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Abstract 
 

The theoretical studies on the Resistive Wall Modes (RWM) and non-resonant 
Fishbone-Like External kink Mode (FLEM) in Reversed Field Pinch (RFP) 
plasmas are reported, and comparison is made with the Tokamaks. Various 
features of these two instabilities in the RFP and Tokamak configurations are 
investigated in order to provide an in-depth understanding on the mode physics. 
The toroidal MHD-kinetic hybrid stability code MARS-K was applied to the 
studies, which takes into account the drift kinetic effects of thermal particles as 
well as the isotropic/anisotropic energetic particles (EPs). The RWM behaviour in 
the RFP plasmas with shaped cross section is investigated first, and it is found to 
be quite different from Tokamaks. Furthermore, the EPs effects on RWMs are 
studied in both RFP and Tokamak plasmas, considering both isotropic and 
anisotropic energetic ions (EIs). Besides the RWMs, this study also finds the 
triggering of the FLEM instability, which is driven by the precessional motion of 
energetic ions. FLEMs can coexist or couple with the RWMs, depending on the 
plasma parameters.  

The MARS-K code is also applied to the study of the RWM stability in the JT-
60SA Tokamaks, and the preliminary results are provided.  
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Prefazione 
 

Vengono presentati studi teorici sui Resistive Wall Modes (RWM) e sui non 
resonant Fishbone-Like External kink Modes (FLEM) presenti nei plasmi di tipo 
RFP (Reversed Field Pinch) e confrontate con il caso Tokamak. Vengono 
analizzate le caratteristiche di queste due instabilità nelle due configurazioni, in 
modo da ottenere una visione approfondita dei fenomeni fisici alla loro base. Il 
codice toroidale ibrido di stabilità MHD-cinetica MARS-K è stato impiegato in 
questi studi; esso prende in considerazione gli effetti cinetici di drift delle 
particelle termiche così come le particelle energetiche (EP, Energetic Particles) 
isotropiche/anisotropiche. Anzitutto è stato investigato il comportamento dei modi 
RWM nei plasmi RFP con sezione non circolare, che è stato scoperto essere molto 
diverso da quello nei Tokamak. Oltre a questo sono stati studiati gli effetti delle 
EP sui modi RWM nei plasmi sia RFP che Tokamak, considerando gli ioni 
energetici (EI, Energetic Ions) sia isotropi che anisotropi. Oltre agli RWM, questo 
studio ha individuato le cause di innesco delle instabilità FLEM, che sono 
provocate dal moto di precessione di ioni energetici. Le instabilità possono 
coesistere o essere accoppiate agli RWM, a seconda dei parametri di plasma. 

Il codice MARS-K è stato applicato anche allo studio della stabilità degli RWM 
nel tokamak JT-60SA, vengono illustrati i risultati preliminari. 
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Summary 
The aim of the nuclear fusion research is to obtain the new energy resource, which 
is clear, safety and sustainable, as the alternative energy of the conventional 
energy. The research has been carried out in many countries and many years 
through experimental analysis and physical demonstration.  

One of the achievable approaches to realize the controlled fusion device is the 
magnetic confinement fusion. The International Thermonuclear Experimental 
Reactor (ITER) is the biggest and most advanced fusion reactor in the world, 
which is designed and under building, based on the Tokamak configuration in 
order to achieve the burning plasma successfully. The Reversed Field Pinch (RFP), 
with high plasma current performance (~2MA in the RFX-mod experiment), is 
another magnetic confinement configuration, as an alternative fusion experimental 
device. The Magnetohydrodynamic (MHD) instabilities are very important 
behaviors in both RFP and Tokamak configuration, which limits the achievements 
of the high performance and steady-state operation in the present experiments and 
even cause the terrible destroy to the devices. 

In this thesis works, the theoretical studies on the instabilities of the Resistive Wall 
Mode (RWM) and the Fishbone-Like External kink Mode (FLEM) are carried out 
for both RFP and Tokamak (circular cross section with similar geometry) 
magnetic configurations. Various features of the RWM and FLEM instabilities 
between the two configurations are compared in order to provide an in-depth 
understanding on the mode physics. The MHD-kinetic hybrid toroidal stability 
code MARS-K was applied to the studies, which takes into account the drift 
kinetic effects of thermal particles as well as the isotropic/anisotropic energetic 
particles (EPs).  

Both RWM and FLEM originate from the ideal external kink mode (one of the 
most important MHD instabilities). As well known, the external kink mode can be 
stabilized by an ideally conducting wall located sufficiently close to the plasma 
surface. However, if the ideal wall is replaced by a resistive wall, the mode 
converts to a slowly growing RWM instability with the growth rate in the order of 
tw

-1 (tw is the wall penetration time). The RWM instability causes a global 
distortion of the plasma that often results in a major disruption, thus it is probably 
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the most prominent obstacle for achieving the high beta plasma regime in the 
operation of the advanced fusion devices. As presented by many previous studies, 
the stabilization of RWMs can be performed (actively) by the feedback control 
system; or (passively) by the plasma rotation with various damping mechanisms. 
Particularly, RWM can be stabilized in tokamaks at very slow (even vanishing) 
plasma rotation by the kinetic damping produced from the wave-particle 
resonances. These kinetic effects have been suggested by many experimental and 
theoretical studies as one of the most effective damping machnisms. Therefore the 
RWM study cannot be solely treated by the ideal MHD theory, a drift kinetic 
description is necessary to be introduced in the study.  

The energetic particle physics is an important issue to be studied in order to 
understand the behavior of the burning plasmas which represents the primary 
scientific challenge faced by ITER and fusion research in general. E.g., in D–T 
plasmas, such as foreseen for ITER, self-heating is provided by the alphas 
generated at 3.5MeV by the D–T fusion reactions. In addition, other fast or 
energetic ions with energies well above the thermal distribution of the plasma bulk, 
are generated by neutral beam injection (NBI) and ion cyclotron resonant heating 
(ICRH). These are expected to play major role in achieving optimal burning 
plasma scenarios with external heating and/or current drive. On the other hand, the 
Energetic Particles (EPs) may interact with the bulk plasma waves and instabilities, 
which possibly lead to destabilize/stabilize the existing turbulence in the bulk 
plasma, even to excite a new type of instabilities, which may result to 
redistribution and losses of EPs. In this thesis, the EPs effect on the RWM 
instabilities have been studied for both RFP and Tokamak plasmas. Furthermore, 
another branch of external kink mode -- the Fish bone Like External kink Mode 
(FLEM) driven by the precession drift motion of the energetic particles is 
investigated in the two configurations. The nature and the physics of the FLEM 
are clarified by numerical analysis. This subject is also much relevant to the 
experimental observation such as in JT-60U, DIII-D and MST et al. 

The present thesis is organized in five parts as shown in the following: 

Chapter 1 is an introduction to the concept of the nuclear fusion and the magnetic 
confinement devices (the Tokamak and the RFP). The definitions and the basic 
physics of the MHD instabilities are also introduced in both plasma configurations, 
particularly the RWM and fishbone-like mode instabilities.  
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In the chapter 2, the formulations of the theoretical model related to the MARS-K 
code, are introduced.  In order to gain better physical understanding, we compute 
various components of the quadratic energy form, for both fluid and drift kinetic 
energy perturbations, from the self-consistent solution. The equilibrium profiles of 
the pressure and the density for each species (including the thermal particles and 
the EPs), in both RFPs and tokamaks, is also introduced. 

Chapter 3 studies the shaping effects on Magnetohydrodynamic (MHD) stabilities 
in reversed field pinch (RFP) plasmas by using the MHD-kinetic hybrid toroidal 
stability code MARS-K, where both elongation and triangularity are taken into 
account. In the Tokamak plasmas, the D-shape cross-section often helps to 
increase the favorable curvature region which is inherently a stabilizing factor for 
some MHD modes. In contrast, the shaped cross section of the RFP plasmas leads 
to a lower ideal wall beta limit than that of the circular one; and does not bring an 
appreciable benefit in kinetic damping on RWMs. The major physics reason is the 
strong poloidal field in the RFP, which plays an important role in the poloidal 
mode coupling and the particle dynamics, and in particular, prevents the access to 
a substantially improved good averaged curvature by shaping..  Apart from the 
RWM study, the stability boundary of the linear resistive tearing mode in shaped 
RFP plasmas is computed and compared with that of the circular case. In addition, 
the bootstrap currents are calculated for both circular and shaped RFP plasmas. 
Overall, the results of these studies indicate that the current circular cross section 
is an appropriate choice for RFP devices. 

In the chapter 4, the kinetic effects of the EPs on Resistive Wall Mode (RWM) are 
studied in both Reversed Field Pinch (RFP) and Tokamak configurations. It is 
found that the EPs can play stabilizing role on the RWM by their precession drift 
motion, which resonates with the mode under the plasma rotation. However, the 
precession of EP may cancel the kinetic damping induced by thermal particles in 
bulk plasma, even through the RWMs can be stabilized (under certain flow 
velocity) by the kinetic effects of each species alone. Therefore, with the presence 
of the EPs in the plasma, the condition of the stabilization of RWMs by kinetic 
damping depends on the parameters of the two species. Appropriately choosing 
the NBI parameters (energy, pitch angle of injection et al) may possibly minimize 
the cancellation effects. The understanding of the results is provided by the 
detailed analysis of the kinetic energy components contributed from each species. 
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Furthermore, the effects of the anisotropic distribution and the variation of the 

birth energy   of EPs are investigated.  

In Chapter 5, The Fish-bone like external Kink mode (FLEM) instability driven by 
the precession drift motion of the trapped Energetic Particles is investigated in 
both RFP and Tokamak plasmas. In RFP plasmas, the non-resonant FLEM 
instability is predicted. When a sufficient fraction of EPs presents in the plasma 

and the condition of resonance d rn n      is satisfied (where d is the 

precessional frequency of the trapped EPs, r is the mode frequency and  the 

plasma rotation frequency), the originally stable non- resonant ideal kink mode 
(stabilized by the sufficiently closed ideal conducting wall) can be driven to be 
unstable by the precessional drift resonance of the EPs. The mode frequency, 
therefore, is much higher than RWMs, around the range of the ideal MHD time 
scale (Alfven frequency), and varies with the plasma rotation frequency. In general, 
the instability of FLEM does not depend on the wall resistivity. However, the wall 
position could significantly affect the mode property. The kinetic effect of the 
thermal particles (transit resonance of passing particles) plays a stabilizing role on 
FLEMs. With the presence of EPs in the plasma, the FLEM and the RWM can 
coexist or couple to each other, depending on the plasma parameters.  

The same type of the instability is observed in the Tokamak plasmas, where the 
dominant non-resonant external kink mode (e.g. m=1, n=1) couples with the 
resonant external kink modes (e.g. m=2, 3, n=1). The similar nature to what in 
RFPs is observed. Nevertheless, in Tokamak the frequency of FLEM is much 
lower than what in RFP due to the lower precession frequency of EPs in a 
Tokamak than in RFP (with similar geometry). Furthermore, the Landau damping 
of the transit resonance by the passing thermal particles in Tokamak is weaker 
than in RFP due to the longer connection length in Tokamaks.  

In the Chapter 6, the stability of the RWM by considering the plasma rotation for 
the JT-60SA Tokamak has been studied, by using the MARS-K code, in the fluid 
theory with the ions acoustic Landau damping. The equilibrium data of the JT-
60SA scenario #5-1 is adapted as input of the MARS-K code. The ideal wall beta 
limit and the no-wall beta limit set by the ideal kink mode/resistive wall mode are 
calculated first. Secondly, the stabilization of the RWM with plasma rotation has 
been studied. It is found that the stabilizing effect contributed by the ion acoustic 
Landau damping is mainly located at the region q>3 (q is the safety factor). Finally, 
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the stability windows of the RWMs with various plasma rotation frequencies are 
also calculated. The results indicate that the stability window is enlarged with the 
increased plasma rotation frequency, and sensitive to the rotation profile. 
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Equation Chapter (Next) Section 1 

Chapter 1 

 

1. Nuclear fusion and magnetic confined plasma 

In this capter, an introduction of unclear fusion and magnetic confined fusion 
plasma is given. We focus on two configurations of magnetic confinement devices: 
tokamak and Reversed Field Pinch (RFP). The strongest instabilities which are 
described by the magnetohydrodynamic model of the plasma (MHD instabilities) 
are introduced in both magnetic confinemant configurations. In particular, 
Resistive Wall Mode (RWM) and Fish-bone Like Mode (FLM) which are the 
macroscopic MHD instabilities are described. The discussions of both two modes 
are the main subject in this thesis work. 

1.1 Fusion	energy	

Energy is the cornerstone of social development. Recalling the development of 
human society, every efficient development and utilization of new energy 
resources, gave society a new leap forward. Energy people use today, such as coal, 
oil, natural gas, etc, creats great wealth for human society. However, with the 
depletion of non-renewable resousces and increasingly serious pollution problems, 
this traditional fuel resousces has slowly become an obstacle to sustainable 
development in the future. To face with the depletion of resources, a wide variety 
of energy sources such as wind, geothermal, tidal energy, etc, have been found, 
but these new energys which have their limitations, can not become the mainly 
energy development. With the successful experiment of the atomic bomb, the 
principle of nuclear fission energy has been known and used by more and more 
country. Nuclear fission energy is through the fission of heavy metals (U235), 
which splits into lighter unclei and releases a lot of energy. However, the reserves 
of the fission fuel (U235) and other heavy fuel on earth are also limited, and the 
potentially dangerous exists, due to the radioactive nuclear fuel and nuclear waste. 
As has happened in history, Chernobyl event and Fukushima Nuclear Disaster in 
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Japan remind us the safety problem of nuclear fission. For the development of 
human society, a new energy which is clean, sustainable, safe and high efficient 
has become the focal point of today's energy problems. With the development of 
science and technology, nuclear fusion is expected to become completely solve the 
problem of energy. 

Contrary to nuclear fission, nuclear fusion is a nuclear reaction in which light 
nuclei collides to form a new type of heavy nuclei and releases the energy during 
the process. The mainly light elements are the hydrogen (H), deuterium (D) and 
tritium (T) which are the isotropes of H. During the reaction of fusion, light nuclei 
need very high speed to overcome the Coulomb force and to be in a very close 
region. In this region, the short-range nuclei force is much larger than the 
Coulomb force, and this force pulls the nuclei together. For larger elements, the 
nuclei can not be close sufficiently, and energy is not released, or even absorbed 
during the process. In the reaction of nuclear fusion, the matter is no longer 
conserved. The energy is released in the form of the energetic particles and gamma 
rays due to the mass defect. This transformation can be described by the Einstein 
famous relation: 

2E mc        (1.1) 

In the equation (1.1), m is the mass defect, E is the energy released or absorbed 

by the mass defect. There are three mainly type of fusion reaction, which are the 
D-D reaction, the D-T reaction, the D-He3 reaction. The D-D reaction is the most 
difficult to initiate, and this reaction has two branches. The D-T reaction is the 
easiest one to initiate, which make it major choice for fusion experiment. These 
reactions are written as following [1]:  

17.6D T n MeV        (1.2) 

3 3.27D D He n MeV       (1.3) 

4.03D D T p MeV        (1.4) 

3 18.3D He p MeV        (1.5) 
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Figure 1.1: Velocity averaged cross section for D-D, D-T, D-He3 reaction versus 

temperature (KeV) 

In the figure 1.1, it shows the velocity averged cross section versus the temperatue 
(keV), for the D-D reaction, the D-T reaction and the D-He3 respectively. All three 
reactions can initiate with high sufficiently collision rate. The lowest temperature 
required for three reaction is in the temperature region 10~100keV. In this region, 
all the fuels of reaction are the fully ionized gas, which is the fourth state of matter. 
The electrostatic charges of ions and electrons are conserved, resulting in a quasi-
neutral gas so called plasma. For maintaining the plasma temperature, enhance 
maintianing the collisions sufficiently to realize the reaction condition, the fuel 
matter confinement is required. There are two major branches of confinement 
method which is magnetic confinement fusion (MCF) and the inertial confinement 
fusion (ICF). 

The magnetic confinement approach [2] is using the magnetic field to confine the 
fusion fuel in the plasma form. This magnetic field has a closed geometry, and 
confines the charged particles in a sufficiently long time scale, due to the Lorentz 
force. In this thesis, the study will focus on the magntic confinement fusions. 

The inertial confinement approach [3] is heating and compressing the fuel toget in 
a small region, usually in the form of fuel pellets or/and very high power laser. If 
heating and compressing is high enough, the fusion reaction can be achieved. 



 

 
4

In the D-T reseach, there is a chemical element that can be used for breeding the 
Trituim, in particular, breeding the Trituim in the blancket surrounding the D-T 
reaction region. The reaction equations are: 

6
3 ( ) 4.8Li n slow T MeV       (1.6) 

7
3 ( ) 2.5Li n fast T MeV       (1.7) 

Power provided by fusion reaction can per unit volume Pn can be writen as 
equation (1.8), forcing on the magnetic confinement D-T fusion in this thesis [4].  

21

4nP En         (1.8) 

Where E is the energy released by the fusion reaction, which is 17.6MeV for the 

D-T reaction. <> is the reaction rate, shown in the figure (1.1), it includes the 

reaction cross-section  and the relative velocity . The n is particle density of fuel, 

and which is assumed to be half of the density of electrons (nT=nD=0.5ne).  

There is continus loss energy PL from plasma, which needs plasma heating PH to 
maintain the power banlance in the fusion reactor: 

H LP P P        (1.9) 

3
L

E E

W nTV
P

 
       (1.10) 

In equation (1.10), V is the plasma volume, 3T/2 is averaged plasma temperature 

per degree of freedom, W is the total energy in the plasma and E is the energy 

confinement time which is determined by from experimently known quantities. In 
a D-T reaction, four fifths of the fusion energy is carried by the neutrons 
(14.1MeV) which can not be confined and are converted to electric power. And 

the rest energy is carried by the -particles, which can be confined by the 

magnetic field and transfers their energy E (3.52MeV) to plasma thought 

collisions. Thus in equation (1.9), the total power P released by the fusion 

reaction in the plasma volume is modified by a factor 0.2.  
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In order to achieve a desirable fusion reactor, the energy released by -particles 

can be completely sustained by the internal heating, which is called ignition. The 
energy balance is rewritten as: 

12
E

T
n

E v





 

     (1.11) 

In addition, there are a lot of radiation losses in the fusion reactor, and usually 
bremsstrahlung radiation is the largest loss due to the Coulomb collisions. The loss 

power per unit volume can be described by: 

2

2 1/2 ,
i i

i
b b eff eff

e

n Z
P C Z n T Z

n
 


   (1.12) 

Where the Cb is a constant parameter and Zeff is the effective charge. For pure D-T 
reaction, Zeff is equal to 1.0. Considering the bremsstrahlung radiation loss, the 

equation (1.11) can be modified, which is called Lawson `s criterion: 

1
23

4E b eff

E
n T v C Z T 


     
 

   (1.13) 

 

Figure 1.2 The curve nE for Lawson`s criterion of D-T reactions versus temperature T. 
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As shown in figture (1.2), this nE curve has the minimum value at Ti~25keV and 

the requirement for ignition is: 

20 31.5 10E in T m s          (1.14) 

As shown in figture (1.3), the classic tirple product of D-T reaction is: 

21 3

28 3

3 10

3 10

E i

E i

n T m keV s

n T m Kelvin s









     
     

   (1.15) 

In figture (1.3), it also shows the development of the magnetic confined fusion 
reactors. The solid line is the limit of the bremsstrahlung radiation. Though the 

achieved improvements are great, the expected reactor condition is still not reached. 

And this is a long way to the goal of the working fusion plants. 

 

Figure 1.3 The fusion triple product nETi of D-T reactions obtained in existing Tokamak 

experiments versus the central ion temperature Ti. 
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1.2 Magnetic confinement fusion 

Magnetic confinement fusion is a toroidal plasma confinement system, due to the 
Lorentz force. This force is avoiding the plasma escape to the system boundary 
(wall outside the plasma). The equilibrium of the pressure in the system must be 
satisfied, which is including the plasma pressure and the magnetic pressure 
producted by the magnetic feild. The mainly magnetic field is the toroidal field; 
however the plasma can not be confined well by this field alone. Thus the other 
important magnetic field, which is called the poloidal field, is necessary.  

 

Figure 1.4 Toroidal (r, , ) and cylindrical (R, , Z) coordinations in the toroidal 

configuration. 

For the research of magnetic confined plasma in the torus configuration, the 
toroidal coordination is defined, as shown in the figure (1.4). Where the r is the 
radius, the R0 and a are the major and minor radius of the torus respectively, and 

the b is the position of wall outsider plasma. The  is the poloidal angle and the  

are the toroidal angle, in which direction the poloidal magnetic field BP and 
toroidal mangetic field BT are defined. In plasma fusion devices, the magnetic line 
is in the helical path and lies on a set of closed toroidal surface. 

There is an important quantity  [6], which is shown in fomular (1.16) and 

describes the plasma confinement efficient by the magnetic field. Due to the 

economics and technology, people desires high value of . However, the 

maximum value of  is limited by the equilibrium balance and the MHD 
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instabilities (which will be discussed in the section 1.3.2). The definition of the 

value  is: 

2
0/2

P

B



 


 

    (1.16) 

Where <P> and <B2>/20 is the averged plasma pressure and the magnetic field 

pressure over the total plasma volume, 0 is the vacuum permeability. Usually, 

with respect to each component of magnetic field BP and BT, the value  is 

separated to the poloidal P and the toroidal T. 

The other important quantity is the safety factor q, which describes how much 
toroidal turns in the magnetic line are per poloidal turn. It determines the 
instability, in particular the MHD instabilities. For a large aspect configuration 
(a<<R0), it is given by: 

0

( )
rB

q r
R B





      (1.17) 

In this thesis, we focus on both the Tokamaks and Reversed Field Pinchs (RFPs) 
configurations, which have different q profiles and instabilities. It will be shown in 
the following sections. 

1.3 Ideal	magnetohydrodynamics (MHD) model	and	instabilities	

1.3.1 Ideal	MHD	Models	

The ideal magnetohydrodynamics model is a set of single-fuild equations, which 
describes the macroscopic behaviors in a fusion reactor configuration. It is reduced 
from the two-fluid mode by introducing appropriate fluid variables and scale 
assumptions. Due to the MHD instabilities, many terrible disruptions occur, which 
leads to catastrophic loss of plasma rapidly. The MHD model is thus important for 
MHD instability research and optimizing the magnetic configuration in fusion 
reactor, helping people find a continus, steady state model of operation. The MHD 
model is including the mass conservation equation, the momentum equation, the 
energy equation, the Maxwell`s equations and the ideal Ohm`s law. The equations 
are given by [6]: 

0
t

 
   


v    (1.18) 
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d
p

dt
   

v
J B    (1.19) 

0
d p

dt  

 
 

 
    (1.20) 

t


  


B

E     (1.21) 

0 B J     (1.22) 

0 B     (1.24) 

0  E v B     (1.25) 

Where the electromagnetic variables are the electric field E , the magnetic field B , 

and the current density J . The fluid variables are the mass density  , the fluid 

velocity v , and the pressure p . Also,  =5/3 is the ratio of specific heats and 

/ /d dt t    v is the convective derivative. 

 
Since the main goal of ideal MHD is the investigation of macroscopic phenomena, 
the length scale of interest correspond to the macroscopic dimensions of the 

plasma is the plasma radius a, denoted by ~L a , while the typical time scale of 

MHD interest is the ion thermal transit time across the plasma ( ~ /
iTa V ). This 

leads to a characteristic velocity  1/2
~ 2 /

iT i iu V T m (the ion sound speed), which is 

the fastest macroscopic speed that the plasma can achieve. And the time scale is 
characteristic of many MHD plasma instabilities and represents the fastest time 
scale in which macroscopic plasma motion can occur. It should be noted that 
certain MHD waves and other phenomena can have time scales somewhat faster or 

slower than /
iTa V . In determing the scaling relations it is helpful to introduce the 

characteristic MHD frequency   and wave number k as follows [6]: 

~ ~ iTV

t a
 


,     (1.26) 

1
~ ~k

a
 ,     (1.27) 

and, similarly, the resulting velcotiy 
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~ ~ Tiv V
k


.     (1.28) 

Furthermore, there is additional information to be introduced by examining the 
conditions for validity. This provides insight into which specific phenomena are 
not accurately described by ideal MHD. And it also indicates that those 
phenomena will be reliably treated even when the overall validity conditions are 
violated. The dimensionless variables are given by: 

Lir
y

a
      (1.29) 

1/2

iT iii

e

Vm
x

m a

 
  
 

    (1.30) 

Where /
iLi T cir V  is the ion gyro radius, ii is the collision time due to the ion-ion 

interaction, im  and em are ion and electron masses respectively. Three independent 

conditions which are described by the dimensionless variables must be satisfied 
for ideal MHD to be valid: 

(1) High collisionality 1x   

 (2) Small gyro radius 1y   

 (3) Small resistivity 2 / 1y x   

As known, the the conditions of small gyro radius and small resistivity are well 
satisfied for plasmas of fusion interest. Note however, that the high collisionallity 
assumption is never satisfied. The region of completely valid MHD model is not 
including the fusion interest. This disconcerting conclusion is, however, 
inconsistent with the overwhelming empirical evidence demonstrating that ideal 
MHD provides a very accurate description of most macroscopic plasma behavior. 
As result, it suggests the introduction of a modified MHD model, collisionless 
MHD. Comparing the two modes, the biggest differents are the parallel part of 
momentum equation and the energy equation. For momentum equation, the 
perpendicular components provide an excellent description of plasma in either the 
collision-dominated or collision-free regimes. The parallel component treated by 
ideal MHD models is very inaccurate. This is because of the anisotropic plasma 
motion in a given magnetic field line, and in a collisionless plasma, the magnetic 
field plays a collision role in the perpendicular motion. However, due to the MHD 

incompressibility of most MHD instabilities, both p  and ||p  will not change 
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significantly from their initial values during the increment t . From conservation 

of mass relation, the incompressibility is equivalent to 0  v . So the collision-
dominated and conllision-less equations of state are identical due to the 
incompressible motions. Consequently, both models make very similar predictions, 
and it is accurate to use the ideal MHD models in both collision-dominated and 
conllision-less regimes. 

1.3.2 Ideal	MHD	instabilities	

There are three main classification schemes, distinguishing and describing the 
ideal MHD instabilities. These classification schemes are 1) internal and external 
modes, 2) pressure-driven and current-driven modes and 3) conducting wall and 
no wall configuration. [1] 

1) internal and external modes 

The first classification scheme distinguishes between internal and external 
instabilities. Assuming that a well-confined plasma equilibrium separated from the 
first wall by a vacuum region exists, this distinction is based on if or not the 
surface of the plasma moves as the instabilities growing. The internal mode is a 
fixed boundary mode, and plasma surface is fixed in place. These instabilities 
occur purely inside the plasma and the place constraints in the shape of the 
pressure and current profiles. Often they do not lead to catastrophic loss of plasma 
but can result in important experimental operational limits or enhanced transport. 
External mode, which is free-boundary modes on the other hand, involves motion 
of the plasma surface, and hence the entire plasma. This motion leads to a plasma 
which is striking the first wall. The external modes are particularly dangerous in 
the fusion plasma, and it must be avoided in general. 

2) pressure-driven and current-driven modes 

The second way to classify plasma instabilities is due to the driving source. In 
general, a plasma has both perpendicular and parallel currents and each can drive 
pressure-driven and current-driven instabilities respectively. The classification 
system for these instabilities is as follows.  

Since p   J B  in equilibrium, instabilities driven by perpendicular currents are 

often called “pressure-driven” modes. Actually, it is a combination of the pressure 
gradient and the field-line curvature that drives the instabilities. The curvature of 
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the field lines can be favorable, unfavorable, or oscillate with respect to stability. 
The choice depends upon which way the radius of curvature vector points as 
compared to the direction of the pressure gradient. Instabilities driven primarily by 
the pressure gradient are usually further subclassified into one of two forms: the 
“interchange mode” or the “ballooning mode”.  Pressure driven instabilities are 

usually internal modes and set one important limit on the maximum stable  that 

can be achieved in a fusion plasma. 

Instabilities driven by the parallel current are often called “current-driven” modes. 

These instabilities can exist even in the limit of low , a regime where all 

pressure-driven modes are stable. In this regime, current-driven instabilities are 
often called “kink modes” because the plasma deforms into a kink like shape. 
Kink modes can be either internal or external. The external kink mode sets an 
important limit on the maximum toroidal current that can flow in a plasma. The 
physical picture of the kink mode is shown in figure (1.5). 

In certain situations, the parallel current and pressure gradient (perpendicular 
current) combine to drive an instability, often referred to as the kink mode. This is 
usually the most dangerous mode in a fusion plasma. It sets the strictest limits on 
the achievable pressure and current. Furthermore, it is an external mode, implying 
that violation of the stability boundary can lead to a rapid loss of plasma energy 
and plasma current to the first wall. 

3) conducting wall and no wall configuration 

The last classification scheme is focused on if a perfectly conducting wall is 
required or not. A close fitting perfectly conducting wall can greatly improve the 
stability of plasma against external kink modes. Since these modes set the strictest 
stability limits it would be highly desirable to avoid such modes by means of a 

perfectly conducting wall. The resulting gains in the   and current limits due to 

wall stabilization are substantial, and may be mandatory for reactor viability in 
certain magnetic configurations. 

Maintaining an ideal conducting wall close to the plasma can be realized in a real 
experiement or reactor. The wall must be resistive, and this subjects the plasma to 
the resistive wall mode (RWM). Based on the simple mechanical analog, the 
presence of a resistive wall has no effect on the stability boundary of a plasma 
without a wall. In other words, while a perfectly conducting wall can raise the 
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stability limit above that of the no-wall case, a resistive wall leaves the stability 
boundary unchanged and only reduces the growth rate. The possibility of 
stabilizing the RWM by means such as feedback and kinetic damping is a critical 
issue. This is because in certain configuration like RFP requires a conducting wall 

even at =0 since they carry a large current, and the requirement of higher value of 

 also needs the stability of the RWMs in tokamaks.  

 

Figure 1.5 Diagram of the kink instability. 

1.4 Tokamaks	and	the	Reversed	Field	Pinch	(RFP)	

1.4.1 Tokamaks 

Tokamka devices have the very strong toroidal magnetic field BT and the much 
weaker poloidal magnetic field BP (BT>>BP), as shown in the figure (1.6). The 
safety factor q is usually increasing along the radius (q(0)<q(a)) shown in the 
figure (1.7). The core value of safety value q(0) needs to be larger than unit 
(1<q(0)<q(a)) due to the MHD instabilities discussed in the above sections. If 
q(a)<1, the MHD instabilities are induced, which is a current-driven external mode 
with the toroidal mode number m=1 (most dangerous). This critical condition is 
called Kruskal-Shafranov Limit. Furthermore, if q(0)<1<q(a), the resonance 
surface q=1 is inside the plasma, which leads to the current-driven (1,1) internal 
kink mode. This instability causes the “sawthooth” oscillations, and the “fish-
bone” oscillations due to the neutral beam injetction. Both cases lead to limit the 
maximum value of the plasma current and even cause the disruptions. Due to the 
toroidaicity, the quantitative changes for the pressure-driven modes is induced, 
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which leads to limit the maximum value of , and it also needs the q-profile 

mentioned in the above.  
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Figure 1.6 Typical toroidal and poloidal magnetic field in Tokamaks and RFP. 

Tokamak experiment is one of the most-research candidates for producing 
controlled thermonuclear fusion power, e.g. JET, JT-60U, EAST, WEST, DIII-D. 
In the following, two building large tokamaks are introduced: 

1). ITER: The ITER (International Thermonuclear Experimental Reactor) tokamka 
device is the largest building fusion reactor as shown in the figure (1.7), and its 
objective is to demonstrate the scientific and technological feasibility of fusion 
energy. The program is funded by seven members, including the European Union, 
India, Japan, Republic of China, Russa, South Korea and the United States. It is 
anticipated to last for 30 years (10 for construction and 20 for operation) with the 
total cost more than 15 billion euros. The operation of ITER is expected to 
produce significant fusion power (~500MW) with high fusion gain Q~10 (which is 
the ratio of fusion power to the external heating power) for a time scale 300-500s. 
It is also designed to operate in the steady state with high fusion gain Q>=5 lasting 
for long time scale ~3000s by using the non-inductive current driven. The fusion 
energy is predicted to be producted though the D-T reaction and the majority of 
the heating power is expected to br provided by the alpha particles heating. The 
mainly device parameters shown in the figure (1.8) are the major radio R~6.2m, 
the minor radio a~2m, the maximum plasma current IP~15MA and the maximum 
toroidal field BT~5.3T [14]. 
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Fig1.7 The view of the ITER device 

2). JT-60SA: As shown in the figure (1.8), this latter device which is a 
replacement for the JT-60U experiment in Naka, re-using the site building, 
neutrual beams and some power supplies, is known as JT-60SA (SA:super, 
advangced). The mission of JT-60SA is to contribute the realy realization of fusion 
energy by supporting the exploitation of ITER, and optimise the design of the 
demonstration electricity generating plant (DEMO) by complementing the ITER. 
The JT-60SA experiment has been designed to realize a wide range of diverted 
plasma equilibrium configurations covering a DEMO-equivalent high plasma 
shaping factor (S=q95IP/(aBT)~7) and low aspect ratio (R/a~2.5). It will typically 
operate for 100s pulses once per hour, subjecting water-cooled divertors to 
maximum heat fluxes of 15MW/m2. The device will be able to explore full non-
inductive steady-state operation with the maximum plasma current IP=5.5MA and 
the maximum toroidal field BT=2.25T. Deuterium is used as a fuel because it 
mimics well the behavior of reacting deuterium-tritium plasma in a real power 
reactor or ITER, without generating large amounts of heat or neutrons. [13] 
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Fig1.8 The view of the JT-60SA device, and the JT-60SA experiment parameter 

compared with the ITER. 

1.4.2 Reversed Field Pinch (RFP) 

The Reversed Field Pinch is an axisymmetric toroidal system. Due to the 
theoretical analysis of Taylor, the RFP configuration is in a minimum energy state, 
which is maintained by the relaxation processes, while the magnetic reverse 
happens [11]. The biggest difference between RFP and Tokamak is the magnetic 
field configurations: (1) the poloidal magnetic field and the the toroidal magnetic 
field has the same order BT~BP, as shown in the figure (1.6); (2) the reversed 
toroidal magnetic field (The name RFP is from the fact that the toroidal magnetic 
field is reversed in the outer region of plasma). In RFP, there two important 
parameters which are identifications of the configuration: the reversal parameter F 

and the pinch parameter  (Fomular 1.31 and 1.32). These parameters are relative 

to the equilibrium, and are described as following: 

( )B a
F

B





 

     (1.31) 

( )B a

B




 
 

     (1.32) 

Where B(a) is the magnetic field at the plasma edge, and the <…> denotes the 
average over the total plasma cross section. Due to the analysis of Taylor, the 
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prediction shows that the field reversal occurs at =1.2. The RFP plasma is with 

the parameters >1.2 and F<0, which is relatively high- configuration compared 

to the Tokamaks (low- and F>0). The RFP plasma is working with low-q 

compared with tokamak, and it allows many MHD modes. The MHD instabilities 
can be stable by the presence of a conducting close-fitting wall, because of the 
very strong stable effects on the MHD instabilities due to special relaxation 
mechanism in the RFP devices. Furthermore, the active feedback controlling 
system is another passively way and gives an excellent improvement in the RFP 
development.  

The RFX-mod, as shown in the figure (1.9), is a large RFP experiment device, 
with a/R=0.459(m)/2.00(m), maximum applied toroidal field BT=0.7(T) and 
plasma current IP<=2(MA). The modification based on the original device (RFX) 
is aiming at improving plasma boundary: the plasma is surrounded by a thin 
copper shell instead of the thick shell, covered by the 48 toroidal × 4 poloidal (192) 
external shadow coils with independent pow supplies; the redial field sensor loops 
of the same size are located inside the shell; the effective penetration time is 

b~100ms. Compared with the initial passive shell operation, the modification 

allows controlling the MHD instabilities selectively and effectively [12].  

 

Figure 1.9 The view of RFP-mod experiment. 
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1.5 Resistive	Wall	Mode	in	Tokamaks	and	in	RFPs		

As described in the above sections, the Resistive Wall Mode (RWM) is the special 
from of the external ideal kink mode. The ideal kink instability can be completely 
stabilized by surrounding an ideal conducting wall that is closed enough to the 

plasma. It becomes a slowly growthing instability (the order ~ 1/ w   ) by 

surrounding the finite conducting wall in reality. Where the w is the wall time, 

and it is much larger compared to the Alfven time ( w A  ). This RWM sets a 

beta limit in the advanced tokamak scenarios, which is expected to run in the high 
beta value and a steady state. For RFP, the RWM can be unstable even without the 

plasma pressure (=0), due to the very large toroidal current compared to the 

toroidal magnetic field. Thus the RWM in RFP plasma which may cause the 
disruption needs be suppressed during the discharge lifetime.  

In order to understand physics of the RWMs, the perturbations are described in the 
cylindrical coordination, with the poloidal wave number m and the the toroidal 
wave number n: 

   A r,θ,z,t =A r exp[-iωt+i(mθ+ z)]
n

R
  (1.33) 

Where r i    is the mode eigenvalue, including the mode frequency r  and 

the mode growth rate  . By specifying the wave number m and n, the RWM is 

also called (m, n) mode, and its resonance surface is located where the safety 

factor is equal to m/n ( ( ) /q r m n ). In particular, the characteristic of RWM in 

both RFP and tokamaks is described as following: 
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Figure 1.10 The growth rate of RWM and kink mode versus total plasma , including the 

no-wall limit and the ideal-wall limit of tokamak. 

1). In tokamaks, the RWM usually has the wave number n=1. With no wall ( 0w  ) 

outside the plasma, the external kink is unstable if > no-wall, where no-wall is 

called no wall  limit. With an ideal wall ( w   ) outside the plasma, the external 

kink is unstable if > ideal-wall, where ideal-wall is called ideal wall  limit. The 

RWM is the mode with a conducting wall in the region no-wall<<ideal-wall. The 
driven source is dominated by the pressure driven, due to the very large toroidal 

field BT. In the figure (1.10), it shows the no-wall limit, the ideal-wall limit and the 

growth rate of RWM by increasing the plasma pressure.  

 

Figure 1.11 The q-profile of tokamak, including the resonance (2, 1) and (3, 1) modes and 

the non-resonance (4, 1) and (5, 1) modes. 

Figure (1.11) shows the q-profile and the resonance positions in the radial 
direction. The RWMs with their resonance surface inside the plasma are called 
resonance mode, such as (2, 1) and (3, 1) modes; on the other hands, the RWM are 
called non-resonance modes, such as (4, 1) and (5, 1) modes. Due to the strong 
toroidal effect in tokamak, many poloidal coupling harmonics grows. 

2). In RFPs, the dominated mode is usually m=1 and the other modes are much 
smaller due to the very weaker toroidal effect, for each mode with different 
toroidal wave number n. Due to the very large toroidal current, the RWM can not 
be stable, where the main driven source is the current driven. As shown in figure 

(1.12), the no-wall  limit is equal to zero, which means that the RWMs is 
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unstable even at zero pressure. The ideal wall beta limit still exists, where the 
plasma pressure is high sufficiently. 
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Figure 1.12 The growth rate of RWM and kink mode versus poloidal plasma P, 

including the no-wall limit (=0) and the ideal-wall limit of tokamak. 

In RFPs as shown in the figure (1.13), there are two types of external kink 
instabilities: one is so called externally non-resonant modes (ENRM) with their 
rational surfaces located at q < q(a) <0, another is internally non-resonant modes 
(INRM) with their rational surfaces located at q > q(0) > 0. (q(a) is the value of 
safety factor at the plasma edge, and the q(0) is the value of safety factor at the 
plasma center) 

 

Figure 1.13 The q-profile of tokamak, with externally non-resonant modes such as (-1, 6) 
and (-1, 5) modes, and internally non-resonant modes such as (1, 5) and (1, 6) modes. [36] 
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1.6 Fish‐bone	Like	Mode	in	Tokamaks	and	in	RFPs	

 

Figure 1.14 The expanded trace of the FLM oscillations in PDX [7]. 

The Fish-bone mode was first observed at the tokamak device (named PDX) [7] in 
1983. Under certain conditions the injection of a high energy neutral beam to heat 
the plasma can lead to an instabilitity and energy loss. This is an internal kink 
mode with the toroidal wave number n=1 and the poloidal wave number m=1, 
which can be called the “classical Fish-bone”. The safety factor at the plasma 
center q(0) is closed or below the unit, where the internal kink mode is unstable. 
The name fishbone is given by the form of the perturbation oscillations, which is 
shown in the figure (1.14). The instability is due to an interaction between the 
injected particles and the (1, 1) internal kink mode. It is driven by the precession 
drift motion of the trapped energetic particles from the injected beams.  

Recent experiments and reseaches also show the observation of the Fish-bone Like 
Modes (FLMs) in the advanced tokamaks, such as DIII-D [8], JT-60U [9]. These 
tokamaks have their minimum value of safety factor qmin above the unit. In this 
case, the internal kink mode will be stable and the FLMs are found as the n=1 
modes. However, these modes are very similar to the classical Fish-bone mode, 
but with the external kink character. The mode can be stable by reducing the 

perpendicular injected beam while keeping the , indicating that the FLMs are 
triggered by the trapped energetic particels (EPs). The mode frequency (~3kHz) is 
closed to the precession frequency of the trapped EPs, as shown in the figure 
(1.15). In DIII-D, it is called the “off-axis fishbone driven” RWM, since the mode 
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frequency is chirping. In JT-60U, it is called energetic particle-driven wall mode 

(EWM). This is emphasizing their observation in the wall-stabilized high- plasma. 

It means that the FLMs is destabilized in the region no-wall<<ideal-wall, in which 

the external kink (reduced to the RWMs instabilities in general) can be stabilized 
by the ideal conducting wall and the internal kink (1, 1) mode is always stable.  

 

Figure 1.15 The observations of the FLMs in JT-60U [9] and DIII-D [8]. 

The EPs driven instability has also been found in MST (RFP device) [10]. The 
instability is a resonance mode with the toroidal wave number n=4 (non-resonance 
mode) and n=5 (resonance mode), the safety factor at the plasma center is 
0.25>q(0)>0.2. It is called energetic particle mode (EPM). The mode frequency 
(~90kHz) is very high compared to the FLMs in the tokamaks, as shown in the 
figure (1.16). However, many behaviors of these observed EPMs have not been 
understood clearly, due to the very few NBI experiments in RFPs. Thus the 
physical study is very useful to predict the behaviors of the EPs in the RFP plasma.  

The studies in this thesis are much relevant to the experimental observation such 
as in JT-60U, DIII-D and MST et al. 
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Figure 1.16 A single n=5 burst from the Mirnov coils and apectrogram n=5 

interferometry measurments at R-R0=-0.02. 
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Equation Chapter (Next) Section 1 

Chapter 2 

2 Theoretical	Models	and	Formulations  

2.1 Theoretical	Models	

The MARS-K code numerically solves the linearized, single-fluid MHD equations 
with self-consistent inclusion of drift kinetic resonances in toroidal geometry [39]. 

For a given curvilinear flux coordinate system  , ,s   , and by assuming that all 

the perturbations have the form    , , , , i t inA s t A s e       . The MHD equations, 

including the kinetic terms, are written in the Eulerian frame in the code as 
following: 

    2i n R      ξ v ξ         (2.1) 

    22 ˆi n R                 v p Q B B Q Z v v  (2.2) 

      2i n R       Q v B Q         (2.3) 

||
ˆ ˆ ˆ ˆ( )p p  p bb I bb          (2.4) 

Where s is the normalized radial coordinate, labeling the equilibrium flux surface, 

 is a generalized poloidal angle. r i     is the complex eigenvalue of the 

mode (  is the mode growth rate, r is the mode rotation frequency in the 

laboratory frame). The mode frequency is corrected by a Doppler shift in , with n 
being the toroidal mode number,   is the plasma rotation frequency in the torodial 

direction.  , , v, Q, p represent the perturbed quantities: the plasma displacement, 

the perturbed velocity, magnetic field, and pressure tensor, respectively.  is the 

unperturbed plasma density. R is the plasma major radius. Ẑ  is the unit vector in 
the vertical direction. B and P denote the equilibrium magnetic field and pressure, 
respectively. A conventional unit system is assumed with the vacuum permeability 

0 =1. For the RWM study, a set of vacuum equations for the perturbed magnetic 
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field Q , and the resistive wall equation based on the thin-shell approximation, are 

solved together with Eqs. (2.1)-(2.3) [62,40].  

The drift kinetic effects from each particle species, including thermal ions and 
electrons as well as energetic ions, are self-consistently coupled to the MHD 
equations via the perturbed kinetic pressure tensor p, as shown in Eq.(2.4). I is the 

unit tensor, and ˆ / | |b B B . The pressure tensor includes both parallel (to the 

equilibrium magnetic field) ||p , and perpendicular p  components. Each 

components involoves both adiabatic (subscript “a”) and non-adiabatic (subscript 

“na”) parts: || || ||
a nap p p   and a nap p p    . These components are computed by, 

0
0( )||a

g g

Q f
p f E d

B


     

        (2.5) 

1na
g L gp f E d           (2.6) 

Where 2
g || ||E Mv  , and 2

gE Mv B   . The intergral is carried out over the 

particles velocity space . M is the particle mass, and ||v  and v  are the parallel 

and perpendicular components of the particle velocities repectively. The perturbed 

particle distribution function 1
Lf  is derived from solution of the perturbed drift 

kinetic equtions, following the approaches by Antonsen [64] and Procelli [65], and 
written by,  

  1 0 bin t im il ti t in
L k m ml ml

m,l

f f e X H e       
          (2.7) 

0f  is the energy derivative of particle equilibrium distribution function 0f . 

k Ze     is the kinetic energy of the particle, where   is the particle total 

energy and Ze   is the electrostatic potential with the charge number Ze. ( )t  

denotes the periodic part of the particle motion along the toroidal direction, l is 

harmonic number in the bounce orbit expansion. mX  and mlH  are related to the 

perturbed particle Largrangian [39].  
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For thermal ions and electrons, the particle equilibrium distribution function is 
assumed by Maxwellian distribution. The key element in the formulation (Eq.(2.7)) 
is the wave-particle resonance operator, which is expressed as, 

 
 

* *ˆ 3 / 2N k T
ml

d b eff

n

n m nq l n i
    


    

     
       

     (2.8) 

where *N and *T are the diamagnetic drift frequencies due to the plasma density 

and temperature gradients, respectively. In this drift kinetic formulation, it has 
been assumed that the effect of finite radial excursion width of particles across 

magnetic surfaces is negligible. q is the safety factor. eff  is the effective collision 

frequency.  /k k T  is the particle kinetic energy normalized by the temperature. 

d is the bounce-orbit-averaged precession drift frequency. For trapped particles, 

0  , and b  is the bounce frequency. For passing particles, 1   , and b  

represents the transit frequency. In further discussions we also use a notation  p  

for the transit frequency, in order to distinguish from the bounce frequency. 
Equation (2.8) includes particle bounce, transit, as well as magnetic precession 
drift resonances with the mode. The imaginary part of the resonant operator 
represents damping physics resulted from the energy transfer between the mode 
and particles.  

For EPs, the equilibrium distribution function has an overall slowing-down 
distribution in the particle energy space (isotropic distribution), and it is combined 
with a Gaussian model for the particle pitch angle distribution (anisotropic 
distribution). This expression is largely suitable for modelling the NBI driven EPs 
(isotropic/anisotropic) or alpha particles (isotropic distribution), which is written 
by [62,63],  

0
13 2 3 2

1

2
k k

ck

C( )
f ( , , ) G ( , , )


      

  
     (2.9) 

2 2
1 k i i

i
G ( , , ) C exp ( ) /                  (2.9.1) 
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 
 3 2 3 2

2 2
0 3 2 3 2

11

3

/ /
k k

k / /
k c

/
, ln


    
            

     (2.9.2) 

Where || /v v   is the pitch angle, and  c  corresponds to the crossover velocity of 

EPs. 2  in Eq.(2.9.2) is the width of Gauss function, and  is the birth energy of 

the EPs. 2
0  is a constant tunable parameter, and the model denotes the isotropic 

distribution if 0  . The distribution function can be defined by specifying a set 

of the parameters { i iC , }.  

For normal injected NBI, We have  0 5 0 5 0 5 0 5iC . , . , . , .  and 

 0 0 0 02 2i , , ,         ; 

For co-tangential injected NBI,  

a). When 1s    ,  1 1 0 5 0 5iC , , . , .    and  

 0 0 0 02 2 2 2i s s, , ,             ; 

b). When s s      ,  0 5 0 5 0 5 0 5iC . , . , . , .  and   0 0 0 02 2i , , ,         ; 

c). When 1 s     ,  0 5 0 5iC . , .  and   0 02 2 2i s s,           . 

Where s s     are the trapped-passing boundaries in the pitch angle of EPs. 0  

is another tunable parameter. Similar to the thermal particles, the resonance 
oparetor of EPs is expressed as Eq.(2.10).  

0 0

EP
d eff

f f
n( / Ze )

n n i

 


  
   

        (2.10) 

Where d
  is the bounce-orbit-averaged precession frequency of the trapped EPs. 

In this work, only precession drift of the trapped EPs is considered in the oparetor. 
Because the bounce and transit frequency of EPs are much larger than that of 
thermal particles and the precession frequency of EPs, the resonance between the 



Nuclear Fusion and Magnetic Confined Plasma 

 
29

mode and particles is difficult to occur. Thus these kinetic effects are neglected in 
the model.  

The Maxwellian distribution of thermal particles and the isotropic slowing-down 
distribution of EPs are independent of the particle pitch angle, and the second term 
in the right hand side of Eq.(2.5) is vanished. This term is reserved only if the 
anisotropic slowing-down distribution of EPs is considered. 

2.2 Quadratic	energy	terms	

In order to gain better physical understanding, we compute various components of 
the quadratic energy form, for both fluid and drift kinetic energy perturbations, 
from the self-consistent solution. As well known, the quadratic energy form can be 

constructed by multiplying Eq. (2.2) by *
ξ and integrating over the plasma volume 

PV . We define the following energy components of the fluid potential energy FW  

[6] and the kinetic potential energy kW  

F j Q PW W W W              (2.11) 

21

2jW Q Jdsd d           (2.11.1) 

1
( )

2
||

Q ||

Q
W J P Jdsd d

B
 
  

 
         

 
 b Q     (2.11.2) 

1
( )

2
a *

PW Jdsd d       p       (2.11.3) 

where J is the Jacobian of the flux coordinates. We consider cases with vanishing 
perturbed surface current, where the surface terms in the potential energy 
disappear. In the energy calculation, we neglect the centrifugal and the Coriolis 

force terms in the RHS of Eq.(2.2), assuming a slow equilibrium flow. ap  is the 

adiabatic part of the pressure tensor. The energy PW  in Eq.(2.11.3) is summation 

of energy from all the particle species, including the thermal ions, the thermal 
electrons and energetic ions in this work. The kinetic energy term is obtained by, 

1 1 1
( )

2 2 P

na * * na * na *
K || || sS

W p Q B p Jdsd d p J d d
B    

              ξ κ ξ ξ n  (2.12) 
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Where the surface intergral term in the right side of Eq.(2.12) is negligible if we 
assume that the equilibrium pressure vanishes at the plasma edge P (a)=0 (the 
perturbed kinetic pressure is roughly proportional to the equilibrium pressure). 

Here pS  is the plasma surface, sJ s J   is the surface Jacobian, n is the outward 

normal vector to the vacuum region.  

We also compute the vacuum energy vW   and vbW , without wall and with an 

ideal wall at the minor radius b, respectively 

2

1 1

1 1 ˆ
2 2 p

n
v sS

V

W Jdsd d b V J d d    



    Q      (2.13) 

2

1 1

1 1 ˆ
2 2 p

b

n b
vb sS

V

W Jdsd d b V J d d       Q      (2.14) 

where 1
nb  is the normal magnetic field perturbation, and related to the perturbed 

magnetic components Q1 with 1
1
n

sQ J b  [42]; The component Q1 is essentially the 

perturbed flux function. 1̂V   and 1̂
bV   are the complex conjugates of the perturbed 

magnetic scalar potential, which are determined by the ideal wall position and 1
nb  

at the plasma surface [6]. The two vacuum energy terms are associated with the 
vacuum magnetic field perturbation, induced by the plasma instability. They are 

always positive and play a stabilizing role for the RWM. vW   and vbW can be 

written either in a volume integral, or in a surface integral as shown in Eqs. (2.13) 
and (2.14). 

Equations (2.11)-(2.14) are implemented in the MARS-K code [26, 27], and 
applied for the energy analysis of the RWM physics in the present work. 

2.3 Equilibrium	profiles	of	the	pressure	and	the	density		

In this section, the equilibrium profiles, which are used in the following chapers, 
are described. We chose the density profile model of the electrons as,  

   20 1e en s n s      ( e in n n  )       (2.15) 
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Where en , in , n  denote the density of thermal electrons, thermal ions and 

energetic particles respectively. We have e in n  if the energetic particles are not 

considered. The electron density at the plasma core is 19 3
0 2 5 10en . / m  .  

For RFP plasma, the total plasma pressure by seting the parameters ap1, ap2, ap3 is 
described as, 

   2 4 6
0 1 2 31eq p p pP s P a s a s a s          (2.16) 

For Tokamak plasma, the total plasma pressure is given by, 

   22
0 1eqP s P s           (2.17) 

Where the 0P  is the total plasma pressure at the magnetic axis. If the energetic 

particles are not taken into account, we have eq i eP P P  . 

By considering the energetic particles (which are energetic ions from the NBI 
injection in the thesis), the slowing-down distribution function combined with a 
Gaussian model (as a function of the pitch angle) is used to describe the isotropic/ 

anisotropic EIs. The birth energy   in this work is chosen constant along the 

minor radius. Besides, the pressure of the EPs is described by the fraction profile 
of the pressure Pa/Pth (where Pth and Pa are the pressure of the thermal particles and 
EPs, the total plasma pressure is Ptotal= Pa + Pth). Similarly, the density of the EPs 
is described by the fraction profile of the density Na/Ne (where Na and Ne are the 
density of the EPs and electrons, the electron density is Ne= Na + Ni).  

For RFPs, we define the ratio * th
P P/     , where P

 and th
P  are the poloidal beta 

of the thermal particles and EPs respectively. For Tokamaks, we define the beta 

ratio * th/    , where  and th  are the total plasma beta of the thermal 

particles and EPs respectively.  We also define 0
*  to denote the pressure fraction 

Pa/Pth at the magnetic axis. In the RFP plasma as an example, the equilibrium (a) 

pressure (normalized by the 2
0 0B /  ) and (b) density profiles (normalized by the 

Ne(0) at the magnetic axis) are plotted in the figure.(2.1) and figure.(2.2), for the 
thermal ions and electrons as well as the energetic ions respectively. The 
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* th
P P/     is equal to the pressure fraction Pa/Pth = 0

*  if we take Pa/Pth=constant 

along the minor radius, for example, 0 0 3* .   and 0 3* .   as shown in the 

figure.(2.1). If the pressure of the EIs is given by the pressure fraction 

  2 8
0(1 )*

a thP / P s s   , as the example shown in the figure.(2.2) we have 0 1 0* .   

and 0 176* .  . 
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Figure 2.1 The equilibrium (a) pressure (normalized by the 2
0 0B /  ) and (b) 

density profiles (normalized by the Ne(0) at the magnetic axis) are plotted for the 
thermal ions and electrons as well as the energetic ions respectively. The 

equilibrium parameters are   0 3a thP / P s . , 0 155P .   and 100keV  . The beta 

ratio is 0 0 3* .   ( 0 3* .  ). 
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Figure 2.2. The equilibrium (a) pressure (normalized by the 2
0 0B /  ) and (b) 

density profiles (normalized by the Ne(0) at the magnetic axis) are plotted for the 
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thermal ions and electrons as well as the energetic ions respectively. The 

equilibrium parameters are   2 8(1 )a thP / P s s  , 0 14P .   and 100keV  . The 

beta ratio is 0 1 0* .   ( 0 176* .  ). 
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3 Shaping	effect	on	MHD	stabilities	in	reversed	
field	pinch	(RFP)	plasmas		
The optimization of the geometrical shape for the toroidal fusion plasmas is an 
important issue. For example, it is well known that for an advanced tokamak 
design, the appropriate D-shape cross-section can result in a higher performance 

towards high  steady state fusion plasmas. In Tokamaks, shaping often helps to 

increase the favourable curvature region which is inherently stabilising for a few 
MHD modes. In addition, elongation normally helps to increase the total plasma 

current I, by a factor (1+2)/2, with the same q(a) value, where  is the elongation 

factor and q(a) the plasma edge safety factor. A larger current normally yields a 

better confinement. Furthermore, since the no-wall beta limit N [N=T(aBT/I) , 

T = 2μ0<p>/BT
2, <p> is the average plasma pressure, μ0 the vacuum permeability 

and BT the strength of the toroidal magnetic field] for the ideal kink instability in 
Tokamak is related to the total current[17-19], increasing current implies the 

possibility to maximize the  value for an advanced Tokamak, without changing 

other parameters such as N,  a, and BT. The value of N  is often determined by 

the radial profiles of equilibrium quantities such as the plasma pressure and 
current, and can be largely independently controlled from the total plasma current. 

As an alternative fusion experimental device, Reversed Field Pinch (RFP) has 
toroidal axisymmetry as well [20]. Nevertheless, all of the existing RFPs possess 
circular cross section. There is no experimental evidence showing whether shaped 
plasma in RFP can bring an advantage for its performance. Recently, significant 
progress has been made in RFP studies both in experiments and theory [21,22]. 
The question of how to improve the RFP design towards an advanced fusion 
device is placed on the agenda. The macroscopic MHD instabilities in RFP 
plasmas are often categorized into resonant and non-resonant modes, depending on 
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whether the mode's rational surface is located inside (resonant) or outside (non-
resonant) the plasma. It is also conventional to divide the instabilities into internal 
and external modes, depending on whether the mode is located inside or outside 
the toroidal field reversal radius. The plasma shaping effect has previously been 
studied in early work [23], with the main conclusion that the plasma shaping does 
not have a significant effect on the stability of the resonant ideal modes and the 
interchange modes, either with or without a finite plasma pressure. The study 
assumed an ideal wall surrounding the plasma. On the other hand, the resonant 
ideal kink modes have been experimentally observed being stable in RFP plasmas 
due to the self-organized relaxation process. It is now understood that the most 
important (and/or commonly observed) instabilities in RFP plasmas are the 
(internal and external) non-resonant ideal modes (the resistive wall modes) and the 
resonant resistive modes (the tearing modes) [24,25]. The later is responsible for 
the necessary dynamo effect to maintain the RFP magnetic configuration. The 
pressure driven interchange mode can be unstable when the Mercier criterion is 
violated, which is a rather localized mode due to the high magnetic shear in the 

RFP configuration. It may not be the most dangerous mode to set the  limit for 

RFP plasmas. In the present work we systematically investigate the shaping effects 
on the most prominent MHD instabilities - the Resistive Wall Mode (RWM) and 
the Tearing Mode (TM) - observed in RFPs, with the aim to find out whether the 
shaping can bring an advantage for improving the performance of RFPs. Moreover, 
the present work includes the following key aspects: (i) an in-depth physics 
understanding of the shaping effects based on the detailed energy analysis of the 
modes; (ii) the drift kinetic effects on the resistive wall modes in the presence of 
shaping, following a non-perturbative approach; (iii) the shaping induced multiple 
trapping and modification of bootstrap fraction. Both the plasma elongation and 
the triangularity are taken into account. The kinetic- MHD hybrid toroidal stability 
code MARS-K has been modified and adopted for the RFP study [26,27].  

We first consider the stabilities of the non-resonant ideal kink mode and related 
RWM, which are commonly observed in RFPs [28,11,30,31,32,33,34,35,36,6], in 

shaped plasmas. Both fluid theory and the kinetic effects of the high  thermal 

particles are considered.  The RFP magnetic configuration is characterized by the 
reversed toroidal magnetic field BT near the edge and a large poloidal field Bp 
which has the strength of the same order as the toroidal field. Compared with the 
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tokamak configuration with the same BT  at the magnetic axis, RFP has much 
higher plasma current, which in turn can provide sufficiently large ohmic heating, 
allowing the possibility of reaching the fusion reaction [20, 6]. However, a large 
current often causes the current driven RWM (basically an ideal kink mode 
instability), which can be unstable even at vanishing plasma pressure, thus leading 

to a zero no-wall  limit (N
no-wall=0). Furthermore, the strong poloidal magnetic 

field Bp gives a dominant contribution to the magnetic curvature, implying that 
bad magnetic curvatures exist everywhere along the poloidal angle. The plasma 
shaping does not change this fundamental feature. On the other hand, shaping does 
cause a significant variation of the field strength along the poloidal angle, resulting 
in an enhancement of the poloidal mode coupling and an occurrence of multiple 
trapping regions as we shall show. Consequently, the shaping effect on the RFP 
plasmas is generally quite different from that on tokamak plasmas.  

In this work, we find that the ideal wall  limit (i.e. the ideal kink stability 

threshold) is reduced by shaping for both internally and externally non-resonant 
modes. The kinetic effects of thermal particles become more significant in the 

shaped RFP, stabilizing the RWM at relatively lower  values than that in a 

circular RFP. However, the required plasma rotation frequency for the mode 
suppression is still in the ion acoustic range as being found in circular RFPs [26]. 
We report detailed physics understanding on the mechanisms underlying these 
results.  

Next, we study the linear stability of the resistive tearing modes, which are 
responsible for the dynamo effects in RFPs, in shaped plasma and compare the 
results with that of the circular cases. Finally the effect of shaping on the bootstrap 
currents of RFP plasmas is also preliminarily studied and discussed. We observe 
that the shaping effects with respect to all these aspects do not result in a notable 
change of the RFP performance.  

The paper is organized as follows. Section 3.1 discusses the shaping model and the 

quadratic energy terms. Section 3.2 investigates the  limit set by the ideal kink 

and the RWM in shaped plasmas. In Sec. 3.3, kinetic damping on the RWM in 
shaped RFP is studied. In Sec.3.4, the results of shaping effects on the resistive 

tearing mode instability in low  RFP plasmas are presented. Section 3.5 discusses 
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the bootstrap current fraction in both circular and shaped RFP plasmas. The 
conclusion and a brief discussion are given in Sec. 3.6. 

3.1 Models	and	Formulations	

3.1.1 Elliptic,	triangular	and	D	shaped	RFP	plasmas	

The shape of the plasma boundary is described by the following formulae: 

R R R cos( sin( ))0 0             (3.1) 

Z R sin( ) 0           (3.2) 

where R and Z are the Cartesian coordinates with the origin at the center of the 

torus, R0 is the major radius,  is the inverse aspect ratio,  is the elongation and  

is the triangularity. The RFP equilibria are computed by solving the Grad-
Shafranov equation using the CHEASE code [38], given the plasma current and 
pressure profiles as the input, together with the plasma boundary specified above. 
Figure 3.1 shows examples of the computed equilibrium flux surfaces with various 

shaped cross sections: circular (=1.0, =0.0), elliptic (=1.3, =0.0), triangular 

(=1.0, =0.3) and a D-shape (=1.3 and =0.3). In order to make sensible 
comparisons between different shaping parameters on the RFP physics, we keep 
the areas of the cross sections invariant for different types of shaping, meaning 
that all types of the cross-sections have the same area as that of the circular case, 

a2. In addition, the following parameters have the same values for various shapes 

in the computation: the safety factor at the magnetic axis q(0), the field reversal 
parameter F and total plasma current I. Here F is define as F=BT(a)/<BT>,  where 
<…> is the average over the plasma volume. 
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Fig.3.1. The plots of the shaped poloidal magnetic flux surfaces of RFP equilibria 

for F= -0.06 q=0.1448 and P=0.12: (a) circular RFP with aspect ratio 

=a/R=0.2295, elongation =1.0 and triangularity =0.0; (b) elliptic, =1.3 and 

=0.0, and =0.2012; (c) triangular, =1.0 and =0.3, =0.2308; (d) D-shape, 

=1.3 and =0.3, =0.2024,. All types of the cross sections have the same area as 

the area in (a). 

3.1.2 Quadratic	energy	terms	

In order to gain better physical understanding, we compute various components of 
the quadratic energy form, for both fluid and drift kinetic energy perturbations, 
from the self-consistent solution. As well known, the quadratic energy form can be 

constructed by multiplying Eq. (2.2) by *
ξ and integrating over the plasma volume 

PV . We define the following energy components of the fluid potential energy WF 

[6,41] and the kinetic potential energy Wk 

F mb mc pre curW W W W W               (3.3) 

21
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where J is the Jacobian of the flux coordinates. mbW is the magnetic bending term 

representing the energy required to bend magnetic field lines, mcW responds to the 

energy necessary to compress the magnetic field. Both terms are positive and give 

stabilizing contributions. preW  and curW represent potential sources of instability,  

and are referred to as the pressure driven and the current driven terms, respectively. 

Both preW  and  curW  can be negative. We consider cases with vanishing 

perturbed surface current, where the surface terms in the potential energy 
disappear. In the energy calculation, we neglect the centrifugal and the Coriolis 
force terms in the RHS of Eq. (2.2), assuming a slow equilibrium flow. The kinetic 
energy term is then obtained  

3.2 RFP	equilibrium	

3.2.1 Instability	spectrum	of	the	RWM	in	RFPs	

With respect to tokamaks, the RFP plasmas are easier to be “kinking” due to the 
weaker toroidal field in the configuration. As a result, the RWM, being a 
potentially disruptive instability, grows whenever the duration of the discharge is 
longer than the wall penetration time, even in the absence of the plasma pressure.  

Furthermore, due to the toroidal field reversal, resulted from the relaxation process, 
RFPs can operate in a stable regime of the “resonant” (with rational surface being 
inside the plasma) ideal kink modes. The observed RWM instabilities always have 
their rational surfaces outside the plasma. They are the so-called “externally non-
resonant” modes (ENRM), if the rational surfaces are located at q < q(a) <0 (q(a) 
is the safety factor at the plasma edge r=a), or the “internally non-resonant” modes 
(INRM), if the rational surfaces are located at q > q(0) > 0 [28,35,36]. In the 
following, we use n<0 to denote the INRM; and n>0 to represent the ENRMs. The 
experimentally observed resonant modes (with the resonant surface inside the 
plasma) are tearing modes, which are generally believed to be responsible for the 
dynamo generation in RFPs. We use n<0 to denote the tearing mode with the 
rational surface inside the BT reversal position, and vice versa. 

Shown in Fig.3.2 is the plot of the RWM growth rate as a function of the toloidal 
mode numbers n, where both internally and externally non-resonant modes are 

computed by MARS-K in a circular, zero  RFP plasma without plasma flow. The 
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wall position of b/a=1.12 and the inverse aspect ratio of =0.23 are taken from the 

RFX-mod [43] parameters. The wall time is taken as w/A ≈6.4103 , where w is 

the penetration time of the resistive wall and A is the Alfven time calculated at the 

magnetic axis. As we already observed previously [36], a shallower reversal (a 
smaller negative F value) results in a larger growth rate of the INRM and a smaller 
growth of ENRM; and vice versa. The modes with n<-6 ( e.g. n=-7,-8…) are 
resonant modes, and are observed experimentally as tearing modes. 

 

 

Fig.3.2. The mode growth rates versus the toroidal mode number n are plotted for 
different F(=-0.06, -0.1, -0.26, -0.4, -0.8, -0.9, -1.0) values. Two groups of RWMs, 

INRMs(n<0) and EXRMs(n>0), are plotted. The fluid model with P=0.0, 

q(0)=0.1448, 0=0.0, and b/a=1.12, =0.23 is used in circular RFP. The poloidal 

Fourier harmonics from m=-10 to m=10 are taken into the calculation. 

3.2.2 Ideal	Wall		limit	of	RWM	(ideal	kink	instability)	

In RFP plasmas, all RWMs are current driven modes, therefore the no-wall p 

limit p
no-wall=0 ( 

2

8
p tot

o

p V
I R

    , <p> is the volume averaged plasma pressure, 

2Vtot is the total plasma volume [38]); whilst the ideal wall p limit, p
ideal, is 

finite for given wall position at the minor radius rb=b. When p> p
ideal , the non-

resonant ideal kink mode becomes unstable with the ideal wall at rb=b. For p < 

p
ideal, the RWM instability appears if the ideal wall is replaced by a resistive wall.  
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When the plasma elongation and triangularity are introduced, it is found that the 
shaping induces a strong poloidal coupling, which increases the mode growth rate 

and reduces the ideal-wall  limit for both the INRM and the ENRM. Figure 3.3 

shows the RWM eigenfunctions (the perturbed magnetic field in the normal 
direction) Qm

1of various poloidal harmonics for (a) a circular case (b) a case with 

elongation only, =1.3 and =0.0, (c) a case with triangularity only, =1.0, =0.3. 

It shows that in a circular toroidal RFP plasma [Fig.3.3(a)], the m=1 mode has a 
dominant amplitude, and the m=2, 3… modes appear with low amplitudes due to 
the weak coupling by toroidicity [27]. Note that RWMs in circular RFP plasmas 
have much weaker toroidal coupling than that in tokamaks due to the weaker 
poloidal asymmetry induced by the strong poloidal field. The elongation 
[Fig.3.3(b)] induces the variation of the magnetic field strength along the poloidal 

angle, which in turn enhances the mode coupling between m=1 and m=±2. As a 

result, the m=-1 and m=3 modes have much larger amplitudes with respect to the 
circular case. The triangularity [Fig.3.3(c)] induces the multiple coupling between 

m=1 and m=±1,m=±2 and m=±3 modes, such that multiple modes appear due 

to the coupling, but with less increments of the amplitudes compared to the 
elongation induced mode coupling. 

 

Fig.3.3. The eigenfunctions of various poloidal harmonics Qm
1 (real parts of the 

perturbed magnetic component in the normal direction) for n=-6 RWM are plotted 
as a function of magnetic flux coordinate s for different shapes of RFP plasmas, 



Shaping effect on MHD stabilities in reversed field pinch (RFP) 
plasmas 

 
43

where m=-10 to 10 are taken into account. The mode amplitudes are normalized 

by the maximum absolute value max (Qm=1
1). (a) circular, =1.0 and =0.0; 

(b)elliptic, =1.3 and =0.0; (c) triangular, =1.0 and =0.3. Other parameters are 

F=-0.06, q(0)=0.1448, P=0.0, b/a=1.12 and 0=0.0. 

 

Figure 3.4 shows the RWM growth rate plotted as a function of the elongation 
with different values of triangularity. The normalized mode growth rate 

(normalized by A) increases with , showing a destabilizing role played by 

elongation. This destabilization is also consistent with the decrease of the ideal-
wall beta limit as will be shown in Fig.3.5(a). The triangularity itself slightly 

increases the RWM growth rate in the absence of elongation (=1). When the 

triangularity is combined with elongation, it causes a slight cancellation of the 
destabilizing effect due to the elongation. The net effect still leads to an increase of 
the RWM growth rate.  

 

 

Fig.3.4. The growth rates of the n=-6 RWMs versus elongation parameter  are 

plotted for various triangularities: =0.0 (solid line); =0.3 (dash line); =0.5 

(dash-dot line), with the same parameters as shown in Fig.3.3   

 

Figure 3.5 plots the computed ideal-wall p limits with varying wall position, for 

different toroidal harmonics of the RWMs. The INRMs with n=-6, -5 and -4 are 
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plotted in (a), and the ENRMs with n=4, 3, 2 are plotted in (b). Each line indicates 
the stability boundary of the ideal kink mode. This boundary depends on both the 

p value and the normalized wall position b/a. The unstable domains are located 

above and to the right of the lines, and the (ideal mode) stable domains below and 

to the left of the lines. For =1.3, the p
ideal values are largely reduced with respect 

to the circular case. For the most unstable RWM observed in RFX-mod, with n=-6, 

which set most severe p
ideal  limit and the closest-fitting wall position among all 

the RWMs,  the circular plasma model gives p
ideal=0.16, the elongation reduces 

this value to p
ideal=0.13 with the same wall position. Other toroidal harmonics 

such as n=-5,-4 and n=4, 3, 2, have relatively smaller growth rates than that of n=-

6, thus setting higher p limits and moderately closer wall positions.  The 

triangularity =0.3 is also considered for the n=-6 mode in Fig.3.5(a) and for the 

n=4 mode in (b)  showing a similar, but less significant destabilizing effect than 

the elongation. The results in Fig.3.5 indicate that, for a given plasma p, the 

shaped RFP requires a closer-fitting wall to stabilize the ideal kink mode than the 
circular case, this effect is found extremely significant for ENRMs as shown in 
Fig.3.5(b). 
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Fig 3.5. The beta limits of RWMs versus wall position are plotted for various 
toroidal mode numbers; (a) INRMs (n=-6,-5,-4, F=-0.06) for RFP plasma with 

circular shape (lines with solid points), elongation =1.3 (dash-dot lines with 

empty points) and trianglarity =0.3 ( dotted line with stars); (b) EXRMs (n=4,3,2, 

F=-0.9) for RFP plasma with circular shape (lines with solid points), elongation 

=1.3 (dash-dot lines with empty points) and trianglarity =0.3 ( dotted line with 

stars). The other parameters are used as the same as in Fig.3.3. 

3.2.3 A	physical	understanding	of	the	results	on		limits	

For the purpose of a better physics understanding, we perform further numerical 
analysis, including the calculation of the perturbed energy components. The 
following analysis shows that the strong poloidal mode coupling, induced by 

shaping in the RFP, causes the reduction of the vacuum potential energy Wvb, 

which is an important stabilizing factor for the ideal kink mode. Consequently, the 
shaping-enhanced mode coupling destabilizes the RWM and reduces the ideal-

wall  limits for the ideal kink modes.  

The well-know dispersion relation for the RWM, in the absence of the kinetic 
effects, can be expressed as [44,45]  

 F v
w

b F vb

W WW

W W W

 


  
  
   


      (3.4) 
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where  is mode growth rate and W* characterises the penetration time of the 

resistive wall. The ideal-wall  limit corresponds to the ideal kink marginal 

stability, which can be determined by the following condition,  

  F vbW W 0         (3.5) 

where WF < 0, dominated by the current driven energy Wcur and  pressure driven 

energy Wpre as expressed in Eq.(3.3), and Wvb > 0, which plays an important 

stabilizing role. As described in Eq.(2.14), Wvb is determined by the perturbed 

magnetic field (including all poloidal harmonics m) in the normal direction on the 

plasma surfaces |b1
n| ,where 1 1( )n n

m
m

b b , and 1 1
ˆ( ) ( ) exp( )n n

m mb b im . As an 

example, in Fig. 3.6 we plot the magnetic perturbation in the normal direction, for 

various poloidal harmonics (b1
n)m as functions of the poloidal angle  for the n=-6 

mode and elongation =1.3, at the plasma surface. Both the real and imaginary 

parts of each (b1
n)m are shown in the figure. It is clear that the m=2 coupling, 

induced by the elongation, leads to the cancelation of the imaginary parts between 
the m=1, 3 and the m=-1, -3 harmonics. This ultimately results in a reduction of 
the total magnitude of b1

n at the plasma surface. Figure 3.7 shows (a) the real, and 
(b) the imaginary parts of b1

n as the Fourier summation of all 21 poloidal 

harmonics (bn
1)m, m from -10 to 10, for =1.0, 1.3 and 1.6, respectively. The 

amplitude |b1
n| is plotted in (c). The elongation significantly reduces the imaginary 

part of the amplitude of the magnetic perturbation, Im(b1
n), at the plasma surface, 

whilst bringing only a slight change to the amplitude of  Re(b1
n). The eventual 

effect is a significant decrease of |b1
n| along most part of the poloidal angle as 

shown in (c). As a result, the vacuum perturbation energy Wvb correspondingly 

decreases. Shown in Fig.3.8 are the various perturbed energy components of the 

RWM instability under the shaping assumptions of (a) elongation =1.3&1.6, 

=0.0, (b) triangularity =0.3, =1.0, and compared with the circular plasma =1.0 

and =0.0. 
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Fig.3.6. The various poloidal harmonics of the n=-6 RWM perturbed magnetic 

fields in the normal direction (b1
n)m (here 1 1̂( ) ( ) exp( )n n

m mb b im ) at the plasma 

edge with elongation =1.3, are plotted along the poloidal angle . Among m=-10 

to m=10, five most important harmonics m=-3, -1, 0, 1, 3 modes are plotted: (a) 
the real parts; (b) the imaginary parts. The other parameters are the same as in 
Fig.3.3 

 

The energy components are presented in several groups of columns as marked in 

the figure. In each group, the first column denotes the current driving terms Wcur 

and the pressure driven terms Wpre. The second column presents the stabilizing 

terms Wmc, Wmb. The third group presents the vacuum energy,Wvb, with an 

ideal wall at the minor radius b and vacuum energy, Wv∞,without wall. The fourth  

group is the total plasma fluid potential energy WF. The last column is Wb and 

W∞, as expressed in Eq. (3.4). Figure 3.8(a) presents the elongation effect on 

various energy components. Increasing the elongation significantly reduces Wvb, 

but only slightly reduces |WF| (mainly due to enhancement of the magnetic 

bending). Therefore, the value of Wb=WF+Wvb (Wb >0) is reduced by the 

elongation. Figure 3.8(a) also shows that, although Wv∞ is slightly reduced (less 

notable than Wvb), the no wall energy perturbation W∞ (=WF+Wv∞ ) almost 
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does not change with increasing . Following the dispersion relation (3.4) and 

(3.5), we find that an increase of the elongation  leads to an increase of the RWM 

growth rate, and to a reduction of the ideal-wall p limit. Figure 3.8(b) presents the 

triangularity effect, which is similar to that by the elongation, except that the 

decrease of Wvb appears less significant than that caused by the elongation. 

 

Fig.3.7. The total normal component of the n=-6 RWM perturbed magnetic fields 

1 1̂( )n n im
m

m

b b e  at the plasma edge with various elongation =1.0, 1.3, 1.6 are 

plotted along poloidal angle . (a) the real parts; (b) the imaginary parts; (c) the 
absolute value abs(b1

n). The other parameters are the same as in Fig.3.3, where the 
poloidal Fourier harmonics m are taken from m=-10 to m=10.  
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Fig.3.8. The potential energy components of the RWMs, which are normalized by 

the driven term Wcur+Wpre, are plotted for n=-6 modes in RFP plasmas: (a) 

comparison between the different elongations: group (1) is for the circular cross 

section, group (2) is for elongated shape with =1.3 and group (3) is with =1.6. 

The corresponding growth rates are 1=6.0710-4, 2=1.0210-3, 3=9.1510-3 

respectively; (b) comparison between the circular RFP plasma (=0.0 in group(1)), 

and triangle shaped RFP (=0.3 in group (2)), the growth rates are 1=6.0710-4, 

2=8.4510-4. The other parameters are F=-0.06, q(0)=0.1448, p=0.07 and 

b/a=1.12. 

3.3 RWM	instability	spectrum	in	RFP	plasma	

3.3.1 Multiple	trapping	regions	

An interesting observation is that, due to Bp ~BT in RFPs, the shaping effect 
causes a significant variation of the field strength along the poloidal angle, 
resulting in multiple trapping regions along the poloidal angle. Figure 3.9 is a 2-D 
plot of the values of the total magnetic field strength |B| on the shaped RFP cross 

section with =1.3 and =0.3. The new areas where the lower magnetic strength 

appears due to the shaping are marked as region 1, 2 and 3, respectively, in the 
figure. The strength of the normal field due to the toroidicity is not shown in this 
figure, the trapped fraction due to the toroidicity will be shown in figure 3.10(a) 
and denoted as “0”. Three new regions of the trapped particles appear in the 
shaped RFP plasmas, which are shown in Fig.3.10, where we plot the fractions of 
the trapped particle density (ntrap/ntotal, ntrap is the local trapped particle density and 
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and ntotal is the local total densities including the trapped particles and passing 
particles) in these regions on the cross-section: (a) the fraction of the usual 
trapping due to the toroidicity, which we denote as “trap 0”. (b) and (c) present  
the fractions of “trap 1 and 3” and “trap 2” resulted from both elongation and 
triangularity. Obviously the shaping effect increases the total fraction of trapped 
particles due to the appearance of the multiple trapping regions. Figure 3.11 shows 
the radial profiles of various fractions of the trapped particles in a shaped RFP, 
where the total trapped fraction and passing fraction are also presented as function 
of the magnetic flux coordinates. The data of Fig.3.11 are obtained by taking 
average over each magnetic flux surface. It shows that the total trapped fraction 
keeps increasing toward the edge of the shaped plasma, contrary to the circular 
cross section case where the total trapped fraction decreases towards the plasma 
edge [46]. Figure 3.12 plots the radial profiles of the bounce frequencies of 
trapped particles in different regions. The new trapped regions are located in a 
rather narrow area along the poloidal angle near the plasma edge, having higher 
bounce frequency than the nominal case. In particular, the particles of trap1&3 
have bounce frequencies comparable or even larger than the transit frequency of 
the passing particles. The precession frequencies for both ions and electrons are 
also shown in the figure. The new trapped particles do not have substantially 
different precession frequencies w.r.t. the particles in “trap0”.  
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Fig.3.9. The 2-D plots of the strength of total equilibrium magnetic field with 

=1.3 and =0.3. It shows that the new trapped particle regions (1, 2, 3) can 

appear, where the relatively weak magnetic field strengths exist. The other 

parameters are F=-0.06, q(0)=0.1448, p=0.12. 

 

 

Fig.3.10. the fractions of trapped particle density (ntrap/ntotal) in the multiple regions 
are plotted with the same parameters used in Fig.(3.9). (a) nominal trapping region 
(trap 0) by toroidicity in circular RFP; (b) the new trapping regions trap 1 & trap3; 
(c) the new equatorial trapping region in the low field side trap 2. 

 

 

Fig.3.11. The radial profiles of the fraction of passing and trapped particles in 
various region (using the same notations as in Fig.3.10 to distinguish the trapping 
regions). The fraction profiles of region 1&3 are same. It also shows total particle 
fraction (equal to 1.0) and the sum of the all trapping fractions. The other 
parameters are the same as in Fig.3.10 
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Fig.3.12. The radial profiles of the various frequencies of passing and trapped 
thermal particles in various regions (using the same region numbers as Fig.3.10). 

The other parameters are P=0.12, =1.3 and =0.3. The transit frequency (m-

nq)p/n of the passing particles, the bounce frequencies of trapped particles in 

various regions, denoted as b-0, b-1&3, and b-2.; the precession frequencies of 

trapped ion di and electron de are presented. The embedded figure describes the 

details of the precession frequencies contributed by various trapped regions, di_0, 

di_1&3 and di_2 are for trapped ions and de_0, de_1&3 and de_2 are for trapped 

electrons. 

 

3.3.2 Kinetic	damping	on	RWMs	in	shaped	RFPs	

By taking into account the particle-wave resonance effects, the stabilization 
condition of RWMs can be written as [47]  

2 2( ) ( ) ( ) 0re re im
b k b k kW W W W W W W               (3.6) 

As expressed in Eq.(2.12), the kinetic energy Wk consists of the resonant 

(imaginary) part Wk
im and the non-resonant (real) part Wk

re, kW = re
kW +i im

kW . 

Generally, the imaginary part always gives a stabilizing effect. The real part can be 
either stabilizing or destabilizing. For RWMs, the first term in Eq.(3.6) is negative, 

i.e. W∞Wb < 0, which is the most important destabilizing term contributed by the 

fluid effects. The kinetic energy Wk usually has smaller value than the fluid 
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energy components. In such cases the kinetic effects can play a significant role 

only when W∞ or Wb is very small (which leads to the first destabilizing term 

(WbW∞) being small). This conclusion has already been obtained by a previous 

analysis [27]. In RFPs, the shaping leads to a smaller Wb, therefore, the kinetic 

effects become more significant than that in the circular case. Earlier studies 
[26,27] found that the RWMs in RFP could be kinetically stabilized mainly by the 

transit resonance of  passing (thermal) ions for a high p plasma, due to the ion 

acoustic Landau damping. The required plasma rotation frequency for the 
stabilization is in the ion acoustic wave frequency range. Considering the shaping 
effects, we find that the transit resonance of passing ions is still the main 
mechanism for the kinetic stabilization of the RWM in RFPs. The (more 

significant) kinetic effects result in a lower  value, required for the full 

stabilization, than that required in the circular case. As for the plasma rotation 
needed for the stabilization, the elongation leads to slightly smaller rotation 
frequency; whilst the triangularity leads to a slightly larger rotation frequency for 
the mode stabilization, compared to that of the circular RFP. Figure 3.13 plots the 

mode growth rate versus the normalized plasma rotation frequency o (o=/A, 

where A is the Alfven frequency calculated at the magnetic axis) under various 

kinetic effects, such as the transit resonance of passing ions, the precession and 
bounce resonances of trapped particles, and the full kinetic contributions from 
both passing and trapped particles. The results of the fluid theory are also plotted 
for comparison. Figure 3.13(a) is for the circular plasma and (b) is for a plasma 

with elongation =1.3. It is found that the stabilization of the RWM for the n=-6 

mode in the circular plasma requires a higher p value, p=0.15, and a rotation at 

o=0.025 under the full kinetic effects, whilst for the shaped plasma with =1.3, 

the required p value is lower, with the stabilization found at p=0.12. The critical 

rotation frequency for full stabilization is also slightly decreased from 0.025 to 
0.024. The transit resonance of passing ions is the dominant kinetic stabilization 
mechanism for both cases. The new trapped regions enhance the damping by 
enhanced bounce resonances, as shown in Fig. 3.13(b). On the other hand, the 
stabilization by these new bounce resonance regimes requires higher rotation 
frequency than the transit damping; we do not consider these new regimes as the 
principle mechanism for stabilizing the RWM in RFP. However, the multiple 
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trapped regions may become a significant factor to be considered, when the fast 
ions produced by Neutral Beam Injection or alpha particles are taken into account. 

 

Fig.3.13. The n=-6 RMW growth rates  versus plasma rotation frequency 

0(=/A) are plotted for (a) the circular RFP =1.0, P=0.15 and (b) the 

elongation RFP =1.3, P=0.12. The different types of kinetic effects are included: 

full kinetic (dash-dotted line); transit (solid line); precession ( line with squares); 
bounce ( line with triangles); The other parameters are the same as in Fig.3.3. 

 

Figure 3.14 shows comparison between an elongated and a circular RFP on the 

stability windows (shaded area) induced by the kinetic effects, in the p-b/a plane 

(b/a is the normalized wall radial position). The INRMs with n=-6, -5 are 
presented in (a), and a typical ENRM with n=4 is in (b). For each stability window, 

the solid lines represent the ideal wall beta limit p
ideal ; while the dashed lines 

represent the boundary of the stability windows opened by the kinetic damping. 
Thereby, the above and to right of the shaded area represents the unstable region 
of the ideal kink (with ideal wall at r=b); the below and to the left of the shaded 
area represents unstable RWMs.  For a given wall position, each RWM, with 

toroidal harmonic n, has the stability window opened along the p axis. For a 
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given  p value, each n mode has a stability window in b/a axis. Within stable 

windows, if both p and b/a are given, only one critical rotation frequency c 

(normalized by A) will be found correspondingly. The critical rotation 

frequencies c marked in the figures correspond to the required rotation at the 

smallest b/a points (highest p) of the dashed lines. More complete data of each 

stability boundary are listed in Table 1. It is shown that elongation makes the 
kinetic damping more efficient, and thus the stability window opened in the lower 

p region with a slightly slower rotation frequency than the circular one. For 

INRMs, elongation leads to narrower stability windows in both p and b/a 

parameter spaces. For ENRMs, shown in (b), the kinetic effects provide a rather 

wide stability window except at very low p, where a rather fast plasma rotation is 

required for the mode stabilization.  For n=4 mode, c is around 0.17-0.285 with a 

wall at b/a=1.35 for the circular RFP, and c ~0.26-0.32 with b/a=1.2 for the 

=1.3 non-circular case. Higher critical rotation c is required if the wall is closer 
to the plasma. These rotation ranges are much faster than that of the presently 
operating RFP plasmas without external momentum sources such as that from the 
tangential neutral beam injection.  
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Fig.3.14. The stability windows in the plane of the poloidal beta P vs. wall 

position b/a are plotted for both INRMs and ENRMs (a) INRMs n=-6,-5 with 

=1.0 and 1.3, =0.0, F=-0.06 q(0)=-0.1448 and (b) EXRMs n=4 with =1.0 and 

1.3, =0.0, F=-0.9, q(0)=0.1448. The solid lines present the ideal wall beta limits 

p
ideal and the dash lines express the boundaries of the stability window opened by 

kinetic damping. The c values marked in the figures are the required rotation 
frequencies corresponding to the points having the smallest b/a on the dashed 
lines.. The more completed data including all other points are listed in Table 1. 
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Table 1. list of data corresponding to Fig.3.14. The results of the ideal wall beta 

limit (includes p
ideal, b/a, and =0.0) and the stability boundary by kinetic 

stabilization (includes p, b/a and c) for INRMs n=-6, -5 and ENRM n=4 are 

presented. 

 

3.4 Shaping	effects	on	resistive	modes	

 

Fig.3.15. The growth rate of the n=-8 tearing mode versus pinch parameter  is 

plotted for F=-0.05 and -0.15 with different shaped RFPs: circular, =1.0, =0.0 

(line with dots); elongation, =1.3, =0.0 (line with triangles); and D-shape, =1.3, 

=0.5 (line with squares). The other parameters are p=0.0 with ideal wall at 

b/a=1.12, Lundquist number S=105, and no plasma rotation.  

 

In this section we present toroidal results on the stability of the linear resistive 
modes in shaped RFP plasmas. Only fluid theory with constant resistivity is 
considered. The kinetic effect is ignored, MARS-F is applied for these 
computations. For a RFP plasma with circular cross section, the computation 
shows that the behaviour of current driven resistive modes in RFP can appear as 
either a resistive tearing or a resistive kink mode. This can be judged from the 
scaling of the mode growth rate w.r.t. the value of Lundquist number S. The 

tearing mode obeys a scaling law of 3 5S  ; and the resistive kink mode has a 

growth rate scaling as 1 3S  . Computations with the RFX-mod equilibrium at 
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zero  find that, for the most long wave length modes (mode’s rational surface is 

near the magnetic axis) such as the n=-7 and n=-8 modes, the growth rates 
approximately follow the tearing scaling law when S>106, and the resistive kink 
scaling when S<106. As for the shorter wavelength modes, such as n=-11, -12…, 
the mode growth rates almost follow the tearing scaling only. In the following 
analysis, we will not distinguish these two, simply labelling them the resistive 
mode. 

 

Fig.3.16. The stability boundary of n=-8 tearing mode are plotted in F- plane 

obtained by MARS-F. For circular cross section =1.0 =0.0 (dash-dot line), 

elongation =1.3, =0.0 (triangle point), and D-shape =1.3, =0.5 (diamond point) 

RFPs. Experiment data (dot point) and the results from cylindrical code (solid-line) 
also plotted for comparison. The other parameters used are the same as in Fig.3.15. 

 

The shaping effect can also enhance the poloidal mode coupling for the resistive 
mode. In this case, the resonant tearing mode (m=1) coupled mostly with the non-
resonant modes (rational surfaces outside the plasma), e.g. m=2, -1,-2,…etc. We 
find that shaping can moderately increase the mode’s growth rate; but cannot 

significantly change the stability boundary in the F- plan. Shown in Fig. 3.15 is 

the growth rate of the n=-8 mode at S=105 and zero , plotted as a function of the 

pinch parameter (a larger  value implies a more peaked current profile, 

=Bp(a)/<BT>). An ideal wall at b/a=1.12 is assumed. Both elongation and 

trangularity result in a larger growth rate than the circular case. The stability 
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boundaries have also been investigated and compared with experimental data. It is 

necessary to point out that, for each RFP machine, the parameters F and  cannot 

change independently for all discharges. It has been found that all the discharges 

follow a fixed F -  curve (F is a monotonic function of ) [35,36,48,49]. We 

selected 4 points of experimental data on the F- curve, as presented in Ref.[36], 

which have the reversal parameter F=-0.05,-0.1,-0.15, -0.2; and the corresponding 

 values on the curve are =1.42, 1.49, 1.57, 1.63 as plotted in Fig. 3.16. The n=-

8 resistive mode’s stability boundary is computed by MARS-F, and compared 

among several cases: circular (=1.0, =0.0), elongated (=1.3, =0.0) and D-

shaped (=1.3, =0.5). A cylindrical code is also used for a reference. The figure 

shows that the RFP experiments operate near the tearing mode stability boundary 
(marginal stable tearing mode). This is agreed with the previous observations [50]. 
Since the tearing modes are consider as the dynamo modes, this can be understood 
as the results of the self-organized relaxation in RFP plasmas through the dynamo 
effects. As shown in Fig. 3.16, the shaping effects do not significantly change the 

stability boundary in the F- plan, and hence cannot influence much the operating 

state of the dynamo system. The eigenfunctions Qm
1 of the n=-8 resistive mode are 

plotted in Fig. 3.17, with elongation of =1.3 and various wall conditions: without 

wall, with an ideal wall, and with a resistive wall with the penetration time of w 

/A~6.4103(A=1/A). The corresponding growth rates (normalized by A) of the 

modes are =3.24610-2, =4.9910-4 and 1.27510-3, respectively. It is obvious 

that the ideal wall results in the smallest growth rate; the no-wall condition gives 
the largest growth rate; and the resistive wall result stays in the middle.  
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Fig.3.17. The eigenfunctions of perturbed magnetic fields in normal direction for 

n=-8 tearing mode with elongation =1.3 are plotted for different wall conditions 

such as:  no-wall (dotted line) with the growth rate =3.24610-2, ideal-wall (solid 

line)=4.9910-4, and resistive-wall (dash-dot line) =1.27510-3. Various 

poloidal harmonics are shown. The embedded figure presents the whole 

eigenfunctions for no-wall case, The parameters are F=-0.05, q(0)=0.15,=1.43. 

 

This can also be seen from the derivative jumps of the eigenfunction Qm
1 (the 

radial component of the magnetic perturbation).  Assuming the same values of 
Q1

m=1 at the rational surfaces for all the three cases, the  no-wall boundary 
condition gives a much larger amplitude of the perturbation outside the rational 
surface. 

We point out that the marginal tearing mode state obtained by MARS-F has a 
slight discrepancy with the experimental data. This may be due to the fact that the 
model equilibrium current profile used by MARS-F does not perfectly match the 
real experimental current profile, which currently cannot be directly measured yet. 
However, the conclusion of the shaping effects on the tearing stability boundary is 
not altered by this fact. 

3.5 Shaping	on	Bootstrap	current	in	RFPs	

In RFPs, the bootstrap current fraction is much smaller than that in Tokamaks, due 
to the strong poloidal field Bp. For the same on-axis BT amplitude, the poloidal 
field Bp, and hence the total current Itotal in a circular RFP is approximately one 

order of O(-1) larger than a circular tokamak with the same geometry. 

Furthermore, it is well known that the density of the bootstrap current jBT is 

proportional to Bp
-1, BT

p

1 dp
j

B dr
 , hence for a given pressure profile, the total 

plasma bootstrap current IBT  is scaled to Bp
-1 too.  However, the total plasma 

current is scaled as Itotal ∝ Bp. Therefore, the fraction of the bootstrap current IBT 

/Itotal should approximately satisfy the scaling of BT
2

total p

I 1

I B
 . Considering the fact 

that the pressure gradient (dp/dr) can generally be of the same order in both RFP 
and Tokamak, the fraction of trapped particles in a circular RFP is smaller than 
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that in a circular tokamak with the same geometry [46], we arrive at a conclusion 

that the bootstrap current fraction of RFP is at least O(2) smaller than the fraction 

of the circular tokamak with same BT at the axis 

 2BT BT

total totalRFP tokamak

I I

I I


   
   

   
  

The shaping effect can increase the fraction of the bootstrap current. The results of 
computation by the CHEASE code, using the Hirshman model [51], are presented 
in Fig. 3.18, showing the profiles of the normalized total current density and the 
bootstrap current density under various types of shaping, and comparing with the 
circular case results. The bootstrap current fractions IBS/Itotal are also marked in the 
figure. Only a very small fraction bootstrap current, around a few percent, can be 
achieved in RFP. Shaping increases this fraction by 10% to 30% more than the 
circular value. However, the eventual fraction still remains the same order. The 
similar results showing the very small BT fraction are obtained by previous 
calculations in a circular RFP plasmas by using different models [46,52]. We point 
out that these characteristics are resulted from the intrinsic nature of the RFP 
configuration. The speculation about a significant enhancement of BT fraction by 
increasing the temperature of RFP plasmas seems be not realizable due to the 
unfavourable scaling for the plasma generated BT current. Therefore, in future 
RFP fusion reactors, for a steady state operation, the external current drives will be 
probably necessary.  
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Fig.3.18. The normalized radial profiles of the bootstrap currents density <J*B>BS 
(with different shaped RFP plasmas, are plotted to compare with total plasma 
current density <J*B>total. The total current is expressed by solid line, and the 
boots trap currents under different shapes are expressed by 30 times amplification: 

circular cross section =1.0, =0.0 (short dash-dotted line); elongation =1.3, 

=0.0 (dash-dotted line); triangularity =1.0, =0.3 (dotted line); and D-shape 

=1.3, =0.5 (dashed line). IBS/Itotal represents the fraction of the bootstrap current. 

The parameters used in calculation are F=-0.06, q(0)=-0.1448, and p=0.12. 

 

The regime of the new multiple trapping regions is not considered in this 
calculation. This may lead to a slight underestimation of the fraction of the 
bootstrap current, but will not result in any significant change of the conclusion. 

3.6 Summary 

We have studied the shaping effects on RFP plasmas by using the MHD-kinetic 
hybrid toroidal stability code MARS-K. Both elongation and triangularity effects 
have been investigated. The studies focus on the most important MHD modes in 

RFPs. The first topic is the p limit set by the RWM (the ideal kink mode) 

instability, where the ideal-wall  limit and the stabilization by drift kinetic 

damping are studied; and an in-depth analysis has been carried out for physics 
understanding. The second topic is on the linear stability of the resistive mode (the 

dynamo modes) under shaping effects in the low  RFP plasmas, and the 
comparison with the circular case.  Finally we report a computational result on the 
bootstrap fraction in shaped RFP plasmas. 

The RFP magnetic configuration is characterized by a strong poloidal magnetic 
field and reversed toroidal field. Shaping effects in RFP induce a stronger poloidal 
mode coupling than the circular case, due to the variation of the poloidal field 
strength along the poloidal angle. Moreover, shaping also introduces multiple 
trapped regions. As a consequence, the shaping effects lead to quite a different 
conclusion from that of a tokamak. The detailed results are summarized as follows. 

For the RWM, shaping yields a lower ideal-wall  limit, and increases the growth 

rate of the mode due to the reduction of the vacuum energy component Wvb. In 
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this case, the kinetic damping becomes more significant than the circular case, 

meaning that the kinetic stabilization requires a lower p value, and possibly also a 

slightly slower rotation. However, the kinetic contribution is still dominant by the 
ion acoustic Landau damping of passing particles, thus requiring a critical plasma 
rotation still in the ion acoustic frequency range. Furthermore, the stabilization 

windows in shaped RFP become narrower in both p and b/a parameter spaces. 

Appearance of multiple trapping regions due to the shaping can enhance the 
bounce resonance damping, which, nevertheless, is not the dominant damping 
mechanism for the RWM in thermal RFP plasmas. 

For the linear resistive modes in low  RFP, shaping induced poloidal coupling 

only moderately increases the growth rate, without significantly influencing the 

stability boundary of the mode in the F- plan. The self-organized RFX plasma in 

a relaxation process operates along a fixed F- curve, which is near the marginal 

stable state of the tearing modes. Since the shaping effects do not give a notable 
change to the stability boundary, we may conclude that shaping in RFP cannot 
introduce a notable change to the state of the dynamo system. 

The RFP configuration yields a much smaller (order of (2)) fraction of the 

bootstrap current than that in tokamaks. Although shaping can increase the 
bootstrap fraction by up to 30%, the eventual fraction in shaped plasmas still 
remains the same order as that in a circular RFP. Therefore, in order to reach 
steady state RFP fusion reactors, a substantial fraction of external current drives 
would be necessary, because the unfavourable scaling for the plasma generated 
bootstrap current in the RFP configuration. 

Based on the results from the above studies, we conclude that the present circular 
cross section design for RFPs is an appropriate choice, in the sense that no notable 
improvement for the RFP performance seems to be gained by shaping the plasma 
cross section. The major physics reason is the strong poloidal field in RFP 
(compared to the toroidal field), which plays an important role in the poloidal 
mode coupling and the particle dynamics, in particular, prevents the access to a 
substantially improved good averaged curvature by shaping.  

The new multiple trapped regions appear in the shaped RFP configuration. 
Although these regions do not significantly modify the RWM stability in thermal 
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plasmas, they can still be the notable phenomena which may influence the 
energetic particle physics and the other kinetic driven instabilities in a shaped RFP. 

The resistive tearing mode studied in this work is only for very low  RFP plasmas. 

The effects of high  and energetic particles, as well as the corresponding kinetic 

effects, have not been taken into account. These will be studied in a future works. 
The behaviour of the nonlinear dynamics of resistive tearing mode under the 
shaping effects is still unknown, which is beyond the scope of the present work.  
In particular, the variation of the single helical phase due to the shaping is 
interesting topic to be studied. 
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4 The kinetic effect of the Energrtic Paricles (EPs) 
on the RWM instability in RFP plasma, compared 
with the Tokamaks  

It is important to understand the physics of the RWMs, in order to achieve the 
successful operation of the present devices and the optimized design of the future 
reactor (such as ITER). The ideal kink mode is global instability, and can be 
completely stabilized by surrounding an ideal conducting wall which is closed 
enough to the plasma. However, it becomes a slowly growthing RWM instability 
by surrounding the finite conducting wall in reality. The RWM is the most 

important instability to set a limit of the plasma pressure (  -limit) for the 

advanced Tokamak [17, 18], such as ITER. In the Reversed Field Pinch (RFP) 
plasma, the RWMs casue the disruption when the discharge duration is longer than 
the penetration time of the resistive shell. The RWM can be suppressed by the 
dissipation due to the kinetic resonance of the mode with the drift motion of the 
particles, which has been observed in many experiment and theory studies 
[47,53,54,26,27]. As studied in the previous work [27], it is found that the RWM 
is stabilized at the very low plasma rotation in the Tokamak plasma, due to the 
mode resonance with precession drift motion of the trapped particles. On the other 
side, the stability of the RWM is also predicted in the RFP plasma [26, 30], due to 
the ion acoustic Landau damping, and requires much higher rotation frequency 
than the Tokamak case.  

The energetic particles (EPs), which are the energetic ions (EIs) from the neutral 
beam injection (NBI) or the alpha particles from the fusion reaction, expected to 
play major role in achieving optimal burning plasma scenarios with external 
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heating and/or current drive [55]. As shown in many theory studies of the 
tokamaks plasma (Such as NSTX advanced tokamak or the simply circular case) 
[56,57,58,59], the beam ions leads to an important effect on the RWM, compared 
with the kinetic damping fo thermal particles alone. And it is found that the alpha 
particles theoretically lead to the better stabilization of the RWMs in an ITER 
equilibrium [60]. On the contrary, these effects on the RWMs in the RFP plasma 
have not been investigated with clearly physical understanding or experiment 
results. Therefore in the present work, the kinetic effect on RWM in the RFP 
plasma is extended by including the effects of the energetic particles, in particular 
beam ions, and the full kinetic mechanism, which includes both thermal particles 
and EIs, is also investigated. The comparion between the RFP and tokamak 
configurations, with the same circular cross section and similar equilibrium 
parameters, is also investigated in order to achieve better physical understanding 
on the issue.  

In this work, the upgrade kinetic-MHD hybrid toroidal code MARS-K is used to 
the studies, taking into account the drift kinetic effect of the thermal particles as 
well as the isotropic/anisotropic EIs [61,62,40,63]. Firstly, we find that the RWM 
can be stabilized by the mode resonance with precession drift motion of the 
trapped isotropic EIs alone in the RFP plasma. By considering the full kinetic 
effect, it is found that there is the cancellation of the kinetic effect between two 
species. Furthermore, more detailed analyses are carried out by discussing the 
influence of the equilibrium parameters of the EIs. It is found that the critical 
rotaion frequency is reduced by reducing the birth energy of EIs, which reduces 
the precession frequency and modifies the resonance region in the velocity space. 
It is also found that the anisotropy of the EIs provides an impotant impact on the 
results. The increased fraction of the trapped EIs leads to enhance the cancellation 
of the kinetic effect between two species and reduce the stabilization of the RWMs, 
when the dominated contribution comes from the thermal paricles. On the other 
side, if the kinetic comtirbution of the EIs becomes dominated, the increased 
fraction of the trapped EIs leads to enhance the stabilization of the RWMs. 
Therefore, with the presence of the EPs in the plasma, the condition of the 
stabilization of RWMs by kinetic damping depends on the parameters of the two 
species. Finally, the effect of the EIs on the RWMs is studied in the Tokamaks 
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(similar geometry), compared with the RFP case. The results show that the 
characteristic of the EIs in the Tokamak is similar to the RFP case.  

The paper is organized as following. Section 4.1 investigates the effect of the 
isotropic EIs on the RWMs, compared with the thermal particles in the RFP 
plasma. Section 4.2 shows the anisotropic distribution of the EIs, and its effects 
are studied compared with isotropy case in the RFP plasma. In section 4.3, the 
results in the tokamak case is calculated and compared with the RFP case. The 
conclusion and the discussion are given in the section 4.4. 

4.1 Kinetic	effects	of	EPs	with	 isotropic	distribution	on	RWMs	 in	RFP	
plasma		

In this study, we study the kinetic effects of energetic ions with isotropic 
distribution on the RWMs stabilization in RFP plasma. For thermal particles, 
various kinetic mechanisms are taking into account as shown in the resonance 
oparetor Eq.(2.8), including the precession motion of both the trapped ions and the 
electrons, the bounce motion of trapped ions, and the circulating (transit resonance) 
of the passing ions. The dominated kinetic damping is contributed by the transit 
resonance of the passing ions as studied in the previous work [27]. For energetic 
ions, only the precession resonance of the trapped EIs is considered. The kinetic 
effects of the bounce and transit resonance of the EIs (as well as that of the 
thermal electrons) are neglected, due to their extremely high frequency. The 
kinetic mechanism of both thermal particles and EIs is so call full kinetic 
mechanism in the following sections. 

4.1.1 The	equilibrium	parameters	

The investigation is carried out by using the parameters of the RFX-mod 

experiments, which are the inverse aspect ratio / 0.2295a R   , the reversal 

parameter F=-0.06 ( ( )/F B a B    ) and the resistive wall position b/a=1.12. 

There are two type of RWMs in the RFP plasma: one is the so-call “externally 
non-resonant” modes (ENRM) with the rational suface located at q<q(a)<0; the 
other one is “internally non-resonant” modes with q>q(0)>0 (INRM). Under the 
parameters mentioned above, the most important unstable RWM is n=6 INRM 
with the dominated poloidal harmonic number m=-1, which has closest resonance 
surface to the plasma and is easiest to be stabilized. The safety factor at the plasma 
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center q(0) is equal to 0.1448 (q(a)~-0.01) and the rational surface of the mode is 
located at q=-m/n=0.1667. 

The poloidal plasma beta P  is chosen as 0.155P  . Where 
2

0

8
P totP V

I R

    , I 

is the plasma current, P   is the volume averaged plasma pressure and 2 totV  is 

the total plasma volume. It is closed to the ideal wall beta limit 0.16ideal
P   at 

b/a=1.12 ( ideal
P P  ), and the kinetic effect plays an important role on stabilizing 

the RWMs. The slowing-down distribution function is used to describe the 

isotropic EIs, with the constant birth energy profile   and fraction profile of the 

pressure Pa/Pth. The electron density at the plasma core is chosen as 
19 3

0 2 5 10en . / m  . We take Pa/Pth=constant along the minor radius, and the 

* th
P P/     is equal to the pressure fraction Pa/Pth = 0

* , for example, 0 0 3* .   and 

0 3* .   as shown in the figure.(2.1). The equilibrium (a) pressure (normalized by 

the 2
0 0B /  ) and (b) density profiles (normalized by the Ne(0) at the magnetic axis) 

are plotted in the figure.(2.1), for the thermal ions and electrons as well as the 
energetic ions respectively. 

4.1.2 Dispersion	relation	of	the	RWMs	

The dispersion relation of the RWM, which is relevant to the energy analysis 
[44,45], is written by, 

* k
W

b k

W W

W W

 
 

  


         (4.1) 

Where F vW W W      and b F vbW W W     ( 0FW   and , 0v vbW W   ).   is 

the mode growth rate and *
W  characterizes the penetration time of the resistive 

wall. By taking into account the particle-wave resonance effects, the stabilization 
condition of RWMs can be written as [47], 

2 2( ) ( ) ( ) 0re re im
b k b k kW W W W W W W                (4.2) 

As expressed in Eq.(2.12), the kinetic energy kW  consists of the resonant 

(imaginary) part im
kW  and the non-resonant (real) part re

kW , re im
k k kW W i W    . 
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Generally, the imaginary part im
kW  always gives a stabilizing effect. The real part 

can be either stabilizing or destabilizing effect. For the RWMs, the first term in 

Eq.(4.2) is negative, where 0bW W   . It is the most important destabilizing term 

contributed by the fuild effects. The kinetic energy kW  has smaller value than the 

fuld energy components. In such cases, the kinetic effects can become stronge 

relatively only when W   or bW  is very small, which leads to the first 

destabilizing term bW W   being small. The conclusion has already been obtained 

by a previous analysis [27].  

4.1.3 Stabilization	 of	 the	 kinetic	 effect	 of	 the	 EIs,	 compared	with	 the	
thermal	particles	

As shown in the figure.(4.1), we plot the n=6 RWM growth rate / A   versus the 

normalized plasma rotation frequency / A  (where A  is the Alfven frequency 

calculated at the magnetic axis) in both positive / 0A   (same direction to the 

plasma current) and the nagative direction / 0A  . The kinetic effect 

contributed by the EIs with its birth energy 100keV   and the beta ratio * 0.3   

is taken into account. The kinetic contribution from EPs with/without thermal 
particles are considered and compared to the case with the kinetic effect of the 
thermal particles alone. In the figure.(4.1-a), we find that the RWMs can be 
stabilized by the precession resonance of the EIs alone at the critical rotation 

frequency / 0.039C A    in the opposite direction. The similar stabilization can 

be obtained by the kinetic damping of the thermal particles alone (dominated by 

the transit resonance of passing ions and * 0.0  ). On the contrary, the influence 

of EIs on the RWM stability is neglected in the positive direction, as shown in the 
figure.(4.1-b). The RWMs by taking into account the kinetic effect of the thermal 

particles alone is stabilized at / 0.022C A  , which has been found in the 

previous results [27]. Furthermore, by considering the full kinetic mechanism 
(including the kinetic effect of both speices), the required critical rotation 

frequency C  is increased for the case / 0A  , even though the mode 

resonance with the kinetic motion of each particle species alone gives a stabilizing 
effect on RWMs. In the other direction, the EIs give the negligible modification to 
the stabilization of the RWMs contributed by the thermal particles. The results 
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indicate that the precession resonance of the EIs occurs only if / 0A  . And 

when it occurs, a slight cancellation of the kinetic effect between the thermal 
particles and the EIs may exist in the RFP plasma. The physical understanding will 
be in the following sections. 
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Figure 4.1. The n=6 RWM growth rate / A   versus the plasma rotation frequency 

/ A , with the comparision of the drift kinetic stabilization of the RWM from 

EPs (red line) and thermal particles (black line) separately, and from both species 

combined  (full kinetic, blue line), in both direction: (a) / 0A   and (b) 

/ 0A   for the RFP plasma. The birth energy of EPs is 100keV  , and its beta 

ratio is * 0.3  . The other equilibrium parameters are chosen as the previous 

description.  
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Figure 4.2. The radial profiles of various frequencies of each species over the 
velocity space and over the poloidal angle are plotted, including the transit 

frequency ( ) /pm nq n  of the thermal passing particles, the bounce frequency 
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/b n  and the precession frequency ,di de   of the thermal trapped particles, as 

well as the precession frequency d  of the trapped EIs with their birth energy 

100keV  . The equilibrium parameters are chosen as the previous description. 

 

In the figure.(4.2), we plot the radial profile of each frequencies averaged over the 
velocity space and the poloidal angle. Several types of the resonance frequency as 
mentioned previously are included for each species. For thermal particles, the 
dominated kinetic contribution from the transit resonance becomes significant 

when the resonance condition ( ) / 0 ( 0)pm nq l n l      is satisfied. The 

resonance occurs in both positive and opposite direction, and the axymmetric 
kinetic effects on the RWMs is due to the difference of the numerator in the 

resonance operator Eq.(2.8) for the 0   and 0   cases. For EIs, the condition 

of the mode resonance with the precession drift of trapped EIs is 0d   . As 

shown in the figure.(4.2), the averaged precession frequency of trapped EIs is 

positive, and this indicates that the resonance only occurs when 0  . Figure (4.2) 

also shows the approximate frequency regions: , ~ 0.01di de A   , 

/ ~ 0.01 0.03b An  , ( ) / ~ 0.02 0.06p Am nq n    for thermal particles and 

~ 0.02 0.05d A   for EIs. The critical rotation frequency shown in the figure.(4.1) 

is in the region / ~ 0.04C A  , and conditions of the dominated resonance for 

each species are satisfied. The precession frequency of EIs with birth energy 

100keV   is much larger than that of thermal particles, due to its large energy. 

And it is found that this frequency has similar region to the transit frequency of the 
passing thermal ions. This possibly leads to the slight cancellation of the kinetic 
effects between each species as observed in the figure.(4.1).  

Figure.(4.3) shows the imaginary kinetic energy components im
kW  contributed 

from the various types of particles and their combined energy (full kinetic). The 

imaginary part of the kinetic energy im
kW  always plays the most important role on 

the stabilization of the RWMs, which is analysed in the stabilization condition 
Eq.(4.2).  For thermal particles, the kinetic energy is contributed by the sum of the 
transit resonance of the passing ion, the bounce resonance of the trapped ions and 
the precession resonance of the trapped electrons and the ions. For EPs, the kinetic 
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energy is contributed by the precession of the trapped EIs alone. As shown in the 
figure.(4.1-b), the precession resonance of the EIs does not occurs in the case 

/ 0A  , where the resonance condition is not satisfied and the imaginary part of 

the kinetic energy im
kW  is equal to zero. The total stabilization contritbution 

2( )im
kW  in Eq.(4.2) comes completely from the thermal particles, and the EIs does 

not give the influence to the RWM stability.  
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Figure 4.3 The imaginary parts of the kinetic energy im
kW , including the kinetic 

components of each species and the total kinetic energy of both species conbined 

in two direction: (a) / 0A   and (b) / 0A  , are plotted as the function of the 

rotation frequency, with the parameters same as figure.(4.1).  

In the direction / 0A  , as shown in the figure.(4.1-a), the kinetic contribution 

to the RWM stability becomes significant when the plasma rotation frequency 

| / |A  is larger than 0.03. In high rotation region | / | 0.03A  , the energy 
im

kW  of the EIs is increased to the same order of the thermal particles by 

increasing the rotation frequency, and the stability of the RWM is achieved by 
considering the kinetic contribution from each species alone. By considering the 
full kinetic effect, it is found that there is a cancellation of the imaginary part of 

the kinetic energy im
kW  between the thermal particles and the EIs, which leads to 

reduce the total kinetic damping compared to the single species respectively. 
However, this reduced full kinetic effect is still large relatively to stabilize the 

RWMs, which maybe due to the reduced destabilizing term ( 0)bW W    in the 

stabilization condition Eq.(4.2) by increasing the plasma rotation frequency. In the 
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low rotation frequency region | / | 0.02A  , the dominated contribution is the 

transit resonance of the thermal ions, which is enhanced slightly by the precession 
resonance of the EIs. But as the results, the stabilization of the RWMs does not 
occur. This is possibly because of the very large destabilizing contribution in the 

low rotation frequency region (in Eq.(4.2)), and the stabilizing term 2( )im
kW is not 

large sufficiently, compared to the high plasma rotation region.  

 

( a )              ( b ) 

Figure 4.4. The 2-D plots of (a) the precession frequency of the EIs (averaged over 
the velocity space), and (b) the imaginary parts of the kinetic energy of EIs at the 

plasma rotation frequency / 0.035A   , in the R-Z plane. The equilibrium 

parameters are chosen as the previous description. 

In the figure.(4.4-a), the particle phase space averaged precession frequency of the 
trapped EIs is plotted in the R-Z plane. It is found that the precession frequency 

stay in a large region (yellow region) with its amplitude close to ~ 0.03 0.04d  . 

A small region at the plasma center where the value of precession frequency is 
very large and its sign changes between the high and low field side, is also 

observed. Figure.(4.4-b) shows the imaginary parts of the kinetic energy im
kW  

contributed by precession resonance of the EPs at the rotation frequency 

/ 0.035A   , in the R-Z plane. By comparing two figures, we find that the 

resonance contribution at / 0.035A    comes almostly from the yellow regions 

in the figure.(4.4-a), where the resonance condition 0d    can be satisfied 
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generally. The imaginary kinetic energy im
kW  locates at the low field side near the 

plasma core. This is due to the contribution of the dominated m=-1 harmonic, 
which has large amplitude in this region as studied in the previous work [27]. 
Furthermore, the distribution of the kinetic energy from EIs is similar to that from 
the transit resonance of the thermal ions, but has the opposite sign of the amplitude. 
As the results, it causes the cancellation of the kinetic damping between two 
species inevitable. 

4.1.4 Stabilization	of	the	kinetic	effect	of	the	EIs	with	its	different	birth	
energy	

The kinetic effect of the EI with its differet birth energy 50 ,150keV keV   is 

investigated as shown in the figure.(4.5), comparing with the 100keV   case 

which we used above. The density profiles of the EIs (Na/Ne=0.18 at the plasma 
center, Na is normalized by the electron density Ne) keep almost unchanged for 

the cases with various birth energy  , and thus the beta ratio * (=0.135 (50keV), 

0.3(100keV), 0.51(150keV)) is increased by increasing the birth energy  . It 

leads to increase the precession frequency of the EIs, and the kinetic energy i
kW  

from EIs which is roughly proportional to its equilibrium pressure ( * ) as shown 

in Eq.(2.12). In the figure.(4.5-a), the growth rate of the n=6 RWMs is plotted 
versus the plasma rotation frequency, by considering the kinetic contribution from 
the EIs with/without the thermal particles. By considering the kinetic effect of the 
EIs alone, it is found that the critical rotation frequency is increased with the 

increased birth energy of EIs  . In particular, the critical rotation frequency is 

/ A =-0.021, -0.039, -0.05 corresponding to the case  =50keV, 100keV, 

150keV respectively, and they are coinciding with the averaged precession 
frequency of the EIs as shown in the figure.(4.5-b). Moreover, it is found that the 
cancellation of the kinetic effect between two species still exists by considering 
the full kinetic effect, and the dominated contribution is always the transit 

resonance of the thermal ions. For 50keV   case, the RWM is stabilized at 

/ 0.039A    where the contribution of the EIs is almost zero, and the stability 

of the RWMs is not achieved due to the cancellation at / ~ 0.02A   where the 

contribution of the EIs is largest. For 150keV  , we find that the cancellation is 
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enhanced compared to the 100keV   case, because the kinetic energy 

contributed by the EIs is increased due to the increased beta ratio * . Another 

parameter which also gives an influence to the beta ratio *  is the particle density 

Na/Ne, and it will be analysed in the following section, together with the 
anisotropic distribution effect of the EIs. 
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Figure 4.5.  For the case with the birth energy 50keV  ( * 0.135)  , 100keV  

( * 0.3)  , 150keV  ( * 0.51)  : (a) the growth rate of the n=6 RWMs is plotted 

versus the plasma rotation frequency, by considering the kinetic contribution from 
the EIs with/without the thermal particles; (b)  the averaged precession frequency 
profiles of the EI are also plotted respectively. The other equilibrium parameters 
are chosen as the previous description. 

 

4.2 Kinetic	effects	of	EPs	with	anisotropic	distribution	on	RWMs	in	RFP	
plasma		

For the anisotropic distribution of the EIs, a Gaussian model as the function of the 

particle pitch angle ||v / v   is combined to the slowing-down distribution 

function [63]. As shown in the figure (4.6-a), the anisotropic distributions for two 
cases, such as the normal injected NBI and the tangetial injected NBI, are plotted 
as the function of the pitch angle, and compared with the isotropic distribution. 
The main kinetic effect in this work comes from the precession resonance of the 
trapped EIs, which means that the most interesting modification of the pitch angle 
function is focused on the trapped region of the EIs. For tangential case, we 
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choose the co-tangetial injection NBI (with the same direction to the plasma 
current) as the test model, and the fraction of trapped EIs are reduced. On the 
contrary, the normal injection case leads to increase the fraction of trapped EIs, 

while two test models with different parameter 2 =0.8 (large trapped fraction) 

and 2 =1.2 (small trapped fraction) are chosen. Acturelly with the unchanged 

particle birth energy 100keV  , the increased trapped fraction (normal NBI) 

means the increasing density of the trapped EIs, which leads to enhance the kinetic 
damping. 
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Figure 4.6. (a) Various isotropic/anisotropic distribution of EIs (the G1 factor) as a 

function of the pitch angle ||v / v  , with the trapped/passing boundary 

0 4s .   , are plotted. (b) the computed growth rates of the RWMs with different 

pitch angle distributions (with respect to the figure.(4.6-a)) are plotted in the full 

kinetic mechanism for the case / 0A  . The equilibrium parameters are chosen 

as same as the figure.(4.1). 

 

Figure (4.6-b) shows the stability of the RWM by considering different injected 
NBI distribution, compared with the isotropic case. The results in the full kinetic 

mechanism for / 0A   are obtained with respect to the distribution function 

shown in the figure.(4.6-a). At the low plasma rotation frequency (near zero) 
where the resonance dose not occurs, the mode growth rate of each case is almost 
unchanged. It indicates that the anisotropy (pitch angle) modification of the second 
term in the adiabatic part Eq.(2.5) gives the negligible contibution on the RWMs. 
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For the co-tangetial NBI case, we find that the rotation frequency required to 
stabilize the mode is slightly reduced with respect to isotropic case, because the 
cancellation between two spesies is reduced due to the reduced kinetic 
contribution from the EIs. For the normal NBI case, the stability of the RWM will 
not be achieved due to the enhanced kinetic cancellation (dominated by the transit 
resonance of the thermal ions) by considering the small trapped fraction with 

2 =1.2. However, the mode can be stabilized again if the fraction of the EIs 

becoming large sufficiently, where the kinetic damping is dominated by the EIs. 
And the critical rotation frequency, which is smaller than the isotropic case, is 
obversed. As the results, the anisotropy effect of the EIs leads to a significant 
influence on the RWM stability in the full kinetic mechanism, and even changes 
the stabilizing mechanism (the dominated kinetic damping) in the RFP plasma.  

4.3 Kinetic	 effects	 of	 EPs	 with	 isotropic	 distribution	 on	 RWMs	 in	
Tokamak	plasma		

With the aim of comparsion with the case in the RFP plasma, the kinetic effect of 
the EIs with the isotropic distrubution is studied in the tokamak plasma. The 
parameters similar to the RFP case are chosen as b/a=1.12, BT=1.5T, a/R=0.2295. 

The total plasma beta 0.011   ( 3.0N  ) is also near the ideal beta limit 

0.012   ( 3.2N  ), where the kinetic effect becomes significant due to the small 

plasma energy bW . In this work, only precession kinetic mechanism provided by 

the trapped particles is considered, because it is the dominated kinetic effect of 
both the thermal particles and EIs in the Tokamak plasma. As shown in the 

figure.(4.7), the n=1 mode growth rate versus the plasma rotation frequency / A  

are plotted for each species types with the birth energy 100keV   and the 

pressure fraction 2 8/ (1 )Pa Pth s  . It is found that the RWMs can be stabilized by 

the precession resonance of the EIs alone at / 0.026A    (opposite direction), 

resulting in the same kinetic characteristic of the EIs compared to the RFP case. 
The results are different from that by considering the precession kinetic damping 
of the thermal particles alone, where the stability of the RWM is achieved at the 

low plasma rotation frequency / ~ [ 0.0025,0.009]A  , as observed in the 

previous work. Furthermore by considering the kinetic effect of the two species 
together, we find that the stability region at the low rotation frequency 
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/ ~ [ 0.0025,0.003]A   is reduced, particularly in the positive direction. It 

indicates that the slight cancellation between two species exists, and the thermal 
precession damping is still dominated. For the EIs dominated region 

/ 0.02 ~ 0.04A    , the conbined precession kinetic effect plays a role of 

destabilization of the mode, which leads to increase the critical rotation frequency 

/C A  compared with the EIs alone case.  
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Figure 4.7. The n=1 RWM growth rate / A   versus the plasma rotation frequency 

/ A  in tokamak plasma are plotted, with the comparision of precession 

resonance for different particle species types, including (a) the thermal particles 
(black line), (b) the EIs (red line) and (c) the case with combined species (blue 

line). The birth energy of EIs is 100keV  , and the pressure fraction of EIs is 
2 8/ (1 )Pa Pth s   with the beta ratio * 0.19  .  

 

Figure.(4.8) shows (a) the real part and (b) the imaginary part of kinetic energy 

componants im
kW  for each species as well as the total imaginary kinetic energy of 

both species. It shows that the imaginary kinetic energy contributed by the EIs 

obtains its maximum value at / ~ 0.005A  . However, by considering the kinetic 

energy from EIs alone, the mode can not be stabilized because of the large 

destabilizing term ( 0)bW W    in Eq.(4.2) at the small rotation frequency. The 

stability of the RWMs can be easier achieved by increasing the rotation frequency, 
where the kinetic damping becomes larger and the destabilizing term 
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( 0)bW W    in Eq.(4.2) becomes relatively smaller. The obtained behavior of the 

EIs in tokamak case is a little different from the RFP case, where the precession 
resonance of EIs does not occurs in the positive direction. 

In the combined kinetic mechanism, for the case / 0A  , we find that the 

dominated kinetic damping is from the precession resonance of the electrons at 
low plasma rotation. The contribution from the EIs gives a slight cancellation 

effect, resulting in that the stability region is reduced. For the case / 0A  , it is 

interesting find that the dominated stabilized kinetic contribution from the ions is 
enhanced by that from the EIs at low rotation frequency. However, the increased 
kinetic value does not lead to increase the stability region in the opposite direction. 
This is because the precession contribution of the EIs is not large sufficiently, 

which makes the results not as obvious as the / 0A   case. Moreover, in the 

high rotation region, the precession of the EIs is dominated. Without the kinetic 
contribution from the transit resonance, the stabilization of the RWM is reduced. 
The increased critical rotation frequency, compared with the EIs alone case, is 
probably due to the cancellation of the real kinetic energy components, which 

leads to reduce the stabilizing term ( ) 0re
k bW W W      in Eq.(4.2), as shown in 

the figure.(4.8-a), where 0re
kW   and ( ) 0bW W    . Some preliminary results 

also show that with the transit resonance of the passing ions, which leads to cancel 
the imagnery kinetic energy contributed by EIs, the RWMs are destabilized. Thus 
the further studies on this part are necessary in the future reseach. 
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Figure 4.8. The (a) real and (b) imaginary parts of the kinetic energy im
kW , 

including the kinetic components of each species and the total kinetic energy of 
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both species conbined in both direction: (a) / 0A   and (b) / 0A  , are 

plotted as the function of the rotation frequency, with the parameters same as 
figure.(4.7). 

In the figure.(4.9), the radial profiles of the averaged precession frequency of the 

trapped thermal ions and electrons as well as the EIs with 100keV   are plotted 

in the tokamak plasma. We find that it is much smaller than the RFP case due to 
the smaller scale lengths of the magnetic curvature and gradient in the tokamak 
case. The precession frequency of the EIs is comparible (near zero) to that of the 
trapped thermal particles in the region of s=0.4~0.6. Furthermore, in the region 
near the plasma core (s=0.0~0.2), the precession frequency is picked rapidly. 
Figure.(4.10) shows the precession frequency of the EIs, which is the 2-D plot in 
the R-Z plane. The value of the precession frequency changes the sign from the 
low field side to the high field side, and the region in which the frequency is 
negative, is much larger than the RFP case. It leads to make the resonance 

happened when / 0A  , particularly in the blue region as shown in the 

figure.(4.10). On the contrary for the case / 0A  , the precession resonance of 

the EIs is completely from the yellow region which is very similar to that in the 
RFP plasma.  
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Figure 4.9. The radial profiles of various frequencies of each species in the 
tokamak plasma, over the velocity space and over the poloidal angle, are plotted 

including the precession frequency ,di de   of the thermal trapped ions and the 

electrons, as well as the precession frequency d  of the trapped EIs with their 
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birth energy 100keV  . The equilibrium parameters are chosen as that in the 

figure.(4.7). 

 

Figure 4.10. The 2-D precession frequency d  of the EIs with 100keV   in the 

R-Z plane, averaged over the velocity space in the tokamak plasma, is plotted. The 
value of the frequency is negative in the blue region and positive in the yellow 
region respectively. The equilibrium parameters are chosen as same as that in the 
figure.(4.7). 

 

4.4 Summary		

The kinetic effect contributed from the energetic ions on the RWMs in the RFP 
plasma has been studied, by using the MHD-kinetic hybrid toroidal stability code 
MARS-K. Both isotropic and anisotropic distributions of the EIs have been 
investigated. The studies are focused on the most important RWMs (n=6) in the 
RFPs. The total poloidal beta is chosen closed to ideal wall beta limit, meansing 
that the kinetic damping plays an important role on the stability of the RWMs due 

to the small bW  [27]. First of all, the resonance of the mode with the EIs, which is 

the precession resonance of the trapped EIs, is studied and compared with the 
thermal kinetic effects. Secondly, the effect of two important parameters (the birth 

energy   and density Na/Ne), which are relative to the beta ratio *  and give a 

significant influence to the kinetic contribution of the EIs, are studied respectively. 
Finally, the results of the kinetic effect of the EIs in the tokamak plasma are 



The kinetic effect of the Energrtic Paricles (EPs) on the RWM 
instability in RFP plasma, compared with the Tokamaks 

 
82

obtained, in order to compare to the RFP case and make more physical 
understanding. 

The stability of the RWMs due to the kinetic effect of the EIs alone has been 
observed in the RFP plasma, which has the similar kinetic damping to that from 
the thermal particles (dominated by the ion acoustic Landau damping of the 
thermal passing ions). The precession resonance of the trapped EIs can occur only 

in the nagative direction / 0A   (opposite to the direction of plasma current), 

and the critical rotation frequency with the birth energy of the EIs 100keV   is 

comparible to the thermal particles. By considering the full kinetic mechanism, the 
cancellation between two species is found, which leads to enlarge the critical 
rotation frequency required to stabilize the mode. The effect of the equilibrium 
parameter of the EIs gives the more detail results as shown in the following: (a) 

The birth energy   leads to decide the precession frequency, resulting in 

determine the resonance region due to the resonance condition 0d   ; (b) The 

density of the EIs, which is analysed through the anisotropic distribution study, is 
roughly proportional to the kinetic contribution (relative to the pressure of the 
trapped EIs). As the results, it leads to give directly the influence to the 
cancellation between two species, and the kinetic contribution from the EIs can be 
dominated if the fraction of the trapped EIs is sufficiently large. 

A comparion of the kinetic effect of the EIs in the tokamak configuration with the 
RFP case has also been investigated. The most difference between two fusion 
devices is their magnetic configuration, which leads to the different distribution of 
the EIs precession frequency. As the results, the precession frequency of EIs is 

much smaller in the most region of plasma ( ~ 0d ) than the RFP case. The 

precession resonance of trapped EIs becomes significant at the low plasma rotation 

in both direction (a) / 0A   and (b) / 0A  . However, the stabilization of the 

RWMs is difficultly achieved at the low rotation frequency by the EIs alone, 
because the kinetic damping of the EIs is not large sufficiently. Furthermore, the 
similar behavior of the EIs, compared with the RFP case, is found by increasing 

the plasma rotation frequency ( / 0A  ), because of the increased stabilizing 

kinetic damping from the EIs relatively. 
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The analysis in this work shows the slight cancellation of kinetic effect between 
the dominated thermal kinetic damping and the precession resonance of the EIs in 
the both configurations. However, with the presence of the EPs in the plasma, the 
condition of the stabilization of RWMs by kinetic damping depends on the 
parameters of the two species. Appropriately choosing the NBI parameters (energy, 
pitch angle of injection et al) may possibly minimize the cancellation effects. 
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Equation Chapter (Next) Section 1 

 

Chapter 5 

 

5 The	Excitation	of	the	Fishbone‐Like	External	
Mode	in	both	RFP	and	Tokamak	configurations	
The energetic particle physics is an important issue to be studied in order to 
understand the behavior of the burning plasmas which represents the primary 
scientific challenge faced by ITER and fusion research in general. The self-heating 
is provided by the alphas generated at 3.5MeV by the D–T fusion reactions. In 
addition, other fast or energetic ions with energies well above the thermal 
distribution of the plasma bulk, are generated by neutral beam injection (NBI) and 
ion cyclotron resonant heating (ICRH). These are expected to play major role in 
achieving optimal burning plasma scenarios with external heating and/or current 
drive [55]. The Energetic Particles (EPs) may interact with the bulk plasma waves 
and instabilities, which possibly lead to destabilize/stabilize the existing 
turbulence in the bulk plasma, such as the RWMs in the previous studies. 

The EPs even leads to excite a new type of instabilities, which may result to 
redistribution and losses of EPs. It has been observed and studied in many 
experimental and theoretical investigations for Tokamak configurations, such as 
JT-60U, DIII-D et al, by considering the energetic ions (EIs) from the NBI 
injection [66, 67, 68, 59, 7, 8, 69, 70, 71, 72, 73]. It is found that this bursting 

mode can appear when the beta fraction of the EPs *
h /     (the fraction of the 

EPs beta to the total plasma beta) exceeds a certain critical value * *
C    [2-5]. 

With the presence of the EPs, this bursting mode can coexist with the RWMs at 
the same time. The instability driven by the EPs is also been found in the Reversed 
Field Pinch (RFP) plasma (MST) [10,74], which is called energetic particle mode 
(EPM). However, the characteristic of this observed EPMs have not been 
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understood clearly, due to the few NBI experiments in the RFP devices. In this 
thesis, this bursting mode, which is called the Fishbone-Like External kink Mode 
(FLEM) here, is investigated in RFP plasma, by the kinetic-MHD hybrid toroidal 
code MARS-K. The comparison with the tokamak is also investigated. The nature 
and the physics of the FLEM are clarified by numerical analysis.  

Section 5.1 investigates the physical understanding of the FLEM with the isotropic 
EIs in the RFP plasma. The effects of various equilibrium parameters, including 
the plasma pressure and the wall position as well as the birth energy and the 
density of the EPs, are also investigated. In the section 5.2, the studies of the 
FLEMs in the tokamak is carried out, and compared with the RFP case. It is found 
that the FLEM in the tokamaks has the similar nature to that in the RFP plasma. 
The conclusion and the discussion are given in the section 5.3. 

5.1 Kinetic	effects	of	EPs	with	 isotropic	distribution	on	FLEMs	 in	RFP	
plasma	

5.1.1 Physical	understanding	

In this work, another instabilizing branch has been found by considering the 
kinetic effect of the EIs in the RFP plasma. Compared with the RWM branch, it 
has the similar mode characteristic that the resonance surface of the mode is 
located outside the plasma, in particular the studies in the present work focus on 
the n=6 mode with the safety factor at the plasma center q(0)=0.1448 < -m/n=1/6 
(internally non-resonance mode). The instability is driven unstable by the 
precessional drift resonance of the EIs, even with the ideal conducting wall. It is 
also interesting to note that, contrary to the RWM, FLEMs satisfy the usual 
external ideal kink dispersion relation. Overall, the new instability is so called 
non-resonant fishbone-like external kink mode (FLEM), which is distinguish with 
the RWM instabilities in the RFP plasma. 

In order to understanding physically how the FLEM is triggered by the precession 
resonance of the EIs, the usual external ideal kink dispersion relation, which is 
relevant to the energy analysis, is considered and written by, 

0F vb kI W W W             (5.1) 
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where I  represents the inertial energy component. The normalized dispersion 

relation can be further written separately under the approximation r  , as 

observed in the figure. (5.1),  

 2 r r r r r
r F vb k b k bkn W W W W W W                 (5.2-a) 

 2 i i
r k Fn W W               (5.2-b) 

Where the superscript “r” denotes the real part of the energy components and the 
superscript “i” denotes the imaginary part. The potential energy components are 

normalized by the plasma inertia. Numerical analysis found that r
bW  is usually 

the dominant contributor to r r r
bk b kW W W     in Eq. (5.2-a), and that i i

k FW W   

in Eq. (5.2-b). The further approximation leads to the reduced dispersion relation,  

  r
r bn W             (5.3-a) 

 2

i
k

r

W

n


  


         (5.3-b) 

Eq. (5.3-a) and (5.3-b) clearly indicates the FLEM physics: The mode frequency is 

mostly determined by the real part of the energy component r
bW , and the growth 

rate of the instability is mainly determined by i
kW , which comes from the 

precession drift resonance of energetic ions. 

Usually, the total plasma pressure and wall position largely affects bW , and hence 

the real frequency r . If the frequency r  falls inside the range satisfying the 

resonant condition with the precession frequency of a given type of EPs, the 

instability of FLEM can appear. The value of i
kW  is mainly determined by the 

two features of EIs: 1) the density fraction of EIs  a total a en / n n / n , and 2) the 

birth energy  , which directly links to the precession frequency d
 . The 

analysises with the detailed numerical results are described in the following 

sections. The parameter of the beta ratio thermal* /    ( P thermal    ) 

reflects the combination of these two effects. Where   and thermal  denotes the 
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poloidal beta (
2

0

8
P totP V

I R

    ) of the EIs and the thermal particles respectively. 

In the figure.(5.1), the typical results of the n=6 FLEM are plotted with the 

poloidal beta 0 135p .  , the wall position b/a=1.12, the reversal parameter F=-

0.06 ( ( )/F B a B    ), the aspect ratio 0 2295a / R .   and q(0)=0.1448. It 

compares the normalized growth rates and real frequencies of FLEMs directly 
computed by MARS-K, with that calculated by using the dispersion relation Eq. 
(5.3). Two cases, with and without plasma rotation, are investigated. It is found 
that the results in different numerical mechanism are agreed well with each other. 
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Figure 5.1. Comparison of the normalized (a) growth rates A/   and (b) real 

frequencies r A/   of FLEM as a function of the energetic particle beta fractions 

thermal* /    ( P thermal   ), between the direct MARS-K computations 

and that calculated by using the dispersion relation Eq.(5.3). The equilibrium 

parameters are chosen as: the poloidal beta 0 135p .  , the wall position b/a=1.12, 

the reversal parameter F=-0.06, the aspect ratio 0 2295a / R .   and q(0)=0.1448. 

 

5.1.2 The	characteristic	of	the	FLEM	in	the	RFP	plasma	

In this study, the characteristic of the non-resonance FLEM in the RFP plasma is 
studied by using the parameters of the RFX-mod experiment, including the aspect 

ratio 0 2295a / R .    and the safety factor at the plasma center q(0)=0.1448. The 

electron density at the plasma core is chosen as 19 3
0 2 5 10en . / m  . For energetic 

ions, only the precession resonance of the trapped EIs is considered. The bounce 
and transit frequencies of the EIs are much higher than that of thermal ions and the 
precession frequency of EIs, and their kinetic contributions will be neglected. The 
comparison of the kinetic effect contributed by the EIs with that of the thermal 
particles, which takes into account the precession motion of both the trapped ions 
and the electrons, the bounce motion of the trapped ions, and the circulating 
(transit resonance) of the passing ions, is also investigated as shown in the 
figure.(5.2). The kinetic mechanism of both thermal particles and EIs is so call full 
kinetic mechanism. The pressure of the EIs is given by the pressure fraction 

  2 8
0(1 )*

a thP / P s s   , as the example shown in the figure.(2.2) we have 0 1 0* .   

and 0 176* .  . 

In the figure.(5.2), we plot the n=6 FLEM (a) growth rate A/   and (b) real 

frequency r A/   (normalized by the Alfven frequency at the magnetic axis A ) 

versus the poloidal plasma beta P  for three case, which are calculated in the 

kinetic mechanism of EIs alone with 0 0 3* .   ( 0 062* .  ) and 0 1 0* .   

( 0 176* .  ), as well as the full kinetic with 0 1 0* .   ( 0 176* .  ). The other 

equilibrium parameters are b/a=1.12, F=-0.06, q0=0.1448, and no plasma rotation 



The Excitation of the Fishbone-Like External Mode in both RFP and 
Tokamak configurations 

 
90

is considered. The birth energy of the EIs is kept by 100keV  , which indicates 

that larger fraction 0
*  ( * ) leads to larger density of the EIs. It is found that the 

FLEM instabilities can be triggered when the poloidal plasma beta P  is 

exceeding a critical value, if the kinetic effect of the EIs is taken into account in 
the MHD model. Compared with the real frequency of the RWMs, the FLEM has 
very large real frequency, even without the plasma rotation, which is reduced by 
increasing the poloidal beta. It is also observed that the mode instability is reduced 
by considering the smaller EIs fraction or the full kinetic mechanism. These results 
confirm that the FLEM in the RFP plasma is driven by the EIs kinetic contribution, 
and the thermal pariticles gives a stabilizing effect on the FLEM. Similar to the 
RWMs in the previous results, the cancellation of the kinetic effect between two 

species exists. By further increasing the poloidal beta P , the FLEM instability 

converts to the ideal kink mode, and the real frequency of the ideal kink mode 
keeps small. The ideal wall beta limit is modified by the kinetic effect 

( limit 0 162P _ .   for EIs alone and limit 0 182P _ .   for full kientic), compared 

with the fuild case ( limit 0 159P _ .  ). 
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Figure 5.2. The n=6 FLEM (a) growth rate A/   and (b) real frequency r A/   

(normalized by the Alfven frequency at the magnetic axis A ) versus the poloidal 

plasma beta P  are plotted in the kinetic mechanism of EIs alone with 0 0 3* .   

( 0 062* .  ) and 0 1 0* .   ( 0 176* .  ), as well as the full kinetic with 0 1 0* .   
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( 0 176* .  ). The other equilibrium parameters are b/a=1.12, F=-0.06, q0=0.1448. 

No plasma rotation is considered and the birth energy of the EIs is kept by 

100keV  . 
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Figure 5.3. The radial profiles of various frequencies of each species over the 
velocity space and over the poloidal angle are plotted, including the transit 

frequency ( ) pm nq   of the thermal passing ions and the precession frequency of 

the trapped EIs dn   with different poloidal beta 0 115 0 14 0 16P . , . , .  . The FLEM 

real frequency 0 525 0 332 0 182r A/ . , . , .    with respect to P  are also plotted, in 

which shows the resonance region of the FLEM (shadow region). The equilibrium 
parameters are chosen as same as that in the figure.(5.2). 

 

As shown in the figure.(5.3), we plot the radial profile of each frequencies 
averaged over the velocity space and the poloidal angle. The dominated resonance 
frequencies are included for each species, which are the transit frequency of the 

thermal passing ions   pm nq   and the precession frequency of the trapped EIs 

dn  . Three cases with different poloidal beta 0 115 0 14 0 16P . , . , .   are considered, 

and the FLEM real frequency 0 525 0 332 0 182r A/ . , . , .    are also plotted, in 

which shows the resonance region (shadow region in the figure.(5.3)) clearly. 
Different from the RWMs, the resonance for FLEMs occurs under the condition of 
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d rn n      as shown in the resonance oparetor Eq.(2.10), which can be 

satisfied even at 0  , i.e. when d rn    , since r  is directly related to r
bW  

and can be rather high. For RWMs, on the other hand, the resonance contribution 

to i
kW  by the EPs precession motion requires the condition of 0d   , due to 

the small mode real frequency 0r  . It is found that the FLEM real frequency 

increases by reducing the poloidal beta P , which becomes far away from the 

precession frequency of the EIs. This makes the mode resonance occur difficultly, 
and finally the FLEM becomes stable due to the neglected kinetic driven 
contribution from the EIs. When the kinetic effect of the thermal particles is 
considered, in particular the kinetic effect of the thermal passing ions, it is found 

that its frequency region   pm nq   is similar to dn  . It indicates that the 

cancellation of the kinetic effect between each species for the FLEM occurs. 

Figure.(5.4) shows the energy components as described in the dispersion relation 

in Eq.(5.3) with 0 1 0* .   ( 0 176* .  ), by considering (a) the kinetic effect of EIs 

alone and (b) the full kinetic effect. The detailed kinetic energy kW  components 

in the figure.(5.4-b) are plotted in the figure.(5.5), including (a) the real part and (b) 

the imaginary part of the kinetic energy i
kW . It is found that by reducing the 

poloidal beta P , the total potential plasma energy r
bW  in the fuild theory is 

increased as shown in the figure.(5.4-a) and (5.4-b). This is because of the reduced 

pressure driven energy PW , which has negative value in Eq.(2.11), while the 

other potential energy keep almost unchanged. It is also observed that the 

imaginary part of the kinetic energy i
kW  becomes neglected at the critical 

poloidal beta P , which leads to the zero growth rate of the FLEM as described in 

Eq.(5.3-b). For the case (a) with the EIs kinetic effect alone, by considering the 
dispersion relation in Eq.(5.3-a), it is explained that the real frequency of the 

FLEM becomes large with the reduced poloidal beta P , which leads to the 

disappear of the precessional drift resonance of the trapped EIs as studied 
previously. For the case (b) with the full kinetic effect, on the other side, the 

neglected imarginary kinetic energy i
kW  is mainly due to cancellation contributed 

from the thermal particles. Here the mode resonance with the precession motion of 
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the EIs still exists, and the kinetic energy contributed from the EIs is significant 
enough to drive the FLEM instability as shown in the figure.(5.5-b). As the results, 
the kinetic contribution of the thermal particle leads to stabilize the FLEM 
instability. 

0.10 0.12 0.14 0.16 0.18 0.20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
b/a=1.125,Ea=100keV,F=-0.06,q0=0.1448 

W
/

W
2


P
 (*

0
=1.0, hot)

 dWK_real
 dWK_imag
 dWb
 dWb+dWk_real

(a)

0.10 0.12 0.14 0.16 0.18 0.20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
b/a=1.125,Ea=100keV,F=-0.06,q0=0.1448 

W
/

W
2


P
 (*

0
=1.0, th+hot)

 dWK_real
 dWK_imag
 dWb
 dWb+dWk_real

(b)

 

Figure 5.4. The energy components as described in the dispersion relation in 

Eq.(5.3) versus the poloidal plasma beta P  are plotted with 0 1 0* .   ( 0 176* .  ), 

by considering (a) the kinetic effect of EIs alone and (b) the full kinetic effect. The 
other parameters are same as that in the figure.(5.2). 
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Figure 5.5. The detailed kinetic energy components kW  in the figure.(5.4-b) 

versus the poloidal plasma beta P  are plotted with 0 1 0* .   ( 0 176* .  ), 



The Excitation of the Fishbone-Like External Mode in both RFP and 
Tokamak configurations 

 
94

including (a) the real part r
kW  and (b) the imaginary part i

kW  of the kinetic 

energy. The other parameters are same as that in the figure.(5.2). 

 

The ideal wall beta limit predicted in the fuild theory for both cases in the 

figure.(5.4) are same, where the condition 0 0r
bW .   is satisfied and the beta limit 

is limit 0 158P _ .  . It is found that the real part of the kinetic energy r
kW  leads 

to modify this beta limit in the fuild theory with the condition 0 0r
bkW .  . For the 

EIs alone case, the modified beta limit limit 0 162P _ .   is increased slightly due 

to the positive value of the real kinetic energy r
kW . For the full kinetic case, the 

enhanced real part of the kinetic energy r
kW , as shown in the figure.(5.5-a), leads 

to the larger beta limit limit 0 182P _ .  . The FLEM instability converts to the 

ideal kink instability at the beta limit limitP _ . The detail analysis above the beta 

limit is not carried out in this work, because we take care more about the 
performance under the ideal wall beta limit in the real device. 

In the figure.(5.6-a), the particle phase space averaged precession frequency of the 

trapped EIs is plotted with the poloidal beta 0 14P .   and the beta ratio 0 0 3* .   

( 0 062* .  ) in the R-Z plana. The imaginary part of the kinetic energy component 

contributed by the EIs precessional drift resonance is also plotted in the toroidal 
cross section as shown in the figure.(5.6-b), corresponding to the figure.(5.6-a). 

The FLEM frequency calculated with the above parameter is 0 332r A/ .   . It is 

found that the precession frequency stay in a large region (yellow region) with its 

amplitude 0 2dn ~ .  (n=6). The precession frequency has very large positive 

value in a small region near the plasma core. The imaginary kinetic energy i
kW  

has the maximum amplitude near the plasma core. It is different from the RWMs 
due to the different distribution of the EIs and the particular resonance mechanism 

of the FLEM. The asymmetry distribution of i
kW  is because of the dominated 

contribution from the m=-1 harmonic, which has large amplitude in this region 
similar to the RWMs.  
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( a )           ( b ) 

Figure 5.6. The 2-D plots of (a) the precession frequency of the EIs dn   

(averaged over the velocity space), and (b) the imaginary parts of the kinetic 

energy i
kW  for the FLEM with the poloidal beta 0 14P .   and 0 0 3* .   

( 0 062* .  ), in the R-Z plane. The other equilibrium parameters are chosen as the 

previous description. 

As shown in the figure.(5.7), we plot the n=6 FLEM (a) growth rate A/   and (b) 

real frequency r A/    versus the wall position b/a with the kinetic effect of the 

EIs alone, for two different poloidal beta 0 135P .   and 0 1P .  . The other 

equilibrium parameters are F=-0.06, q0=0.1448, and no plasma rotation is 
considered. The results shown in the figure are below the ideal wall beta limit. 
Similar to the previous result in the figure.(5.2), the FLEM can be triggered if the 
wall position exceeds a critical value, and the instability becomes more significant 
by setting the wall farther away from the plasma. The neglected FLEM instability 
at the critical wall position is due to the increased mode frequency by reducing the 
wall position b/a, where the mode resonance with the precessional motion of the 

trapped EIs does not occur. Here the increased vaccum energy Wvb  (>0) by 
decreasing the wall position b/a leads to increase the total plasma potential energy 

r
bW (>0), which indeed increases the real frequency of the FLEM by considering 

the dispersion relation in Eq.(5.3-a). Furthermore, as an example with the 

parameter 0 0 5* .   and 100keV   in the figure.(5.7), the trigger of the FLEM 
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for the lower poloidal beta 0 1P .   (blue line) case requires farther wall position 

b/a compared with the higher 0 135P .   case (red line). It is explained that the 

increased r
bW  due to the reduced pW (<0) needs to be compensated by the 

increased Wvb (>0). As the result, the plasma equilibrium parameters, the wall 
position b/a and the total plasma pressure P, brings a significant effect on the 
FLEM.  

For each P  case in the figure.(5.7), the comparison of the FLEMs with different 

equilibrium parameter 0
*  and   of the EIs is also investigated. Firstly, it is found 

that the FLEM is independent on the penetration time of the wall, and the FLEM 
with the resistive wall (black line) and with ideal conducting wall (black points) 

has almost same eigenvalue. This is due to the very high frequency r A/   of the 

ELEM, where the resistive wall plays the role of the shielding action similar to the 
ideal conducting wall. Secondly, we find that the increased density of EIs leads to 
enhance the FLEM instability, where the critical wall position b/a is slightly 

reduced, as the example for the case 0 135P .   with 0 0 3* .   (black line), 

0 0 5* .   (red line), 0 2 0* .   (green line) by keeping 100keV  . The density of 

the EIs for each 0  is 0 15en / n .  , 0 22en / n .  , 0 46en / n .  , which leads to 

increase the kinetic driven i
kW  due to Eq.(2.12). However, this influence of the 

density on the FLEM is not important compared with that of the equilibuim 

parameters b/a and P , where the density of EIs increases almost three times with 

the change of the critical wall position 0 0625cb / a .  . Finally, we compare the 

FLEMs with different birth energy   by keeping 0 0 5* .   unchanged for both 

cases. It is found that the increased 150keV   (red dashed-dot line for 

0 135P .   case and blue dashed-dot line for 0 1P .   case) leads to increase the 

FLEM instability significantly. The FLEM can be unstable, even with the wall that 

is almost closed to the plasma, as the example with 0 0 5* .   and 200keV   

(yellow dashed-dot line) for 0 1P .   case. This is because of the increased 

precession frequency of the EIs dn  , which makes the mode resonance 

happening easily for a given plasma equilibrium. The resonance condition 



The Excitation of the Fishbone-Like External Mode in both RFP and 
Tokamak configurations 

 
97

d rn     ( 0  ) can be satisfied, with higher r
bW  which determines the higher 

FLEM real frequency r  in Eq.(5.3-a). Consequently, the birth energy of the EIs 

 , as well as the wall position b/a and the total plasma pressure P ( P ), gives the 

dominated effect on the characteristic of the FLEM instability.  
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Figure 5.7. The n=6 FLEM (a) growth rate A/   and (b) real frequency r A/   

versus the wall position b/a with the kinetic effect of the EIs alone, for two 

different poloidal beta 0 135P .   and 0 1P .  . For each P  case, the 

comparison of the FLEMs with different equilibrium parameter 0
*  and   of the 

EIs is also investigated. For 0 135P .   case, (a) 0 0 3* .   (black solid line), 

0 0 5* .   (red solid line), 0 2 0* .   (green solid line) with 100keV   ; (b) 0 0 3* .   

and 100keV   with ideal conducting wall (black points); (c) 0 0 3* .   with 

150keV   (red dashed line). For 0 1P .   case, 100keV   (blue solid line), 

150keV   (blue dashed-dot line) and 200keV   (yellow dashed-dot line) are 

chosen while keeping 0 0 5* .  . The other equilibrium parameters are F=-0.06, 

q0=0.1448, and no plasma rotation is considered. 
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Figure 5.8. The instability window of the n=6 FLEM is plotted in the plane of the 

poloidal beta P  versus the wall position b/a. The black line represents the ideal 

wall beta limit, while the red line and the blue line represent the boundary of the 

instability window for the two cases: (a) 0 0 3* .   and 100keV  ; (b) 0 0 51* .   

and 150keV   respectively. The other equilibrium parameters are F=-0.06, 

q0=0.1448, and no plasma rotation is considered. 

 

Figure.(5.8) shows the instability window (shaded area) of the n=6 FLEM driven 

by the precession resonance of the EIs, in the P -b/a plane. The black line 

represents the ideal wall beta limit, while the red line and the blue line represent 

the boundary of the instability window for the two cases: (a) 0 0 3* .   and 

100keV  ; (b) 0 0 51* .   and 150keV   respectively. Here for a given P  

value, the density of the EIs en / n (0) is kept unchanged, and thus higher birth 

energy   means higher beta fraction of the EIs 0
* . The above and to the right of 

the shaded area represents the unstable region of the ideal kink, while the below 
and to the left of the shaded area represents the stable region of the FLEM. For a 
given wall position b/a, each FLEM has the instability window opened along the 

P  axis. On the other side, each FLEM has its instability window in the b/a axis, 

for a given P  value. It is found that higher  leads to the broader instability 

window in both P  and b/a parameter spaces. The trigger of the FLEM requires 
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farther wall position when the poloidal beta P  is low. Overall, figure.(5.8) clearly 

shows the three dominated parameter effects on the FLEMs and their relationship 
between each other.  

Two different unstable, internally non-resonant n=6 modes, the RWM and the 
FLEM, coexisting (or coupling) in the RFP plasma for various beta fraction of EIs 

* , are investigated in the counter direction 0 0A/ .    and co-direction 

0 0A/ .   , as shown in the figure.(5.9) and figure.(5.10) repectively. The FLEM 

(a) growth rate A/   and (b) real frequency r A/   are plotted versus the plasma 

rotation frequency A/  . The constant beta fraction are chosen as 3 1* .   

( 0 05P .  ), 2 6* .  ( 0 045P .  ), 2 1* .   ( 0 04P .  ) with the unchanged thermal 

poloidal beta 0 015thermal .  , the wall position b/a=1.275 and 100keV  . The 

other parameters are chosen as F=-0.015 and q(0)=0.1448.  It is found that the real 

frequency r A/   of the FLEM changes linearly with respect to the plasma 

rotation A/  , where the resonance condition d rn n      for the FLEM 

instability is satisfied. It is indicated that the growth rate and the frequency of the 

FLEM is dependent on the plasma rotation A/  . With the presence of EIs in the 

plasma, the RWMs can be stabilized in the counter direction as studied in the 
previous results, and the FLEM and the RWM can coexist if the RWMs are 
unstable. Furthermore, the mode coupling between the FLEM and RWM are 

observed for the 2 1* .   ( 0 04P .  ) case. It depends on the plasma equilibrium 

parameters, resulting in that the mode growth rate and real frequency of both 
unstable modes are closed sufficently.  
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Figure 5.9. The normalized (a) growth rates A/   and (b) the frequency r A/   

of the RWM and the FLEM, coexisting and coupling, are plotted as a function of 

the plasma rotation frequency in the counter direction 0 0A/ .   . The constant 

beta fraction are chosen as 3 1* .   ( 0 05P .  ), 2 6* .  ( 0 045P .  ), 2 1* .   

( 0 04P .  ) with the unchanged thermal poloidal beta 0 015thermal .  , the wall 

position b/a=1.275 and 100keV  . The other parameters are chosen as F=-0.015 

and q(0)=0.1448. 
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Figure 5.10. The normalized (a) growth rates A/   and (b) the frequency r A/   

of the RWM and the FLEM, co-existing, are plotted as a function of the plasma 

rotation frequency in the co-direction 0 0A/ .   . The constant beta fraction are 

chosen as 3 1* .   ( 0 05.  ), 2 6* .  ( 0 045.  ), 2 1* .   ( 0 04.  ) with the 

unchanged thermal poloidal beta 0 015thermal .  , the wall position b/a=1.275 and 

100keV  . The other parameters are chosen as F=-0.015 and q(0)=0.1448. 

As shown in the figure.(5.11), the absolutions of the dominated componants of (a) 

the plasma displacement 1| |  (m=-1) and (b) the perturbed magnetic field 1|Q | 

(m=-1,-2,-3) are plotted along the minor radius for the FLEM and the RWM, 

cooresponding to the 2 6* .  ( 0 045P .  ) case without the plasma rotation in the 

figure.(5.9). The total poloidal Fourier harmonics are m=-5 to -1. The amplitudes 
of each eigenfunctions are normalized by their maximum value in the radius 
direction. It is found that the dominated contribution comes from the m=-1 
harmonic for n=6 mode growth rate, and the toroidal effect is weak in the RFP 



The Excitation of the Fishbone-Like External Mode in both RFP and 
Tokamak configurations 

 
101

plasma for both the FLEM and RWM. The configurations of the eigenfunction for 
the FLEM and the RWM are similar to each other, and it comfirms the kink-like 
property of the FLEM. As the results, with the present of the EIs, the FLEM can 
be considered as another kink-like unstable branch, compared with the RWM 
branch under the ideal beta limit. The differences are their instabilizing physics 
machanism, which are the kinetic resonance driven from the EIs for the FLEMs 
and the magnetic penetration of the resistive wall for the RWMs. 
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Figure 5.11. The absolutions of the dominated componants of (a) the plasma 

displacement 1| |  (m=-1) and (b) the perturbed magnetic field 1|Q | (m=-1,-2,-3) 

are plotted along the minor radius for the FLEM and the RWM, cooresponding to 

the 2 6* .  ( 0 045P .  ) case without the plasma rotation in the figure.(5.9). The 

total poloidal Fourier harmonics are m=-5 to -1. 

 

5.2 Kinetic	 effects	 of	 EPs	 with	 isotropic	 distribution	 on	 FLEMs	 in	
Tokamak	plasma	

In the tokamak with similar geometry of the RFP, the same type of the FLEM is 
observed. The reduced dispersion relation in Eq.(5.3) can be applied near the 

critical stabilization of the FLEM, where the mode growth rate A/   is much 

smaller than the mode frequency r A/  . Generally for the FLEM in the tokamak, 

the growth rate A/   is comparible to the real frequency r A/  , as shown in 

the figure.(5.12). By considering the kinetic effect of EPs alone, where 
i i
k FW W    and r r

b kW W   , we obtain,  
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In the figure.(5.12), we plot the n=1 FLEM (a) growth rate A/   and (b) real 

frequency r A/   versus the plasma beta   for three case, which are calculated in 

the kinetic mechanism of EIs alone with 0 0 3* .   ( 0 067* .  ) and 0 1 0* .   

( 0 19* .  ), as well as the full kinetic with 0 1 0* .   ( 0 19* .  ). The pressure of the 

EIs is given by the pressure fraction   2 8
0(1 )a thermalP / P s P s  . The same cross 

section to the RFP case is used with the wall position b/a=1.12, and no plasma 

rotation is considered. The birth energy of the EIs is kept as 100keV  . Similar 

to the RFP case, it is found that the FLEM instabilities in the tokamak can also be 

triggered by the precession drift motion of the EIs, when the plasma beta   is 

exceeding a critical value, even without the plasma rotation. The FLEM can be 
resonance and/or non-resonance, where the dominant non-resonant external kink 
mode (e.g. m=-1, n=1) couples with the resonant external kink modes (e.g. m=-2, -

3, n=1). The real frequency r A/   of the FLEM, which is much smaller than the 

RFP case, is reduced by increasing the plasma beta. It is also observed that the 
mode instability is reduced by considering the smaller EIs fraction or the full 
kinetic mechanism. These results indicate the same characteristic of the FLEM to 
that in the RFP plasma. The ideal wall beta limit is modified by the kinetic effects, 

which are 0 0124idealwall
limit .   for EIs kinetic effect alone and 0 0139idealwall

limit .   for 

full kinetic with the no wall beta limit 0 0078nowall
limit .  . 
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Figure 5.12. The n=1 FLEM (a) growth rate A/   and (b) real frequency r A/   

versus the plasma beta   are plotted in the kinetic mechanism of EIs alone with 

0 0 3* .   ( 0 067* .  ) and 0 1 0* .   ( 0 19* .  ), as well as the full kinetic with 

0 1 0* .   ( 0 19* .  ). The wall position is b/a=1.12, no plasma rotation is 

considered and the birth energy of the EIs is kept by 100keV  . 
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Figure 5.13. The radial profiles of various frequencies of each species over the 
velocity space and over the poloidal angle are plotted, including the transit 

frequency   pm nq   of the thermal passing ions and the precession frequency of 

the trapped EIs dn   with different plasma beta 0 0103.   ( 2 77N .  ) and  

0 0125.   ( 3 37N .  ). The FLEM real frequency 0 091 0 058r A/ . , .    with 

respect to   are also plotted, in which shows the resonance region of the FLEM 

(shadow region). The other parameters are chosen as same as that in the 
figure.(5.12). 
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As shown in the figure.(5.13), the radial profiles of each frequency averaged over 

the velocity space and the poloidal angle are plotted, including the transit 

frequency of the thermal passing ions   pm nq   for m=-1 and m=-2 as well as 

the precession frequency of the trapped EIs dn  . Two cases with different 

plasma beta 0 0103.   ( 2 77N .  ) and  0 0125.   ( 3 37N .  ) are considered, 

and the FLEM real frequency 0 091 0 058r A/ . , .    are also plotted, in which 

shows the resonance region (shadow region). Similar to the RFP case, the 

resonance for FLEMs occurs under the condition of d rn n     as shown in 

the resonance oparetor Eq.(2.10), which can be satisfied even at 0  . Compared 

with the RFP case, the frequency of FLEM r A/   in the tokamaks is much lower, 

due to the lower precession frequency of EPs in a tokamak than in RFP (with 

similar geometry). The increased FLEM frequency leads to make the wave-mode 

resonance happening difficultly. It is also found that the transit frequency region 

  pm nq   is similar to dn  , which causes the cancellation of the EPs kinetic 

driven contribution and reduces the FLEM instability.  

As shown in the Figure.(5.14), the energy components versus the plasma beta   

with 0 1 0* .   ( 0 19* .  ), are plotted by considering the kinetic effect of EIs alone. 

The detailed kinetic energy kW  components, by considering the full kinetic effect, 

are plotted in the figure.(5.15), including (a) the real part and (b) the imaginary 

part of the kinetic energy i
kW . It is found that the total potential plasma energy 

r
bW  is increased by reducing the plasma beta  , due to the reduced PW (<0), as 

shown in the figure.(5.14). With the analysis of the dispersion relation Eq.(5.4-a), 
i
kW  modifies the dominated term r

bW . However, the real frequency r A/   is 

increased with the reduced plasma beta  , which is as same as calculated in the 

RFP case. The imaginary part of the kinetic energy i
kW  becomes zero at the 
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critical plasma beta  , resulting in the zero growth rate of the FLEM as described 

in Eq.(5.4-b). By considering the full kinetic effect, the neglected imarginary 

kinetic energy i
kW  is mainly due to cancellation contributed from the thermal 

particles as shown in the figure.(5.15). The kinetic contribution of the thermal 
particle leads to give a stabilizing effect on the FLEM instability. The Landau 
damping of the transit resonance by the passing thermal particles in Tokamak is 
weaker than in RFP due to the longer connection length in Tokamaks. 
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Figure 5.14. The energy components as described in the dispersion relation in 

Eq.(5.4) versus the plasma beta   are plotted with 0 1 0* .   ( 0 19* .  ), by 

considering the kinetic effect of EIs alone. The other parameters are same as that 
in the figure.(5.12). 
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Figure 5.15. The detailed kinetic energy components kW , by considering the full 

kinetic effect, versus the plasma beta   are plotted with 0 1 0* .   ( 0 19* .  ), 

including (a) the real part r
kW  and (b) the imaginary part i

kW  of the kinetic 

energy. The other parameters are same as that in the figure.(5.12). 

 

( a )             ( b ) 

Figure 5.16. The 2-D plots of (a) the precession frequency of the EIs dn   

(averaged over the velocity space), and (b) the imaginary parts of the kinetic 

energy i
kW  for the FLEM, with the plasma beta 0 012.   ( 3 02N .  ) and the 

fraction 0 1 0.   ( 0 0 19* .  ), are shown in the R-Z plane. The other equilibrium 

parameters are chosen as the previous description. 

In the figure.(5.16-a), the particle phase space averaged precession frequency of 

the trapped EIs is plotted with the plasma beta 0 012.   ( 3 02N .  ) and the beta 

ratio 0 0 3* .   ( 0 062* .  ) in the R-Z plana. The imaginary distribution of the 

kinetic energy contributed by the EIs’ precessional drift resonance is also plotted 
in the toroidal cross section as shown in the figure.(5.16-b), corresponding to the 
figure.(5.16-a). The FLEM frequency calculated with the above parameter is 

0 067r A/ .   . The value of the precession frequency has very large positive 

value in a small region near the plasma core. The imaginary kinetic energy i
kW  

has the maximum amplitude near the plasma core. The distribution of i
kW  in the 
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Tokamak configuration is similar to the RFP case. The asymmetry distribution of 
i
kW  is because of the contribution from the dominated m=-1 harmonic. 
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Figure 5.17. The instability window of the n=1 FLEM is plotted in the plane of the 

plasma beta   (left) and N  (right) versus the wall position b/a. The black dashed 

line represents the no wall beta limit ( 0 0078nowall
limit .  ). The red line and the blue 

line represent the boundary of the instability window for the two cases: (a) 

0 0 3* .   ( 0 067* .  ) and 100keV  ; (b) 0 0 51* .   ( 0 107* .  ) and 150keV   

respectively. The solid lines denote the ideal wall beta limit that is modified by the 
kinetic effect, and the dashed lines denote the stable/unstable boundary of the 
FLEMs. No plasma rotation is considered. 

Figure.(5.17) shows the instability window (shaded area) of the n=6 FLEM driven 

by the precession resonance of the EIs, in the  ( N )-b/a plane. The black dashed 

line represents the no wall beta limit ( 0 0078nowall
limit .  ). The red line and the blue 

line represent the boundary of the instability window for the two cases: (a) 

0 0 3* .   ( 0 067* .  ) and 100keV  ; (b) 0 0 51* .   ( 0 107* .  ) and 150keV   

respectively. The solid lines denote the ideal wall beta limit that is modified by the 
kinetic effect, and the dashed lines denote the stable/unstable boundary of the 
FLEMs. The above and to the right of the shaded area represents the unstable 
region of the ideal kink, while the below and to the left of the shaded area 
represents the stable region of the FLEM. For a given wall position b/a, each 
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FLEM has the instability window opened along the   axis. On the other side, each 

FLEM has its instability window in the b/a axis, for a given   value. It is found 

that higher  leads to the broader instability window in both   and b/a parameter 

spaces. The trigger of the FLEM requires farther wall position when the plasma 

beta   is low. However, the results indicate that the FLEM is unstable only if the 

plasma beta   exceeds the no wall beta limit 0 0078nowall
limit .  .  

5.3 Summary	

The Fishbone-Like External kink Mode (FLEM) instability driven by the 
precession drift motion of Energetic Particles is investigated in both RFP and 
Tokamak plasmas, by using the MHD-kinetic hybrid toroidal stability code 
MARS-K. The ideal kink dispersion relation is adopted in order to obtain more 
detailed physical understanding. The EPs is the energetic ions from the NBI, 
described by using isotropic model. The FLEM instability has the similar 
characteristic in both magnetic confinement configurations. In this work, the 
effects of the equilibrium parameters, including the plasma pressure, the wall 
position, the birth energy and the density of the EIs, are studied repectively.  

In the RFP plasma, the non-resonant FLEM instability is predicted. In general, the 
instability of FLEM does not depend on the wall resistivity. The analysis with the 

dispersion relation indicates that the frequency r  of FLEM is determined by the 

potential plasma energy bW , which is effected significantly by the total plasma 

pressure and the wall position. The higher plasma pressure and the farther wall 

position leads to smaller bW  (smaller frequency r ). If the frequency r  falls 

inside the range satisfying the resonant condition with the precession frequency of 
a given type of EPs, the instability of FLEM can appear. The instability of the 

FLEM is enhanced by the reduced bW . On the other side, the enhanced instability 

of the FLEM is also found by increasing the precession frequency dn  (higher 

birth energy  ) and the density Na/Ne of EIs for a given type of the plasma 

equilibrium. However, the FLEM property is more sensitive to the EIs precession 

dn  frequency than the EIs density Na/Ne. In the full kinetic mechanism, the 

cancellation of the kinetic effect between the thermal particles (transit resonance 
of passing particles) and the EIs exists, where the thermal particle gives a 
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stabilizing effect on the FLEMs. With the presence of EPs in the plasma, it is 
found that the FLEM and the RWM can coexist or couple to each other, depending 
on the plasma parameters. 

The same type of the instability is observed with the plasma beta 
nowall idealwall
limit limit      in the Tokamak plasmas, where the dominant non-resonant 

external kink mode (e.g. m=-1, n=1) couples with the resonant external kink 
modes (e.g. m=-2, -3, n=1). The similar nature of the FLEMs to that in RFPs is 
observed. Nevertheless, in Tokamak the frequency of FLEM is much lower than 
what in RFP due to the lower precession frequency of EPs in a Tokamak than in 
RFP (with similar geometry). Furthermore, the Landau damping of the transit 
resonance by the passing thermal particles in Tokamak is weaker than in RFP due 
to the longer connection length in Tokamaks.  
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6 RWM study in JT-60SA advanced Tokamak 

The stabilization of the RWM for the JT-60SA advanced Tokamak has been 
studied by MARS-K code in the fuild model with the ion acoustic Landau 
damping. The equilibrium data from the EQDSK file is modified and converted to 
the type that can be used in MARS-K. This work shows the preliminary results 
which gives basic physical predictions and understanding of the RWMs. The 
important kinetic effects of the thermal paricles as well as the energetic beam ions 
on the RWMs will be also studied in the future works.  

6.1 Model	and	Equilibrium	

The toroidal MHD-kinetic hybrid stability code MARS-K is applied to the RWMs 
stability studies by using the advanced Tokamak JT-60SA equilibrium (scenario 

#5-1) [44]. For a given curvilinear flux coordinate system  , ,s   , and by 

assuming that all the perturbations have the form    , , , , i t inA s t A s e       , the 

MHD equations are written in the Eulerian frame in the code as shown in the 
previous sections:  

    2i n R       ξ v ξ       (6.1) 

 i n p           v j B J Q Π       (6.2) 

      2i n R         Q v B Q      (6.3) 

 i n p P P        v ξ        (6.4) 

 j Q          (6.5) 
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In this work, we studies the stabilized effect of the plasma rotation on the RWMs 
in the fuild model, which uses the ion acoustic Landau damping for each (m, n) 
component of the perturbered toroidal motion of the plasma. The model for the 
thermal ion acoustic Landau damping is written by [3], 

| | | | , | || | th ik v  Π v        (6.6) 

Where | | ( / ) /k m q n R   is the parallel wave number, ,th iv  is the ion thermal 

velocity, and | |v  is the perturbed parallel velocity of the plasma. The damping 

effect enters into the MHD equations (momentum equation in Eq. (6.2)) by giving 

an appropriate strength parameter | | .  
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Figure 6.1. The geometry of the smoothed plasma surface (red line), the double 
shell (blue line) and the calculated effective wall (black line) are plotted in the R-Z 
plane. The major radius R0 is R0=3.25(m). 

As shown in the figure.(6.1), the cross-section of the plasma shape and the double 
resistive wall designed in the JT-60SA are plotted in the R-Z plane. The double 
wall and the plasma facing components outside the plasma are replaced by an 
effective single wall which is convenient to the computation by using the thin-
shell approximation. The plasma surface around the X-point (on the side of the 



RWM study in JT-60SA advanced Tokamak 

 
113

lower divertors) is also smoothed while it affects the plasma equilibrium very 
slightly. The equilibrium data of the JT-60SA scenario #5-1 from the EQDSK file 
are shown as the radial profiles in the figure.(6.2), including the temperature of the 
thermal ions Ti and electrons Te, the density of the thermal ions Ni and electrons 
Ne as well as the energetic ions Na from the NBI injection, the pressure 
components of each species, and the total plasma current density. The equilibrium 
parameter chosen in this work are the major radius R0=3.25(m), the toroidal 

magnetic field BT=1.5631(T) and the normalized beta 3.2N  . All the 

equilibrium data, including the smoothed plasma shape, effective wall and the 
equilibrium profiles, is regenerated by using the equilibrium code CHEASE, and 
converts to the type as the inputs of the code MARS-K. 
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Figure 6.2. The plots of the radial profile of the equilibrium, includes (a) the 
temperature of the thermal electrons and ions, (b) the density of the thermal 
electrons and ions as well as the energetic ions, (c) the pressure componnents of 
each species and (d) the total plasma current density.  
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In the figure.(6.3), it shows the radia profile of calculated safety factor q, and the 
rotation frequency  . It is found that the reversed q-profile (qmin>1) with the beta 

parameter 3.2N   has its value at the plasma core q(0)=4.4 and at the plasma 

edge q(a)=6.7. The rotation frequency is peaked largely near the plasma edge, and 
it is found that at the region q~3 the rotation becomes flat especially. The 

remarked rotation frequency in the following results / A  is the rotation 

frequency at the plasma center (0) , and it is normalized by the Alfven frequency 

0 0 0 0/A B R   . The rotation frequency at q=3 is about 30% of the value at the 

plasma center. 
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Figure 6.3. The toroidal rotation frequency (red line) and the safety factor q (black 

line) with the beta ratio 3.2N   are plotted as the radia profile. The marked 

plasma rotation frequencies / A  given in the following results are the values of 

plasma rotation frequency (normalized by the Alfven frequency A ) at the plasma 

center. 

 

6.2 Predicted	JT‐60SA	results			

The equilibrium parameters we chosen in our study of the n=1 RWM stabilization 
by the toroidal plasma rotation for the JT-60SA advanced Tokamak, includes the 

wall position b/a=1.12, the plasma beta 3.2N   with poloidal harmonic number 

m (from -12 to 40). Firstly as shown in the figure.(6.4), the no-wall beta limit 
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( ) 1.93N no wall    and the ideal-wall limit ( ) 5.59N ideal wall    are calculated 

respectively.  The parameter C   is defined as, 

no wall
N N

ideal wall no wall
N N

C
 

 



 





       (6.7) 

Where the range of the parameter C  is from 0 (at the no-wall beta limit) to 1 (at 

the ideal-wall beta limit). Here we choose 3.2N   , due to the plasma pressure 

given by the EQDSK file, and we obtain the parameter C =34.7%. 
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Figure 6.4. The no wall -limit and ideal wall -limit of RWM in JT-60SA are 

plotted, which are N (no wall) =1.931 and N (ideal wall) =5.596 respectively. The 

poloidal Fourier harmonics number m from -12 to 40 and the toroidal mode 
number n=1 are taken into the calculation. The other parameters are wall position 

b/a=1.12 and strength parameter of the parallel sound wave damping | | 0.05  . 

In the figure.(6.5), the n=1 RWM growth rate and real frequency versus the 
plasma rotation are plotted in three cases, which has the uniform rotation profile 

with the strength parameter of the ion acoustic damping (a) | | 0.5  , and the 

experimental rotation profile (shown in the figure.(6.3)) with the strength 

parameter (b) | | 0.5   and (c) | | 1.0  . It is found that the critical rotation 

frequency required by considering the peaked rotation profile, is increased slightly 
by increasing the strength parameter. Compared between the case (a) and (b) 
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(where | | 0.5  ), it is found that the critical rotation frequency for the uniform case 

1 / 0.05C A   is much smaller than the peaked rotation case 2 / 0.225C A  . The 

ratio of the critical rotation frequency for both cases is 1 2/ 0.22C C   , and it 

indicates that the stabilizing effect contributed by the ion acoustic Landau 
damping is mainly located at the region q>3 as shown in the figure.(6.3). As the 
results, this peaked rotation profile gives less stabilization of the RWM in the JT-
60SA equilibrium than a flat profile. 
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Figure 6.5. The n=1 (a) RWM growth rate /A and (b) real frequency r/A 

versus plasma rotation frequency /A are plotted for different | | =1.0, 0.5, 

0.5(uniform velocity). The other parameters are N=3.2467, q0=4.407, qa=6.709, 
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b/a=1.12. The RWM can be stabilized due to viscous damping, and the critical 

plasma rotation frequency /A for RWM stabilized decreases with parameter //. 

However, the critical rotation frequency, in particular for the uniform rotation 

profile 1 / 0.05C A  , is a little large, compared with the predicted results of the 

other advanced equilibrium [75]. In order to find out the reason behind the results, 

the RWM growth rate versus the wall position with | | =0.5 and different rotation 

frequency is plotted as shown in the figure.(6.6). The stability window contributed 
by the ion acoustic damping is opened at the wall position b/a=1.25 when the 

rotation frequency is equal to 1 / 0.05 ~ 0.1C A  , and it is enlarged by increasing 

the rotation frequency. We find that the critical rotation frequency can be reduced 
by moving the wall position a little far away from the plasma.  

As shown in the figure.(6.7), the n=1 RWM eigenfunction of the perturbed 
displacement and the magnetic field in the radial direction are plotted with the 

parameter /A=0.1, | | =0.5, b/a=1.12. The poloidal Fourier harmonics number 

m is from -12 to 40. It is found that the amplitude of the m=2 mode is much larger 
than the others, which is most unstable mode and gives major contribution to the 
n=1 mode growth rate. As the results, the dominated instability is an external 
resonance (2,1) mode. The stronge mode coupling is also found due to the 
significant toroidal effect. 
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Figure 6.6. The n=1 RWM growth rate /A versus wall position b/a are plotted 

for different plasma rotation frequency /A=0.225, 0.175, 0.1, 0.05, 0.005. The 

other parameters are N=3.2467, q0=4.407, qa=6.709, | | =0.5. The stability 

window appears and is enlarged by an increase in plasma rotation frequency /A. 
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Figure 6.7. The n=1 RWM eigenfunction of (a) the perturbered displacement 1  

and (b) the magnetic field Q1 in the radial direction are plotted with /A=0.1, 

| | =0.5, b/a=1.12. The poloidal Fourier harmonics number m is from -12 to 40. 

The dominated mode number is m=2. 
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Shaping effect on MHD stabilities in reversed field pinch (RFP) plasmas: 

We have studied the shaping effects on RFP plasmas by using the MHD-kinetic 
hybrid toroidal stability code MARS-K. Both elongation and triangularity effects 
have been investigated. The studies focus on the most important MHD modes in 

RFPs. The first topic is the p limit set by the RWM (the ideal kink mode) 

instability, where the ideal-wall  limit and the stabilization by drift kinetic 

damping are studied; and an in-depth analysis has been carried out for physics 
understanding. The second topic is on the linear stability of the resistive mode (the 

dynamo modes) under shaping effects in the low  RFP plasmas, and the 

comparison with the circular case.  Finally we report a computational result on the 
bootstrap fraction in shaped RFP plasmas. 

The RFP magnetic configuration is characterized by a strong poloidal magnetic 
field and reversed toroidal field. Shaping effects in RFP induce a stronger poloidal 
mode coupling than the circular case, due to the variation of the poloidal field 
strength along the poloidal angle. Moreover, shaping also introduces multiple 
trapped regions. As a consequence, the shaping effects lead to quite a different 
conclusion from that of a tokamak. The detailed results are summarized as follows. 

For the RWM, shaping yields a lower ideal-wall  limit, and increases the growth 

rate of the mode due to the reduction of the vacuum energy component Wvb. In 

this case, the kinetic damping becomes more significant than the circular case, 

meaning that the kinetic stabilization requires a lower p value, and possibly also a 

slightly slower rotation. However, the kinetic contribution is still dominant by the 
ion acoustic Landau damping of passing particles, thus requiring a critical plasma 
rotation still in the ion acoustic frequency range. Furthermore, the stabilization 

windows in shaped RFP become narrower in both p and b/a parameter spaces. 

Appearance of multiple trapping regions due to the shaping can enhance the 
bounce resonance damping, which, nevertheless, is not the dominant damping 
mechanism for the RWM in thermal RFP plasmas. 
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For the linear resistive modes in low  RFP, shaping induced poloidal coupling 

only moderately increases the growth rate, without significantly influencing the 

stability boundary of the mode in the F- plan. The self-organized RFX plasma in 

a relaxation process operates along a fixed F- curve, which is near the marginal 

stable state of the tearing modes. Since the shaping effects do not give a notable 
change to the stability boundary, we may conclude that shaping in RFP cannot 
introduce a notable change to the state of the dynamo system. 

The RFP configuration yields a much smaller (order of (2)) fraction of the 

bootstrap current than that in tokamaks. Although shaping can increase the 
bootstrap fraction by up to 30%, the eventual fraction in shaped plasmas still 
remains the same order as that in a circular RFP. Therefore, in order to reach 
steady state RFP fusion reactors, a substantial fraction of external current drives 
would be necessary, because the unfavourable scaling for the plasma generated 
bootstrap current in the RFP configuration. 

Based on the results from the above studies, we conclude that the present circular 
cross section design for RFPs is an appropriate choice, in the sense that no notable 
improvement for the RFP performance seems to be gained by shaping the plasma 
cross section. The major physics reason is the strong poloidal field in RFP 
(compared to the toroidal field), which plays an important role in the poloidal 
mode coupling and the particle dynamics, in particular, prevents the access to a 
substantially improved good averaged curvature by shaping.  

The new multiple trapped regions appear in the shaped RFP configuration. 
Although these regions do not significantly modify the RWM stability in thermal 
plasmas, they can still be the notable phenomena which may influence the 
energetic particle physics and the other kinetic driven instabilities in a shaped RFP. 

 

The kinetic effect of the energrtic paricles on the resistive wall mode stability 
in the RFP, compared with the Tokamaks: 

The kinetic effect contributed from the energetic ions on the RWMs in the RFP 
plasma has been studied, by using the MHD-kinetic hybrid toroidal stability code 
MARS-K. Both isotropic and anisotropic distributions of the EIs have been 
investigated. The studies are focused on the most important RWMs (n=6) in the 
RFPs. The total poloidal beta is chosen closed to ideal wall beta limit, meansing 
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that the kinetic damping plays an important role on the stability of the RWMs due 

to the small bW  [27]. First of all, the resonance of the mode with the EIs, which is 

the precession resonance of the trapped EIs, is studied and compared with the 
thermal kinetic effects. Secondly, the effect of two important parameters (the birth 

energy   and density Na/Ne), which are relative to the beta ratio *  and give a 

significant influence to the kinetic contribution of the EIs, are studied respectively. 
Finally, the results of the kinetic effect of the EIs in the tokamak plasma are 
obtained, in order to compare to the RFP case and make more physical 
understanding. 

The stability of the RWMs due to the kinetic effect of the EIs alone has been 
observed in the RFP plasma, which has the similar kinetic damping to that from 
the thermal particles (dominated by the ion acoustic Landau damping of the 
thermal passing ions). The precession resonance of the trapped EIs can occur only 

in the nagative direction / 0A   (opposite to the direction of plasma current), 

and the critical rotation frequency with the birth energy of the EIs 100keV   is 

comparible to the thermal particles. By considering the full kinetic mechanism, the 
cancellation between two species is found, which leads to enlarge the critical 
rotation frequency required to stabilize the mode. The effect of the equilibrium 
parameter of the EIs gives the more detail results as shown in the following: (a) 

The birth energy   leads to decide the precession frequency, resulting in 

determine the resonance region due to the resonance condition 0d   ; (b) The 

density of the EIs, which is analysed through the anisotropic distribution study, is 
roughly proportional to the kinetic contribution (relative to the pressure of the 
trapped EIs). As the results, it leads to give directly the influence to the 
cancellation between two species, and the kinetic contribution from the EIs can be 
dominated if the fraction of the trapped EIs is sufficiently large. 

A comparion of the kinetic effect of the EIs in the tokamak configuration with the 
RFP case has also been investigated. The most difference between two fusion 
devices is their magnetic configuration, which leads to the different distribution of 
the EIs precession frequency. As the results, the precession frequency of EIs is 

much smaller in the most region of plasma ( ~ 0d ) than the RFP case. The 

precession resonance of trapped EIs becomes significant at the low plasma rotation 

in both direction (a) / 0A   and (b) / 0A  . However, the stabilization of the 
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RWMs is difficultly achieved at the low rotation frequency by the EIs alone, 
because the kinetic damping of the EIs is not large sufficiently. Furthermore, the 
similar behavior of the EIs, compared with the RFP case, is found by increasing 

the plasma rotation frequency ( / 0A  ), because of the increased stabilizing 

kinetic damping from the EIs relatively. 

The analysis in this work shows the slight cancellation of kinetic effect between 
the dominated thermal kinetic damping and the precession resonance of the EIs in 
the both configurations. However, with the presence of the EPs in the plasma, the 
condition of the stabilization of RWMs by kinetic damping depends on the 
parameters of the two species. Appropriately choosing the NBI parameters (energy, 
pitch angle of injection et al) may possibly minimize the cancellation effects. 

Study of the Excitation of the Fishbone-Like External Mode in both RFP and 
Tokamak configurations: 

The Fishbone-Like External kink Mode (FLEM) instability driven by the 
precession drift motion of Energetic Particles is investigated in both RFP and 
Tokamak plasmas, by using the MHD-kinetic hybrid toroidal stability code 
MARS-K. The ideal kink dispersion relation is adopted in order to obtain more 
detailed physical understanding. The EPs is the energetic ions from the NBI, 
described by using isotropic model. The FLEM instability has the similar 
characteristic in both magnetic confinement configurations. In this work, the 
effects of the equilibrium parameters, including the plasma pressure, the wall 
position, the birth energy and the density of the EIs, are studied repectively.  

In the RFP plasma, the non-resonant FLEM instability is predicted. In general, the 
instability of FLEM does not depend on the wall resistivity. The analysis with the 

dispersion relation indicates that the frequency r  of FLEM is determined by the 

potential plasma energy bW , which is effected significantly by the total plasma 

pressure and the wall position. The higher plasma pressure and the farther wall 

position leads to smaller bW  (smaller frequency r ). If the frequency r  falls 

inside the range satisfying the resonant condition with the precession frequency of 
a given type of EPs, the instability of FLEM can appear. The instability of the 

FLEM is enhanced by the reduced bW . On the other side, the enhanced instability 

of the FLEM is also found by increasing the precession frequency dn  (higher 

birth energy  ) and the density Na/Ne of EIs for a given type of the plasma 
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equilibrium. However, the FLEM property is more sensitive to the EIs precession 

dn  frequency than the EIs density Na/Ne. In the full kinetic mechanism, the 

cancellation of the kinetic effect between the thermal particles (transit resonance 
of passing particles) and the EIs exists, where the thermal particle gives a 
stabilizing effect on the FLEMs. With the presence of EPs in the plasma, it is 
found that the FLEM and the RWM can coexist or couple to each other, depending 
on the plasma parameters. 

The same type of the instability is observed with the plasma beta 
nowall idealwall
limit limit      in the Tokamak plasmas, where the dominant non-resonant 

external kink mode (e.g. m=-1, n=1) couples with the resonant external kink 
modes (e.g. m=-2, -3, n=1). The similar nature of the FLEMs to that in RFPs is 
observed. Nevertheless, in Tokamak the frequency of FLEM is much lower than 
what in RFP due to the lower precession frequency of EPs in a Tokamak than in 
RFP (with similar geometry). Furthermore, the Landau damping of the transit 
resonance by the passing thermal particles in Tokamak is weaker than in RFP due 
to the longer connection length in Tokamaks.  
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