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UNBIASED ESTIMATING FUNCTIONS
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Abstract
This paper presents a new quasi-profile loglikelihood with the standard kind of distributional
limit behaviour, for inference about an arbitrary one-dimensional parameter of interest, based
on unbiased estimating functions. The new function is obtained by requiring to the corre-
sponding quasi-profile score function to have bias and information bias of order O(1). We
illustrate the use of the proposed pseudo-likelihood with an applications for robust inference
in linear models.

Key words and phv‘"ase.s_': Estimating equation, M-estimator, profile likelihood, quasi-likelihood,
second Bartlett identity.

1 Introduction

Consider a sample y = (y1,...,¥s) of n independent observations with distribution function
F(y;0) depending on an unknown parameter § € © C R%, d > 1. Let

n
(y;0) =Y ¥(yi;0)

i=1
be an unbiased estimating function for 6 based on y. Occasionally, we shall write ¥y and
Yg for ¥(y;6) and 9(y;0), respectively. The estimator of 6 corresponding to ¥y is defined
as a root 6 of the estimating equation ¥(y;6) = 0. Under broad conditions which we
will assume throughout this paper (see e.g. Barndorff-Nielsen and Cox, 1994, Sec. 9.2) it
can be shown that 6 is consistent and asymptotically normal, with mean 6 and variance
B(6)~'Q(0)(B()"1)T, where B(f) = —E{%g/p}, U6) = var{¥y} = E{¥p¥T} and the

symbol / as a subscript indicates differentiation.
Let Ig(6) = lg(6;y) be a scalar function whose gradient with respect to 6 equals Uy, i.e.

0
@) = [ ¥yt

where c is an arbitrary constant. When lg(6) exists, it may be thought of as a quasi-
loglikelihood for # and it may be used, in analogy with ordinary loglikelihood, for setting
quasi-likelihood tests and confidence regions. Actually, the relation

var{Ws} = —E{¥pp} , (1)

1



that is known as the second Bartlett identity when ¥y is the usual score function, does not
hold in general. It is however possible to make relation (1) hold, by considering the linear
transformation

Vo1 = Uy (y;0) = A(0) T , (2)
where the matrix A(0) is such that
A(0)T = —var{¥o} " E{¥q/p} = 2(6) ' B(9) (3)

(see McCullagh, 1991, Sec. 11.7). Since A(8) is nonsingular for all 8, the estimating functions
¥y = 0 and ¥y = 0 have the same solution. If a quasi-loglikelihood function satisfies (1)
many asymptotic considerations are simplified. In particular, the quasi-observed information
has the usual relation with the asymptotic covariance matrix of the estimator § and the
quasi-likelihood ratio statistic has a standard x? distribution. Quasi-likelihood has been
introduced in the context of generalized linear models (see McCullagh and Nelder, 1989). In
this case relation (1) is verified if the variance function is correctly specified and, following
Godambe (1976), the quasi-score is an optimal unbiased estimating function. For a survey
about quasi-likelihood and estimating functions see Desmond (1997).

When d = 1, a quasi-loglikelihood for 8, corresponding to the modified estimating function
(2), given by

o noré
lo(0) =) / A(t)p(yist)dt
i=1:%¢€

is usually easy to derive. In view of this, for setting quasi-likelihood confidence regions or
for testing hypotheses, the quasi-likelihood ratio statistic

i noro
Wa(®) = 2{Io(@) ~lo(®)} =23 [ Atypusst)at

may be used. For instance, confidence regions with nominal coverage 1 — o for 6 can be
constructed as {6 : Wq(6) < x3.,_o}, where x%,,_, is the (1 — a)—quantile of the x? distri-
bution. Alternatively, the directed quasi-likelihood r¢(#) = sgn(d — 8){Wq(8)}'/2, which is
approximately standard normal, may be used.

When d > 1, a quasi-loglikelihood for # does not exist in general. A necessary and suf-
ficient condition for the existence is that the matrix ¥y, /6 be symmetric. Nevertheless, the
problem of nonexistence may be overcome when the interest parameter is a scalar compo-
nent of 6. For this case Barndroff-Nielsen (1995) proposes a quasi-profile loglikelihood with
the standard kind of distributional limit behaviour. However, as it will be discussed in Sec-
tion 2, the modification of the estimating function needed to achieve the usual asymptotic
behaviour and, in particular, the asymptotic x? distribution for the quasi-profile likelihood
ratio statistic, may lead to some interpretation problems as well as computational difficulties.

To avoid such drawbacks, in this paper we propose an alternative quasi-profile loglikeli-
hood for an arbitrary one-dimensional parameter of interest. Such a function, called adjusted
quasi-profile loglikelihood, is obtained by a scaling adjustment of the estimating function for
the scalar parameter of interest only, aimed at obtaining a quasi-profile score function with
properties similar to those of the ordinary profile score, i.e. with bias and information bias
of order O(1). An application example, discussed in Section 3, illustrates the use of the
proposed pseudo-likelihood function for robust inference in linear models.



2 Quasi-profile loglikelihood functions

Suppose that 6 is partitioned as § = (7, \) into a scalar parameter of interest 7 and a (d — 1)-
dimensional nuisance parameter A. The estimating function ¥y is similarly partitioned as
(¥, ¥,), where ¥, = ¥, (y;60) and ¥y = ¥, (y; 6) are the estimating functions corresponding
to 7 and A, respectively. This means that, for instance, if A is known, ¥, may be used as an
estimating function for 7.

To define a quasi-profile loglikelihood for 7, Barndorff-Nielsen (1995) assumes that the
estimating function ¥y is multiplyed by the matrix A(6) so that relation (1) is satisfied.
Consequently, the resulting ¥y, is partitioned as

\IJBi ks \I"rl = AT,T‘IIT . 7 AT,/\\I/,\ (4)

Uy An¥r + A\pTy )
where Arr, A;\, Axr and Ay are, respectively, the (7,7), (7, ), (A, 7) and (X, ) blocks of
the matrix A(0). Le_t Ar be the estimate for A derived from ¥ a1 when 7 is considered as
known, i.e. ¥»;(y; 7, A) = 0. For an arbitary estimating function ¥y, so specified, Barndorff-

Nielsen defines the quasi-profile score for 7 by ¥, (y; 7, X;) and the corresponding quasi-
profile loglikelihood function for T by

lop(T / r(y;t, Ae) dt . (5)

This pseudo-likelihood has properties similar to the ordinary profile likelihood, since the
quasi-profile likelihood ratio statistic and the quasi-profile directed likelihood, under regular-
ity conditions of the standard type, have the usual asymptotic distributions (see Barndorff-
Nielsen, 1995). Then, (5) may be used for setting quasi-likelihood intervals for 7, for testing
hypotheses, etc.

However, due to transformation (2), some conceptual and practical difficulties may arise
in using the quasi-profile loglikelihood (5). First of all, in view of (2), the interpretation
of the components of the new estimating function ¥4; may not be clear. This is because,
in general, in (4) the original partition of the estimating function ¥, into the estimating
equation for 7 and that for X is lost. As a consequence, the partial estimator )\, in general
does not coincide with the estimator of A that actually would be used if 7 was known, i.e.
with the solution of ¥y(y;7,A) = 0 with respect to A. Finally, the use of ¥p; for inference
about 7 can cause more numerical problems than would use of the original ¥,.

All these difficulties vanish in the case where the matrix A(6) is such that Aye= 0.
This is because, in this case, Xr = A, and the quasi-profile score for 7 reduces simply to
Arr(1,A7)9, (y,T, r)- The condition Ay, = 0 on the matrix A(f) is equivalent to the
condition

E{\I!}"\Il,\}E{\IIT/,\} = E{T, 0} E{w,/,} (6)

on the estimating function ¥y. Relation (6) is obtained by looking for a transformation of
the form (x,w), with x = x(7) and w = w(r, ), such that A, , = 0, motivated as in Cox
and Reid (1987) for orthogonal reparameterisations.

In general, condition (6) is not verified in practical situations. For this reason, in this
paper we adopt a more natural criterion for the construction of a quasi-profile loglikelihood
for 7. The new function is based on a suitable adjustment of the estimating function for
the interest parameter only. Let )\, be the partial estimator of A corresponding to ¥y,
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ie. Wy(y;7,Ar) = 0. When ¥y is the usual score of the loglikelihood function, ¥, is the
ordinary profile score function. Here and in the following, the symbol ~ indicates that a
function of @ is evaluated at (T, :\T) and, by convention, the operation ~ is taken to be
always the last carried out. It is well-known that, unlike the full score function, the mean
of the profile score function is not in general exactly 0 and its variance does not satisfy the
second Bartlett identity. However, its bias and information bias are both typically of order
O(1) (see McCullagh and Tibshirani, 1990). In view of this, for an arbitrary estimating
function ¥,, we propose to substitute the unknown parameter A with its partial estimate 5\7_,
obtaining the equivalent of an ordinary profile score function U, = U (y; 7, :\T). Then, we
adjust ¥, so that its bias and information bias are of order O(1), as for the ordinary profile
score function.
The pseudo-profile score function ¥, has bias E{\ilr} and information bias

var{¥,} + E {\iJT/T} . (7

In the Appendix we show that, under standard conditions, E{¥,} is of order O(1), while
(7) is of order O(n). Essentially, we generalize the calculations of McCullagh and Tibshirani
(1990) to an arbitrary profile estimating equation and we propose a scaling adjustment to
the pseudo-profile score function that reduces its information bias to order O(1). The scaling
adjustment yields an estimating function of the form ¥, = Uoa(y; 7, 5\7) = w(T, XT)‘iJT,
where w(-,-) is a suitable function, given in (10), resulting simply from the leading term of
(see McCullagh and Tibshirani, 1990, Sec. 3)

~E{¥,,} /var{¥,} . : (8)

Finally, let
T ~ ~
loplr) = / w(t, Ae) T (y; 8, M) dt 9)
C

be the adjusted quasi-profile loglikelihood function for . This function, which represents an
alternative to the quasi-profile loglikelihood (5), has some properties of the ordinary profile
loglikelihood. In particular, it is easy to show that, in view of (8), the adjsted quasi-profile
likelihood ratio statistic Wop(7) = 2{lgp(#) — lop(7)} has approximately a standard x?
distribution.

To give w(7,\) explicitly, in the following, it is convenient to use index notation. The
components of A are denoted by A%, the corresponding components of ¥y are ¥, and the
derivatives of ¥, and ¥, with respect to the components of A are denoted by

2 2
'a—i_a\le ) ‘Il'r/ab = WEBXE\I’T ) \I’a/b = B_ig\I’a and \I’a/bc = %&:‘I’a )

where the indices a,b,c,... range over 1,...,d — 1. For the expected values of these deriva-
tives, we use the notation

\IJT/G =

Vilai— E{\IIT/O,} y Vrjab = E{\I/T/ab} y Va/b = E{\Ila/b} and Va/be = E{\I’a/bc}

and we assume that these quantities are of order O(n). Further, the zero-mean variables ¥,
Vo, ¥r/a — Vr/a, €tc., are assumed to be of order Op(nl/ 2). These assumptions are typically
satisfied in practice, when ¥y behaves asymptotically like the sum of n independent random
variables. In addition, k%% denotes the inverse matrix of —v, /b-
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By using the expansions in the Appendix, we find E{¥,} = m(r,\) + O(n~!), where
m(-,-) is of order O(1) and has the expression given in (18). The expansion for (8) is more
complicated. By using the results in the Appendix, we ﬁnd

T/T Fady bia V'r/aVb/‘r

A
w(rn,A) = E{Y2} + 2v, )k 2 E{T, T}} + VrjaVr ok ORI E{T B g}

(10)

Observe that, when relation (6) holds, quasi- -profile loglikelihoods (5) and (9) coincide.
In fact, in view of (6) we have that Ay, =0, X\; = A, and the A ; block of the matrix A(6),
which is in general given by

4 ~Vrjr + E{U O\ E{U,\ U1} 1y,
™T T E{U2} - E{V, U\ E{U\UT}-1E{T) T, } ’
reduces to

Y/t T nb/a’/'r/a”b/'r
E{‘P‘%} + Vr/anb/aE{‘IlT\I’b}

which is the same espression that one obtains for w(, \).

AT,T =

3 Example: robust inference in linear models

Let y; = (z;,2), i =1,...,n, be independent and identically distributed observations from a
random vector Y = (X, Z) such that Z = XT3+ e, where 8 is an unknown vector belonging
to RP, p > 1, and e is independent of X and has distribution F(-;0) = Fy(-/o) symmetric
around 0, depending on a scale parameter 0. Let § = (8,0) and let K(z) be the distribution
of X on RP.

A wide class of robust M-estimators for regression and scale parameters is defined by
estimating functions of the form

Y(y; 8,0) = izﬁ(y,;ﬂ, o) = ( %l ;(gz(i:;)bﬂ{rw(wi)}xi ) ’ (11)

where r; = (2; — 2] 8)/0 and s(-), v(), ¥5(-), ¥, (-) are appropriate functions (see Hampel
et al., 1986, Ch. 6). In particular, when s(z) = v(z) = 1 and 93(-) = ¥ur(-;k1) we obtain
the Huber (1973) estimator for regression, where ¥yp(u;k1) = u min{1,k; /|u|}, for some
positive constant k;. Alternatively, the choice s(z) = 1/v(z), v(z) = ||z|| and ¥s() =
Yrr(-; k1) defines the so-called Hampel-Krasker estimator (see Maronna, Bustos and Yohai,
1979). Unlike the Huber estimator, the Hampel-Krasker estimator is not very sensitive to
points with high leverage. A popular choice for the function v, is ¢, (-) = V(s k) —v(k2),
for appropriate constants k; and v(k2), which correspond to Huber’s Proposal 2 (Huber,
1964).

Let ¥(u) = d(u)/du. For a general M-estimator defined by (11) with 3 and v, odd
and even functions, respectively, we have Q(8,0) = Q = dlag(Qﬂ B:S%.,0), where Q,, =
[ Y2(r)dFo(r) and Q5 = [ 5*(2)g1 ()22 TdK (), with g1(z) = [ ¥E{ro(@)}dFy(r). More.
over B(8,0) = (1/0)B, where B = diag(Bpg,g, Bs,s), with BN, = [ 19, (r)dFy(r), Bgg =
[ s(z)v(z)ga(z )a::z:TdK( ) and go(z) = fv,bg{rv )}dFy(r). Therefore, (3) can be written
25 AN Br) = OB, 00B B0 (1IN Nafen — (1/0)diag(AT 5, Ay p): in this
special case, the matrix A(8,0) depends on o only.
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Suppose we are interested in making inference only about a scalar component §; (1 < j <
p) of B. If we consider the Huber estimator we find that gi(z) = g1 = [ 4 p(ryk1)dFo(r),
Qsp = g1 [z2TdK (), g2(z) = g2 = [Yur(r;k1)dFy(r), Bag = g2 [zzTdK(z) so that
the matrix A is diagonal and Ag; s, = g2/g1. Therefore, in this case, the adjusted quasi-
profile loglikelihood for §; and Barndorff-Nielsen’s quasi-profile loklikelihood coincide and
have expression

Bj B o it Y
lQp ,3] Z z]/ J (yz ,Blb.’l,‘ﬂ Abil),] ﬁpbxzp;kl) db, (12_)

b

where z;; is the j-th element of the vector z; and qu, q # j, 0p are the estimates for S,
q # j, and o when f; is considered as known and set equal to b. For a Gaussian model the
factor Ag, g, is
®(k1) — 2(=k1)
2(k}®(—k1) — k1g(k1) + {2(k1) - 1/2)}]

where ®(-) denotes the standard normal distribution and ¢(-) its density. Observe that, in
general, lop and Barndorff-Nielsen’s quasi-profile loglikelihood for a regression parameter
coincide for any M-estimator for which s(z) = v(z) = 1 and 93 odd. The general expression
for the factor ga/g; is [ va(r)dFo(r) /fz/zﬁ r)dFy(r).

If we consider the Hampel-Krasker estimator we have g;(z) = [ %% p(r||z||; k1)dFo(r),
s = [{91(2)/||z|*}ezTdK (z), g2(z) = [vmr( rllfvll k1)dFo(r), and Bsp =
[ 92(z)zzTdK (z). Thus, in general, the A) , block of the matrix A is not null. The ad-
justed quasi-profile loglikelihood is given by

i) yi—,(;'u,at,'l—...—b:l:,'j—...—,épba)ip
l T ; i k1 | db.
or8) =0y [ i vne (”""’” 7 1
Using (10), the constant w can be written as
B &, B
. ,8_1 )ﬂ] €ﬂ] (13)
Qﬂj Bi T 25,3 B( —7) nﬂ] 2 5 Q( -J) ( 7)) 6:31

where &g, is the j-th column of the matrix B without its j-th element, B(_;) denotes the
matrix B without the j-th column and the j-th row and 7g; is the j-th column of 2 without
its j-th element. In this case, matrix B is symmetric.

In the usual formalization, one considers a linear model with fixed (not random) carriers
T1,...,Zn. In such a situation, for a general M-estimator defined by (11) with +3 and ¥,
odd and even functions, respectively, we have that var{¥(y; 3,0)} = Q* = diag(Q} 5,95 ,)
and —E{0¥(y;B,0)/0(8,0)T} = (1/0)B*, with B* = diag(Bj g4, B;,), where Q5,5 =
¥ % (@i)g1 (wi)zial, Q5 , = n [Y2(r)rdFo(r), By s = 2 s(wi)v(i)ga(zi)ziwi and By, =
n [ Yo (r)rdFy(r). Consequently, in case of fixed carriers, lgp for (3, computed from the
Huber estimator, has the same expression, given by (12), as in the case of random carriers.
On the contrary, to obtain lgp(3;) from the Hampel-Krasker estimator when carriers are
fixed we have to calculate the factor w by replacing matrix Q and B in (13) with Q* and B,
respectively.

To illustrate an application to some real data, Figure 1 gives the plot of the adjusted
quasi-profile loglikelihood ratio function

Wor(Bs) = 2{lop(Bs) —lor(Bs)}



L Bs 1 i i oo L3 B e Bl
= 2wy e [ ——mr <I|:cz-|!z’ duza &bﬂ = m’a;kl) db (14)

i=1 Bs ||xl”&b

for the parameter B3 of the model z; = B; + Bozio + B3zis + e;, computed from Draper and
Smith data (discussed in Hampel et al., 1986, Sec. 7.5d). The variables considered are the
number of pounds of steam used per month (z;), the average atmospheric temperature (in °F)
in the month (z;2) and the number of operating days in the month (z;3). The sample size is
n = 25. Carriers are considered as fixed and a Gaussian model is assumed as the central one.
The Hampel-Krasker estimator is used with k; = 1.1, ¢, (-) = 9% (- k2)—7(k2) and k, = 0.6.
Moreover, Table 1 gives the results of a Monte Carlo experiment (based on 5000 trials)
performed to assess the coverage error of the related 1 — o confidence intervals for B3, based
on the adjusted quasi-profile loglikelihood ratio (14). For this experiment, the parameters
Bi1, B2, B3 are set equal to 9, -0.1 and 0.2, respectively. Errors e; are generated from three
different distributions: the standard normal N(0, 1), the standard normal contaminated by a
N(4,1) and the standard normal contaminated by a N(0,25). We consider a contamination
model of the form F, = (1 —€)F + G, where G(-) denotes the contaminating distribution.
The contamination percentage ¢ is set at 5%.

Appendix

A Taylor expansion for the quasi-profile score function ¥, about the true parameter value
gives

- A 1. _
Vr=Tr + Ar =N Crja + (A = )Py q + Op(n™1/?) (15)

where (A, — A)% = (\, — A)®(A; — A)’. Under the usual regularity conditions, which assure
that the global estimator  is consistent and asymptotically normal, the summands on the
right-hand side of (15) are Op(n'/2), Op(n/?) and O,(1), respectively.

An expansion for (A, —\)? is obtained by expanding the estimating equation ¥y(7, \,) = 0
around the true parameter value and next by inverting the resulting expression into an
asymptotic expansion for (A, — A)?. We find

Ar — N)® = sb/og, + %nd/ane/bnf '4/0eWe¥ s + 6k H, )y U g + Op(n1) (16)

where H./, = ¥/, — V.5 The sample size does not appear explicitly here but is incorporated
into the random variables and their expected values. Thus, k% = O(n™1), Va/pe = O(n) and
H. = Op(n1/2).

Now, substituting (16) into equation (15) and collecting terms of the same asymptotic
order, we obtain

¥, = ¥, + "éb/aVr/a\I’b + be/aHT/a\I’b + ”d/a’gc/bHd/bVT/a‘I’c

1
+ 5fcf/“nd/bne/cl/T/auf/bc\I'd\Ile + %nc/and/buT/ab\Ilc\Ifd + Op(n_l/z) ) (17)

where Hy /g = W,/ —V;/q = O,(n'/?). An expansion for the mean of ¥, is readily obtained
by taking termwise expectations in (17). Then we find E{¥,} = m(r,\) + O(n~1), where



m(7, A) is of order O(1) and is given by
m(1,A) = KYOB{U, 0} + vy ok kP E{0 49, )
1 sl
+ 5VT/aud/bcnd/ane/bnf/cE{\I!e\If‘f} + —Z-I/T/abnd/“nc/bE{\I'd\I’c} . (18)

The first-oder bias expansion (18) is simple since it involves only the first two derivatives
with respect to A of the estimating functions. There is a formal similarity between equation
(18) and the expression for the bias of the ordinary profile score function given in McCullagh
and Tibshirani (1990).

The expansion for the scaling adjustment (8) is more complicated. For the variance of
the quasi-profile score function ¥, we find

var{¥,} = B{U2} + 2"/ %v, ), E{U, Uy} + kY0, vy E{T, T} + O(1),  (19)

where the three summands on the right-hand side of (19) are of order O(n). Its derivation
is similar to that for the mean expansion (17) and is not given here. For the numerator of
the scaling adjustment (8) we find that

B {Tr/r} = —vrjr = vy o, + 0(1) (20)

where the two summands on the right hand side of (20) are of order O(n). Putting equations
(19) and (20) together, we find that the adjusted quasi-score function has the form w(r, A\)¥,,
where w(7, \) is given by (10).
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Figure 1. Adjusted quasi-profile loglikelihood ratio function Wgp for the parameter 33
of the model from Draper and Smith data.
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distribution 0.990 0.950 0.900
N(0,1) 0.996 0.963 0.912
N(0,1) cont. by N(4,1) 0.994 0.964 0.915
N(0,1) cont. by N(0,25) 0.994 0.960 0.907

Table 1. Empirical coverage probabilities of the confidence intervals for 03
based on the adjusted quasi-profile loglikelihood.
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