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Abstract

Advanced spectrum sharing and resource management techniques are needed in future

wireless cellular networks to ensure high data rates to the end users. New system architec-

tures will be required, taking into account aspects such as like spectrum resources availabil-

ity, deployment and operational costs, as well as power consumption. Thus, it becomes key

for the development of the fifth generation of cellular networks (5G) to pursue an efficient

exploitation of the wireless medium, in the sense of both using advanced physical (PHY)

layer techniques, and also seeking coordination among operators. In this thesis, we analyze

the problem of spectrum management within the next generation of cellular networks and

we propose new algorithms for spectrum sharing and for interference coordination.

In the first part of the thesis, we focus on the spectrum sharing between operators.

Firstly, we develop a Long Term Evolution (LTE) standard compliant simulation environ-

ment extending the open-source network simulator ns3 to support multi-input multi-output

(MIMO) systems and advanced beamforming systems. Then, we present a mathematical

analysis for the network performance of non-orthogonal spectrum sharing, connecting it

directly with the statistics of the radio channel and we develop some spectrum sharing al-

gorithms considering different aspects of the operators coexistence. The analysis is further

extended to the performance evaluation of more complex digital beamforming techniques

developed in a multi-input-single-output (MISO) system allowing to reach a Pareto equi-

librium between the operators. Finally, we consider also an orthogonal spectrum sharing

scenario investigating the impact of asymmetries and dynamics of the user demands on the

implementation of spectrum sharing techniques.

In the second part of the thesis, we extend the concept of spectrum management to

two different scenarios. In the first scenario, we consider coordination between multiple

cells, e.g. coordinated multipoint (CoMP). In particular, thanks to the exploitation of digital
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beamforming techniques, we present a novel distributed clustering algorithm that adapts

the cluster configuration according to the users distribution and the average cluster size. In

the second scenario, we extend the concept of spectrum sharing to the coexistence between

different communications system in order to study the feasibility of the deployment of the

cellular systems within the mmWave spectrum. In particular, we analyze the impact of the

novel cellular networks on the fixed satellite system (FSS).

In the last part of the thesis, we focus on the mobility management of the users in a het-

erogeneous network. Firstly, we focus on the average performance experienced by a mobile

user while crossing a pico/femtocell, as a function of the handover parameters to provide

an approximate expression of the average Shannon capacity experienced by a mobile user

when crossing the femtocell. Then, we propose a Markov-based framework to model the

user state during the handover process and, based on such a model, we derive an optimal

context-dependent handover criterion.



Sommario

I futuri sistemi di comunicazione cellulare dovranno affrontare nei prossimi anni un

rapido aumento della domanda di traffico dati mobile rendendo necessario l’utilizzo di

avanzate tecniche di condivisione dello spettro e gestione delle risorse. Sarà quindi fonda-

mentale lo sviluppo di nuove tecnologie che dovranno considerare aspetti quali la disponi-

bilità di risorse spettrali, i costi di realizzazione ed il consumo di energia. La chiave per lo

sviluppo della quinta generazione di sistemi cellulari (5G), sarà quindi la ricerca di un uso

più efficiente delle risorse wireless, sfruttando nello stesso tempo le più avanzate tecniche a

livello fisico e la coordinazione tra gli operatori. In questa tesi, vengono analizzati i problemi

relativi alla gestione delle risorse spettrali nelle reti cellulari di nuova generazione propo-

nendo nuovi algoritmi per la condivisione dello spettro e la gestione delle interferenze.

Nella prima parte di questa tesi vengono analizzate tematiche relative alla condivisione

dello spettro tra operatori. In primo luogo è stata implementata un’estensione del simulatore

di rete ns3, basata sullo standard Long Term Evolution (LTE) al fine di supportare l’analisi

di sistemi multi antenna (MIMO) e di avanzate tecniche di beamforming. È stata quindi

effettuata un’analisi matematica delle performance ottenibili dalla condivisione di spettro

non ortogonale connessa direttamente al comportamento statistico del canale radio. Sono

stati quindi sviluppati alcuni algoritmi di condivisione dello spettro considerando diversi

aspetti della coesistenza tra operatori. L’analisi è stata quindi estesa alla valutazione di tec-

niche di beamforming digitale sviluppate in uno scenario multi-input-single-output (MISO)

e atte a realizzare un equilibrio di Pareto tra gli operatori. Al termine di questa sezione sono

inoltre stati analizzati alcuni scenari di condivisione ortogonale delle risorse, al fine di studi-

are l’impatto delle dinamiche degli utenti sulla implementazione delle tecniche di gestione

delle risorse spettrali.

Nella seconda parte di questa tesi il concetto di gestione delle risorse è stato esteso a
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due ulteriori scenari. Nel primo scenario, si è considerata la coordinazione tra celle diverse

(CoMP). Nello specifico, grazie all’uso di tecniche di beamforming digitale, è stato ideato un

nuovo algoritmo di clustering delle celle capace di adattare la configurazione dei clusters in

relazione alla distribuzione degli utenti e alla dimensione dei cluster stessi. Nel secondo

scenario, il concetto di condivisione di spettro è stato esteso alla coesistenza tra diversi sis-

temi di comunicazione, al fine di fornire uno studio di fattibilità sullo sviluppo dei sistemi

cellulari all’interno dello spettro delle onde millimetriche. In particolare, è stato analizzato

l’impatto delle nuove reti cellulari su sistemi satellitari fissi (FSS).

Nell’ultima parte delle tesi vengono invece trattati aspetti riguardanti la gestione della

mobilità degli utenti all’interno delle reti eterogenee. Inizialmente, sono state analizzate le

performance ottenute da un utente mobile nell’attraversare una pico/femto cella in funzione

dei parametri di handover, al fine di fornire un espressione della capacità di Shannon media

dell’utente. E’ stato quindi proposto un modello basato su una catena dI Markov atto a

studiare lo stato dell’utente durante il processo di handover e, sfruttando tale modello, è

stato derivato un criterio di handover ottimale basato sulle condizioni del contesto.
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Chapter 1
Introduction

In the last few years, a widespread diffusion of mobile phones, the appearance of novel

applications for multi-media communications and the mobile Internet have caused a great

demand for wireless connectivity all over the world. Cellular phones are nowadays seen as

a universal gateway to be constantly connected and exploit a number of useful web-based

applications. This has led to a tremendous improvements of the transmission capabilities

of wireless cellular systems thank to the development of efficient standards, which exploit

advanced modulation schemes and channel-aware transmission scheduling to achieve high

data rates. For example, users of the current generation of cellular networks, such as the

Long Term Evolution (LTE) of the Universal Mobile Telecommunications System (UMTS)

[1], consider it normal to perform heavy traffic exchanges, e.g. , involving multimedia com-

munications, through the wireless channel. In accordance with the forecast provided by the

major global mobile operators the demand of high rate connectivity is still growing due to

the diffusion of smarter end-user devices and machine to machine (M2M) communications.

This evolution of the wireless network will bring together people, process, data and things

to make networked connections more relevant and valuable but, at the same time, it will

led to a huge increase of the number of required connections and signalling. For example,

Fig. 1.1 shows the expected grow of data traffic by 2018 that will reach 15.9 exabytes per

month by 2018, nearly a 11-fold increase over 2013 [2].

This connectivity hunger poses a great challenge to mobile operators and Internet service

providers, in light of the strong limitations of resources available. For example, the NGNM

(Next Generation Mobile Networks) Alliance has addressed the requirements on new gener-

1
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Figure 1.1. Cisco forecast 15.9 Exabytes per month of mobile data traffic by 2018.

ation mobile networks [3], which include increased spectral efficiency and re-use of existing

infrastructure. New system architectures will be required, taking into account the power

consumption of the terminals, the operational cost, and the constraints on the spectrum re-

sources. In particular, heterogeneous networks (HetNets) have emerged as one promising

configuration of NGMNs. While classical cellular networks have a ”flat hierarchy”, since

wireless coverage is guaranteed by one layer of homogeneous Base Stations (BSs), HetNets

utilize a higher density of BSs, also with different roles. In particular, ”pico” or ”femto” base

stations (i.e., smaller nodes with reduced power and coverage) can be introduced to locally

increase access to the network, even though this may also imply an overlap with existing

top-layer BSs and therefore an increase of interference, that has to be properly managed [4].

In this scenario, some techniques for interference management, such as Statical Fractional

Frequency Reuse (SFFR), can be employed, but they only mitigate the problem, without

solving it. In the end, partitioning the frequency assignment into sub-allocations with exclu-

sive usage may lead to improving the signal to interference plus noise ratio (SINR) perceived

by the users, but at the price of decreasing the available bandwidth [5].

Therefore, many researchers advocate the need for an improvement in the radio spec-
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trum usage, reached by sharing, as opposed to simply re-distributing, the available resources.

Several papers, projects, and initiatives, have been aimed in the last years at quantifying how

theoretical performance limits can pushed forward by sharing spectrum resources among

the involved operators; this leads to estimating the achievable gains from both points of

view of technical and also economic performance [6] [7] [8] [9]. This scenario has been in-

vestigated by the EU-funded project SAPHYRE [10] [11] with the aim to quantify the gain

obtained by sharing resources in an inter-operator scenario. The aim of the project is not

only to quantify if and how much the efficiency of resource usage can be improved, but

also to identify new business models that can facilitate competition among the mobile net-

works and enhance the overall societal benefit. With a higher degree of competition on both

spectrum and infrastructure, less regulation is needed, benefiting end users and society in

general. We shall note that the European Commission (EC) has formulated a list of objec-

tives for National Regulatory Authorities (NRA) to be taken into consideration [12]. Within

the regulatory framework of electronic communications networks and services, these direc-

tives cover aspects such as competition on the market, efficiency of the spectrum usage and

management, protection of customer benefits, limitation of radio interference, promotion of

infrastructure investments.

Starting from a fixed assignment of the spectrum, there are several ways in which por-

tions of the spectrum available to one or more operators can be used concurrently by all of

them, Fig. 1.2. One possible solution is to open the spectrum usage of a particular channel

to all operators, still constraining the actual allocation of the channel to only one user of a

specific operator at a time. This kind of sharing, referred to as orthogonal spectrum sharing

(OSS), can increase the multi-user diversity of the system, thereby improving the resource

utilization efficiency [13]. In [14], this very approach is used to minimize the cell blocking

probability by using the shared frequencies to enlarge the available bandwidth. Orthogonal

sharing is relatively simple to implement, but provides performance gains only in asymmet-

ric scenarios, i.e., whenever the amounts of traffic in the operators buffers are unbalanced.

In fully loaded scenarios, the gain is given only by the increased multi-user diversity, and

is marginal if the number of users is large [15]. A further improvement can be obtained

by exploiting non-orthogonal spectrum sharing (NOSS) that allows multiple operators to

use the shared spectrum resources at the same time. This configuration allocates multiple
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Figure 1.2. Spectrum sharing configurations.

users to the same frequency simultaneously, thereby causing a degradation of the Signal-to-

Interference-plus-Noise-Ratio (SINR) at the intended receivers. The interference has to be

controlled through the use of multiple antennas at the BS and proper mitigation techniques,

such as beamforming [16].

Moreover, the sharing paradigm can be extended to the infrastructure through the use

by the operators of the same communication point (IS-NOSS) with further improvement

in terms of capital and operational expense (CAPEX, OPEX) costs [17]. In both cases the

performance can be improved with the combined use of scheduling algorithms that con-

sider the users related to the different operators as one pool, so as to exploit their channel

characteristics.

A possible extension of the spectrum sharing concept can be the cooperation between

BSs often referred to as coordinated multipoint transmission (CoMP) [18]. This technique

encodes (for downlink; for uplink, it decodes) messages for multiple users, exploiting a

distributed multiple-input multiple-output (MIMO) system [19]. Multiple BSs are grouped

to form a CoMP cluster, which is the elementary coordination unit. Interference among BSs

belonging to the same cluster is then cancelled to achieve a multiplexing gain [20]. Two

transmission schemes are considered for downlink CoMP transmission: joint transmission
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(JT) and coordinated scheduling/beamforming (CS/CB). In JT, the transmission to a single

user is performed coherently by the BSs of the same CoMP cluster. Thus, interference is

mitigated and the signal-to-interference-plus-noise ratio (SINR) is improved. As a special

case, it may even be that only one BS of the cluster, e.g., the one with the best channel to

the user, is allowed to transmit at a time, while the others are inactive [21]. Differently from

JT, in CS/CB multiple users are allocated simultaneously in the same resource unit. In this

case, the CoMP cluster forms a distributed MIMO system, where cooperative beamforming

is adopted. By exchanging channel state information (CSI) among the BSs, linear precoding

beamforming can be applied to mitigate the interference perceived by the users.

The tools exploited for the management of spectrum sharing can be applied also to study

the coexistence among different wireless networks and, in particular, to analyze the feasibil-

ity of the deployment of the next cellular communications standard within novel spectrum

bands. According to the vision of the major mobile cellular companies [22], the NGMNs

will exploit the use of broad bands in millimeter wave (mmWave) frequency ranges. In

particular, cellular allocations today are largely constrained under 6 GHz but it will be pos-

sible to obtain a spectrum 200 times greater by exploiting the frequencies between 20 and

300 GHz [23]. One of the candidate bands for the deployment of mmWave cellular mobile

networks is the portion of spectrum between 17 and 30 GHz. Currently, part of this band is

allocated on a co- primary basis to fixed services (FSs), cellular network back-haul, and fixed

satellite services (FSSs) [24]. Therefore, it is important to study the possible coexistence be-

tween FSSs and mmWave mobile base stations (BSs) in order to preserve the functionalities

of the satellite services.

Another challenge for the NGMNs and in particular for the HetNets is the management

of the users mobility that, differently from the classical cellular networks, has to deal with

cells of widely varying coverage areas. The current static setting of the handover (HO)

process standardized by 3GPP is no longer effective for HetNet systems, because of the large

variety in cell characteristics [25]. In particular, the number of handovers has a strong impact

on the users Quality of Experience (QoE) due to the losses generated by the HO procedure

and the signalling among the cells. Therefore, it will be crucial to regulate the users mobility

considering the context parameters, such as the channel conditions, cell users loads, user

position and speed.
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In this thesis we study all these aspects from analytical and simulative points of view

proposing novel algorithm for the resource scheduling and mobility management in a mo-

bile cellular network. Firstly, we extend the well know open-source network simulator

ns3 [26] with new functionalities to study the resource sharing among operators and the

use of multi antenna systems. In particular, for the non-orthogonal spectrum sharing case

we developed an extension of the ns3 LTE module able to support such scenarios and flexi-

ble enough to permit the validation of many new user-defined spectrum sharing algorithms.

We consider the use of a 2 × 2 and a 2 × 1 MIMO systems in order to regulate the opera-

tor coexistence exploiting several linear precoding beamforming techniques. After an initial

performance evaluation of the NOSS and OSS potentials, we study analytically the simulta-

neous usage of the spectrum resources to define the main system parameters and to provide

a mathematical framework for the resource management. Starting from this analysis, we

develop different resource scheduling algorithms that exploit in various ways the channel

characteristics and the way the resources are shared, considering the total throughput and

the fairness among the operators as performance metrics.

In the second part of this thesis, we apply the tools exploited in the NOSS scenario to the

CoMP and to the coexistence between cellular networks and FSS. In the first case, we present

a novel distributed clustering algorithm that adapts the cluster configuration according to

the users distribution and the average cluster size. In the second case, we study the impact of

the deployment of the NGMNs (5G) on the FSSs considering the metrics and the parameters

provided by the standard. Moreover, we present a novel cooperative scheduling algorithm

based on a game theoretic framework that, exploiting the use of analog beamforming at the

BSs, meets the regulatory recommendation concerning the interference level at the FSS and

at the same time provides a good user spectral efficiency. Finally, we develop a framework

for the HetNets handover optimization, we compute the average Shannon capacity as a

function of the handover parameters and we propose a optimization policy for the handover

procedure based on the context informations.

The remainder of this thesis is organized as follows. Chapter 2 describes the implemen-

tation of the simulative framework that was exploited to provide the main results of this

work. In particular, we focus on the implementation of a multi-antenna system and a spec-

trum sharing scenario within the ns3 simulator. Therefore, the NOSS and OSS scenarios are
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analyzed statistically in Chapter 3 considering the use of MISO systems. Chapter 4 extends

the analysis to more advanced spectrum sharing techniques as CoMP and the use of the

mmWave spectrum for the NGMNs. A framework for the analysis and the optimization

of the handover procedure in HetNets is provided in Chapter 5. Conclusions are given in

Chapter 6.

The chapters were written by exploiting the material published in the papers reported

in the section ”List of publication”, inserted at the end of this thesis. More specifically, the

mapping is as follow:

• Chapter 2 is based on C1, C2 and C7.

• Chapter 3 is based on C3, C4 and J2.

• Chapter 4 is based on J1, C8 and C9.

• Chapter 5 is based on C5, C6 and J3.





Chapter 2
NS3 MIMO NOSS Extension

Starting in the mid-1990s [27], MIMO wireless communication has emerged as one of the

most fertile areas of research in information and communication theory. The fundamental

results of this research show that MIMO techniques have enormous potential to improve the

spectral efficiency of wireless links and systems. These techniques have already attracted

considerable attention in the cellular world, where simple MIMO techniques are already

appearing in commercial products and standards, and more sophisticated ones are actively

being pursued. Since the early 2000s, MIMO techniques have been adopted in cellular stan-

dards in parallel with the development of the MIMO theory. The earliest MIMO standard-

ization focused on downlink single-user spatial multiplexing to address the demand for data

downloading and higher peak data rates. Recently, there has been more interest in uplink

MIMO, multiuser MIMO, and coordinated base techniques [28]. In this chapter we focus on

the analysis of the performance provided by the MIMO techniques in a LTE scenario.

The main problem in the evaluation of MIMO systems is that, due to their mathematical

complexity, their analytical assessment is often limited to simplified scenarios with a limited

number of nodes. A way to address this problem may be to use simulation tools. Simulation

platforms are used in the scientific community to test protocols and systems whenever the

analytical tools are inadequate, because either the system is too complex or it cannot return

a closed-form solution. In this chapter we describe our development of the ns3 simulator

in order to provide a reliable framework for the analysis of the use of MIMO in a spectrum

sharing context.

In the first part of this chapter we follow the approach of building an accurate repre-

9
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sentation of a 2 × 2 MIMO system and integrating it with a simulator of an LTE network.

It is worth noting that, while simulators can overcome some burdens of the mathematical

analysis, they also have complexity issues. However, we found that implementing a 2 ×

2 MIMO system represents a good compromise solution that meets all the requirements of

manageability and realism. Provided that the simulator is modular enough, such a solution

can be conceptually easy to extend to larger antenna arrays. We consider the ns3 network

simulator [26], a well known open source tool that offers a modular and accurate represen-

tation of the whole protocol stack. We extend an existing LTE module of ns3, exploiting

the post-processing SINR formulas for a MIMO system, which are investigated analytically

in [29], [30]. The resulting software is not affected by the mathematical complications that

plague the analytical evaluations. While computational complexity may be still an issue

(however, for a 2 × 2 system it is fairly manageable), the simulator does not need to derive

any closed-form solution. On the other hand, while the analytical approaches necessarily

have to consider an abstract version of the upper layers, the simulator with our added mod-

ules is able to give a comprehensive system view. Thus, the degree of realism of the results

is highly improved.

In the second part of this chapter the contribution is extended with a performance eval-

uation of a tunable representation of beamforming based on game theory [31]. Under this

framework, we exploit the fact that efficient beamforming strategies achieve Pareto optimal

(PO) operation points for the achievable data rates of the users, meaning that no user can be

provided with a higher rate without another being worse off. In this context, we extend to a

system-level perspective and for a realistic LTE scenario the analysis of [32]. Our work en-

ables a comparison of different approaches and between theory and practically achievable

performance.

Finally, we exploit the same simulative framework to demonstrate the advantages of non

orthogonal spectrum sharing when compared to exclusive resource usage. In paticular, we

decided to keep a general and modular approach, which can be used in a network simulator.

Therefore, we abstract all the physical layer effects by considering the SINR to be regulated

by a parameter that we call Interference Suppression Ratio (ISR). This parameter depends on

the mutual interference among the operators and their capability of reducing it by proper

interference suppression techniques, such as efficient beamforming. The quantification of
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the ISR influences overall metrics such as capacity, throughput, and overall QoS of the sys-

tem. Thus, by giving an estimation of this parameter, the performance of non orthogonal

spectrum sharing can be characterized. In particular, we will show that for scenarios where

the value of the ISR parameter can be considered realistic, non orthogonal sharing leads to

significant gains compared to the exclusive bandwidth allocation.

2.1 State of the Art

The importance of developing an accurate simulation platform for complex communi-

cation systems such as an LTE network is self-evident, given that several details of the LTE

standard cannot be adequately captured analytically. We focus here only on those solutions

that meet generality and reproducibility requirements for scientific purposes, and aim at

modeling the entire system, not just certain parts of it. In this spirit, there exist some system

level simulators for LTE cellular systems that have been developed by equipment vendors,

universities and research centers to realistically evaluate the performance of LTE. However,

many of them do not make the source code publicly available. For example, a commercial

physical layer simulation Toolbox implementation can be found in [33] or an LTE Special-

ized Model able to design LTE networks and devices is proposed in [34]. An open-source

system level simulator developed in MATLAB is also presented in [35]; this work includes

issues such as cell planning, scheduling and inter-cell interference but does not consider the

upper layers of the protocol stack. We focus on extending an already available LTE mod-

ule [36] of the open-source network simulator ns3 [26]. The code of the simulator is publicly

available and several developers from the worldwide research community are free to con-

tribute to it. The whole protocol stack is implemented; most of the modules involve the

layers from datalink up, and this is true also for the models of LTE cellular networks. At the

PHY layer, there is still room for many extensions, which should be produced in a modular

fashion to be integrated with the rest of the existing implementations. Presently, the simula-

tor is able to model a SISO channel and every aspect of multiple user medium access. Within

this framework, the developers can test resource allocation algorithms for a plain network

with single- antenna terminals. Our contribution extends this framework to MIMO, and

does so in a separable manner from the rest of the simulator. We base our characterization

of the MIMO system on existing analytical models and different practical implementations
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of the MIMO rationale [29], [30], [37] [38] [39]. The ns3 simulator operates by deriving SINR

metrics and evaluating the resulting performance indicators from them. This may involve

the estimation of the Channel Quality Indicator (CQI) according to the LTE standard, or the

evaluation of theoretical capacity metrics, e.g., according to Shannon’s theorem. To keep

the simulator approach modular, the overall idea is to exploit post-processing SINR formu-

las [29], so as to replace the plain evaluation of the ratio where interference is treated as noise

with more advanced formulas, that depend on the applied policy for interference manage-

ment. Similar formulas are used, e.g., to select an optimal subset of transmit antennas in a

spatial multiplexing system in [40]. Our implementation includes several MIMO transmis-

sion schemes. LTE supports rank-1 transmit diversity and multi- rank transmission to select

the optimal MIMO scheme that suits the channel conditions of the mobile. In rank-1 trans-

mit diversity, the Alamouti space-time block code [37] is used, which improves the SINR

at the receiver’s side in case of high interference or weak signal. In multi-rank transmis-

sion multiplexing [38], [39] multiple information streams are sent to the receiver to increase

throughput, but this solution is appropriate in high SINR regions with rich scattering envi-

ronments.

2.2 Implementation of 2 × 2 MIMO for the ns3 Simulator

Our developed module implements two different MIMO transmission modes: Trasmis-

sion Diversity and Open Loop Spatial Multiplexing. The former has been implemented by

closely following Alamouti’s precoding scheme [37], while the latter makes use of several

models proposed in [30] based on different receiver designs: zero forcing (ZF) [41], mini-

mum mean-squared error (MMSE) and ordered successive interference cancellation based

on MMSE (OSIC-MMSE) [42].

Although we modeled two transmit and two receive antennas, the traces used for the

channel can be modified for other channel models or configurations and the SINR expres-

sions can be extended to systems with a different number of antennas, precoding schemes

or receiver implementations. The module creates three new classes that are inserted within

the LTE module of ns3, MimoRxSignal, ScmMimoChannel and TransmissionMode, described in

the following subsections.
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2.2.1 MimoRxSignal

SISO systems require the knowledge of a single channel coefficient. For MIMO systems

we need a matrix H, modeling the channels between all possible antenna pairs. The el-

ements of H are complex coefficients hij representing the instantaneous gain due to fast

fading from transmit antenna j to receive antenna i.

Class MimoRxSignal manages these parameters. It provides a flexible structure that in-

cludes a MimoRx object for every combination of a transmit and a receive antenna. MimoRx

objects consist of four SpectrumValue [26] instances describing the power spectral density of

the signal, the real part of the coefficient hij , the imaginary part of the coefficient hij , and the

magnitude of the coefficient hij , respectively, in the domain of the whole LTE bandwidth.

All the instances are populated by the class ScmMimoChannel.

2.2.2 ScmMimoChannel

For the channel model, we used several traces representing the complex coefficients hij

for every LTE subframe, based on 3GPP SCM model [43]. The traces are generated offline

by a two-step process. In the first step, a MATLAB script available at [44] is used to generate

the time-domain coefficients ηij [n] with n as a time index. In the second step, we obtain

the equivalent frequency-domain channel coefficients for every LTE resource block by Fast

Fourier Transform. The downlink of LTE uses an Orthogonal Frequency Division Multiple

Access (OFDMA) scheme, where the allocation atom is a time/frequency unit element re-

ferred to as Resource Block (RB), which consists of a subchannel in frequency for a subframe

in time.

Thus, for every RB r we get a matrix of coefficients

H[r] =


h11[r] h12[r] . . . h1S [r]

h21[r] h22[r] . . . h2S [r]

. . . . . . . . . . . .

hU1[r] hU2[r] . . . hUS [r]

 (2.1)

where S is the number of transmit antennas, U the number of receive antennas and r =

1, ..., NRB , with NRB being the number of resource blocks. Coefficients hus[r] are derived

through FFT from the multipath components ηij [n], so that the variability of the gains through-

out the subchannels depends on the FFT, while over time it depends on the correlation of
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Number of antennas at the transmitter 2

Number of antennas at the receiver 2

Distance between elements at transmitter in wavelenghts 6

Distance between elements at receiver in wavelenghts 0.4

Transmitter per path Angle Spread in degrees 2

Receiver per path Angle Spread in degrees 35

Number of paths — subpaths 6 — 20

Path power in dB [-3,...,-16]

Path delays in µs [10,...,60]

Receiver velocity in km/h 2

Table 2.1. Channel parameters

the ηij [n]’s. Such a structure realistically generalizes to a U × S matrix the current model of

a SISO channel with just one coefficient.

The channel parameters used to generate the trace inserted currently in the module are

given in Table 2.1, while Fig. 2.1 shows the fast fading gain graphs obtained for two different

antenna pairs in the resource-block/time domain.

2.2.3 TransmissionMode

The class TransmissionMode computes the post-processing SINR for the different MIMO

systems implemented. The SINR formulas are based on [30] for a 2×2 MIMO system, with

slight modifications for interference terms. for which we consider the possibility of multiple

transmitters. Thus, we denote with hijk the term hij related to the kth transmitter. Also, the

RB index r is omitted for notational simplicity, as the procedures are simply repeated for

every RB.

For the transmission diversity case, which corresponds to transmission mode 2 of the

downlink of the LTE standard [43], we considered the Alamouti scheme [37]. The SINR

expression for the zth receiver, under the assumption that noise plus co-channel interference
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(a) Channel gain between antenna pair Tx = 1, Rx = 1

(b) Channel gain between antenna pair Tx = 2, Rx = 2

Figure 2.1. Fast fading gain matrix for different antenna pairs

can be treated as complex Gaussian [45], is

SINRz =

Nrx∑
i=1

Ntx∑
j=1

Pzjk | hijk |2

σ2 +
∑
m6=k

Nrx∑
i=1

Ntx∑
j=1

Pzjm | hijm |2
(2.2)

whereNrx is the number of antennas at the receiver, Ntx is the number of transmit antennas,

k is the index of the intended transmitter, Pzj` is the power received at receiver z from the

jth antenna of transmitter ` after path and shadow fading losses, and σ2 is a noise term.

Note that the SINR formula refers to the whole receiver z.

Conversely, in spatial multiplexing we need to know the SINR value for every antenna

at the receiver’s side. For the ZF receiver the SINR post-processing expression for the ith
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antenna of receiver z is derived as [40]

SINRz,i=
Pzik

σ2
[
H∗kHk

]−1
ii

+
∑
m 6=k

Ntx∑
j=1

Pzjm|hijm|2[H∗kHk]
−1
ii

(2.3)

where Nrx×Ntx matrix Hk refers to the intended transmitter.

In the case of an MMSE receiver, the SINR is [30]

SINRz,i = h∗ikR
−1
ik hik, where:

Rik = h`kh
∗
`k +

σ2 +
∑
m6=k

Ntx∑
j=1

Pzjm|hijm|2

Pzik
I2, i 6= ` (2.4)

where ` is the other antenna than i, I2 the 2×2 identity matrix, hik the ith column of Hk, and

∗ denotes conjugate transpose.

The OSIC-MMSE case is an improvement of MMSE, where ordered successive interfer-

ence cancellation is performed [27]. The related SINR post processing expression is obtained

differently for the two antennas; first, SINR MMSE post-processing is applied for both an-

tennas, then the substream with the highest SINR is detected and cancelled. If we denote

it with i then its SINR is still according to (2.4). Instead the other substream, labeled l is

computed as:

SINRz,` =
h∗jkhjkPz`k

σ2 +
∑
m 6=k

Ntx∑
j=1

Pzjm|h`jm|2
. (2.5)

In all the MIMO schemes described above, perfect knowledge of the channel at the receiver

is assumed.

The UML sequence diagrams reported in Figs. 2.2 and 2.3 describe the interactions be-

tween the new classes and the existing LTE modules of ns3. Fig. 2.2 represents the transmis-

sion of a signal, and shows that the new classes ScmMimoChannel and MimoRxSignal are con-

nected to the class SingleModelSpectrumChannel belonging to the Spectrum Framework of ns3

through the methods of the SpectrumPropagationLossModel class and the LtePropagationLoss-

Model class [36]. Fig. 2.3 shows instead the receiver’s operation. The class LteSpectrumPhy

separates the useful signal from interference to compute the SINR from the LteInterference

class. Within the instance transmission mode the programmer can set, directly from the
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simulation script, a variable t-mode in order to redirect the method ComputeSinr(..) into the

MIMO scheme of choice.

In terms of computation complexity, using MIMO schemes with the proposed approach

increases the load by a factor of Nrx × Ntx. Interestingly, the new classes proposed can be

applied with relatively minor modifications to any other air-interfaces using OFDMA for

multiple access.

Figure 2.2. StartTx method for the transmitter

Figure 2.3. StartRx method for the receiver
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2.2.4 Simulation Results

We ran two simulation campaigns using the approach implemented in ns3 that com-

putes the Transport Block size considering the modulation and coding as per the standard

specification.

In the former, we compare the simulation results with the approaches proposed in the

literature to test the accuracy of our implementation. The analytical results may have limited

validity in practical cases, as they necessarily neglect certain implementation aspects of the

LTE standard (e.g., that the data rate is upper bounded by the highest order modulation

scheme). Our simulation framework closely matches the analytical results where they are

meaningful, while it generalizes them when they are no longer consistent with the system

at hand (e.g., in high SINR regions).

In the latter campaign, we compare different MIMO schemes in terms of their spectral

efficiency in the downlink. The purpose is to show that, even though some schemes can-

not be evaluated through exact mathematical formulas, the simulator is still able to offer a

quantitative comparison.

Center frequency 2.1 GHz

Channel Bandwidth 5 MHz

Subcarrier Bandwidth 15 kHz

RBbandwidth 180 kHz

RBsubcarriers 12

Noise figure 5 dB

Noise Spectral Density -174 dBm/Hz

Path loss model COST Hata model (suburban areas)

BS antenna height 32 m

MS antenna height 1.5 m

Frame duration 10 ms

TTI 1 ms

Simulated interval 25 s

Table 2.2. Simulation parameters
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The main system parameters used in the numerical evaluations are reported in Table 2.2.

Both campaigns consider a single cell scenario, therefore intercell interference is absent and

SINR simply becomes SNR (Signal-to-Noise Ratio). This choice is not due to a limitation of

the simulator, but rather to make a meaningful comparison with the analysis. We remark

that the extension to multiple cells would be straightforward in the simulator (but not in the

analytical framework).

Fig. 2.4 shows the results obtained by the first simulation. The theoretical curves are

given by the formula provided in [29], whose parameters have been also fitted to our sce-

nario and the LTE standard. The value of the SNR is given by the ratio between the power

at the receiver after macro and shadow fading losses and the noise value. Note that the

channel model is slightly different from that considered in [29]; in spite of that, simulated

and theoretical curves are similar below 35 dB, after which we obtain a saturation of the

simulated curves. As argued above, this effect is due to the configuration of the LTE system

which reaches at high SNRs, the most efficient modulation and coding scheme in transmis-

sion. Moreover, Fig. 2.4 shows that the performance of the ZF system is better than that of

the SISO system for high SNR, and this behavior matches what expected from the theoretical

analysis.

The theoretical approach used in [29] provides the performance analysis only in the cases

of SISO and ZF systems. However, thanks to our module we can extend the same analysis

to the transmit diversity case and to other spatial multiplexing cases. Our second simula-

tion campaign, whose results are reported in Fig. 4.1, investigates the performance of the

different MIMO schemes implemented in the module in terms of spectral efficiency. As in

Fig. 2.4, the SNR considered is the ratio between the power at the receiver after macro and

shadow fading losses and the noise value. An analysis of the curves related to the MIMO

spatial multiplexing schemes (ZF, MMSE, OSIC-MMSE) highlights that the OSIC-MMSE re-

ceiver, thanks to the iterative signal detection, achieves the best performance. Comparing

the MIMO-MMSE curve with the MIMO-ZF curve, we notice that the MIMO-MMSE re-

ceiver provides better performance than MIMO-ZF below an SNR of 20 dB. This behavior

is due to the improvement given by MMSE over ZF to reduce the impact of noise, and it is

more pronounced in the region of low SNR.

Alamouti MIMO is the only diversity-based scheme included in our framework. This
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kind of system aims at improving the post-processing SNR at the receiver. In Fig. 4.1, we

see how the Alamouti system achieves the best performance in the low SNR region. This

result confirms that spatial multiplexing MIMO solutions are optimal only for high SNR (or

SINR).
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Figure 2.4. Theoretical versus simulated spectral efficiency
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2.3 Extension to a MISO beamforming system

In this extension of the ns3 framework, we will focus on the scenarios of Fig. 2.6, i.e., a

multiple-input single-output (MISO) downlink where the BS and the UE have two and one

antennas, respectively.

Figure 2.6. MISO-IC and MISO-BC scenarios

We consider the two applications of MIMO [46] shown in Fig. 2.6: (i) two neighbor-

ing BS-UE pairs that operate simultaneously on the same band, a scenario known as MISO

interference channel (IC); (ii) a BS that serves two UEs in a MU mode, realizing a MISO

broadcast channel (BC). From the network point of view, MISO-IC corresponds to two op-

erators coexisting in the same geographical area and coordinating their operation, whereas

MISO-BC can be realized by either a single operator or even two operators sharing the in-

frastructure (so that one transmitter can serve users of different operators). In particular,

we analyze the performance of different transmit beamforming vectors that, applied to the

users streams, achieve several PO operation points. The linear transmit beamforming vec-

tors are computed using the points of the Pareto boundary curve provided by the closed-

form parameterization developed in [31]. As examples, we select three PO beamforming

configurations, corresponding to three different points of the Pareto boundary, which pur-

sue three different global objectives: sum rate (SR), proportional fairness (PF) and max-min

fairness (MMF) [32]. That is, SR selects the point that maximizes the sum of the individ-

ual rates, PF maximizes the product of the rates of the two users, while MMF maximizes
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the minimum of the two rates. These techniques are compared with ZF and maximum rate

(MR) beamforming vectors. The former entirely cancels the interference created by the other

link, while MR maximizes the transmission rate on each link assuming that interference is

absent. All these techniques are studied specifically focusing on an LTE system; thus, we

also include a heuristic re-scaling of LTE capacity to obtain realistic performance, which is

performed with a fully independent approach.

For a fair comparison, the total amount of power available for the downlink is equal to P

in both cases, and is equally distributed among the users. That is, both BSs in MISO-IC have

a power budget of P/2, and the BS of MISO-BC can be seen as a superposition of the BSs

from the MISO-IC case. In both cases, the network operators controlling the BSs are willing

to cooperate by sharing channel information, so that a (nearly) perfect global knowledge of

the channels at the transmitters can be assumed. This makes it possible to counteract mutual

interference and improve channel usage.

2.3.1 Pareto optimal beamforming models

We assume perfect collaboration among the operators of the BSs; every resource allo-

cation is performed with full knowledge of the (conjugated) complex coefficients (denoted

as hi or hij) of the channels between the antennas of each BS and UE. The channel vectors

incorporate the effects of path loss, shadowing, and fast fading.

We use the implementation of a 2 × 2 MIMO system depicted in the previous section,

on top of which we consider beamforming techniques and the MU approach. We take the

linear transmit beamforming from the LTE module of ns3, with methods providing the post-

processing SINR values for SR, PF, MMF, ZF and MR, in the MISO-IC and MISO-BC scenar-

ios.

For MISO-BC, the SINR at UEi, i, j ∈ {1, 2}, j 6= i, is

SINRi =
pi|hHi wi|2

pj |hHi wj |2 + σ2i
(2.6)

where pi is the transmit power and wi is the linear transmit beamforming vector applied to

the signal intended for UEi and σ2i is the receiver noise variance.

For MISO-IC, the SINR at UEi, i, j ∈ {1, 2}, j 6= i, is

SINRi =
pi|hHii wi|2

pj |hHjiwj |2 + σ2i
(2.7)
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with the same meaning of the variables as before.

To compute the SINR at each receiver we need the beamforming vectors w1 and w2,

which are a combination of the channel coefficients related to the intended signal and the

interfering signal [32]. Thus, we expand the LteSpectrumPhy class to keep track of the Mi-

moRxSignal, and the channel gains between the receivers and their respective intended and

interfering transmitters. These matrices are then used by the methods of TransmissionMode

to compute the beamforming vectors, and then the receiver SINR.

For MISO-BC and MISO-IC, ZF beamforming is given by

wZF
i =

P⊥hjhi
‖P⊥hjhi‖

and wZF
i =

P⊥hijhii
‖P⊥hijhii‖

(2.8)

respectively, where P⊥hj , I− hj(h
H
j hj)

−1hHj and P⊥hij , I− hij(h
H
ijhij)

−1hHij .

The MR beamforming matrix wMR
i is

wMR
i =

hi
‖hi‖

and wMR
i =

hii
‖hii‖

(2.9)

for MISO-BC and MISO-IC, respectively.

The beamforming vectors that achieve different points on the Pareto boundary are rep-

resented [32] as linear combinations of wZF
i and wMR

i for real λi, with 0 6 λi 6 1:

wi(λi) =
λiw

MR
i + (1− λi)wZF

i

‖λiwMR
i + (1− λi)wZF

i ‖
(2.10)

This parameterization holds for both MISO-IC and MISO-BC. By choosing particular values

for λ1 and λ2, as per [32], it is possible to obtain the vectors corresponding to the SR, PF,

MMF points and then compute the respective SINRs.

2.3.2 Numerical Results

We simulate with ns3 the configurations described above, obtaining the achievable rate

region and the Pareto curve in an LTE context fixing the distance between the BSs and be-

tween the UEs and the serving BS to 1.5 Km. Table 2.2 reports the system parameters. The

wireless channel model exactly follows propagation and fading models of the LTE stan-

dard [1].

First, we aim at comparing the theoretically achievable rate of the channel with the ac-

tual spectral efficiency of the LTE network, denoted with ν and computed as the ratio between
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the throughput and the channel bandwidth used. The throughput, in turn, depends on the

transport block (TB) size of LTE, determined by the modulation and coding scheme, also

computed according to LTE specifications, see [1]. Since we expect the actual spectral effi-

ciency to be significantly lower than the theoretical rate, these results are further compared

with a heuristic estimate of the actual throughput of LTE, taken from [47], which takes into

account the signaling overhead. The idea is to weigh the theoretical achievable rate of the

system with a coefficient lower than 1, derived as follows: first, a scaling coefficient that

adjusts the system bandwidth efficiency of LTE is set depending on the TB size, for which

we took the same values reported by [47] as their SISO system has the same TB as ours.

Moreover, a scaling coefficient for the SNR is also considered depending on the target BER.

The result is a rescaling of the theoretical value, which is therefore totally independent of

our simulation experiments. Note that, while the analytical model is manageable only for a

2× 1 MISO, the simulator can operate with larger systems as well.

Figs. 2.7 and 2.8 show the achievable rate region of one specific channel realization for

MISO-BC and MISO-IC, respectively. These curves are shown just as sample results, to

confirm the validity of the analytical framework; actually, any other channel realization per-

forms in a qualitatively similar way, hence Figs. 2.7 and 2.8 are representative of a general

behavior. While the achievable rate curve and the actual spectral efficiency are qualita-

tively similar, the simulated results closely match the heuristic evaluations of [47] also from

a quantitative standpoint. However, there is a significant gap between the theoretical Pareto

boundary and the actual LTE throughput. Also, the simulated values have coarser gran-

ularity (i.e., the LTE spectral efficiency curve has fewer points), due to the quantization in

mapping the SINR values to a finite number of TB choices, as opposed to a continuous rate

value. The figures also show the SR, PF, and MMF points along the Pareto boundary curve,

their projections on the theoretical LTE rate curve, and the simulation results.

Our evaluations are not limited to a single channel trace, as the simulator is also able to

show dynamic evolution over time-varying channels. Figs. 2.9 and 2.10 consider multiple

channel realizations and compare different beamforming techniques, for both MISO-BC and

MISO-IC in terms of the cumulative probability distribution of the spectral efficiency. The

results show that MISO-IC outperforms MISO-BC, i.e., beamforming is more efficient for

inter-cell interference cancellation than spatial multiplexing, due to the distance among the
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Figure 2.7. Theoretical vs. simulated rate regions for MISO-BC
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Figure 2.8. Theoretical vs. simulated rate regions for MISO-IC

BSs that decreases the interference at the receivers. This conclusion actually depends on the

interference management technique, e.g., there is no improvement for ZF, which cancels the

interference anyway. MR gets the worst spectral efficiency, thereby confirming that an unco-

ordinated interference management is not recommended for efficient communication. The

linear beamforming for SR achieves the best total spectral efficiency on the Pareto boundary,

but the difference with other techniques may be limited due to the quantization of the TBs.

We remark that these results incorporate many details of the LTE standard, and therefore
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represent more realistic evaluations than those generally available in the literature.
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Figure 2.10. Spectral efficiency comparison for a MISO-IC scenario

We also compare the techniques in terms of fairness of rate allocations. Fig. 2.11 reports

an index of fairness IF equal to:

IF =
min(ν1, ν2)

max(ν1, ν2)
∈ (0, 1] (2.11)

where νi is the spectral efficiency of user i. We exclude the MR approach that does not
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Figure 2.11. Fairness of the schemes implemented

involve cooperative transmission and would give meaningless results. The highest IF is

reached by MMF that aims at ν1 = ν2. In MISO-BC, this technique gains 18% over PF and

27% over the SR approach. Comparing the results of MISO-BC and MISO-IC, we notice

how the latter corresponds to a gain of 6.3% for SR. This is due to lower interference at the

receivers, which implies a weaker influence of the used beamforming technique on the SINR

perceived by the users. In the ZF case, IF reaches an intermediate value; indeed, while the

interferers are entirely suppressed, fairness is not a primary objective.

2.4 A framework for spectrum sharing evaluation in LTE networks

The exact characterization of spectrum sharing in a network-wide scenario may be ex-

tremely challenging, especially when evaluating the performance of a beamforming system

involving dozens of users. In this section, we present a general and modular approach,

which can be used in a LTE network simulator. Therefore, we abstract all the physical layer

effects by considering the SINR to be regulated by the ISR parameter. Moreover, we exploit

this definition into the spectrum sharing framework [48] of ns3 and we evaluate the sys-

tem performance to demonstrate the advantages of non orthogonal spectrum sharing when

compared to exclusive resource usage.
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2.4.1 System model

Our reference scenario involves two adjacent LTE BSs managed by different operators

that are serving two groups of users in the same geographical region. The operators have

the opportunity to share, partially or totally, their spectra, as shown in Fig. 2.12, here Q

is the set of all sub-channels for the downlink, equally divided between the two BSs, and

s ∈ (0, 1) represents the sharing percentage. The spectrum is divided into groups of adja-

Figure 2.12. Adopted scenario

cent sub-carriers, called sub-channels; a private subchannel can be accessed by a single user

whereas a shared one can be accessed by one users per operator, depending on the scheduling

algorithm used.

Non orthogonal sharing introduces the problem of inter-operator interference. The sig-

nal received by each UE is affected by the transmission toward other users that are sharing

the same time-frequency resource. The SINR perceived by the users is degraded with re-

spect to the no-sharing case, where access to the resource is mutually exclusive and the

inter-operator interference is zero. This effect can be reduced, or entirely cancelled, by using

linear precoding beamforming techniques that are able to reduce the interference but that at

the same time decrease the useful power level received by the UEs. If SNRnsh is the SINR

in the no-sharing case and SINRsh is the SINR in the non orthogonal sharing case, we can
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re-evaluate the performance of spectrum sharing by considering the same indicators of the

case without sharing and doing the following replacement

SNRnsh =
PS
σ2

=⇒ SINRsh =
PQ

σ2 + PI
(2.12)

where PS is the useful power in the no-sharing case, PQ is the useful power in the non

orthogonal sharing case, PI the inter-operator interference and σ2 is the noise power.

To summarize the SINR user degradation experienced in the no-sharing case, we intro-

duce the parameter ISR ∈ (0, 1), defined as:

ISR =
SINRsh
SNRnsh

. (2.13)

As will be shown next, the definition of the ISR enables a compact, low-complex repre-

sentation of all PHY layer effects to be considered in the network performance evaluation.

Actually, the evaluation becomes quite flexible, as the impact of beamforming procedures

and user selection mechanisms can be translated into the proper ISR value.

2.5 Numerical Results

To assess the performance of the ISR parameter we run a simulation campaign extend-

ing the version presented in [49] of ns3. In our version, the resource allocation scheduling

depends on the type of channel, namely private or shared. For private channels, a “max

throughput” policy is implemented, i.e., all the resources are allocated to these users with

the highest Channel Quality Indicator (CQI). Users without a resource assignment are allo-

cated in the shared pool. Here the pairwise allocation that maximizes the throughput sum

is made. The SNR perceived by the users in the shared resource pool are then perturbed

according with to ISR.

The scenario consists of two eNBs spaced by 50 m and 40 UEs for each eNB, uniformly

distributed within the associated eNB coverage area. The other main system parameters are

reported in Table 2.3.

The results obtained are expressed in terms of throughput, which represents the average

sum data rates delivered to all UEs. For non orthogonal sharing, throughput increases with

respect to the no-sharing case when a certain ISR threshold has been exceeded and when

noise power is sufficiently low. Clearly, if the system is noise limited, rather than interference
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Parameter Value

1-st sub-channel frequency 2110 MHz

Downlink Channel Bandwidth 5 MHz

Sub-Carrier Bandwidth 15 kHz

Doppler Frequency 60 Hz

Resource block bandwidth 180 kHz

Resource block carriers 12

Resource block OFDM symbols 7

BS downlink TX power 43 dBm

Noise spectral density -174 dBm/Hz

Macroscopic Pathloss (distance R) 128.1 + (37.6 · log(R))dB

Shadow fading log-normal

Multipath fading Jakes (6-12 scatterers)

Wall penetration loss 10 dB

Frame duration 10 ms

TTI (sub-frame duration) 1 ms

Cell coverage 5 km

Cell distance 50 m

Number of UEs per BS 40

Table 2.3. Main system parameter

limited, there is no improvement in coordinating interference. Fig. 2.13 shows that the

asymptotic case when the ISR is equal to 1, i.e., perfect interference cancellation, and the BSs

share all of their spectra, is the best case, the gain is even higher than 100% due to increased

multi-user diversity. However, it is worth noting that the curves are sufficiently flat so that

significant gains are achieved even when these conditions are not met.

Moreover, the results show that it is always better to have a full, i.e., 100% sharing of the

available frequencies. This may not be possible due to internal policy requirements of the

operators; nevertheless, the larger the fraction of shared spectrum, the better.

Then, we compare the previous results with the performance obtained by applying fea-
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sible beamforming techniques in a MISO 2 × 1 full sharing LTE system. The main system

parameters used in the simulation are reported in Table 2.3 but in this case only two UEs,

positioned at 1.5 km from the BS, are involved in the communication. We considered two

different linear precoding beamforming techniques: the Maximum Ratio Transmission tech-

nique (MRT) and the Sum Rate technique (SR).

The first approach, MRT, uses linear preconding beamforming matrices that maximize

the transmission rate when no interference is perceived by the users. Since this technique

does not include any kind of collaboration, it achieves a Nash Equilibrium, i.e. the best re-

sult for each user individually, from a selfish standpoint. However, its global performance,

i.e., considering the two users jointly, is inefficient due to the high mutual interference. Con-

versely, in SR, the linear precoding beamforming matrices are computed to achieve the PO

operation point that achieves the best sum rate. This operation point is one point of the

upper-right boundary (Pareto Boundary) of the region that collects all ratetuples that can

be achievable simultaneously by the users under a certain set of transmit-power constraints.

So a point on the Pareto Boundary consists of rate tuples at which it is impossible to increase

the rates of some users without decreasing the rate of at least one of the other users [16].

Fig. 2.14 compares the performance of the no-sharing approach with that provided by

full sharing, where the multi-user mode is obtained by using the beamforming techniques

described previously. As expected, the MRT system performs poorly in terms of spectral

efficiency with a significant loss respect to the no-sharing setting. On the other hand, the

SR system outperforms the MRT system and provides some improvement compared to the

no-sharing scenario.

Comparing the gains achieved in the sharing cases, it can be seen how the MRT tech-

nique corresponds to a value of ISR around 0.002, while the SR technique corresponds to a

value of ISR between 0.02 and 0.05. We expect that a higher value of ISR can be achieved

using a smart selection of the users that consider the conditions of the channel and the beam-

forming technique used. In any event, this confirms our assumption that suppression ratios

of 5% or higher are feasible for practical systems, thus implying that the gains achievable by

non orthogonal sharing are realistic.
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Chapter 3
Spectrum Sharing Management

In the context of dynamic spectrum access, spectrum sharing among multiple operators

has recently emerged as a promising paradigm to improve the efficiency of resource usage.

Several theoretical evaluations have proven the benefits offered by pooling the available

frequencies so as to tune the capacity offered by the operators according to their different

needs, especially the service demands from their users. However, practical aspects con-

cerning the application of sharing techniques are rarely studied, and deserve more detailed

investigations. Exploiting the features of LTE, which implies a careful design of the PHY

layer, may allow different operators to jointly use the spectrum resources. However, while

the PHY layer is the subject of several investigations, so far little attention has been paid to

the impact of these techniques on upper layers, from medium access control (MAC) up to

application, which are those that mostly determine the quality experienced by the users [50].

As we will discuss, there are several challenges in this approach, including the definition of

a synthetic mathematical representation of the beamforming, that abstracts from the spe-

cific technological features. Even though the related signal processing techniques are well

understood, they are too complex to scale in a network-wide environment, and some sim-

plifications are needed. Conversely, when multiple users are present, it is not obvious how

they should be coordinated so that maximum efficiency results from physical resource shar-

ing.

NOSS allows the operators to use the same shared spectrum resource simultaneously.

This configuration allocates multiple users to the same frequency at the same time, thereby

causing a degradation of the SINR at the intended receivers. The interference has to be con-

33
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trolled through the use of multiple antennas at the BSs and proper mitigation techniques,

such as beamforming [16]. Moreover, the sharing paradigm can be extended to the infras-

tructure if the operators use the same communication point. This case, denoted as IS-NOSS,

brings further improvements in terms of capital and operational expense (CAPEX, OPEX)

costs [17].

In the first part of this chapter we consider the two NOSS scenarios are graphically repre-

sented in Fig. 5.1. For both NOSS and IS-NOSS, a careful allocation of the users is required.

If the users are just assigned based on individual performance metrics, OSS can achieve

some benefits since it increases multi-user diversity. However, non-orthogonal sharing aims

at allocating more than one user on the same resource, and therefore should also consider

the mutual interaction among the selected users. Thus, it is not necessarily optimal (on the

contrary, it may actually be a poor choice) to select the best users, i.e., those with the most fa-

vorable channel conditions when considered individually, to be allocated on the same chan-

nel. Rather, it is a choice that relates to the channel characteristics of the users, considered

not only individually, but paired with each other. Thus, we must define a proper scheduling

strategy for user selection in each resource block, whose outcome can be to allocate only one

user from either operator, or even two at the same time, one per operator.

Figure 3.1. IS-NOSS and NOSS scenarios

If the channel coefficients are shared among the operators, the two cases of NOSS and
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IS-NOSS can be treated within the same mathematical framework, as co-location of the BSs

just causes a different arrangement of the channel coefficients.

Differently from many contributions where the analysis is limited to the physical layer

and therefore these scenarios are just seen with two or three transmitters/receivers, the goal

of our work is to study these scenarios as cellular networks, where the number of users is

very large and therefore several beamforming options are available, also including higher

layers in the analysis. Even though, for concreteness, we will focus on zero forcing beam-

forming, our approach abstracts from the specific beamforming technique used, and thus

offers the advantage of being flexible and especially scalable to a large number of users, as is

expected for LTE networks. Also, several scheduling strategies can be considered, to exploit

the channel characteristics and the relationships among the operators.

We emphasize that the problem is different from just controlling intercell interference,

since in this case mutual interference of the users allocated on the same resource is inten-

tional. Indeed, if users are properly scheduled according to the beamforming configuration

and to the channel conditions, NOSS may offer additional gains. Conversely, one simple

way to avoid mutual interference would be to apply OSS, which fully avoids interference.

In the OSS case frequency resources owned by the operators are simply put in common,

but their usage is still exclusive by one operator at a time. This can be realized by letting

one operator “borrow channels” from another, e.g., when the traffic loads in two neighbor-

ing cells are highly asymmetric [51]. Alternatively, this can be originated by the operators

pooling all or part of their resources together and defining some sharing policy, for exam-

ple through a virtual market [49]. When the traffic loads of the operators are known to be

asymmetric, there surely is an interest and an immediate gain if both operators share their

resources. However, in practice such asymmetries are not precisely known in advance to

the operators, and only average values of user demands on a given time-of-day may be

known, but not their actual value, which must be estimated in real-time. In this case, it

becomes interesting to understand whether the theoretical gain found by spectrum sharing

investigations also translates to practical policies that can be implemented in NGMNs. In

the second part of this chapter, we will discuss how resources should be shared among the

operators according to the traffic load, which may be known either precisely or through a

statistical characterization only. We will analyse whether an approximate division of the
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bandwidth is still beneficial to achieve spectrum sharing gains, or the number of connected

users to each cell should be closely monitored and tracked. To evaluate this, we consider

an LTE network where user arrivals and departures in and from the system are regulated

according to memoryless processes with known rates. Moreover, besides the throughput

improvement brought by spectrum sharing, we also investigate fairness among the users.

According to our evaluations, getting a precise knowledge of the traffic load asymmetries

at a given time instant (as opposed to knowing it only on average) is important to reach a

satisfactory fairness among the served users. Thus, each operator should apply spectrum

sharing between one of its cells and a neighboring cell belonging to another operator with

accurate information about the traffic load of both cells, and even more so if fairness is a key

objective for this operator. These techniques are also discussed in terms of flexibility and

computational complexity. It is also shown that a sufficiently precise knowledge of the traf-

fic asymmetries, which can be exploited for spectrum sharing, can be achieved by updating

the reported cell loads just every few seconds (or more, depending on the user mobility and

call service rate). Therefore, a practical implementation of such techniques can definitely be

envisioned as realistic and viable.

3.1 Statistical Analysis of NOSS and Scheduling Strategies

We consider a downlink MISO system where the BSs use multiple antennas in trans-

mission while the users are equipped with a single antenna in reception. Moreover, we

assume a perfect knowledge at the BSs of the channel coefficients as a column vector hij ,

where indices i and j refer to the BS and the user, respectively. The use of multiple antennas

in transmission makes it possible to spatially steer the power to the receiver according to

linear precoding vectors wij determined through the channel coefficients.

In OSS, each spectrum resource is exclusively assigned to one user; thus, the linear

precoding vector wij can be computed to maximize the intended signal level received by

the user in the absence of interference through the maximum transmission ratio technique

(MRT) [52]:

w
(MRT )
ij =

hij
‖hij‖

(3.1)

If a spectrum resource is instead shared non-orthogonally (either NOSS or IS-NOSS) be-

tween the operators, note first that there may be two users using the resource at the same
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time. Thus, if user j is sharing the resource with another user k, the beamforming vector

for user j will in general also depend on k. Moreover, with non-orthogonal sharing, the

MRT technique is inefficient due to the large amount of interference created by the BSs to

the users. Thus, it is more convenient to exploit cooperation between the two operators. For

instance, the ZF approach [53] makes it possible to cancel the interference generated by the

other link computing the unit-norm beamforming vector that is orthogonal to the channel

of the second user, and which at the same time maximizes the product | wH
ijhij |. Hence, we

can determine the vector wij for ZF beamforming as

w
(ZF )
ij (k) =

Phikhij
‖Phikhij‖

(3.2)

where Phik is defined as:

Phik , I− hik(h
H
ikhik)

−1hHik

and as discussed above, the beamforming vector depends on k. However, in order to keep

the notation simple, in the following we omit this dependence on k.

Without sharing, there is no interference term in the SINR, which is therefore just a

signal-to-noise ratio (SNR). The SNR of user j in the non sharing (NSH) case is then

SNR
(NSH)
j =

pij |w(MRT )H
ij hij |2

σ2
(3.3)

where pij is the power transmitted to user j and σ2 is the noise power.

In the NOSS and IS-NOSS cases, ZF can be employed to simultaneously allocate an-

other user k on the same resource of user j, and the SINR values of user j, denoted as

SINR
(NOSS)
j (k), SINR(ISNOSS)

j (k), respectively, are

SINR
(NOSS)
j (k) =

pij |w(ZF )H
ij hij |2

σ2 + pzj |w(ZF )H
zk hzj |2

(3.4)

SINR
(ISNOSS)
j (k) =

pij |w(ZF )H
ij hij |2

σ2 + pzj |w(ZF )H
zk hij |2

(3.5)

where z is the index of the other BS that is sharing the same spectrum resource, i.e., serving

k (possibly z is the same as i, e.g., in IS-NOSS) and pzj |w(ZF )H
zk hzj |2 = pzj |w(ZF )H

zk hij |2 = 0.

The denominators of (3.5) and (3.4) are then reduced to the noise components since the ZF

precoding matrix cancels the interference at the receiver. At the same time, unlike in the

MRT case, the use of ZF beamforming also leads to a power degradation for the intended
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signal in general.This degradation is due to the non-perfect orthogonality among the chan-

nel matrices used for the construction of the beamforming matrices.

This gives the idea for our proposed analytical framework. The exact development of

formulas (3.3), (3.4), and (3.5), could in principle be extended to an exact derivation of the

capacity (and, for higher network layers, of throughput and data rate achieved by the mo-

bile users); however, this would be infeasible in a network with several users. Moreover, it

would be unclear how the users from either operator should be selected and coordinated,

as the computational complexity of considering all the possible pairs of users and evaluat-

ing their achieved SINR would be overwhelming. For these reasons, we just focus on the

degradation of the SINR induced by resource sharing, simply meant as a ratio between the

SNR value in the non-sharing case and the SINR (with added interference) in the sharing

case. Also, such a degradation may be compensated by the higher availability of resources

for both operators, also due to sharing. This will be investigated through statistical reason-

ing related to the wireless channel distribution. In other words, we will determine how the

statistics of the radio channel affects the statistics of the ratio between SINR and SNR for

the sharing and no sharing cases, respectively. This also poses the following challenges: (i)

how to model the process of user selection, i.e., the scheduling strategies according to which

users j and k are determined, and (ii) what is the resulting performance in terms of network

capacity.

3.1.1 Analytical Evaluation

In this section we discuss the analytical framework to evaluate the impact of resource

sharing on the network performance. First of all, we define some parameters to investigate

the impact of spectrum sharing and beamforming on higher layers. Then, we introduce

a number of scheduling strategies, starting from simple centralized algorithms, and later

extend them to a decentralized case where different operators schedule their users in a dis-

tributed way.

3.1.1.1 Parameters of the representation

To study the degradation of the SINR of a user in the NOSS case in relation with the

SNR obtained in the OSS scheme we define the parameter ISR of user j when sharing the
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resources with another user k as

ISRj(k) =
SINRj(k)

SNR
(NSH)
j

(3.6)

where SINRj(k) can be considered as SINR(NOSS)
j (k), see (3.4), or SINR(ISNOSS)

j (k), see

(3.5).

Also we introduce the orthogonality ρjk of users j and k as

ρjk =
|hHikhij |
‖hik‖‖hij‖

, (3.7)

which describes the degree of compatibility of the users that can be selected to share the

same spectrum resource assigned by BS i, related to their channel coefficients. A value of

ρjk close to 1 represents an inefficient coupling of these two users, which would cause them

high mutual interference. Conversely, as ρjk → 0 the losses due to the simultaneous usage

of the frequency resource are reduced.

It is possible to express (3.6) as a function of the coefficients ρjk. The detailed derivation

is shown in Appendix A.1. The result is

ISRj(k) = 1− ρ2jk (3.8)

Through (3.8) it is possible to obtain the statistical behavior of ISR from the probability dis-

tribution of ρ, which in turn depends on the choice of the scheduler. Therefore, we need to

consider which scheduling policies can be adopted to select the users that share the alloca-

tion.

3.1.1.2 Scheduling strategies

Having defined an abstract and parametric representation of beamforming through ISR,

we can now investigate several scheduling strategies, which are classified according to how

they select the users based on their channel gain and SNR and also how they interfere with

the allocation of the other operators, which is mapped through the ISR.

We call Max SNR (M-SNR) the scheduling policy where the allocation is based on the

SNR of the users in the case of no-sharing without considering the ρ parameter. In particular,

for every spectrum resource the operators select from the overall pool of users those with

the best SNR, exploiting the multi-user diversity derived from a larger number of users.
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Assume a unit-variance Rayleigh fading, i.e., hij∼CN(0, I), where 0 is the all-zero vector

and I is the identity matrix; thus, the CDF of ρ, Fρ(x), is given by the regularized incomplete

beta function Ix(α, β):

Ix(α, β) =
Bx(α, β)

B(α, β)
=

∫ x
0 t

α−1 (1− t)β−1 dt∫ 1
0 t

α−1 (1− t)β−1 dt
(3.9)

where Bx(α, β) is the incomplete beta function and B(α, β) is the (complete) beta function

[54]. The shape parameters α and β are obtained by simulation; we found that α = 1, β = 2

are suitable values for a MISO configuration with two antennas in transmission and one an-

tenna in reception. This analysis can be extended to the case of a NOSS or IS-NOSS network

for different scheduling policies.

We consider two other different schedulers in addition to the M-SNR scheduler: a Max

ISR scheduler (M-ISR) and a priority scheduler (PS). The former uses, as the M-SNR sched-

uler, a single metric as the criterion for a greedy selection, and considers the users of both

operators as belonging to a common pool; that is, it always selects two users, but not neces-

sarily one for each operator. However, differently from M-SNR that aims at maximizing the

SNR, the M-ISR uses the ISR parameter instead. Thus, for every spectrum resource, the two

users that mutually achieve the highest ISR are chosen without considering the SNRs.

In the PS case, the two operators allocate their users separately, but their allocations

are prioritized. More specifically, this policy accounts for the fact that either of them is

the original licensed “owner” (O) of the resource, i.e., the operator that would exploit the

spectrum resource in case of no sharing. The other operator (S) is just exploiting the same

channel, but with lower priority. Basically, we aim at establishing a prioritization akin to the

typical primary-secondary relationship of cognitive networks [13]. The rationale behind this

motivation is that the licensed owner O should be able to assign the resource first, and the

secondary operator S should act by avoiding disturbance to the primary. Thus, O assigns

its user with the best no-sharing SNR, then S chooses the user achieving the best ρ, with the

aim to preserve the utility of the selection performed by O. In a game theoretic context, this

framework would be akin to that of a Stackelberg game [55].

In the IS-NOSS case, since the operators are sharing the same infrastructure, the channel

coefficients and the ρ are identical for both. Thus, the pdf fρ(x) for the r.v. ρ having value

x is given, as explained in Appendix A.2, by the pdf of the maximum of n standard beta
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variables. This leads to

f (ISNOSS)ρ (x) = n

(
Bx(α, β)

B(α, β)

)n−1 xα−1(1− x)β−1

B(α, β)
(3.10)

where n is equal to the number of possible pairs in the network, i.e.:

•
(
Ni+Nz

2

)
for M-ISR;

• Ni if the owner operator is i or Nz if the owner operator is z for PS.

where Ni and Nz are the number of users for the operators i and z.

In the NOSS case, the BSs are not colocated and the value of ρ for each operator is differ-

ent. Then the objective of the scheduler is not to maximize a single value of ρ but rather the

sum of the two values obtained. According to the results presented in [56], the pdf of the

sum of the ρ values achieved for the two schedulers in the NOSS case is (see Appendix A.2)

f (NOSS)ρ (x) = n

(
Bx(α, β, a, b)

B(α, β)

)n−1(x−a)α−1(b−x)β−1

B(α, β)(b−a)α+β−1
(3.11)

where n is the number of possible pairs available in the network as per (3.10) and Bx(α,β,a,b)
B(α,β)

is a general beta variable with parameters α = 7
3 , β = 14

3 , a = 0, b = 2. These numerical

values are computed considering the beta distribution with α = 1 and β = 2 assumed for

the IS-NOSS case and following the approach in [56] that provides the exact distribution of

the sum of two independent beta variables.

Figs. 3.2 and 3.3 depict the CDF of the ISR based on the ρ statistics described above when

5 users per operator are active in the network. In the NOSS case, the value of the sum of ρ

that is computed statistically is divided using a uniform distribution among the users. As

expected, since the ISR of the selected users is the same, the IS-NOSS configuration obtains

better results than the NOSS configuration. Moreover, Figs. 3.2 and 3.3 compare the CDFs

obtained by simulation and by statistical analysis for a MISO 2x1 scenario. In the IS-NOSS

case the analytical curve shows a very good fit with the simulation results, while in the

NOSS case the fit is slightly degraded (but still acceptable) due to the assumption of uniform

distribution of the ρ among the users. We emphasize that these are statistical results, plotted

versus the ISR parameter that depends on the orthogonality of the users. Therefore, they do

not depend on a particular configuration of the users, but are instead general.
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Figure 3.2. ISR CDF and validation curves for the IS-NOSS case
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Figure 3.3. ISR CDF and validation curves for the NOSS case

3.1.1.3 Hybrid resource allocation schemes

The resource allocation algorithms described above assume that the allocation is per-

formed entirely by a central authority that selects for each RB both users to optimize certain

metrics, or one of them in the case of the PS scheduler. Moreover, it is assumed that for

every resource a non-orthogonal policy is adopted although this solution leads to a substan-
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tial degradation of the performance. In this section, we proposed two additional algorithms

that offer an independent selection of the users for all the RBs. The allocation is then opti-

mized to perform non-orthogonal or orthogonal spectrum sharing in the different resources,

using respectively ZF or MRT linear transmit beamforming. The first algorithm is designed

to maximize the throughput of the network selecting the configuration of users and beam-

former that optimizes the spectral efficiency. Conversely, the second algorithm is based on

a game theoretical framework in order to add a fairness component to the users scheduling.

In general, in the first step of all the algorithms, the operators propose an allocation map

of their users on the resources of the shared bandwidth without considering the possible

coupling with the users of the other operator. We assume that the scheduling is based on

the assignment of each RB to the user that experiences the best SNR level. Then, these maps

are managed by a central authority that performs the final resource allocation according to

the different policies.

The first scheduler, called Maximum Rate (MR), tries to maximize the total spectral effi-

ciency in the network. Given the allocation maps over the entire set of RBsN = {1, 2, ..., N},

the RBs are assigned to the operators a, b as follows:
a if Ci(a) > Ci(b), Ci(a, b)

b if Ci(b) > Ci(a), Ci(a, b)

(a, b) if Ci(a, b) > Ci(b), Ci(a)

(3.12)

where i ∈ 1, ..., N corresponds to the RB index, Ci(x) = log(1 + SNRi(x)) is the channel

capacity related to the user scheduled by operator x in RB i, Ci(x, y) is the sum-capacity

obtained when both operators x and y share the same RB, and (x, y) means that the RB is

shared non-orthogonally by both operators. If different configurations achieve the same

channel capacity the RB is assigned randomly selecting one of the alternatives. In this way,

if the users selected to share the same spectral resource achieve a low value of ISR the use

of NOSS is avoided. A weak aspect of this approach is the lack of fairness from the opera-

tors’ point of view in the selection of the users. In particular, the exclusive assignment of a

resource to an operator does not consider any priority, as for example in the PS scheduler,

and so the spectrum usage can be unbalanced among the operators.

To improve fairness, we propose a new scheduling algorithm able to manage the use of

the NOSS scheme over the spectrum resource as a function of the operators utilities. We
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based this algorithm on a Nash bargaining solution. This approach has been used, for ex-

ample, to regulate access control in a heterogeneous QoS scenario [57].

The Nash bargaining solution is used to model situations in which two players can co-

operate by negotiating an outcome or payoff from a set of feasible payoffs. There are two

important elements in this framework: the set of feasible payoffs F and the disagreement

vector (va, vb). The role of the disagreement vector is to reflect the situation when negotia-

tion breaks down. vi, i ∈ {a, b} is the payoff or utility for user i when users cannot agree on

a mutually acceptable operating point.

Considering the utility of each operator as the Shannon capacity achieved, we assume

that the operators negotiate for a specific ISR level (ISRthr), that defines the schedule as:
(a, b) if ISRi(a) > ISRthr ∧ ISRi(b) > ISRthr

a if ISRi(a) < ISRthr ∨ ISRi(b) < ISRthr, i ∈ a

b if ISRi(a) < ISRthr ∨ ISRi(b) < ISRthr, i ∈ b

(3.13)

where ISRi(x) is the value of ISR at RB i for operator x, and i ∈ x means that x is the owner

operator of the resource i. We can choose the disagreement vector to be the payoff when the

operators do not agree to any ISR level, i.e. ISRthr = 1, and the resources are assigned as

in the case of no-sharing. Considering that the operators a, b are owners respectively of the

orthogonal resource sets A = {a1, a2, ..., aA} and B = {b1, b2, ..., bB}, where A + B = N , we

obtain that the disagreement vector v = (va, vb) is

va =
∑
i∈A

log(1 + SNRi(a))

vb =
∑
i∈B

log(1 + SNRi(b))

where SNRi(x) is the SNR of operator x in RB i.

The set of payoffsF achievable by the operators {(Ua(ISRthr), Ub(ISRthr)) : 0 ≤ ISRthr ≤ 1}

is determined by the parameter ISRthr. We define the indicator functions 1ISRthr(ISR) and

6 1ISRthr(ISR) as:

1ISRthr(ISRi) =

1 if ISRi(a) > ISRthr ∧ ISRi(b) > ISRthr

0 if ISRi(a) < ISRthr ∨ ISRi(b) < ISRthr

6 1ISRthr(ISRi) = 1− 1ISRthr(ISRi)
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The payoffs achievable by the two operators are then

xa =
∑
i∈N

log(1 + ISRi(a) · SNRi(a)) · 1ISRthr(ISRi) +
∑
i∈A

log(1 + SNRi(a))· 6 1ISRthr(ISRi)

(3.14)

xb =
∑
i∈N

log(1 + ISRi(b) · SNRi(b)) · 1ISRthr(ISRi) +
∑
i∈B

log(1 + SNRi(b))· 6 1ISRthr(ISRi)

(3.15)

where, for the sake of simplicity, xa = Ua(ISRthr), xb = Ub(ISRthr).

The Nash bargaining solution is unique if the set F is compact and convex, and there

exists at least one vector x ∈ F such that x � v, i.e., x is strictly greater than v element-

wise, [57]. The unique solution is found to be:

s = arg max
x∈F

(xa − va)(xb − vb) (3.16)

Using the first part of (3.16) we obtain that:

xa − va

=
∑
i∈N

log(1 + ISRi(a) · SNRi(a)) · 1ISRthr(ISRi(a))

+
∑
i∈A

log(1 + SNRi(a))· 6 1ISRthr(ISRi(a))−
∑
i∈A

log(1 + SNRi(a))

=
∑
i∈N

log(1 + ISRi(a) · SNRi(a)) · 1ISRthr(ISRi(a))−

∑
i∈A

log(1 + SNRi(a)) · 1ISRthr(ISRi(a))

=
∑
i∈A

log

(
1 + ISRi(a) · SNRi(a)

1 + SNR
(1)
i

)
· 1ISRthr(ISRi(a))

+
∑
i∈B

log(1 + ISRi(a) · SNRi(a)) · 1ISRthr(ISRi(a))
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A similar expression holds for the second part of (3.16). So the optimization problem is:

s = arg max
ISRthr∈(0,1)(∑

i∈A
log

(
1 + ISRi(a) · SNRi(a)

1 + SNRi(a)

)
· 1ISRthr(ISRi(a))

+
∑
i∈B

log(1 + ISRi(a) · SNRi(a)) · 1ISRthr(ISRi(a))

)

·

(∑
i∈B

log

(
1 + ISRi(b) · SNRi(b)

1 + SNRi(b)

)
· 1ISRthr(ISRi(b))

+
∑
i∈A

log(1 + ISRi(b) · SNRi(b)) · 1ISRthr(ISRi(b))

)

Analyzing the optimization problem we notice that the first terms of the product describe

the capacity loss due to the fact that the resource is shared with another operator, while the

second terms describe the capacity gain because of the increased availability of resources

since now each operator has also access to the resources of the other. The problem can

be solved through discrete optimization over the domain of the ISR values obtained for a

particular user allocation. To bound the computational complexity of the algorithm, the

sums of the capacities over the RBs can be performed only for ISRthr = 0, whereas for other

ISRthr values the utility can be computed as the difference between the total sum and the

contribution of the RBs where ISRi(a) < ISRthr ∨ ISRi(b) < ISRthr. We emphasize that in

the IS-NOSS case we obtain that ISRi(a) = ISRi(b).

In order to exploit the multiuser diversity due to the usage of an extended spectrum,

a further RB rearrangement is applied where the RBs ownership is not given a priori but

is adjusted according to the SNR values achieved by the users. In particular, for fairness

reasons the same number of RBs is assigned to the operators as before, but the frequency

diversity is exploited allocating the RBs to the operator that schedules the user with the best

SNR. After this first RBs allocation, the value of ISRthr is computed with the bargaining

optimization problem reported above.

3.1.2 Simulation Results

In the first part of this section we validate the analytical results obtained in Section 3.1.1

by simulating the proposed scheduling algorithms. In particular, we simulate a 2× 1 MISO
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system with 5 users per operator and a unit-variance Rayleigh fading, i.e., hij ∼ CN(0, I).

Thus, we compute the ρ for each possible pair of users and select one pair according to the

different scheduling policies; finally, the ISR of the scheduled users is computed. To eval-

uate the performance of the proposed scheduling algorithms in an LTE system we exploit

the framework described in the previous chapter. In particular, we extend the simulator im-

plementing the ISR statistical framework by generating users in the LTE cell and randomly

assigning to each pair of them a degree of orthogonality ρ that is generated according to

the distributions given in (3.10) and (3.11). The degree of orthogonality is independent and

identically distributed among the users. Through this approach it is possible to evaluate

the impact of the ISR parameter together with the SNR level of the users on the downlink

spectral efficiency. We compare the results also with: (i) an optimal OSS scheduler that for

every RB chooses in the overall pool a single user, i.e., the one with the best SNR, and (ii)

the optimal NOSS scheduler that selects a pair of users, namely the two users achieving the

best spectral efficiency in every RB.

The scenario consists of two BSs, which may either be colocated (IS-NOSS scenario) or

non-colocated (NOSS scenario), and are equipped with two antennas. A variable number of

mobile users equipped with one antenna are randomly positioned (with uniform distribu-

tion) in the cell of their operator. Cells have a radius of 1.5 km. The downlink bandwidth

available per operator, equal to 5 MHz, is divided into 25 RBs. Moreover, we assume a fully

loaded scenario, i.e., the downlink traffic saturates each BS buffer, so all the RBs are used

during each frame. Each operator has a total downlink power of 43 dBm that is equally

divided among the RBs used. The detailed system parameters are reported in Table 3.1.

Figs. 3.4 and 3.5 show the results obtained in the IS-NOSS case and in the NOSS case,

respectively. We notice that in the user selection it is important to have both high SNR

and high ISR for spectrum sharing to be efficient. In particular, using the M-ISR scheduler

the performance is degraded due to the high probability of selecting two users with low

SNRs, while in the M-SNR case the higher probability of selecting users with low orthog-

onality causes a performance loss. By comparing these schedulers with the OSS scheduler,

we notice that selecting the users without considering the orthogonality among their chan-

nel coefficients is inefficient. Only in the case of a large number of users (50 per operator) is

the optimal OSS scheduler outperformed by the M-SNR scheduler, due to the many degrees
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Parameter Value

1-st sub-channel frequency 2110 MHz

Downlink Bandwidth per operator 5 MHz

Sub-Carrier Bandwidth 15 kHz

Doppler Frequency 60 Hz

Resource block bandwidth 180 kHz

Resource block carriers 12

Resource block OFDM symbols 7

BS downlink TX power 43 dBm

Noise spectral density -174 dBm/Hz

Macrosopic Pathloss (distance R) 128.1 + (37.6 · log(R))dB

Shadow fading log-normal, ϑ = 8 dB

Wall penetration loss 10 dB

Frame duration 10 ms

TTI (sub-frame duration) 1 ms

Target Bit Error Rate 5× 10−5

Cell coverage 1.5 km

BS distance (NOSS case) 50 m

Number of UEs per BS 1, 2, 5, 10, 20, 50

Table 3.1. Main system parameters

of freedom in choosing the users. We emphasize also that the bandwidth exploited by each

operator in the NOSS case is larger than in the OSS case. Then, since the scenario is fully

loaded, the power in the NOSS case is divided among all the RBs while in the OSS case it is

divided only among the RBs used by the operators and the power spectral density is higher

in the OSS case than in the NOSS case.

Thus, for a low number of users, the NOSS configuration is less efficient than the OSS

configurations, and this behavior is more acute when the BSs are not colocated due to a

worse coupling among the users scheduled in the same spectrum resource.
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Figure 3.4. Scheduler comparison for the IS-NOSS case
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Figure 3.5. Scheduler comparison for the NOSS case

Besides, this observation is confirmed by the results obtained when one user is available

per operator, in particular, user selection is mandatory for the NOSS scheduler, whereas in

the OSS case, multi-user diversity can be exploited so as to achieve a more efficient power

allocation. Differently, the PS scheduler results in a good trade-off between the two met-

rics considered. Moreover, the performance obtained by the optimal NOSS algorithm is
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better than what obtained with the PS algorithm, but at the cost of a higher computational

complexity. In particular, the complexity of the three allocation algorithms proposed in the

choice of the two users for every resource is O (N) while for the optimal NOSS algorithm

it is O
(
N2
)
, where N is the number of users in the cell. If we compare the IS-NOSS and

the NOSS cases, we notice that the former achieves slightly better results; thus, sharing the

infrastructure can give the operators a further improvement in terms of spectral efficiency

for the scheduling algorithms that we investigated.

In the second part of this section, we compare the two hybrid resource allocation al-

gorithms proposed in terms of spectral efficiency and throughput. We compare the perfor-

mance obtained with the Opt-OSS algorithm considered in the previous simulation and with

a modified M-SNR algorithm where one user per operator is selected for every RB to achieve

the best non-orthogonal spectral efficiency. The last algorithm is considered to compare the

solutions proposed with a simple fair approach where both operators can exploit all the RBs.

In Fig. 3.6 the spectral efficiencies obtained for the hybrid resource allocation algorithms in

the IS-NOSS case are compared. As expected the best performance is achieved by the MR

algorithm that maximizes the total throughput of the network. We emphasize how for a low

number of users there is a high probability that two users with very different values of SNR

are selected, so the allocation of one user in each RB turns out to be the optimum strategy in

terms of total spectral efficiency while, increasing the number of users, the NOSS strategy

becomes optimal. This fact explains the behavior of the MR algorithm in relation with the

Opt-OSS curve. The Nash bargaining solution algorithm (NBS) achieves better performance

than the M-SNR approach but lower than the MR algorithm since the NBS also considers

fairness among operators. Fig. 3.7 shows the average spectral efficiency achieved by the

worst operator. We note that the NBS algorithm outperforms the other solutions thanks

to a fairness aware scheduling. On the contrary, Opt-OSS achieves the worst results since

the operators with the users located in the best positions may exploit all the RBs orthogo-

nally. Increasing the number of users the performance improves for all the non-orthogonal

algorithms because the probability that both operators have users placed close to the base

station is higher. We notice also that the MR approach, which was the one achieving the best

performance in terms of aggregate spectral efficiency, obtains the worst results among the

non-orthogonal algorithms when fairness is considered.
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Figure 3.6. Spectral efficiency of the different algorithm proposed for the IS-NOSS case
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Figure 3.7. Fairness of the different algorithm proposed for the IS-NOSS case

Similar considerations for the NOSS case can be obtained analyzing Figs. 3.8 and 3.9

that describe the aggregate spectral efficiency and the worst operator’s spectral efficiency,

respectively. In conclusion, we can affirm that the MR solution maximizes the performance

of the entire system without considering the effects on the single operator. On the contrary,

the NBS solution provides a trade-off between the total achievable throughput and the fair-
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ness among the operators to provide connectivity also to the cell edge users.
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Figure 3.8. Spectral efficiency of the different algorithm proposed for the NOSS case
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Figure 3.9. Fairness of the different algorithm proposed for the NOSS case
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3.1.3 Orthogonal Spectrum Sharing Techniques for LTE networks

Differently from the previous analysis, in this section we consider an OSS scenario. A

possible reference scenario is represented in Fig. 3.10. Here, two neighboring cells are con-

sidered, which coexist in the same geographical area but are managed by different operators.

The BSs of both cells transmit over orthogonal (i.e., disjoint) frequency bands. Therefore, it

does not matter whether the cell borders are just adjacent to each other or even overlapping

(in principle, the two BSs could even cover the exact same area). Also for the sake of sim-

plicity, in the following we will discuss of resources just seen as “frequencies;” however, in

LTE jargon, the resource units to be allocated to the users are RBs.

Figure 3.10. Two operators managing neighboring cells, with spectrum sharing

Users are spread over the region and are subscribers of either of the operators. Service

to each user is uniquely provided by its serving base station (note that also this assump-

tion is just made for the sake of discussion, but in reality nothing would prevent us from

considering a similar setup with BSs possibly handing over users to each other). Spectrum

sharing intervenes by determining some of the frequency resources to be re-assigned from

their initial owner to the other one, upon necessity. As a result, the number of users served

by each operator varies. This clearly works better whenever asymmetry is present among

the traffic loads of the operators; for example, in the figure, the green BS to the right should



54 Chapter 3. Spectrum Sharing Management

serve more users than the red BS to the left, thus it makes sense to allocate a larger share of

the spectrum to the green operator than to the red one.

The question we address in this section is however, how do we quantify that either BS

has a “larger” demand than the other? How is “larger” defined, by average values or the

actual instantaneous value monitored on a close-knit time scale? And most importantly,

what is the resulting performance of each of these approaches?

3.1.4 System Model

To answer these questions, we consider users entering the system, requesting service,

and leaving upon service completion according to Markov processes. In particular, the users

in service for each operator are taken Poisson distributed; the arrivals of users in each cell are

modeled with independent and identically distributed (iid) inter-arrival times τ1, τ2, . . . , τn,

following an exponential distribution with parameter λ = 1/mτ , where mτ = E[τj ], with

E[·] being the expectation operator. The service is also a Markov process, i.e., service times

y1, y2, . . . , yn are iid exponential random variables with parameter µ = 1/my, where my =

E[yj ]. We denote the two operators as a and b, and therefore all the parameters above (i.e.,

average interarrival and service time, or their reciprocals) have in general different values

for the two operators, which are written as mτa and mτb, mya and myb, and so on. We re-

mark that the choice of a Poisson distribution has been made only for the sake of simplicity

in discussing the subsequent numerical results. Indeed, tuning the average inter-arrival and

service times it is possible to describe asymmetric traffic loads and to simplify the repre-

sentation of the numerical results. However, we also tried other arrival distributions of the

users; in a network simulator, such a choice would be actually fully modular. Therefore, we

remark that the evaluations we will show in the following have been qualitatively confirmed

also for other kinds of distributions

Assuming that the bandwidth of each operator is divided in m RBs and that each op-

erator adopts a Round Robin scheduler, the model can be considered as an M/M/m queue

where a user is served immediately if the number of users in service is less than the number

of RBs. We consider that this condition is always satisfied, so that the system can be seen as

an M/M/∞ queue, thus the number of users in service is equal to the number of the users

in the system, which is Poisson distributed with mean mx = λ/µ [58]. The Poisson distribu-
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tion permits to represent synthetically the scenario considered, a more realistic and complex

model would be feasible but it leads to similar results.

Considering the statistical parameters defined above, we define three different modes

for the adaptation of the division of the spectrum among the operators, distinguished as

follows.

No Sharing: the total available bandwidth is equally divided among the operators with-

out considering the traffic load; this is actually the result of the absence of spectrum sharing,

i.e., each operator just uses the licensed frequencies without “borrowing” anything. This

mode is used as a comparison term describing the baseline performance without spectrum

sharing. Thus, if BWtot is the total bandwidth of the system, we have BWa = BWb =

BWtot/2, where BWa and BWb are the portions assigned respectively to the operators a and

b.

Static mode: the bandwidth is divided proportionally to the average number of users in

service. Given that operator a has an average of mxa users in service and operator b has an

average of mxb users in service, we obtain

BWa =

⌊
BWtot

mxa

mxa +mxb

⌋
. (3.17)

BWb = BWtot −BWa

Dynamic mode: the bandwidth is distributed dynamically in each Transmission Time

Interval (TTI) proportionally to the number of users in service. If na and nb are the number

of users in service during a TTI for operator a and b, respectively, we obtain

BWa =

⌊
BWtot

na
na + nnb

⌋
(3.18)

BWb = BWtot −BWa

The aim of this work is to evaluate the performance achievable by the different modes in

relation with the statistical parameters described above. We evaluate two metrics of interest:

throughput and fairness among the users. The former can be simply quantified through the

total transmission rate achieved by the operators. The latter can be evaluated by using Jain’s

fairness index (denoted as J) [59]:

J =
(
∑n

i=1 ηi)
2

n
∑n

i=1 η
2
i

(3.19)
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where ηi is the throughput of user i and n is the total number of users in the system. We

emphasize that J ∈
[
1
n , 1
]
, where 1

n is the value that corresponds to a minimum fairness,

while 1 indicates perfect fairness among the users.

The last approach presented, i.e., the Dynamic mode, introduces an increase in the im-

plementation complexity by allowing the adaptation of the parameters of the system in real

time. Then, in the last part of this work, we study a pseudo-dynamic approach where the

bandwidth is distributed among the operators as in Dynamic mode but the update of the

spectrum topology is performed every regular intervals of T seconds starting from an equal

division of the spectrum. In particular, we analyze the performance of this algorithm for

different values of T for scenarios with different degrees of dynamics.

3.1.5 Performance Evaluation

To evaluate the performance of the proposed spectrum sharing algorithms in an LTE

system, we exploit the simulative framework presented in the previous chapter. Thanks to

its modular structure, it has been possible to implement the previously discussed spectrum

sharing techniques within an LTE-compliant system. The dynamic spectrum sharing allo-

cation (Dynamic mode) is realized with an instantaneous and genie-like knowledge of the

traffic of each operator; this assumption will be relaxed later on in this very section.

The scenario characteristics follow those reported in Fig. 3.10 with two BSs, one per oper-

ator, positioned at 2 km of distance. Note that the distance between the BSs does not actually

influence the performance, as previously discussed. The mobile users try to receive the same

kind of traffic and are uniformly distributed at random in a circular cell with a radius of 1.5

km centered at the BSs. The total downlink bandwidth available that is distributed between

the operators is 20 MHz and is divided into 100 RBs. Moreover, we assume a fully loaded

scenario, i.e., the downlink traffic saturates each BS buffer, so all the RBs are used during

each frame. Each operator has a total downlink power of 30 dBm that is equally divided

among the used RBs. The number of users per BS is variable according to the Markov pro-

cess explained in Section 3.1.4. A comprehensive list of system parameters is reported in

Table 3.1.

In the first simulation, we analyze the evolution of downlink throughput for the two

operators in a specific scenario with the following parameters: mτa = 10, mya = 80, mτb =
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15, myb = 40. The number of users in service is then unbalanced, since mxa = 8 and mxb =

2.667. The results are reported in Figs. 3.11 and 3.12.

 0

 10

 20

 30

 40

 50

 0  100  200  300  400  500  600

th
ro

u
g
h
p
u
t 
o
p
e
ra

to
r 

a
 [
M

b
it
/s

]

time [s]

No Sharing
Static

Dynamic

Figure 3.11. Throughput of operator a.
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We notice that, as expected, both allocation policies with spectrum sharing (either Static

or Dynamic) achieve a higher total throughput, since the operator with more users also gets

more resources. However, since the scenario is fully loaded, the throughput improvement

is marginal, as it is not related to serving more users, that in any case saturate the avail-

able bandwidth, but to a better exploitation of frequency diversity. Operator a can assign

resources to a wider set of users and therefore better exploit multi-user diversity by select-

ing those with better SINR. The graphs shown above refer to a single scenario, run with

the same simulation seeds in the ns3 simulator. Nevertheless, the trend is exactly the same

for any individual scenario. The general conclusion is that, even though spectrum sharing

seems to be better suitable to track load asymmetries of the operators, resulting in some lo-

cal throughput enhancements, overall the aggregate throughput gain is limited. After all, if

the network is properly dimensioned, the entire channel capacity is used.

However, the results also suggest that the usage of resources is significantly improved

by spectrum sharing in terms of how they are distributed among the operators, and conse-

quently among the users. For this reason, in the graphs shown in the following, we analyze

how the proposed algorithms impact on system fairness, which is in our scenario a more sig-

nificant metric and is rarely investigated when discussing allocation algorithms for cellular

networks, despite being an important characterization of the perceived quality of service.

Also note that the graphs shown next are the results on averaging on a large number of sim-

ulation runs (and all the users in the same simulation run) to obtain a statistical confidence

close to 99%.

Firstly, we define a variable that represents the balance degree of the average traffic loads

of the operators.

γ =
max (mxa,mxb)

min (mxa,mxb)
(3.20)

If γ = 1 the operators are perfectly balanced, while the higher γ, the lower the balance

between the operators.

Fig. 3.13 describes the CDF of Jain’s index. Here, the curves clearly show that the use of

the adaptive spectrum sharing algorithms results in improved fairness, since the resources

are more evenly partitioned among the users. Moreover, the flexibility of the Dynamic mode

permits a further improvement, even though at the cost of a slightly higher implementation

complexity.
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Figure 3.13. Jain’s index CDF for an unbalanced scenario (γ=3).
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Figure 3.14. Jain’s index CDF for a more balanced case (γ = 1.5).

In the second simulation, we evaluate fairness for a scenario with parameters: mτa = 10,

mya = 40, mτb = 15, myb = 40. The number of users in service is more balanced than
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before, since we obtain mxa = 4 and mxb = 2.667. Fig. 3.14 reports the results. Differently

from the previous case, no gain is obtained with the use of a static spectrum sharing policy,

which is due to the relatively small difference between the average number of served users.

Conversely, a dynamic allocation achieves a better fairness level. The previous results show

how the improvement obtained with the use of the different spectrum sharing algorithms is

related to characteristics of the traffic load at the operators.

Fig. 3.15 describes the value of the average Jain’s index versus the γ parameter. By in-

creasing γ, the fairness performance rapidly decreases for the non-cooperative allocation;

when spectrum sharing is employed (Static mode and Dynamic mode), Jain’s index remains

almost constant. However, a sufficiently high level of fairness (around J = 0.9) is reached

only when dynamically adapted spectrum sharing is used. Compared to a static spectrum

sharing, there is a consistent fairness gain; notably, this is true for all values of γs, which

means that a dynamic spectrum sharing is able to track also local unbalances of traffic, even

when the operators have the same average load.

We can conclude that, in general, spectrum sharing is able to offer a better allocation

fairness, which translates in a higher quality of service for the users, even when the system is

heavily unbalanced. On the other hand, this fairness gain is fully available only if a dynamic

spectrum sharing strategy is employed.

Finally, we investigate the flexibility of the Dynamic mode, and the relaxation of the as-

sumption of perfect traffic monitoring of the BSs. In other words, we check how the dynami-

cally updated spectrum sharing allocation, which is shown to achieve the best performance,

can deal with the update complexity. Indeed, gaining full knowledge of the user demands

at both operators at every time instant would require a considerable overhead burden for

the spectrum manager and is likely not feasible in practice.

Thus, we relax the assumption that a dynamic spectrum sharing is realized with genie-

like knowledge of the traffic patterns, and instead we consider a possibly outdated infor-

mation about each operator’s traffic, which is periodically updated with a given frequency.

This also enables us to evaluate the most proper frequency of update that offers the correct

tradeoff between performance and overhead/complexity. We define three different scenar-

ios for what concerns the speed of users’ traffic evolution, where the difference is in the

parameters of the inter-arrival and service times of the users. The parameters of these sce-
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narios, which are labeled as “almost stationary,” “slowly variable,” and “rapidly variable”

scenario, are defined in Table 3.2.

Scenario mτa mya mτb myb

Almost stationary 20 80 20 60

Slowly variable 10 80 15 40

Rapidly variable 2 6 2 4

Table 3.2. Scenario parameters

We also evaluate the average Jain’s index obtained for different update frequencies, i.e.,

every 1, 2, 5, 10, 20, 50, or 100 s. The results obtained are reported in Fig. 3.16. We notice that

the fairness performance of the different scenarios is almost optimal for update frequencies

between 1 and 0.5 Hz. Below 0.5 Hz we obtain a rapid degradation of the performance in

the high dynamics scenario, while for the low dynamics scenario the performance decreases

significantly only below 0.05 Hz. Thus, the knowledge of the statistical parameters of the

system is important to properly set the update frequency of the spectrum configuration

used. In particular, by adopting a frequency update value equal to 1/min(mτa,mτb) it is

possible to reach an average Jain’s index value corresponding to 0.98 and therefore a good

tradeoff between complexity and performance. We emphasize that, since the scenario is

fully loaded, the total throughput is not affected by the update frequency.
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Figure 3.15. Average Jain’s index as a function of the balance degree of the system.
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Chapter 4
Advanced Cellular Resource

Management

Coordination and cooperation among transmitters are fundamental paradigms to im-

prove the performance of the next generation of mobile networks (5G). In this chapter we

extend the concept of interference management and spectrum sharing to two aspects of the

NGMNs: cooperation among transmitters and coexistence between different communica-

tion technologies to allow the usage of the millimeter wave (mmWave) frequency spectrum.

In the first case, by grouping multiple transmitters into clusters and exploiting multi antenna

and beamforming techniques, interference can be managed to improve the performance at

the end user’s side. In particular, we present a novel distributed clustering algorithm that

adapts the cluster configuration according to the users distribution and the average cluster

size. In the second part, we analyze the use of a larger bandwith in mmWave spectrum for

the NGMNs. Currently, part of this band is allocated on a co-primary basis to a number of

other applications such as the fixed satellite services (FSSs). we investigate the coexistence

between a cellular network and FSSs in a mmWave scenario. In light of the parameters rec-

ommended by the standard and the recent results presented in the literature on the mmWave

channel model, we analyze different BSs deployments and different antenna configurations

at the transmitters. Finally, we show how, exploiting the features of a mmWave scenario, the

coexistence among cellular and satellite services is feasible and the interference at the FSS

antenna can be kept below recommended levels.

63
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4.1 An LTE Distributed Clustering Algorithm for CoMP

A very promising concept to achieve high spectral efficiency for interference-limited cel-

lular networks is the cooperative communication between BSs, often referred to as CoMP.

In particular, we focus on a particular CoMP technique named coordinated scheduling /

beamforming (CS/CB). In CS/CB the BSs are grouped in clusters of cooperative transmit-

ters forming MIMO distributed systems. In each cluster, users are allocated simultaneously

in the same resource unit and the interference generated to the users of the same cluster is

mitigated exploiting linear precoding beamforming. Therefore, the higher the number of

cooperating BSs, the higher the mitigation of the interference. However, in realistic systems

the number of cooperating BSs is limited by coordination signaling [60]; thus, it is important

to partition the transmitters of the whole network into clusters of proper size.

The problem of network clustering has been treated in the literature especially follow-

ing a centralized approach. In [61], a centralized clustering technique is proposed, where the

users report the SINR gain expected when merging neighboring clusters and a central unit

uses these data to optimize the network coordination. In [62] and [63], dynamic joint cluster-

ing and scheduling are studied by assuming limited CSI at the BSs, and adopting a greedy

algorithm, respectively. The use of a centralized approach leads to an increase of traffic

signaling (CSI estimation, CSI feedback, synchronization) and infrastructure overhead [64]

that may turn the network clustering procedure into a bottleneck. To reduce this overhead, a

cooperative distributed approach may be adopted. In [65] a decentralized framework is pre-

sented in a simplified scenario, where BSs negotiate the composition of fixed size clusters.

In [66], a dynamic coalition formation game is modeled for cooperative spectrum sharing.

In this case, the BSs are serving one user and the spectrum is orthogonally divided among

the BSs of the same cluster. Coalitions are formed by joining the BSs according to a util-

ity value based on channel capacity and coalition size. Network topology is taken to be

fixed, so rearrangements of the clusters are not considered. In [67], coalition game theory is

used to develop a merge-and-split algorithm. A utility function is computed by each clus-

ter, seen as a coalition, considering the signaling cost among the BSs and the gain obtained

through cooperation. According to this computation, existing coalitions may be joined or

split. Thus, this algorithm offers the additional advantage that cluster sizes are not fixed,

yet a goal size can be set, which works well on average. However, this algorithm is only
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partially distributed. Being based on game theory, it computes distributed utilities for each

BS, but requires their coordinated exchange within each cluster, which may be expensive.

We present a novel fully distributed algorithm for the LTE downlink, based on the utility

perceived by each BS. Our proposal can be seen as a further improvement over the game-

theory based algorithm. Similarly to it, we use a (different) utility function based on the

SINR, and also the cluster size is specified only on average. However, the important advan-

tage over all existing algorithms (including the game theoretic ones) is that all the compu-

tations made by the BSs within our approach are fully distributed, and there is no need for

additional signaling exchange.

We implemented our algorithm and evaluated its performance for a large LTE network

through the open-source network simulator ns3. We compared it with static clustering, a

greedy algorithm based on [60] and the coalition game theoretic algorithm inspired by [67],

also originally implemented in the simulator. These benchmarks are fully representative of

the existing clustering techniques. Our distributed approach, where each BS decides about

its participation to a coalition without negotiating it with the entire cluster, still achieves

good performance, while being able to significantly decrease signaling. Also, it is even able

to improve the performance for the worst users of the scenario; in particular, we observe a

significant improvement for the low-SNR users, since the BSs are able to manage them more

promptly, without the need to coordinate with the entire cluster it belongs to.

4.1.1 System Model

We consider a scenario with a set S = {1, 2, ..., S} of pico LTE BSs, each equipped with

one omnidirectional antenna. A set I = {1, 2, ..., I} of users are placed according to a Pois-

son point process (PPP) with intensity λ, and associated with the BS with the strongest

signal. In LTE, the downlink channel is organized according to time division and orthogo-

nal frequency division multiplexing. Time is divided into frames of 10 ms, each consisting

of 10 sub-frames of 1 ms, while the downlink spectrum is divided into groups of adjacent

sub-carriers, called sub-channels. We consider that each BS adopts a proportionally fair

scheduler and allocates a single user in each RB. Assuming uniform power allocation over

the entire bandwidth, if no coordination is adopted among the BSs, user i assigned to BS j
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is affected by interference received from the neighboring BSs and its SINR value is

SINRi =
|hji|2Pj

σ2 +
∑

s 6=j,s∈S |hsi|
2 Ps

(4.1)

where hmn is the channel coefficient from BS m to user n, Pm is the power transmitted by

base stationm and σ2 is a noise term. When coordination among a subsetK = {S1, S2, ..., SK}

of the BSs is allowed, a BS cluster can be seen as a MIMO distributed system so as to exploit

the use of linear precoding beamforming matrices to mitigate the mutual interference. If

H (K,Q) ∈ CK×Q denotes the matrix of channel coefficients, where Q is the subset of the

Q users scheduled within the cluster, ZF can be obtained by selecting the Moore-Penrose

pseudoinverse of the channel as the precoding matrix W (K,Q), with

W (K,Q) =
[
HH (K,Q) H (K,Q)

]−1
HH (K,Q) (4.2)

so that W (K,Q) H (K,Q) = IQ (identity matrix of size Q).

If a cluster K of BSs, where internal interference is cancelled, manages user i, the result-

ing SINR is

SINRi =
Pj

|wi|2 σ2 +
∑

s∈S\K |hsi|
2 Ps

(4.3)

where wi is the beamforming coefficient for user i.

The benefits of CoMP depend on the size of the clusters and the distribution of the BSs

within the clusters. Especially, the larger the clusters, the higher the amount of interference

cancelled through ZF beamforming. Selecting an efficient clustering is then key to exploit

CoMP techniques. We consider a realistic cluster size of about 4 BSs.

We compare the performance of our algorithm with three different feasible algorithms.

We emphasize that we have not considered the exhaustive search among all the possible

cluster combinations because it is infeasible from a practical point of view due to the high

computational complexity.

Static Clustering. A simple clustering procedure defines static groups of neighboring

BSs, without rearranging them over time. Signaling among the BSs is limited to the coher-

ent combining signal coordination within the cluster and no central control unit (C-CU) is

needed for dynamic updates. Even though this scheme has the least amount of signaling

exchange, it is inefficient for what concerns interference management, since it does not con-

sider the distribution of the users. Moreover, the cluster size is fixed and cannot be adapted

to the actual amount of interference to be cancelled.
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Greedy Clustering [60]. In this case, a BS is randomly chosen and a cluster is formed iter-

atively with the BSs maximizing the joint capacity, until a predefined cluster size is reached.

The scheme increases network fairness and cluster efficiency, even though the CoMP ben-

efits are higher for the clusters formed in the earlier stages that can exploit more degrees

of freedom. Moreover, a C-CU is needed to get CSI from the BS and run the clustering

algorithm. As in static clustering, the cluster size is fixed. Even though we refer to the im-

plementation of [60], other algorithms [63,65] are also based on greedy clustering and obtain

similar performance.

Game Theoretic Clustering, inspired by [67] and based on a coalitional merge-and-split.

Consider cluster Ci comprising a subset K = {S1, S2, ..., SK} of BSs, where the set of users

assigned to BS k is Mk =
{
mk

1,m
k
2, ...,m

k
n

}
. Given that user m is assigned to BS k within

cluster K and scheduled in RB r, its SNR and SINR are

SNRr,m,k =
Pk

|wr,m|2 σ2
(4.4)

SINRr,m,k(K) =
|hr,km|2Pk

σ2 +
∑

s∈K\{k} |hr,sm|
2 Ps

(4.5)

where hr,mn is the channel coefficient from BS m to user n in RB r. Thus, we define the

cluster utility as

u(K,Mk,Rm) =
∑
k ∈ K

m ∈Mk

r ∈ Rm

log2(1 + SNRr,m,k)

log2(1 + SINRr,m,k(K))
− β ξ(z−z0)

where Rm is the subset of RBs where user m is scheduled, ξ(z − z0) = 1/(1 + e−(z−z0)) is a

sigmoid function where z is the cluster size, z0 is equal to the reference cluster size, and β is

an adjusting parameter. The utility function has two terms. The first one is proportional to

the capacity gain obtained by canceling the interference within the cluster. The second is the

cost due to the coalition size, which serves to obtain a non super-additive game and drive

the average coalition size towards a predefined value (z0=4 in our setup).

Given an initial set C = {1, 2, ..., C} of clusters, a coalition is randomly chosen; the C-CU

computes the utilities for all possible merges among clusters and/or when clusters are split.

The following rules are adopted.

• Merge Rule: Two coalitions Cj and Ci can be merged if u(Cj) + u(Ci) < u(Ci
⋃
Cj).
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• Split Rule: A coalition Cj =
⋃k
i=1 Cji can be split into Cj1, Cj2, ..., Cjk if

∑k
i=1 u(Cji) >

u(Cj) .

The configuration that provides the best utility value according to split and merge rules is

formed and added to the set of clusters. The external cluster interference is neglected.

As in the previous case this scheme needs the use of a C-CU to manage all the CSI from

the BSs and to apply split-and-merge and rearrange the network clustering. In this specific

algorithm, the cluster size is not fixed and can be tuned through β. Thus, cluster configura-

tions are adaptive, i.e., clusters are larger where the user density is higher.

The proposed Dynamic and Distributed Clustering. We avoid using a C-CU and, at

the same time, provide a dynamic network clustering able to follow the evolution of the

network. The re-configuration of the clusters is shifted from the C-CU to the BSs that we

assume to be capable of collecting CSI from all the users. We consider that the clustering

configuration is known at each BS and all BSs synchronously exchange data and CSI over a

logical X2 interface, see [68].

Each BS has a counter initially set to a random value that decreases by 1 every TTI. Given

a cluster configuration C, when the timer expires, the BS computes the value of its utility for

each coalition in C:

uk(Ci) =
∑

m∈Mk,r∈Rm

log2(1 + SNRr,m,k)

log2(1 + SINRr,m,k(Ci))
− (4.6)

∑
s ∈ Ci \ {k}

m ∈Ms

r ∈ Rm

log2(1 + SNRavg)

log2(1 + SINRr,m,s({s, k}))
1

z
− βξ(z − z0)

where SNRavg is a reference SNR for all the users, and SINRr,m,s({s, k}) is given by (4.5)

with a reference fixed power in the numerator.

The first term of the utility represents the gain achieved by BS k within cluster Ci, while

the second term gives the contribution to interference mitigation of BS k in the cluster. In

particular, the latter makes the cluster stable, and considers not only the improvement of BS

k but also the effects on the other BSs. To keep the terms comparable, the latter is divided by

the number of BSs in cluster Ci. As in the game theoretic approach, the third term regulates

the average size of the clusters through the choice of β. After computing the utilities for all
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the clusters, the BS joins the cluster providing the highest utility, or stay within the current

cluster if no improvement is achievable.

4.1.2 Performance Evaluation

First of all, we compare the complexity of the considered algorithms. The greedy strategy

requires the evaluation of O(S) steps. The game theoretic clustering requires O(C) steps,

where C = O(S/z0). For each step, O(M + D) operations are required, where M is the

number of possible merges and D is the number of splits; note that M = O(C) and D =

O(2z0). Finally, our proposed algorithm requiresO(S) step, each withO(C) operations. This

means that the complexity of our approach is comparable with the game theoretic clustering

(actually, it is slightly lower, since the term D is missing). The greedy algorithm obviously

has lower computational complexity (linear vs. quadratic in S) but in our algorithm the

quadratic term is scaled down by z0, thus they are comparable in practical setup. Besides,

as shown next, the slight increase in complexity is more than justified by the performance

enhancement. More in general, our proposed algorithm offers the additional advantage of

better reconfigurability and highly reduced signaling exchange, since all the decisions are

made by the BSs in a fully distributed manner. To evaluate the performance quantitatively,

with reference to a realistic LTE system, we used the open-source network simulator ns3 [26].

The scenario consists of 40 pico base stations with transmission power equal to 30 dBm

placed on a rectangular lattice structure, and a user distribution modeled using a PPP with

λ = 100 users/(entire area). Neighboring BSs are positioned at distance 1.3 km from each

other and equipped with one antenna. The total downlink power of 30 dBm is equally

divided among the used RBs. The total downlink bandwidth is 5 MHz and is divided into 25

RBs with a frequency reuse factor equal to 1. Moreover, we assume a fully loaded scenario,

i.e., the downlink traffic saturates each BS buffer, so all the RBs are used during each frame.

The detailed system parameters are reported in Table 4.1; in short, the simulator includes

realistic propagation and interference models and fully LTE-compliant specifications.

We evaluate the per-user downlink throughput. To test the adaptivity of the algorithms,

we initially set all the clusters to size 1 and we re-distribute the user positions as an indepen-

dent PPP every 1 s. To improve the readability of the results, we call “low-SNR users” and
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Parameter Value

1-st sub-channel frequency 2110 MHz

Total Downlink Bandwidth 5 MHz

Sub-Carrier Bandwidth 15 kHz

Resource block bandwidth 180 kHz

Resource block carriers 12

Resource block OFDM symbols 7

BS downlink TX power 30 dBm

Noise power spectral density -174 dBm/Hz

Pathloss at d meters, in dB 128.1 + 37.6 log10 d

Shadow fading log-normal with σ = 8 dB

Frame duration 10 ms

TTI (sub-frame duration) 1 ms

Target Bit Error Rate 5× 10−5

BS distance 1.3 km

User distribution PPP with λ = 100

Table 4.1. Main system parameters

‘high-SNR users” those users obtaining a throughput lower and higher than the average,

respectively. We set β to obtain the same average cluster size for each clustering scheme.

Fig. 4.1 depicts the throughput CDF for all users. As expected, the static scheme achieves

the worst performance due to its lack of adaptation. An improvement is obtained by the

greedy and game-theoretic schemes. In these cases, the clusters are re-arranged according

to the user distribution and, in the game theoretic case, larger clusters can be employed

if needed. However, since this latter scheme uses a cluster-wise computation of utility, its

improvements come at a higher complexity and signaling cost. Moreover, we see that the

proposed dynamic algorithm obtains further performance improvements, in spite of the

lower required signaling.

To better emphasize the benefits of our scheme, Fig. 4.2 shows the throughput CDF of

the low-SNR users. Notice that low-SNR users are more significantly affected by interfer-

ence, thus the performance improvement becomes more significant. Our proposal brings an
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Figure 4.2. Throughput CDF of the low-SNR users

improvement to the top-90% throughput of the low-SNR users by at least 15% versus all the

competitors, and by 43% versus the static approach. For the worst-case low-SNR users that

are in the bottom-10% of the throughput, a higher improvement is present, about 26% (and

53% versus the static approach). The improvement provided by the scheme proposed is then

twofold. On the one hand, it avoids the need for a C-CU through a distributed approach;
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on the other hand, it increases the throughput achieved by the low-SNR users adapting the

clusters to the user distribution.

4.2 Analysis of the Coexistence between FSS and Cellular Net-

works in the mmWave spectrum

One of the most promising technologies to support the fast growing demand of high

rate connectivity in the next generation mobile cellular networks is the use of broad bands

in millimeter wave (mmWave) frequency ranges. In particular, cellular allocations today

are largely constrained under 6 GHz but it will be possible to obtain a spectrum 200 times

greater by exploiting the frequencies between 20 and 300 GHz.

Recent studies demonstrate the feasibility of mmWave mobile communications using

multiple antenna arrays in conjunction with adaptive beamforming in order to compensate

far propagation losses at high frequencies [69]. Some experimental results obtained using

a prototype developed by Samsung are reported in [70]. The small wavelengths of these

frequencies (in fact, of the order of 10−3 m) allow to use large arrays of antennas to support

directional beams to the users. A hybrid analog-digital beamforming scheme that exploits

the mmWave channel and an antenna array with a low implementation complexity is pre-

sented in [71] and several measurements and capacity studies recently performed in New

York City at 28 and 73 GHz are presented in [72]. These studies are used in [73] [74] to

develop statistical channel models including pathloss, number of spatial clusters, angular

dispersion and outage probability. In general, even in non-line-of-sight scenarios, strong

signals can be detected 100 to 200 m from the BS and spatial multiplexing can be supported.

Similar channel models based on indoor and outdoor measurements are presented in [75].

One of the candidate bands for the deployment of mmWave cellular mobile networks is the

portion of spectrum between 17 and 30 GHz. Currently, part of this band is allocated on a

co-primary basis to fixed services (FSs), cellular network backhaul, and FSSs [24]. FSS is the

official classification for geostationary communications satellites that provide, for instance,

broadcast feeds to television stations, radio stations and broadcast networks. The FSS uplink

(from FSS to satellite) is allocated in the band from 27.5 to 30 GHz and the downlink (from

satellite to FSS) is allocated from 17.3 to 21 GHz [76]. Fig. 4.3 shows the spectrum allocations
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of the FSSs and high density FSSs (HDFSS) designated by the International Telecommunica-

tion Union (ITU). Therefore, it is important to study the possible coexistence between FSSs

and mmWave mobile BSs in order to preserve the functionalities of the satellite services.

Figure 4.3. FSSs and HDFSSs spectrum allocation

ITU investigated the spectrum sharing between FSSs and IMT-advanced systems in the

frequency band from 3.4 to 6.4 GHz considering the devices as primary and secondary users

respectively [77] [78]. The aim of these works is to evaluate the interference at the FSS and

to design possible interference mitigation techniques able to guarantee a minimum signal

to interference ratio (SIR) at the primary user. Several techniques can be applied to miti-

gate the interference towards the FSS and improve the BS-FSS coexistence. Some cognitive

SatComs underlay, interweave and database related techniques to manage the BS-FSS inter-

ference are presented in [79]. An interference mitigation technique based on a nullsteering

MU-MIMO spatial division access scheme for frequency sharing between an IMT-advanced

system and FSSs is proposed in L [80]. A study on the separation distance between geosta-

tionary satellite communications (GSO) and terrestrial network in Ka band that guarantees a

fixed interference to noise level (I/N) at the primary receiver is presented in [81]. A transmit

beamforming technique at the BS to maximize the SINR towards the desired secondary user

and to mitigate the interference towards the primary satellite terminals is proposed in [82].

Differently from this literature, in our work we study the coexistence between FSSs and

mobile cellular BSs in the mmWave bands. In particular, we consider the parameters and

the FSSs radiation pattern provided by the ITU standards and the channel models provided

by the literature in these frequency bands. We analyze the level of I/N at the FSS consid-

ering various multiple antenna configurations at the BS and different deployments of the

mobile transmitters when no cooperation is allowed between the BSs. We show that ex-

ploiting a large number of antennas at the BSs and properly setting the protection distance

between FSS and mobile BS, coexistence between the two systems is feasible. Moreover, we
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design a cooperative scheduling algorithm where each BS schedules one user considering

the achievable spectral efficiency and the impact on the FSS interference over noise (I/N )

level. We present a novel cooperative scheduling algorithm for mobile BSs that, exploiting a

game theoretic framework, regulates the FSS-mobile BSs coexistence maintaining the I/N at

the FSS below the threshold indicated by the regulatory recommendations. In particular, we

model the scenario as a potential game [83]. This technique has been applied recently in the

literature to design several wireless network problems. For instance, a game theoretic solu-

tion based on potential games for joint channel selection and power allocation in cognitive

radio networks is presented in [84]. Exploiting the potential game framework, a resource

allocation scheme in a multicell OFDMA uplink scenario for energy-efficient power control

is proposed in [85]. Moreover, a distributed potential game-based algorithm that addresses

the minimum transmission broadcast problem in wireless networks is presented in [86]. Our

potential game formulation ensures equilibrium of user scheduling and we present three

different versions of the algorithm. The first is based on the throughout maximization, the

second is based on the FSS interference minimization and the third considers both aspects.

Finally, we show how applying the algorithm proposed it is possible to meet the regulatory

recommendations and at the same time to reach a high level of spectral efficiency.

4.2.1 System Model

We consider the frequency allocation at 18 GHz that corresponds to the downlink band

of the FSS system. The scenario is depicted in Fig. 5.1. We define as primary link the trans-

mission from the satellite to the FSS while as secondary link the connection from a cellular BS

to a mobile UE. An additional interfering link is present from the BS to the FSS.

We can compute the interference (on a log scale) generated on such a link by BS n to the

FSS as

In = PBS +GFSS(φ) +GBS − L(d) (4.7)

where PBS is the BS transmission power, GFSS(φ) is the FSS antenna gain in the direction

φ, GBS is the BS antenna gain, φ is the angle between the main FSS antenna lobe and BS n,

L(d) is the pathloss component at distance d, which in turn is the FSS-BS distance.

The FSS antenna gain is computed as a function of the off-boresight angles, which can

be calculated using the model in [87]. Considering ϑ as the azimuth of the BS w.r.t. the FSS
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Figure 4.4. FSS-BS coexistence scenario

Rx main lobe, the off-boresight angles φ of the BS towards the FSS can be calculated as

φ = arccos(cos(α) cos(ε) cos(ϑ) + sin(α) sin(ε)) (4.8)

where α is the FSS elevation angle and ε is computed as:

ε =
ht − hs
d

− d

2r
(4.9)

where hs and ht are the heights of the BS and the FSS in meters, respectively, while r is the

effective Earth radius (≈ 8.5 · 106 m). The FSS off-boresight antenna gain pattern in dB can

be computed as [88]:

GFSS(φ) =


Gmax if 0◦ < φ < 1◦

32− 25 log φ if 1◦ ≤ φ < 48◦

−10 if 48◦ ≤ φ ≤ 180◦

where Gmax is the main beam axis FSS antenna gain.

Since mmWave channels are expected to have limited scattering, we adopt a double-

directional geometry based stochastic model withL scatterers [89]. AssumingNUE antennas

at the UE and NBS antennas at the BS the NUE ×NBS channel matrix H can be computed as

H =

√
NBSNUE

L

L∑
`=1

α`aUE(γUE` )a∗BS(γBS` ) (4.10)
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where α` is the complex gain of the `th path and γUE` , γBS` ∈ [0, 2π] are uniformly distributed

random variables that represent the angles of arrival and departure, respectively. Finally,

aUE and aBS are the antenna array responses at the UEs and BSs respectively. Assuming

uniform linear arrays, aBS can be written as

aBS =
1√
NBS

[
1, ej

2π
λ
d sin(γBSl ), ..., ej(NBS−1)

2π
λ
d sin(γBSl )

]
(4.11)

where d is the distance between antennas. Similarly, aUE can be computed by substituting

NBS and γBS` in (4.11) with NUE and γUE` , respectively.

We assume that the BS antenna gain in dB is

GBS = Gomni +GBF (4.12)

whereGomni is the conventional antenna gain when no beamforming techniques are applied

and GBF is the beamforming gain. In this work, we adopt an RF beamforming where the

gain is obtained by controlling phase and magnitude of the input signal to each antenna

to form a directional beam in a particular direction. In order to reduce the system com-

plexity, we assume that the BS can select the beam configuration within a predefined beam

codebook with cardinality Nt that uniformly covers the azimuth directions around the BS.

In particular, the codebooks at the transmitter and the receiver are formed by Nt and Nr

weight vectors {v1, ...,vNt} {w1, ...,wNr} of size NBS and NUE , respectively. Each vector

is computed as vi = a(φi) and wk = a(θk) where φi and θk are the azimuth angles for the

i-th transmit RF beam and k-th receive RF beam. We assume a multiple-input-single-output

(MISO) scenario, in which the beamforming gain in the direction of the FSS antenna is:

GBF = 10 log(
∣∣vTi hFSS

∣∣2) (4.13)

where vi is the beamforming precoding vector selected by the BS and hFSS is the channel

matrix between the BS and the FSS.

Recommendation [90] indicates that interference from fixed service systems should not

cause the BER to exceed 10−4 for more than 0.03% of any month nor cause the BER to exceed

10−3 for 0.005% of any month. These interference allowances, in terms of percentage of

system noise, can be converted into corresponding values of I/N . For this percentage of

time, referred in the literature as “short term” interference, the corresponding I/N values

are equal to -2.4 and 0 dB, respectively. To evaluate the level of interference at the FSS we
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consider a “long term” interference criterion that refers to a percentage of time greater than

20%. In this case, recommendation [90] allows an interference level equivalent to 10% of the

clear-sky satellite system noise that would give rise to a BER of 10−6. The recommended

I/N value is computed in [91] and it is equal to -10 dB.

4.2.1.1 Scenarios Considered

We evaluate the interference at the FSS using three different scenarios.

In the first scenario we consider a single BS equipped with one omnidirectional antenna

to evaluate the impact of the BS position and the elevation angle on the interference at the

FSS. In this case, the BS antenna gain is given only by the omnidirectional component.

In the second scenario, we evaluate the aggregate interference from multiple omnidi-

rectional BSs deployed in circular tiers around the FSS with fixed inter-site distance. The

interference at the FSS is given by the sum of all the BS contributions that depend on the

transmitter positions and on the FSS elevation angle. We define as protection distance dp the

distance from the FSS and the first tier of BSs. The scenario is depicted in Fig. 4.5.

Figure 4.5. Multiple BSs scenario

In the third scenario, we consider multiple directional BSs. In this case, the BSs, de-

ployed as in the previous scenario, are equipped with multiple antennas and an RF beam-

forming scheme is adopted to serve the single antenna UEs. The users are randomly dis-
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tributed within the BS coverage area and each BS selects one user at a time. The precoding

beam vector is selected by each BS within the predefined beam codebook to maximize the

SNR at the UE selected. We assume that the user scheduling and the beamforming selection

are performed in a distributed manner among the BSs without any cooperation or signalling

for interference coordination.

4.2.2 Cooperative scheduling algorithms

In this section we describe the cooperative scheduling algorithm proposed for the multi-

ple directional BSs scenario. The aim of this algorithm is to improve the BSs-FSS coexistence

reducing the minimum dp required to satisfy the standard interference limit threshold at the

FSS. The main idea is to coordinate the user transmission in order to regulate the interference

at the FSS and at the same time preserve the user average spectral efficiency. The interac-

tions among the BSs can be modelled using a game theoretic framework. In particular, by

modelling the scenario as an exact potential game, it is possible to ensure that a pure Nash

equilibrium can be reached [83] [84]. A characteristic of a potential game is that any unilat-

eral change of utility, U(si, s−i), corresponds to a difference of a potential function, F (s), for

every player and for every choice of the other players. The potential function models the

information associated with the improvement paths of a game instead of the exact utility of

the game. Our scenario can be modelled in a normal form game Γ = {N, {Si}i∈N , {Ui}i∈N},

where each player corresponds to a BS, N is the set of players and therefore the number

of BSs and Si = {1, 2, ...,K} is the set of strategies of player i. Considering that K users

are deployed within the coverage area of a player i, the strategy played by i consists of the

selection of a specific user within the K deployed in its area. For every player i in Γ, the

utility function Ui is a function of strategy si selected by player i, and the strategies of the

other players, globally denoted as s−i.

In our algorithm we assume that the actions of the players are taken sequentially by

randomly selecting one player in each algorithm iteration. The procedure terminates when

the algorithm converges to a stable scheduling configuration. We also assume that each BS

has a global knowledge of the system parameters that is exploited to optimize the utility

function, and that the channel conditions are constant during each algorithm realization.

When a BS is selected, the user that maximizes the BS’s utility function is scheduled. We
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emphasize that, if the game considered corresponds to an exact potential game, the equilib-

rium convergence is guaranteed and the configuration of the users scheduled is stable. We

define three different approaches based on three different utility functions: a maximum rate

approach (MaxRate), a minimum interference approach (MinInt) and finally an algorithm

based on the linear combination of the previous ones (LinComb).

The aim of the first algorithm is to maximize the mean spectral efficiency of the users con-

sidering within the utility function the signals received by the selected user and the intercell

interference. In this case, we define the utility UMR
i (where ”MR” stands for ”Maximum

rate”) of player i given a certain strategy si as

UMR
i (si, s−i) = pji

∣∣vTi hji
∣∣2 − N∑

n=1,n6=i
pjn
∣∣vTnhjn

∣∣2 − M∑
m=1,m 6=j

pmi
∣∣vTi hmi

∣∣2
where j is the user scheduled by BS i when strategy si is adopted and pji is the power

at user j transmitted from i. The utility function is composed by three terms. The first

term represents the power received by the user scheduled by i, the second term indicates

the inter-cell interference received by user j and, the third term represents the interference

generated by i on the users scheduled by the other BSs.

Conversely, the aim of the MinInt algorithm is to minimize the FSS interference. In this

case the utility function of user i is denoted as UMI
i and is

UMI
i (si, s−i) = −ξ(I/N) (4.14)

where ξ(I/N) is a function of the interference generated by the BSs to the FSS. In particular

the I/N rate is defined as

I/N =

N∑
n=1,n 6=i

In −N (4.15)

where In is defined in (4.7) and N is the noise level in dB. The function ξ(I/N) is designed

in order to penalize the strategies that generate large interference at the FSS and to provide

more flexibility to the users selection if the FSS interference is lower than the recommended

threshold. ξ(I/N) is set as

ξ(I/N) =


0 if I/N < I/N0

I

1− e−(I/N−I/N0)
if I/N ≥ I/N0

where I/N0 is fixed to a value lower than the recommended I/N threshold,−12 dB, in order

to regulate the interference at the FSS.
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Finally, we define the LinComb algorithm where the effects on the users and on the FSS

are considered together. In this case, the utility function is:

Ui(si, s−i) = pji
∣∣vTi hji

∣∣2 − N∑
n=1,n6=i

pjn
∣∣vTnhjn

∣∣2 − M∑
m=1,m 6=j

pmi
∣∣vTi hmi

∣∣2 − βξ(I/N)

where β is an adjusting parameter.

For all the algorithms it is possible to define an exact potential function that leads to a

specific potential game. The proof is reported in Appendix A.3.

4.2.3 Performance Evaluation

In this section, we describe the results obtained for the scenarios presented in the pre-

vious sections. We assume that the total downlink bandwith is 500 MHz and the BSs allo-

cate the power uniformly over this bandwith. The pathloss model is given exploiting the

results presented in [75] on the mmWave band. Assuming a system effective noise tem-

perature T equal to 300 K the one-sided noise power spectral density value results equal

to N0 = kT = −143.82 dBW/MHz, where k is the Boltzmann constant. The detailed sys-

tem parameters are reported in Table 4.2. All the evaluations have been performed using a

customized MATLAB simulator.

4.2.3.1 Single omnidirectional BS

In Fig. 4.6, we evaluate the region around the FSS where a single omnidirectional BS

can be placed without causing I/N to go above the recommended threshold. In particular,

the graph shows the contour of the “−10 dB region” that represents the area where a single

omnidirectional BS generates an amount of interference at the FSS higher than the regulatory

requirements. We evaluate the regions obtained with a pico BS, PBS = 30 dBm and with

a macro BS, PBS = 43 dBm, considering the FSS elevation angle α equal to 10◦ and 30◦.

As expected, the −10 dB area extension is proportional to the BS power. Moreover, the

interference depends on the FSS elevation angle, in particular the higher the α the lower the

interference at the FSS.
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Parameter Value

Carrier frequency 18 GHz

Total downlink bandwidth 500 MHz

BS transmit power 30, 43 dBm

BS antenna height 20 m

BS omnidirectional antenna gain 6, 12 dBi

BSs intersite distance 500 m

BS inter-antenna distance λ/2

BS beam codebook cardinality 16

FSS antenna main lobe gain 42.1 dBi

FSS antenna diameter 2.4 m

FSS antenna height 2 m

Elevation angle 10◦, 30◦

Pathloss model 61.39 + 10× 2.47 log(d) [75]

Number of scatterers 3

Noise temperature 300 K

Number of users per BS 10

Recommended I/N level -10 dB

Table 4.2. Main system parameters

4.2.3.2 Multiple omnidirectional BSs

In the next simulations, we evaluate the interference at the FSS when more omnidirec-

tional pico BSs are deployed around the FSS. In the first simulation, we consider the worst

case scenario when one BS within every tier of BSs is placed in the direction of the maximum

FSS antenna gain, i.e., ϑ = 0◦, and the others are placed accordingly with a fixed intersite

distance di. Considering the expected cell coverage in next generation cellular networks [72]

we assume di = 500 m. Fig. 4.7 shows the I/N obtained varying the protection distance and

adopting three different values for the number of BS tiers, Nr, and two different elevation

angles. We observe that, for α = 10◦, the interference at the FSS is very high and the I/N
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level recommended by the standard is never achieved even for high dp values. Increasing

the elevation angle to 30◦ the recommended value is reached for dp = 2000 m. As expected,

considering more BSs circles the interference at the FSS increases but the effects of the more

distant BSs circle become negligible due to the high pathloss. Then, in the next evaluations,

we restrict the value of Nr to 3 or 5.

Fig. 4.8 shows the CDF of I/N when the BS are deployed randomly over the circles

around the FSS. We consider five tiers of BSs and two fixed protection distances for each

value of the elevation angle. The intersite distance between the BSs is fixed as in the previ-

ous simulation. The results are obtained via Monte Carlo simulation with several runs per

configuration where in each run the BS positions are changed. Firstly, we note that since the

radiation pattern shape depends on α, the higher the FSS elevation angle the lower the in-

terference generated to the FSS and so the I/N level. In general, for the dp values considered

the interference requirement is never met.
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Figure 4.8. Aggregate interference CDF with omnidirectional BSs
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4.2.3.3 Multiple directional BSs

In Figs. 4.9, 4.10 and 4.11 we evaluate the interference at the FSS exploiting an analog

beamforming scheme at the BSs that maximizes the user capacity. We consider a random

scheduling of the users. Fig. 4.9 shows the I/N obtained in the worst-case scenario by vary-

ing the protection distance and considering different numbers of antennas at the transmitter

Na, and different values of α. The number Nr of tiers of BSs around the FSS is fixed to

three and the results have been obtained, as in the previous case, by Monte Carlo evalua-

tions over different channel realizations and user selections. When the number of antennas

is increased, the directional beams becomes narrower and the interference due to the side

lobes decreases. Also, the interference towards the FSS decreases with the number of anten-

nas at the BSs. Besides, we note that the interference due to a small elevation angle can be

compensated by using a larger antenna array. In general, beamforming schemes can reach

a considerable improvement in comparison with the omnidirectional BSs case. Fig. 4.10

shows the CDF of I/N when the number of antennas is set to 16 and the BSs are randomly

placed around the FSS over three tiers. Using this configuration, we notice that it is possible

to satisfy the standard recommendation constraints adopting a protection distance of 1500 m

for an elevation angle equal to 30◦. We emphasize that user scheduling and beam selection

are completely unaware of the interference at the FSS since no communication is assumed

between the devices. The results of a similar evaluation are reported in Fig. 4.11 increasing

the number of antennas at the BSs to 64. We note that the required protection distance with

α = 30◦ is reduced to 500 m and the regulatory requirement can be satisfied also for α = 10◦

with dp = 1500 m. Fig. 4.12 shows the impact of the BSs intersite distance on the interference

at the FSS. In this evaluation we set Na = 16, dp = 1500, Nr = 3 and α = 30. As expected,

decreasing the intersite distance, the BS density around the FSS increases, thus generating

higher interference at the FSS. The BSs density is then another key parameter to design the

network in order to preserve the FSS functionalities.

4.2.3.4 Cooperative scheduling algorithms

In the second part of this section we evaluate the performance reachable with a cooper-

ative scheduling of the users. In particular, we study the results achievable by the LinComb

algorithm in terms of I/N level at the FSS and mean spectral efficiency of the users. We
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Figure 4.9. Aggregate interference in the beamforming worst-case scenario
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consider the third scenario presented in Section 4.2.1.1 and we assume that each BS has 10

users deployed randomly within the coverage area. The other system parameters are the

same used to generate fig. 4.10.

Fig. 4.13 shows the evolution of the I/N level at the FSS for the different potential game

algorithms proposed using the same configuration of users and starting from the same ran-

dom set of scheduled users. As expected, the I/N level for the MinInt algorithm converges

around I0 since there is no reward for the BSs to schedule users that generate interference

at the FSS. Conversely, the utility of the MaxRate algorithm is related just to the spectral

efficiency of the users and the I/N level converges to a higher value. Finally, the LinComb

algorithm achieves an intermediate I/N value. We emphasize that the converging values of

the MinInt and LinComb algorithms can be modified selecting a different I0 value.
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Figure 4.13. I/N evolution for the different algorithms considered

Fig. 4.14 describes the CDF of the I/N level at the FSS. The results have been obtained

via Monte Carlo simulations using a different users configuration for each realization. As

expected, the performance achieved by the MaxRate algorithm are above the limit imposed

by regulations since there is no constraints on the interference at the FSS. Conversely, for the
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MinInt algorithm the I/N level is maintained under the−10 dB threshold recommended by

the standard. Using the LinComb algorithm the standard threshold is achieved for almost

60% of the user configurations getting a significant improvement in comparison with the

MaxRate case.

Fig. 4.15 shows the CDF of the user spectral efficiency for the different algorithms consid-

ered. As expected, the MinInt and MaxRate algorithms obtained the worst and the best re-

sults, respectively. Conversely, the PG algorithm achieves a result very close to the MaxRate

algorithm even though, as depicted in Fig. 4.14, the interference at the FSS is maintained

at low values. Thus, the LinComb algorithm provides a good tradeoff between guarantee-

ing a high user spectral efficiency and achieving an acceptable interference level at the FSS.

Besides, properly selecting the parameters I0 and β, it is possible to regulate the BSs-FSS co-

existence and to reduce the protection distance to increase the mmWave network coverage

area.
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Chapter 5
Heterogeneous Networks Mobility

Management

While increasing the efficiency of the cellular networks, HetNets also raise several tech-

nical challenges related to user management [4]. An important aspect is related to the han-

dover (HO) process of mobile users that, differently from the classical cellular networks,

have to deal with cells of widely varying coverage areas. In general, the HO process, stan-

dardized by the 3GPP [92], is triggered by the UE, which periodically measures the Ref-

erence Symbols Received Power (RSRP) from the surrounding cells. When the difference

between the RSRP of a neighboring cell and the serving cell is higher than a fixed HO hys-

teresis value (event A3 in [93]), the HO process starts, as exemplified in Fig. 5.1. If this

condition holds for a period of time equal to the Time-To-Trigger (TTT) parameter, the HO is

finalized and the UE connects to the BS with the strongest RSRP.

The static setting of the HO hysteresis and TTT values adopted in traditional scenarios

with only macrocells is no longer effective for HetNet systems, because of the large variety

in cell characteristics [25]. With large values of TTT and hysteresis margin, the UE will likely

experience a severe degradation of the RSRP during the TTT period when crossing a small

cell, a problem that is generally referred to as HO Failure (HF). On the other hand, short

TTT and low hysteresis margin may cause HO Ping-Pong (HPP), i.e., frequent HOs to/from

the M-BS, which yields performance losses due to signaling overhead and handover times.

Reducing HO failure and ping-pong rates are clearly conflicting objectives, and the HO

policy needs to trade off the two aspects.

91
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Macro BS Femto BS

User

t

RSRP

γMth

TTT
γFth

TTT

Figure 5.1. Example of the decay of the power profile from the M-BS and F-BS as the UE moves away

from the M-BS and towards the F-BS.

Another challenge of HetNet management is the so called Load Balancing (LB), which

consists in mitigating congestions in cellular networks by offloading users from overloaded

cells to light loaded neighboring cells. This problem has been mostly addressed in homo-

geneous networks, with only macrocells. LB in HetNets is more involved due to the dis-

parities in cell sizes and transmit powers. In order to achieve the desired efficiency from

the deployment of small cells, hence, the handover decision needs also to be load-aware.

Indeed, mobile users may be encouraged to switch to small BSs that are light loaded to get

higher data rates, even if the measured RSRP gain is below threshold. As a consequence,

macrocells will also have the possibility to better serve their remaining users.

In this work, we make a step forward towards the design of context-aware HO policies

by first presenting a theoretical model that describes the evolution of the UE state along

its trajectory, within a basic but representative HetNet scenario. Second, we determine the

expression of the average UE performance as a function of the HO parameters and other

contextual parameters, such as the UE speed, the power profiles of the macro/pico/femto

BSs, the cell load factors, and the channel model. The mathematical framework we de-

veloped can accommodate different performance metrics, such as the HO failure rate, the

ping-pong rate, or the average Shannon capacity, which is the one actually considered in this

work. The mathematical model is then used to design a context-aware HO policy (CAHP)
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that selects the HO parameters to maximize the performance metric with respect to the UE

environment and channel conditions.

In particular, we advanced the idea of modelling the handover process by means of a

non-homogeneous Markov chain, and we exploited the model to define a context-aware

HO policy that was shown to improve the average performance of a mobile UE with respect

to the context-agnostic policies. Furthermore, upon such a base, this we extend the context-

aware HO policy to take into account the traffic load of the different cells. This is obtained by

dynamically changing the HO hysteresis values to be considered in the HO process accord-

ing to the load information broadcasted by the cells. Moreover, in Appendix A.5 we sketch

a possible generalization of the model to an HetNet scenario with multiple femtocells.

A similar work has been proposed in [94], where the authors develop a mathematical

model for the HO procedure and derive a closed-form expression of the UE outage proba-

bility. Their policy selects the TTT and margin parameters in order to minimize the specific

metric of HF rate. However, they do not consider the problem of load balancing among cells

and, moreover, make the assumption that the UE trajectory with respect to the position of

the BSs is known to the UE. Our work, instead, proposes a more general model, and defines

a context-aware HO strategy based on the more realistic assumption that the UE’s trajectory

with respect to the location of the BSs is unknown and that the cells are loaded.

5.1 Prior Work

Recent surveys on self-organizing networks (SON) [95] and on mobility management in

HetNets [96] clearly show that a proper configuration of system parameters is both crucial

for the overall throughput and also challenging due to the heterogeneity of the network.

Several solutions in the literature consider to adapt some HO parameters to the UE mobility

conditions. In [97], for instance, authors propose an algorithm that, while keeping constant

TTT and hysteresis margin, adaptively modifies the Cell Individual Offset (CIO) parameter,

which is a margin to be added to the RSRP used for load management purposes. Here

the authors show that an UE can detect changes in its mobility pattern by monitoring the

changes of the type of HO failure events (e.g., too early/late HO events, HO failures, or HO

to the wrong cell) and, hence, can adjust the specified CIO parameter to minimize both the

HO failure and the ping-pong rates.
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In [98] an extensive simulation campaign is conducted in SONs to compute Radio Link

Failure (RLF)1 rate for different UE speeds and types of handover, i.e., macro-to-macro and

macro-to-pico handover. The proposed policy selects the TTT parameter that guarantees the

RLF rate is below a certain threshold. The reference [99] analyzes the Cell Range Expansion

(CRE) technique that consists in enlarging the small cell coverage in order to balance the

users load. The authors simulate the effect of both CRE bias and hysteresis margin on the

HO failure and ping-pong rates, while fixing the TTT parameter.

A different approach is presented in [99] where the HO decision is based on a mobility

prediction algorithm that estimates the residence time of the UE on the possible target cell.

The proposed policy allows the UE to switch to the target cell only when the estimated time

is above a certain threshold. A similar procedure is considered in [100] where a mobility

state estimation algorithm groups UEs into three speed classes and assigns a fix TTT value

to each of them, such that high speed UEs avoid the HO to pico cells, while lower speed UEs

perform HO in order to minimize their RLF rate.

In these works, however, all users are assumed to have full access to the whole amount

of cell resources, irrespective of the current traffic load of each cell, which is unrealistic. The

load balancing problem has been studied in [101], where the authors analyze the impact of

the CRE parameter on the system capacity through the CDF of the SINR. The CRE param-

eter is adjusted to control the number of off-loaded users and, hence, to guarantee that the

overall capacity is maximized. However, [101] assumes static users and does not take into

account the handover that involves mobile users. The authors in [102], instead, propose a

joint algorithm that, on the one hand, tunes TTT and hysteresis parameters to optimize the

handover performance metric (defined as a weighted sum of RLF, PP and HF) and, on the

other hand, adapts the handover margin to achieve a load balancing condition.

Although these solutions improve the efficiency of HO in HetNets with respect to the

standard static setting of the HO parameters, to the best of our knowledge a mathematical

model that describes the HO performance as a function of the scenario parameters, such as

the pathloss coefficients, the UE speed, and the cell load factors, is still lacking.

1According to the standard [92], a RLF is declared when the user SINR remains below a certain threshold

Qout for the entire duration of the T310 timer (usually 1 s).
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Figure 5.2. Reference scenario: macrocell BS – M-BS (�), femtocell BS – F-BS (N), and HO line H

approximated as a circle of radius R and center c. Linear trajectory followed by a UE when entering the

femtocell at point b with incidence angle ω.

5.2 System Model

For the sake of simplicity, we focus on a basic scenario consisting of a macro BS (M-

BS) and a femto BS (F-BS) placed at distance dMF , and using the same frequency band.

Despite its simplicity, this model still presents the fundamental issues involved in the HO

process in HetNets and, hence, is representative of the targeted scenario. In any case, the

approach we propose in this manuscript can be generalized to more complex scenarios with

multiple overlapping femtocells, though at the cost of a more involved notation and argu-

mentation. For this reason, we prefer to relegate the discussion of the multi femtocell case

to Appendix A.5.

For convenience, we define the UE’s trajectory with respect to a reference circle H of

radius R centered at the F-BS. We assume that the UE moves at constant speed v, following

a straight trajectory. With reference to the polar coordinate system depicted in Fig. 5.2, the

trajectory is then uniquely identified by the angular coordinate φ of point b where the UE

crosses the border H, and by the incidence angle ω formed by the trajectory with respect to

the radius passing through b. We assume that the UE can enter the femtocell from any point

and with any angle, so that the parameters φ and ω are modeled as independent random

variables with uniform distribution in the intervals [0, 2π] and [−π/2, π/2], respectively.

In the remainder of this section we describe the channel model, the HO process and the

target performance metric considered in this work.
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5.2.1 Propagation model

At time t, a mobile UE at position a measures an RSRP ΓM (a, t) from the M-BS, and

ΓF (a, t) from the F-BS.

We assume a path-loss plus fading propagation model [103], according to which the

RSRP from the h-BS, with h ∈ {M,F}, is given by

Γh(a, t) = Γtxh gh(a) αh(t) , (5.1)

where Γtxh is the transmit power of the h-BS, gh(a) is the pathloss gain, which depends only

on the distance of point a from the h-BS, while αh(t) is the fast-fading channel gain at time

t. We assume that the fading is Rayleigh distributed, i.e., αh(t) is an exponential random

variable with unit mean and coherence time

Tc =

√
9

16π

1

fd
=

√
9

16π

c

vfc
, (5.2)

where fd and fc are the Doppler and the carrier frequencies, respectively, c is the speed

of light, and v is the UE’s speed. Due to fading, channel fluctuations can cause the HO

process to be improperly triggered, thus generating the ping-pong effect. The duration of

the channel outage is a well studied metric in the literature to model this phenomenon (see

e.g., [104]).

Since the considered scenario is interference-limited, we can neglect the noise term and

approximate the SINR γh(a, t) experienced by an UE connected to the h-BS at time t and in

position a as2

γh(a, t) = γ̄h(a)ξh(t) , h ∈ {M,F} ; (5.3)

where

γ̄M (a) =
ΓtxM gM (a)

ΓtxF gF (a)
, γ̄F (a) =

ΓtxF gF (a)

ΓtxM gM (a)
, (5.4)

are the deterministic components of the SINR, while

ξM (t) =
αM (t)

αF (t)
, ξF (t) =

αF (t)

αM (t)
, (5.5)

account for the random variation due to fading.

2The model can be extended to account for the interference from other cells, Appendix A.5, though for the

sake of simplicity we neglect other interference sources.
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5.2.2 Handover performance model

The HO process is driven by the UE’s instantaneous RSRP. If the difference between the

RSRP of the serving and the target cell drops below the HO threshold γth, the TTT timer

is initialized to a certain value T and the countdown starts. Whenever the RSRP difference

returns above the HO threshold, however, the countdown is aborted and the HO procedure

is interrupted. Conversely, if it remains below the threshold for the entire interval T , then

the UE disconnects from the serving BS and connects to the new BS. This switching process

takes a time TH that accounts for the network procedures to connect the UE to the target

BS. We remark here that the above condition on the RSRP difference can be translated to an

equivalent condition on the SINR experienced by the UE where the power received from the

target cell is the interference. Hence, we will use this latter notation in the following.

5.2.3 Mean trajectory performance

For any given point a, we can then define the connection state S of the UE to be M , F

or H depending on whether the UE is connected to the M-BS, the F-BS or is temporarily

disconnected because Handing over from one to the other.

Given an arbitrary straight path `, we define the mean trajectory performance as

C` =
1

|`|

∫
`

∑
S∈{M,F,H}

CS(a)χa(S)da ; (5.6)

where |`| is the trajectory’s length,
∫
` is the line integral along the trajectory, χa(S) is 1 if the

UE’s state at point a is S and zero otherwise, while CS(a) is the performance experienced

by the UE at point a along the trajectory, given that it is in state S ∈ {M,F,H}.

Since the UE can follow any trajectory, we average the mean trajectory performance

along all the straight lines of length L that enter the femtocell with random incidence angle,

thus obtaining3

CL =
1

Lπ

∫ π/2

−π/2

∫ L

0

∑
S∈{M,F,H}

CS(a(x, ω))χa(x,ω)(S)dx dω , (5.7)

with a(x, ω) being the point at distance x from b along the trajectory with incidence angle

ω.
3For the symmetry of the problem, the entrance point b is irrelevant. Moreover L is chosen to be large enough

to allow the UE to be eventually connected back to the M-BS.
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Now, the term χa(x,ω)(S) is random, depending on the evolution of the SINR in the

previous time interval of length T . Taking the expectation of 5.7 with respect to the random

variables ξh(t), h ∈ {M,F}, defined in 5.5, we hence get

C̄L =
1

Lπ

∫ π/2

−π/2

∫ L

0

∑
S∈{M,F,H}

C̄S(a(x, ω))PS [a(x, ω)]dx dω , (5.8)

where C̄S(a(x, ω)) is the average performance at point a(x, ω), given that the UE’s state at

point a(x, ω) is S, whose probability is

PS [a(x, ω)] = Eχa(x,ω)(S) . (5.9)

We focus on the average Shannon capacity experienced by the UE while crossing the

femtocell. Hence, for S ∈ {M,F}we define

C̄S(a) = E log2 (1 + γS(a, t))

= log2 (γ̄S(a))
γ̄S(a)

γ̄S(a)− 1
; (5.10)

where the expression in the last row is derived in the Appendix A.4. In order to account

for the various costs of the handover process (energy, time, signaling, etc), we assume zero

capacity when the UE is switching from one BS to the other, i.e.,

C̄H(a) = 0 . (5.11)

Unfortunately, the computation of 5.9 is very complex because of the time correlation of

the fading process. To overcome this problem, we replace the continuous time model with

a slotted-time model, where the UE’s trajectory is observed at time epochs spaced apart by

the fading coherence time Tc. In this way, at each slot we can approximately assume an

independent fading value. Note that the sampling time, i.e., slot duration, varies with the

UE’s speed, as for 5.2. Nonetheless, the distance covered by the UE in a time slot is constant

and equal to

∆c = vTc =

√
9

16π

c

fc
. (5.12)

In the following, we will refer to the space interval ∆c, which represents the spatial

granularity of our model, as space slot.

We can then define the average capacity C̄L with respect to this sampled space as

C̄L =
1

π

∫ π/2

−π/2

1

NL

NL∑
k=1

∑
S∈{M,F,H}

C̄S(ak(ω))PS [ak(ω)] dω (5.13)
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where

NL =

⌈
L

∆c

⌉
(5.14)

is the total number of sample points along the trajectory, and PS [ak(ω)] is the probability

that the UE is in state S ∈ {M,F,H} at sample point ak along its trajectory. In the next

section, we describe a Markov model to compute the probabilities PS [ak(ω)].

5.3 Markov analysis of the HO performance

In this section we model the HO process by means of a non homogeneous discrete time

Markov Chain (MC). To begin with, we denote by NT and NH the number of space slots

covered by the UE in time T and TH , respectively, i.e.,

NT =

⌈
vT

∆c

⌉
, NH =

⌈
vTH
∆c

⌉
. (5.15)

At every step, the UE moves along its trajectory, and the SINR changes accordingly. As

explained in the previous section, the HO process is started whenever the SINR drops below

a certain threshold γth. We then define Mj and Fj , with j ∈ {0, . . . , NT }, as the MC state

that is entered when the UE is connected to the M-BS or F-BS, respectively, and the SINR

has remained below γth for j consecutive steps. Furthermore, we define Hj and H̃j , j ∈

{1, . . . , NH}, as the MC states entered when the UE performs the macro-to-femto and femto-

to-macro handover, respectively.

Assume that, at step k, the MC is in state Mj . In the following step, the MC evolves from

Mj to Mj+1 if γM (ak, kTc) < γMth , otherwise the MC returns to M0 since the TTT counter is

reset. Conversely, if the SINR remains below threshold when the MC is in stateMNT , the UE

starts the HO process to the F-BS and the MC enters state H1. In the following NH steps the

MC deterministically crosses all the handover states Hj and ends up in state F0, regardless

of the channel conditions. At this point, the UE is connected to F-BS, and the evolution of

the MC is conceptually identical to that seen for the Mj states.

A graphical representation of the non homogeneous discrete time MC is shown in Fig.

5.3, with the transition probabilities that will be explained below.
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· · · · · · MNT−1M1 MNTM0

1− pthM (k)
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Figure 5.3. Non homogeneous discrete time Markov chain referred to a scenario with arbitrary NT and

NH . The transition probabilities are given by 5.17 and 5.18.

5.3.1 Transition probabilities and transition matrix

The cumulative distribution function of the random variable ξh, given in 5.5 as the ratio

of two independent and identically distributed exponential random variables, is equal to

P[ξh ≤ x] =
x

x+ 1
, x ∈ [0,+∞] . (5.16)

Using 5.4 and 5.16, the transition probability from stateMj toMj+1, with j ∈ {0, . . . , NT },

at step k, is given by

pthM (k) = P
[
γM (ak, kTc) < γMth

]
=

γMth
γMth + γ̄M (ak)

. (5.17)

Similarly, the transition probability from Fj to Fj+1 is equal to

pthF (k) = P
[
γF (ak, kTc) < γFth

]
=

γFth
γFth + γ̄F (ak)

. (5.18)

Note that 5.17 and 5.18 vary along the UE trajectory because of the pathloss, so that the MC

is indeed non-homogeneous.

Without loss of generality, we can arrange the states according to the order {Mj}, {Hj},

{Fj}, and {H̃j}, and in increasing order of the index j within the same set of states. The
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system transition matrix P(k) at the k-th step can then be expressed with the following sub

block structure

P(k) =


M(k) VH

M (k) 0 0

0 H(k) VF
H(k) 0

0 0 F(k) VH̃
F (k)

VM
H̃

(k) 0 0 H̃(k)

 (5.19)

where the submatrices M(k), F(k), H(k), and H̃(k) are the square transition matrices within

the sets {Mj}, {Fj}, {Hj}, and {H̃j}, respectively, while VY
X(k) are the rectangular transition

matrices from the set X to the set Y . All the other blocks are null and represented by the

symbol 0. From the previous analysis, M(k) is given by

M(k) =



1− pthM (k) pthM (k) 0 · · · 0

1− pthM (k) 0 pthM (k) · · · 0
...

...
...

. . . 0

1− pthM (k) 0 0 · · · pthM (k)

1− pthM (k) 0 0 · · · 0


. (5.20)

F(k) is the same as M(k) with pthF (k) in place of pthM (k), while

H(k) = H̃(k) =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 · · · · · · 1

0 0 · · · · · · 0


. (5.21)

Finally,

VF
H(k) = VM

H̃
(k) =

 0 0

1 0

 , (5.22)

and

VH
M (k) =

 0 0

pthM (k) 0

 , VH̃
F (k) =

 0 0

pthF (k) 0

 . (5.23)

Once the transition matrix is defined, the state probability vector p(k) at the k-th step is

given by

p(k) = p(0)
k−1∏
i=0

P(i) , (5.24)
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where p(0) is the state probability vector at the starting point of the UE trajectory. Assuming

that the UE starts its path when connected to the M-BS, we set the initial probabilities to 1

for M0 and 0 for all the other states, so that

p(0) =
[

1 0 · · · 0
]
. (5.25)

We can then compute the probability that the UE is in state S ∈ {M,F,H} at any given point

ak, k ∈ {1, . . . , NL}, as the sum of the probabilities of the states {Mj}, {Fj}, and {Hj}∪{H̃j},

respectively, at step k, i.e.,

PS [ak] =
∑
i∈{Sj}

pi(k) , (5.26)

where pi(k) is the i-th entry of the state probability vector 5.24.

5.4 Handover Decision accounting for Cells Load

In this section we consider the handover decision problem when macro and femtocells

are partially loaded. In this case, handing over towards the BS with the strongest RSRP may

actually yield poorer performance because the traffic load of the new cell. As in [105], we

assume that the BSs include an indication of their current traffic load in the pilot signals,

so that the UEs know the average fraction of available resources for each surrounding cell.

This information shall then be considered in the HO strategy, in order to select the cell with

the best tradeoff between signal quality and traffic load.

Let λS ∈ [0, 1], S ∈ {M,F}, denote the fraction of available resources in the cell served by

S-BS. Although our model can accommodate any other scaling law, for the sake of simplicity

we assume that the average performance experienced by an UE when connected to such a

BS will be simply scaled by the factor λS . We hence define the load-scaled average capacity

of the UE in state S ∈ {M,F} as follows

C̄ loadS (ak) = λSC̄S(ak) = λS log2(γ̄S(ak))
γ̄S(ak)

γ̄S(ak)− 1
, (5.27)

while, as usual, we assume zero capacity during handover, i.e.,

C̄ loadH (ak) = 0 . (5.28)

Accordingly, the average load-scaled capacity C̄loadL along the UE trajectory is given by

C̄loadL =
1

π

∫ π/2

−π/2

1

NL

NL∑
k=1

∑
S∈{M,F,H}

C̄ loadS (ak(ω))PloadS [ak(ω)] dω (5.29)
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where PloadS [ak(ω)] is the probability that at point ak the UE is in state S ∈ {M,F,H}. Clearly,

this probability depends on the HO policy, which shall be adjusted to account for the load

conditions of the cells.

A simple way to reach this goal, with minimal impact on the HO mechanism, is to main-

tain the standard SINR-based HO procedure considered in the previous section, and acting

on the Cell Individual Offset (CIO) of the cells, which shall be modified to account for the

different traffic loads. This is equivalent to define, for each cell S, a threshold γS,loadth that

depends on the current traffic loads of the macro and femtocells, respectively.

The choice of the thresholds determines the characteristics of the load-aware HO algo-

rithm. A reasonable approach is to adapt the threshold to the cell loads in such a way that

the relative performance gain experienced by the UE when changing BS is constant. Now,

averaging over the fading phenomena and assuming both macro and femtocells are un-

loaded (λM = λF = 1), the HO from M-BS to F-BS is triggered when the SINR drops below

the threshold γMth . According to 5.10, the ratio between the average capacity of the UE in

state M and F at this threshold-crossing point ak∗ is given by

C̄M (ak∗)

C̄F (ak∗)
=

log2(γ
M
th )

γMth
γMth−1

log2(1/γ
M
th )

1/γMth
1/γMth−1

= γMth , (5.30)

where γ̄M (ak∗) = γMth and γ̄F (ak∗) = 1/γMth . We can then set γM,load
th in such a way that the

ratio between the load-scaled capacities given by (5.27) at the new threshold-crossing point

aloadk∗ are still equal to γMth , i.e.,
C̄ loadM (aloadk∗ )

C̄ loadF (aloadk∗ )
= γMth . (5.31)

where γ̄M (aloadk∗ ) = γM,load
th and γ̄F (aloadk∗ ) = 1/γM,load

th . Using (5.27) into (5.31) we finally get

γM,load
th = γMth

λF
λM

. (5.32)

Repeating the same reasoning for the femto-to-macro handover, we get

γF,loadth = γFth
λM
λF

. (5.33)

Using γS,loadth in place of γSth in 5.17 and 5.18, we can then resort to the MC model described in

the previous section to compute the average trajectory performance achieved by the load-

aware HO policy. The model can then be utilized to investigate the optimal choice of the

TTT parameter, as it will be explained in the next section.
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5.5 Context-Aware HO Policy (CAHP)

The mathematical model developed in the previous sections can be used to derive a

Context-Aware HO Policy (CAHP). The context parameters that the model is built upon con-

sist of the transmit powers of the BSs (ΓtxM and ΓtxF ), the path loss coefficients (which deter-

mine the distance-dependent path gains gM (a) and gF (a)), the inter-BS distance dMF , the

carrier frequency fc, and the UE speed v. In addition, the traffic load of the cells can be

considered for the traffic-aware CAHP. Given these parameters, it is then possible to use the

models 5.13 and 5.29 to find the value TTT that maximizes the estimated average perfor-

mance experienced by the UE when crossing the area. The CAHP, hence, consists in using

the optimal TTT value for the current context parameters, which are supposed to be either

known by the UE or estimated from the RSRP received from the different BSs.

In the remaining of this section we investigate the average UE capacity 5.13 when vary-

ing the context parameters, in order to gain insights on the shape of the CAHP when cells

traffic load is neglected. In the following section, we compare by simulation the perfor-

mance of our CAHP against the standard handover process using static TTT values (FIX)

and we extend the analysis to the model described in Section 5.4, where it is considered the

user loads at the cells.

We assume a scenario composed by a M-BS with transmission power of 46 dBm and a F-

BS with transmission power of 24 dBm [106]. The BSs are placed 500 m apart. Furthermore,

we set TH = 200 ms, γMth = γFth = 1 dB, while T is varied with a granularity of 10 ms.

Fig. 5.4 shows the analytical average capacity C̄L given by 5.13 for different speeds, as a

function of T . We note that the curves show a similar trend for all speed values. The sharp

capacity drop for low T values is due to the ping-pong effect, which is indeed alleviated

when using longer T values. In particular, the longer the channel coherence time (i.e., the

lower the speed v), the larger the T required to avoid the ping pong effect. For high T values,

all curves reach an asymptotic value that corresponds to the average trajectory capacity

achievable when handover is not performed. The optimal T shall then trade off between

the risk of ping-pong effect and the HO delay. Note that, for very high speeds of the UE,

the maximum capacity corresponds to the asymptotic capacity. In this case, the optimal

policy simply consists in avoiding the HO, since the performance loss incurred during the

HO process is not compensated by the capacity gain obtained by connecting to the F-BS.
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Figure 5.4. Analytical average trajectory capacity obtained for different speeds, as a function of the TTT.

Fig. 5.5 shows the optimal T values obtained by the analytical model for different speeds

and scenarios. In practice, we vary the pathloss coefficients of the macro and femto BSs

to change the channel profile and the femtocell coverage area, which is “small” for ηF =

2, ηM = 4 (radius of 9 m, left most bar), “medium”, for ηF = 2.5, ηM = 4.5 (radius of 11 m,

middle bar), and “large”, for ηF = 3, ηM = 5 (radius of 13 m, right most bar). As predictable,

the speed threshold above which the optimal policy is to skip HO depends on the femtocell

range. In particular, for large cells, the losses due the HO are balanced by the higher capacity

obtained by connecting to the F-BS. Therefore, skipping HO is convenient only when the UE

speed is quite high. For lower speeds, instead, the optimal T is the minimum value to avoid

ping-pong events due to fast fading and, hence, only depends on the channel coherence time

that, in turn, depends on the UE’s speed, but is independent of the size of the cells.

5.6 Performance Evaluation

In this section we evaluate the performance achieved by the CAHP approach through

Montecarlo simulations. In particular, we compare the mean capacity obtained by CAHP

against the capacity of FIX policies that use constant TTT values, with T ∈ {0.100 s, 0.256 s,

0.512 s}, irrespective of the UE speed, and of the other channel parameters. In the simulation
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Figure 5.5. Optimal T for different UE’s speeds v and channel parameters according to CAHP approach.

we consider path loss coefficients ηF = 2.5 and ηM = 4.5 for F-BS and M-BS, respectively,

and the fast fading model presented in Section 5.2.

Fig. 5.6 shows the average trajectory capacity obtained in the simulations. At low speeds,

the performance of the FIX policy suffers from the ping-pong effect due to low T values,

while CAHP adopts a larger T that avoids HO triggering due to fast-fading fluctuations.

Conversely, for higher speeds, CAHP outperforms the FIX policy by adopting sufficiently

low T values to avoid the ping-pong effects, while not excessively delaying the switching

to the F-BS. In particular, the higher the fixed T value, the lower the speed beyond which

HO is never performed, and the higher the capacity loss in comparison with CAHP that,

instead, performs handover. We note that, at high speeds, all curves asymptotically con-

verge to the same value corresponding, as in the analytical model, to the average trajectory

capacity achieved when the UE remains always connected to the M-BS. The optimal HO

policy consists therefore in not performing the handover to the F-BS, to avoid the loss due

to the two TH in a short time interval. In this case, all the policies with sufficiently large

T obtain the same results. Note that the asymptotic capacity given by simulations slightly

differs from that given by the Markov model, as reported in Fig. 5.4. This small discrep-

ancy is likely due to the simplifying assumption of the analytical model, which considers

a perfectly homogeneous scenario around the femtocell center c. The simulations, instead,
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consider the actual location of both BSs and the actual power received at any given point by

each of them.
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Figure 5.6. Average capacity trajectory obtained with different approaches, as a function of the UE speed.
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Figure 5.7. Average trajectory capacity CDF for different approaches.

Fig. 5.7 describes the CDF of the average trajectory capacity for a UE speed of v =
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40 Km/h. We note that the improvement provided by CAHP is concentrated in the lower

part of the CDF. These values correspond to the trajectories that cross the femtocell area

close to its center, i.e., to the location of the F-BS. In this region, a small T makes it possible

to exploit the signal from the F-BS and to gain up to 50% in capacity in comparison with the

case with larger T . On the contrary, the higher part of the CDF corresponds to trajectories

that cross the femtocell far from the center, so that the average trajectory capacity is basically

unaffected by T because HO is skipped in most cases.

The above results have been obtained by assuming that both macro and femtocell were

unloaded. In the following we instead consider the case where cells capacity is partially

taken by other users. The pathloss coefficients from M-BS and F-BS are fixed to 4.5 and 2.5,

respectively. Fig. 5.8 shows the analytical average trajectory capacity (5.29) as function of T ,

and with UE’s speed v = 20 Km/h, when varying the load factor λM of the macrocell in the

set λM ∈ {0.2, 0.5, 0.7, 1}, while keeping the femtocell unloaded (λF = 1). We can observe

that the curves in Fig. 5.8 have the same shape, but are scaled according to λM . In particular,

the asymptotic capacity scales proportionally to λM . In fact, when T is large enough, the UE

does not perform handover and remains always connected to the macrocell, and its resulting

average trajectory capacity equals that of the macrocell, which is scaled by a factor λM with

respect to the unloaded case. We observe also that the T value that maximizes the average

trajectory capacity is the same for every load condition. The situation however changes for

higher UE speed, as can be seen from Fig. 5.9 which reports the average capacity of the UE

when varying T , with v = 150 Km/h. Here, CAHP encourages the UE to switch to the

femtocell for highly loaded macrocells (λM = 0.2, 0.5), while it avoids the handover when

the macrocell is unloaded. This confirms the intuition that the threshold speed increases

with the load of the macrocell.

Figs. 5.10 and 5.11 show the average trajectory capacity obtained through simulations

when fixing λF = 1 and setting λM equal to 0.2 and 0.7, respectively. In order to quan-

tify the performance achieved by the CAHP, we show also the capacity upper bound (Opt)

computed through an exhaustive search of all possible HO policies, thus representing the

best achievable performance for every user trajectory. Note that the computation of the op-

timal strategy requires to know in advance the fast fading gains at each point along the UE’s

trajectory and, hence, it is unfeasible in practical scenarios. As in the previous case, we com-
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Figure 5.9. Analytical average trajectory capacity obtained for different load conditions, as a function of

T , with v = 150 Km/h.

pare the performance achieved by the CAHP policy with two TTT-fixed policies, where the

cell loads are not considered and T is set to 100 ms and 50 ms, respectively. As in Fig. 5.6,

the CAHP approach achieves a substantial gain in comparison with the TTT-fixed policies

for all the considered speeds. We notice that, since the capacity penalty due to TH is larger
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at high speeds, the gap with the Opt policy increases with the users velocity. Moreover, the

gain provided by the CAHP policy grows when the cell load is unbalanced.
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Figure 5.10. Average trajectory capacity obtained with different approaches with λM = 0.2.
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Figure 5.11. Average trajectory capacity obtained with different approaches with λM = 0.7.

This trend is analyzed in Fig. 5.12. In this simulation we set v = 60 Km/h, while λM is

varied from 0.1 to 1 and λF = 1. As expected, the average trajectory capacity increases when

the macrocell is unloaded since HO is performed less frequently because the macrocell pro-
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vides good enough performance. When the load at the macrocell increases, the gap between

the CAHP and the TTT-fixed policies increases. The CAHP gain is due to the capability of

the CAHP approach to tune the TTT considering the cell loads. In particular, when the

load at the macrocell is very high, the CAHP policy achieves more than 100% performance

improvement with respect to the TTT-fixed policies.
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Figure 5.12. Average trajectory capacity obtained with different approaches for v = 60 Km/h and varying

λM from 0.1 to 1.





Chapter 6
Conclusions

In this thesis we discussed several issues concerning interference management, spectrum

sharing and user mobile management. We adopted simulative and analytical approaches

to provide new algorithms for interference and mobility management and to analyze the

performance of these approaches in a standard compliant environment. Starting from the

newest paradigm of cellular network communications, i.e. spectrum sharing, MIMO, CoMP,

mmWave communication, heterogeneous networks, we obtained new tools for the interfer-

ence management trying to face the new challenges representing by the development of a

new generation of cellular networks.

In the first part of the work, we described the implementation of a 2 × 2 MIMO system

in the simulation of LTE networks, within the well known network simulator ns3. Several

MIMO techniques were framed into our approach, and the results were compared and dis-

cussed. We extend our analytical/simulation integrated framework for the available rate

regions of 2× 1 MISO-IC and MISO-BC scenarios. This led to several evaluations of the the-

oretical maximum achievable rate and the actual throughput from the perspective of a real-

istic network scenario, and enabled us to confirm the validity of the analytical approach and

also to quantify the performance of MISO systems applied to LTE. We evaluated through-

put and fairness of several beamforming techniques that allow to reach specific points of

the Pareto Boundary. We demonstrated how, in a realistic LTE scenario, the performance

of the network can be improved adopting these beamforming approaches. Due to the in-

herent complexity of framing MIMO and MISO schemes in a comprehensive system view,

the proposed simulative approaches appears as a very good candidate for researchers and

113
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practitioners to gain understanding on this kind of technology.

We proposed a modular framework based on the definition of an ISR parameter to eval-

uate the spectrum sharing performance. Numerical results show that non orthogonal spec-

trum sharing leads to considerable gains, in spite of the presence of inter-cell interference

that degrades the SINR perceived by the users as long as some interference suppression tech-

niques, such as beamforming or MIMO transmission, are available. Starting from the defi-

nition of the ISR parameter, we investigated NOSS techniques through a statistical analysis

and a simulation analysis of the spectral efficiency obtained with the use of several schedul-

ing techniques in an LTE network. Non-orthogonal sharing appears to be a promising tech-

nique for the performance improvement in cellular networks, and a joint user scheduling

among the operators can give further improvements in terms of spectral efficiency. From

the results obtained, it also appears that the additional sharing of the infrastructure can, de-

pending on the specific scheduling algorithm, further improve the overall performance of

the network.

We also investigated the implementation of orthogonal spectrum sharing techniques by

analyzing different practical aspects, namely, whether the spectrum allocation should track

the traffic variations of the operators and how often, and how this impacts the performance,

quantified in terms of both throughput and fairness. We obtained that spectrum sharing

is generally beneficial for the system performance, especially when the traffic loads of the

operators are heavily unbalanced. Specifically, a significant gain in terms of user fairness is

achieved, while total throughput improvements, albeit present, are marginal if the system

operates in saturation. However, these gains require a dynamic approach that updates the

spectrum allocation according to the users demand, while just using average values does

not always lead to comparable gains. Furthermore, we also tested how often this dynamic

update should be performed, and the main conclusions is that an update period of the order

of few seconds is sufficient to retain the full performance of the approach, and even the

degradation by just updating with a period of tens of seconds can be acceptable, depending

on how fast the scenario changes. Thus, the associated overhead to a dynamic monitoring

is likely to be relatively low and can be beneficial to the whole spectrum sharing procedure.

In the second part of the thesis we extend the concept of spectrum sharing to two dif-

ferent scenarios. In the first case, we proposed a novel dynamic distributed clustering algo-
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rithm for CoMP that adapts the cluster configuration to the user distribution according to a

predefined average cluster size. We compare the throughput performance with other clus-

tering solutions developed in the literature, using the LTE module of the ns3 simulator. Our

approach decreases the signaling exchange while at the same time improving the network

performance, in particular for the low-SNR users.

In the second case, we investigated the coexistence feasibility of FSSs and cellular BSs in

a mmWave scenario. Firstly, we evaluated the I/N at the FSS considering standard param-

eters and different BS deployments and configurations. In particular, we studied single and

aggregate interference scenarios with a random distribution of the BSs and the impact of the

introduction of an RF beamforming scheme at the transmitters with the assumption of no

interaction among FSS and BSs. Therefore, we extend the analysis using a novel cooperative

scheduling algorithm based on a game theoretic framework. From the results obtained, it

appears that exploiting the characteristics of the mmWave scenario, such as high pathloss

and large antenna arrays, the coexistence of FSSs and BSs in the same area is possible. More-

over, parameters such as the BS density, the protection distance and the FSS elevation angle

became crucial on the network deployment to guarantee the FSS functionalities.

Finally, we proposed a novel approach to optimize the handover procedure in HetNets

by considering context parameters, as the user speed, the channel gains and the load infor-

mation of the cells. We derived a novel analytical framework that makes use of a Markov

chain to model the evolution of the UE state during the handover process. The model was

then used to derive the handover strategy that maximizes the UE average capacity in dif-

ferent scenarios, as a function of the context parameters. By adding suitable offsets to the

HO thresholds, we then adjusted the mathematical model and the CAHP algorithm to ac-

count for the traffic loads of the cells. Finally, we presented a number of simulation results

to assess the performance obtained by the proposed policy in comparison with standard

HO policies with fixed TTT. From this study it clearly emerges that context-awareness can

indeed improve the handover process and significantly increase the performance of mobile

UEs in HetNets.
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A.1 ISR Computation
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∣∣2)′ ‖hik‖2

‖hij‖hik‖ − hikh
H
ikhij‖2

= 1− ρ2jk

since: (
‖hij‖2‖hik‖2 −

∣∣hHikhij
∣∣2)′ ‖hik‖2

‖hij‖hik‖ − hikh
H
ikhij‖2

= 1

A.2 PDF of the sum of two Beta random variables

Consider a set of n independent and identically distributed random variables. The cdf

of the maximum of those variables is given by:

P{max(y1, y2, ..., yn) ≤ α} = [P {y ≤ α}]n

In our case, the cumulative distribution is described by a regularized incomplete beta

function Ix(a, b)=Bx(a, b)/B(a, b), so the related pdf fρ(x) can be obtained as

d [I(x))]n tbh

dx
=

d [Bx(a, b)/B(a, b)]n

dx
= n

(
Bx(a, b)

B(a, b)

)n−1 dBx(a, b)/B(a, b)

dx

= n

(
Bx(a, b)

B(a, b)

)n−1 xa−1(1− x)b−1

B(a, b)

A similar approach can be used for the case of a general beta variable whose cdf is

Bx(α, β, a, b)

B(α, β)
.

By repeating the same procedure applied above, (3.11) can be derived.
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A.3 Exact potential functions definition

In game theory, a game is said to be a potential game if the incentive of all players to

change their strategy can be expressed using a single global function called the potential

function. In particular, a game Γ(N,S, Ui) is an exact potential game if there exists a function

F : S→ R such that for all i ∈ N, all s ∈ S and all s′i ∈ Si :

Ui(si, s−i)− Ui(s′i, s−i) = F (si, s−i)− F (s′i, s−i) (A.1)

The function F is called an exact potential function for the game Γ (N,S, Ui) [83].

In order to show that the problems presented in Section 4.2.2 can be treated as potential

games, we have to define a potential function for each scenario considered.

Considering the set of BSs {1, ..., N} and denoting as q the user scheduled by BS k with

k ∈ {1, ..., N}, we can define F (S) for the MaxRate algorithm as

F (S) = F (sk, s−k)

=
N∑
i=1

(pji
∣∣vTi hji

∣∣2 − α N∑
n=1,n 6=i

pjn
∣∣vTnhjn

∣∣2 − (1− α)
M∑

m=1,m 6=j
pmi

∣∣vTi hmi
∣∣2)

with 0 < α < 1.

It is possible to isolate the terms depending on sk as

F (S) = pqk
∣∣vTk hqk

∣∣2 − α N∑
n=1,n6=k

pqn
∣∣vTnhqn

∣∣2 − (1− α)

M∑
m=1,m 6=q

pmk
∣∣vTk hmk

∣∣2
+

N∑
i=1,i 6=k

(pji
∣∣vTi hji

∣∣2 − α N∑
n=1,n 6=i

pjn
∣∣vTnhjn

∣∣2 − (1− α)
M∑

m=1,m6=j
pmi

∣∣vTi hmi
∣∣2)

= pqk
∣∣vTk hqk

∣∣2 − α N∑
n=1,n6=k

pqn
∣∣vTnhqn

∣∣2 − (1− α)
M∑

m=1,m 6=q
pmk

∣∣vTk hmk
∣∣2

+

N∑
i=1,i 6=k

(pji
∣∣vTi hji

∣∣2 − αpjk ∣∣vTk hjk
∣∣2 − α N∑

n=1,n6=i,k
pjn
∣∣vTnhjn

∣∣2 − (1− α)pqi
∣∣vTi hqi

∣∣2
− (1− α)

M∑
m=1,m 6=j,q

pmi
∣∣vTi hmi

∣∣2)
Let

Q(s−k) =
N∑

i=1,i 6=k
(pji

∣∣vTi hji
∣∣2 − α N∑

n=1,n 6=i,k
pjn
∣∣vTnhjn

∣∣2 − (1− α)
M∑

m=1,m 6=j,q
pmi

∣∣vTi hmi
∣∣2)
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Then

F (S) = pqk
∣∣vTk hqk

∣∣2 − α N∑
n=1,n6=k

pqn
∣∣vTnhqn

∣∣2 − (1− α)
M∑

m=1,m 6=q
pmk

∣∣vTk hmk
∣∣2

−
N∑

i=1,i 6=k
(αpjk

∣∣vTk hjk
∣∣2 + (1− α)pqi

∣∣vTi hqi
∣∣2) +Q(s−k)− βξ(I − Io)

= pqk
∣∣vTk hqk

∣∣2 − N∑
n=1,n 6=k

pqn
∣∣vTnhqn

∣∣2 − M∑
m=1,m 6=q

pmk
∣∣vTk hmk

∣∣2 +Q(s−k)− βξ(I − Io)

Since the term Q(s−k) is independent of the strategy of BS k, if BS k changes the scheduled

user from q to q′ we obtain:

F (sk, sk−1)− F (s′k, s−k)

= pqk
∣∣vTk hqk

∣∣2 − N∑
n=1,n 6=k

pqn
∣∣vTnhqn

∣∣2 − M∑
m=1,m 6=q

pmk
∣∣vTk hmk

∣∣2 − βξ(I − Io)
−

pq′k ∣∣vTk hq′k
∣∣2 − N∑

n=1,n 6=k
pq′n

∣∣vTnhq′n
∣∣2 − M∑

m=1,m 6=q′
pmk

∣∣vTk hmk
∣∣2 − βξ(I ′ − Io)


that is equal to U(sk, s−k)− U(s′k, s−k).

For the MinInt algorithm the potential function can be easily set equal to its utility func-

tion leading directly to a potential game. Finally, the potential function for the LinComb al-

gorithm is the sum of the two potential functions considered before and the proof is straight-

forward.

A.4 Expectation of log2(1 + γ̄ξ)

From 5.16, the probability density function of ξ is given by

fξ(x) =
d

dx
P[ξ ≤ x] =

1

(x+ 1)2
, x ∈ [0,+∞] . (A.2)

Given γ̄, the expectation of log2(1 + γ̄ξ) is computed as∫ +∞

0
log2 (1 + γ̄x) fξ(x) dx =

∫ +∞

0
log2 (1 + γ̄x)

1

(x+ 1)2
dx

=
γ̄

γ̄ − 1
log2

(
1 + γ̄x

1 + x

)∣∣∣∣+∞
0

=
γ̄

γ̄ − 1
log2 (γ̄)

where integration by parts was used to solve the integral.
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A.5 Multicell extension

We here describe a possible extension of the proposed mathematical model to a scenario

with multiple femtocells. We indicate with F = {F1, . . . , FN} the set of N femtocells, placed

within the macrocell coverage area. At every step of its trajectory, the UE can be connected

either to one of the femtocells, or to the macrocell, or can be switching from the serving to

the target cell. The average capacity along the whole trajectory preserves the form of 5.13,

except for the UE state space, being now {M,H} ∪ F :

C̄L =
1

π

∫ π/2

−π/2

1

NL

NL∑
k=1

∑
S∈{M,H}∪F

C̄S(ak(ω))PS [ak(ω)] dω . (A.3)

The average capacity C̄S(ak(ω)) at point ak is given in 5.10 and 5.11, and the SINR γS(ak, kTc)

with respect to the S-BS, S ∈ F ∪M , is now given by

γS(ak, kTc) =
ΓS(ak, kTc)∑

S′ 6=S ΓS′(ak, kTc)
(A.4)

where each received signal has power as in 5.1.

The probability PS [ak(ω)] in (A.3) are defined as in Section 5.3 and computed from the

Markov Chain described below.

The MC for the multi cells scenario is slightly more involved than the one for the single

femtocell (see Fig. 5.3), but the principle of transition among states is kept unchanged. The

main difference is that we here need to take into account a TTT counter for each of the

possible target BSs; the counter that expires first determines the next serving BS.

The states of the MC can be split into two classes. The first one describes the cell states,

depicted with rectangular boxes in Fig. A.1 and Fig. A.2, where the UE is connected to any

of the N + 1 BSs and one or more TTTs can possibly start. We recall here that, according to

the standard [92], the TTT from the UE serving cell Ser towards the target cell T starts when

the SINR

γSer,T (ak, kTc) =
ΓSer(ak, kTc)

ΓT (ak, kTc)
(A.5)

is below threshold. In other words, in a multi-cells scenario the trigger condition involves

the received powers of just the serving and the target BS. The cell states are defined as the

(N + 1)-tuples < cM , c1, . . . , cN >, where

cS =

 C if S = Ser

t otherwise .
(A.6)
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Parameter C indicates the BS that the UE is currently attached to, while the number t ∈

{0, 1, . . . , NT } indicates for how many consecutive steps the SINR γSer,S(ak, kTc) has been

below threshold, i.e., t represents the TTT counter for a possible handover to S-BS. The UE

will be eventually connected to BS S∗ 6= Ser if cS∗ = NT and γSer,S∗(ak, kTc) remains below

threshold for one more step. Obviously, S∗ is the state for which these conditions occur first.

The second class of states in the MC accounts for the handover procedures towards the

new serving cell. In this case the handover states, depicted with circles in Fig. A.2, are defined

by the pair < S, h > where S specifies the BS to be connected to and h ∈ {1, . . . , NH} is the

counter of the handover time.

For the sake of conciseness, we do not replicate here the rigorous analysis presented in

Section 5.3 for the single cell case. We prefer instead to give some intuition on how the MC

evolves in this more general case.

The transitions among cell states are constrained by the fact that, if at the k-th step

cS = t, with t < NT and S 6= Ser, then in the following step, cS could be either t + 1 if

γSer,S(ak, kTc) < γSerth or 0 otherwise, i.e., the counter to S-BS is reset if its SINR goes above

threshold. See Fig. A.1 for an example of this transition in the case of N = 2 femtocells.

If instead cS = NT and γSer,S(ak, kTc) < γSerth the UE starts the handover process to S-BS

and the MC evolves to the handover state < S, 1 >. As before, the MC crosses determinis-

tically all the handover states < S, h >, h = 2, . . . , NH and ends up in the cell state where

cS = C and cS′ = 0, ∀S′ 6= S. See Fig. A.2 for an example of this transition in the case of

N = 2 femtocells.

The probability pthSer,S(k) that the SINR γSer,S(ak, kTc) is below threshold is computed as

in (5.17) and (5.18), and is equal to

pthSer,S(k) = P
[
γSer,S(ak, kTc) < γSerth

]
=

γSerth

γSerth + γ̄Ser,S(ak)
(A.7)

where

γ̄Ser,S(ak) =
ΓtxSer gSer(ak)

ΓtxS gS(ak)
(A.8)

is the deterministic part of the SINR γSer,S(ak, kTc).

Since the received powers from different cells are independent, the transition proba-

bilities among the states of the MC are easily computed from (A.7) as the product of the

probabilities with respect to all cells but the serving one, as can be seen from Fig. A.1 and

Fig. A.2.
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Figure A.1. Transitions from cell state < C, t1, t2 > (in bold), where 0 ≤ t1, t2 < NT .
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Figure A.2. Transitions from cell state < C, t1, t2 > (in bold), where t1 = NT and 0 ≤ t2 < NT .

As a final comment, we note that the number of states NTOT of the MC described above

grows exponentially with the number of femtocells, since

NTOT = (N + 1)(NN
T +NH) . (A.9)

However, the complexity of the model can be reduced by considering only transitions among

neighboring cells.
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