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contrast vectors. An estimator of the common source of variability is obtained
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Nonparametric Estimation of Random Effect Variance with
Partial Information from the Clusters

Dario Basso

Department of Statistical Sciences
University of Padua
Italy

Abstract: This work is a new proposal for estimating the variance of the random effects

in case the knowledge of the internal variability of the clusters is (or might be) assumed to

be known. Here by clusters we mean, for instance, second-level units in multi-level models

(schools, hospitals etc.), or subjects in repeated measure experiments. The proposed ap-

proach is useful whenever the variability of the response in a linear model can be viewed as

the sum of two independent sources of variability, one that is common to all clusters and

it is unknown, and another which is assumed to be available and it is cluster-specific. The

responses here have to be thought as functions of the first-level observations, whose vari-

ability is known to depend only on the cluster’s specificities. These settings include linear

mixed models (LMM) when the estimators of the effects of interest are obtained condition-

ally on each cluster. The model may account for additional informations on the clusters,

such as covariates, or contrast vectors. An estimator of the common source of variability

is obtained from the residual deviance of the model, opportunely re-scaled, through the

moment method. An iterative procedure is then suggested (whose initial step depends on

the available information), that turns out to be a special case of the EM-algorithm.

Keywords: Iterative Moment Estimation

1 Introduction

In many experimental and observational studies, such as multi-level or repeated
measure designs, the responses measured on the same cluster are not independent.
Here by clusters we mean, in general, second-level units like schools, hospitals etc.
(or subjects in repeated measure experiments). This is because the one-level units
(trials) all share some specific features depending on the cluster. In these situations,
linear mixed models are usually assumed to describe the responses, because they
account for the correlation between data of the same cluster. In linear mixed models
there are two sources of variability, one which is assumed to be common to all clusters
and it is due to the random effects, and another which is specific for each clusters.
Within this framework, the generation of the response can be viewed as a two-step
process: at first, the individual effects are generated from a common probability law,
which determine what is to be thought as the ’true’ individual effects. Later, the
final responses are generated conditionally on the random effect realization with an
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additional source of variability due to the individual errors, which may be assumed
heteroscedastic among the clusters.

Linea Mixed Models are usually applied to assess some null hypotheses on the
fixed effects taking into account that data are collected hierarchically, or sometimes
to test for the presence of random effects (e.g. spatial data). In some other situa-
tions, we may want to compare the effects of a certain treatment on one or more
populations, from which the samples have been drawn. In all these cases, an estimate
of both sources of variability is required.

In a parametric framework, the individual source of variability is usually assumed
to be the same for all clusters, and the dispersion parameter is assumed to be known
[4]. Similarly, it is possible to summaryze the information in each cluster through a
conditional estimation of the effects of interest, as well as their variability. In some
other situations the data might be aggragated at the second level, and therefore
parametric solutions, such as that provided in [1] are not applicable.

In what follows an iterative algorithm to obtain an estimation of the random
effect variances is proposed. This method is applicable whenever the variability (or
an estimate) of the cluster responses is available. This is what is meant by partial
information from the clusters here. In Sections 2 and 3 the proposal is introduced,
and in Section 4 an example is provided.

2 Variance Estimation

Let y be a n× 1 vector of independent but not identically distributed random vari-
ables, whose distributions are continuous and admit finite second moment. Formally
Yi ∼ Fi(yi), where Fi(·) satisfies V ar(Yi) < ∞, i = 1, . . . , n. Since this assumption
is very broad, we will assume that these observations are associated to a n×q design
matrix Z full of rank, through the linear model

y = Zγ + ε, (1)

where γ is a q × p matrix of coefficients, and ε is a n × 1 vector of independent
random errors with zero mean and variance equal to V ar(εi) = vii. We will denote
with V the variance covariance matrix of ε and write ε ∼ (0,V) to underline that
the attention will be focused on the first two moments of the joint distribution.

We will also assume that the error term ε is in fact a sum of two independent
random vectors u and ε, where u is a source of noise common to all the observations,
and ε is a specific to each observation. Namely, u ∼ (0, σ2uIn), and ε ∼ (0,Σ), where
Σ = diag(σ21, . . . σ

2
n). The reason of this assumptions will be clearer in the example

section. Model (1) can be equivalently viewed in terms of the joint distribution of
the response, i.e. y ∼ (Zγ,V), where V = diag(σ2u + σ2i ).

Since the response is heteroscedastic, it is well known [3] that the BLUE estima-
tor of the parameter vector γ is given by the weighted least square (WLS) estimator
γ̂ = (X′V−1X)−1X′V−1y, which is obtained by minimizing with respect to γ the
residual deviance of the general linear model:

V−1/2y = V−1/2Zγ + V−1/2ε. (2)
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If we let ỹ = V−1/2y, then ỹ ∼ (Z̃γ, In), where Z̃ = V−1/2Z. The residuals of
model (2) can be viewed as the projection of the weighted response ỹ into the sub-
space orthogonal to the one spanned by the columns of Z̃. This operation is made
possible by the pre-multiplication of the weighted response for the projection matrix
(I −HV), where HV = V−1/2Z(Z′V−1Z)−1Z′V−1/2. The matrix HV is indeed a
projection matrix since it is symmetric and idempotent, and the residuals of model
(2) can therefore be written as:

r̃ = (I−HV)ỹ = (I−HV)ε̃, (3)

where ε̃ is the weighted vector of errors: ε̃ = V−1/2ε. Note that, while the elements
of ε̃ are identically distributed up to their second moments, the elements of r̃ are
not. Indeed V ar(r̃) = (I − HV)V ar(ε̃)(I − HV) = (I − HV), which depends on
V. Since HV is a projection matrix there exists an n × n matrix ΓV that satisfies
ΓVΓ′V = (I −HV). Note that ΓV is of rank n − q and it is orthogonal, therefore
Γ′VΓV = In−q.

Now consider the vector of re-scaled residuals r∗ = Γ′Vr̃; its components are i.i.d.
up to their second moment, indeed E[r∗] = 0 and

V ar(r∗) = Γ′VV ar(r̃)ΓV = Γ′V(ΓVΓ′V)ΓV = In−q.

Note that, in fact, the dimension of the (re-scaled) residuals is only n− q, and not
n as for the original response y. The re-scaled residuals can be expressed as

r∗ = Γ′Vε̃, (4)

where the equivalence has been obtained by noticing that Γ′V(I −HV) = Γ′V. A
further pre-multiplication for ΓV would be useless, since it would lead back to model
(3). The last transformation vanishes the dependence between the residuals and the
matrix V. In fact, this is true only apparently, since the re-scaled residuals of model
(4) are obtained from the original response vector y through a pre-multiplication for
the projection matri HV, that depends on V. Since we are interested on estimating
the variability of the common component u, the intuitive idea is to express the
uncorrelated residuals back into the original scale; that is, to consider the vector
r = V1/2Γ′Vε̃ as a guess for our purpose, because

V ar(r) = V1/2Γ′VV ar(ε̃)ΓVV1/2 = V1/2Γ′VΓVV1/2 = Vn−q, (5)

where Vn−q = diag(vii) and vii = σ2u + σ2i if i ≤ n− q, and zero otherwise.
The quadratic form r′r satisfies

E[r′r] = tr(Vn−q) =

n−q∑
i=1

vii = (n− q)σ2u +

n−q∑
i=1

σ2i . (6)

If the elements σ2i are assumed to be known (this is what ’partial information from
the clusters’ is meant here) then a moment-estimator of σ2u is given by

σ̂2u =
1

n− q

[
r′r−

n−q∑
i=1

σ2i

]
. (7)
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Although it may be reasonable, since the estimator in (7) is unbiased and consistent,
this does not seem to be a practicable choice, since it only depends on the first n− q
elements of diag(V).

Alternatively, the residual vector r can be expressed as a function of the errors
in the original scale:

r′r = ε′[(V−1/2ΛVV1/2)(V1/2Λ′VV−1/2)]ε = ε′G′Gε,

where G = V1/2Λ′VV−1/2. With this in mind, we finally obtain:

E[r′r] = tr(G′GV) =
n∑

i=1

giivii = σ2u

n∑
i=1

gii +
n∑

i=1

giiσ
2
i , (8)

where gii is the ith diagonal entry of G′G, which gives raise to the estimator:

σ̂2u =
1

tr(G′G)

[
r′r−

n∑
i=1

giiσ
2
i

]
. (9)

This expression will be useful in the iterative estimation introduced in the next
section, because it allows to express the expectation of the quadratic form (8) in
terms of the unknown parameter σ2u and the trace elements of the matrix G. An
initial guess of the variance/covariance error matrix depending only on the cluster’s
variability (say V0 = diag{σ2i }) implies a complete knowledge of G, so an initial
estimate of σ2u can be obtained. The matrix V will be then updated iteratively by
adding the current estimate of σ2u the diagonal elements of V0 until convergence.

3 Iterative Estimation

The results of section 2 hold provided that the individual variances σ2i are known.
The relationship between (5) and (8) is given by the equivalence:

tr(G′GV) = tr(V−1/2ΛVVΛ′VV1/2) = tr(ΛVVΛ′V) = tr(Λ′VΛVV) = tr(Vn−q),

although (7) is a function of the first n − q elements of diag(V), whereas (8) is a
weighed sum of all those elements. Note that in (8) the role usually played by the
degrees of freedom in the estimation is replaced by the trace of G′G, which is not
an integer.

In order to estimate the unknown parameter σ2u, we then propose an iterative
algorithm: at the beginning an initial guess for the error variance/covariance matrix
is given by V0 = diag(σ2i ), i = 1, . . . , n. Then repeat until convergence the following
instructions; at step s:

• Estimate the uncorrelated residuals under the original scale as

rs = V
1/2
s−1Λ

′
Vs−1

V
−1/2
s−1 y = Gsy,

where ΛVs−1 is the matrix of the eigen vectors of (I −HVs−1) multiplied by
the identiy matrix of order n− q, and HVs−1 is the projection matrix into the
residual space defined in section 2 with V replaced by Vs−1 (M -step);
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• Obtain the trace of G′sGs and the current estimate of σ2u (E-step):

σ̂2us
=

1

tr(G′sGs)

[
r′srs −

n∑
i=1

giisσ
2
i

]
giis = (G′sGs)ii;

• Set Vs = diag{Ius · σ̂2us
+ σ2i }, where Ius = 1 only if σ̂2us

> 0.

Note that it is possible to obtain negative estimates of σ2u (in this case the estimate
will be forced to zero and V̂ = diag(σ2i ) ), because the estimator is based on a
difference of real values. If this does not happen, the converge is ensured by the
EM algorithm theory ([2]), of which our algorithm is a special case. Indeed the
maximization step is represented by the WLS estimation of the residuals, which are
obtained by minimizing the residual deviance (hence maximizing the likelihood of
the model), whereas the expectation step is implicit in the moment estimation of σ2u.
The algorithm can be stopped after a maximum number of iterations, or as soon as
some convergence criterion is satisfied.

4 Example

In this section a simple example where such estimation method is applied will be
explained. Consider a repeated measure experiment where a response variable Y is
measured on n subjects observed in ni trials, i = 1, . . . , n. Assume a linear mixed
model with random intercept the ni × 1 response of each subject:

yi = µi · 1ni + εi, µi = µ+ ui,

where µ is the population mean, and ui ∼ (0, σ2u) is the random effect related to
the ith subject. As far as the error term is concerned, we could either assume
heteroscedasticity, i.e. εi ∼ (0ni , σ

2
i Ini), or homoscedasticity (σ2i = σ2 ∀ i) since,

unless the same number of trials is done on each subject, we would obtain the same
result: the OLS estimator of µ within each subject is given by the subjects’ sample
mean µ̂i = ȳi, and since the estimation is done conditionally on the subjects we have
µ̂i|ui ∼ (µ+ui, σ

2
i /ni). If we consider the distribution of the OLS estimators among

the subjects (i.e. the unconditional distribution of µ̂i), then µ̂i ∼ (µ, σ2u + σ2i /ni).

Now suppose that an additional variable Z, such as age, is available for the
subjects, and that we are interested on seeing whether there is an interaction be-
tween age and the response. If we let µ̂ = [µ̂1, µ̂2, . . . , µ̂n]′ to be the new vector
of responses, and Z = [1n, z], where z is the vector with the ages of the subjects,
we can consider the analogous of model (1) by replacing y with µ̂, γ = [γ0, γ1]

′

and V = diag{σ2u + σ2i /ni}. Then testing for no interaction between response and
age would be translated into testing the null hypothesis H0 : γ1 = 0. The test
can be done, for instance, by comparing the residual deviances of the full and the
reduced model. Whatever statistical test is applied, the knowledge of both variance
components will be required. In practice, the individual components σ2i should ei-
ther (assumed to be) known or obtained by some consistent estimators, whereas the
common variance component σ2u will be estimated by the iterative algorithm.
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The estimation procedure proposed can be easily extended to many other situ-
ations, including between-group comparisons (in which case Z would be a contrast
matrix), or when one is interested on possible interactions between treatment and
cluster covariates. More generally it can be applied in any case some estimators of
the parameters of interest and of their variances is available. Note that this also
includes the Generalized Linear Mixed Models (GLMM), provided that these models
are fitted within each subject. This is the case when g(µij) = x′ijβij , i = 1, . . . , n,
j = 1, . . . , p, is the model for the response of the ith cluster in the jth trial, where
µij = E[Yij ], g(·) is the link function, xij is the individual treatment for the jth first
level observation, and βij is a p × 1 vector of effects, which can be specified as the
sum of a fixed and a random component, i.e. βij = βj +ui (the fixed part depending
on the population and the random part specific for each subject). Note that this
estimation method is applied separately to each component of βij , and therefore it
can be used to estimate the whole variance covariance matrix of the random effects
in case these are assumed to be uncorrelated.
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