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1 Introduction

The stress-strength problem The stress—strength problem, as it is called in statistical
quality control, is concerned with evaluation of the probability that the strength of a
given material is larger than the stress which is applied to that material. Phrased in
probability terms, the previous question leads to evaluation of

p=P¥i< YiF. 1)

for two random variables Y; and Y;, representing strength and stress, respectively.

The problem comes actually in two parts: (i) given some assumptions on the distri-
bution of the variables, provide an expression for p; (ii) given a set of data which are
supposed to fulfill these assumptions, estimate p, both in the form of point estimation
and of interval estimation.

Early literature in this area has focussed on the normal assumption for Y; and Y,.
This includes Church & Harris (1970) and Downton (1973) who have provided basic
results. A number of other distributions and other variants of the problem have been
discussed since then. A recent introductory account-on this topic is given by Blischke &
Prabhakar Murthy (2000, p. 276-8).

The purpose of this note is to examine the above problem when all or some of the
underlying probability distributions are of skew-normal type; a brief summary of the
skew-normal distribution is provided below.

The skew-normal distribution A random variable Z is said to have a skew-normal dis-
tribution if it is continuous and its density function is

d(zA) = 24(z) @(Az), (z€R), ()

for some parameters A € R; here ¢(z) and ®(z) denote the N(0,1) density and distri-
bution function, respectively. The shape of (2) is skewed to the right or to the left,
according to the sign of A; for A = 0 we obtain a standard normal density. In fact, (2)
refers to the ‘standard’ skew-normal distribution; if a linear trasform Y = & + wZ is
considered, we shall then say that Y has distribution SN(&, w?,A).
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Various results about (2) are given by Azzalini (1985); see also Azzalini and Capitanio
(1999) and references therein. For our purposes, we only recall that its distribution
function ®(z;A) enjoys the following properties

O(—zA) =1-0(z,—A),
D(z;A) = D(z) —2T(z,A),
1::00 ]
O(0;A) = S 7—[arctan7\,
D(z;,0) = D(z)
where T(z,A) is the function studied by Owen (1956). A computer routine to evaluate

T(z,A) has been given by Young and Minder (1974), subsequently improved by various
authors.

2 Probability results
Assume that the observed variables Y, Y; are of type
Yi=&+wiZy, Zi~SN(A). . (b= 1h2) (3)
and Y; is independent of Y,. Under these assumptions,

p = P&+ wrZ; < & + wiZy}
Ez, {P{&2 + w2Z; < &1 + wi1Z4]Z1}}

g {IP’{ZZ 5 & _£2+wlzl}|zl}

w2

= [z, {‘D (&1—£2+w121;}\2> |Zl}' (4)

w2

An explicit expression of this quantity in the general case does not seems feasible.
However, if one relaxes the assumption of skew-normality for one component, then
computation follows easily from Proposition 2 of Chiogna (1998), which for convenience
we reproduce here, up to inessential modifications.

Proposition 1 If Z ~ SN(A) and U ~ N(0, 1), then

E{®(hU+k;A)} = @(k/v1+h% m(h,A)),
E{(®(hZ+k)} = @(k/V1+h?% m(1/h,—])),

where A
m(h,A) =

LAl TRR2(1 A2}

If we assume A; = 0 in (4), we can make use of the first statement of the above propos-
ition and obtain

p=0(AA) =0(A)-2T(AA) ©)



where

Errda

)
[ 2 2
w7y + w3

Notice the following facts. If A; =0, then also A = 0 and the above expression becomes
p = ®(A), the usual expression for the normal case. If we assume instead that A; =0
and A is unrestricted, then we have the same development as above but (4) is now
computed using the second statement of Proposition 1, leading to

A= A = m(w1/w2,Az2).

p=0(A m(wz/wi,—A1))

which is of the same type of the expression for the earlier case. Hence we do not need
a special development, and in the following we shall concentrate on the case A; = 0.

We turn now to consider the case when both A; and A; in (3) are unrestricted, but
&1 = &,. Hence (4) now becomes

Ez {® ((w1/w2)Z1;A2) 1Z1}

and this is readily expressed using Proposition 3 of Chiogna (1998), which again is re-
produced here up to inessential modifications.

Proposition 2 If Z ~ SN(A), then

E{®(hZ;B)} = 1 - l arctan

. 6
2 n m(h,B) + m(1/h,A) ©)
Hence we can write
_1 1, miuA) = m(1/h,A)
P=3"n m(h,A2) + m(1/h, A7)’

where h = w;/w;.

Evaluation of (1) in another special case has been considered by Gupta & Brown
(2001); see in particular Section 4. The important difference in the assumptions is that
(Zy,Z;) in their case follow a bivariate skew-normal distribution with correlated com-
ponents. The multivariate skew-normal distribution has been studied by Azzalini &
Dalla Valle (1996) and subsequently by Azzalini & Capitanio (1999).

3 Likelihood Inference

Consider the problem of statistical inference for p under the assumption of independent
samples from Y; and from Y; to make inference on (5).

Since the context is outside the exponential family, UMVU estimation is not feasible
and we consider then likelihood inference. Specifically, we replace the parameters in (5)
by their MLE’s. Notice that, in the normal distribution case, Downton (1973) compares
UMVU with other procedures including one which is MLE (although it is not recognised
as such); see his 1} in the one-sample case and a similar one in the two-sample case.
These turn out to compare very favourably with UMVU.
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For a generic parameter { denote by { its MLE; similarly A, A are obtained by
appropriate transformations of A, A. The estimate of (5) is then given by

S

p=0(AA) =0A) -2T(A A). (7)

Also we shall use the notation {_ and . to indicate { — uy s.e.({) and P + uy s.e.(D)
respectively, for an appropriate choice of the normal quantile u, such that ®(—uy) =
«/2, for a given choice of the confidence level T — «.

Confidence intervals of the form (p_, p.) are not appropriate, since this may exceed
the interval (0,1). More sensible choices are

where the latter form is supported by the fact that ®(z;A) is a decreasing function of A,
for any fixed z.

The effectiveness of these choices needs to be assessed by simulation methods. In
particular we must consider: (i) bias of (7), (ii) variance of (7), and especially (iii) the
associated actual level for procedures I and II, in comparison with the nominal level,
To obtain the required standard errors we resort on asymptotic theory. Some points to
keep in mind are as follows.

1. Standard errors are obtained via the Fisher information evaluated at the MLE's.
Having to choose between observed and expected information, the first one seems
preferable to avoid the numerical integrations involved by the other case. Fur-
thermore, the use of observed instead of expected information is keeping with
general considerations, such as those given e.g. by Efron & Hinkley (1978).

2. Small samples likelihood inference for the skew-normal distribution poses prob-
lems. This fact has emerged from the results of several people, variously focusing
on the theoretical and the practical aspects; see Azzalini (1985), Chiogna (1997),
Azzalini & Capitanio (1999, section 5), Pewsey (2000). It is then sensible to con-
sider estimation of the parameter only when the sample size is not too small. As
a crude guideline, n = 50 seems to be about the practical lower bound.

Let 8; = (&;,w1) and 0; = (&2, wz,A2). The observed Fisher information matrix for
the parameter 8 = (67,0,) has a block structure, because of the independence between
the two samples. Denote by j;;(6;) the block corresponding to 6;, 1 = 1,2. It is well

know that e
i 18 w3 0
]]](9])—“( 0 2/(1)%)

which of course must be evaluated at 6; = 8;. As for j»2(8,), the observed information
matrix can be obtained from the formulae given in the appendix.

To obtain asymptotic variances (av) for A and A, it is possible to resort on the mul-
tivariate 5-method; for a standard account on this techniques, see for instance Schervish



(1995). By applying the 6-method one obtains:

1

BV e it
(4) w? + w?

2
{% (] +26Zw‘]‘> + 011 — 2072w20 + 0'22(.0%52} s

A A\ [ 2w§wip?

av(A) = < ) { @I = 0'22(»‘111[)2 e 20'23(»%1])@) + 0'33(1)2} ;
(,U2A2 o "

where Oij denotes the (i,j) entry of jzz(ez)"], O = Az/(f,z —&1), v = (1 + A:",_) and

@ = wy(w? + w?). Notice that oy;'s are terms of order 1/n.

To perform simulations, it has been assumed that the parameters of Y; are known, in
analogy with Curch & Harris (1970) and Downton (1973). Without loss of generality, it is
assumed that Y; is distributed as a standard normal variate, so that 8 = (0,1, &, w3, Az).
In this case, it is easily shown that previous expressions reduce to:

< 1 2 2ard
av(A) = T {0'11 = 0']2&2(;)2 0225.20;2} )
+ w3 T+ w3y 1+ w3

1

A)=—rs—
i (1+ w2+ A2)

{o22(A2(1+23))% + 2023(w2 (1 + w3)) (A2(1 +A3)) + o33(w2(1 + w3))?)

Simulation work has been carried out to evalutate the actual level achieved by meth-
ods I and II described above when they are used at the nominal level 95%; the outcome
is summarised in Table 1. Each entry of the tables has been obtained from 1000 gener-
ated samples and the number of cases where the confidence interval covers the actual
value of p is reported.

Inspection of the table indicates that the agreement to the nominal level is greater
for small A, and for large n. Serious discrepancies from 95% are encountered when
n =50 and A, = 10 or even 5. Indications are much more favourable is the other cases,
especially for n = 200 and A; = 2, and to some extent A, = 5.

In interpreting these values, one must bear in mind that, in a number of industrial
applications to measurements data, large asymmetries are not to be expected. In this
sense, the bad entries for very large A; must be down-weighted, and the overall picture
emerging from the table is acceptable comfortable.
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Appendix

Log-likelihood function and derivatives for SN variates

Consider a random sample y1,...,yn from SN(&, w2, A). Write

Yyi =&+ w z4, Z~SN(0,1,A).
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Then the log-likelihood for DP = (&, w, A) is

¢DP) =Y (—logw— }2? +10g20(Az)}) = —nlogw -1 Y 2+ ) Lo(Az)

i

with partial derivatives

5 = YlatAaal(-1/w)
% = Y a2 G0} (—z/w) —/w,
ol

= = Y &ma0a)

Here {o(x) = log{2®(x)} and .(x) is its r-th derivative. The negative second derivatives
of ¢ are :

0%¢ 2 2
~38 = D {1=20GA z)l/w?,
92¢ 3 -
~3t05 = LAU-NLRz)ztn-AG0e) ] /o
2
_gagé% = Y {G(z) + Mtz /w,
0%t 2 ) 2
—5 = X {#AB-N G0zl - Dz () -1} /e,
0%t
= Z {C1(Azi) + A 23 Ga(Azi)} zi/w
4
—% - —szCz(Mi)
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