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ABSTRACT This paper considers nonparametric estimation of lifetime distribution of a system
subject to imperfect repair, based on data from constant stress accelerated life tests. By assuming
as time transformation function relating stress to lifetime, a version of the inverse power law, a
method of estimating the lifetime distribution at use condition stress has been recently proposed
by Diana and Giordan. This method, based on the Brown-Proschan imperfect repair model, is
nonparametric in that it does not make any assumptions about the underlying distribution of life
length. Some simulations to understand if accelerated life tests can be used instead of normal
tests evaluate the behaviour of the test procedure.

1 INTRODUCTION

Suppose that one desires to estimate the distribution function of the lifetime of a device
under normal use conditions. If the lifetimes increase, the time consumed in testing a
sample of devices may be excessive. The usual solution for this problem involves the
use of accelerated life tests (ALTs). Samples of devices are subjected to conditions
of greater stress than that of normal use, and from the results in these high-stress en-
vironments, an estimate of performance of the device in the use condition is formed.
The problem has been widely considered in literature. Under the papers on this sub-
ject we quote those of Ball, Shaked and Zimmer (1979) and of Diana and Giordan
(2003). In the first a nonparametric model for ALTs has been introduced, while in the
second the model has been extended to imperfect repair (IR). Unfortunately, from a
practical point of view, the ALTs provide results that don’t agree with tests at normal
use conditions. The aim of this paper is to try to understand if the "rescaled" failure
times arising from ALTs can be used for estimation of the parameters of the under-
line lifetime distribution at use conditions. To gain this end in section 3 the IR model
is briefly summarized and in section 4 a simulation study using Weibull as lifetime
distribution is performed. The fifth section is devoted to the conclusions.



2 NOTATION

k Number of stress levels
Vi Accelerated stress, i=1,...,k
Vo Use condition stress
Si(+) Reliability function at stress V;,i = 0,...,k
n; Number of items on test at stress level i
N N=Yin
fi(¥) probability density function at stress level i
g(+) Time Transformation Function (TTF)
Q, Parameters of the TTF
01 Scale factor between S; and Sy
p perfect repair probability
T;; J-th failure time at stress level i
T;j — T; j—1 j-thinter-failure time at stress i
Zij Type of j-th repair at stress level i
bij Age of system prior to the j-th failure
at stress level i, j=1,....,n,i=1,...)k

3 MODEL AND ESTIMATION

For the purposes of the present paper the IR model can be summarized in this way.
At stress V;, i = 1,...,k a system is put on test at time O and runs until »; failures
are observed. After each failure a repair is made. The type of repair is identified by a
Bernoulli variable:

,k

g

7 = 1 if the j-th repair is perfect s
Y 7] 0 if the j-th repair is minimal ~

j =1,...,n;. With this notations the age of a system just prior to the j-th failure, at
stress level 7, can be defined as:

bii = i1 for j=1
YT (L =zije1)bijo1 + (tij —tij—1) for j=2,...,n;

i=1,...,k
Let us denote with
Si(0)=S(g(V)1), >0 )

the reliability function of a system at constant stress V;, where S () is an unknown
reliability function independent of stress and g () is a TTF:

g(V)=avP 2)



where o > 0 and B > 0 are unknown parameters.

To estimate the lifetime distribution at use condition, the ALT data should be trans-
formed to the corresponding data which have the same statistical properties as test data
at use condition. Let Ty and T; be the lifetimes of system at stress Vi and V;, and Sy (1)

and S; (¢) be the corresponding reliability functions, i =0, 1,...,k. From assumptions
(??) and (??) the scale factor between S; and Sy is defined by
B
\%
0, = (_’) fori, i =0,1,...,k 3)
i
Therefore
vi\P
]}:(—') Ty fori,i' =0,1,...,k 4)
Vi
and
ﬂ _ In 9,'1-/
In (Ve /V)
A well known nonparametric estimator of S;, i = 1,...,k is given by:
1 for < bi(l)
Dk
Sy = 4 ey for iy S1<bign 5)
j=1,...,n;—1
0 for > bi(ni)

. i—1
with ki = Z;"zs Zi.(l)- .
A possible estimator of the scale factor 8;; is

ST (wydu
6 = 'fIA—1‘—
ity 517 (u)du

u;; = max {:9\1 (bi,(n,')) ’S\‘il (bi',<n1)> } v

i,i' =0,...,k and an estimator of B is

Z{;—ll Zk [ln (‘/ll /V,)] [lnﬁii:}

l,=i+l
= 2
z:{'(zll §=i+1 [11’1 (Vz’/V’)]

(6)

where

B= ®)

Once we have an estimate  of B, we transform the observed lifetimes Tj;, j =
1,...,n;; i=1,...,kin the rescaled ones at use condition:

p
=~ Vi
Tij: (70) Tij )



and so

~ 41 forj—_- 1

i { (1= 2ij-1) bijor + (B —Tij1) for j=2,...,m 1o
i=l,:0,k.
Now we write u; = 311, Uy = ’512,‘.., Up, = ’51!"1, Uni+1 = 521,..., uy = Zk,nk and
Y1 = 2115+ 5Yny = 2 npse YN = Tk
Letugy <... <uqyy be the ordered values of u;’s and let Yy, ..., Y() be the induced

order statistics generated by ordering the u;’s; so an estimator of S (-) is given by the
following statistic:

1 for < u()
P
So(r) = =1 RaT for  ug) ST <ugp an
j=1,....N—1
0 for 1>un

where ky = Y Y-

4 AN ILLUSTRATIVE EXAMPLE

Table 1 illustrates an application from industrial life-testing reported in Cox, Oakes
(1984). Springs are tested and failure time is the number of cycles to failure (in units
of 103 cycles). 60 springs were allocated, 10 to each of six different stress levels. At the
lower stress levels (700 and 750) many springs are censored (*) and the corresponding
numbers of cycles are not considered.

Tablel. Cycles to failure (in units of 103 cycles) of springs

stress

950 225 171 198 189 189 135 162 135 117 162
900 216 162 153 216 225 216 306 225 243 189
850 324 321 432 252 279 414 396 379 351 333
800 627 1051 1434 2020 525 402 463 431 365 715
750 3402 9417 1802 4326 11520* 71522969 3012 1550 11211
700 12510% 12505* 3027 12505* 6253 8011 7795 11604* 11604* 12470*

For the purpose of this illustration, we take those of four test stress at V; = 800,
V5 =850, V3 =900, V4 = 950 and the use condition stress is assumed Vp = 700, where
at each level of stress the probability of perfect repair is one. Suppose that the TTF is
a version of the inverse power law.

The estimation procedure is as follows.



1. The estimates S; (), i=1,2,3,4 are obtained

2. The estimate ﬁ is 8.338

3. All failure times at accelerated stress are transformed in failure times at use con-
ditions stress using § = 8.338 and Vo =700 _

4. From this rescaled failure times we obtain So (). See Fig. 1 for graphical repre-
sentation of Sp (-).

1.0

0.8
]

0.6

04

0.2

I | T I | | !

0 1000 2000 3000 4000 5000 6000
Cycles(x10%)

Figurel. S, )

5 SIMULATION

In this section the least-squares estimators (LSEs) based on failure-times arising from
normal tests are compared with those obtained from rescaled failure-times arising
from ALTSs, assuming a Weibull lifetime distribution. The comparison is performed
with respect to biases and means squared errors (MSEs) when the true lifetime distri-
bution is exponential or Weibull.
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To find the LSEs we use the linear model:
log (—log (So(z))) = —mlogy+mnlogt ,

where 1 and 7y are shape and scale parameters of the Weibull distribution. We con-
sidered four values of perfect repair probability (0.5,0.7,0.9,1) and three accelerated
stress levels Vi = 2, Vo =4, V3 = 6, while use condition stress is Vo = 1. For each p and
for each accelerated stress V;, 20,000 samples of size 25, 50 and 100 from Weibull dis-
tribution with scale parameter Vi‘1 and shape parameter = 1 and 2, respectively, are
generated. Consequently the total sample sizes for ALTs and normal test are 75, 150
and 300, respectively. So we are able to estimate LSEs for the shape and scale param-
eters for the considered lifetime distribution and the relative biases and MSEs. Finally
we repeat the same process for use conditions test. Table 2 shows biases and MSEs
of LSEs of shape parameter of Weibull distribution under normal (NT) or accelerated
life test, while Table 3 shows the same quantities for scale parameter.

6 CONCLUSIONS

Table 2 shows that biases and MSEs of the estimators of shape parameter of Weibull
lifetime distribution, coming from NTs and ALTs, are both of a size. If we consider the
behaviour of shape parameter through the different values of perfect repair probability,
we see that it is almost constant. It is interesting to observe that bias/n and MSE/Mm?
seem independent from 1.

From Table 3 it is clear a greater variability in the estimates of scale parameter. This
little worse behaviour do not penalize ALTs in respect of NTs.

Further simulation results for couples of stress levels, not included here, also show
patterns very like to those previously exhibited.

As final consideration, it seems to us the rescaled failure times arising from ALTs can
be used for estimation of the parameters of the underline lifetime distribution at use
condition.
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Table2. Biases and MSEs of LSEs of shape parameter of Weibull distribution

n n=1
p=0.5 p=0.7 p=0.9 p=1

n=2
p=0.5 p=0.7 p=0.9 p=1

25 biasNT  -0.043 -0.044 -0.046 -0.045
MSENT 0.017 0.017 0.017 0.016
biasALT -0.036 -0.036 -0.038 -0.040
MSEALT 0.016 0.016 0.016 0.016

50 biasNT  -0.029 -0.030 -0.029 -0.030
MSENT 0.009 0.008 0.008 0.008
biasALT -0.025 -0.027 -0.028 -0.029
MSEALT 0.008 0.008 0.008 0.008

100 biasNT ~ -0.0 -0.020 -0.020 -0.021
MSENT 0.004 0.004 0.004 0.004
biasALT -0.017 -0.018 -0.020 -0.020
MSEALT 0.004 0.004 0.004 0.004

-0.084 -0.089 -0.090 -0.088
0.067 0.067 0.066 0.065
-0.070 -0.075 -0.077 -0.079
0.064 0.064 0.063 0.064

-0.057 -0.060 -0.061 -0.061
0.033 0.033 0.033 0.033
-0.051 -0.055 -0.054 -0.055
0.033 0.033 0.032 0.032

-0.038 -0.038 -0.040 -0.041
0.017 0.016 0.017 0.017
-0.036 -0.036 -0.037 -0.038
0.016 0.016 0.016 0.016

Table3. Biases and MSEs of LSEs of scale parameter of Weibull distribution

n n=1
p=0.5 p=0.7 p=0.9 p=1

n=2
p=0.5 p=0.7 p=0.9 p=1

25 biasNT  -0.067 -0.037 -0.016 -0.006
MSENT 0.027 0.019 0.016 0.016
biasALT -0.013 0.021 0.041 0.048
MSEALT 0.023 0.018 0.018 0.018

50 biasNT  -0.038 -0.021 -0.007 -0.001
MSENT 0.013 0.009 0.008 0.008
biasALT -0.015 0.009 0.021 0.027
MSEALT 0.012 0.009 0.009 0.009

100 biasNT  -0.022 -0.011 -0.003 0.002
MSENT 0.006 0.005 0.009 0.004
biasALT -0.007 0.001 0.004 0.015
MSEALT 0.006 0.005 0.004 0.004

-0.038 -0.023 -0.010 -0.006
0.007 0.005 0.004 0.004
-0.028 -0.007 0.003 0.008
0.007 0.005 0.004 0.004

-0.021 -0.011 -0.004 -0.001
0.003 0.002 0.002 0.002
-0.016 -0.005 0.002 0.006
0.003 0.002 0.002 0.002

-0.011 -0.006 -0.002 0.
0.002 0.001 0.001 0.001
-0.008 -0.003 0. 0.003
0.002 0.001 0.001 0.001







