Summary of the calibration parameters. DD=degree-day, SD=storage-discharge

relationship, sl and gw refer to the soil layer and groundwater, respectively.

Parameter Symbol Type min max Calib.

DD threshold temp. [◦C] Tth hydrol. -3 1 -1

DD factor [mm/d ◦C] Df hydrol. 0.5 5 2.2

reference ET [mm/d] ETref hydrol. 0.5 3 2.2

leakage partitioning [-] β0 hydrol. 0.5 1.5 1.1

SD coeff. sl [mm/d] a hydrol. 100 105 102.05

SD exponent sl [-] b hydrol. 0 30 12.5

SD coefficient gw [-] c hydrol. 10−2 102 10−0.51

resid. storage sl [mm H2O] Wsl chem. 100 1000 250

resid. storage gw [mm H2O] Wgw chem. 100 5000 750

mum, to preserve higher frequencies. In the presence of higher-frequency measurements

the parameter could be better characterized.

Hydrologic parameters were calibrated against daily log-discharge data over the

four years period November 2006 - October 2010. Log-discharge measurements were

chosen for calibration to favor the reproduction of very low flows, which otherwise

would be completely disregarded by the calibration as runoff varies over three orders of

magnitude. The model was run at hourly time-steps and then aggregated to provide

daily average values. MCMCs were implementd with a standard log-likelihood function,

with increased residuals standard deviation log(σe) = 1.2, to account for serial residuals

correlation. Residual storage parameters were calibrated against weekly Deuterium

measurements over the period November 2006 - May 2009. Again, a standard log-

likelihood function was used for calibration, with σe = 9.1%� (that accounts for observed

residuals correlation).

6.4 Results

6.4.1 Discharge, Deuterium content and storage size

The calibration procedure resulted in relatively narrow posterior distributions of the

model parameters (Figure 6.5)). Modeled discharge is reported in Figure 6.6a,b, where

95% parameters bounds are plotted against measurements. A simple sensitivity anal-

ysis showed that the model is most sensitive to the snow model parameters. This is
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Figure 6.5: Posterior distributions of hydrologic (grey bars) and transport (blue bars) pa-

rameters.

not surprising as occasionally discharge peaks are completely missed because the pre-

cipitation event was interpreted by the model as snowfall accumulation. In any case,

these events are quite in a small number and overall the model is able to reproduce the

observed discharge signal. The calibrated model has Nash-Sutcliffe efficiency NS=0.78

for log-discharge and NS=0.75 for discharge. Validation over the period January 2000

- May 2006 resulted in NS=0.78 for log-discharge and NS=0.73 for discharge, indicat-

ing robust calibrated values. The partitioning of streamflow into soil and groundwater

components (not shown) reveals that, on yearly average, only 25% of the discharge is

made of groundwater, but it accounts for more than 95% of the flow during dry sum-

mer periods. Modeled snowfall accumulation is visually compared to measurements in

Figure 6.6c, and displays a correct timing and the right pattern in snow accumulation.

Calibrated Deuterium signal is compared to measurements in Figure (6.6d). Both

weekly and biweekly measurements were reported in the plot to provide an idea of mea-

surement uncertainty. Moreover, as biweekly data are available over a longer period,

they can serve as a sort of visual validation over the period May 2009 - October 2010.

The modeled signal features both the seasonal and higher-frequency observed fluctua-

tions, and has NS=0.62. Given the simple tools used to model rather complex processes

like snowmelt and forest transpiration, the model results are considered as satisfactory.

Model calibration allows for the estimate of the catchment storages. Modeled soil

storage is 380mmH2O on average. Depending on porosity n, this requires a depth of

about 1200-1400 mm (n = 0.4 − 0.3), which roughly corresponds to 20-30 cm into the
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Figure 6.7: Evolution of the simulated median age of discharge during a 4 years period. The

red and blue circles denote the dry and wet periods explored in Figure 6.8.

C horizon. Deep groundwater storage estimates indicate a larger storage size (about

760mmH2O), but the value is less identified because higher values would provide a

similar (almost flat) contribution to the stream in terms of deuterium content. This is

a rather typical problem (see Section 5.3.3) that deals with the very long time scales of

groundwater compared to the input variability. This induces some degree of uncertainty

in the longer travel times, but leaves the younger part of the distributions, which is

mostly responsible for water-quality variations, almost unchanged.

6.4.2 Travel Time Analysis

The travel time distributions that underly model results were computed by aggregating

fluxes to daily averages and using the analytical formulas for the random sampling

age-selection scheme properly arranged in series and in parallel (Eq. A.17).

The uncertainty in the groundwater residual storage size induces some uncertainty

in the longer travel times, which in turn affect the mean of the distributions. The use of

percentiles, that depend on the more determined part of the distributions, is hence more

desirable. Median travel time (i.e. the age that is not exceeded by 50% of the discharge)

shows quite some variability during the year which is linked to the catchment hydrologic

conditions (Figure 6.7), ranging from 40-60 days during wet periods (e.g. after intense

storms, or during spring snowmelt) to 180-200 days during dry summers and winter

snow accumulations. Figure 6.7 also shows that every storm event causes a drop in the

median travel time, because discharge peaks tipically mobilize younger water particles.

The different features displayed by the TTDs during different periods are visible

in Figure 6.8, where some travel time pdf and CDF are reported. The wet period

corresponds to an intense storm event taking place during snowmelt in April 2008. The

corresponding modeled TTDs are largely composed of younger waters, even though half
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Figure 6.8: Cumulative TTD of discharge, during the wet and dry periods indicated in Figure

6.7. The insets also report the corresponding TTD.

of the released particles are still non-event as they are older than 20 days. The dry

period corresponds to the end of a recession in September 2006 and its dynamics are

similar to those of other long recessions. Young water particles are almost absent due to

the dry antecedent weeks and youngest significant contributions are from storm events

from 80-100 days before.

6.5 Silica and sodium transport

The TTDs obtained from the hydrochemical model were used to compute the stream-

flow concentration of solutes produced by mineral weathering, following the approach

proposed by Maher [2011].

Due to primary mineral weathering processes, the immobile water in contact with the

soil matrix is enriched in mineral solutes. When a water parcel travels within subsurface

environments and interacts with the minerals and/or immobile water (Figure 6.9), the

underlying solute concentration gradients trigger mass transfer processes through which

minerals are transferred to the mobile phase of water. The travel time T represents

the time available for solute transfer and thus is assumed as the main driver of the

process. The solution concentration ci of the traveling particles changes through time

according to a first order kinetics towards the immobile-phase equilibrium concentration

Ceq [Maher , 2011]:

ci(T ) = Ceq (1− exp−kT ) , (6.2)

where k is a kinetic constant [1/T]. Equation (6.2) implies that when the transfer time

T is short compared to 1/k (e.g. in the case of a short hydrologic flowpath), the parcel
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Figure 6.9: Graphical representation of the solute exchange between the mobile water and

the minerals.

concentration is much lower than Ceq. Conversely, for travel times that are significantly

longer than 1/k, the parcel concentration reaches the equilibrium value (C ≈ Ceq). The

dissolution process is influenced by a number of relevant local factors, such as pH and

temperature [see Maher , 2011], but, in large and complex domains like subsurface envi-

ronments, flowpaths heterogeneity reduces the effect of spatial gradients in local factors

[Botter et al., 2005] thereby allowing the description of transport processes through

spatially uniform parameters (k and Ceq). When considering the whole distribution

of pathways that contribute to discharge at any time, the ages T of the parcels that

leave the catchment can be quantified through the (backward) travel time distribution

pQ(T, t). The resulting streamflow concentration can be expressed as:

C(t) =

∫

∞

0

Ceq (1− exp−kT ) pQ(T, t) dT . (6.3)

Eq. (6.3) can be directly used to compute silicon and sodium concentration at the

catchment outlet. Though, a better representation of the observed concentration signal

can be achieved when accounting for the presence of the seeps. Seep flow at WS3

is persistently characterized by higher concentrations of solutes such as Na+, Ca2+

and H2SiO4, liberated during mineral weathering reactions. Some seeps are high in

other metals of weathering origin such as Mn2+. These patterns may reflect particular

pathways that bring water in contact with fresh mineral surfaces or particular pathways

with different mineral compositions. This pattern is not observed in the isotope data,

suggesting that the higher concentrations of Si and Ca in some seeps are likely due to the

nature of the hydrologic pathways rather than to the age of the particles. Note that seep

flow contribution to discharge is negligible in the majority of the cases, but it dominates
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Table 6.3: Kinetic parameters

Parameter Symbol value (Si) value (Na)

kinetic. const. [1/d] k 0.13 0.10

Equil. conc. [mg/l] Ceq 2.5 0.95

Seep conc. [mg/l] Cseep 3.4 1.5

the chemistry at the catchment outlet during extremely low flows (few weeks per year).

Hence, seep influence has minor importance for solute mass balance, but it is highly

visible in the concentration timeseries. The effect of the seeps is simulated by assuming

a stationary seep flow of 0.15 mm/d (about 1 l/s). The related seep concentration is

computed through Eq. (6.3) using a different value of the equilibrium concentration

(Cseep). The chemograph is thus simulated using three parameters (Ceq, Cseep and k).

The kinetic constant k needs calibration, while Ceq and Cseep can be derived from

available observations during low flow conditions at seeps and at the catchment outlet,

where it can be reasonably assumed that solute concentration has reached the equi-

librium. However, all the three model parameters were calibrated in the simulation

to check if optimal Ceq and Cseep values are consistent with those suggested by the

measurements. Calibration was run over the period March 2008 - March 2010 and

calibrated values (table 6.3) were used to calculate the solute concentration over the

14-years period 1998-2012 (Figure Figure 6.10).

The simulated timeseries is generally able to reproduce the main features of the

measured signal, including the dilution during stormflow, the increase in concentration

during recession and the positive peaks during the periods dominated by the seep flow.

Calibrated equilibrium and seep concentrations for both solutes are consistent with the

value of measured concentration during late recessions, suggesting that calibration may

not be needed for those parameters.

The kinetic constant k provides an estimate of mass transfer time-scales. For both

the solutes, the kinetic constant is about 0.1 d−1, which suggests that the driver of the

streamflow concentration dynamics is the relative abundance of particles younger than

30 days. When a notable fraction of particles have a short contact time with the immo-

bile phase (e.g. right after a storm), the overall streamflow concentration decreases. The

opposite holds during dry periods, when most of the particles have traveled much longer

than 30 days and exit the catchment at the equilibrium concentration. When flows are

extremely low, the influence of the seeps further increases the streamflow concentration.
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Figure 6.10: 14-years simulation of silicon and sodium concentration using the TTD-based

approach.
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The results suggest that silicon and sodium concentration dynamics at the catchment

scale are mostly driven by hydrological factors. The outlined approach provides a

meaningful and consistent representation of the observed concentration dynamics for

multiple solutes. The main advantage of the method relies on the flexibility to the

hydrologic variations of the system, which is allowed by the use of time-variable TTDs.

6.6 Final remarks

Despite the challenge of modeling a small catchment with intense evapotranspiration

and snowmelt, the hydrochemical model was able to reproduce a number of catch-

ment dynamics including runoff, snow accumulation and discharge isotopic content.

The accuracy in reproducing the observed signals is a necessary condition to estimate

catchment TTDs. Even though longer travel times are typically difficult to constrain,

shorter travel times are better identifiable and are mostly responsible for the variations

in stream hydrochemistry.

The travel time analysis not only allowed for an estimate of the relevant transport

time-scales, but was also used to simulate the fate of geogenic solutes in surface waters.

The results support the coupled use of solute measurements and transport models to

quantify catchment-scale mixing processes and interpret hydrochemical datasets. The

dynamic TTD analysis, which is the essence of this approach, represents a fruitful way

forward for catchment-scale transport studies.
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Conclusions

A comprehensive description of catchment-scale transport processes has been provided,

including theoretical advances and applications to real-world catchments. The main

conclusions of this contribution can be summarized as follows:

• transport processes can be described through a backward or a forward point of

view, which requires the use of different variables (age or life expectancy) and

equations. The two approaches are fully equivalent and can be derived from a

single governing equation;

• the kinematic origin of age mixing can be formally related to advection-dispersion

processes. This is shown to cause major differences between the age distribution of

the water storage and that of the hydrologic fluxes crossing the system’s borders.

• the coupled use of hydrochemical datasets and transport models allows for in-

sightful inferences on catchment functioning. The use of a travel time approach

can explain the long term export of solutes and their strong persistency in rivers,

as well as short term dynamics induced by the sharp transitions between distinct

water sources (e.g. soil waters and groundwater flow);

• overall, mean travel times are in the range of months to few years. However, the

younger part of the distributions is usually better constrained, while the older

fraction is more difficult to characterize. This affects the mean values of the

distributions, that do not have a well-identified upper bound. Modeling results

also show that discharge mostly removes, time by time, the younger fraction of

particles contained in the catchment storage;

• TTDs can be sucesfully used to model the fate or reactive solutes that can be

described through a first-order kinetic reaction. The applications show that the

concentrations of silica and sodium produced by mineral weathering are mostly

driven by the contact time between the water and mineral interfaces;
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Conclusions

• the use of StorAge-Selection functions to solve transport problems has been proved

to be a powerful and promising tool for further hydrochemical applications at

catchment-scales.
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Appendix

A.1 Derivation of Equation 3.5

Starting from equation (3.4) let us first take the derivatives of ρ with respect to t and

TR. By recalling that t0 = t− TR, one gets:

∂ρ(x, TR, t)

∂t
=

φin(t− TR)

∂t
g(x, t|t− TR)− φin(t− TR)

∂g(x, t|t− TR)

∂TR

+ φin(t− TR)
∂g(x, t|t− TR)

∂t

∣

∣

∣

∣

t−TR=const

(A.1)

∂ρ(x, TR, t)

∂TR

= −φin(t− TR)

∂t
g(x, t|t− TR) + φin(t− TR)

∂g(x, t|t− TR)

∂TR

(A.2)

and by combining equations (A.1) and (A.2) the following result is obtained:

∂ρ(x, TR, t)

∂t
+

∂ρ(x, TR, t)

∂TR

= φin(t− TR)
∂g(x, t|t− TR)

∂t

∣

∣

∣

∣

t−TR=const

. (A.3)

Eq. (A.3) states that, at any position x, the amount of particles with age TR

(quantified by ρ(x, TR, t)) changes in time because particles get older (second term at

left hand side of the equation) and because they move, as quantified by the change in

the displacement distribution g over time. Finally, substitution of eq. (3.1) into eq.

(A.3) readily returns equation (3.5).

A.2 TTD formulas in advection-dispersion models

Travel and residence time distribution formulas can be equivalently obtained by inte-

gration over the control volume of the age mass function ρ(x, t, TR) or by integration

of the displacement pdf g(x, t|t0). By inserting equation (3.4) into eq. (3.6) and (3.7),

travel and residence time distributions are derived with explicit dependence on g. In

the following, notation is simplified by calling G =
∫

V
gdx and Ġ its derivative over
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time. Equations read:

pS(TR, t) =
φin(t− TR)

M(t)

∫

V

g(x, t|t− TR)dx (A.4)

=
φin(t− TR)

M(t)
G(t|t− TR) .

pQ(TT , t) = −φin(t− TT )

φout(t)

d

dt

∫

V

g(x, t|t− TT )dx (A.5)

= −φin(t− TT )

φout(t)
Ġ(t|t− TT ) .

ω(TR, t) =
pQ
pS

= − M(t)

φout(t)

Ġ(t|t− TR)

G(t|t− TR)
. (A.6)

Formulas based on the integration of g can be readily used after an explicit solution to

the Fokker-Plank equation is provided. This approach is the one used in section 3.5.

A.3 Solutions to the 1D advection-dispersion problem with

absorbing and reflecting barriers

This appendix is devoted to the solution of the advection-dispersion equation for the

particular boundary conditions described in equations (3.13). The solution makes use

of the method of images, according to which additional terms (image terms) are su-

perimposed to the fundamental solution g0 (eq. (3.12)) in order to verify both the

differential equation and the boundary conditions. This Appendix mainly follows Cox

and Miller [1978] in the separate development of the reflecting/absorbing barriers and

then introduces to the simultaneous use of both conditions.

The zero-flux boundary condition (BC1) can be obtained by adding an image term

(from hereon reflecting term) to g0 . If we call dr the distance of g0 from the reflecting

barrier, the image is to be applied at the same distance dr, in opposite direction. The

application point of the reflecting terms is called x0r (in this particular case the barrier

is in x = 0, so x0r = −dr). The reflecting term has the following form [Cox and Miller ,

1978]:

gr(x, t) =
1√
4πDt

{

A exp

[

−(x− x0r − ut)2

4Dt

]}

(A.7)

+
1√
4πDt

{
∫ x0r

−∞

exp

[

−(x− ξ − ut)2

4Dt

]

k(ξ)dξ

}
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The constant A and the function k(ξ) are determined by imposing BC1 yielding:

A = exp

(

−dru

D

)

, k(ξ) = − u

D
exp

(

uξ

D

)

(A.8)

The term A rapidly decays with increasing distance from the barrier, meaning that the

effect of the barrier is negligible when the barrier is far from the injection point. This

becomes particularly important when series of reflecting terms with increasing distance

from the barrier are considered, because it allows for a reduction in the number of terms

that need to be considered. By inserting eq. (A.8) into (A.8) and rearranging terms

in the equation, one obtains the solution to the problem for a purely reflecting barrier

condition at the origin as:

g(x, t) = g0(x, t) (A.9)

+
1√
4πDt

{

exp

[

−ux0
D
− (x+ x0 − ut)2

4Dt

]}

− u

D
exp

(xu

D

)

erfc

(

x+ x0 + ut√
4Dt

)

Note that this solution holds on a reduced domain [0,+∞), but still implies the second

boundary condition to be set at infinity.

In a similar manner, the absorbing barrier (BC2) in x = L is obtained by adding an

image term (from hereon absorbing term) to g0, and imposing g(L, t) = 0 (eq. (3.13)).

In analogy with the reflecting barrier, the distance between g0 and the absorbing barrier

is termed da. The absorbing term must be applied at the same distance da, on the

opposite side of the barrier, at a location x0a (in this particular case x0a = L+ da) and

has the following form [Cox and Miller , 1978]:

ga(x, t) = −
1√
4πDt

{

B exp

[

−(x+ x0a − ut)2

4Dt

]}

(A.10)

By imposing g(L, t) = g0(L, t) + ga(L, t) = 0, the resulting constant B becomes:

B = exp

(

dau

D

)

(A.11)

The solution is valid for x ∈ [−∞, L).

The simultaneous use of both barriers requires, to satisfy BC2, the application of

the absorbing term not just to g0 but also to gr. However, as already mentioned in

section 3.4, the new absorbing terms induce an additional mass flux into the control

volume which is in general different from zero at the origin and hence violates BC1. The

influence of the absorbing terms on BC1 depends on the ability for particles to move
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against flow direction so it depends on the relative strength of dispersion. To ensure

BC1 to be satisfied, the new absorbing terms need to be matched by a second layer

of reflecting terms. In turn, these additional terms need to be absorbed by a second

generation of absorbing terms to respect BC2 and so on, making up an infinite series

of subsequent generations. However, the relative importance of additional generations

decreases relatively fast (depending on dispersion, recall (eq.(A.8)), so one can expand

the series up to the desired precision. The final solution is given by the summation of

many reflecting and absorbing generations:

g(x, t) = g0(x, t) +
∑

gr(x, t) +
∑

ga(x, t) (A.12)

where reflecting/absorbing terms are derived by subsequently imposing BC1/BC2 to

the new generations and the position of the barriers is obtained by calculating new

distances dr and da from the barriers.

An example of the solution limited to the first generation of absorbing and reflecting

terms, valid for Pe ≥ 10, is:

g(x, t) =
1√
4πDt

exp

[

−(x− x0 − ut)2

4Dt

]

+
1√
4πDt

{

exp

[

−ux0
D
− (x+ x0 − ut)2

4Dt

]}

− u

2D
exp

(xu

D

)

erfc

(

x+ x0 + ut√
4Dt

)

− 1√
4πDt

{

exp

[

(L− x0)u

D
− (x− (2L− x0)− ut)2

4Dt

]}

− 1√
4πDt

{

exp

[

Lu

D
− (x− (2L+ x0)− ut)2

4Dt

]}

+
u

2D
exp

(

Lu

D

)

erfc

[−x+ (2L+ x0) + ut√
4Dt

]

(A.13)

The implementation of a multi-barrier system for Pe = 1 is shown in figure A.1a,

where eq. (A.12) is developed up to the second generation of reflecting and absorbing

terms. Figure A.1b shows the evolution of g over time, to enhance the effect of both

the barriers. This is further shown for a fixed time t∗ in Figure A.1c, where reflecting

and absorbing terms are separately displayed and the clear difference between complete

solution g and unconfined solution g0 is made evident.
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Figure A.1: Example of solution g(x, t) for Pe = 1 obtained by using two generations of

reflecting and absorbing terms. (a) shows the application of reflecting/absorbing terms. (b)

shows the solution g(x, t) at different times. (c) shows g at the particular time t = t∗ and its

separate components (basic solution g0, reflecting terms
∑

gr and absorbing terms
∑

ga).
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A.4 TTDs for multi-RS systems

In Section 4.2 it was shown that, under the hypothesis of randomly-sampled storage,

travel time distributions pQ and pET are equal to residence time distributions pS .

In case the catchment is made up of two storages (e.g. one for the root zone and one

for the groundwater, Figure 4.3 b, c, d), each storage is characterized by its associated

TTDs. Note that for particles that reach the groundwater storage, the travel time

must be computed starting with entrance into the catchment (i.e. entrance into the

root zone), so the travel time distributions are obtained as the convolution between the

pdf’s in the root zone and the pdf’s in the purely-groundwater storage. Finally, the

overall pQ (that accounts for the contribution of the two storages to discharge Q) is

computed by means of weighted averages between the distributions of the two storages.

In order to simplify the notation, the following simbology is used:

rz → 1,

gw → 2,

rz + gw → 1 + 2

(e.g. the function pQ referred to the root zone is named p1 and so on). So the TTD

equations for the root zone in the simplified notation are:

p1(T, t) = pS(T, t) =
J(t− T )

Srz(t− T )
exp

(

−
∫ t

t−T

J(τ)

Srz(τ)
dτ

)

(A.14)

where J is the input rainfall and Srz is the root zone storage. The equation for the

purely-groundwater storage has the same form, but in this case the input is given by

the leakage to the groundwater Lgw and the storage is the deep Sgw.

p2(T, t) = pS(T, t) =
Lgw(t− T )

Sgw(t− T )
exp

(

−
∫ t

t−T

Lgw(τ)

Sgw(τ)
dτ

)

(A.15)

To obtain the overall groundwater storage TTD’s, the convolution between p1 and

p2 is performed:

p1+2(T, t) = p2 ∗ p1(T, t) (A.16)

Finally the global TTD’s are:

pT (T, t) =
Q1(t)

Q1(t) +Q2(t)
p1(T, t) +

Q2(t)

Q1(t) +Q2(t)
p1+2(T, t) (A.17)
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A.5 The marginal TTD

The marginal TTD represents the probability of observing a particular travel time

during the considered observation period, and can be computed as:

pm(T ) =

∫

Γ

pQ(T/t)f(t) dt (A.18)

where Γ is the observation period for the averaging and f(t) is a weighting function, in

this case representing the probability of observing a particular exit time (t). In fact,

f(t) is proportional to Q(t), because the higher the discharge at time t, the higher

the probability of having many particles leaving the catchment at that time. Hence,

the normalized discharge time series over Γ can be used in f(t) and the marginal pdf

basically serves as a flow-weighted average TTD.

A.6 Chloride input adjustments

In order to capture even small rainfall events, the autosampler was designed to have a

large (57.5 cm) funnel which drained into a small (308 ml) bottle [Neal et al., 2012],

approximately corresponding to 1.2 mm of precipitation during the 7-hour sampling

interval. Hence, all rainfall events larger than 1.2 mm per 7 hours produced some

overflow. Because the initial part of the precipitation is usually higher in chloride

due to the atmospheric (and funnel) washout, and given that the degree of mixing in

such conditions is not well defined, samples taken during such events might not be

very representative of the average 7-hour precipitation. During the modeled period

(December 2007 - November 2008), 37% of the rainfall events exceeded 1.2 mm per 7

hours (9% exceeded 10 mm), requiring the determination of the corresponding overflow

concentration. A simple estimation method is to assign a virtual concentration that

matches the mass balance with weekly chloride measurements taken at the same location

with a different instrument [see Neal et al., 2011]. This procedure is consistent with mass

balance, but tends to flatten concentration values towards the corresponding weekly

average. For this reason, we decided to adjust precipitation volumes only exceeding

a suitable threshold value larger than 1.2 mm. After some preliminary tests using

different thresholds, the final value was 5 mm, that required the adjustment of 16% of

the sampled concentrations.
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