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Introduction

INTRODUCTION

The major task of genetic epidemiology and molecular genetics is to map the diseases loci, that is
the identification of genes causing the pathologies. However, the more common inherited disorders
are very difficult to study, because a combination of various genes and different environmental
factors is often involved. Discovering the major susceptibility locus can be the starting point to
advance in understanding the causes of a disease. Furthermore, recently, the primary topic of
interest has shifted from simple Mendelian diseases, where genotypes of some gene cause them, to
more complex diseases, where genotypes of some set of genes together with environmental factors
merely alter the probability that an individual has the disease, although individual factors are
typically insufficient to cause the disease outright. We may use, to study these candidate genes and
their relations, either linkage analysis or allelic association analysis (or linkage disequilibrium
analysis).

The goal of linkage analysis is to determine whether two loci segregate independently in
meiosis. Alleles of loci on different chromosomes segregate indepéndently of each other during
meiosis, as do alleles of loci on opposite ends of the same chromosome. However, when two loci
are close together on the same chromosome, their alleles no longer segregate independently but are
co-inherited more than 50% of the time. We say these loci are linked. The closer the two loci are to
each other on the chromosome, the lower the probability of recombination of their alleles. This
probability is referred to as the recombination fraction 6. The genetic distance is defined to be
infinity between loci on different chromosomes, and for such unlinked loci 6 = 0.5. For linked loci
on the same chromosome, 6 < 0.5, and the genetic distance is an increasing function of 6. The
essence of linkage analysis is to estimate the recombination fraction 8 and to test whether 6 = 0.5.

The terms “linkage disequilibrium” and “allelic association” are sometimes used
interchangeably, and, sometimes, different meanings are assigned to them. The most general
definition of either is the condition in which alleles of two loci on a random chromosome from the
population do not occur independently of one another. Linkage disequilibrium is sometimes used
only when the two loci are tightly linked and not when such correlations exist between unlinked
loci, as may occur, for example, as a result of population stratification.

We use the term “linkage disequilibrium” irrespective of whether or not the loci are linked.

The term association (without allelic) is also used to refer to the correlation between the alleles of a
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locus and some phenotype. Here, therefore, we use the terms “allelic association” and “linkage
disequilibrium” to refer to the correlation between alleles of two loci on haplotypes. As in linkage
analysis, the goal of linkage disequilibrium analysis is to map loci relative to each other and thereby
to estimate the genomic position of new loci of unknown position using loci of known location.
There are many measurements of linkage disequilibrium between two loci (for example, locus 1 and
locus 2), but the most commonly used is the disequilibrium coefficient D = P;; — p;q;, where P;; is
the observed frequency of the 1/1 haplotype (generally, the “1” is the most common allele present
in that locus), p; is the frequency of the “1” allele at locus 1 in the general population and g, is the
population frequency of the “1” allele at locus 2. The coefficient D ranges from —0.25 (linkage
equilibrium) to 0.25 (linkage disequilibrium). It was shown that the rate of decay of linkage
disequilibrium is dependent on the distance between loci: D, = Dy(1— ), where ¢ is the current
generation number, D, is the current amount of disequilibrium and Dy is the disequilibrium at
generation 0.

Linkage analysis is generally conducted on pedigrees of known structure, whereas linkage
disequilibrium analysis is most often conducted on populations, which can be viewed as extremely
large pedigrees with many generations of indeterminate structure. Allelic association analysis is
used to locate regions of the genome shared by affected individuals more often than by a random
sample of individuals from the population, because it is hypothesized that affected individuals share
their phenotype because they also share some disease-predisposing allele identical by descent from
a common ancestor. Thus allelic association analysis is a form of linkage analysis on the largest
possible hypothetical pedigree (Terwilliger and Goring, 2000).

Risch and Merikangas (1996) argue that the method which has been used successfully
(linkage analysis) to find major genes has limited power to detect genes of modest effect, but that a
different approach by association studies that utilizes candidate genes has far greater power, even if
one needs to test every gene in the genome. Thus, they say that the future of the genetics of
complex diseases is likely to require large-scale testing by association analysis.

Allelic association studies may be “population-based” or “family-based”: the former is
essentially performed over the comparison between one sample (cases) of patients and one sample
(controls) of unrelated unaffected individuals (it exists also the situation where they are not
unrelated); the latter is performed over a set of family unities composed, at least, of one affected

individual (there are many types of family-based association analysis).



Introduction

The purpose of this work is to illustrate a new statistical approach to test allelic association
and genotype-specific effects in the genetic study of a disease. There are some parametric and non-
parametric methods available for this end. We deal with population-based association studies, but
comparisons with other methods will be performed too, analysing advantages and disadvantages of
each one, specially regarding to power properties with small sample sizes. In this framework, we
will work out some nonparametric statistical permutation tests and likelihood-based tests té perform
case-controls analyses to study allelic association between marker, disease-gene and environmental
factors. Permutation tests, in particular, will be extended to multivariate and more complex studies,
where we deal with several genes and several alleles together. Furthermore, we show some
simulations under different assumptions on the genetic model and we analyse real data sets with the
simple study of one locus with the permutation test.

We think these arguments could help the researchers to decide the best test to use, particularly
with regard to complex genetic problems and unusual systems of hypotheses, especially in presence

of small sample sizes.



Association Studies in Genetics

1. ASSOCIATION STUDIES IN GENETICS

1.1 Case-Control Studies in Genetics

The case-control method is usually applied in genetic epidemiology to elucidate the role of genetic
factors and their interaction with environmental factors in the aetiology of human diseases. Now,
the map of human genome will make it increasingly feasible to search for disease susceptibility
genes using case-control methods in both population and family settings. Actually, the interest of
epidemiology concerns with the relation between the environment (in its more general meaning)
and the occurrence of human diseases, while that one of genetics concerns with evaluating the
effects of population structure and selection forces on the frequency of genetic traits. So, of course,
the primary purpose of genetic epidemiology is in studying genetic variation in human populations
and its relation to normal and pathologic phenotypic variation. Genetic epidemiologists need to
evaluate the distribution and determinants of genetic traits in human populations and address the
role of genetic factors and their interaction with environmental factors in the aetiology of human
diseases. Both population and family methods are used to achieve this goal.

Case-control methodology may not be applicable in all settings and should always be
integrated with family studies using genetic analytic techniques such as segregation and linkage
methods.

In population studies, case-control approaches are used 1) to study determinants of human
mutations, 2) to evaluate the role of non-specific genetic indicators (such as inbreeding and racial
admixture) in the etiology of diseases, and 3) to assess the role of specific genetic traits in the
etiology of diseases. They are particularly useful in the study of mutations, because most mutations
are individually rare and their ascertainment involves a combination of clinical and laboratory
testing, which makes cohort studies prohibitively expensive.

An important aspect to consider in these studies is the presence of confounding factors.
Confounders could be other unmeasured genetic determinants or environmental factors that could
produce spurious differences in allele frequencies between cases and controls. Several confounding
factors have been recognised in this type of study, which also make comparisons between
investigations difficult. First, there are phenotypic differences in cases due to several definitions for

cases and controls in different studies, to subliminal differences in enrolled cases because of



Association Studies in Genetics

variations in investigators’ clinical skills and to phenotypic heterogeneity of the disease. Second,
genetic background of cases and controls are not identical (specifically in multiracial areas). Third,
there are practical difficulties due to low number of cases, lack of specificity and methodological
artefacts.

Different components can make unclear the correct methodological and statistical procedure
to follow in clinical investigators. 4) a complex diseése is a multistage process where several
genetics or environmental events mark each stage and can interact between them. B) Interindividual
variations in response to environmental factors, due to genetic heterogeneity of populations, are
present in the data, so a specific polymorphism determines the type of the response to exposure to a
specific environmental factor. C) There is a biological relation between the environmental factors,
the particular polymorphism and one (or more) of disease phenotypes. D) Under special conditions,
an allele can be no longer neutral.

If the two first assumptions can be checked by direct data observation, the latter two are not
supported by any clear-cut evidence. Sometimes, a phenotype is considered indication of the
disease when it is not the case. If linkage with the disease or intermediate phenotype of the disease
emerges from linkage studies, this finding would strongly support the idea that the candidate gene is
in some way involved with the disease. Further, with respect to the latter point, before to use
linkage association studies, it should be demonstrated that an allelic variant of the gene analysed is
non-neutral. Clinical investigators must allow for several points in genetic studies. A gene has not
only one allelic polymorphism, but there could be more of them, so it is dangerous to discard a
candidate gene because one of its allelic variants is not found in association with the disease. If a
polymorphism is related with the disease, we are not sure that it is the disease allele, because it
could be in strong linkage disequilibrium with that allele. Because of the, so-called, founder effect,
allelic association studies can be misleading if they are done on different populations. A positive
association allele-disease can be found in a specific population and several negative studies in
different populations could not reject the first result. It is very important to select rigorously case-
control subjects to guard against possible confounding effects (Gambero et AL, 2000). To minimize
confounding in case-control studies, investigators need to carefully select controls from the same
racial/ethnic genetic background as that from which cases are derived. Relative controls have been
used in an attempt to match for genetic background. Analyses should always be stratified with
regard to potentially confounding variables. For example, in Down’s syndrome, advanced maternal

age is the most strictly factor, therefore, in examining the potential association between a risk factor
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and the syndrome, possible confounding by that factor should always be considered. In case-control
methods, therefore, to plan the correct study design can address the confounding: for instance, in the
previous situation, by matching cases and controls by maternal age, or by stratification in the
analysis.

When we want to evaluate the role of specific genes in the etiology and pathogenesis of
common diseases such as cancer, coronary heart disease, birth defects, etc., we are searching for
correlations between specific alleles and diseases, so we need the so called “association studies” in
human genetics. They are different from “linkage studies”, in which evidence is sought for
cosegregation between a marker locus and a disease in families. In effect, Greenberg showed, by
computer simulations, that if the disease frequency among persons with the susceptibility allele is
less than 10 times greater than the disease frequency among persons without this allele, it may be
quite difficult to detect linkage even in data sets consisting of 30 nuclear families with two or more
affected individuals. Under these conditions, the usual linkage approaches may lack sufficient
statistical power to detect linkage or may get false rejection of linkage hypothesis and suffer from
the multiple testing problem. This is the primary reason for increasing usefulness of case-control
association methods to look for genetic risk factors.

Case-control evaluation of genetic traits in disease aetiology is generally guided by a
“candidate” gene approach, which refers to examining allelic variation (measured either at the
protein level or at the DNA level) in loci known or suspected to have some role in the pathogenesis
of the disease.

In designing, analysing and interpreting case-control studies of genetic trait-disease
associations, it is important to consider several methodological issues. The primary problem is that
the causes of many simply and complex diseases are related to confused interactions between
genetic susceptibility and environmental factors. Case-control studies provide, in this context, an
efficient tool wherewith to search for genetic susceptibility factors along with environmental
exposures. Many types of patterns of gene-environmental interaction had been discussed: additive,
multiplicative, etc.; and let be stress the importance of power and sample size considerations for
case-controls studies of these gene-environmental interactions (Foppa and Spiegelman, 1997).

As in case-control studies of epidemiology, it is very important how we choose the samples of
patients and of unrelated healthy individuals. If we are studying a most uncommon disease, we
probably choose, for cases, all the patients in the same region we have, and who present the same

feature with regard to environmental factors and, if necessary, confounding effects. For control
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subjects, we can go by many types of selection according to the specific situations we are: hospital
control series, random selection, friends of cases (we assure the same environmental factors), etc.
At the beginning, we may choose more than one control group to see the different results we obtain,
but after we must decide only one group to have a suitable study, that is more appropriate for
characteristics of the disease, of cases subjects and of the other factors (Wacholder et Al., 1992).

One of the major issues in the design of case-control studies concerns the size of the study. If
we are bound by the frequency of the disease with regard to cases, controls size is joined to the
number of specific environmental and confounding factors that play a role in the influence of the
disease, but, most of all, to the statistical powerful of the test we choose (Smith and Day, 1984).

Gene-disease association studies that fail to examine the role of environmental exposures
along with the genetic traits of interest may lead to considerable dilution in measures of association
if the genetic factor confers disease susceptibility only in the presence of other genes or
environmental determinants. Therefore, in designing case-control studies in genetic epidemiology,
environmental risk factors should be examined along with genetic markers of interest as interacting
factors with the genetic factor of interest.

In studying associations between genetic traits and disease, indirect methods are often used to
assign individuals’ genotypes. Such indirect measurement of the underlying genotype can lead to
non-differential genotypic misclassifications, and therefore would dilute the magnitude of the
relative risks found. Nevertheless, genotypic misclassification can arise when the disease itself
interferes with genotypic classification. If genotypes are measured at the DNA level,
misclassification due to linkage disequilibrium can occur. Under ideal conditions, if the gene of
interest has been completely sequenced, the presence and location of one or more mutations within
the gene could be correlated with an altered gene product and then with case-control status in
epidemiologic studies. However, in many of these studies, the researchers only have markers in the
general region of the candidate gene or in a non-expressed portion of that one.

Unless the actual site of a deleterious mutation involved in the disease is targeted, any DNA
variation between cases and controls in the region of a candidate gene could reflect DNA variation
in linkage disequilibrium with the actual mutation(s) associated with the disease. Linkage
disequilibrium can arise when the mutation has occurred relatively recently or if there is selective
advantage for specific haplotypes, so that they are preferentially maintained in the population.
Under complete equilibrium, there would be no association between any marker allele and the

disease susceptibility allele (i.e., the odds ratio should be 1 in a case-control study). Under linkage
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disequilibrium, a marker allele may well occur more often with the disease susceptibility allele.
However, the association between the marker allele and the disease susceptibility allele may not be
perfect, and thus, if the marker allele is used as a proxy for the susceptibility allele to study disease
risk, some non-differential misclassification could easily occur. This would dilute the magnitude of
the odds ratio between the marker allele and the disease toward the null, and would underestimate
the effect of the genetic locus in the aetiology of the disease. One analytical approach wherewith to
address the issue of linkage disequilibrium in case-control studies is to construct specific haplotypes
composed of alleles at tightly linked loci within the area of the candidate gene.

A big statistical importance in these studies concerns with the type I and type II errors. In
case-control studies involving many genetic traits and other risk factors, statistically significant
associations can due to chance. These type I errors will be increasingly important in case-control
studies involving multiple DNA markers at many candidate loci. As researchers sequence more
genes and as DNA polymorphisms are delineated throughout the genome, a major challenge in
genetic epidemilogy will be to discriminate the biologically meaningful associations from the
multitude of spurious ones. The establishment of a cause-effect relation depends on many issues,
including consistency of the association across studies and the presence of a biologically
meaningful model underlying such associations. Finally, to address issues related to statistical
power (type II errors), investigators must ensure adequate sample sizes in designing case-control
studies to search for causal genetic factors, especially to look for evidence of gene-environment

interactions (Khoury and Beaty, 1994).

1.2 Other Methods

The main shortages of genetic case-control association studies are the lack of large numbers of
patients with a condition of interest, the lack of an adequate control group and the ethnic
heterogeneity. Erroneous results may occur because of several confounding factors, which can
present each one at a time or together, as the population stratification (founder effect), multiple
hypothesis testing and sub-group analysis. It is important to point out that in these studies any
positive association should be reproduced in large cohorts and be tested for linkage in family based
studies.

An alternative but related study design is to collect “trios”, consisting of two parents

(irrespective of phenotype) with one affected offspring. The case sample consists of the alleles or

10
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haplotypes that were transmitted from the parents to an affected child, whereas the control sample
consists of those alleles that were not transmitted to the affected child. The key advantage of this so-
called haplotype relative risk (HRR) design is that it ensures that case and control samples come
from the same genetic population. The statistical methods for analysis of both study designs are
similar for 2-point methods but may differ somewhatl in multipoint analysis, because the HRR
design sometimes provides a means of reconstructing multilocus haplotypes, whereas case-control
analysis provides only genotype information.

The most used method which uses “trios” and that demonstrated very powerful of showing
both association and linkage is the transmission disequilibrium test (TDT), which requires DNA
from an affected patient and its parents, and which examines the transmission of alleles from an
heterozygous parent to the affected offspring. A significant difference from the expected Mendelian
ratio of 50 : 50 would suggest that the allele has a role in the susceptibility to the disease in
question. The TDT was been proposed by Spielman et al. (1993) in response to the problem of
spurious associations. This approach takes advantages of population-level associations but it is not
susceptible to spurious associations that result from stratification. When applied exclusively to trios,
the TDT is equivalent to a valid McNemar test of linkage disequilibrium. Risch and Merikangas
(1996) recommended allelic association studies as the study design of choice. Allelic association
analysis can be powerful when the affected individuals in a sample share the same allele identical
by descent at the same disease locus from some common ancestor (Terwilliger and Géring, 2000).

Although very elegant, the TDT design is usually more labour intensive than a simple case-
control design that uses affected individuals and unrelated controls. It may take considerable effort,
or may even be impossible, to collect DNA samples from the parents of probands, particularly for
late-onset diseases. It may also be difficult to collect DNA from other relatives for which TDT-like
statistics have been proposed (Boehnke and Langefeld 1998, Lazzeroni and Lange 1998, Spielman
and Ewens 1998). For this reason the simple case-control approach would often be an attractive
study design, were it not for the problem of spurious associations due to population stratification.
Still, Pritchard and Rosenberg (1999) showed that the case-control design can be a valid test for
association if we include an explicit test for stratification. If we use only a few marker loci, the
possibility that the association are due to population stratification cannot be eliminated, however, by
typing additional unlinked markers, it is possible. Their basic idea is that if stratification is present,

the unlinked markers must also show association with the phenotype.
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Another method, very useful with respect to the TDT in several diseases (Schaid), is to use
the affected sib-pair approach, which has been utilised successfully in many research works (for
example into type-1 diabetes). The last methods need multi-centre collection of families and large
cooperative groups, but they represent the way forward in unravelling the complex genetics of
polygenic diseases. Of .course, this type of studies can result too much expensive and very slow,
specially, if we consider the fact that, sometimes, their results could be negative or, at least, far from
that we expected. There could be the objection that a study, wherefrom we did not obtain any
significant positive result, from a strictly statistical point of view, it is not “unsuccessful” or
“superfluous”, on the contrary, it has as much information and importance than another study that
leads to expected conclusion, in particular, in point of possible future studies in the same field.
Nevertheless, from a more practical point of view, it is undeniable that such an employment of
resources and such a strain could be considered “excessive” with respect to a possible “negative”
conclusion. Therefore, case-control studies still have a role in hypothesis testing, but they must
involve large numbers to provide meaningful results (Chowdhury, 2000). However, association
methods, in many cases, had had modest results in the study of genetic polymorphisms and complex
diseases, and some authors attribute this fact almost entirely to the incompetence of clinical
researchers and their lack of understanding of basic genetic principles (Cheung and Kumana, 2000).

In spite of the problems of case-control association studies, as the population heterogeneity,
they are appealing because they do not require additional family members for cases, which can be
very expensive. Then, Devlin and Roeder (1999) developed a method that has the advantages of
both case-control and family-based designs. They proposed such a method for either SNP (single
nucleotide polymorphism) association scans or tests of candidate genes. They use for case-control
data the genome itself to induce controls similar to family-based studies and to determine what
constitutes a significant departure from the null model of linkage disequilibrium. An advantage of
dense association genomic scans is that they can detect loci having a small impact on risk to human
disorders, while a disadvantage is the large number of false positives occurrences when many
significance tests are conducted. Instead of a traditional Bonferroni correction they proposed a
Bayesian outlier test as a means of determining which markers exhibit significant linkage
disequilibrium with the disorder, that is, the outlier test bypasses the usual rigid assumptions
required to obtain chi-square distributed random variables in favour of more flexible statistics and
weaker assumptions. Another feature of their methodology is that it allows for violations in the

usual model assumption, the independence of observations, which, when violated, leads to extra
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variance in the (parametric) test statistic, indeed, for case-control studies, affected individuals are
more likely to be related than are control individuals because they share a genetic disorder and,
ideally, a common genetic basis for the disorder (founder effect). For this reason, simple marker-by-
marker hypothesis tests will almost surely produce false positives, even after a Bonferroni
correction. However, their simulations are not so decisive, moreover, the situations they considered

are quite particular.

1.3 Case-Control Design Study

Allelic association may be due to pleiotropy, linkage disequilibrium, meiotic drive, selection or
population stratification. Somebody, talking about association analysis, distinguishes between
model-free methods from model-based methods. The use of case-control studies to detect an
association relapses in the latter studies. Classical case-control studies are important in genetic
epidemilogy, even though they can only establish an association and other designs are necessary to
determine whether such associations are casual. In tabulating such data, a question arises as to
whether one has one or two observations per person. One approach classifies individuals according
to their genotypes, that is, according to the pair bof alleles that each individual has. Another classifies
each allele. Intuitively, one might feel that, provided the alleles are independent, either approach
should give a valid analysis, but Sasieni (1997) showed that this is not true.

The data appear as a standard Fisherian 3 * 2 or 2 * 2 table for which chi-squared statistics
and odds ratios were developed. Table 1 presents the number of cases (subjects with the disease)

and controls with O (negative), 1 (heterozygous) and 2 (homozygous) copies of the rare allele 4.

Table 1
Genotypes | Cases | Controls
aa X] Vi
ad X2 ¥2
AA X3 V3

Since each heterozygous individual has one copy of 4 and each homozygous has two copies

of that one, we can produce an allele table with twice sample size (Table 2).

Table 2

Subjects | Cases | Controls
4 X2t x3| yotys
Other X) Vi

13
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Finally, Table 3 presents the data in terms of the number of subjects with and without the rare
allele A4, ignoring the difference between homozygous and heterozygous genotypes. Such a
tabulation is common when it is not possible to distinguish heterozygous from homozygous

individuals (a situation of perfect dominance or recessiveness).

Table 3

Allele | Cases | Controls
A | 2x3+xp| 2y3+y
Other | X5 + 2x;| y2 + 2y,

Traditionally, one estimates odds ratios from case-control data because it is not possible to
estimate the risk of diseased in each exposure group directly. Instead, one relies on the identity
between the ratio of odds of exposure in the diseased to that in the controls and the ratio of the odds
of disease in the exposed to that in the unexposed. Provided the disease is rare, the odds ratio will
be a close approximation to the relative risk. With genotype data, one can estimate the relative risk
of a rare disease associated with the heterozygous genotype and with the homozygous genotype, or
one could combine these two groups (as is done in Table 3) and estimate the relative risk associated

with the gene. Formulas for these estimators are given in Table 4.

Table 4
Table Odds ratio Formula
1. hetero ehetero (xl'yZ)/(-xZ'yl)
2: homo Oromo (x2:y3)/(x3y2)
3. allele Oallele [(2x3 +x2)-(v2+ 2yD] / [(x2 + 2x1)-(2y3 + ¥2)]
4: serological | Osero [Ce2 +x3) il / [x1-(y2 + y3)]

The odds ratio from allele data is the relative odds of the allele in cases and in controls. For a
rare allele, this is approximately the relative gene frequency in cases and controls. It is not however
immediately obvious how to translate this odds ratio into a statement about the risk of disease.
Whereas one can discuss the risk of disease in an individual with a given genotype, it does not make
sense to talk about the risk of an allele getting the disease. The best we can do is to say that the
known allele is chosen at random. By contrast, the odds ratio from the serological table does have a
reasonable interpretation. For a rare disease, it will give the relative risk of disease for an individual

(chosen at random from among all individuals) with at least one copy of the allele. Thus, we need

14
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not assume that homozygotes and heterozygotes have the same risk. The serological odds ratio is
appropriate whenever we do not have information to distinguish homozygotes from heterozygotes.

There is, however, a special case under which the allelic odds ratio will coincide with the
genotypic odds ratio. Suppose that the Hardy-Weinberg equilibrium holds in both cases and
controls; that is, the relative proportions of the different genotypes is p,-2 2p(l=p):(1=-p)i=1,
2, where p; and p; are the allelic frequencies of the more common allele in cases and controls,
respectively. Recall that the equilibrium holds under the pair of assumptions of random mating and
no selection. The assumption of no selection in cases implies that the gene is not associated with the
disease, but the equilibrium could hold under weaker assumptions, too. Statistically, the Hardy-
Weinberg equilibrium simply states that the alleles are independent.

Sasieni (1997) showed that it is not recommendable the use of the allelic odds ratio and chi-
squared statistic, even when it is possible to assume that the effect of different alleles at a given
locus are codominant. Indeed, these statistics are not robust against departures from the assumptions

of Hardy-Weinberg equilibrium in controls and codominance between the alleles.

1.4 The problem of allelic association analysis

Now, suppose to have two random samples, one of M cases (individuals with disease), and one of N
controls (without the disease), where each person is classified as having a particular marker allele
(a, the more common or A the rarer). Indicate by x;, x,, x3 the numbers of affected individuals who
carry (respectively) zero, one or two copies of rare allele, while by y,, y,, y3 the corresponding

control subjects. So we obtain the following 3x2 contingence table:

Marker Cases Controls Total
ad X7 Vi S;=x; + Vi
aA X V2 Sr=x,+ v
AA X3 V3 S;=x3+y;
Total M=x;+x>+x 3 N=y; + Yo+ Vs S=M+N=S5+S5+ Sj,

so that the odds ratio
P(diseasel aa)/P(no diseasel aa) / P(diseasel a4)/P(no diseasel aA)
and

P(diseasel a4)/P(no diseasel ad) / P(diseasel A4)/P(no diseasel 44)

15
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or, equivalently,

P(aal disease)/P(aAl disease) / P(aal no disease)/P(aAl no disease)
and

PaAdl disease)/P(AAl disease) / P(aAdl no disease)/P(AAl no disease)

are consistently estimated, respectively, by @, = (x;-y2)/(x>-v/) and 6,4 = (x>¥3)/(x3-y-). Significance
of the deviation of these ratios from 1 can be tested by the usual chi-square statistic with 1 degree of
freedom or, for small samples, by the exact test of Fisher. If the controls are obtained by a random
sample from the population, rather than a sample of persons without the disease, then 6,4 and 044
are consistent estimations of the more meaningful relative risks (Elston, 1998).

In genetic epidemiology of diseases of complex etiology, association studies are useful to
investigate candidate disease genes. Association studies are case-control population-based studies
on a comparison of unrelated affected and unaffected individuals. An allele 4 at a gene of interest is
said to be associated with the disease if it occurs at a significantly higher frequency among affected
compared with control individuals. For a bi-allelic locus with common allele a and rare allele 4,
individuals may carry none (subjects with genotype aa), one (subjects with genotype a4) or double
(subjects with genotype 44) copies of the A allele. Conventionally, therefore, a test for allelic
association is to test for the distribution of case/control genotypes using the likelihood ratio chi-
square statistic (asymptotically distributed as +* with 2 df) or the Fisher exact test.

But testing only for overall effects of a gene rather than genotype-specific effects may be less
powerful. For example, in a case-control study on the role of R353Q genetic variants of factor VII
(a plasma protein involved in the blood coagulation) on myocardial infarction, Iacoviello et al.
(1998) showed a great protection against myocardial infarction due to the rare genotype QQ (found
in a 5% of controls but only in 0.6% of cases) but only a small difference in the distribution of RQ
genotype (see Ch. 5).

It is therefore necessary to test for genotype-specific risks. However, this approach requires
some attention as all models are not necessarily biologically plausible: the effect of an allele can be
expressed only in one of the following way:

1) recessive — there is an effect only in the presence of two copies of 4 allele (genotype A44), while

the heterozygous condition (genotype Aa) is the same like the reference and commonest

condition (genotype aa).
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2) codominant — there is an additive effect of the 4 allele: genotype Aa is of risk (or of protection)
in comparison with the genotype aa, and 44 is of risk (or of protection) in comparison with the
genotype Aa. Obviously, A4 is of great risk (or of great protection) in comparison with the
genotype aa.

3) dominant — the effect of the 4 allele is the same in A4 and Aa genotype. In this situation, there is
no relative risk (or protection) between A4 and Aa, but only between 44 (or Aa) and aa.

For these reasons, differences in the risk should be tested for while maximizing over the
restricted parameter space that corresponds to plausible biological models: (R44 > R4q > Raa) or (Ruz
< R4a < Raa), Where R, are the genotype-specific risks.

In case-control studies it is easy to obtain genotype-specific relative risk from odds ratios: 6,4
= Rya/Ryq and 64, = Ryal Ry, (Of course 6,5 = Rua/Raq = 1), and the null and alternative hypotheses

became;:

Hp: 644=04a=1
Hi: {6442 1) N (042> 1)} XOR {(B44= 1) N (B4a < 1)},

where at least one inequality is strong.

This particular system of hypotheses was proposed for the first time by Chiano and Clayton in
1998. From a statistical point of view, the alternative hypothesis is of isotonic type, that is the
variables are ordered in one sense, however, there is the further complication due to the “XOR”, that
is an exclusive “or”. This approach allows to study genetic diseases for which we do not known the
relative effect of the putative allele (dominant, recessive or codominant) or, if we are studying a
related genetic polymorphism that may be protective or deleterious with respect to the disease.

In the following, we deal with this particular statistical problem, by using different

approaches.
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2. The Nonparametric Permutation Methodology

2.1 Basic Concepts on the Theory of Permutation Tests

We introduce terminology, definition and the general theory of permutation tests. The permutation
tests are essentially conditional procedures, where conditioning is made with respect to the
permutation sample space associated with the whole data set, which is a set of sufficient statistics
under the null hypothesis. It was shown (Pesarin, 2001) that this conditioning makes permutation
tests invariant, under the null hypothesis, with respect to the underlying population distribution,
which may be partially or even completely unknown. Consequently, permutation tests are
distribution-free and nonparametric.

We denote by X a response random variable whose values are points of the sample space y.
The probability distribution P on y, associated with a symbolic random experiment characterizing
X, is defined on an additive class B of subsets of y. Sometimes, associated with P and with respect
to a dominating measure &, we may refer to the density f of y. Here, y is a one-dimensional
Euclidean space and B is a family of Borel sets. A random sample from X is a random experiment
whose result is a sample point X" = {Xj,...,X,}. Given a sample X of » i.i.d. observations from X,
we wish to test the null hypothesis Hy that the unknown probability distribution P on (y,B)
generating X belongs to a certain class Py, against the alternative class P;. To be precise, we denote
the null hypothesis by Hy: {Pe Py} and the alternative by H;: {Pe P}, where of course P; =P — Po.
The sample point X takes values on the sample space . The most common situation is that Py
contains only one element, the null hypothesis in this case is said to be simple, otherwise it is said to
be composite.

We indicate by P” the probability distribution induced on y" by the sampling experiment.
Associated with any sample point X there is the orbit (y"X), also called conditional sample space,
containing all points of %" which are equivalent to the given sample point X with respect to a group
of transformations characterized by suitable invariance properties. The invariance properties in
question are that conditional distribution P"ix on points of the conditional sample space (("IX) is not

dependent on population distribution P ¥ Pe Py (see Pesarin, 2001).
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Definition: any test statistic T: y"—R', whose conditional c.d.f. F 7(#1X) is induced by P"x
and is invariant under Hj on (¥"IX), is said to be an invariant test for testing H, against H;.
However, as for any given testing problem we may condition with respect to different sets of
sufficient statistics, we may also take into consideration various groups of invariant transformations.
From this point of view, on one side we should condition with respect to a minimal set of sufficient
statistics, on the other side we should take into consideration a group of maximal invariant
transformations (see Pesarin, 2001).
It is important to consider that:
1) the conditional sample space (yX) has always a finite number of points, provided that the
sample size » is finite,
2) denote by K the cardinality of (xX): K = #{X e (y/X)}, where # means the number of point
satisfying condition (.);
3) on (x/X) we may define an algebra of events (BIX) containing all sub-sets of interest, so that

{(xX), (BIX)} is a conditional measurable space;

4) for every event A€ (BIX) we have that Pr{AIX} = [dP .
A

Another important concept is the permutation equivalence of two statistics:

Definition: Two statistics 7; and T5, both mapping x into R', are said to be permutationally
equivalent when, for all points Xe y and X'e (xX), the relationship {7’ 1(X*) <T;(X)} is true if
and only if {75(X") < Tx(X)} is true, where X indicates any permutation of X and (yX) is the

conditional sample space.

Formally, the randomized version of the permutation test @y associated with (71X) is defined as:

1if T, > T,
Or=17if T, =T,
0if T, <T,

where a is the significance level of the test 7, T, is the observed value of statistic test, 7, is the

critical value of the statistic and y=[o. — Pr{T,, > T, IX}1/Pr{T" =T, IX}.
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2.2 Sampling Inspection of Permutation Space

We first observe that, under H, and due to the assumed exchangeability of data with respect to
symbolic treatment levels, all points of the conditional sample space (y/X) are equally likely.
Therefore, one way of inspecting into (¥ X) is by means of a Monte Carlo simulation. Among the
different Monte Carlo techniques, the simplest is by means of simple random sampling.

Without loss of generality, hereafter we assume that univariate permutation test statistics 7" of
interest are significant for large values. The permutation distribution of any test statistic 7' is
denoted by the notation Fy(zIX),V ze R'. A general simulation procedure for estimating the c.d.f.
F(zIX) and the associated p-value A induced by a statistic 7" applied on data set X is described in the
following steps:

1) calculate the observed value of 7:T,, = T(X);

2) consider a data permutation X" randomly selected from (¥/X), where all points of (xX) are
equally likely, and consider the value of test statistic 7" on X" T = T(X);

3) independently, repeat step 2) B times; the set of CMC-Iterations results {f ,i=1,.,B}is
thus a random sample from the permutation distribution of 73

B
4) the ED.F.F,(z)=Y I(T; <z)/B,Vze R',where [ () = 1 if relation () is true and 0

i=1

otherwise, is a consistent estimate of the permutation distribution F(zIX) of 7; moreover:

B
A= Zl (T =T, )/ Bis an unbiased and consistent estimate of the permutation p-value A=

r=1

Pr{T* zT‘oh 'X}’

5) if, for any fixed significance level a, the result is A< a, then reject H.

The following figure summarizes the conditional Monte Carlo procedure (CMC-Procedure):

Fig. 1: The Conditional Monte Carlo Procedure.

X x’l‘ v WXGRH] - e X’;
T Tl* T

r

In statistics, usually the researcher works with complex problems that involve hypothesis
systems which can be decomposed into more sub-problems with simplest systems of hypotheses:

the global null hypothesis becomes the intersection of all partial null hypotheses, while the
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alternative global hypothesis corresponds to the union of all partial alternative hypotheses. In these
situations the use of nonparametric combination methodology for dependent tests shows be very

useful and efficient to obtain a good solution.

2.3 The Nonparametric Combination of Dependent Tests

We can consider a set of generic partial tests {7}, i = 1,...,k}. Let us assume that the following

assumptions are satisfied.

1) All permutation partial tests 7; must be marginally unbiased and significant for large values,

so that they are stochastically larger under H; than under H,.

These assumptions, formally, mean that Pr{T; > T, IX,H;;} > a,Va > 0, i = 1,...,k, and Pr{T; <
ZlX’H()i} = Pr{TjSZIX,H()i ﬂ fll+} EP"{T’,SZ[X,HII} =Pr{Ti SZIX,HH n }[i+}, i= 17'-',k1 VZ € 9{1 )
where irrelevance with respect to the complementary set of hypotheses H;': {U_,.#,. (Hoj UH, j)}

means that it does not matter which among Hy; and Hyj;, j # i, is true when testing for the i-th sub-

hypotheses.

2) Partial tests 7; must be consistent, that is: Pr{T;> TilH;;} — 1,V a>0,i=1,....,k, as n tends

to infinity, where 7}, which is assumed to be finite, is the marginal critical value T;.

These assumptions, especially the former, imply that the set of p-values A,,..., A4, associated with the
partial test statistics in 7, are positively dependent under the alternative, and this is irrespective of
dependence relations among component variables in X. They also imply that partial tests T, i =
I,....k, must be considered in such a way that their permutation distributions are monotonically
related to underlying entities not implied by sub-hypotheses Hy; or Hy;, but possibly implied by Hy,
or Hy;, for some j # i. In practice, when each partial test is related to a different component variable,
as for instance is usual in many multidimensional testing on locations, this property is easily
satisfied, provided that each partial test 7; is unbiased for the proper sub-hypothesis Hy; against Hy;,
i=1,..k

Sometimes positive dependence or marginal unbiasedness are only approximately satisfied.
One important example is when Hp; and Hp, are respectively related to locations and scale

coefficients in a testing problem where symbolic treatment may influence both. Therefore, for the
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positive dependence and marginal unbiasedness properties to be satisfied, on one hand, 7; must be
unbiased for Hy, against H;,, irrespective of whether Hy; is true or not; on the other hand, 7, must
be unbiased for Hy, against H,, irrespective of whether Hy; is true or not.

For the sake of simplicity and uniformity of analysis, but without loss of generality, we only
refer to combining functions applied to p-values associated with partial tests. Because of
assumption 1), partial tests are permutationally equivalent to their p-values: 7; = Pr{T; > T,.X} = A,
i = 1,...k. Of course, this is a direct consequence of the monotonic nonincreasing behavior with
respect to ¢ of significance level functions Li(f) = Pr{T " > AX}. Thus, the nonparametric
combination in a single second-order test T’ " = w(\s,...,\) is achieved by a continuous, non-

increasing, univariate and non-degenerate real function y : (0,1) — R'. Of course, y satisfies the

measurability property as every other function does in the permutation context. In order to be
suitable for test combination, all combining functions y must satisfy at least the following
reasonable properties:
a) the function y must be non-increasing in each argument: y(...,A;,...) = y/(...,)»,-y,. L) if <A,
ie{l,.. . k};
b) every combining function y must attain its supremum value ¥, possibly not finite, when at
least one argument attains the zero: y(...,A;,...) > ¥ ifA; =0
¢) Va >0, the critical value of every y is assumed to be finite and strictly smaller than the
supremum value: T a" <y.
These properties of combining functions are quite reasonable and intuitive, and are generally easy
to justify. Property a) is related to the unbiasedness of combined tests; ) and ¢) are related to the
consistency. Further, these properties define a class C of combining functions, which contains the
well-known combining functions of Fisher, Lancaster, Liptak, Tippett. Class C also contains the
Mahalanobis quadratic form for invariance testing against alternatives lying at the same quadratic

distance from H,.

Furthermore C contains a class of admissible combining functions of independent tests
characterized by convex acceptance regions, when these are expressed in terms of p-values A’s. In
particular, C includes all combining functions which take account in a nonparametric way of the
underlying dependence structure among p-values A;, i = 1,....k.

Thus, a problem arises naturally: how to choose, for any given testing problem, the best

combining function in class C. This seems to be very difficult and we believe it is unsolvable in the
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case of finite sample sizes and without any further restriction. At the moment, only “asymptotic
optimal combinations” may sometimes be obtained. Moreover, if D; = y(T}), i = 1,...,k, where v; are
continuous monotonically increasing transformations of partial tests, thenV we C, Tp = y(Ap,,...,
Ap:) is permutationally equivalent to w(Ay,..., Ay) = T, because the p-values are invariant under
continuous monotonic increasing transformations of test statistics. Note that, if partial tests are all
exact permutation tests, then for every combining function ye C, the combined test 7, .,,” is an exact
permutation test.

Consider a two-phase algorithm for the nonparametric combination. This algorithm is used to
obtain a Monte Carlo estimate of the permutation distribution of a combined test. The first phase
concerns the estimate of k-variate distribution of 7, the second derives the estimate of permutation
distribution of combined test T, by using the same simulation results as in the first phase. Note
that, when it is clear from the context which combining function y has been adopted, in place of T, y,”

we simply use 7' .

Phase 1. An algorithm which simulates the first phase of a procedure estimating the k-variate
distribution of T should include the following steps:

1) Calculate the vector of the observed values of tests T: T, = T(X).

2) Consider a member g, randomly drawn from the proper group of transformations G, and
the values of vector statistics T© = T(X), where X' = g*(X). In most situations, data
permutation X may be obtained by first considering a random permutation (u; ,...,u, ) of
basic label integers (1,...,n) and then by assignment of related individual data vectors to the
proper group; thus, according to the data representation given in X = (Xw),i=1,.n
ny,....,nc} (see figure 2 below).

3) Repeat step 1.2) B times independently. The set of conditional Monte Carlo iterations
results {7, ,*, r = 1,..,B} is thus a random sampling from the permutation k-variate

distribution of vector test statistics 7.

4) The k-variate ED.F. F,(zl1X)= [O.5+zr1(T,* < z)]/(B+1),vze R*, gives an estimate of

the corresponding k-dimensional permutation distribution F(zIX) of T. Moreover, ﬁi(z|X )=

05+21(T >2))/(B+1), i = 1,....k, gives an estimate Vze R’ of the marginal permutation

significance level functions L;(z|X) = Pr {7}* > z[X } thus i, (T,,'X )= /i gives an estimate of
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X } relative to test 7;. All these are unbiased and

the marginal p-value A, = Pr {T,* 2T,

consistent estimates of corresponding true values.

Figure 2 below summarizes the observed data set and one multidimensional permutation in a two-
sample problem. Figure 3 summarizes the CMC-Procedure. In multidimensional problems, the
CMC-Procedure only considers permutations of individual data vectors, so that: X = (X)), i=
l,....,n; ny,...,nc}, as is explicitly displayed in the second part of figure 2, and thus all dependence
relations which are present in the component variables are preserved. From this point of view,

CMC-Procedure is essentially a multivariate procedure.

Fig. 2: Representation of a multivariate data permutation.

X](l) X](I’l]) X1(1+n1) X1(n) T,

XD | X om0 | [T

X D] X DX ) | X )| | T

X, )] X ) X 1n) | | X ) T

Fig. 3: Representation of the CMC-Procedure.

X IX; 0. 01X, ]...| X5
TO] T]] Tr1 TB1

x ¥ ¥

Tok\ T ak| - | T o] - | T &

With respect to standard E.D.F. estimators, 1/2 and 1 have been added respectively to the
numerators and denominators of relationships in step 1.4). This is done in order to obtain estimated
values of c.d.f. F(zIX) and of p-values in the open interval (0,1), so that transformations by inverse
c.d.f. of continuous distributions, such as -log(A) or ®'(X), etc. (where ® is the standard normal
c.d.f.) are continuous. However, as B is generally large, this minor alteration is substantially
irrelevant, because it does not modify test behaviour or consequent inferences, neither for finite

sample sizes nor asymptotically. In particular, this proposition is valid:

Proposition. As B tens to infinity, I:’B (zIX) almost surely converges to permutation c.d.f.

F(zIX), Vze RX.

For the proof of this statement, see Pesarin (2001).
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Phase II. The second phase of the algorithm for simulating a procedure for nonparametric

combination should include the following steps:
1) The k observed p-values are estimated on data X by /7:,- = ]:, (TU,.IX), where T,; = T(X), i =

1,....,k, represent the observed values of partial tests and LA,. are the i-th marginal significance

level functions estimated by the CMC-Procedure on data set X.

2) The combined observed value of the second-order test is again evaluated through the same

conditional simulation results of the first phase, and is given by: 7°, = l//(/i, ,...,/ik ).
3) The r-th combined value of vector statistics are then calculated by 7, =. WA, Ay,

where 4, = i.— T,

X),i=1,..kr=1,..B.

»

)/ B.

io

4) Hence, the p-value of combined test 7'~ is estimated as: A Y IT" 2T

5) If /iy, < a, global null hypothesis H, is rejected at significance level a.

Figure 4 below displays the nonparametric combination.

Fig. 4: Nonparametric combination.

T, Tl... T,1... T B;

To1 T[k T,k TBk

j’] ’1;1 /ler ’1:3

~ * * *
/lk ,1“ ,Q,kr /’LkB

AE

o

The CMC-Procedure gives unbiased and consistent estimates of both true permutation
distribution F, (¢f| X), Pr{T™"<¢IX}, VteR' and true p-value A, =Pr{T"2T|X}. In fact,
/i,. — A, with probability one (i = 1,...k), as B tends to infinity. Hence, j‘w converges to l,/, with
probability one, k being a fixed finite integer and combining functiony being continuous by

assumption. This combination is a proper nonparametric method for multidimensional testing

problems, because it takes into consideration only the whole joint k-variate permutation
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one inequality in each “sub-alternative” is strong. This situation is displayed in Fig.1, where the two
gray sections (8; > 0, 8, > 0) and (8, < 0, 8, < 0) represent the alternative hypothesis, as the half-
lines (§;>0,8,=0), (8, <0,8,=0), (8, =0, 8,>0) and (§, =0, , < 0), while the null hypothesis is
only the single point (§; = 0, 8, = 0). The points in (§; < 0, 5, > 0) and (§; > 0, 8, < 0) are not
relevant for the analysis. This kind of hypotheses arise when two variables are such that under the
alternative at least one of them stochastically increases XOR decreases, whereas the other variable
may remain either affected or not affected.

In our genetic context, this happens when a gene is associated with a given disease so that, on
affected individuals (cases), at least one of genotype frequencies with putative allele increases XOR

decreases with respect to non-affected individuals (controls).

Fig. 1: bivariate isotonic hypotheses.

A

d;

3>

Of course, as under the null hypothesis, the pooled data set X is a set of sufficient statistics for

the problem, so that, the partial tests to take into consideration are:

Tl: :z,-Xi:zi _Z,X;mh:l’z
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In the present problem, under H;, p-values of partial tests are either stochastically smaller than o or
stochastically larger than 1 — a. So that, we need to modify assumptions 1) and 2) in the Sec. 2.3,
into:

I) all partial tests 7;, i = 1,2, are marginally unbiased and significant either for large or small
values, so that their permutation distribution under H, are either stochastically larger or
smaller than under H).

2) all partial tests T}, i = 1,2, are consistent.

Furthermore, we also need to modify the properties of combining functions y (“a”, “b” and “c” of
Sec. 2.3), into:
a) acontinuous combining function y must be monotonically decreasing in each
argument: (..., 4;...) > (..., /1’,-,...), if ; <l,,~, i=1,..k
b) it must attain its supremum positive value a, possibly not finite, when at least one

argument attains O (zero): (..., 4,,...) = l/_/ if A4, — 0; moreover it must attain its

infimum negative value ¥, possibly not finite, when at least one argument attains 1:
Y., A,.)owif 1, >1;

c) Va >0, its acceptance region is bounded: y <7, ,,<T <T, <.

Further, we need to modify also step IL.5 in Sec. 2.3, into:

(IL5)if 1-1 2]:;, —1I< «a, then reject Hj at significance level a.

If the exchangeability property is satisfied under Hy, the nonparametric combination methods lead

to exact, unbiased and consistent permutation tests (Pesarin).

An allele 4 at a gene of interest is said to be associated with the disease if it occurs at a
significantly higher or smaller frequency among affected compared with control individuals. For a
bi-allelic locus with common allele a and rare allele 4, individuals may carry zero (subjects with
genotype aa), one (subjects with genotype Aa) or two (subjects with genotype 44) copies of the 4
allele. Therefore, conventionally testing for allelic association implies to test for the joint equality in
distribution of genotype frequencies against an alternative of XOR dominance of cases with respect
to controls by using a proper test statistic. In doing this, it should be taken into consideration that,

by referring to genotype-specific risks Ry = fuilfnz, h = AA, Aa, aa, (Where fj;, j = 1,2, are the
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observed frequencies in cases and controls, respectively) the effect of an allele can be expressed
according to only one of the following ways:
I.Recessive: there is an effect only in the presence of two copies of 4 allele (genotype AA),
whereas the behaviour in heterozygous condition (genotype Aa) is the same as the reference
and commonest condition (genotype aa), so that: (R4 > R = Raa, in presence of a protective
effect) XOR (R44 < R4q = Ruq for a deleterious effect).
2.Codominant: there is an ordering on effects associated with the 4 allele: genotype Aa is of
risk (or of protection) in comparison with the genotype aa, and A4 is of risk (or of protection)
in comparison with the genotype Aa. Obviously, A4 is of great risk (or of great protection) in
comparison with th‘e genotype aa, so that (Ry4 > R4, > Raqg, for a protective effect) XOR (R4 <
R4a < Ry, for a deleterious effect).
3.Dominant: the effect of the A allele is the same in 44 and Aa genotype. In this situation,
there is no relative risk (or protection) between 44 and Aa, but only between 44 (or Aa) and

aa, so that: (R44 = R4q > Raq, protection) XOR (R4 = R4a < Ryg, risk).

For these reasons, differences in risk should be tested for over the restricted parameter space, which
properly fits the plausible biological models, defined as: (R44 > R4 > Raa) XOR (R4 < Ria < Raa).
Following Chiano and Clayton (1998), in order to reduce the analysis from three to two
dimensions, because in a 2x3 contingency table there are only 2 degrees of freedom, we may
consider odds ratios of genotype-specific relative risks, which contain all relevant information and
are defined as 044 = R44/R4q and G4, = R4alRaa, respectively. Thus, the hypotheses under testing may
be equivalently expressed as: Hy: {644 = 64, = 1}, against H;: {[(644 > 1) N (B4a > 1)] XOR [(B4y <
1) N (640 < 1)]}, where at least one inequality in both directions is strong. This system of

hypotheses is equivalent to the previous.

In order to solve the problem within the permutation approach, it should be noted that relation

defining the null hypothesis

Hp: {(G44=1) N (Oga= 1)}

is equivalent to

d

d
H(): {(f AA cases f Aa,controls — f Aa,cases f AA,controls ) n (f Aacases f aa,controls —J aa,cases f Aa,controls ) } ’
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which is easier for computations because expressed in terms of products of frequencies.

The permutation solution is based on two partial statistics:

TAA = f AA,cases f Aa,controls / (f Aa,cases f AA,controls )

T Aa = f Aa,cases f aa,controls / (f aa,cases f Aa,conlrnl.v)

which test the respective partial hypotheses:

Hpgu: {644 =1} against H;4: {644 >10rfy < 1}

Houa: {04a=1} against Hjy,: (645> 1 0r Oy < 1}.

Note, in fact, that:

d
{HAA = 1 } A {f AA,cases f Aa,controls =f Aa,cases ’ f AA,controls }’

so that, the two relations are equivalent.

To explain how the test is done, we start from the CMC method. We construct a vector of
dimension 7 (1 = Heages + Neomrols), and we assign three different values to observations of different
genotypes, for instance: 1 to all the 44 subjects who stay in the cells (44, cases) and (44, controls),
2 to all the ny4, subjects who stay in the cells (4a, cases) and (4a, controls), and 3 to all remaining
Naq SUbjects who stay in the cells (aa, cases) and (aa, controls).

Now, we insert randomly the f,, ., values 1, the f,, ... values2 and the S aa.cases Values 3

in the first .44 positions of the vector, and, in the same way, all the others values in second #cousrois

positions of the vector. We obtain a vector as that one in Fig. 2.

Fig. 2: Vector of the data for the permutation test of the allelic association problem.

Values: 2 ...0...] 2 3 1
Position: 1 2. | Poases | Peases + 1| ... | ... |n

In this way, we preserve all the marginal values of an association table (Mcasess Neontrolss a4, Mdas Naa)-

The permutation statistics 7,, and T, are calculated on the same vector, after executing a random

permutation of its » elements. For example, the estimation of partial p-value A4 is obtained using B

CMC-Iterations, as:
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1 T 2T
“T s

’

this partial p-value is distributed as U(0,1) and it makes to reject of Hyyy if it will result }W <all,

or A 2 1—0a/2, at a fixed significance level a. By using the same B vectors, previously obtained,

we estimate the p-values A, =Pr(T,, 2 T,, 1X) too, where s€ (1,...,B):

o (T2 Ty)
A =——B———.

Now, with the two partial p-values and the other B p-values of first type for each of them, we use

the combining function of Liptak to construct the combined test which verifies the initial hypothesis

system. The final p-value A, is estimated by:

1 # (@7 (1-A,)+®"A-1, )20 1-4,)+®" 1-1,)])
L= B .

Also the final p-value follows a distribution U(0,1). Further, if /iL <a/2, we consider the rare

allele of risk, whereas, if /iL >1-a/2, we reputed it of protection.

3.2 Exact Nonparametric Solution for the Genetic Problem

We can represent the previous problem by a simple case-control contingency table (see Fig. 2).

Fig. 2: Case-control table for allelic association study.

Genotype/haplotype: | Cases Controls Size
AA X] Y] S1=X1+Y1
Aa X, Y2 S2=X2+Y2
Aa X; ¥3 S$:=X;+Y;
Size 17W=X1+X2+X3 N=Y;+Y,+ ;| S=M+N=8,+5+38;

It should be noted that in all this types of studies, the data may be represented in a fixed (in this case

3x2) contingency table with fixed marginal values. The total of the cases, M, and the total of the
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controls, N, are fixed numbers, obtained from experimental observations. At the same time, also the
number of genotypes A4, in cases and controls together, S, is fixed, and so on for S, and S3.

With the usual representation by data file, we have the following structure:

Fig. 2: Data representation by a file.

Observation 1 12 |3 (4 |...|M [M+1|..|S=M+N
Genotype Aa|AA|AA|aa|... |Aa |aa .. |44
Permutation order u | uy |uy |u, |-

Uy | Uy |- | Uy

where, in the first M observations (or subjects), we have X; genotypes A4, X, genotypes Aa and X;
genotypes aa. It does not matter what order between the first M subjects we have (and the same for
the second N subjects), because the result in the contingency table does not change if we take two
random permutations into these sub-vectors, and the frequencies X;, X, X3, ¥}, Y5 and Y3 remain the
same. So that, if we consider the overall permutation space associated to the data in the previous
paragraph, (S!), it may be very large to explore exhaustively, also for the more modern computer
(and if it would be possible in some situations, its time of execution will be very high).

Now, instead, we think to look exclusively at those specific combinations and recombinations
of the permutated genotypes/haplotypes in the table, which give us a particular structure of the cells.
Observe the following example to explain this concept. We have a particular permutation in the data

which allows to obtain the dataset represented in Tab. 1.

Tab. 1: A particular result of a permutation in the dataset.

Ca. | Co.
AA xl" yl* S

Aa x; y; Sg

aa | x; | y; |3
M| N|S

The marginal sums are identical for any permutation, only the frequencies in the cells may change.

The relative data file is illustrated in the Fig. 4.
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Fig. 4: Representation by the data file of the permutation.

Observation 1 (2 |3 |4 AM M+ 1|..|S=M+N
Genotype aa|Aa|Aa|AA|... |aa |Aa .. |Aa
Permutation order ul" u; u, uy [ luy luy, || ug

Here, Vi,i (i#i),u; =u; andu; =u’.,where j# j,andi)i, j,i €{l,.,S}, furthermore, in the first M

observations (or subjects), we have x; genotypes A4, x, genotypes Aa and x, genotypes aa. Again,

the orders of the two sub-vectors (firs M elements and second N elements) are not important.

We see that there are not (S)! different results for the permutations, but many permutations with
different numbers give a specific structure of the cellsx,,x;,x,,),,y,andy;, which are the

important parameters for our statistics.

So, we can construct the exact permutation distribution for the statistics, associating to the statistics
their related frequencies, that is, the times these values of the statistics appear into the (S!)
permutations. We do not need expensive iterations, by computer, in doing that, but we can use the
combinatorial calculus. Then, we are looking for the frequencies associated, in the exploration of

the total sample space, to all the different configurations of the table (Tab. 1), that is all the sets
{x,,%,,%;,, ¥, , ¥, Vs } Where at least one cell is different from the others.
For the data in Tab. 1, we can obtain all the different table configurations by the following
algorithm :
1) x, € [max(0,S, — N),min(M, S))];
2) y =8 -x;
3) x, € [max(S, — (N —y,)),min(M - x,,S,)];
4) ¥, =8,-%;
5) x; :M—x,*~x;;
6) y, =S, —x,.

. o * * * *
Then, for a specific set i {,X; ,,X,,,X;,, 1 »;V2»; Vs } We have the frequency:

* Sl SZ S3 * * * * * *
fi=M'NY kL L [EMINISISISI D IGx o x v v, s D
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and, of course, the sum of all the frequencies is:
1
Y f=(M+N)=(S);

where the total number of all these different configurations is:

min(M S, )+1-max(0,S;,-N)
I= Y [min(M -x;,8,) +1-max(0,S, — (N = (S, —=x )

X
so that, the relative frequencies (more simple in the computations by computer) are p =1 I(S).
Of course, the highest relative frequency is associated to configuration where x, and x, are close

maximally (if possible, equal) to, respectively, y, and y, ; that coincides (in general) with the case of
no association between cases and controls.

Instead, we can see that the sampling distribution is in the form of bell shape (where the parameters
are: the mean of the cell configurations, that is, in general, equal to the configuration which has the
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