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Abstract

The aim of this paper is to compare through simulation the likelihood ratio (LR) test
with the most powerful invariant (MPI) test, and approximations thereof, for discrim-
inating between two separate scale and regression models. The LR test as well as the
apy;roximate (first order) MPI test based on the leading term of the Laplace expan-
sion for integrals are easy to compute. They only require the maximum likelihood
estimates for the regression and scale parameters and the two observed informations.
Even the approximate (second order) MPI test is not computationally heavy. On the
contrary, the exact MPI test is expressed in terms of multidimensional integrals whose
numerical evaluation appears reliable only in the two-dimensional and in the three-
dimensional case. Two conclusions emerge in this paper. First, for scale and location
models, exact (when computable) and approximate MPI tests are equivalent to the LR

test in all the situations considered and for every sample size. This contrasts somehow

! Address for correspondence: Laura Ventura, Department of Statistics, University of Padova, Via C.

Battisti 241, 35121 Padova, Italy, e-mail: ventura@stat.unipd.it.



with the prescription usually implied in the literature. Second, when the dimension
of the regression parameter is a considerable fraction of a small or moderate sample
size, the second order approximation to the MPI test clearly improves on the LR test,

unlike the first order approximation.

Key words: Laplace expansion, likelihood ratio test, marginal likelihood, model selec-
tion, modified profile likelihood, most powerful invariant test, profile likelihood, scale and

regression model.

1 Introduction
Consider observations y = (y1,...,%s)" from a scale and regression model of the form
y=Xp+o¢, (1)

where X is a fixed n X p matrix of rank- p, B € IRP is a vector of unknown regression
coefficients, ¢ > 0 is a scale parameter, and ¢ is an n-dimensional vector of errors such
that (e1,...,6,) is a random sample from a density px(-) on IR. Here the parameter
k € K C IN indexes the set of possible error distributions. We will always consider
regression models with intercept, i.e. where the first column of X is the unit vector.
Models of the form (1) are characterized by a linear predictor and possibly non-normal
errors. Applications may be found in many areas such as survival analysis or quality
control. Numerous error distributions p,(-) have been proposed for models of the form
(1). Popular choices for p,(-) include the normal, Student’s ¢, extreme value, logistic,

and Cauchy distributions. Distributions on the positive real line include the exponential,



lognormal, and gamma distributions.
Given a sample y from (1), one important inference problem is to select the error

distribution, i.e. Kk € K corresponding to the best-fitting family

Tl (528 >
pY(yMB,O’)K)) :H;Pm <'—L—';_‘_Z_) ) (2)
=1
where sz is the i-th row of X, 1 = 1,...,n. Attention is devoted here to discrimination

between pairs of error distributions, i.e. models with £ = {0,1}, supposing that the
assignment is done from the viewpoint of hypothesis testing. To be specific, we consider

thev problem of testing

Hy: k=0
against the alternative

i R

Under Hj the error distribution is po(-) and under H; the error distribution is p;(-). Tests
for Hy against H; are frequently referred to as tests for separate models, which are a
special case of goodness-of-fit tests.

Several test statistics for separate models have been proposed for assessing the ade-
quacy of the assumed error distribution (see e.g. Lawless, 1982, chap. 9, for a survey).
Seminal papers in the field are Cox (1961) and Atkinson (1970). Recent contributions,
from various perspectives, include Dass and Berger (2003), Yang (2003), Trottini and
Spezzaferri (2002), and Cubedo and Oller (2002). The importance of sample size in model

selection has been outlined by several authors (see e.g. Zucchini, 2000).



In the framework of scale and regression models, the two main frequentist procedures
for separate models are the likelihood ratio (LR) test and the most powerful invariant
(MPI) test. LR tests are based on the ratio of the likelihoods of the two families where
the unknown parameters are substituted by their maximum likelihood estimates. LR test
statistics can be easily computed in all the situations of practical interest. MPI tests
are given by the ratio of the two marginal likelihoods based on the maximal invariant
statistics, whose density does not depend on the unknown regression and scale parameters
(see e.g. Fraser, 1979, chap. 6, and Barndorff-Nielsen and Cox, 1994, sec. 2.8). Marginal
likelihoods can in principle be found, but it may be difficult to perform analytically or
numerically the calculations required, since the resulting formula is expressed in tei".ms
of multidimensional integrals. However, the leading term of the Laplace expansion for
»integrals gives a simple first order approximation for these marginal likelihoods, which
can be used to approximate MPI tests to first order. At the cost of some additional
calculations, first order approximate MPI tests may be improved including the O(n™!)
term in the Laplace expansion. This gives second order approximate MPI tests.

The aim of this paper is to compare LR tests with exact and first and second order
approximate MPI tests for model discrimination. Simulation results indicate that, in
almost all the situations of practical interest, when p = 1, LR and both first order and
second order approximate MPI tests give equivalent results for all n. Indeed, even the
exact MPI test, computed analytically or numerically, gives the same results as the LR
test in a number of problems considered. Hence, use of the simpler LR procedure is

suggested for discriminating between separate scale and location families. When p > 1,



LR and first order approximate MPI tests continue to give equivalent results. However, if
second order approximate MPI tests are considered, a gain in power is achieved for small
and moderate sample sizes.

The paper is organized as follows. Next section is devoted to LR tests. Margir;él
likelihood and MPI tests are discussed in Section 3. In Section 4 the approximation to
MPI tests based on the Laplace expansion for integrals is discussed and its relation with
LR tests is emphasized. Section 5 presents several simulation studies which compare LR
and exact and first and second order approximate MPI tests. Concluding remarks are

given in the last section.

2 Likelihood ratio procedures

The loglikelihood for (f, o, ) based on model (1) can be written as

e(ﬂaav K’) = —nlogd vzl Zglﬂ (&ﬂ) ) (3)

; o
1=1

where g, (-) = — log p«(-). Here it is assumed that the maximum likelihood estimate (MLE)

(Br,6x) of (B,0) for fixed x € {0,1} exists uniquely and is finite (for a key condition see

Burridge, 1981). The statistic

Y- -'L';r /Brc
Ok

=gy, n) y WD .Gy = R (4)

termed the sample configuration, constitutes a maximal invariant statistic with respect to
linear scale and regression transformations.
The loglikelihood function (3) plays a basic role in the construction of tests for model

discrimination. The parameter (3,0) in (3) is unknown, but it can be substituted with



its restricted MLE in the two loglikelihoods. This gives the profile loglikelihood £p(k) =

é(,@n, G, k), & =0,1. The LR test is then based on the profile likelihood ratio statistic
ex 1 By ol 5
TLr = _p(_pg)) = exp (5(51701, g(;BOaUOaO)) - (5)

The LR test rejects Hy for large values of T g.

In the framework of scale and regression models, LR tests have some interesting fea-
tures. First, they are invariant under the group of transformations that defines model
(1), i.e. linear regression and scale transformations. Moreover, they are relatively easy to
compute, requiring only the MLE of (3,0) under Hy and H;. The main difficulty is that
the exact distributions of 71 g under Hy and H; are usually intractable. However, these

distributions can be investigated through simulation.

3 MPI procedures -

The use of marginal likelihoods for inference about index parameters in composite trans-
formation models has been widely discussed (see e.g. Barndorff-Nielsen and Cox, 1994,
chap. 2.8, and Pace and Salvan, 1997, chap. 7). The maximal invariant statistic (4) has a
distribution that depends on x only and inference about x may be based on the induced
model. The resulting distribution is the same if (Bn, 6y) is substituted by any equivariant
estimator.

The marginal likelihood for x based on the maximal invariant statistic a is given by

(see e.g. Barndorff-Nielsen and Cox, 1994, sec. 2.8, and Fraser, 1979, chap. 2 and 6)

= o lex o,k o
Inl) = [ [ o7 exp(e8,0,m) dpdo )
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where (8,0, k) is the loglikelihood (3). The marginal likelihood (6) can be computed in
a closed form only in a few special models. Examples thereof are given in Lawless (1972,
1973, 1978) for applications to Cauchy, logistic, Weibull and extreme value distributions
and in Kappenman (1975) for the Laplace distribution, in the case of a scale and location
model, and in Fraser (1976) for normal linear models.

The marginal likelihood (6) plays a basic role in the construction of MPI tests for

model discrimination. The MPI test rejects the null hypothesis for large values of

T f]R+ f]Rp Lexp(¢(B,0,1))dBdo
ML= Jer o Lexp(£(B,0,0))dBdo

(7)

A closed form expression for (7) is seldom available. For the calculation of multidimen-
sional integrals in (7) approximations are needed. In addition to numerical evaluation of
the integrals, asymptotic-approximations based on the Laplace expansion for integrals are

useful.

4 Laplace expansion and MPI tests

In this section we discuss approximation to MPI tests based on the Laplace expansion for
integrals (cfr. Barndorff-Nielsen and Cox, 1989, chap. 3, and Pace and Salvan, 1997, chap.
9). The leading term of the resulting approximation is generally accurate to order O(n™!)
and the main regularity condition required is that the restricted MLE’s of (8,0) exist
uniquely with probability one (see Burridge, 1981). There is a close connection between
the approximations considered here and the approximations to posterior moments and

marginal densities in Bayesian inference given in Tierney and Kadane (1986), and with



approximate predictive likelihoods computed in Davison (1986).

Let r(-) and h(-) be real valued functions defined on an open subset D C R¢, d > 1,
and assume that 7(-) has a unique maximum in the interior of D at &, where the gradient
is zero and the Hessian 9%r(w)/0wdw" is negative definite. Assume also that h(w) #-0.

The multivariate version of the Laplace expansion for integrals is

(2m)42h(&) exp (nr(@
Vnlj(@)[2

/Dh(w) exp (nr(w)) dw = ) {1+Ci+ o™}, (8)

where & is the solution of the equation dr(w)/0w = 0, j(@) is minus the (d x d) matrix
of second derivatives of 7(w) evaluated thereat, i.e. j(w) = —8?r(w)/0wdw’, and C; is a
correction term of order O(n~!). Hereafter, the index n will be omitted from the integrand
function, and it will not appear at the denominator of the approximation. In practice,
this index will be absorbed into r(w).

Approximations base’d on (8) can be applied to (6) provided that the MLE (Br,6) of
w = (B, 0) for fixed  is an interior point of the integration region. In this case, d = p+1,
h(w) = 1/o and r(w) = £(w, k). The resulting first order approximation for the marginal

likelihood is

(2m)(P+1)/2
6l (B, 8:)| =1/

Lh(x) = exp (£(Br, 65 ) ) = D(x) exp (6(r)) 9)

where j(-) denotes the observed information matrix evaluated at the MLE and

(27)(P+1)/2
BBl M2,

IHw) =
Note that

Lin(k) = LE(8) {1+ O(n™))} .
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From (9) it can be noted that the profile loglikelihood £,(x) represents the leading term,
of order O(n), of the marginal loglikelihood. Moreover, D(k) is a correction term of order
O(1). As anticipated, approximation (9) is easy to compute. It only requires the MLE for
(B,0) and the observed information matrix evaluated thereat.

A problem with the approximation based on the leading term of the Laplace expansion
(8) is that it can fail when the dimension of the integral is comparable with the asymptotic
index n. This aspect has been previously pointed out by Shun and McCullagh (1995). In
view of this, when p is large relative to n, it could be more appropriate to include the
O(n~!) correction term C; in the approximation of the marginal likelihood. Using index
notation and Einstein summation convention, the expression of C; for (8) applied t0~. (6)

is

. ) o o
CI = Cl("i) = ﬂ { 3.7rs.7tu.7vw€rst£uvw + eru]svjtwersteuuw
s Atu § 12 g 407 2
+ 3]rs.7tu£rstu - T]Tsjtderst + ‘A_z‘jaa} ) (10)
o G
where 7, s,t,u,v,w range over 1,...,p, j7° are the components of the inverse matrix of

3(B,0), £rst038(w, K)/Ow,OwsOwy, Lrspy = 0*(w, K)/Ow,OwsOw;Owy, and the symbol ”A”
over a likelihood quantity indicates evaluation at the MLE (B, 6). The resulting second

order approximation for the marginal likelihood is
Ly, (k) = Li (k) {1 + C1(k)} (11)
so that

Li(k) = Ly (k) {1+ 0(n"%)} .
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The first order approximate MPI test for Hy : « = 0 against H; : k=1 is

Lh(1)
i Plgpinc in oo (12)
MPI L;rn(())
Note that
o
Bhsim T pil, (13)

and Thypr = T;{,IPI {1 e O(n‘l)}. It may be observed that, while Ty, is a likelihood ratio
statics from a profile likelihood, T;{,I p; can be interpreted as a likelihood ratio statistics
from a modified profile likelihood. For large values of n, Ty is the leading term of both
T;{,IIP ; and Ty pr, so all these tests are expected to give the same conclusion. However,
their behaviour in small or moderate samples may be different; see Section 5.

When approximation (11) for the marginal likelihood is used, we get the second order

approximate MPI test

_ L) 0

with Tarpr = Thrpr {1 + O(n'Q)}. Like Ty g, also T;{,[PI and T3, p; are invariant under

linear regression and scale transformations.

5 Simulation studies

Several simulation studies have been performed in order to compare LR, exact MPI and
first and second order approximate MPI tests for model discrimination. Both scale and
location models and scale and regression models have been considered. In this section

four examples will be presented in detail. The first example concerns a scale and location

10



model. The second example discusses a simulation study for a scale and regressioh model
based on a real data set, hence with a fixed value of p. Finally, Examples 3 and 4 allow
both p and n to vary. Several other models have been considered in simulation studies not
reported here, allowing n and p to vary in the ranges 5,...,200 and 1,...,6, respective.l.y.

The results emerging from the whole of these studies are that:

e TR is equivalent to the first order approximate MPI test, T;{,I pr» for all values of n
and p, except when p is large relative to n: in the latter case the first order Laplace

expansion fails;

e Trr and TIJ{/[P ; are equivalent to the exact MPI test, Tspy, for scale and location

models, i.e. when p = 1, and for every sample size n;

e the second order approximate MPI test, Tyrpr»> gives better results than Ty, when

p > 1 and the sample size n is small or moderate;

e for values of p > 1 instabilities in the numerical computation of the exact MPI
test have been encountered; for this reason the exact MPI test computed using the
adapt procedure of the library integrate of the R environment, T34}, has not been

reported in Tables 2—4.

In all the simulation studies the power of the tests has been estimated fixing « to 0.05 and
the number of replications to 10000. Critical values were also determined by simulation

with 10000 replications. Our conclusions are insensitive to a.

Example 1: Discrimination between the normal and the Cauchy distributions. In this ex-

ample, the reference models are scale and location families of the form (1), with p = 1 and

11



with normal or Cauchy distributed errors. The LR, the exact and the first order approxi-
mate MPI tests have been considered. The LR test was initially studied by Dumonceaux,
Antle and Haas (1973). Tapr is the MPI test of normality against Cauchy alternatives
derived by Franck (1981). Its expression is complicated. The statistic T}p; is the MPI
test computed numerically, using the adapt procedure of the library integrate of the R
environment.

The results in Table 1 indicate that the first order approximate test TJJ{/[ py and the
likelihood ratio test T g are as good as the exact test Tpspr. It must be noted that Trr

is easier to compute than T;{,I pr and Typr.
(Table 1 here)

Ezample 2: Discrimination between the normal and the Student’s ty distributions. Sen
and Srivastava (1990, pag. 32) (;onsider a data set consisting of n = 26 observations on
house prices. Among the variables examined are the selling price in thousands of dollars
(y), the number of bedrooms (z;) and the floor space in square feet (z3). The model can

be written as
yi = Po + B1x1; + Poxe; + o€, 1=1,...,26. (15)

Preliminary analysis suggests to take €; to be standard Student’s ¢, with few degrees of
freedom, to allow for longer tails and for extreme values.

Let us consider the problem of discriminating between the normal and the Student’s ¢,
distribution with v = 2 degrees of freedom. The Monte Carlo study has been performed

for four different values of n: n = 26 corresponds to the original data set, n = 10 to the

12



first 10 observations and n = 52 and n = 104 to the situations with 2 and 4 replications,
respectively, of the values of z; and z5 in (15).

Again, the results in Table 2 indicate that the first order approximate test TII,[ py is as
good as T r. The same results were found also for other discrimination problems between
two scale and regression families based on real data sets, such as Weibull versus gamma,

logistic versus Cauchy, lognormal versus gamma, Weibull versus lognormal.
(Table 2 here)

Ezample 3: Discrimination between the logistic and the extreme value distributions. Here,
the LR, the first and secénd order approximate MPI tests have been considered. The
LR test for discriminating between the logistic and the extreme value distribution was
considered in Berkson (1957). The Monte Carlo study has been performed for four different
values of n (n = 10, 20, 50,100) and allowing p to vary in the range 1,...,5. The model

considered is
i =Po+P1%i + ...+ Bp1a’ ™! + 0y (16)

where, for each n, (z1,...,2,) is a random sample from a standard normal distribution.
The results in Table 3 indicate that TLPI and TLr behave very similarly for the
problem considered, except when p is large relative to n. On the other hand, the second
order approximate MPI test T, p; gives a clear improvement over Ty g for p > 1 and small
or moderate values of n. However, when p = 1, i.e. for scale and location models, LR and
the first and second order approximate MPI tests are all equivalent for every sample size

n.

13



(Table 3 here)

Ezample 4: Discrimination between the normal and the extreme value distributions. Let
us consider the problem of discriminating between the normal and the extreme value
distributions using LR test and first and second order approximate MPI tests. The Mor;te
Carlo study has been performed as in Example 3, with a model of the form (16). However,
only the marginal likelihood for the extreme value distribution had to be approximated.
With normal errors, the marginal likelihood has indeed a closed form (see Fraser, 1979,
chap. 6, and Szkutnik, 1988).

-The results in Table 4 give the same indications as those in Table 3. TILP ; and .TLR
are equivalent, except for p = 4 and n = 10,20. The second order approximate MPI test
gives appreciable gains in power for p > 1 and small or moderate values of n. Finally,
when p = 1, LR and the first and second order approximate MPI tests are all equivalent

for all the values of n.

(Table 4 here)

6 Final remarks

In this paper we have discussed the use of the LR test, the MPI test and of its approxi-
mations based on the Laplace expansion for model discrimination. The LR and the first
order approximate MPI tests are easy to compute, since they only require the maximum
likelihood estimates for the regression and scale parameters and the observed informations.

Moreover, when p > 1 and the sample size is small or moderate, first order approximate

14



MPI test can be modified by including a higher-order correction term. Even the second
order approximate MPI test is not computationally heavy, while the numerical evaluation
of the exact MPI test appears reliable only in the two parameter and possibly in the three
parameter models. :

The main result of this paper is that in all the situations considered, the first order
approximate MPI tests are equivalent or worse than the LR tests. In the light of this,
for the problem of discriminating between two separate scale and regression models, LR
procedures can be used safely when p is small and the sample size is moderate to large.
Indeed, they give the same results as the approximate optimal procedures, with the advan-
tage of simplicity. Moreover, when p = 1, i.e. for scale and location models, Tt r appéé.rs
equivalent even to Thaspy.

Another finding is that; when p is a considerable fraction of a small or moderate n, the

second order approximate MPI test T}, p; clearly improves on the LR test, unlike T):,I PI-
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n | Tupr Typp TIJ{/IPI Trr

e gt7 LvEed 047 O

v w92 093 092 062

90+ 098 098 098 0098

08-990 099 099 099

Table 1: Power of tests for discrimination between normal and Cauchy distributions, with

p=1
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n TIJ\[/IPI TLR

10 | 0.32 0.33

26 | 0.55 0.55

52 | 0.87 0.87

104 | 099 0.99

Table 2: Power of tests for discrimination between the normal and the Student ¢y distri-

butions, with p = 3.

20



p| n | Typr TIJ{/IPI Tir

it rlGa 027 B3T 037

20 | 049 049 049

a0 | 1087 087 087

300 099 D9 098

249010 | 028 018 0.19

20 | 046 042 041

ol | 083 . 081 U8l

160 | 099 099 0.99

suol 1 087 047 017

20 ] 047 039 0.39

o0 | 082 079 0.79

100| 099 098 0.98

ool | 933 011 013

20 | 045 037 0.36

o118 80 ¢ i

200 | 0.98 097 0.97

ool | 032 008 012

201 0:38. 028 ..0:35

50 | 0.80 0.75 0.76

100 | .97 097 097

Table 3: Power of tests for discrimination between the logistic and the extreme value.

21



p| n | Typr TILPI Tir

1] 10| 018 0.18 0.18

20 | 034 034 0.34

50 [ 079 0.79 0.79

100 | 0.99 0.99 0.99

2110 | 018 0.16 0.16

20 | 032 0.28 0.27

50 | 0.78 0.77 0.77

100 | 0.99 0.99 0.99

3|10 ({ 013 0.12 0.12
& 20 | 0.26 0.22 0.22
50 | 0.77  0.76 0.76

100 | 0.98 098 0.98

4|10 | 013 0.10 0.11

20 | 025 0.20 0.22

50 | 0.74 0.72 0.72

100 | 0.98 0.98 0.98

Table 4: Power of tests for discrimination between the normal and the extreme value

distributions.
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