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MULTIVARIATE PERMUTATION TESTS IN GENETICS

Rosa Arboretti Giancristofaro

1. INTRODUCTION

The genetic statistical problem we are going to discuss is quite common in any
context related to restricted alternatives, or more generally in testing under order
constraints (Hirotsu, 1986, 1998; Khoury and Beaty, 1994). In the genetic
configuration introduced by Chiano and Clayton (1998), the statistical problem
can be formalized in the following way. Let us assume responses are bivariate:
(X,,X,) and that observed subjects are partitioned into two groups (according
to the typical case-control study), so that data may be represented as:

X=X X i hi=lunj, j=12 1)

“where responses are ordered categorical such as (A4, Aa, aa). Of course, in a
more general setting we may also consider real valued responses, or any kind of
ordered variables, with more than two dimensions and possibly with more than
two groups. The ordering relationship on responses is generally induced by the
nature of the problem at hand.

The hypotheses we are interested in are:

HO :{(Xll ’XZI)i(XIZ ’X22)}={(Xll inZ)n(XZI i‘XvZZ)}’ (2)

against the special isotonic set of alternatives:



d d
(X112 X)) N (X 2 X0)
H,: XOR A ©)]

d d
(Xll -3 Xll)n(Xﬂ < XZZ)

where, in each line, at least one inequality is strong. The XOR relation
corresponds to an exclusive OR, so that, under H,, one and only one of two

bivariate stochastic dominance relations is true.
For convenience of interpretation, it is often useful to introduce a response

model such as, for instance: X wi = O (,u,, + Z,,,-,-), where Oy is the effect on the
b-th variable in the j-th group, all other notation having obvious meanings (Di
Castelnuovo e 4l., 2000). In accordance with this model, the hypotheses may be
written as: H,:(8, =1)N(5, =1) against H,:[(6, 21)N (5, 21)] XOR
[(6, <1)N (8, <1)], where at least one inequality in each “sub-alternative” is
strong. Since for each sub-hypothesis we have one partial test, in order to obtain
a global test we need to combine these partial tests.

In our genetic context, this happens when a gene is associated with a given
disease so that, on affected individuals (cases), at least one of the genotype
frequencies with putative allele increases XOR decreases with respect to non-
affected individuals (controls).

Of course, as under the null hypothesis, the pooled data set X'is a set of
sufficient statistics for the problem, partial tests to take into consideration are:

T =Y Xpi— 2, Xninh=12. “

In the present problem, under H,, p-values of partial tests are either
stochastically smaller than o or stochastically larger than 1- & . Thus, if responses
are k-dimensional, we need to state the following assumptions:

1) all partial tests 7,,h = 1,..,k, are marginally unbiased and significant
either for large or small values, so that their permutation distributions
under H, are either stochastically larger or smaller than under H,, .

2) all partial tests 7, ,b = 1,...,k , are consistent.

Furthermore, we also need to define the properties of combining functions
v (D1 Castelnuovo et al., 2000) to:

a) a continuous combining function y must be monotonically decreasing

in each argument: w(...,l,,,...)> c//(...,l,’,,...) J A, < A,h=1..k;



b) it must attain its supremum positive value ¥ , possibly non finite, when
at least one argument attains O (zero): w(.,4,,.) > A, —0;
moreover it must attain its infimum negative value y , possibly non
finite, when at least one argument attains 1: y/(...,4,,..) > ¥ f 4, > 1;

c) Va >0, its acceptance region is bounded 3

<T,/;<T <T 4/ <V .

- II <a, then reject H,at significance level « .

If the exchangeability property is satisfied under H,, the nonparametric

combination method leads to exact, unbiased and consistent permutation tests
(Pesarin, 2001).

An allele A at a gene of interest is said to be associated with the disease if it
occurs at a significantly higher or smaller frequency among affected individuals
compared with control individuals. For a bi-allelic locus with common allele «
and rare allele 4, individuals may carry zero copies of allele A (subjects with
genotype a4), one (subjects with genotype A4) or two (subjects with genotype
AA).

Therefore, conventional testing for allelic association implies testing for the
joint equality in distribution of genotype frequencies against an alternative of xor
dominance of cases with respect to controls by using a proper test statistic. In
doing this, it should be taken into consideration that, by referring to genotype-
specific risks (Lathrop, 1983) R, = f,,/ f,2 . b = AA, Aa, aa, (where f,;,j=12,

are respectively the observed frequencies in cases and controls) the effect of an
allele can be expressed in only one of the following ways:

1. Rewssine: there is an effect only in the presence of two copies of A allele
(genotype AA), whereas the behaviour in heterozygous condition (genotype
Ad) is the same as the reference and most common condition (genotype a),
so that: (R,, >R,, =R,, in presence of a protective effecty XOR

(R4 <R,, =R, foradeleterious effect).

2. Codominant: there is an ordering on effects associated with the A allele:
genotype Aa is of risk (or protection) in comparison with the genotype aa,
and AA is of risk (or protection) in comparison with the genotype Aa.
Obviously, AA is of great risk (or of great protection) in comparison with
the genotype a4, so that (R,, >R,, >R, for a protective effect) XOR

(Ru4 <R,, <R, for a deleterious effect).

3. Dominant: the effect of the A allele is the same in the A4 and Aa genotype.
In this situation, there is no relative risk (or protection) between A4 and



Aa, but only between AA (or Aa) and as, so that: (R, =R,, >R,
protection) XOR (R, =R 4, <R, , 1isk).

For these reasons, differences in risk should be tested for over the restricted
parameter space, which properly fits the plausible biological models, defined as:
(RAA 2 RAa ZRM) XOR (RAA SRAa SRM)'

Following Chiano and Clayton (1998), in order to reduce the analysis from
three to two dimensions, because in a 2x3 contingency table there are only 2

degrees of freedom, we may consider odds ratios of genotype-specific relative
nsks, which contain all relevant information and are defined as

6,44 =Ry4/Ry,and 6,,=R,,/R, , respectively. Thus, the hypotheses under
testing may be equivalently expressed as: H,:60,, =60,, =1, against
H, {6, 21)N(6,, 21)]XOR[(0,, <1)N(0,, <1)], where at least one
inequality in each direction is strong. This system of hypotheses is equivalent to
the previous one.

In order to solve the problem within the permutation approach, it should be
noted that relation defining the null hypothesis:

H, :[(oAA = 1)” (9,44 = 1)] (5)
is equivalent to:
d
H, :{(fAA,m 'an,amis =an,mses ‘fAA,mds )ﬂ

CNBTNLY M ®

which is easier for computations because it is expressed in terms of products of
frequencies.
The permutation solution is based on two partial test statistics:

TAA: fAA,we : an,an?ds /an,a:sa y fAA,anm’s ’ (7)
TAA: an,wa . faa,an‘;ds /faa,ws £ an,avnds H

suitable for testing for the following two system of hypotheses:

Hoyg :[0,44 =1] againstH, 4 :[6,44 > Lor 0,44 <1]
Hoy, 104, =1] againstH,y, (6,4, > Lor 0, < 1 (®)



Note, in fact, that:
d
[GAA = 1] <~ [fAA = R e ] ©)

The permutation tests 7, and T, are calculated by using a Conditional
Monte Carlo (CMC) procedure (Pesarin, 2001). For example, the estimation of
partial p-value A, is obtained using B CMC:iterations:

3 =#(T/:A ZTE).

A 10
aq =t (19

This partial p-value is distributed as U(0,1) and leads to reject Hyy, if
ﬂ:\M <a/2,or }tM > 1-a/2, at a significance level « . By using the same B
CMGC iterations, we also estimate:

#(Tyy 2T,
i\AAS =——(‘LB—fis_2,s=l,u.,B. (11)

Now, we adapt Liptak’s combining function to construct the combined test
for the system of hypotheses in (3). The global p-value 4, is estimated by:

3 MO Au) + 07 (1= A 1207 (1 ) + @71 20 )
L — .
B

(12)

This p-value also follows a distribution U(0,1). Furthermore, if /{L <al/2, we

A
consider the rare allele to be of risk, whereas if 4, >1—a/ 2 we consider it to be
of protection.
2. EXACT EXPLORATION OF THE PERMUTATION SPACE

We can represent the previous problem by a simple case-control contingency
table (table 1).



It should be noted that in all these types of studies, the data may be
represented in a contingency table (in this case 3x2) with fixed marginal values.
The total cases, M, and the total controls, N, are given and are obtained from
experimental observations. At the same time, the number of genotypes A4, in
cases and controls together, S;, is also given, and the same holds also for S, and
Ss.

TABLE 1
Case-control, contingency table for allelic association study

Genotype/ haplotype: Cuses Contrdls
AA g Iy Si=g +h
Aa 2 b Si=g+h
Aa @ b Ss=g+b
M=g+g+g N=bi+h+b S=M+N=S51+5:+S$;

With the usual representation of the data file, we have the following structure:

Observation 1 2 3 4 M M+1 | .. S=M+N
Genotype Aa AA | AA aa v | Aa Aa AA
Permutation order " %2 u3 U4 U UM+l us

Figure 1 - Data representation

where, in the first M observations (or subjects), we have g genotypes A4, g
genotypes Az and g genotypes aa. It does not matter what order we have among
the first M subjects (or in the second N subjects), because the contingency table
does not change if we take two random permutations into these sub-vectors, and
frequencies g1, &, &, /1, > and /s remain the same.

us, if we consider the overall permutation space associated to data (in the
previous paragraph), its cardinality is S! and it may be too large to explore
exhaustively.

Les us look at those specific combinations and recombinations of the
permutated genotypes/haplotypes in the table which gives the cells a particular
structure displayed in table 2.

The marginal sums are identical for any permutation, only the frequencies in
the cells may change. The relative data file is illustrated in figure 2, where

Vi (i#i),u =u;andu; =u;-,ubere j# j,amdii,j,j €{l,.,S}. Furthermore,
in the first M observations (or subjects) we have g genotypes A4, g,

genotypes Aa and g, genotypes aa. Again, the order of the elements in the two
sub-vectors (firstly M elements and secondly N elements) is not important.



TABLE 2
A partiodar result of a permudtation in the dataset
Cases | Controls
AA g4 I* S
Aa g % Sz

aa 25 1% S3
N S

We see that there are no S! different results for each permutation, but many
permutations give a specific structure of the cells g, , g, , &3 ,/1 ,/, and /5 .

Observation 1 2 3 4 M M+1 | .. S=M+N
Genotype aa Aa Aa | AA m Aa Aa
Permutation order u* U% I 4% ¥y [Tl 1l #*s

Figue 2 - Repxesenmuon of the pen:mmeddata file

Thus, we can construct the exact permutation distribution for the test
statistics, associating the related frequencies to the statistics, ie. the number of
times these values of the statistics appear in the S! permutations. In the
exploration of the overall permutation space we are looking for the frequencies
associated to all possible different configurations in table 2, ie. all possible sets

{8,8,8l1,l;,0;} where at least one cell is different from the others.

For data in table 2, we can obtain all possible different table configurations,
that are:

1) g e[max(0,$, - N), min(M.$,)}
2) l; =8 - g;i
3) & elmax(S, —(N ~1;)), min(M - g,S,)}
4) l; =5;- g;;
5 &=M-g -&;
6) I; = S5 - g;-
Then, for a specific set i { ; 81 »; 82: &3 sil1 »il2 »;13 } We have the frequency:

ool ()
&) &) i (13)

(MIN!S,IS,!8,1)/(; 81 ;gz 183' 11 'xl l;!);



and, of course, the sum of all the frequencies is:
I
D f =(M+N)=(S"); (14)

where the total number of all these different configurations is:

min(M,S$, )+1-max(0,5,~N) . .
I= Z[min(M—gl,Sz)+l—max(0,Sz—-(N—(Sl—gl)))]; (15)

&

50 that the relative frequencies are p; = £ /(S!).

Of course, the highest relative frequency is associated to the configuration
where g; and g, are maximally close (if possible, equal) to/; and /, respectively,
which, in general, coincides with the case of no association between cases and
controls.

3. EXTENSION OF THE PERMUTATION SOLUTION TO MULTIVARIATE PROBLEMS

In this paragraph we consider an extension of the previous solution to
multivariate genetic testing problems (Cappuccio e 4., 2000; Cheung and
Kumana, 2000; Chowdhury, 2000; Gambaro et 4., 2000).

Of course, we may have multiallelic loci such as (41, A2, A3), where loci A,
and A; can both be rare. In this case we can construct the previous
nonparametric tests separately for locus (A;, A2) and (A1, Aj), because the
interest is in making comparisons between the rare alleles and the more common
ones. We are not interested in knowing the association between two rare alleles
(maybe one is of risk and the other of protection or one is neutral and the other
of risk, etc.). It is then possible to repeat the previous test for both possible
associations: rarel-common, rare2-common (figure 3), where abbreviations CA
and QO stands for cases and controls respectively).

The situation is more complicated when the association study involves more
than two loci, such as (#,4) and (5,B) where A and B are the rarest alleles.

We suppose interest lies in knowing the specific effect of all the multiple
possible configurations (figure 4).

The main topic in this situation is to reconstruct the possible effect that one
locus may have, given a specific configuration of the other locus. Then we use
six different (3x2) contingency tables, one for each specific configuration (figure
5). Note that in figure 5, for simplicity, cell frequencies are not reported.



Genotype | Case Control

AiA; Sfaurca faua10 gu:;)t:‘l:)ll::sgmﬁ::c
by the two alleles
AiA: fauzca fam200 Ay,Az. two

A4 fauzca famzoo ]

Aids | fausca fausco Second test using
the (3x2) table
AsAs famsca fasmsco -—__/ given by the two
alleles A :4.
AA; Sfausca fausco

\

Figwre 3 - Multiallelic problem

Genotype Case Control
Aa b fatbca fapp0
Aa Bb fasrca fappco
A BB faapBca faaBsco
Aa b faaca faappo
Aa Bb faamca [faapr0
Aa, BB Je faasB00
A4, W fAA,tbm fAA,bba)
A4, Bb fasssca faspoo
A4, BB farmca | fansoo

nc no

Figre 4 - Multiloci extension

1) aa CA | QO 2) Aa CA QO 3) A4 CA [QO
|22 |2 23

Bb Bb Bb

BB BB BB

00 CA [0 5 Bb CA 0O ©BB [CA [0
aa aa aa

Aa Aa Aa

AA AA AA

Figure 5 - Possible configurations
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For example, in the first table, we carry out a permutation test to investigate
the association at locus (,B) conditional to the genotype a4 (more common) in
the other locus. This procedure is an extension of the bivariate case (presented in
section 1). If we consider the case of two loci with three alleles each, then we
obtain two contingency tables for each of the six configurations; and if we have
more than two loci together, the analysis of each type of association may be very
difficult.

In the last situation, before carrying out the specific test for each
configuration, it is helpful to carry out an overall test to study if there is any type
of significant association in at least one of the configurations (it does not matter,
for the moment, if it is of risk or protection). Then, we may suppose that &
polymorphic genes are jointly examined and that (with the usual notation) {(a4),,
(A@)n (AA) r = 1,... k} is the set of related genotypes. In this situation we
express the null hypothesis in terms of odd ratios as follows:

Ho A W0, =90, =, (19

which means that all £ genes are jointly irrelevant for discrimination. The
alternative of interest may assume two different expressions. The first is

k (oAar 2]')n(aaar 21)
H, U XOR , (17)
= (gAar s l)n(emr s 1)

where, of course, at least one inequality in each of the 2 x & lines is strict. The
interpretation of this alternative is that at least one gene exists which is relevant
for discriminating cases with respect to controls. The aim of this alternative is
not to know if all genes are of risk (XOR protection), but to know if we can
admit that some genes may be of risk, some of protection, and the remaining
neutral.
In order to solve this specific problem, let us suppose that:
a) data are orgamzed in a unitbyunit representation:

(Y JEL LRI ,nl,j=case,mm7'ol) where Y,is the genotype of

jir
the th gene on the i-th subject of the j-th group (ie. Y ;, may assume

one of the values: aq, Aa, AA);
b) permutations exchange units between groups, so that k-dimensional
vectors are exchanged;

10



c) foreach gene r, 7 =1,...,k, calculate partial tests as
T:Aa = .fr'AA s fr‘Aaanvds / fr‘Aam : f:AA antrds and

Tr'aa = f;'Aam : r:uan:ds /f:um ' fr‘Aamds ,r=1...k, and all tests
are significant for either large or small values;
d) within each gene calculate a second order combined test and related p-

value }:,", in accordance with the method previously discussed in
section 1;
e) according to the nonparametric combination theory (Pesarin, 2001), we

combine k second order transformed p-values 1- | 2,{, —1| through any
combining function ¥ to obtain a third order overall combined test and
related p-value A%

if 1" <a,then reject the overall null hypothesis.
A second type of alternative of interest is:

UlSrSk [(eAar 2 1)n(0mr 2 1)]
H: XOR : (18)
UISrSk [(eAar < 1)”(0,‘,, < 1)]

where again at least one inequality in each line is strict. This means that there is
at least one gene which is of protection (XOR risk), whereas others are neutral.
Again, in order to solve the problem, we must modify steps €) and f)
respectively into:
e’) according to the nonparametric combination theory, combine & second

order p-values i, through any suitable combining function to obtain a
proper third order overall combined test and related p-value A"
f) if 1-| 21" - 1|<a, then reject the overall null hypothesis.

The third order combined tests and their p-values are always obtained by the
CMC procedure used for obtaining distributions of partial tests 7,, and p-values

):,,, andi,",h =aa,Aa, AA,r=1,..k.

11



4. POWER AND SAMPLE SIZE SIMULATIONS

We present some simulations for the nonparametric permutation solution
illustrated in section 1 by considering different types of population parameters
and genetic models. We perform a set of power simulations considering different
parameter types (allelic frequency in the population, the three genetic models for
the allele effect, several values of the odds ratios) for the permutation solution.
The number of simulations is 1000 and the number of CMCriterations is again
1000.

Simulations are performed by using a single locus with two alleles, one more
common and one rare, and the significance level @=0.05. In figures 6-11 we
show the power simulations for the permutation solution pointing out the
sample size for cases and controls and the frequency of the rare alleles.

As we can observe from the previous figures, the power of the nonparametric
solution is very good for small sample sizes as well, and also for a low frequency
of rare alleles. Of course, the situation where the rare allele is recessive is the
worst, and generally, in this case, the number of subjects is large.

In figure 12, we consider a simulation study for the permutation test with a
frequency of 0.10 for the rare allele and significance level =0.05 for the case
where the rare allele is co-dominant and the odds-ratios are equal to 2.

Power|\ Pouwer A\
1 <+ y e 3
0.8
0.6
0.4

0.2

0.05

= co-domirant model = dorvirant model = woeessive model

Fignre 6 - Cases = controls = 50, f=0.05 Figure 7 - Cases = controls = 100, f = 0.05
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In figure 13, we consider simulations with a frequency of 0.10 for the rare
allele and a significance level & = 0.05 for the case where the rare allele is
dominant and the odds-ratios are equal to 2.

As we can see from the figures, even in these cases, the nonparametric
permutation solution has a very good power behaviour.

Power/\ Powerf\
1 T
0.8

0.6

0.4 o4t
0.2 0.2 -
0.05 o054 T / } ' oa.im?,
10 15 28 25 30 35 40
= domirnumtmodel, ____ _ = mcessive mo dal J
Figure 8 - Cases = controls = 500, f = 0.05 Figure 9 - Cases = controls = 50, f=0.10
Pouer /|
1
0.3
0.6
0.4
0.2
0.05
_ =co-domimantmodel, ......... = dominmtmodel, _____ = mcessive model
Figure 10 - Cases = controls = 100, f = 0.10 Figure 11 - Cases = controls =500, f = 0.10

13



Pouer N

0.3 -+
0.6 -+
04 4

02 -+

0.05 | 1 ] 1 1 1 1 ~
T 1 I 1 I I 1 -~

50 B 00 150 200 250 300 Sumple size

Figure 12 - Co-dominant model with odds ratios =2, f=0.10, a = 0.05

Pouer N
1 -
03 -+
0.6 —
0.4 -
02 -+

0.05 -+ 1 1 1 1 1 ! ~

1 I 1 I I 1 I P

Sampk siz

50 TS 100 150 200 250 ‘300

Figwre 13 - Dominant model with odds ratios =2, f=0.10, o = 0.05.

5. QONCLUSIONS

We would like to emphasise the role of nonparametric combination as a

flexible methodology for solving complex problems.
It should also be stressed that, since permutation tests are conditional with
respect to a set of sufficient statistics, the nonparametric combination, under
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very mild conditions, frees the researcher from the necessity to model the
dependence relations among responses. Furthermore, several Monte Carlo
experiments have shown that the unconditional power of the permutation
solution has a very good behaviour even for small sample sizes and for a low
frequency of rare alleles.
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SUMMARY

Multiuriate permutation tests in genetics
In this paper we provide some new statistical results for hypotheses testing in genetics

particularly referred to multivariate allelic association studies. An extensive power
simulation study is also provided on permutation solutions.

RIASSUNTO
Test di permutazione multiuariati in geretica
In questo lavoro vengono proposte alcune nuove procedure di verifica di ipotesi
nell’ambito di problemi in genetica particolarmente riferiti alle analisi multivariate di

associazione allelica. Viene inoltre proposto un esteso studio di simulazione per alcune
soluzioni di permutazione.
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