
Working Paper Series, N. 6, July 2014

Modeling competition among pharmaceutical drugs

Renato Guseo, Cinzia Mortarino

Department of Statistical Sciences
University of Padua
Italy

Abstract: Competition between rival brands within the same category gives

rise to special competition/substitution effects of great interest to the involved

firms. The study of competition in the pharmaceutical market highlights spe-

cial behavior in the diffusion of knowledge about the products that may differ

from other competing arenas. This latent feature naturally affects the evo-

lution of the drugs’ performances, in terms of number of packages sold. The

aim of this paper is to propose a new model structure within the family of in-

novation diffusion models that specifically takes the step of knowledge spread

into account. We show the application of this model with nonlinear regression

methods and a comparison with alternative models to antidiabetic drug sales

recorded monthly in the Italian market.

Keywords: competition, innovation diffusion, dynamic market potential, com-

munication network, nonlinear regression



Modeling competition among pharmaceutical drugs

Contents

1 Introduction 1

2 A possible form for the dynamic market potential 3

3 The proposed model 5

4 An application 7

5 Concluding remarks 10

Appendix 1. Proof 11

Appendix 2. SARMAX refinement 12

Department of Statistical Sciences
Via Cesare Battisti, 241
35121 Padova
Italy

tel: +39 049 8274168

fax: +39 049 8274170

http://www.stat.unipd.it

Corresponding author:
Cinzia Mortarino
tel: +39 049 827 4184
mortarino@stat.unipd.it

http://www.stat.unipd.it/~mortarino



1 Introduction 1

Modeling competition among pharmaceutical drugs

Renato Guseo, Cinzia Mortarino

Department of Statistical Sciences
University of Padua
Italy

Abstract: Competition between rival brands within the same category gives rise to special

competition/substitution effects of great interest to the involved firms. The study of compe-

tition in the pharmaceutical market highlights special behavior in the diffusion of knowledge

about the products that may differ from other competing arenas. This latent feature natu-

rally affects the evolution of the drugs’ performances, in terms of number of packages sold.

The aim of this paper is to propose a new model structure within the family of innovation

diffusion models that specifically takes the step of knowledge spread into account. We show

the application of this model with nonlinear regression methods and a comparison with al-

ternative models to antidiabetic drug sales recorded monthly in the Italian market.

Keywords: competition, innovation diffusion, dynamic market potential, communication

network, nonlinear regression

1 Introduction

The diffusion of an innovation often has to cope with the rise of many competitors
that generate huge contest effects, increase or contraction in the market potential
size, changes in the evolutionary dynamics of some brands, reduction or expansion
in the life cycle length, and anticipation in the time entrance of additional products
in the market. These effects can be modeled only if they are included in a single
complex system that should be able to correctly identify competition and contextual
forces.

We cannot observe this complex system where single agents (consumers) may
interact and share pieces of information regarding alternative technologies, compa-
rable solutions, similar devices, etc. Conversely, we observe the resulting aggregate
dynamics (level reached by diffusion, e.g., number of packages sold), and our analysis
must be based upon this level of observability.

Usually, the diffusion processes of these products in a marketplace have a limited
time-horizon defining particular life cycles with different internal dynamics. We ob-
serve poor performances at the beginning of the process after launch due to limited
acceptance of a new proposal that interacts with previous knowledge and related
agents’ lifestyles. Similarly, but for different reasons, we notice a pronounced de-
crease in sales at the end of the commercial life cycle when the product is perceived
as an old non-efficient solution. Following this qualitative reasoning, for modeling
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and predictive purposes, we may exclude the direct use of ARMA-like (or VARMA)
processes, which are strongly based on weak stationary conditions after some differ-
encing.

The pharmaceutical market is an important example of competition among al-
ternative drugs. The products can differ to a larger extent, whenever they are based
upon different active compounds, or they can differ only at the commercial level,
when the same active compound is sold by competing firms. Moreover, this market
differs from other markets, since in many countries the cost of essential/vital drugs
is paid by a welfare system. Therefore, price levels do not directly influence physi-
cians’ prescriptions. In addition, in Italy, the Ministry of Health negotiates with
pharmaceutical firms the price to be paid by the national health service.

The aim of this paper is to build and apply a competition model for pharmaceuti-
cal drugs (source: IMS Health Italy). In particular, we focus on different drugs with
the same active compound, based upon glimepiride. This is exactly the problem of
substitute products (brands) competing for the same patients. The results will be
compared with the outcomes obtained applying alternative models. We emphasize
that, in this case, a ‘good’ model, in addition to describing the data and providing
reliable forecasts, should highlight the key features of the competition among the
analyzed drugs.

A specific method for studying the dynamics of these special markets is based
upon the diffusion of innovation methodology, which is strongly related to system
analysis and epidemiological modeling tools.

The models due to Bass (Bass, 1969; Bass et al., 1994) represent an essential step
for the development of aggregate univariate diffusion patterns and a huge number of
extensions originated from them (see, among others, Meade and Islam, 2006; Peres
et al., 2010).

The main contributions that conversely pertain to competition modeling are
really sparse. Krishnan et al. (2000), Savin and Terwiesch (2005), and, recently,
Guseo and Mortarino (2012) and Guseo and Mortarino (2014b) are relevant propos-
als that describe competition with a differential representation admitting a closed-
form solution. The differential representation is typical of the models proposed in
the marketing literature, where an aggregate parsimonious description of real adop-
tion processes, based on interpretable parameters, is essential to capture the features
and predict the future evolution of the market under study. The simplicity of the
model’s structure is obtained by introducing plausible assumptions about the behav-
ior of the agents playing a role within the market. In addition, a tractable solution
for estimation and prediction makes a simple validation of the model easy to im-
plement through sales data. The relevant issue in this research topic is to build an
adequately large set of models to describe the different characteristics of the diffu-
sion process. Confirmation or rejection of the assumptions underneath each model
is then attained by fitting available observed data and by a relative comparison of
the models’ performances.

Models available in the literature to describe diffusion of competing products
in a common market assume that the market potential, i.e., the total number of
adoptions that a product will ultimately reach at the end of its life cycle, is invariant
throughout the overall life cycle since the products’ launch.
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This assumption, however, is almost always unrealistic. In general, knowledge
and awareness of a product are not immediately disseminated throughout eligible
adopters since the market entrance of a pioneering brand. Moreover, new brands
are often followed by other competitors, and their launch may affect awareness of
the products. The topic arises from the consideration that awareness of a product
and adoption are diffusion processes. Awareness is a prerequisite for adoption, and
the degree of penetration of a product into the market is limited by the degree of
diffusion of knowledge about its existence/properties. For this reason, the market
potential should be better described as a dynamic process instead of a fixed con-
stant, as discussed in Guseo and Guidolin (2009) for the univariate case (without
competition effects).

In Section 2, the standard Bass model (Bass, 1969) is briefly illustrated with
its extension (Guseo and Guidolin, 2009) introducing a dynamic market potential.
The underlying reasons motivating this extension are also presented. In Section 3,
we discuss how the competition model proposed in Guseo and Mortarino (2014b)
can be extended to incorporate the dynamic market potential. Section 4 illustrates
the application of the new model to the description of competition between two
antidiabetic drugs. A discussion about the improvement obtained for these data
with the proposed model is also given. Section 5 contains concluding remarks. In
Appendix 1, the details about the closed-form solution of the proposed model are
given. Finally, a SARMAX refinement for the model fitting is presented in Appendix
2.

2 A possible form for the dynamic market potential

The simpler form of a univariate diffusion of innovation model is given by a Bass
model (Bass, 1969). The differential representation is defined through the equation

z′(t) = m

[
p+ q

z(t)

m

] [
1− z(t)

m

]
, (1)

where z(t) and z′(t) = ∂z(t)/∂t represent the cumulative sales and the instanta-
neous sales at time t, respectively. Parameter m is the fixed market potential (the
asymptotic level of cumulative sales or the total number of adoptions at the end of
the life cycle).
Equation (1) makes explicit that, at each time point, the increase in sales is propor-
tional to the residual market, m − z(t). The proportionality factor is affected by a
fixed effect, p, and by a time-varying effect, qz(t)/m. The former does not depend
upon the degree of diffusion reached by the process, and p is called the innovative co-
efficient. The higher this value, the more rapid the takeoff of the life cycle, to describe
a process where exogenous factors, like advertising or institutional communication
efforts, push the diffusion. The latter effect, qz(t)/m, depends upon the degree of
saturation of the market and describes how previous sales exert word-of-mouth to
promote further diffusion. The coefficient q is called the imitative coefficient. The
higher q, the more important the word-of-mouth to increase diffusion.
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Under the initial condition z(0) = 0, and defining z(t) = 0 for t < 0, the explicit
solution of Equation (1) is

z(t) = m
1− e−(p+q)t

1 + q
p e
−(p+q)t

, t > 0. (2)

Although model (1) and its successive extensions proved to be extremely valuable
in describing innovation diffusion processes, an important limitation is given by the
definition of the market potential, m, as a fixed constant. This assumption conflicts
with the common perception that knowledge may be time dependent. Some attempts
were proposed in the literature to overcome this limitation.

In some papers, the dynamic market potential is modeled as a function of ex-
ogenous observed variables (see, e.g., Kim et al., 1999 and the references cited). In
other cases, it is assumed to be a function of time only (e.g., Sharif and Ramanathan,
1981; Centrone et al., 2007; Meyer and Ausubel, 1999).

Here, we will follow the approach by Guseo and Guidolin (2009). In principle, the
market potential can be any function m(t). However, a parsimonious and intuitive
method for specifying the form of m(t) arises when we look at the communica-
tion network spreading information about the products. The number of potential
adopters of a product can be thought of, at each time point, as the size of the
aware agents’ group. We describe awareness of the product as transmitted knowl-
edge through a network that describes the specific contacts among agents eventually
‘speaking’ about the products. This approach is linked to the literature about social
networks, often represented with random graph models where nodes denote individ-
ual social actors (agents) and edges denote specific relationships between the actors
(Handcock and Gile, 2010). Many contributions assume observability of the edges,
either complete or partial, through sample data.

Conversely, in our approach this communication network evolving in time is
latent and does not have to be observed or described in detail, due also to the high
costs of relational data. The focus is on the number of informed agents (active
nodes). This is a key point, since we want to deal with all the situations where
the communication network is product-specific (people usually choose to talk with
someone - and not with someone else - according to the topic of the conversation).
In that case, the content-driven network is totally unobservable or it is very difficult
to obtain reliable pertinent data.

In Guseo and Guidolin (2009), the formalized structure of such a network is
described, and it is explained in detail how this interpretation may lead to the
following dynamic market potential function:

m(t) = K

√
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

, t > 0, (3)

where K is the upper asymptotic potential (directly related to the network’s size),
and pc and qc are evolutionary parameters describing how fast communication spreads
through the network.

Observe that the expression under the square root in Equation (3) represents
itself the core of a Bass (Bass, 1969) model (Equation (2)) describing the latent dif-
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fusion process of communication. This is an S-shaped curve, a distribution function,
whose peakedness varies according to the product’s communication features.

3 The proposed model

The proposed model describes the diffusion of two competing brands. They are
supposed to be similar enough to share common market potential, whose size grows
in time as described in Section 2. A common market potential assumption is suitable
in situations when the products are substitutes competing for the same adopters.
Whenever competition, conversely, concerns products different enough to preserve
product-specific market potentials, the family of Lotka-Volterra models should be
preferred, although these structures do not allow a closed-form solution (Abramson
and Zanette, 1998).

Denoted by zi(t), i = 1, 2, the cumulative sales at time t of brand i, and by
z′i(t) = ∂zi(t)/∂t, i = 1, 2, the instantaneous sales, respectively, the model is given
by:

z′1(t) = m(t)

[
p1 + (q1 + δ)

z1(t)

m(t)
+ q1

z2(t)

m(t)

] [
1− z(t)

m(t)

]
+ z1(t)

m′(t)

m(t)

(4)

z′2(t) = m(t)

[
p2 + (q2 − δ)

z1(t)

m(t)
+ q2

z2(t)

m(t)

] [
1− z(t)

m(t)

]
+ z2(t)

m′(t)

m(t)
.

In Equation (4), we may observe innovators’ effects (parameters p1 and p2) and
word-of-mouth effects (parameters q1, q2 and δ). These parameters may be different
for the two competitors in order to describe products with different strengths in
the market. Observe that this structure is similar to the model used in Guseo and
Mortarino (2014b), with within-brand word-of-mouth (q1 + δ and q2 for the two
brands, respectively) that may be different from the cross-brand word-of-mouth (q1
and q2 − δ). In other words, this model may deal with situations when word-of-
mouth acts asymmetrically for the two products. In Guseo and Mortarino (2014b),
however, m(t) was supposed to be a common market potential invariant throughout
the life cycle, m(t) = m ∀t.

The final additive terms in Equation (4) (which would obviously vanish for a
constant m(t)) represent a self-reinforcing component as described in Guseo and
Guidolin (2009). The sales of the products are accelerated when m(t) grows faster,
i.e., when the awareness about the product spreads rapidly. Notice that this model
can also be used with the expression for m(t) different from Equation (3). In that
case, m(t) could also be a non-monotonic function, and the self-reinforcing term
could be negative in time periods when the market potential undergoes a contraction.

Let us define ps = p1 + p2 and qs = q1 + q2. Through the introduction of the
functions

w(t) =
1− e−(ps+qs)t

1 + qs
ps
e−(ps+qs)t

(5)
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and

y(t) = 1 +
qs
ps
w(t) =

1 + qs
ps

1 + qs
ps
e−(ps+qs)t

, (6)

in Appendix 1 it is proven that, for any m(t), the closed-form solution of the system
(4) is

z1(t)

m(t)
=

q1
qs − δ

w(t) +

[
ps
δ

(
p1
ps
− q1
qs − δ

)] [
y(t)

δ
qs − 1

]
(7)

z2(t)

m(t)
=

(
q2 − δ
qs − δ

)
w(t) +

[
ps
δ

(
p2
ps
− q2 − δ
qs − δ

)] [
y(t)

δ
qs − 1

]
,

when δ 6= 0 and δ 6= qs.

When δ = qs, the solution reduces to

z1(t)

m(t)
=

(
p1
ps
− q1
qs

)
w(t) +

q1ps
q2s

y(t) ln y(t)

(8)
z2(t)

m(t)
=

(
1− p1

ps
+
q1
qs

)
w(t)− q1ps

q2s
y(t) ln y(t),

while, in the special case δ = 0, we obtain

z1(t)

m(t)
=

q1
qs
w(t) +

ps
qs

(
p1
ps
− q1
qs

)
ln y(t)

(9)
z2(t)

m(t)
=

q2
qs
w(t) +

ps
qs

(
p2
ps
− q2
qs

)
ln y(t).

The solutions allow us to use a nonlinear regression model with dependent vari-
ables given by the observed cumulative sales of the two brands. A reasonable and
robust inferential methodology for estimating and testing the performance of this
structure may be implemented through the model

vi(t) = ηi(β, t) + εi(t), i = 1, 2, (10)

where vi(t) represents the observed cumulative sales data for each of the two prod-
ucts and ηi(β, t) denotes the cumulative distribution functions (7) depending on the
vector of parameters β = {K, pc, qc, p1, q1, p2, q2, δ} and on time t. Here, we assume
that m(t) is modeled as in (3). The residual term εi(t) is usually a white noise or
a more complex stationary process if seasonality and/or autoregressive aspects are
included as stochastic components. The joint estimate of β is obtained with a single
model where v1(t) and v2(t) are stacked. This estimate could be generated using the
Beauchamp and Cornell technique (Beauchamp and Cornell, 1966). Recent results,
however, show that it is advisable to use ordinary nonlinear least squares (Guseo
and Mortarino, 2014a).
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Figure 1: Monthly sales data for Amaryl 2 mg and Solosa 2 mg. The series of the
sum of all the sales of alternative products is also shown (source: IMS Health Italy).

4 An application

Amaryl (Sanofi-Aventis) and Solosa (Lab. Guidotti) are two drugs based upon
glimepiride, used by people with type 2 diabetes. Glimepiride belongs to the class
of drugs known as sulfonylureas. It lowers hyperglycemia by causing the release of
the body’s natural insulin. These drugs, at a dose of 2 mg, were launched in the
Italian market in January 1999 and were for many years duopolists in the glimepiride
market. Figure 1 shows monthly sales data (available until April 2013) for the two
drugs separately. In addition, the series of the sum of all the sales of alternative
products (12 generic drugs) commercialized since 2006 is shown. The more recent
products have never represented a real threat to the two oldest brands.

These two drugs are perfect substitutes from the medical point of view, and
thus a model with a common market potential appears as an adequate solution.
Moreover, in 1999 glimepiride represented a radical novelty in the Italian market,
since it was the first type of sulfonylurea available. Other dosages of the same
drugs were launched later in 2006. These considerations suggest that awareness
of the properties and the efficacy of these drugs perhaps were not not widespread
among Italian physicians in 1999. A dynamic market potential appears a reasonable
approach for the description of these data. The complete unobservability of the
communication network that since 1999 spread knowledge about glimepiride finally
suggests that model (3) could be an appropriate tentative solution. Of course, only
good agreement between available data and model (7), which incorporates these
features, could confirm or lead to rejection of these assumptions.

Joint nonlinear regression of the two main competitors’ cumulative sales on the
functions (7) gives rise to the parameters’ estimates shown in Table 1.
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Table 1: Estimation results for model (7).
Estimate Standard Error 95% Confidence Interval

K 9.09385∗108 3.02298∗10−17 (9.09385∗108, 9.09385∗108)
pc 9.62807∗10−6 3.95248∗10−7 (8.85038∗10−6, 0.0000104)
qc 0.0017675 0.0004215 (0.0009382, 0.0025968)
p1 0.0049407 0.0000671 (0.0048087, 0.0050727)
q1 -0.0037018 0.0009179 (-0.005508, -0.001896)
p2 -0.0000204 0.0000412 (-0.000101, 0.0000606)
q2 0.0261077 0.0011429 (0.0238590, 0.0283565)
δ 0.0122482 0.0016330 (0.0090352, 0.0154612)

R2 = 0.999899

0 50 100 150

0

50 000

100 000

150 000

predSOLOSA
predAMARYL
SOLOSA
AMARYL

Figure 2: Comparison of the observed and fitted values, instantaneous sales, model
7.

In that case, the huge value of R2=0.999899 is unsurprising since we work with
cumulative data and any S-shaped fitting produces high determination indexes. A
standard approach advises the use of the R2 measure only for comparative purposes,
as will be described in the sequel. In addition, the evaluation of the squared linear
correlation coefficient between observed instantaneous sales and fitted instantaneous
sales gives a value of 0.999899.

The agreement between the observed and fitted values can also be assessed by
inspecting Figure 2. The two estimated profiles follow very well the observations and
discrepancies (essentially due to seasonal effects) could be easily modeled through a
SARMAX approach for the second step refinement (see Appendix 2). The residuals’
analysis is proposed in Figure 3.

Since we deal with consumables (i.e., repeatedly purchased goods), K̂ (909 mil-
lion) represents an estimate of the total number of packages that could be sold by the
two drugs. Figure 4 shows the estimated evolution of the common dynamic market
potential, m(t). It is very far from a fixed m pattern, since knowledge about these
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Figure 3: Residuals for the two products (instantaneous sales scale).
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Figure 4: Plot of the estimated market potential function, m̂(t).

drugs seems to have spread among physicians slowly. This could be explained by
observing that a new active compound (as it was glimepiride in the Italian market
in 1999) is accepted with caution until side effects are not totally disclosed.

If we focus on innovation parameters, we see that this component did not play
a significant role for Solosa, and this may explain its slow start. Lab. Guidotti,
which launched Solosa, is a big Italian company, but it was not able to compete,
in terms of commercial pressure, with the strength of the international company
Sanofi-Aventis, which promoted Amaryl.

Imitative parameters have to be interpreted with reference to the proposed
model. If we substitute the estimates in model (4), we have the following:

z′1(t)− z1(t)
m′(t)

m(t)
∝ 0.0049 + 0.0085

z1(t)

m(t)
− 0.0037

z2(t)

m(t)

z′2(t)− z2(t)
m′(t)

m(t)
∝ + 0.0139

z1(t)

m(t)
+ 0.0261

z2(t)

m(t)
.

Amaryl experienced a weaker within-brand word-of-mouth effect than Solosa (0.0085
vs. 0.0261) and suffered from the competition due to negative cross-brand word-of-
mouth by Solosa adoption. Conversely, Solosa added to the stronger within-brand
word-of-mouth effect positive cross-brand word-of-mouth arising from the adoption
of its competitor. This ultimately led Solosa to outsell Amaryl. Both drugs now
appear to be in a declining phase of their life cycle (due to the appearance of other
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active compounds in the type 2 diabetes market).
The efficacy of the proposed model in this application has to be proved with

reference to a simpler model with constant market potential. The model proposed
in Guseo and Mortarino (2014b) fits this purpose since it can be obtained by (4) with
the only restriction m(t) = m. In addition, other models available in the literature
are nested within the Guseo and Mortarino (2014b) model. The R2 for the Guseo
and Mortarino (2014b) model equals 0.999259. Since this model is nested within
model (4), we calculate an F test to detect whether the gain from the simpler model
to the more complex model is significant. In detail, as the first step, the squared
multiple partial correlation coefficient

R̃2 = (R2
M1 −R2

M2)/(1−R2
M2) (11)

is calculated (here, R2
M2 denotes the determination index of the reduced model that

has to be compared to model M1). A possible test that verifies the significance of
the s parameters of the M1 model that are not included in model M2 may be given
by

F = [R̃2(N − k)]/[(1− R̃2)s], (12)

where N denotes the number of observations used to fit the models and k is the num-
ber of parameters included in model M1. Under the null hypothesis of equivalence
between models M1 and M2, (12) is distributed as a Snedecor’s F with (s,N − k)
degrees of freedom, if the stochastic component of the regression model is normal
i.i.d. This is not our case. Nevertheless, the F ratio (12) can be used as an ap-
proximate robust criterion for comparing model M2 nested in M1, by considering
the well-known common threshold 4 (Guseo et al., 2007). Here, the test comparing
model (4) with the Guseo and Mortarino (2014b) model assigns the huge value of
F=991.967 (R̃2=0.864108), denoting the relevance of the extended (4) model.

In Figure 5, the fitted values of model (4) and the Guseo and Mortarino (2014b)
model are compared. The rigidity of a fixed market potential make the latter model
inadequate to describe these data and, even worse, for larger t values, it shows a
heavy underestimation that make forecasts unreliable.

5 Concluding remarks

Diffusion of innovation methodologies have faced and are facing new challenges in
order to incorporate, in parsimonious model building the major effects that can
modify their evolutionary shapes over time.

The aim of this paper is to highlight the key features of the competition between
Amaryl and Solosa. These two drugs differ essentially in the persuasion effects
exerted by the two companies that launched the drugs and their acceptance by the
physicians’ community spreading word-of-mouth about their efficacy.

The novelty represented by the active compound of the drugs suggested we should
enrich the existing competing models’ family with the introduction of dynamic mar-
ket potential. This extension rests on the statement that awareness is a fundamental
prerequisite for adoption. We can imagine that, at the individual level, awareness
and adoption are two subsequent states that subjects (physicians) may go through.
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Figure 5: Comparison of the fitted values for model (4) and the model used in Guseo
and Mortarino (2014b).

The first state, awareness, is latent. In addition, since individual data are in this case
unavailable, the description is aggregated (as a mean profile) leading to Equation
(3).

Notice that the Guseo and Guidolin (2009) paper, in a completely different con-
text, inspired the approach followed by Furlan and Mortarino (2012) to describe and
predict the death toll due to pleural mesothelioma contracted through the exposure
to asbestos fibers in a residential area close to a big plant. In that case, contami-
nation (state 1), i.e., contact with lethal asbestos fibers, was the latent prerequisite
for developing the disease (state 2).

As a final remark, we emphasize that our proposed model is useful for analyzing
competition between two products. The tractability of the model, in terms of the
estimate of the parameters involved, allows us to deal with a higher number of
competitors only if they entered the market simultaneously. Diachronic competition,
i.e., competitors launched in the market at different time points, requires, in general,
model structures with multiple regimes (a change-point in the evolution of existing
products occurs whenever a new one appears). In that case, for more than three
products, the parameter cardinality becomes to high too obtain reliable estimates,
unless each regime is covered by an adequate observation period.

Appendix 1. Proof

Let z(t) = z1(t) + z2(t) denote the sum of the cumulative sales of the two products
and by z′(t) the total instantaneous sales. If we sum the equations of system (4),
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we obtain

z′(t) = z′1(t) + z′2(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z1(t)

m(t)
+ (q1 + q2)

z2(t)

m(t)

] [
1− z(t)

m(t)

]
+[z1(t) + z2(t)]

m′(t)

m(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z(t)

m(t)

] [
1− z(t)

m(t)

]
+ z(t)

m′(t)

m(t)
. (13)

Equation (13) defines a coevolutive model (Guseo and Guidolin, 2009) with unspec-
ified market potential m(t) and adoption parameters ps = p1 + p2 and qs = q1 + q2.
It follows that the solution of the differential equation (13), with initial condition
z(0) = 0, is the following:

z(t)

m(t)
= w(t) =

1− e−(ps+qs)t

1 + qs
ps
e−(ps+qs)t

. (14)

In order to find a solution for z1(t), the first equation in system (4) should be
rearranged:

z′1(t)− z1(t)
m′(t)

m(t)
= m(t)

[
p1 + (q1 + δ)

z1(t)

m(t)
+ q1

z2(t)

m(t)

] [
1− z(t)

m(t)

]
z′1(t)m(t)− z1(t)m′(t)

m2(t)
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1w(t) + δ

z1(t)

m(t)

]
[1− w(t)] . (15)

Equation (15) perfectly matches the differential equation in Guseo and Mortarino
(2014b) (p. 308, between (A.1) and (A.2)), where mc has to be replaced by m(t) and
in the expression for w(t) we have to add the further condition zs = 0. In our case,
differently from Guseo and Mortarino (2014b), we examine competition between two
products entering simultaneously into the market. If we add this two conditions to
the solution to the differential equation, we obtain exactly (7), (8), and (9).

Appendix 2. SARMAX refinement

As mentioned in Section 3, for estimation purposes, we use a two-phase procedure.
First, we apply to model (10) a robust nonlinear least squares algorithm (NLS),
which ignores the stochastic structure of εi(t), under the well-known Levenberg-
Marquardt correction of the Gauss-Newton recursive procedure; see, for instance,
Seber and Wild (2003). Second, the prediction ηi(β̂, t) based on a NLS solution,
β̂, may be used in a model based on a seasonal, autoregressive, moving average
process with an input X (SARMAX) in order to improve short-term prediction,
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Figure 6: Comparison of the fitted values for model (4) and the SARMAX refine-
ment.

which is relevant for managerial applications. This second stage is implemented if
the residuals of the first stage do not follow a standard white noise pattern. The
Durbin-Watson statistic may be used as an exploratory test to diagnose whether this
second step is necessary. In this case, the Durbin-Watson statistic equals 0.03317,
distinctly detecting a positive autocorrelation.

The SARMAX improvement for short-term predictions rests on the following
equation based on a polynomial function of backward operators, namely,

Ψ(B)Φ(Bs)[z′i(t)− ciηi(β̂, t)] = Ω(B)Θ(Bs)ai(t) (16)

with ai(t) a White Noise process; B and Bs the standard and seasonal backward
operators; and Ψ(B), Φ(Bs), Ω(B), and Θ(Bs) the usual backward polynomials
of order g,G, h, and H, respectively. The calibration parameters ci allow a global
assessment of the stability of the predicted regressive values stemming from the
estimated models ηi(β̂, t).

In this situation, we observe that the residuals for the Solosa series (Figure 3)
denote a relevant change-point essentially around the middle of the series. Since
SARMAX is meant as an improvement for predictive purposes, we chose to apply
it only to the second part of the series (t > 90), whose data are more relevant for
future evolution.

The estimates of the parameters involved in Equation (16) applied to instan-
taneous data are proposed in Table 2. The agreement between the observed data
and the fitted values with the SARMAX refinement is almost perfect (see Figure
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Table 2: Parameter estimates for the SARMAX refinement. [ ] t statistic. ∗: signif-
icant, 95%. ∗∗: strongly significant, 99%. prM denotes the fitted values with model
(4). The subscripts of R̃2 and F define the involved nested models; in particular,
M |GG denotes the comparison of model (4) and the SARMAX model.

Model Parameter Amaryl Solosa

AR1 0.793562** 1.020960**
AR2 0.710546 -1.564090**
AR3 -0.406301 1.332160**
AR4 0.250634 -1.156470**
AR5 -0.375593 0.664820**
MA1 0.796107** -0.203328
MA2 0.564276 0.983558**
MA3 -0.593492** 0.381771
MA4 0.270996 -0.273830

SARMAX MA5 -0.037560 -0.137799
+ SAR1 -0.239924** -0.048891**

prM SAR2 0.696152** 0.727976**
SAR3 -0.619403** -0.728324**
SAR4 0.162768* 0.049397**
SAR5 1.080770** 0.999809**
SMA1 -0.465237** 0.002783
SMA2 0.563276** 0.000324
SMA3 -0.360688** -0.000017
SMA4 0.043359 -0.000235
SMA5 0.630513** -0.000104

prM c 1.0094** 0.866576**
[tM ] [30.7978] [255.083]

RSS 2.915695∗109 1.623998 ∗107

RSSM 1.349733∗1010 1.515860∗1010

R̃2
M |S 0.783980 0.998929

FM |S 21.775193 2712.418722

6). This confirms that the discrepancies between the observed data and the fitted
values with model (4) were essentially due only to an autoregressive component and
a seasonal effect.

The overlapping of the fitted trajectory on the observed data strongly supports
the choice of the model (4) for the description of our data.
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