B!BUOTE"‘O D! CF"'N?E 8T ’T!""IC‘HE

%MBL.«SM
ACQ. 35?’/ ’O?)

COLL. 5:%3}(/_ 9 9@%”’

Benchmarking systems of
seasonally adjusted time
series according

-‘u«uu

T. Di Fonzo, M. Martini

2003.9

Dipartimento di Scienze Statistiche
Universita degli Studi
Via C. Battisti 241-243
35121 Padova

Maggio 2003






UNIVHSITA
DEGLI STUD

DIPADOA
DRAIIVENTO
Blec s
SATBTICHE

Benchmarking systems of
seasonally adjusted time
series according to Denton’s
movement preservation
principle

T. Di Fonzo and M. Marini

2003.09

Abstract

When a system of time series is seasonally adjusted, generally the
accounting constraints originally linking the series are not
fulfilled. To overcome this problem, we discuss an extension to a
system of series linked by an accounting constraint of the classical
univariate benchmarking procedure due to Denton (1971), which
is founded on a movement preservation principle very appreciable
in this case. The presence of linear dependence between the
variables makes it necessary to conveniently deal with the whole
set of contemporaneous and temporal aggregation relationships.
The cases of one-way classified (e.g., by regions or by industries)
and of two-ways classified (e.g., by regions and by industries)
systems of series are studied. Moreover, simplified expressions of
the matrices involved in the calculations are presented, which turn
out useful in practical implementation of benchmarking for large
systems of series. An empirical application to the Canadian retail
trade series by province (12 series) and trade groups (18 series) is
finally considered to show the capability of the proposed
procedures.
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Summary

When a system of time series is seasonally adjusted, generally the accounting constraints originally linking the series
are not fulfilled. To overcome this problem, we discuss an extension to a system of series linked by an accounting
constraint of the classical univariate benchmarking procedure due to Denton (1971), which is founded on a movement
preservation principle very appreciable in this case. The presence of linear dependence between the variables makes it
necessary to conveniently deal with the whole set of contemporaneous and temporal aggregation relationships. The
cases of one-way classified (e.g., by regions or by industries) and of two-ways classified (e.g., by regions and by
industries) systems of series are studied. Moreover, simplified expressions of the matrices involved in the calculations
are presented, which turn out useful in practical implementation of benchmarking for large systems of series. An
empirical application to the Canadian retail trade series by province (12 series) and trade groups (18 series) is finally
considered to show the capability of the proposed procedures.
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Introduction
Laniel and Fyfe (1989, pp. 464-465) write:

Most economic sub-annual surveys produce series of estimates for a number of industrial
activities within a number of geographical regions. These are published sub-annually in the
form of tables, where the cells as well as the marginals and the grand totals need to be
benchmarked.

If one applies a benchmarking method independently on each cell series, each marginal
series and the grand total series, the results will be a series of benchmarked sub-annual
estimates where the sums of the cell totals are not equal to the marginal totals, and the sum
of the marginal totals are not equal to the grand total. In other words, a series of
inconsistent tables will be produced. To avoid this problem, a number of strategies can be
adopted. Amongst these strategies, the first that comes to mind is the following simple
approach. First, the cell series are independently benchmarked. Then, the benchmarked cell
totals are summed up to get the benchmarked marginal totals and benchmarked grand totals.
With this method one might get benchmarked margins and grand totals with chronological
patterns which look more noisy than if they were directly benchmarked (this is a problem
well known in seasonal adjustment). If this is the case one would be better to use the
following method.:

i) First benchmark the series of grand totals.

ii) Then, independently benchmark each series of marginal totals and then for each sub-
annual period separately adjust the benchmarked margins by a constant factor so that they
add up to the benchmarked grand totals.

iii) Finally, independently benchmark each series of cell totals and then for each sub-annual
period separately adjust the benchmarked cells using the raking ratio algorithm (also called
iterative proportional fitting, see Deming and Stephan, 1940) so that they add up to the
adjusted benchmarked margins.

This method assumes that the series of grand totals is the most important series of the table
in terms of preserving month-to-month trends, the series of marginal totals are the second
most important and the series of cell totals are the least important. An inconvenient with this
method is that the month-to-month trends of the cells can be very much disturbed (...)

One can also think of benchmarking simultaneously the cell series with the margin series and
the grand total series. Then the problem can become very large in terms of the number of
parameters to estimate and even difficult to handle with a computer. This has been addressed
by Cholette (1988b) in the case where series are to be benchmarked with Denton’s method.

In this paper we start just from the last point quoted by Laniel and Fyfe, that is the paper by

Cholette (1988), which presents a wide review of the problems which a researcher faces when
systems of time series, rather than only one, are to be benchmarked in order to simultaneously fulfil
temporal and contemporaneous (longitudinal, geographical) aggregation constraints.

Benchmarking systems of time series is a typical problem for data producers. Different

classifications for the same phenomenon often lead to different total aggregates, so that an
adjustment to the estimates is needed to give a coherent picture to the users. In what follows we will
refer to benchmarking systems of (or tables of two-ways classified)' individually seasonally

' In this paper we deal exclusively with benchmarking of more than one series. At univariate level, references to more
sophisticated - and statistically well founded — procedures are Hillmer and Trabelsi (1987), Cholette and Dagum
(1994), Durbin and Quenneville (1997), Dagum et al. (1998).
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adjusted series, but the results are more general and apply to any context in which accounting
constraints hold (Chen and Dagum, 1997, Eurostat, 1999, Di Fonzo, 2002).

We will consider benchmarking according to Denton’s movement preservation principle,
dealing with both binding and unbinding constraints’. Particular attention will be given to the
computational aspects which, as seen before, represented up to now a major problem for a massive
application of this kind of procedures.

As we shall see, by a thorough analysis of the matrices involved in the various benchmarking
expressions, we can formulate solutions very easy to implement in a computer program and whose
processing times dramatically decrease as compared to those necessary if no simplification is
performed.

The paper is organized as follows. Section 2 is devoted to problem formulation, while in section
3 the problem of benchmarking one system of series when a binding accounting constraint is
available is presented. An approach to solve this problem is developed in section 4, and simplified
benchmarking formulae, obtained by taking into account the partitioned nature of the matrices
involved when two classic variants (additive and proportional) of Denton’s movement preservation
principle are used, are shown in section 5. We consider also the case of a system of series with an
unbinding accounting constraint, while the benchmarking of two systems of series linked by the
same accounting constraint (either binding or unbinding) is described in section 6. We then deal
with two enlargements of the simultaneous benchmarking problem. Firstly (section 7) we develop a
benchmarking procedure according to a movement preservation principle explicitly operating on
period-to-period rates of change, based on suitable log-transformations of the variables. Secondly
(section 8), we discuss the more general problem of benchmarking a two-ways classified table of
time series, giving a solution in two cases generally encountered in practice. In section 9 we take a
look on the computational times needed to perform multivariate benchmarking. Finally, practical
applications of the various procedures presented are performed on individually seasonally adjusted
monthly Canadian retail trade series, classified by province and trade groups.

2. Statement of the problem and some notation

We assume that the available information is given by:
e M+1 monthly raw series {x,}, i=1,...,M+1, =1,...,n, linked by the accounting constraints

M
intzxM-H,t’ +=1,...,n; (1)

e  M+1 monthly unbenchmarked SA series {y,}, i=1,...,M+1, =1,....,n, such that, in general,

neither contemporaneous (between SA series) nor temporal (with the annual sums of the raw
series) aggregation links are fulfilled, that is

M
zyit:’tyMH,t’ Flo . alli

i=1

12 12
W LR, O] LR Rl 0 N
s=1 s=1

We want to estimate benchmarked SA monthly series, say yz, ,i=1,....M+1, t=1,...,n, such that all

the aggregation constraints be simultaneously fulfilled:

2 Multivariate benchmarking of one system of time series with a binding contemporaneous constraint has been dealt
with in Eurostat(1999) and Di Fonzo (2002).



ik * *
Zyi,tzyMﬂ,z’ =1,...m (2)
1=l

12 12
2 s LML TN 3)
s=1 s=1

In what follows we consider the situation, often encountered in practice, in which one series
(generally the one representing the total, y,,,,,) constitutes a binding constraint’, and thus must not

be benchmarked. Furthermore, we deal with other two cases: the one in which the whole set of M+1
series must be benchmarked (unbinding constraint) and the contemporaneous benchmarking of two
systems of time series linked by an accounting constraint, either binding or not.

3. One system of series and a binding accounting constraint

Let us denote with x,, i=1,...,M, the (nx1) vectors of raw data for the M component series,
with y, the SA unbenchmarked counterparts, with y; the benchmarked vectors to be derived and,

finally, with z=y,,, =y, the aggregate series to be assumed as a binding constraint to be
fulfilled by the benchmarked series.
Denoting 1,, = (1,...,1,...1)' and J the (NVxn) matrix performing temporal aggregation of a

single monthly vector®, the whole set of aggregation constraints can be expressed in matrix form as

follows:
.00 | . [7
. - : 4
|:IM QJ }y LJ )

where y’ =(y1*',...,y:',...,y;'4)', x, =(I,, ®J)x is the (M-N)x1) vector containing the yearly
sums of the M component raw series, and x = (xI s e )‘.

The accounting constraints (4) can be written in compact form as

Hy*:'xa’ (5)
where
1. ®1
L s (©)
I, ®J

has dimension ((n+M-N)xM-'n) and

12

12
- 3 g o =
In this case, y,,,, = ¥y, and 2 Ymsr(r-2es = 2 Xpa1,(T-1)12+5 2 T=1,...,N.

s=1 s=1
* For example, assuming that the first monthly data in the series has been observed on January, and assuming n=12"N, J
takes the form J =1, ®1,,. Matrix J can be simply modified such as to deal with cases in which for the starting year
and/or the last year not all monthly data are available.



is a ((n+M-N)x1) vector containing the contemporaneous and temporal aggregates.
Notice that a contemporaneous accounting constraint holds for the yearly sums too:

M 12
Z in,T o x0M+1,T - Z Z(T_1)12+s ] T:l’_ . '5N5 (7)
i=l1 s=1
that is, in matrix form,
s ot L ®1,)]x, =0. (8)

Relationship (8) states that N linear restrictions of the n+M-N established by expression (5) are
superfluous, and then matrix H has not full row rank. To clarify this fact, partition H in such a way

as to distinguish the temporal aggregation constraints linking y, to X, =Jx,, from the

remainder’:

H=| - |, 9)

BT D | g
where sz[ oot "} and HM=[0 : J] are matrices (rxMn) and (NxMn),

1, @3 . %
respectively, with =n+(M-1)-N, such that

z z
Jx X
* B! e 015 o]0
Hy = s = =W
Ix, Xon-1

and

Denoting W the (Nxr) matrix,

w=[J i -(1,,81,)] (10)
and R the ((r+N)xr) matrix
e
=lwl’ (11)

5 As we shall see, contrary to what Chen and Dagum (1997) state, the results are invariant with respect to the choice of
one of the M vectors x,, forming X, .



the following relationships hold:

H, =WH , H=RH , (12)

= 5 =

z X

W= 4 = = — Xa %
W : XOM—l XOM
X M-1

0M-1 JZ e z XOi

& i=1 .

Thus, constraints (4) can be expressed as:
RH,y" =Rw. (14)
4. The benchmarking formula

We assume that the following models hold for the unknown series to be benchmarked, y;,
i=1,...,M, and the unbenchmarked SA series y,, i=1,...,M:

Yooy 08, LM (15)

where e, are (nx1) zero-mean random disturbances, with E (eie'j) =Q,, ij=l,....M, and Q, are

(nxn) known matrices®. Putting together the M relationships (15) we have the complete model
y =y-+e, (16)
with E(e)=0 and E(ee')=Q.

The simultaneously benchmarked series can be obtained by solving the following quadratic-
linear minimization problem:

rrgn(y*-y)'ﬂ_1(y*—y) subject to Hy =x, . (17)

However, the constraints (5) being linearly dependent, particular attention has to be given to the
rank of the matrices involved in the procedure.
Let us consider the lagrangean

L=(y -y)'Q"(y -y)+2,»'(Hy -x,), (18)

where A is a ((r+N)x1) vector of Lagrange multipliers. The first order conditions are given by the
system

8 For the time being, we assume that this matrix has full rank (see footnote 9).
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. e ; (19)

(3)*

|
(—]
—
>l @]
itk
{<l'
+
=
}’

Il |
"R
L<._

that is

Q' H'|y | |Q'
Yolal it (20)
H 0| A &
Using a well known matrix result (Magnus and Neudecker, 1988, pp. 60-61), the solution to
system (20) is actually given by

y =y+QH'(HQH') (x, —Hy), 2D

where (HQH')" denotes the Moore-Penrose generalized inverse of Q, = HQH'.

A solution, equivalent to (21), and which does not involve singular matrices to be inverted,
can be expressed in terms of 7 ‘free’ observations. In fact, using expression (12), the singular matrix

HQH' can be written as RH, QH R'=RQ R', where Q, =H QH, is a full rank (rxr) matrix.

Furthermore, it can be readily checked’ that Q is univocally given by
Q;=(HQH') =R(R'R) ' Q;'(R'R) R'. (22)

By substituting (22) into (21), and taking into account that R'"H = R'RH, , after a bit of algebra we
find the more feasible benchmarking formula

¥ =y+QH Q' (w-H)y). (23)

The benchmarked estimates are thus obtained by distributing a linear combination of the
discrepancies pertaining to » unconstrained observations of the aggregated vector x, over the

original unbenchmarked data. It should be noted that expression (23) (i) involves the inversion only
of full rank matrices and (ii) fulfils both temporal and contemporaneous constraints:

*

Hy Hy + HQH, Q' (w—-H,y)
Hy +RH, QH Q' (w-H,y)

Hy+R(w-H y)=Hy+x, -Hy=x,

7 See the appendix.



5. The choice of : Denton’s movement preservation principle
A natural way of proceeding in the choice of  is to reconsider the ‘movement preservation
principle’ stated by Denton (1971)%. According to that principle, additive and proportional variants

of the multivariate extension of Denton’s benchmarking procedure should operate focusing on,
respectively, the simple period-to-period change,

(yi*,t _y:,t—l)_(yi,t _yi,t—l) = (yi*,t _yi,t ) _(y:,I—l —yi,t—l ) > izla' ' 'sM
or the proportional period-to-period change,

* * * *
e R
Yis Vi Vowoii Vil

el

The objective functions to be minimized for the first differences case are thus given by

[ e i

=

and

respectively. Using matrix notation, € can be expressed as (Eurostat, 1999, Di Fonzo, 2002):

[I » ®(D 'D)]_1 =1,, ®(D'D)” Denton additive first differences
(I, ®(D'D 'DD)]_l -1, ®(D'D'DD)" Denton additive second differences
Y(I,, ®D 'D)—1 L4 ¢ [I w®(D 'D)_1 }Y Denton proportional first differences

Y(I,, ®D 'D‘DD)_1 1= Y[IM ®(D'D 'DD)_l ] Y Denton proportional second differences

where D is the (nxn) matrix’ performing first differences:

1520 0
o e T T N

el (26)
000 -1 1

¥ See also Cholette (1988).
? For computational convenience, we present the original difference matrix used by Denton (1971). As Cholette (1984)

pointed out, at univariate level the computational reasons behind this specification, which involves y, 0= Yio=0 and

y:() ~Vio = y:_l -1 =0 for AFD and ASD variants, respectively, have become obsolete. We are currently engaged

in working out simplified multivariate benchmarking formulae which correctly deal with the first observation of each
series.



and

_diag(yl) 0 0 0
0 diag(yz) 0
o : i . . { :
0 0 a’iag(yi) 0
I 0 0 0 diag(yM)_

The dimensions of the matrices involved in the calculations can be considerable in practical
situations, giving raise to high computational times. However, it is possible to obtain a sensible safe
of time by exploiting the particular form of the matrices involved, as shown in what follows.

Let us denote Q = (D'D)—1 or Q= (D'D'DD)_l the matrices involved in the calculation for
the first differences or second differences variants of the benchmarking procedure, respectively.
The aggregated covariance matrix €, for the additive variant of the procedure can be expressed in
terms of partitioned matrices as:

1,,®J ¢ 0 0o Q| 1, ¢ o0

n

A :[I'M_]®1n : In}[IM~1®Q : 0}[1,”_1@1"5 IM_1®J'}

Thus, we have

w

QL8] op [La8Q L, eor]
1. 908 1, ®J0s g 0

For the proportional variant of the procedure, matrix Q has the form @ =Y (I u® Q) Y, that is:

Y,QY, (| S 0
ooy YL 0G0 (ol Y Y
Q= . s e N R
. : : ; . .
0 0 - Y,QY,
Then, in this case we have
1 ] o B e e
b 0L A | 0 i :
i xoy 0 : '
Q =|J g 1.0 29 : , L J
! . : . o
0 0 Y. 0%
0 it bl MQM_In lislless 1
U



g
W IYOY, | Nouy 0
: | ! :
_J YM—IQYM—I | 0 JYM—IQYM—I J '_
and
. Bl 0]
D L :
. 0 Y,QY, - 0 - ]
QH,K = 2? o ] [ |8 J!
: : : e
0 0 s Ye QY
- u Q¥ By | 0.0 0
B o B A0)x 0]
5 { :
= | Y, QY | 0 Y, QY J'
= | = o P2
YOy, 0 0 0 8

5.1.  One system of series and an unbinding accounting constraint

In this case the series y,,,, has to be benchmarked together with the other M component

series. As a consequence, the aggregation constraints, expressed as to distinguish the ‘free’ links
from the redundant ones, are given by

1, ®I, -1, ]
o y*:[ } @7
0ol

where, with a slight change of notation with respect to the previous sections,

y :(y1 T ,...,yM,yMH)', X, =(I,,,, ®J)x and x=(x1,...,xi,...,xM,xMH) ;
We can easily deal with this case by a re-parameterization which transforms the problem in
hand into a standard benchmarking with binding constraint, as the one considered in section 3. In

fact, it is sufficient to consider g=(y'1,...,y;.,...,y'M,—y'M+l)', g =(yrl,...,y:',...,y;;,—y;'m) :

Ve (xl,...,x,.,...,xM,—xM+1 )', Vo = (xm,...,XOM,—}KOM+1 )', and re-write (27) in the equivalent form

where, in this case,
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1,, ®I
H = M+1 n (28)
1,,®J

has dimension ((n+(M+1)-N)x(M+1)-n), and

The benchmarked estimates are thus given by
g =g+QHQ ' (u-Hg), (29)

where

o {1’M®1ﬂ : I"}
CI,®F 10

Q, =H,QH,,and

0

. Jx,
u=Hg = .

Jx,,

Ak

The final benchmarked estimates are thus given by §; =g, i=1,...,M, and §,,,, = —8,,.. -

6. Benchmarking two systems of time series linked by an accounting constraint

Consider the situation in which the same aggregate can be broken down according to two
different single classification schemes'® (e.g., the former by regions and the latter by economic
activity sectors). If the component series of both systems have been seasonally adjusted
individually, it is likely that the ‘geographically’ aggregated series be different from the aggregate
obtainable from the ‘sector side’, and eventually from a directly seasonally adjusted aggregate
series too.

In the following we will consider three cases, corresponding respectively to situations in
which
1.  abinding contemporaneous constraint is available;

2. no preliminary estimate of the constraint series is available;
3. apreliminary estimate of the constraint series is available and has to be benchmarked together

(and coherently) with the component series of both systems.

6.1. Binding constraint

In this case the available data are given by

19 Notice that we are not dealing with a two-ways classification scheme (see Cholette, 1988, and section 8).
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a=l o component unbenchmarked SA series of the first system;

T component unbenchmarked SA series of the second system;
A.=1,. K annual sums of the first system’s component series;

L O T annual sums of the second system’s component series;

z binding constraint series.

Notice that, in this as in the following two cases considered in this section, the temporally
aggregated component series must satisfy the accounting relationship

N

R
Zam e zbof' :
i=l =1

The estimated benchmarked series a; and f);. must be such that:

J
j=1 i=1

R

A
2 =z,
i=1

S e 4 L % S A
b =z (Watis, 343 b =1),
= =]

I8 =4y, o1, R and Ibiehp.r3l.....S.

The vector containing all the available aggregated data, considered in a way which helps in writing
the aggregation matrix referred only to the ‘free’ information, is

Ya

In fact, 2N observations are ‘redundant’, in the sense that for each system the N annually sums for a
variable are automatically determined by the difference between the annually sums of the binding
series and the sums of the remaining M-1 annually component series, so that the whole set of

aggregation constraints can be expressed as H )y’ =y, , where

¥ a1 3 0 0
g |1 ® 0 0 0
: 0 g 1 a5 ]|

e

12



A
a a
a, a
* M 0R-1
y =| | and y,_ =
Z
1
: b01
" .
_bM " '
_bos—x_

Now, remember that for the additive variant of the benchmarking procedure (see section 5), it is
Q=1,,,®Q. Intuitively, the block-diagonal structure of both H|, and € should notably simplify

the benchmarking formulae. In fact, it can be easily checked that

Q0
Q = " ih
0 Q)
with

w

w

. Q o L,eQr] oo [ Q1,8
1,,®JQ: 1,,®JQJ 1,,®JQ: I,,0JQJ'|

Now, denoting §" = [ﬁ*',f)*'] and y =[a'b"]', the benchmarking formula
¥ =y+QH Q' (yw - Hwy) ,
reduces to

w

' = a+QHY(Q) (a,-Ha)

b" = b+Q'H)(2) (b, ~H’b)

=
Il

where, with obvious notation, it is

Q'=1,8Q, Q'=1,0Q,

Ha iad 1;?—1®In In Hb Le 1:5‘—I®In In
¥ sahilly 1@diden 0] "l B @ikt o

and, finally,



OR-1 bOS—l

In conclusion, when a contemporaneous binding constraint is available, the benchmarked estimates
for the component series of both systems are exactly those obtained by separately benchmarking
each system of series with a binding constraint. Given the form of the matrices involved, this result
holds for the proportional variant of the benchmarking procedure too.

6.2. Unbinding (and unavailable preliminary estimate) constraint

In this case the available data are given by

Bl component unbenchmarked SA series of the first system,;
0 il T component unbenchmarked SA series of the second system;
By L ol annual sums of the first system’s component series;

T e annual sums of the second system’s component series.

As to the accounting constraints, the estimated benchmarked series a; and B/ must be such that:

* o A
2.8 ~Qb; =0,

R
i=1 Jj=1

Ja’ =a,,i=1,.,R and Jb =b, ,j=1,...S.

It is immediate to recognize that we can turn to a standard benchmarking of a system with a binding
constraint (see section 3) by means of the following re-parameterization:

a ; e :
M=R+S z=0 y=[_b} X =[0',a01,...,aOR,bm,...,bOS]’,

according to which the final estimates of the second system’s component series are obtained after a
change of sign.

6.3. Unbinding constraint with an available preliminary estimate

In this case, besides the aggregated data considered in the previous sub-section, we assume
that a (nx1) vector v is available, which is the unbenchmarked SA series for the aggregate. This
new information is such that, in general, no aggregation constraint is fulfilled, that is:

zR:ai #V, ‘ij £V, iam # Jv and iboj #Jv.
i=l Jj=1 i=1 Jj=1

14



We want to get benchmarked estimates that preserve as much as possible the dynamic profiles of
the original unbenchmarked series while fulfilling all the aggregation constraints.
Let y = [a“,b*',v*']’ be the ((R+S+1)nx1) vector of unknown benchmarked SA series and

§ = [ﬁ*',f)*', v ]' the benchmarked estimates, which have to fulfil the constraints

S

Zklﬁ? -¥ =0, iﬁ} ~¥"'=0 (thatis, ZR:ﬁ: -Y'b’ =0),
e i=1

J=1 Jj=1

Ja' =a,,i=1,..,R and Jb =b,,j=1,...5.

As done in section 5.1, it is convenient to express the vector containing all the available aggregated
data in such a way as to easily write the aggregation matrix referred only to the ‘free’ information:

Ya

bOS—l

aOR

L bos

Again, 2N observations are ‘redundant’, in the sense that for each system the N annually sums for a
variable are automatically determined by the difference between the yearly sums of R-1 variables of
the first system and the yearly sums of S-1 variables of the second system. The whole set of

aggregation constraints can thus be expressed as Hy =y,, where

1, ® I, 0 0 -I,
H - L,® 0 0 0 0
0 o0 1, ®I, I, -I,

0 0 I, ®F 0 0

and

Il

Y




Denoting with yz[a',b',v']' the vector containing all the unbenchmarked SA series, the

benchmarked estimates are then given by

¥ =y+QH Q(y,—H,y).

Simplified expressions using partitioned matrices

The aggregated covariance matrix €, for the additive variant of the benchmarking procedure
can be expressed as a partitioned matrix of the form:

®+)Q 1, ®QJ Q 0
o _|1®JQ I, ®JQ) 0 0
W Q 0 s+nQ IVS_1 ®QJ'
0 0 1,,®JQ I, ®JQJ
Moreover, it is
[1,,®Q I,,9QJ 0 g
Q 0 0 0
an. - A 0 1,,®Q I,,®QJ'|.
0 0 Q 0
Bl 0 -Q B

As far as the proportional variant is concerned, we start by considering

g 0 0
Q=0 Q, 0
0 0 VQV
where
Qa=A(IR®Q)A, Qb=B(IS®Q)B,
with
_a” 0250 0 0 _b“ 0410 0i15id
0 0 02 010 0 0 )0
N0 g 0.0 0 B e 0:0"0
A= : solb=la i :
0 0 a0 050 0 by W -0
0.0 0 0 0 =0 0
i 0 O 000 s L3 0 S0 b
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and

Then, it is immediately verified that

[ AQA, AQAJ'
AR—IQAR—I 0
AQA, 0
QH, = 0 0
0 0
0
-VQV

and

[ R
D AQA+VQV  AQAJ
i=1
JA,QA, JAQAJ' -
JAR QAR 0
VQV 0
0 0
| 0 0

AR—IQAR—IJ'

0

0

0

- JAR QAR '

0
vn
0 0 0 ]
0 0 0
0 0
B,QB, B QB J' 0
BS—IQBS—I ' Bs—1QBS‘1J '
B,QB; 0
-VQV 0
VQV 0 0
0 0 0
0 0 0
S
>'B,QB;+VQV B,QBJ' - By QBg,J’
Jj=1
JB,QB, JB,QBJ' - 0
JBs_QB;_, 0 o JBgQBg_J" |

7. Benchmarking while preserving period-to-period growth rates

The proportional adjustment of a system of time series mostly alters those component series
having greater magnitude. As we will see in section 10, the ranges of corrections present (quasi)
perfect correlation with the ranking (by mean) of the variables. Such a result might be in contrast
with the fact that the most reliable series of a survey are generally the greater ones (and viceversa).
An attempt to overcome this kind of problem could be made by considering benchmarking
according to a movement preservation principle referred to the growth rates and in presence of a
binding constraint. In this case, the criterion to be minimised would be

i
i=1

yit—l

t=2

2
i(yit_yit—l _ Pu _pit—lJ e
Pir
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At univariate level, many authors (Helfand ef al., 1977, Bozik and Otto, 1988, Bloem et al., 2001)
consider this criterion as ‘the ideal objective formulation’ (Bloem et al., 2001, p. 100), but it is not
generally pursued'' because of the inherent nonlinearity of the problem and because the
proportional variant of Denton’s procedure has been generally considered a good approximation
(Helfand et al., 1977).

In what follows we work out a solution to the minimization problem defined so far, moving
from an approximation of (30) through the log-transformed expression

i=l

{Z[ finy,~lay, }- (mpi,—lnpi,_l)]2}~ G31)

For notational convenience, let us denote with y,.,, i=1,...,M, T=1,...,N, h=1,...,s, the unknown

series to be estimated, with y,, = Z ¥r, the available temporal aggregates (flow variable) and with
h=1

M
Zpy = Z Yir,» the high-frequency contemporaneous aggregate (which is a binding constraint).
i=l

Temporal aggregation and approximate expression for Iny, ,

Let us consider the Taylor series expansion (truncated at the first order term) of In y,. , around its

low-frequency-period-average, y,, = Z Virw = —y-’T—:

1 e Y;
Iny;, =gr,=Iny,;+ (szh yir):msz ~lns+—2L -1,
Vir Yir
Summing up over #=1,...,s we have
SzyxTh (32)
Zlnszh 8ir = Zgl”—slny,T—slns-%—%—s:slnyiT—slns.
iT
Summing up over i=1,...,M we have
Vi
Zlny,” Zg,” Zlny,T Mlns+sz Cdn S (33)

i=1 sz

It should be noted that expression (33) is an unfeasible approximation, because y,., is obviously
unknown. However, for our purposes, y,;, can be substituted by a temporally benchmarked value,

say yi,» such that

S

e B Ll el

h=1

' An exception is Bozik and Otto (1988).
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For, the complete transformation we consider is the following:

SVir Loy L i
ny;,=gr,=Iny,-Ins+—=-1, i=1,...M, T=1,...N, h=1,...s
Yir
Iny, =g, =Iny,,t<Iand/or = Ns+1, Ns+1,....,

where the second expression permits to derive benchmarked estimates also for those high-frequency
periods in which low-frequency benchmarks are not available (constrained extrapolation or
preliminary benchmarking).

As it can be easily shown, relationship (32) is still valid and, furthermore, it is:

Zlny,” Zg,” Zlny,T Mlns+szy'”— T=1,...,N, h=1,....;s.
i=l1 sz

Now, we have

ngr Z(slnyT —slns —sZInyT sMns, T=1,...,N
i=1 i=1
and
iig,”—szmyr SMlns+sZZy’” sM—lenyT——lens T=1,...,N.
=l h=t izt Vit

In other words the chosen approximation for In y,, , satisfies a low-frequency temporal aggregation

constraint analogous to that found in the quadratic-linear minimization approach.
Now, denoting w, 5, =In p, 5, , let us minimise the objective function

{Z[(g,, 8ut) (W, - ,,1)]} (34)

i=1

constrained by
s M .
Zgi,m =87 and Zgi’m =Zn T=1,....N, h=1,....;s.
h=1 i=

where

M M y
m = ZlnyiT —Mlns+sZ:—'T’i

-1 =t Vit

-~ M, T=1 00N B=l,is.

Thus, we can get benchmarked estimates of g, ;,, say g;Th , using Denton’s AFD procedure on the
log-transformed data. A ‘natural’ estimate of the benchmarked series is given by y,,, = exp { g n,}-

However, due to the approximations involved in the calculations, J,,, needs to be further adjusted
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(for example, through Denton’s PFD procedure) in order to get the final benchmarked estimates
fulfilling both contemporaneous and temporal constraints.

8. Benchmarking a system of two-ways classified series

Let us consider the following table, containing RxS elementary (and unknown) series y,,
i=1,...,R, j=1,...,S, classified by (say) R regions and S industries.

. Industry
Remon 1 j S Total
1 Yu Yy Yis a
: Ya Y Yis a;
R Yri Y Y s ap
Total b, bj by y/

Each vector in the table has dimension (nx1), and the links between the component series and the
totals (by region, by industry and general) are the following:

S R R S R S
a, =Zyij, i=1,...,R, bj =Zyij , j=L,...,S, z=22yij =Zai =ij .
j=1 i=l i=1 j j

Using a matrix notation, let us denote

_YU Yy o Y1s—
Y = yi1 Yy yiS ,
(Y 0 Yy Yas |

matrix (Rn x S), and define as y = vec (Y) , the (RSn x 1) vector containing the observations stacked

by column of the RxS component series. With obvious notation, let us define the vectors containing
the totals by region (a) and by industry (b), respectively:

a=[a,..a,...a, | Rex1) b=[b,...b,..b; |' snx1).

The aggregation constraints can thus be expressed as

s
a, = Zyij ,i=1,...,R, & (ls ®IRn)y =48
=1
UNIVERSITA’ DI PADOVA
BiBL.lDTECA DI 8CIENZE STATISTICHE
Via C. Battisti, 241 - 35121 PADQVA

20



Moreover, we assume that RxS temporally aggregated component series are available such that
Iy, =Yo;> i=1,...,R, j=1,...,S, where J is the (Nxn) temporal aggregation matrix defined in
section 3.

We assume that RxS preliminary series p;, i=1,...,R, j=1,...,S, are available, which have to be
benchmarked in such a way that all the aggregation (both temporal and contemporaneous)
constraints be fulfilled by the benchmarked estimates y,, i=1,...,R, j=1,...,S. Moreover, in many
practical situations the total series, either by regions or by industry, are available in preliminary
form (i.e., unbinding constraint to be benchmarked together the component series) and/or as fully
reliable (binding constraint) to be fulfilled by the benchmarked estimates.

In general, 3’ =27 different cases are theorically possible, as shown in the following table.

Case V4 a b ‘equivalent’ to case
1 y y y
2 y y p
3 y y n
y p Y 2
4 y p p
5 y p n
Y n y 3
Y n p S5
6 y n n
i P y y
* p y p
: p y n
* p p y
7 p p p
8 p p n
* p n y
P n p 8
9 p n n
> n y y
" n y p
* n y n
£ n P y
10 n p p
11 n p n
: n n y
n n p 11
12 n n n

Legenda

y: a binding (yet benchmarked) series is available;

p: a preliminary (to be benchmarked) series is available;

n: neither a binding (yet benchmarked), nor a preliminary (to be benchmarked) series is available.
*: practically uninteresting, because from either a or b it is possible to recover z.

In practice, 12 of 27 cases are really interesting, 7 being unrealistic (either a or b available with z
unavailable), and 5 practically equivalent (for symmetry between a and b) to 5 of the 12 numbered
cases in the table.
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In what follows we consider the two polar cases, namely 1 and 12: in the former, R regional and
S industry series are available and considered as (fully reliable) binding constraints, in the latter no
total series (neither binding nor preliminary) is available.

8.1. A system of two-ways classified series with binding constraints

As previously shown, the crucial point to develop feasible benchmarking formulae according to
Denton’s movement preservation movement principle is to write down the whole set of (temporal
and contemporaneous) aggregation constraints in such a way as to distinguish the redundant
(superfluous) relations from the remaining. In this case, the links between the series to be estimated,
y, and the available benchmarks can be expressed as follows:

y=H)y,

where
H Fi |:1'S—1 ® IRn IRn}
ik WK )
has =Rn+(S-1)n+(S-1)(R-1)N rows and RS» columns, with
i =[1'R_1 ®I, ! In}
1..98 4
which has dimension (n+(R-1)N x Rn), and

bl ' Y : o ; “ee . s o -
Io = [a by Yo Yo" Ps Yousa yO,R—l,S—l:I

is the vector containing the ‘free’ available observations, re-organized in a convenient way for
expressing the benchmarking formulae.
The components of vector y, have been chosen as follows:

R S
o given that z = Zai = Zb ; » the n observations of z are superfluous (in the sense that they
i=1 j=1
can be derived from either a, or b,);
R S
° MOreover, Zai = Zb ; means that other » observations are superfluous; without loss of

i=1 j=1
generality, we do not consider by (which can be derived from the remaining a, and b, as

R S-1
2a-2b,);
i=1 Jj=1
R
. given that Zyo,” =Jb,, j=1,...,S, there are SN superfluous observations contained, for
i=l

example, in the vectors y, Sl St
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S

e  equivalently, as regards ‘regional’ series a,, we have Zyo,ij =Ja,, i=1,...,R, so that RN
j=1

observations are redundant, here chosen as those contained in the vectors y, ¢, i=1,...,R (as it

is obvious, the N observations contained in vector y, ., must be accounted for only once).

At this point, simultaneous benchmarking of the whole set of RxS series can be achieved by
applying the benchmarking formulae developed so far. Obviously, the dimensions of the matrices
implied in the calculations could be really prohibitive'”. For example, if two-ways classified
monthly series by 12 regions and 18 industries are considered, 216 elementary monthly series have
to be benchmarked. Assuming annual benchmarks available for 10 years, the simultancous
benchmarking formula

Yy =y+QH Q] (y,-H,y)

involves the calculation of QH,, which has 25,920 rows and 5,350 columns, and the inversion of

Q, =H QH,, which has dimension (5,350 x 5,350).
We are currently evaluating the feasibility of benchmarking formulae exploiting the partitioned
nature of the involved matrices.

8.2. A system of two-ways classified series with neither binding nor preliminary constraints
In this case the benchmarked estimates ¥, must be such that

S ~

. bj ’

R
Zaiz

i=

J=1

s _ R
where a, = Zy” ,i=1,..,R,and b, = Zyij J=1,...,8.
j=1 i=1

The available aggregated ‘observations’ are thus given by the ((n+RSN) x 1) vector

0
Yo

?

Yo.rs
linked to the unknown series to be estimated by the relation
H,y=y,,

where H , is the ((#+RSN) x RSn) matrix

12 Cholette (1987, p. 45) states: “Practical experience with simultaneous benchmarking may show that very similar
results can be achieved with some combination of individual benchmarking with raking (...) However, simultaneous
benchmarking does provide a standard, i.e. a norm, against which alternative and simplex approaches may be
assessed”.
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When benchmarking a table of monthly series classified by 12 regions and 18 industries using 10
annual benchmarks, the dimensions of matrices QH,, and @, = H QH, are (25,920 x 2,280) and

(2,280 x 2,280), respectively. Even for this case, we are currently evaluating the feasibility of
benchmarking formulae exploiting the partitioned nature of the involved matrices.

9. An evaluation of computational times on simulated data

The main advantage in using partitioned matrices is the reduction of time needed to complete
multivariate temporal disaggregation. Let us rewrite the disaggregation formula (23), that is

¥ =y+QH, Q) (w-H,y).

Two operations in the above expression depend sensibly from both M, N and, consequently, ». One
is the computation of the (r x 7) matrix Q' = (H QH, )™, where » = n+N(M-1); the other is the

product QH Q' which involves large and sparse matrices, with even larger dimensions, as (nM x
nM) for @ and (nMxr) for H, .

For the time being, our procedures have been generalized in order to get simultanecously
benchmarked estimates from both single and double systems of time series, with or without binding
contemporaneous constraints. Moreover, we recover both additive and proportional Denton’s
variants'”.

To evaluate the time saving that can be achieved by exploiting the partitioned nature of the
involved matrices, we compare the computational times needed by procedures based on both not
partitioned (table 1) and partitioned (table 2) matrices for M =3,...,10 and N =5,...,20. The

elapsed times (in seconds) are obtained by means of simulated data. Annual benchmarks
(Xg;5---5Xq,,) are derived from stationary first-order autoregressive processes; monthly preliminary

estimates (y,,...,y,,) are first computed as univariate disaggregation of the benchmarks using a

linear trend and then are noised with unit variance Gaussian white noise processes. Proportional
first differences benchmarking is then made using partitioned and not partitioned formulations'*.

As can be noted, the use of partitioned matrices becomes essential when M, the number of
variables, grows, but significant improvements are found even in case of small systems to adjust.
Table 3 shows the ratios of time using partitioned matrices in terms of that obtained using no
partitioned matrices: it is evident that the reduction of time depends much more on the number of
variables M than on the number of low-frequency observations N.

Table 1: Elapsed time to derive benchmarked estimates using no partitioned matrices
(seconds)

" The calculations are performed using an approximate first differences matrix (see footnote 9 above). All procedures
have been coded in GAUSS language, taking back and improving the routines of the software ECOTRIM (Barcellan,
2002). At the moment we write, simultaneous benchmarking according to the multivariate extension of Denton’s
procedure for a single system can also be performed using the routine DENTON.m in the MATLAB toolbox
XTRIMEST (Quilis, 2002), although only the additive variants are available to the user.

'* The test was made under GAUSS version 4.0 by using an ACER notebook with Intel Pentium IIT processor 850 MHz
and 128 Mb of RAM.
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N
M 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 1 1 2 3 4 6 7 10 12 15 19 23 28 33 39 45
4 1 2 B 6 9 12 16 21 26 33 40 49 59 70 83 96
5 2 5 8 11 16 22 29 38 48 61 75 91 109 128 150 175
6 4 8 13 19 27 37 49 63 8111 1017214123 1149 « 178%1..211" 1248'°:1290
7 7 12 20 29 41 57 76 98 123 154 189 229 275 326 385 447
8 10 18 29 43 60 83 109 142 180 225 276 335 401 481 574 671
9 15 25 40 60 8 115 153 198 252 314 386 470 573 684 826 1036
10 20 34 54 81 114 156 207 269 342 426 531 649 789 1018 1328 1612

Table 2: Elapsed time to derive benchmarked estimates using partitioned matrices (seconds)

N
M 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 0 0 0 0 0 1 1 1 1 2 3 5 6 7 8 10
4 0 0 0 0 1 1 1 1 2 2 4 7 8 10 12 14
5 0 0 0 1 1 1 1 2 2 3 5 9 1 13 15 18
6 0 0 1 1 1 1 2 2 3 4 7 1" 13 16 18 22
7 0 0 1 1 1 2 2 3 4 5 8 13 16 19 22 26
8 0 0 1 1 2 2 3 4 4 6 10 15 19 23 26 31
9 0 1 1 1 2 2 3 4 6 7 12 18 22 26 31 36
10 0 1 1 2 2 3 4 5 7 8 14 21 26 30 36 42

Table 3: Reduction of time using partitioned matrices (percentage of elapsed time using no
partitioned matrices)

N
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

19 80 79 94 101 101 1041 9.9 101 108 156 221 223 220 219 221
5.2 52:7°63769 16,87 6.8 67 - 66" 6.6 7.2 10 714,15 143 141 141189 14.2
3.6 44% 51 75177497 418" 49 4T 4T 6! 73779 1010, + x99 1+ 919:-10.0
3.4 AN 1138197 319 021387 74318 187 A5 3T BT e 81911 655 1.3 T8 u T4 dlbyiad.5
3.2 33 32 31 31 30 30 29 30 32 43 56 59 58 58 58
2.9 206 27 27, 95 .98 L 260 DBt 2 b D36 46 A8 o AiTn 4,60 546
2.3 9:300508. 208 S9N L DD LDl D ki 2.2 3.0 .- 318 0 BI04 3.9 3.8 5 3i5
21 2.0 720 4.9 190410 .90 .90 9T 200 2 3.2 e 3808219, (L2 L 1216

Q@mw@(n-kw:

-

To better evaluate the performance of our procedures, we compared them with the MATLAB
routine DENTON.m, which uses the benchmarking formula (23) without considering the partitioned
nature of the matrices involved (the tests have been made working with the additive first differences
variant", the only available in DENTON.m). We noticed that the MATLAB routine outperforms the
GAUSS procedure implementing (23) without partitioning the matrices (for example, with M=10
and N=10 the complete disaggregation takes about 19 seconds against 27'%). Anyway, the solution
exploiting the partitioned nature of the matrices is the fastest one (8 seconds for the same case). It
would thus be interesting to appreciate the times needed by a MATLAB routine (including the
proportional variant and) exploiting partitioned matrices.

' We run DENTON.m in MATLAB version 6.5.
'® The poorer results of the procedure written in GAUSS can probably be explained by a more efficient usage of RAM

by MATLAB in manipulating large sparse matrices.
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10. An application: benchmarking Canadian retail trade seasonally adjusted series by
province and trade groups

In this section we test the adjustment methods described so far with the Canadian retail trade
series, released by Statistics Canada'’. Monthly raw series (expressed in millions of Canadian
dollars) are available according two (single) breakdowns, i.e. by 18 trade groups (TG system) and
by 12 provinces (PR system).

Each component series and the Total Canada aggregate have been directly seasonally adjusted
using X11-ARIMA. Seasonal adjustment procedures often generate two undesirable effects for a
statistical office. Firstly, the annual totals of the SA series do not agree with those of the raw series.
Second, the monthly contemporaneous sum from different systems does not comply with the
monthly SA total series. As shown before, both the discrepancies can be straightforwardly removed
by multivariate benchmarking techniques.

According to the nature of the data, we face a problem of one-way classification adjustment: the
component series of each system must be adjusted so that they add up to the same Total Canada
series. The latter can be considered either as a binding or unbinding constraint. The aim of this
exercise is to evaluate the performance of different adjustments for PR and TG breakdowns in terms
of discrepancies between (corrections of) benchmarked and (to) unbenchmarked series.

Both systems are composed by series of different magnitude (see Table 4). Province PR300321
represents about 37% of the total Canadian retail sales, whilst the sum of provinces PR300601 and
PR300641 does not reach even one percentage point. As far as trade group breakdown is concerned,
nearly half of the total sales are achieved by the two items 010001 and 100001. Such diversity
strongly reduces the performance of additive variants of Denton’s multivariate procedure. To avoid
such unpleasant outcomes, benchmarking has thus been accomplished according to the proportional
variant (Proportional First Differences, PFD).

ADEF statistics, reported in the last column of Table 4, test on the presence of unit root in the
series (3 lags are considered in the ADF regression). The unit root hypothesis is not rejected at 5%
level in all cases; a common source of non-stationarity is likely to affect the whole system of retail
sales.

Table 5 shows some descriptive statistics on both temporal and contemporaneous discrepancies
between the SA unbenchmarked monthly series and the relevant (temporal or contemporaneous)
constraint'®. From this table it clearly emerges that the discrepancies are negligible in all cases but
for the monthly sum of PR component series, which shows large deviations from the Canada Total
aggregate (see Figure 1). The largest distance is found in December 1997, which is more than 8
times larger than the mean absolute discrepancy. A seasonal pattern seems to dominate the sub-
annua}gdiscrepancies: its behaviour cannot be thus classified as constant or erratic in time (Cholette,
1988) .

7 We thank B. Quenneville, from Statistics Canada, who kindly made the SA series available to us.

18 Statistics on the discrepancies with respect to the temporal constraints are derived as average of the discrepancies of
the single variables.

' Dependencies from the past such those found in this case should be taken into account in some sort of ‘data-based
benchmarking’ exploiting the idea of Guerrero and Nieto (1999). We are currently working around this extension.
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Table 4: Descriptive statistics for Canadian retail trade series according to TG and PR
breakdowns (SA unbenchmarked series, 1991.01-2001.01)

Trade Group Mean St. dev. Min Max Range ADF test [5% c.v.]
TG010001 4,162,300 337,533 3,560,975 4,880,131 1,319,156 -0.064 [-2.886]
TG020001 335,966 39,654 254,507 386,634 132,127 -0.861 [-2.886]
TG030001 1,002,352 93,201 792,671 1,168,250 375,579 -1.145 [-2.886]
TG040001 138,831 7,698 120,603 154,953 34,350 -1.987 [-2.886]
TG050001 134,597 7,886 119,708 156,544 36,836 -2.266 [-2.886]
TG060001 348,012 27,598 288,205 407,955 119,750 -0.406 [-2.886]
TG070001 450,122 97,062 300,829 649,648 348,819 0.966 [-2.886]
TG080001 771,265 126,882 540,947 1,117,685 576,738 1.663 [-2.886]
TG090001 190,415 23,219 146,660 257,167 110,507 1.112 [-2.886]
TG100001 4,555,360 1,029,007 3,034,552 6,323,391 3,288,839 -0.078 [-2.886]
TG110001 1,355,285 214,443 1,146,144 1,981,460 835,316 1.683 [-2.886]
TG120001 1,049,627 156,652 833,242 1,350,548 517,306 0.332 [-2.886]
TG131001 1,190,377 174,007 969,904 1,555,479 585,575 0.473 [-2.886]
TG132001 865,874 153,611 674,546 1,192,825 518,279 1.458 [-2.886]
TG140001 624,673 75,289 475,735 755,247 279,512 -0.879 [-2.886]
TG150001 492,345 74,305 389,483 644,373 254,890 0.602 [-2.886]
TG161001 527,567 55,679 460,871 658,551 197,680 0.715[-2.886]
TG162001 400,494 46,191 311,122 503,897 192,775 -0.520 [-2.886]
Province Mean St. dev. Min Max Range ADF test [5% c.v.]
PR300101 309,597 33,210 274,969 383,481 108,512 1.324 [-2.886]
PR300111 79,635 12,761 60,462 106,020 45,558 0.974 [-2.886]
PR300121 587,000 72,382 473,966 731,827 257,861 0.557 [-2.886]
PR300131 460,852 64,271 370,680 595,039 224,359 1.271 [-2.886]
PR300221 4,382,203 534,915 3,534,316 5,393,719 1,859,403 0.606 [-2.886]
PR300321 6,929,302 1,064,662 5,522,751 9,150,612 3,627,861 1.483 [-2.886]
PR300421 647,807 92,850 513,478 809,824 296,346 0.147 [-2.886]
PR300471 561,345 84,943 429,425 693,946 264,521 -0.232 [-2.886]
PR300481 2,038,662 357,028 1,560,450 2,783,023 1,222,573 1.315 [-2.886]
PR300521 2,538,252 340,222 1,900,230 3,091,321 1,191,091 -0.924 [-2.886]
PR300601 21,771 5,006 13,219 30,123 16,904 -1.211 [-2.886]
PR300641 38,783 5,840 28,051 51,778 23,727 0.072 [-2.886]
300001 - Total Canada 18,595,462 2,623,083 14,816,800 23,756,760 8,939,960 1.680 [-2.886]

Figure 1 here

Different adjustments are devised to get benchmarked estimates in the two systems. The
following four cases are considered (benchmarking of the TG system alone is not an interesting
case given the small sub-annual and contemporaneous discrepancies’):

20 We present a variety of alternatives in order to appreciate how the methods work. However it should be stressed that,
from a practical point of view, in this particular case it would probably reasonable (i) to benchmark TG system using
Total Canada as either binding or unbinding constraint, and (ii) adjust PR component series using Total Canada series
of step (i) as binding constraint. For all practical purposes, the estimates of PR component series obtained by this way
are equivalent to the results of case (2).
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(1) PR system with no binding constraint (12 component series + Total Canada series are
benchmarked);

(2) PR system with Canada total aggregate used as a binding constraint (only 12 component
series are benchmarked) using both Denton’s PFD variant and the benchmarking procedure
working on growth rates described in section 7;

(3) PR and TG systems with no binding constraint (12 + 18 component series are benchmarked,
while the unbenchmarked SA Total Canada series remains unused);

(4) PR and TG systems with still unbinding constraint, but using the unbenchmarked SA Total
Canada as a preliminary series.

Table 5: Temporal and contemporaneous discrepancies for the unbenchmarked SA series
according to TG and PR breakdown - Descriptive statistics

Contemporaneous discrepancies Temporal discrepancies

Trade groups Province Trade groups Province

Median -1 5172 -1 -1
Standard deviation 3 62,811 1 1
Min -8 181,535 -2 -2
Max 8 -347,024 1 1

Figure 1 here

The performance of the benchmarking procedure for each adjustment is evaluated by
considering the proportional corrections c; , defined as

c =i for =) M
Vit
and the additive corrections c; , given by

a A* d
c;=y,—y, fori=l,....M,

where M is equal to 13, 12, 30 and 31 for cases (1), (2), (3) and (4), respectively. The additive
corrections have been kept into considerations also for the monthly growth rates.

Annual benchmarks, given by the sums of monthly raw series, are available for the period
1991-2000, while the unbenchmarked SA series cover the period 1991:01-2001.01 (the
benchmarked estimate for the last month is then obtained by extrapolation®'). In our notation we
have R=12, S=18, n=121, N=10. The computational times required in our cases (Table 6) are in line
with those found with simulated data.

In the following we present a set of tables summarizing the corrections made to levels and
growth rates (%) of the unbenchmarked series. To better appreciate changes, we also plot
corrections for each variable: by this way we get a graphical picture of the corrections and,
eventually, we can disclose undesirable patterns. Although Denton’s PFD variant preserves at best
the levels, we have chosen to evaluate also rates of change because they can be considered as the
“real” short-term information of a monthly series (see section 7).

?! Notice that preliminary benchmarked estimates must still fulfil a contemporaneous aggregation constraint.
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Table 6: Elapsed time needed for benchmarking PR and TG systems (seconds)

Number of variables No partitioned matrices  Partitioned matrices

Province (binding - case 2) 12 273 4
Province (unbinding — case 1) 13 371 T
Trade groups (binding) 18 1,190 9
Trade groups (unbinding) 19 1,351 10
Trade groups and province 30 2581 31
(unbinding — case 3) ’

Trade groups and province 3] 2,819 49

(unbinding* — case 4)
* Using unbenchmarked SA Total Canada as a preliminary series.

10.1. Benchmarking series by province

As regards case (1), provincial data are adjusted without a binding constraint according to the
procedure described in section 5.1. In this case the benchmarked Total Canada series is forced to
comply with the sum of the 12 benchmarked provincial series. The range of the proportional
corrections to the levels (Table 7) is 2.34%; the largest absolute correction occurred for January
1992 (-1.44%), due to the correction of opposite sign to December 1992, where the unbenchmarked
Canada total aggregate was 181,535 millions of dollars higher than the sum of provincial
unbenchmarked data. Other significant adjustments are found to the provinces PR300221 and
PR300321, whereas the other provinces show corrections much lower than 0.2% (see Figure 2).

Table 7: Proportional corrections (levels) and additive corrections (growth rates) made by
benchmarking PR component series and Total Canada without binding constraint
- Descriptive statistics

Levels Growth rates (%)
Variable* Median Min Max Range St. dev Med. Min Max Range St. dev
PR300321 (1) 0.99989 0.99634 1.00478  0.00844 0.00102 -0.01 -043 054 097 0.14
PR300221 (2) 0.99997 0.99738 1.00320  0.00582  0.00066 -0.01 -024 033 057 0.09
PR300521 (3) 0.99997 0.99868 1.00179  0.00311  0.00037 0.00 -0.16 0.19 0.35 0.05
PR300481 (4) 0.99997 0.99900 1.00147  0.00247  0.00030 0.00 -0.14 0.15 029 0.04
PR300421 (5) 0.99999 0.99965 1.00046  0.00081 0.00010 0.00 -0.04 0.05 0.09 0.01
PR300121 (6) 0.99999 0.99971 1.00039  0.00068 0.00009 0.00 -0.04 0.05 0.09 0.01
PR300471 (7) 0.99999 0.99973 1.00041 0.00068  0.00008 0.00 -0.04 0.04 0.08 0.01
PR300131 (8) 1.00000 0.99976 1.00031 0.00055  0.00007 0.00 -0.03 0.04 0.07 0.01
PR300101 (9) 1.00000 0.99981 1.00021 0.00039  0.00005 0.00 -0.02 0.03 0.05 0.01
PR300111 (10) 1.00000 0.99996 1.00006  0.00010  0.00001 0.00 *>0.00°'* 0.0%+¥0.01 7 "0.00
PR300641 (11) 1.00000 0.99998 1.00003  0.00005 0.00001 0.00 0.00 0.00 0.01 0.00
PR300601 (12) 1.00000 0.99999 1.00002  0.00003  0.00001 0.00 0.00 0.00 0.00 0.00
Canada 1.00021 0.98628 1.00968  0.02340  0.00278 0.03;.141.44 1145 11259 210:37

* Provinces are ordered by range of levels’ correction; ranking by mean is indicated in parentheses.

Figure 2 here

If the Canada total aggregate is in turn considered fully reliable we fall into case (2), where
the Canada total aggregate is used as a binding constraint which provincial data must fulfil. From
Table 8 it emerges that provinces PR300321 and PR300221 show again the largest corrections
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(about 5.2% and 3.1% of range for month-to-month rates of change, respectively), but also
PR300521 and PR300481 are visibly corrected (see Figure 3).

Figure 3 here

Table 8: Proportional corrections (levels) and additive corrections (growth rates) made by
benchmarking PR component series with binding constraint - Descriptive statistics

Levels Growth rates (%)
Variable* Median Min Max Range St. dev Med. Min Max Range St. dev
PR300321 (1) 0.99946 0.98128 1.02722  0.04594 0.00555 =0:06: -2.31 292593 . - 074
PR300221 (2) 0.99984 0.98655 1.01815  0.03160 0.00360 -0.04 -130 178 3.07 046
PR300521 (3) 0.99988 0.99323 1.01018 0.01695 0.00200 :0:02.:.-0.88:.24.00....1:89 . ¢:0:27
PR300481 (4) 0.99988 0.99487 1.00836  0.01350 0.00163 30102 207540834 1,58 - 0.22
PR300421 (5) 0.99997 0.99820 1.00263  0.00443 0.00052 =0:01..20.23 .£.0.27 .. 0.50 ' 0.07
PR300121 (6) 0.99996 0.99853 1.00224  0.00370 0.00048 -0.01 -020 027 047 0.06
PR300471 (7) 0.99997 0.99862 1.00231 0.00369  0.00045 -0.01..-0:21 - 0223 - 045" '0.06
PR300131 (8) 0.99998 0.99878 1.00176  0.00298 0.00037 0,00 ; -0:16:13 0.20  0.36 *::0:05
PR300101 (9) 0.99999 0.99905 1.00118  0.00212 0.00025 0.00 -0.10: .0.14 025 0.03
PR300111 (10) 1.00000 0.99978 1.00032  0.00054 0.00006 0.00 -0.03 0.03 0.06 0.01
PR300641 (11) 1.00000 0.99990 1.00016  0.00026 0.00003 000 :0:01:10.02  0:03c2:0.00
PR300601 (12) 1.00000 0.99997 1.00010  0.00012  0.00002 0.00 -0.01 0.01 0.02 0.00

* Provinces are ordered by range of levels’ correction; ranking by mean is indicated in parentheses.

Table 9 and Figure 4 present in turn the benchmarking results for the PR system while
preserving the growth rates, as proposed in section 7. It clearly appears that the peaks in the
corrections are somewhat smoothed with respect to the results obtained using Denton’s PFD
variant, but now almost all the series are touched by corrections.

Table 9: Proportional corrections (levels) and additive corrections (growth rates) made by
benchmarking PR system while preserving the growth rates and with binding
constraint - Descriptive statistics

Levels Growth rates (%)
Variable* Median Min Max Range St. dev Med. Min Max Range St. dev
PR300321 (1) 0.99962 0.98369 1.02294  0.03924 0.00474 =0:06 =197, . 251 448 ..0.:63
PR300221 (2) 0.99979 0.98710 1.01775 0.03066  0.00355 -0.04 -130 175 3.05 0.46
PR300521 (3) 0.99980 0.99144 1.01297  0.02153  0.00257 -0.03 -1.09 128 237 0.34
PR300481 (4) 0.99980 0.99248 1.01186  0.01938 0.00234 =0:02 . =1.02, , 118 - .2.20....0:31
PR300421 (5) 0.99983 0.99462 1.00849  0.01387 0.00167 =0:02 .-0.70. .. 0.83 ' ,1:53...0:22
PR300121 (6) 0.99983 0.99485 1.00827  0.01342 0.00164 20:02 - -0.68., 0.83 . . 1.51...0.21
PR300471 (7) 0.99982 0.99490 1.00830 0.01340 0.00163 =001 :0.70. . 082 -,1:53..:0.21
PR300131 (8) 0.99984 0.99500 1.00796 0.01296  0.00158 -0.02 -065 0.79 144 0.21
PR300101 (9) 0.99985 0.99516 1.00764  0.01248 0.00151 -0.02 -062 076 138 0.20
PR300111 (10) 0.99985 0.99566 1.00713 0.01147  0.00140 -0.01 -0.57 0.72 129, ...018
PR300641 (11) 0.99986 0.99576 1.00704 0.01127 0.00138 -0.01 -056 069 126 0.18
PR300601 (12) 0.99985 0.99582 1.00699  0.01117  0.00137 -0:.01..=056  -071.  1:27. 0.18

* The provinces are ordered by range of levels’ correction; ranking by mean is indicated in parentheses.
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Figure 4 here

10.2. Simultaneous benchmarking of series by province and trade groups

Let us now move on to the simultaneous adjustment of provincial and trade groups systems of
series (cases 3 and 4).

In case 3 the component series for both systems are adjusted without taking into account
Canada total aggregate neither as an unbinding constraint nor as a preliminary series (see section
6.2 for details). The variables are treated as if they belong to a single system, consequently the
proportional nature of the method adjust the series according with the total ranking of the 30
variables (see Table 10). The growth rates of the two largest series, PR300321 and TG100001,
show the biggest corrections (ranging between [-1.39%, 1.87%] and [-1.38%, 0.96%], respectively).

Table 10: Proportional corrections (levels) and additive corrections (growth rates) made by
benchmarking PR and TG component series without binding constraint -
Descriptive statistics

Levels Growth rates (%)
Variable* Median Min Max Range St. dev Med. Min Max Range St. dev
PR300321 (1) 0.99963 0.98767 1.01571 0.02804  0.00346 -0.04 -139 187 327 046
TG100001 (2) 1.00017 0.98506 1.00663  0.02157  0.00248 003 -138 096 234 031
PR300221 (3) 0.99992 0.99116 1.01051 0.01935  0.00224 -0.02 -0.78 114 192 0.29
TG010001 (4) 1.00018 0.99121 1.00788  0.01667  0.00211 0.02 -120 0.84 204 028
PR300521 (5) 0.99991 0.99554 1.00588  0.01034  0.00125 -0.01 -053 065 117 017
PR300481 (6) 0.99990 0.99662 1.00483  0.00821  0.00101 -0.01 -045 053 098 0.14
TG110001 (7) 1.00008 0.99729 1.00248  0.00519  0.00069 0.01 -040 026 066 0.09
TG131001 (8) 1.00005 0.99737 1.00235  0.00498  0.00060 0.01 -0.32 025 056 0.08
TG120001 (9) 1.00004 0.99766 1.00209  0.00444  0.00053 0.00 -0.28 023 051 0.07
TG030001 (10) 1.00003 0.99790 1.00183  0.00393  0.00050 0.01 -0.27 020 047 0.07
TG132001 (11) 1.00005 0.99822 1.00155  0.00333  0.00043 0.00 -0.23 0.18 041 0.06
PR300421 (13) 0.99997 0.99882 1.00152  0.00270  0.00032 0.00 -0.14 0.17 031 0.04
TG080001 (12) 1.00003 0.99835 1.00099  0.00264 0.00038 0.01 -022 0.15 037 0.05
TG140001 (14) 1.00002 0.99852 1.00098  0.00246  0.00031 0.00 -0.17 0.13 030 0.04
TG150001 (18) 1.00002 0.99880 1.00109  0.00228  0.00026 0.00 -0.12 0.09 022 0.03
PR300121 (15) 0.99997 0.99903 1.00129  0.00226  0.00030 0.00 -0.12 0.17 029 0.04
PR300471 (16) 0.99998 0.99909 1.00133  0.00225 0.00028 0.00 -0.13 0.15 027 0.04
TG161001 (17) 1.00002 0.99893 1.00092  0.00199  0.00027 0.00 -0.16 0.10 0.27 0.04
PR300131 (19) 0.99998 0.99920 1.00102  0.00182  0.00023 0.00 -0.09 0.13 022 0.03
TG070001 (20) 1.00002 0.99889 1.00066  0.00177  0.00022 0.00 -0.11 009 020 0.03
TG020001 (23) 1.00001 0.99930 1.00085  0.00155 0.00018 0.00 -0.08 0.07 0.15 0.02
TG162001 (21) 1.00002 0.99919 1.00073  0.00154  0.00020 0.00 -0.12 0.08 0.19 0.03
TG060001 (22) 1.00002 0.99927 1.00066  0.00139  0.00018 0.00 -0.10 0.07 0.17 0.02
PR300101 (24) 0.99999 0.99938 1.00068  0.00130  0.00016 0.00 -0.06 0.09 015 0.02
TG090001 (25) 1.00001 0.99949 1.00027  0.00078 0.00010 0.00 -0.06 0.04 0.10 0.01
TG040001 (26) 1.00001 0.99973 1.00041 0.00068  0.00008 0.00 -0.04 0.03 0.07 0.01
TG050001 (27) 1.00001 0.99974 1.00025  0.00051  0.00007 0.00 -0.05 0.03 0.07 0.01
PR300111 (28) 1.00000 0.99986 1.00018  0.00033  0.00004 0.00 -0.02 0.02 0.04 0.01
PR300641 (29) 1.00000 0.99994 1.00009  0.00016  0.00002 0.00 -0.01 0.01 0.02 0.00
PR300601 (30) 1.00000 0.99998 1.00005  0.00007  0.00001 0.00 0.00 0.1 001 0.00
Canada 1.00005 0.99297 1.00411 0.01114  0.00130 0.01 -0.67 056 123 0.17

* Provinces and trade groups are ordered by range of levels’ correction; ranking by mean in the whole system is indicated in parentheses.
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As far as TG system is concerned, significant corrections are found only for TG010001,
whereas the remaining trade groups remain quite unchanged (see Figure 5). The provincial data
show instead greater corrections with respect to the benchmarked figures in case 1 (see Figures 2
and 6°%). On the contrary, the growth rates of the benchmarked Canada total aggregate are closer to
those shown by the preliminary series.

Figure 5 here

Figure 6 here

In case (4) we wish to evaluate whether introducing the Canada preliminary series can induce
significant improvements on the benchmarked estimates (Table 11). In fact, the range of corrections
is slightly shrunk (from 1.23 to 1.06 for month-to-month rates of change). Furthermore, the whole
benchmarked system gets benefit from it (21 out of 30 variables show lower variability of the
additive corrections to growth rates, see Figures 7 and 8).

Figure 7 here

Figure 8 here

We display the proportional corrections to the levels (Figure 9) of the unbenchmarked Total
Canada series made by the sums of the benchmarked component series in cases (1), (3) and (4), and
the additive corrections to month-to-month rates of change (Figure 10) in cases (1) and (3)*. From
both graphs it clearly emerges that simultaneous benchmarking of both systems (either with or
without a preliminary estimate of the contemporaneous constraint) reduces half of the correction
induced by benchmarking system PR only.

Figure 9 here

Figure 10 here

221t should be noted that the ranges of y-axes in figures 2 and 5 are different.
 The additive corrections registered in case (4) are practically indistinguishable from those of case (3).
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Table 11: Proportional corrections (levels) and additive corrections (growth rates) made by
simultaneously benchmarking Total Canada, PR and TG component series -
Descriptive statistics

Levels Growth rates (%)
Variable* Median Min Max Range St. dev Med. Min Max Range St. dev
PR300321 (1) 0.99961 0.98718 1.01666  0.02948  0.00362 -0.04 -147 195 342 048
PR300221 (3) 0.99991 0.99080 1.01114  0.02034  0.00234 -0.03 -082 119 201 0.30
TG100001 (2) 1.00016 0.98629 1.00612  0.01983  0.00229 003 -127 088 214 0.28
TG010001 (4) 1.00017 0.99194 1.00727  0.01534  0.00195 002 -111 077 188 0.26
PR300521 (5) 0.99990 0.99536 1.00623  0.01087  0.00130 -0.02 -056 0.67 123 0.17
PR300481 (6) 0.99990 0.99648 1.00512  0.00863 0.00106 -0.01 -047 055 1.03 0.14
TG110001 (7) 1.00007 0.99752 1.00229  0.00477  0.00064 0.01 -0.37 024 061 0.09
TG131001 (8) 1.00005 0.99759 1.00217  0.00458 0.00056 0.00 -0.30 0.23 052 0.07
TG120001 (9) 1.00004 0.99785 1.00193  0.00408  0.00049 0.00 -0.25 0.21 047 0.07
TG030001 (10) 1.00003 0.99808 1.00169  0.00361  0.00046 0.01 -025 0.18 043 0.06
TG132001 (11) 1.00005 0.99837 1.00143  0.00306  0.00039 0.00 -022 0.16 038 0.05
PR300421 (13) 0.99997 0.99877 1.00161 0.00284  0.00034 0.00 -0.15 0.18 032 0.05
TG080001 (12) 1.00003 0.99849 1.00091 0.00243  0.00035 0.01 -020 0.14 034 0.05
PR300121 (15) 0.99997 0.99899 1.00137  0.00238  0.00031 0.00 -0.13 0.18 030 0.04
PR300471 (16) 0.99998 0.99905 1.00141 0.00236  0.00029 0.00 -014 015 029 0.04
TG140001 (14) 1.00001 0.99864 1.00090  0.00226  0.00029 0.00 -0.16 0.12 028 0.04
TG150001 (18) 1.00002 0.99890 1.00100  0.00210  0.00024 0.00 -0.11 0.09 0.20 0.03
PR300131 (19) 0.99998 0.99916 1.00108  0.00191  0.00024 0.00 -0.10 0.13 023 0.03
TG161001 (17) 1.00002 0.99901 1.00085  0.00183  0.00025 0.00 -0.15 0.10 0.24 0.03
TG070001 (20) 1.00001 0.99898 1.00061 0.00162  0.00020 0.00 -0.10 0.08 0.19 0.03
TG162001 (21) 0.99998 0.99922 1.00066  0.00145 0.00018 0.00 -0.11 0.07 0.18 0.02
TG020001 (23) 1.00001 0.99936 1.00079  0.00143  0.00017 0.00 -0.08 0.06 0.14 0.02
PR300101 (24) 0.99999 0.99935 1.00072  0.00137  0.00017 0.00 -0.06 0.10 0.16 0.02
TG060001 (22) 1.00002 0.99933 1.00061 0.00128  0.00016 0.00 -0.09 0.06 0.15 0.02
TG090001 (25) 1.00001 0.99953 1.00025  0.00072  0.00009 0.00 -0.06 0.03 009 0.01
TG040001 (26) 1.00001 0.99975 1.00038  0.00063  0.00007 0.00 -0.04 0.03 0.06 0.01
PR300641 (29) 0.99965 0.99947 1.00002  0.00055 0.00013 0:00 * ~-0.01- *'0.01: - 10:02,"7 0:00
TG050001 (27) 1.00001 0.99976 1.00023  0.00047  0.00007 0.00 -0.04 0.02 0.07 0.01
PR300111 (28) 1.00000 0.99985 1.00019  0.00034  0.00004 0.00 -0.02 0.02 0.04 0.01
PR300601 (30) 1.00000 0.99998 1.00006  0.00008  0.00001 0.00 -0.01 0.01 0.01 0.00
Canada 1.00004 0.99355 1.00380  0.01025 0.00119 001 -061 052 113 0.16

* Provinces and trade groups are ordered by range of levels’ correction; ranking by mean in the whole system is indicated in parentheses.
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Appendix: Derivation of the Moore-Penrose generalized inverse of Q= HQH'

Denote by e, = He the stochastic disturbances vector obtained by pre-multiplying model (16)
by the aggregation matrix H. This vector is characterized by N linear constraints, that is

Y e .
e, = e= i :
LM WH e )
thus its covariance matrix, £ (eae'a) =HQH'=Q_, is singular. More precisely, it is:
L B 2, it = RQ R' s
LR WeOW T L)

where @, =E (Hwee'H'w) =H_ QH, is the non-singular covariance matrix of the disturbances

Je,

H e=| Je

w /]

Je;,

The Moore-Penrose generalized inverse of € can be built as follows (Powell, 1969, pp. 917-
918):

a)  select a sub-matrix ((r +N ) X r) of Q_, say S, of full column rank r;

b) &finda (r x(r+ N)) matrix, say T, such that Q_ =ST,

c)  the Moore-Penrose generalized inverse, which is unique, is given by:

Q; =T'(TT")" (8'S)" S". (A3)

a

The choice of S and T follows immediately from (A.2):

Q
S=[ W}:Rﬂwande[Ir W=R'".
QW

Substitution into (A.3) gives
Q; =R(R'R) (Q,R'RQ,) QR
from which expression (22) can be easily derived:

Q; =R(R'R)" Q] (R'R) Q'@ R'=R(R'R) Q] (R'R) 'R".
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Figure 1: Monthly discrepancies of PR system
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and Total Canada without binding constraint
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Figure 2: Additive corrections to growth rates made by benchmarking PR component series
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Figure 3: Additive corrections to growth rates made by benchmarking PR component series
with a binding constraint
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Figure 4:
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Figure 5: Additive corrections to growth rates made by benchmarking PR and TG

component series without a binding constraint — Series by trade groups
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Figure 6: Additive corrections to growth rates made by benchmarking PR and TG
component series without a binding constraint — Series by province and Total
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Figure 7: Additive corrections to growth rates made by benchmarking Total Canada, PR
and TG component series - Series by trade groups
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Figure 8: Additive corrections to growth rates made by benchmarking Total Canada, PR
and TG component series - Series by province and Total Canada
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Figure 9: Proportional corrections to the unbenchmarked SA Total Canada made by the
sum of variously benchmarked SA series
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Figure 10: Additive corrections to rates of change of unbenchmarked SA Total Canada series
made by the sum of variously benchmarked SA series
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