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1

Inference problems, such as estimation and testing, are unaffected by reparametrisa-
tions of the model. Accordingly, inference procedures are required to follow a coherent
behaviour under reparameterisations. This means that inferential conclusions should

not depend on the choice of parameterisation. Many likelihood based procedures

Abstract

Stochastic expansions of likelihood quantities are usually derived through
ordinary Taylor expansions, rearranging terms according to their asymptotic
order. The most convenient form for such expansions involves the score func-
tion, the expected information, higher order log-likelihood derivatives and their
expectations. Expansions of this form are called expected /observed. If the
quantity expanded is invariant or, more generally, a tensor under reparam-
eterisations, the entire contribution of a given asymptotic order to the ex-
pected/observed expansion will follow the same transformation law. When
there are no nuisance parameters, explicit representations through appropriate
tensors are available. In this paper, we analyse the geometric structure of ex-
pected /observed likelihood expansions when nuisance parameters are present.
We outline the derivation of likelihood quantities which behave as tensors un-
der interest-respecting reparameterisations. This allows us to write the usual

stochastic expansions of profile likelihood quantities in an explicitly tensorial

form.
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meet the requirement of parameterisation invariance. Notable instances are the max-
imum likelihood estimator and the likelihood ratio test statistic. On the other hand,
the Wald test statistic is a well known example of a likelihood procedure which is
affected by the parameterisation. For a discussion, see Barndorff-Nielsen and Cox
(1994, Section 1.5) and Pace and Salvan (1997, Section 2.11).

Asymptotic expansions are widely used in likelihood theory. They provide valuable
insight into inference procedures and are a basic tool for studying first and higher order
properties. It is of course desirable that, when taking an asymptotic expansion of an
invariant likelihood quantity, parameterisation invariance is maintained throughout
the expansion, both in the leading and in the higher order terms.

The main approaches for obtaining invariant or “geometric” asymptotic expan-
sions are reviewed in Barndorff-Nielsen and Cox (1994, Chapter 5). A general tech-
nique for invariant Taylor expansions is introduced in Barndorff-Nielsen (1987) and
relies upon the definition of an appropriate likelihood yoke. However, the most useful
form of a likelihood expansion is the so-called expected/observed expansion, whose
derivation is not directly based on geometric arguments. Geometrical aspects can
nonetheless be brought in, as is illustrated in Barndorff-Nielsen and Cox (1994, Sec-
tion 5.3) and further elucidated in Pace and Salvan (1994). These geometric results
are based on the assumption that the whole parameter is of interest.

Most of modern likelihood theory deals with inference in the presence of nuisance
parameters and is based on the profile likelihood and related statistics. In this set-
ting, invariance under interest respecting reparameterisations is a key requirement
(cf. Barndorff-Nielsen and Cox, 1994, Section 1.5). No systematic study concerning
invariance of likelihood expansions in the presence of nuisance parameters seems to
be available so far.

The aim of the present paper is to provide a framework that allows us to write



expected/observed likelihood expansions in a geometric form when nuisance param-
eters are present. To this end, we first define interest respecting tensors, which are
quantities that behave tensorially under interest respecting reparameterisations. We
show how to build recursively interest respecting tensors. The construction is in-
spired by the manipulation needed to get interest respecting tensors from the more
familiar tensors under global reparameterisations. Terms of a given order in the ex-
pected/observed expansion of an invariant profile likelihood quantity may then be
represented through contractions of interest respecting tensors, so that invariance
under interest respecting reparameterisations is apparent. Throughout the paper,
the expected/observed expansion of the profile log-likelihood ratio statistic will be
used as a key example.

Here we take a coordinate-bound approach with an explicit specification of the
nuisance parameter. This choice is close to the usual algorithmic way of doing like-
lihood expansions, see e.g. Barndorff-Nielsen and Cox (1994, Chapter 5), DiCiccio
and Stern (1994), Li (2001). In addition, no attempt will be made to provide an
interpretation of terms of expected/observed expansions according to the geometrical
theory of statistical manifolds. Hence, interest respecting tensors will be used as a
mere device to bring out parameterisation invariance.

The layout of the paper is as follows. Section 2 introduces some notation and
preliminary material. Geometric aspects of expected/observed likelihood expansions
are reviewed in Section 3. Section 4 deals with interest respecting tensors. Some
notable instances of these new tensorial quantities derived from the log-likelihood
function are illustrated in Section 5. Section 6 describes how interest respecting

tensors may be used to write interest respecting expected/observed expansions.



2 Notation and preliminaries

Let F = {Py : § € © C R?} be a parametric family of probability distributions
defined on a sample space )Y and dominated by a o-finite measure y. The parameter
space © is assumed to be an open non-empty subset of IR?. Let us denote by p(y; 6),
y € ), the density of P, with respect to p and by I(8) = I(f;y) = logp(y;6) the
log-likelihood function based on the sample data y. We assume, for each § € ©, that
p(y;0) > 0 for every y € Y. We assume in addition that /() is a smooth function
of 6 and that the maximum likelihood estimator § exists and is uniquely defined as
the solution of the likelihood equation (9!/96)(8) = 0. Moreover, we assume that the
usual additional regularity conditions hold ensuring validity of the Bartlett identities
(cf. Barndorff-Nielsen and Cox, 1994, Section 5.2).

Throughout the paper we use index notation and the Einstein summation con-
vention. We denote generic components of § by 67, 6%, ..., with r,s,...=1,... ,p.
The elements of the score vector are [, = (01/967)(6). Higher order log-likelihood

derivatives are denoted by

a
o = brvrm = g )

The expected information matrix ¢ = i(f) has generic element i,, = Eg(—l,;). We

denote by ™ an element of the matrix inverse of i. Further likelihood quantities

TSl

to be considered are I" = i"l,, vg,, = E¢(lr,), Hr, = IR — VRps VRim,Suy iUy =
Bl )

Let w = w(f) be an alternative parameterisation of ¥, i.e. a smooth one-to-

one transformation from 6 to w. We denote components of w by w™, w®, ..., with
7,5,...=1,...,p. Let O(w) be the inverse function of w(#) and let 7 = (96" /0w")(w),
0r, = (0%0"/0w™dw®)(w), and so on, denote partial derivatives of components of

:
f(w) with respect to components of w. Conversely, let w] = (0w™/067)(0), wi, =



(0%w™ /067 06*)(0), and so on, denote partial derivatives of w(f) with respect to com-
ponents of §. Notice that w702 = 62, where 6¢ is the Kronecker delta (6! =1ifs=r
and §¢ = 0 if s # r). A likelihood quantity with indices 7,5, ... is understood as
referred to the w parameterisation.

Reparameterisation does not alter the log-likelihood function itself, whereas it

affects log-likelihood derivatives and their moments. For instance,

e = Lo

l-,-g = l,-so’:o;'*'lro:—.s—

4 — TS
irs = Zraer-eg
,l-rs — ,L-rs w:w:
F _ gr,,T
I = lwy.

A collection of smooth real functions T;f:" = T;.i"‘ (0) = T;17m(0) is called an (m,n)
tensor on F, or, equivalently, a tensor of contravariant rank m and covariant rank n,

if under reparameterisation it obeys the transformation rule

F1...Tm — 1T 1.,.. S1,..08
(2.1) Tyiwdm = Tyt=rm it oo cwy™ Gt - -+ 057 .

81...8n 81...8n

For instance, I, is a (0,1) tensor, i, is a (0,2) tensor, I" is a (1,0) tensor. A (0,0)
tensor is a parameterisation-invariant quantity. If 7%~ is an (m, 0) tensor and Usg,, is
a (0,m) tensor, their contraction T#mUg,, is invariant. Tensors are therefore instru-

mental in writing likelihood expansions in a geometric form.



3 Invariant expected/observed expansions:

a review

3.1 Nuisance parameters absent

Let f(6) = f(8;y) be a parameterisation-invariant statistic, also called a scalar func-
tion, defined on a copy of © that represents the range space of the maximum likelihood
estimator. Let us assume that f(f) is of order O,(n®) under repeated sampling of
size n. Stochastic expansions for f (9) are often obtained from the ordinary Taylor’s
formula, which is not parameterisation-invariant, depending on the coordinate system
adopted for the statistical manifold . An important aim of a geometric stochastic

calculus is to obtain an asymptotic expansion for f (9) of the form
(3.1) F(0) = £(8) + by + by + bg + by + Oy (nP~5/%)

where each term b,, is a scalar function of order O,(nf~™2), m = 1,2,3,4. More
generally, if f(0) is a geometric object, such as a tensor, it is desirable that each term
by, should follow the same transformation law as f(6).

One possibility for obtaining the geometric expansion (3.1) is through the ordinary
Taylor’s formula followed by a posteriori elicitation of geometric ingredients. Taylor’s

formula gives

o X 1 %
(3'2) f(a) = f(0) T fr(0 ! 9)1' = Efrs(o s 0)”
1 ) rst _1_ ) _ p\rstu
+6frst(0 0) #+ 24frstu(0 0) ey )
where f, = (8f/867)(6), f.» = (82f/06736°)(F), and so on, (6 — 6)" = (" — 6"),
(0 — 8)* = (§ — 6)"(§ — 6)* and so on. In order to preserve invariance a suitable ex-

pansion for § — 8 has to be inserted into (3.2), see Barndorff-Nielsen and Cox (1994,

Section 5.3) and Pace and Salvan (1994, Section 3). The resulting expansions are
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called expected/observed. They are expressed in terms of the score function, the
expected information, higher order log-likelihood derivatives and their expectations.

They also depend on derivatives of f(#) and on their expectations.

Ezample 1. Ezpected/observed ezpansion of the log-likelihood ratio.
The expected/observed expansion of W (6) = 2(1(8) — 1(0)) is

(3.3) W(6) = B, + By + Bs + 0,(n%?),
with

By = il

1

B, = —?;V,,tl'l’lt + H. I
1 1

E(V’-stu + 3ivw1/rsvytuw)lrlsltlu + g.Hrstlrlslt

+6 Uy gy HiapI"1°1F + 3 Hypy Hyo U1° .

Bs

Unlike the leading term B, neither B, nor Bj is written as a contraction of tensors.

Expected/observed expansions such as (3.3) are not explicitly written in terms of
tensors and further manipulation is required for a geometric structure to become vis-
ible. In McCullagh and Cox (1986) a technique is suggested for recovering invariant
terms in the expansion of the log-likelihood ratio statistic. Their contribution inspired
much of subsequent work on invariant Taylor series in statistics (see Barndorff-Nielsen
and Cox, 1994, Section 5.6). In Pace and Salvan (1994) a geometric formulation is
produced for the expected/observed expansion of a generic smooth function f (4). In
particular, it is shown that expected/observed expansions may be derived also from
invariant Taylor expansions based on the expected likelihood yoke. As a result, ex-

pected/observed expansions may be written using ingredients clearly recognizable as



tensors.

Ezample 2. Geometric expected/observed expansion of the log-likelihood ratio.

In Pace and Salvan (1994) the terms B, and Bs of (3.3) are re-written as

1
(3.4) B2 = gTrstlrlslt + T’.;lrls
1
(3.5) By = Tlir,mm’z*l“ + STl P+ TETA I

Above, g, Ty, , Tx are (0,m) tensors obtained in an automatic way from the col-
lections of log-likelihood derivatives and their expectations, through a process called
intertwining, cf. Barndorff-Nielsen and Blesild (1987). Their particular instances

appearing in (3.4) and (3.5) are given by

(3.6) Trst = Vrst + Vrist[3) = 2p g4

Trstu = Vrstu + Vristu[4] + 17 Vs Vustu[3] — 7% TrapVa;tu[6]
(3.7) T = H,y— vyl
(3.8) TS = Hyy— vyt

T = Hyse— Vs Husl3] — (Vurot = VsVl

The symbol [k] indicates the sum of k similar terms obtained by all suitable per-
mutations of the indices, except for the obvious symmetry relations. Moreover, the
quantities vg,,.s, above are defined as

n

Van;Sﬂ = Z Z VRmySnl ,---:th )
h=1 Sp/h

where, for h < n, the symbol » g /h indicates summation over all the partitions
of S, into h non-empty subsets Sp,,...,Sn,. For instance vy = vpg + vy, and

Vpistu = Vr,stu + Vr,s,tu[?’] i Vrstu-

9

UNIVERSITA' DI PADOVA
BIBLIOTECA DI SCIENTE STATISTICHE
Via C. Battisti, 241 ~ 35121 PADOVA



3.2 Nuisance parameters present

Suppose now that 6 is partitioned as 6 = (1, X), where ¢ € ¥ C IR* is a k-dimensional
parameter of interest, while X € X C IRP* is considered as a nuisance parameter.
Assume for simplicity © = ¥ x X.

Denote by I, and [, blocks of the score vector corresponding to ¢ and to X,
respectively. Let, in addition, iy, tyy, iy, denote blocks of the expected information
i and %%, i¥X, XX denote blocks of the matrix inverse of .

We will use indices a, b, c, . . ., with range {1, ... , k}, when referring to components
of 9, and Greek letters @, 3,7,..., with range {1,...,p — k}, when referring to
components of X. Hence, for instance, I, has generic component I, = (91/9¢°)(%, X),
a=1,...,k, while [, has generic component I, = (0l/0X*)(¥,X), a=1,...,p— k.
Moreover, i denotes a generic element of the matrix inverse of iy, .

Likelihood inference about % is usually based on the profile log-likelihood [, (¢) =
I(1h, Xy), where Xy is the maximum likelihood estimator of X for a given 1 (see
Barndorff-Nielsen and Cox, 1994, Section 3.4). We assume that X, is the unique
solution with respect to X of the partial likelihood equation l, (1, X) = 0. Hypothesis

testing and construction of confidence regions about 1 are based on the profile log-

likelihood ratio statistic
W, (%) = 2(1, () — 1, () = 20, X) — I, Xy)) ,

whose asymptotic null distribution is X3 under regularity conditions.

An interest respecting reparameterisation of F is a reparameterisation w = (¢, §),
where ¢ = (%) and & = £(3, X), with ¢(1)) a one-to-one function of ). Conversely,
¥ = (p) and X = X(p, ). Indices @,b,... are used for the components of ¢, while
indices @, 0, . . . refer to the components of £&. A likelihood quantity denoted by indices

a,b,...,a,p0,... is understood as referred to the (¢, &) parameterisation. Notice that

10




92 = 0 and @2 = 0. Moreover, from w[6; = 4;, we get

Vipep = 0
Xgo§ = —X3&2
XeEs = 63,

The profile log-likelihood and the profile log-likelihood ratio statistic are invariant
under interest respecting reparameterisations. An interest respecting reparameteri-

sation, however, affects log-likelihood derivatives and their moments. For instance,

from I(p, §) = I((#), X(#,£)) we have

la = lalbg"'laxf':
l =il

(3.9) i = GaRYL + iapXTYL[2] + iasXSXE
fss = da iy

The profile score (01, /0%)(¢) with generic component l,(1, X,;) transforms under

interest respecting reparameterisations as

at.
Oy

see e.g. formulae (4.36) and (9.99) in Pace and Salvan (1997).

(‘P) = la("paxlﬁ) ;7

Expected/observed expansions are used also in the study of asymptotic properties
of profile likelihood quantities. The most notable instance is analysed in the following

example.

Ezample 8. Ezpected/observed ezpansion of the profile log-likelihood ratio: invariance
of the leading term.
The expected/observed expansion of W, (1) has the form

W, () = B + B, + By + 0,(n~%?).

11



It is obtained by writing W, (%) as the difference between W (), X) = 2(1(4h, X) —
I(1, X)) and W* (X) = 2({(¥, Xy) — L(+, X)) and applying (3.3) to both W (1, X) and
W*(X). In particular,

W*(X) = B} + By + B + Op(n"%?),
where B} = iqsl°0P, with I* = i%15. Hence, the leading term of W, (¢)) is
Bf = By — B} = ip "l —iggl®lP.

As is well known (see e.g. Cox and Hinkley, 1974, chapter 9, formula (55)), B, may
be rewritten as

P
1

(3.10) B, =1,"l,,

with Iy, = Iy — BJl,, where B} = iy, {ix,} " is the matrix of regression coefficients of
I, on L. The vector ly is often called the efficient score for 1.
Let us denote by I, a generic component of ly. Under interest respecting repa-

rameterisations, [, transforms as

l_a = l_azbf—: )
or, using matrix notation,

l_w = ¢/qu1—¢ )
where 1/, is the matrix with generic element 7 (see e.g. Sartori et al., 2003, Sec-
tion 3.1). Moreover, i¥¥ transforms as i¥¥ = <p/,,,i'/”/’<p/T¢ (see e.g. Barndorff-Nielsen
and Cox, 1994, formula (8.3)). Hence, invariance of (3.10) under interest respecting

reparameterisations follows.

For higher order terms in the expansion of W, (1) a detailed analysis of behaviour

under interest respecting reparameterisations has not been carried out. In particular,

12



no tensorial representation is available for such terms, similar to the one displayed in
Example 3 for the leading term. As underlined by Barndorff-Nielsen and Cox (1994,
p.153), no major simplification of higher order terms in the expansion of W, (1) seems
to occur. See also the Appendix of DiCiccio and Stern (1994) and Li (2001, formula
(5)) for expressions of the term of order O,(n~'/2).

Other familiar instances of expected/observed expansions of profile likelihood
quantities concern the profile score and its expectation. These are given in McCullagh
and Tibshirani (1990) and are used to define an adjustment of the profile likelihood.
Barndorff-Nielsen (1994) highlights the tensorial behaviour under interest respecting
reparameterisations of quantities appearing in the leading term of the expectation of

the expected/observed expansion of the profile score.

4 Interest respecting tensors

4.1 Definition

We encountered in Subsection 3.2 some instances of likelihood quantities showing a
very simple behaviour under interest respecting reparameterisations. Those instances
motivate the following definition.

An interest respecting tensor of rank ((mq, ma), (n1,n2)), with my, mg, nq, ng € IN,

is a collection of smooth real functions

AmiTmg _ A01...Gm; O1...0m, (0)
BniAny — “bi..bnyB1...0n,

which, under interest respecting reparameterisations, obeys the transformation rule

Am Tmg _ pAmiTma 3 my b"l mg ﬂl ﬂnz
Bnl AﬂZ i TBnlAﬂ2 <pa1 . <pam1 "p ,¢ ’ Ea X e ﬁﬂg
Aiis a1...8mq, 01...Q . é
where Tp™ ™ = T3 ;™% %M (w). We will refer to m; and mgy as the interest
Anz b1.. bnlﬂl ,3112

'""IF""2

contravariant and the nuisance contravariant rank of TB , respectively. A similar

13



distinction is made for the covariant ranks n; and ns.

A ((0,0),(0,0)) interest respecting tensor is invariant under interest respecting
reparameterisations. Both the profile score (3/8)l, (1) and the efficient score I, are
interest respecting tensors of rank ((0,0), (1,0)), while *¥ is a ((2,0), (0, 0)) interest
respecting tensor and i, is a ((0,0), (0,2)) interest respecting tensor.

When nuisance parameters are absent, collections of tensors may be obtained by
intertwining the collections of log-likelihood derivatives and their expectations, cf.
Barndorff-Nielsen and Blesild (1987). Tensors under global reparameterisations do
not, however, necessarily behave as interest respecting tensors, even when calculated
in an orthogonal parameterisation. This is already apparent from (3.9).

It is unclear whether it is possible to derive interest respecting tensors via inter-
twining. Intertwining relies upon the definition of an appropriate yoke, which is not
readily available in the presence of nuisance parameters.

We will show below how to obtain interest respecting tensors recursively from a
collection of functions that behave as tensors under global reparameterisations. The
requirement of global tensorial behaviour may be limited to a subset of coordinates,

as is pointed out in Subsection 4.4.

4.2 Recursive equations for covariant interest respecting ten-
sors from global covariant tensors

Let Tr, be a (0,n) tensor under a reparameterisation w = w(f) of F. It obeys the

transformation rule

Ty, = Try.in = Tryrm 0;11 . 0;: :

14



When the reparameterisation is interest respecting, the above equation specialises,

because 62 = 12 = 0. Some instances of this are
I; = Ta"pg i Taxg

Ta = Taxg

T = Tas¥2tl + Taa2XE[2] + TapX3XE

(4.1) Tia = TaatiX3+TapX3X§
(4.2) Tos = TopXgh5.

Note that T, and T, transform as interest respecting tensors of rank ((0, 0), (0,1))
and ((0,0), (0,2)), respectively.
Interest respecting tensors 7, of rank ((0,0), (n1,n2)), with ny + ng = 1, are
obtained by solving the recursive equations
i =

(4.3) - e
T, = i ,Bg‘Ta )

with 8¢ = iagigg, a generic element of the matrix of regression coefficients ﬂ,’/f. Only

the behaviour of T, has to be checked. Under an interest respecting reparameterisa-

tion (g, &), B2 transforms as
(4.4) Bz = (Bavs +X3) & -
Hence, the second equation in (4.3) transforms as
Tt + TaX = Ta+ (B33 +X3) £2ToXG -

Using the identity £5X2 = &£ on the right-hand side and equations (4.3) on the

left-hand side, we get
(Ta o ﬁgTa)lpg = T& s ﬂ:¢gTa )

15



so that Ty = T, 2, showing that T, behaves as a ((0,0), (1,0)) interest respecting

tensor.

Similarly, interest respecting tensors Tr, of rank ((0,0), (n1, n2)), with n; +ng = 2,

are obtained by solving the recursive equations

Top = Top
(4.5) Tos = Top+B:Tap

Tab = Tab + ,BbﬂTaﬂ [2] + ﬂ:ﬁffaﬂ .

Again, the tensorial behaviour of T,s is obvious. The tensorial behaviour of T,s
is easily shown following the same arguments used for T,. We only need to show
that T., is an interest respecting ((0,0), (2,0)) tensor, assuming that T,s and Tys are
((0,0),(0,2)) and ((0,0), (1,1)) interest respecting tensors, respectively. The third

equation in (4.5) transforms as

Tl + Toat X5 [2) + TogX$XE = T+ (6004 +5¢) € (Torvin}) 12
+(Bows +X5) € (B0vE+ ) & Toox@ds.
Substitution using equations (4.5) on the left-hand side, use of the identity £3X7 = 07

and straightforward simplifications give Ty; = Ty 22, Therefore, Tg, behaves as a

((0,0), (2,0)) interest respecting tensor.

Following the same scheme, we may obtain interest respecting tensors of higher

ranks. In particular, interest respecting tensors T, of rank ((0,0), (ni,n,)), with

16



n1 + ng = 3, are obtained by solving the recursive equations

Topy = Tapy
Topy = Ta/% - ﬂ: Taﬂ7
Ty = Tab‘r > :35 Taﬂ7[2] + :35 Taﬂ7

Tue = Tone + B Tary[3] + B B Tapy (3] + B3 55 B2 Tapy -

Interest respecting tensors Tyss of rank ((0, 0), (n1, n2)), with n;4+ng = 4, are obtained

by solving the recursive equations

Topys = Tapys
Taps = Topys + B3 Tupws
(4.7) Toos = Theih ﬂf Topsl2] + Bz :35 Toprs
Tos = Tases + B2 Tural3] + By B2 Tpral3] + 55 55 B Taps -
Tasca = Taboa + BiTuses[4] + B2 B3 Tuins 6] + By B3 63T apvsl4]
+08585 B B3 Taprs -

Relations (4.3), (4.5), (4.6) and (4.7) show a close resemblance with those of
McCullagh (1987, Section 5.5.2) for cumulants of orthogonalised variables. Note,
however, that the tensorial behaviour of T, T,s, ... under interest respecting repa-
rameterisations does not depend on the specific definition of 3¢, but only on the

validity of the transformation law (4.4). See also Barndorff-Nielsen and Jupp (1988,
Section 3).

4.3 Recursive equations for contravariant interest respecting

tensors from global contravariant tensors

In the previous subsection we have discussed how to obtain interest respecting covari-

ant tensors starting from covariant tensors Tg, of rank (0,7). An analogous argument

¢



holds if we start from contravariant tensors 5=, Let T be an (m,0) tensor under

a reparameterisation w = w(#) of F. It obeys the transformation rule

TS'm — T§1...§m - Tsl...sm ws.s’ll . .wi,,. .

Sm

Under interest respecting reparameterisations, the above equation specialises, because

w2 = % = 0. Some instances of this are

T = T°;

T® = T +T°4

T = Ty

T® = T + T*vea

T% = TG +T*€e02] + T*¢3es

Note that T transforms as a ((1,0), (0, 0)) interest respecting tensor and that 7%

transforms as a ((2,0), (0,0)) interest respecting tensor.

Recursive equations defining ((my,mz), (0, 0)) interest respecting tensors T, with
my +me =1, are

Ta —_ Ta

(4.8) \ i
Te = Te—geTe.

Only the behaviour of T has to be checked. The second equation in (4.8) trans-

forms as

To¢q +T°¢5 =T% - (B34 +G) &0 -
Using the identities XZp§ = —ngf and X§£7 = 07 on the right-hand side and equa-

tions (4.8) on the left-hand side, we get

Togs + (T - BeT°)eq = T% - BaT°65 + T3

18



so that T® = T ¢2, showing that 7 behaves as a ((0,1), (0,0)) interest respecting

tensor.

Similarly, interest respecting tensors 77 of rank ((m1,mz), (0,0)), with m;+my =
2, are obtained by solving the recursive equations
Teb _ ab
(4.9) T% = 1% g%
B2 = T G GRS
Following the same pattern, it is straightforward to write the recursive equations

giving interest respecting tensors of rank ((mj,ms), (0,0)) with m; + mo = 3,4, and

SO omn.

4.4 Other interest respecting tensors

The technique illustrated in the previous subsections allows us to obtain interest re-
specting tensors also starting from quantities that are not global tensors themselves.
These quantities should, however, share with global tensors an appropriate part of
their transformation rule under interest respecting reparameterisations, as far as spe-
cific subsets of coordinates are concerned.

Consider for instance the quantities
(4.10) tig=Hoo Vil
with [ = i;ﬁlﬂ. Notice that when r indexes a nuisance component (4.10) is the same
as (3.7) referred to the submodel with 9 fixed. Under interest respecting reparame-
terisations, the quantities ¢,, transform according to the rules
tia = LaalBXZ + tapX2X3
tag = tapX3X5.

19



These rules are the same as (4.1) and (4.2) holding for a global (0,2) tensor, as far

as pairs of indices a, @ and «, B are concerned. Hence, using the first and second

equation in (4.5),
(411) faa =lga — /Bftaﬂ

is a ((0,0), (1,1)) interest respecting tensor.

The construction above may be extended as follows. Let {Cr,,} be sequence of
likelihood quantities that behaves as a costring of covariant degree zero under global
reparameterisations (see e.g. Pace and Salvan, 1994, Section 2, for details). Notable

instances of such quantities are lg,,, Vr,, and Hg,,. In addition, let
,Byc-a - Zi’; Vg,ra
ﬂfaﬁ = ch';( Vg, rop
and so on. Let t, = C,. Consider now the quantities {tsa;tas}, {taas)tapy}, and so
on, obtained as solutions of recursive relations of the form
Caa = tgat+ ﬂgatC

Cop = tap+ Bt

Caaﬂ = taa,@ + ﬁgatCﬂ [2] ¢ /Bgﬁtfa 2 3 lggaﬂtc
Capy = tapy + ﬂgﬁt<7[3] + ﬂgﬂytc -
Under interest respecting reparameterisations, ¢, and t,g transform according to
the rules
tas = taaW2XE +tapXSXE

tag = tapX2X3,
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which are part of the transformation law of global covariant tensors of degree two,
specialised to interest respecting reparameterisations (see Subsection 4.2). Hence,
relations (4.5) may be applied to give interest respecting tensors Z,3 and Z,, as the

solutions of

tapg = tap

(4.12) - i
tag = taﬂ -+ ,Bgtaﬂ :

Notice that, with C,q = H,q, relations (4.12) give the ((0,0), (1, 1)) interest respecting
tensor (4.11).

Similarly, t,qs and tas, follow, under interest respecting reparameterisations, the
same transformation law as the corresponding components of a global (0,3) tensor.
Hence, relations (4.6) may be used to obtain interest respecting tensors oy and sqp-

It is straightforward to obtain interest respecting tensors with higher ranks.

5 Notable likelihood interest respecting tensors

As an immediate consequence of the results in the previous section, we may obtain

an interest respecting score [, starting from the (0,1) tensor [, as

la. - la. ] ,6:: la
l_a = la H
or, using matrix notation,
o ly T e ﬂlex
l0 = : = 3
b Ly

where the first block is the efficient score for 1.
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We get an interest respecting expected information 7 starting from the (0, 2) tensor

irs- Equations (4.5) give

b = lap— iaaigzibﬁ
g = 0
g = lag -
Using matrix notation,
. Wy O
1= ,
0 Ty

with Ty = (%¥)7" = iyy — igxigiixy and Ty = ixy. Note that 7 is the covariance

matrix of ly.
Similarly, from the construction of contravariant interest respecting tensors, we
may define the interest respecting tensors I" starting from the (1, 0) tensor I” as

la — la

(5.1) ;
o= 1o+ Bl

The elements of the matrix inverse 7= of 7 may be derived as interest respecting
tensors of rank ((my,mz), (0,0)), with m; + m, = 2, starting from the (2,0) tensor

™. Indeed, using (4.9),
Eab _ ,iab
(5.2) =0

™ = P pephieh,

Note that 1% = 7%, and [* = 7°ls, showing that the notation used here is consis-
tent with that in Example 3. Also note that [, 7, I" and 77! coincide with score,

information and their contravariant counterparts in an orthogonal interest respecting
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reparameterisation. However, in general interest respecting tensors do not have such

a simple interpretation.

Ezample 4. Ezpected/observed ezpansion of the profile log-likelihood ratio.

The interest respecting tensors I are useful to highlight a regular structure in the

expected/observed expansion of W, (1). This is due to the implied orthogonality of

the blocks of components of I” regarding the interest and the nuisance parameter.
With the same notation as in Examples 1 and 3, we have B; = Trsl"1°. Indeed,

from (3.3),
By = ipglTl® = igyl®l® + igpl®1P[2] + igpl®l” .
Using (5.1) to express {* and [ in terms of [ and %, we obtain
B, = (z’a,, — B%aa(2] + ﬂgﬂfiaﬁ) PP+ (iap — Biap) PPP[2]+iasl®lP = Tl P +i0gl®PP .
From Example 3, B! = 7,4*I°. Hence,
P

B; = B, - B! =7,0°P,

in accordance with (3.10).

Similarly, using (5.1), we obtain
B, =

where 7,4 and H,, have the same expression as the solutions of the recursive equations
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(4.6) and (4.5) with T}, and Ty, replaced by vy and H,,, respectively. In particular,

Pabe = Vabe — BVabel3] + BBy Vapel3] — BBy BYVapy
Vaba = Vaba — By Vaas[2] + B2 B3 Vasy
Usap = Vaap — BaVapy

Vapy = Vapy

Hy = Ha— BHu[2]+ B26) Hap

Hua = Hoo— P Hap

Aoy = Hap.
We also get

B! = él-vaﬁjal"ﬂﬂ + B,

so that

[y

1 - - e e o o
By = B,—Bj = ga,stmaﬁ + Hy ' — 005,121 — HpplolP

w

1 L i _ - = S
= gva,,czaiblc + Dapal P1® + Uaopl® PP + Hopl®l® + 2H,0001° .

The same analysis as above can be done for B; . It turns out that all the sum-

mands having only Greek indices cancel out. This points out the general pattern.

The most interesting feature of the above example is the relatively simple form
of the term B; . However, quantities such as 7.,; and H,, do not behave as interest

respecting tensors, so that the obtained expansion is not geometric.
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6 Interest respecting expected/observed expansions

Let us denote by § = (%,Xy) the constrained maximum likelihood estimator. A
profile likelihood quantity has the general form 9(8,6) = g(6,0;y). Suppose that
g(8, 0) is invariant under interest respecting reparameterisations or, more generally, an
interest respecting tensor. Let us assume, in addition, that g(0,0) is of order 0,(nP)
under repeated sampling of size n. The expected/observed expansion of g(é, 5) is
obtained through the ordinary Taylor’s formula for g(8,6) around (8, 6), followed by
substitution of suitable expansions for 6 — 0 and 0 — 6. These are given by formula,
(3.6) in Pace and Salvan (1994) referred to the full model F and to the submodel
with 1) fixed, respectively. Note that an expansion for 6 — 0 is essentially an expansion

for X, — X. The resulting expansion for g(d, ) has the form
(6.1) 9(0,0) = 9(8,0) + by +b, +bg +by +0p(n""?),

where each term b, is of order O,(nf~™/2), m = 1,2,3,4.

The terms b, in (6.1) will not be explicitly written in terms of interest respecting
tensors. The techniques developed in Section 4 may be used to bring out a geometric
structure, i.e. to obtain an interest respecting expected/observed expansion. We do
not give detailed formulae for a generic function g(é, f), but rather we will illustrate
below the main ideas with reference to the profile log-likelihood ratio statistic and to

the profile score.

Ezample 5. Geometric ezpected/observed expansion of the profile log-likelihood ratio.
The function g(d,8) = W, (¢) is of the form g1(8) + g2(8), with () = —-W*(X) =
—2(1(6) — 1(6)) and ga(6) = W(6) = 2(1(9) - 1(6))-
Consider first the geometric expansion
WY (X) = 7l + By + B + 0,(n~%?),
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where B} and B} are of order Op(n~'/?) and Op(n~"), respectively, and are given by

(3.4) and (3.5) referred to the submodel with 9 fixed. In particular,
v 1 o Y7
B; =37 e P PD + T 1P
with

Tapy = ToBy = 2VaBy

_v o
Tos = Hap-— Vyapl” -

2%

Note that ’T , and T, ﬂ are interest respecting tensors of rank ((0,0), (0,3)) and
((0,0), (0,2)), respectlvely.

Moreover,
v _ 2 78770 ¥ JagBPy | bt b Ta B
(6.2) By = T aﬁ,ﬂ;l"‘l e + —3—T 2P 477 Ty, Tgs 1°17,
where
chﬂq& = Vapys t Va;Bvé [4] + fCVE;aﬂVC;'YJ 3] — iec"'aﬂe”(n& [6]
T} = Hap— vyapl
Tc:ﬂ'pv = Hapy— EeCVs;aﬁHmB] — (Vsiapy — ieCVE;aﬂVJ;vCB])l_&

Again, Taﬂ,ﬁ, Ty ? and T , are interest respecting tensors of rank ((0,0), (0,4)),
((0,0), (0,2)) and ((0,0), (0,3)), respectively.

As a second step, we consider expansion (3.3) for W () with B, and Bj expressed
in terms of tensors under global reparameterisations, as in (3.4) and (3.5).

Following the same algebra as in Example 4, i.e. expressing I" and ¢"* in terms of

I" and 77, respectively, the geometric expression (3.4) for the summand B, may be

rewritten as

1 i _
(63) B2 = g'ﬂ-atlrls?‘ T l l
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where 7,,; and T, are interest respecting tensors obtained from the tensors (3.6) and

(3.8) using the recursive equations (4.6) and (4.5), respectively. In particular,

Tabe = Tabe — ﬂg Tabc[B] g5 :Bg ﬂf Ta,@c[3] F ﬂ: :35 ﬂg Tapy

Tabe = Tabe — :BfTaﬁc[2] + ,Bf,BZ’Taﬁq

TaBe = Tafc — ,BZ TaBy
Tapy = Tapy>
and
Ty = Tp—B2Ty2)+ B200T5

Ta = Ta— BT
Ty = Ty
Similarly, we get
(6.4) ;i i%f,,tuf’l_’l_tf“ i %T,;J’FF + T T

where 7.q, and T, are interest respecting tensors obtained by solving equations
(4.7) and (4.6) with Then = Trstu and Tre = Ty, Tespectively. Finally, the interest
respecting tensors T}, s, are obtained as solutions of (4.7) with T;ye = TH T,

The term of order O,(n~'/2) in the geometric expected/observed expansion of
W, (1) is given by B, = By — B . Since 7'257 = Tagy, the corresponding terms cancel

out in the expansion for W, (). On the other hand,

A
of = Haﬂ = Vr;aﬂlr = Taﬂ T (Va;aﬂ i IBJV’Y;aﬂ) 1*.
Let

(65) 'T-a;aﬁ = Vg;af — :3;7”7;0/3 .
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Obviously, 7.4 behaves as a ((0,0), (1,2)) interest respecting tensor. Hence,
1 g bl o Geie 48 tef iz
B, = gfabcl“f’lc + Taap T + (Taga — Tazap)[CPPI® + T 10 + 2T, I°1° .

The term of order O,(n~!) in the geometric expected/observed expansion of
W, () is B; = Bs — By, with By and Bj given by (6.4) and (6.2), respectively.
No straightforward simplification takes place in the difference B; — B;f , because, for
instance, Togys # TZﬂ,Y&. Indeed, while 7,3,5 depends on the matrix inverse of i, the

¥ . .
tensor 7,45 depends only on the matrix inverse of 4y, .

Ezample 6. Geometric expected/observed ezpansion of the profile score.
The expected/observed expansion of a generic component of the profile score is (cf.

e.g. Pace and Salvan, 1997, equation (9.88))
e 1 - B
la(1, Xy) = la + (Hoa — B2 Hop)l™ + §(Vaaﬁ — BYvapy)P1® + Op(n 47

where [, is of order O,(n'/?), while the remaining summands are of order Oy(1).
The leading term I, is a ((0,0), (0,1)) interest respecting tensor. Using the Bartlett
identity Vrag + Vrap + Vra,82] + Vra,s = 0, the term of order Op(1) may be rewritten
as

S R

taal® — =Taapl®l”,

2
where 7, is the ((0,0), (1,1)) interest respecting tensor given by (4.11), while 7y, is
given by (6.5).
It is easy to see that Ep(f.al®) = 0. Hence,

. 1 _
Eﬂ(la(¢: Xw)) - _iiaﬂ"_'a;aﬂ + 0(” 1) )

in agreement with Barndorff-Nielsen and Cox (1994, formula (8.61)).
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