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Abstract: We discuss higher-order approximations to the marginal posterior distribution

for a scalar parameter of interest in the presence of nuisance parameters. These higher-order

approximations are obtained using a suitable matching prior. The proposed procedure has

several advantages since it does not require the elicitation on the nuisance parameter, neither

numerical integration or MCMC simulation, and it enables us to perform accurate Bayesian

inference even for very small sample sizes. Numerical illustrations are given for models of

practical interest, such as linear non-normal models and logistic regression. We also illustrate

how the proposed accurate approximation can routinely be applied in practice using results

from likelihood asymptotics and the R package bundle hoa.
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1 Introduction

Let us consider a model with a scalar parameter of interest ψ, a d-dimensional
nuisance parameter λ and likelihood function L(ψ, λ) = L(ψ, λ; y), where y =
(y1, . . . , yn) is a random sample of size n. Given a prior π(ψ, λ) over the entire
parameter, under general regularity conditions Bayesian inference about ψ is based
on the marginal posterior distribution

πm(ψ|y) ∝
∫

π(ψ, λ)L(ψ, λ) dλ . (1)
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For objective Bayesian inference, when agreement between Bayesian and non-Bayesian
inference is of interest, the class of matching priors can be considered (see, for in-
stance, Datta and Mukerjee, 2004, for a comphrensive review). In particular, in
the presence of nuisance parameters, a suitable solution is discussed by Tibshirani
(1989), which suggests a prior such that the resulting marginal posterior intervals
have accurate frequentist coverage. However, this approach works only with an or-
thogonal parameterization and requires the computation of a multidimensional in-
tegral in (1), which can be heavy when the nuisance parameter is high-dimensional.
To avoid these limitations, using results in Ventura et al. (2009), it is possible to
write the marginal posterior distribution (1), based on the Tibshirani’s prior, in the
original non-orthogonal parameterization as

πm(ψ|y) ∝ πmp(ψ)Lmp(ψ) , (2)

where Lmp(ψ) denotes a modified profile likelihood (see e.g. Severini, 2000, Chap. 9)
and πmp(ψ) is the corresponding matching prior on the parameter of interest only
(see also Ventura and Racugno, 2011).

In this paper we discuss higher-order asymptotic inference based on πm(ψ|y),
starting from (2). In particular, we derive an explicit higher-order approximation
for πm(ψ|y), in terms of a higher-order pivotal quantity. The higher-order approx-
imations enables one to perform accurate Bayesian inference on ψ, even for small
sample sizes. The proposed procedure has several advantages since it does not re-
quire the elicitation on the nuisance parameter, neither numerical integration or
MCMC simulation. A remarkable further advantage in the use of such approxi-
mation is that its expression automatically includes the matching prior, without
requiring its explicit computation.

Examples in the context of models of practical interest, such as linear non-
normal models and logistic regression, are discussed. Moreover, we also show how
the proposed accurate approximation can routinely be applied in practice using
results from likelihood asymptotics and the R package bundle hoa (Brazzale et al.,
2007).

The outline of the paper is as follows. Background theory is briefly reviewed in
Section 2. In Section 3 we discuss higher-order asymptotics for πm(ψ|y). Examples
are illustrated in Section 4. Some final remarks conclude the paper.

2 Background theory

Assume that the likelihood is given in an orthogonal parameterization, denoted by
(ψ, φ). In this parameterization, Tibshirani (1989) and Nicolau (1993) show that a
class of matching priors for (ψ, φ), i.e. priors that ensure approximate frequentist
validity of posterior credible sets, is given by

πT (ψ, φ) ∝ iψψ(ψ, φ)
1/2 g(φ) , (3)

where g(φ) is an arbitrary function and iψψ(ψ, φ) is the (ψ,ψ) component of the
Fisher information matrix i(ψ, φ) based on L(ψ, φ). The computation of the marginal
posterior distribution (1) with this prior requires to fix the arbitrary function g(φ)
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in (3) and possible cumbersome numerical integration. These drawbacks can be
avoided using results in Ventura et al. (2009, Appendix B). In particular, using the
original non-orthogonal parameterization (ψ, λ), the marginal posterior distribution
(1) based on the prior πT (ψ, φ) can be written as in (2), with

πmp(ψ) ∝ iψψ.λ(ψ, λ̂ψ)
1/2 (4)

matching prior for ψ only (see Ventura et al., 2009, Ventura and Racugno, 2011),
and

Lmp(ψ) = Lp(ψ)M(ψ) (5)

modified profile likelihood for ψ (see, e.g., Barndorff-Nielsen, 1983, Barndorff-Nielsen
and Cox, 1994, Chap. 8, Severini, 2000, Chap. 9). In (4), iψψ.λ(ψ, λ) = iψψ(ψ, λ) −
iψλ(ψ, λ)iλλ(ψ, λ)

−1iλψ(ψ, λ) is the partial information, with iψψ(ψ, λ), iψλ(ψ, λ),
iλλ(ψ, λ), and iλψ(ψ, λ) blocks of the expected Fisher information i(ψ, λ) from

L(ψ, λ), and λ̂ψ is the Maximum Likelihood Estimator (MLE) of λ for fixed ψ.

In (5), Lp(ψ) = L(ψ, λ̂ψ) is the profile likelihood and M(ψ) is a suitably defined
correction term. For instance, the modified profile likelihood of Barndorff-Nielsen
(1983) uses

M(ψ) =
|jλλ(ψ, λ̂ψ)|1/2|jλλ(ψ̂, λ̂)|1/2

|ℓλ;λ̂(ψ, λ̂ψ)|
, (6)

where jλλ(ψ, λ) is the (λ, λ)-block of the observed Fisher information j(ψ, λ) from
ℓ(ψ, λ) = logL(ψ, λ), ℓλ;λ̂(ψ, λ) = ∂ℓ(ψ, λ)/(∂λ∂λ̂T ) is a sample space derivative,

and (ψ̂, λ̂) is the MLE of (ψ, λ). Other expressions forM(ψ) are discussed in Severini
(2000, Chap. 9); see also Pace and Salvan (2006).

A quantity closely related to the modified profile likelihood is the modified di-
rected likelihood

r∗p(ψ) = rp(ψ) +
1

rp(ψ)
log

q(ψ)

rp(ψ)
, (7)

where rp(ψ) = sign(ψ̂ −ψ)
√

2(ℓp(ψ̂)− ℓp(ψ)) is the directed profile likelihood, with

ℓp(ψ) = logLp(ψ), and q(ψ) is a suitable quantity; see, e.g., Severini (2000, Chap.
7) for a review. For instance, Barndorff-Nielsen and Chamberlin (1994) use

q(ψ) =
ℓ′p(ψ)

jp(ψ̂)1/2

iψψ.λ(ψ̂, λ̂)
1/2

iψψ.λ(ψ, λ̂ψ)1/2

|ℓλ;λ̂(ψ, λ̂ψ)|
|jλλ(ψ̂, λ̂)|1/2|jλλ(ψ, λ̂ψ)|1/2

, (8)

with ℓ′p(ψ) = ∂ℓp(ψ)/∂ψ and jp(ψ) = −∂ℓ′p(ψ)/∂ψ denoting the profile score func-
tion and the profile observed information, respectively. The modified directed like-
lihood (7) is well-known in the non-Bayesian framework as a higher-order pivotal
quantity, with standard normal null distribution with third-order accuracy. There-
fore, a confidence interval for ψ with approximate level (1− α) is

{ψ : |r∗p(ψ)| ≤ z1−α/2} , (9)
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where z1−α/2 is the (1−α/2)-quantile of the standard normal distribution (see, e.g.,
Barndorff-Nielsen and Cox, 1994, and Severini, 2000, Chap. 7). In the next section,
we show how r∗p(ψ) plays also a central role in the higher-order approximation for
πm(ψ|y).

3 Higher-order asymptotics for πm(ψ|y)
Let us focus on the posterior distribution (2), which can be written as

πm(ψ|y) ∝ exp

{

−1

2
rmp(ψ)

2 + log πmp(ψ)

}

, (10)

where
rmp(ψ) = sgn(ψ̂mp − ψ)[2(ℓmp(ψ̂mp)− ℓmp(ψ))]

1/2 ,

ψ̂mp is the maximizer of ℓmp(ψ) = logLmp(ψ) and jmp(ψ) = −∂2ℓmp(ψ)/∂ψ2. Start-
ing from (10), in Section 3.1 we prove the following approximation

πm(ψ|y) =̇ exp

(

−1

2
r∗p(ψ)

2

)
∣

∣

∣

∣

sp(ψ)

rp(ψ)

∣

∣

∣

∣

,

where sp(ψ) = ℓ′p(ψ)/jp(ψ̂)
1/2 is the profile score statistic, and the symbol “=̇”

means second-order asymptotic equivalence. Then, in Section 3.2 we discuss the
related tail area approximation

∫ ψ0

−∞

πm(ψ|y) dψ ≡ Φ
(

r∗p(ψ0)
)

,

where the symbol “≡” means third-order asymptotic equivalence, and Φ(·) is the
standard normal distribution function. Note that the prior πmp(ψ) is also a strong
matching prior (Fraser and Reid, 2002, Ventura and Racugno, 2011), in the sense
that a frequentist p-value coincides with a Bayesian posterior survivor probability
to a high degree of approximation. In general, a strong matching prior for ψ only,
which guarantees an equivalence between a frequentist p-value and a Bayesian tail
area probability, can be expressed as π∗(ψ) ∝ rp(ψ)/(M(ψ)q(ψ)), where M(ψ) is
the correction term of the profile likelihood and q(ψ) is the quantity involved in
expression (7).

3.1 Approximation for πm(ψ|y)
Consider the strong matching prior π∗(ψ) ∝ rp(ψ)/(M(ψ)q(ψ)). Then, using results
in Sartori et al. (1999), we have

log(Lmp(ψ)π
∗(ψ)) = c− 1

2
(rmp(ψ))

2 + log π∗(ψ)

= c− 1

2
(rp(ψ))

2 − rp(ψ)NP + log π∗(ψ)

= c− 1

2
(rp(ψ))

2 − rp(ψ)

[

NP+
1

rp(ψ)
log

1

π∗(ψ)

]

= c− 1

2
(rp(ψ))

2 − rp(ψ) [NP + INF] ,
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where NP= −rp(ψ) logM(ψ) and INF= rp(ψ)
−1 log(q(ψ)M(ψ)/rp(ψ)) are known

as the nuisance parameters and the information adjustments, respectively, in the
modified directed likelihood decomposition (see, e.g., Barndorff-Nielsen and Cox,
1994, Sect. 6.6.4). Then,

log(Lmp(ψ)π
∗(ψ)) = −1

2
(rp(ψ) + NP + INF)2 +Op(n

−1)

= −1

2
r∗p(ψ)

2 +Op(n
−1) . (11)

Using (6) and (8) we have π∗(ψ) ∝ πmp(ψ) rp(ψ)/sp(ψ), and therefore we obtain

log πm(ψ|y) = −1

2
r∗p(ψ)

2 + log
rp(ψ)

sp(ψ)
+Op(n

−1) , (12)

and thus

πm(ψ|y) ∝̇ exp

(

−1

2
r∗p(ψ)

2

)
∣

∣

∣

∣

rp(ψ)

sp(ψ)

∣

∣

∣

∣

. (13)

A remarkable advantage of this approximation is that its expression automatically
includes the matching prior, without requiring its explicit computation.

Note that in (13) the modified directed likelihood (7) may be replaced by the
modified directed likelihood of Barndorff-Nielsen (1991) or by the adjusted directed
likelihoods discussed in Barndorff-Nielsen and Chamberlin (1994). Indeed, all these
versions of the directed profile likelihood statistic are closely related to each other,
in the sense that they are equivalent to order Op(n

−1) (see Barndorff-Nielsen and
Chamberlin, 1994, Sect. 5).

3.2 Tail area approximation

Accurate tail probabilities are easily computable by direct integration of (10). In
particular, using results in Ventura and Racugno (2011), it can be shown that

∫ ψ0

−∞

πm(ψ|y) dψ ≡ Φ
(

r∗p(ψ0)
)

(14)

where r∗p(ψ) is the modified directed likelihood given in (7), with formula (8) for
q(ψ).

In practice, using (14), an asymptotic Highest Posterior Density credible set
(HPD) for ψ can be computed as {ψ : |r∗p(ψ)| ≤ z1−α/2}, i.e. as in (9). Therefore,
this HPD credible set is also an accurate likelihood-based confidence interval for ψ
with approximate level (1− α). The strong matching prior (4) is thus also an HPD
matching prior for ψ (see Ventura and Racugno, 2011). Note also that from (14)
the Maximum A Posteriori estimator (MAP) of (2), i.e. the value that maximizes
the posterior density, can be computed as the solution ψ̂∗ in ψ of the estimating
equation r∗p(ψ) = 0, and thus it coincides with the frequentist estimator defined as
the zero-level confidence interval based on r∗p (Skovgaard, 1989). In particular, the

solution of r∗p(ψ) = 0 is a refinement of the maximum likelihood estimator ψ̂ (see
Pace and Salvan, 1999, Giummolé and Ventura, 2002).
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As a final remark, note that HPD credible sets, as well as MAPs, are often crit-
icized in the literature because of paradoxical behaviour due to a lack of invariance
under reparametrization, and because of this undesirable feature, many authors do
not recommend their use. However, since the modified directed profile likelihood
(7) is parameterisation invariant, the HDP {ψ : |r∗p(ψ)| ≤ z1−α/2} and the MAP ψ̂∗

are invariant, and they can be interpreted as the generalization of the proposals by
Druilhet and Marin (2007), when nuisance parameters are present in the model.

4 Examples and numerical illustrations

The aim of this Section is to provide an illustration of the accuracy of the higher-
order approximation (13) and of the related tail area approximation. In particular,
in applications of practical interest, we study the accuracy of (13), in comparison to
the first-order approximation

πam(ψ|y) ∼ N(ψ̂, jp(ψ̂)
−1) , (15)

when using likelihood asymptotics tools and the R package bundle hoa (Brazzale et

al., 2007).

Example 1: Gamma distribution. Let (y1, . . . , yn) be a random sample from the
gamma density p(y;ψ, λ) = λψyψ−1 exp(−λy)Γ(ψ)−1, y > 0, ψ, λ > 0. We assume
ψ the parameter of interest, with the scale parameter λ as nuisance. The profile
loglikelihood is ℓp(ψ) = ψ(t − n) − n log Γ(ψ) + nψ log(ψ/ȳ), with t =

∑

log yi
and ȳ sample mean, and the modified profile loglikelihood is ℓmp(ψ) = ℓp(ψ) −
0.5 log ψ, since M(ψ) = 1/

√
ψ. Moreover, simple calculations give iψψ.λ(ψ, λ) =

(n/ψ)(ψρ(ψ) − 1) = jp(ψ), with ρ(ψ) = (∂2/∂ψ2) log Γ(ψ). Note that the matching
prior πmp(ψ) does not depend on the nuisance parameter λ. This is a general result
when ψ is the index parameter of a group model and λ is the group element, and
(2) corresponds to the Laplace approximation of the marginal posterior distribution
(1) based on the Chang-Eaves reference prior discussed in Datta and Ghosh (1995).

The behaviour of (13) under the gamma model is illustrated through simulation
studies based on 10000 Monte Carlo trials. Table 1 gives the empirical frequentist
coverages for 95% posterior HPD credible sets and for the lower and upper 0.025
quantiles from πam(ψ|y) and from πm(ψ|y). From Table 1 we observe that, for every
n, (13) clearly improve on πam(ψ|y). Larger sample sizes would show, as one would
expect, rather little differences between the results of all the procedures.

We also evaluated the finite-sample properties of the MAP of (13). The MAPs
of (13) and of the first-order approximation are compared in terms of the usual
centering and dispersion measures, i.e., bias and standard deviation. From Table 2
it is clear that the MAP of (13) exhibits a smaller bias than the maximum profile
estimator.

Example 2: Survival times. Let us consider the survival times ti in weeks of n = 17
patients with leukaemia along with their white blood cell counts xi at the time of
diagnosis, i = 1, . . . , 17 (see Cox and Snell, 1981, Example U). We use these data
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n = 5 n = 10 n = 15 n = 20

πam(ψ|y) 0.900 0.928 0.937 0.942
(0.009,0.089) (0.010,0.061) (0.014,0.048) (0.014,0.044)

πm(ψ|y) 0.948 0.951 0.950 0.950
(0.024,0.027) (0.022,0.027) (0.026,0.024) (0.024,0.026)

Table 1: Frequentist coverage probabilities of approximate 0.95% HPD and of the
lower and upper 0.025 quantiles (in brackets), under the gamma model.

n = 5 n = 10 n = 15 n = 20

πam(ψ|y) 1.21 (4.09) 0.34 (0.72) 0.20 (0.49) 0.14 (0.37)
πm(ψ|y) 0.03 (1.64) 0.01 (0.51) 0.00 (0.40) 0.00 (0.31)

Table 2: Bias (and standard deviations) of the MAPs of πam(ψ|y) and of πm(ψ|y),
under the gamma model.

to illustrate the higher-order approximation (13) for a Weibull model with shape
parameter κ and scale parameter λi = β1 exp(β2(xi − x̄)), i = 1, . . . , n. To this end,
we use the fact that yi = log ti follows a non-normal regression and scale model
of the form yi = xT

i β + σεi, with here xT

i β = log β1 + β2(xi − x̄), σ = 1/κ and
εi ∼ f(εi) = exp(εi− eεi) log-Weibull random variabile, called also extreme-value or
Gumbel random variable.

The proposed Bayesian procedure for inference in non-normal regression models
can be easily fitted by means of the rsm fitting routine, provided by the marg section
of the library HOA, and (13) can be obtained from the corresponding cond method.
Figure 1 gives the posterior distribution (13) together with the posterior (15) for
ψ = β2: the corresponding asymptotic HPD credible sets for ψ with approximate
level (1−α) = 0.95 are (−3.06,−1.43) and (−2.96,−1.63), respectively, and the two
MAPs are -2.30 and -2.28, respectively.

As in Example 1, Tables 3 and 4 give the results of a simulation study based
on 10000 Monte Carlo trials with n = 10, 17, 34. From Table 3 we observe that,
even for small n, πm(ψ|y) for the regression coefficient ψ = β2 clearly improves on
πam(ψ|y). From Table 4 it can be noted that the MAP of (2) is more accurate than
the maximum profile estimator.

n = 10 n = 17 n = 34

πam(ψ|y) 0.892 0.915 0.932
(0.043,0.065) (0.041,0.044) (0.036,0.032)

πm(ψ|y) 0.948 0.951 0.951
(0.029,0.023) (0.021,0.023) (0.025,0.024)

Table 3: Frequentist coverage probabilities of approximate 0.95% HPD and of the
lower and upper 0.025 quantiles (in brackets), under the extreme-value model.



8 L. Ventura, N. Sartori, W. Racugno

−3.5 −3.0 −2.5 −2.0 −1.5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

beta2

po
st

Figure 1: Posteriors πmp(ψ|y) (solid line) and first-order approximation πam(ψ|y)
(dashed line) for ψ = β2 in the Leukaemia data.

n = 10 n = 17 n = 34

πam(ψ|y) 0.066 (1.53) 0.039 (0.80) 0.013 (0.64)
πm(ψ|y) 0.025 (1.46) 0.029 (0.77) 0.011 (0.62)

Table 4: Bias (and standard deviations) of the MAPs of πam(ψ|y) and of πm(ψ|y),
under the extreme-value model.

Example 3: Binary data. Let us consider the bank dataset, which is made of four
measurements on 100 genuine Swiss banknotes and 100 counterfeit ones (see Marin
and Robert, 2007). The response variable y is the status of the banknote. The
explanatory variables are the length of the bill x1, the width of the left edge x2,
the width of the right edge x3, and the bottom margin width x4, all expressed in
millimeters. A logit model is used to predict the type of banknote (i.e., to detect
counterfeit banknotes) based on the four regressors x1, x2, x3 and x4.

Here, we focus our attention on inference on the scalar parameter ψ = β4, i.e.
the coefficient of x4. The proposed Bayesian procedure for inference on ψ can be
easily fitted by means of the cond method for glm objects (Brazzale et al., 2007).
The posterior distribution πm(ψ|y) is compared with the MCMC approximation (105

simulations) for the posteriors obtained with a flat prior and with a Zellner’s unin-
formative G-prior (see Figure 2), discussed in Marin and Robert (2007). Moreover,
Table 5 gives the empirical frequentist coverages for 95% posterior HPD credible sets
and for the lower and upper 0.025 quantiles. We simulated 104 samples from the
fitted model (MLE). For the MCMC approximation for πflatm (ψ|y) and πG-prior

m (ψ|y)
we used 104 replications.
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Figure 2: Higher-order (solid line) and first-order posteriors (dashed), MCMC pos-
teriors with flat prior (long dash) and with uninformative G-prior for ψ = β4 (dot-
dashed). The corresponding 0.95% asymptotic HPD credible sets are (1.38, 2.68),
(1.38, 2.72), (1.48, 2.89) and (1.37, 2.69).

πam(ψ|y) πm(ψ|y) πflatm (ψ|y) πG-prior
m (ψ|y)

0.956 0.951 0.906 0.943
(0.023, 0.021) (0.025, 0.024) (0.084, 0.010) (0.032, 0.025)

Table 5: Frequentist coverage probabilities of approximate 0.95% HPD and of the
lower and upper 0.025 quantiles (in brackets), under the logistic model.

5 Final remarks

For the purpose of making objective Bayesian inferences for a one-dimensional in-
terest parameter, higher-order asymptotic theory is discussed. Advantages of the
discussed approximations are that no elicitation on the nuisance parameter, neither
no multidimensional integration or MCMC simulation are necessary in order to ob-
tain πm(ψ|y), and no orthogonal parameterization is required in order to specify the
matching prior. A further advantage of this approximation is that its expression
automatically includes the matching prior, without requiring its explicit computa-
tion. From a practical point of view, the proposed approximation enables one to
compute accurate invariant HPDs for ψ as {ψ : |r∗p(ψ)| ≤ z1−α/2}, i.e. as accurate
likelihood-based confidence interval for ψ with approximate level (1− α).

Other possibile applications of the proposed methods are, among others, the bi-
normal and bi-exponential stress-strength models P (X < Y ) (with software avail-
able at homes.stat.unipd.it/ventura/ at page=Software), nonlinear regression
models (with the profile method available for objects of class nlreg), linear mixed
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effects models, and generalized mixed effects models.

As a final remark, note that, while the statistic r∗p(ψ) requires the MLE ψ̂ as
an ingredient, the posterior (2) does not. In view of this, expression (2) can be
useful in these situations where ψ̂ can be infinite, using the suitably modified profile
likelihood (see Severini, 2000, Chap. 9).
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