
Working Paper Series, N. 7, June 2011

A Newton’s Method for Benchmarking Time Series
according to a Growth Rates Preservation Principle

Tommaso Di Fonzo

Department of Statistical Sciences
University of Padua
Italy

Marco Marini

Statistics Department
International Monetary Fund
USA

Abstract: We present a new technique for temporally benchmarking a time

series according to the Growth Rates Preservation (GRP) principle by Causey

and Trager (1981). This procedure basically looks for the solution to a non

linear program, according to which f(x), a smooth, non-convex function of the

unknown values of the target time series {xt}, t = 1, . . . , n, has to be minimized

subject to linear equality constraints which link the more frequent series {xt}

to a given, less frequent benchmark series {bT}, T = 1, . . . ,m. We develop

a Newton’s method with Hessian modification applied to a suitably reduced-

unconstrained problem. This method exploits the analytic Hessian of the GRP

objective function, making full use of all the derivative information at disposal.

We show that the proposed technique is easy to implement, computationally

robust and efficient, all features which make it a plausible competitor of other

benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a

data-production process involving a considerable amount of series.

Keywords: Benchmarking, Movement preservation, Linearly equality con-

strained non-linear optimization, Newton’s method.

JEL classification codes: C22, C61, C82.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@research

https://core.ac.uk/display/31144557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Newton’s Method for Benchmarking Time Series according to a Growth Rates Preser-
vation Principle

Contents

1 Introduction 1

2 Growth Rates Preservation and Temporal Benchmarking 3
2.1 Modified Denton PFD . 4

3 Gradient Vector and Hessian Matrix of the GRP criterion 5

4 From a constrained to an unconstrained minimization problem 7
4.1 Eliminating the Linear Equality Constraints 8
4.2 Generating an Elimination Matrix by QR Factorization 9
4.3 The Reduced Unconstrained Minimization Problem 11

5 Line-Search Algorithms for Unconstrained Minimization 11
5.1 Newton’s Method with Hessian Modification 12
5.2 Steepest Descent and Quasi-Newton Methods 13

5.2.1 Steepest Descent Method . 13
5.2.2 Quasi-Newton Methods . 13

5.3 Nonlinear Conjugate Gradient . 14

6 Projected Steepest Descent and Conjugate Gradient Directions 15

7 Solvers’ efficiency and quality 16
7.1 Performance Profiles . 19
7.2 Denton (1971) series . 20
7.3 EUQSA and MRTS series . 22

8 Conclusions 27

Appendix 1. Feasible direction according to Causey and Trager (1981) 28

Appendix 2. Temporal discrepancies (%) of the EUQSA series 29

Appendix 3. Temporal discrepancies (%) of the MRTS series 30

Appendix 4. Performance profiles 34

References 39

Department of Statistical Sciences
Via Cesare Battisti, 241
35121 Padova
Italy

tel: +39 049 8274168

fax: +39 049 8274170

http://www.stat.unipd.it

Corresponding author:
Tommaso Di Fonzo
tel: +39 049 827 4158
difonzo@stat.unipd.it

http://www.stat.unipd.it/~difonzo

http://www.stat.unipd.it
difonzo@stat.unipd.it
http://www.stat.unipd.it/~difonzo

Section 1 Introduction 1

A Newton’s Method for Benchmarking Time Series accord-
ing to a Growth Rates Preservation Principle

Tommaso Di Fonzo

Department of Statistical Sciences
University of Padua
Italy

Marco Marini

Statistics Department
International Monetary Fund
USA

Abstract: We present a new technique for temporally benchmarking a time series ac-

cording to the Growth Rates Preservation (GRP) principle by Causey and Trager (1981).

This procedure basically looks for the solution to a non linear program, according to which

f(x), a smooth, non-convex function of the unknown values of the target time series {xt},

t = 1, . . . , n, has to be minimized subject to linear equality constraints which link the

more frequent series {xt} to a given, less frequent benchmark series {bT }, T = 1, . . . ,m.

We develop a Newton’s method with Hessian modification applied to a suitably reduced-

unconstrained problem. This method exploits the analytic Hessian of the GRP objective

function, making full use of all the derivative information at disposal. We show that the pro-

posed technique is easy to implement, computationally robust and efficient, all features which

make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum

and Cholette, 2006) also in a data-production process involving a considerable amount of

series.

Keywords: Benchmarking, Movement preservation, Linearly equality constrained non-

linear optimization, Newton’s method.

JEL classification codes: C22, C61, C82.

1 Introduction

The Growth Rates Preservation (GRP) benchmarking procedure by Causey and
Trager (1981; see also Trager, 1982, and Bozik and Otto, 1988) is based on a move-

ment preservation principle, according to which the sum of squared differences be-
tween the growth rates of the target and of the preliminary series is minimized1.

This benchmarking procedure basically looks for a solution to a constrained Non

1 Bloem et al. (2001, p. 100) claim that this is an “ideal” movement preservation principle,
“formulated as an explicit preservation of the period-to-period rate of change” of the preliminary
series.

2 Tommaso Di Fonzo - Marco Marini

Linear Program (NLP), according to which f(x), a smooth, non-convex function of
the n unknown items of vector x, has to be minimized subject to a set of m linear
equality constraints, Ax = b, where A is a known, full row rank (m × n) matrix,
m < n, and b is a known (m× 1) vector containing the benchmarks.

Both the original algorithm by Causey and Trager (1981) and a recent proposal
by Brown (2010) are first-order (i.e., gradient-based) feasible directions methods,
which use the Steepest Descent (SD) and the non-linear Conjugate Gradient (CG)
algorithms, respectively, to solve the above NLP problem. However, using only
first-derivatives information may result in poorly efficient procedures, characterized
by slow convergence and possible troubles in finding actual minima of the objective
function.

Still remaining at first-order techniques, more performing unconstrained Quasi-
Newton (QN) optimization procedures may be considered, which exploit approxi-
mate rather than exact second derivatives, provided the original constrained problem
be transformed into an unconstrained one. In addition, improvements in both effi-
ciency and robustness may be obtained by considering the true Hessian matrix of
the objective function.

In this paper, (i) we present the explicit expression of the Hessian matrix of
the GRP objective function, (ii) show how the original constrained benchmarking
problem can be transformed in an equivalent unconstrained non-linear problem,
(iii) propose a Newton’s method with Hessian modification (MN) to calculate GRP

benchmarked estimates, and (iv) compare the performance of MN with gradient-
based procedures (SD, CG, QN), in order to show the effectiveness of the proposed
benchmarking procedure in terms of both computational efforts and quality of the
results.

The paper is organized as follows. In section 2 the GRP benchmarking pro-
cedure is described, and the way it takes into account a movement preservation
principle is discussed, as compared to the classical benchmarking procedure by Den-
ton (1971), modified by Cholette (1984). The benchmarked estimates through this
procedure, which is based on a constrained quadratic minimization problem and can
be expressed in closed form, are generally considered as a good approximation of the
GRP benchmarked estimates (this issue is discussed by Di Fonzo and Marini, 2010).
In section 3 analytic expressions of gradient vector and Hessian matrix of the GRP

criterion are presented, and by exploiting the Hessian we check the non-convexity
of the objective function. While the gradient vector can be deduced by Causey and
Trager (1981, see also Fagan, 1995), as far as we know the result concerning the
Hessian matrix is new. In section 4 it is shown how a linear equality constrained
problem can be transformed in an unconstrained problem with a reduced number of
variables. This permits the user to exploit unconstrained optimization techniques.
In addition, numerical results to efficiently transform and reduce the problem are
presented. Line-search algorithms for unconstrained minimization are reviewed in
section 5. The focus is on Newton-type methods as long as on classical first-order
algorithms, namely steepest descent and nonlinear conjugate gradient. Feasible di-
rections algorithms are considered in section 6, where the ‘projected versions’ of the
steepest descent and of the nonlinear conjugate gradient algorithms are described.
In order to analyze the distinctive features of the considered procedures, in section

Section 2 Growth Rates Preservation and Temporal Benchmarking 3

7 are presented applications to the artificial series used by Denton (1971), and to
several real-life series, namely 61 quarterly series from the EU Quarterly Sector Ac-
counts (EUQSA), and 236 monthly series from the Canadian Monthly Retail Trade
Survey (MRTS). Section 8 presents some final remarks and conclusions, and draws
future research lines.

2 Growth Rates Preservation and Temporal Benchmarking

Let bT , T = 1, . . . ,m, and pt, t = 1, . . . , n, be, respectively, the temporal benchmarks
and the high–frequency preliminary values of an unknown target variable xt. Let s
be the aggregation order (e.g., s = 4 for quarterly-to-annual aggregation, s = 12 for
monthly-to-annual aggregation, s = 3 for monthly-to-quarterly aggregation), and
let A be a (m×n) temporal aggregation matrix, converting n high–frequency values
in m low-frequency ones (we assume n = s · m). If we denote with x the (n × 1)
vector of high–frequency values, and with b the (m × 1) vector of low–frequency
values, the aggregation constraints can be expressed as Ax = b.

Depending on the nature of the involved variables (e.g., flows, averages, stocks),
the temporal aggregation matrix A usually can be written as

A = Im ⊗ aT , (1)

where the (s× 1) vector a may assume one of the following forms:

1. flows: a = 1s = (1 1 . . . 1)T ,

2. averages: a = 1
s
1s ,

3. stocks (end-of-the-period): a = (0 0 . . . 1)T ,

4. stocks (beginning-of-the-period): a = (1 0 . . . 0)T .

Denoting by p the (n × 1) vector of preliminary values (Ap 6= b), we look for a
vector of benchmarked estimates x∗ which should be ‘as close as possible’ to the

preliminary values, and such that Ax∗ = b (e.g., for flows variables,
∑

t∈T

x∗t = bT ,

T = 1, . . . ,m).
To this end, some characteristics of the original series pt should be kept into

consideration. For example, in an economic time series framework, the preservation
of the temporal dynamics (however defined) of the preliminary series is often a major
interest of the practitioner. For flows series, Causey and Trager (1981; see also
Monsour and Trager, 1979, and Trager, 1982) consider a criterion to be minimized
explicitly related to the growth rate, which is a natural measure of the movement of
a time series:

f (x) =

n
∑

t=2

(

xt

xt−1
−

pt

pt−1

)2

, (2)

and look for values x∗t , t = 1, . . . , n, which minimize the criterion (2) subject to the

aggregation constraints
∑

t∈T

xt = bT , T = 1, . . . ,m. In other words, the benchmarked

4 Tommaso Di Fonzo - Marco Marini

series is estimated in such a way that its temporal dynamics, as expressed by the

growth rates
x∗t
x∗t−1

, t = 2, . . . , n, be ‘as close as possible’ to the temporal dynamics of

the preliminary series, where the ‘distance’ from the preliminary growth rates
pt

pt−1
is given by the sum of the squared differences.

In this paper we consider a more general formulation of the GRP benchmarking
problem, valid not only for flows variables linked by a simple summation, that is:

min
x

f (x) subject to Ax = b, (3)

where A is the temporal aggregation matrix (1). The criterion (2) is clearly a non-
linear and, as we shall see in the following, non-convex function. The constrained
minimization problem (3) has not linear first–order conditions for a stationary point,
and thus it is not possible to find an explicit, analytic expression for the solution.
On the other hand, provided that both pt and xt, t = 1, . . . , n− 1, be different from
zero, f (x) is a twice continuously differentiable function, making it possible the use
of several iterative minimization algorithms (Nocedal and Wright, 2006).

2.1 Modified Denton PFD

Denton (1971) proposed a benchmarking procedure grounded on the Proportionate

First Differences (PFD) between the target and the original series. Cholette (1984)
slightly modified the result of Denton, in order to correctly deal with the starting
conditions of the problem. The PFD benchmarked estimates are thus obtained as
the solution to the constrained quadratic minimization problem

min
xt

n
∑

t=2

(

xt

pt
−

xt−1

pt−1

)2

subject to Ax = b. (4)

In matrix notation, the PFD benchmarked series is contained in the (n× 1) vector
xPFD solution to the linear system (Di Fonzo and Marini, 2010)

[

M AT

A 0

] [

xPFD

λ

]

=

[

0
b

]

, (5)

where λ is a (n × 1) vector of Lagrange multipliers, M = P−1∆T
n∆nP

−1, P =
diag(p), and ∆n is the ((n − 1)× n) first differences matrix:















−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −1 1















.

Notice that ∆T
n∆n has rank n − 1 (Cohen et al., 1971, p. 122), so M is singular.

However, given that matrix A has full row rank, and provided no preliminary value

Section 3 Gradient Vector and Hessian Matrix of the GRP criterion 5

is equal to zero2, the coefficient matrix of system (5) has full rank (Di Fonzo and
Marini, 2010).

Causey and Trager (1981) use xPFD as starting values of the iterative algorithm
developed to solve the NLP problem (3). This basically depends on two facts:

1. the optimization procedure starts at a feasible point, as xPFD clearly is, and
at each iteration moves to another feasible point;

2. in the literature (Cholette, 1984, Bloem et al., 2001, Dagum and Cholette,
2006) it is often claimed that the PFD procedure produces results very close
to the GRP benchmarking, and thus xPFD, which is considered as a ‘good’
approximation to the GRP estimates, is a natural candidate to be used as
starting point.

Di Fonzo and Marini (2010) discuss this latter issue, showing that PFD and GRP

benchmarked estimates are close when the variability of the preliminary series and/or
its bias are low with respect to the target variable. When this is not the case
(e.g. preliminary series with large growth rates and/or bias), the quality of the
approximation worsens. In addition, GRP benchmarking almost always results in a
better movement preservation as compared to Denton PFD3.

3 Gradient Vector and Hessian Matrix of the GRP criterion

Computational studies on a number of test problems of varying complexity demon-
strate that the calculation and treatment of the Hessian matrix are fundamental to
the observed performance of NLP optimization algorithms. Second order informa-
tion though costly, because its calculation is often cumbersome, leads to quadratic
convergence to a (possibly local) optimal solution, whereas gradient information
leads to convergence with a linear convergence rate. There are various alternatives
for exploiting second order information about the function of interest. Basically,
the Hessian matrix can be calculated analitically or approximated by using finite
differences techniques.

In this section we present the analytical expression of the gradient vector of the
GRP criterion (2), which has been originally derived by Causey and Trager (1981,
see also Fagan, 1995). Then we calculate the analytical expression of the Hessian
matrix of the criterion, which can be exploited by Newton-type NLP optimization
procedures.

The gradient vector of function (2) is the (n× 1) vector

∇f (x) = g (x) = {gt}
n
t=1 ,

2When some pt is null, a standard practice in the benchmarking literature (see, for example,
Cholette and Chhab, 1991, p. 413) consists in setting the originally null preliminary data at a very
small value, e.g. pt = 0.001.

3Empirical comparisons between the Cholette-Dagum regression based benchmarking approach,
which can be seen as a generalization of the PFD procedure (Dagum and Cholette, 2006), and the
Causey and Trager approach, are shown in Harvill Hood (2005) and Titova et al. (2010).

6 Tommaso Di Fonzo - Marco Marini

where

g1 = −2
x2

x21

(

x2

x1
−

p2

p1

)

gt =
2

xt−1

(

xt

xt−1
−

pt

pt−1

)

− 2
xt+1

x2t

(

xt+1

xt
−

pt+1

pt

)

t = 2, . . . , n− 1

gn =
2

xn−1

(

xn

xn−1
−

pn

pn−1

)

.

Let us denote the elements of the Hessian matrix, ∇2f (x) = H(x), as

hij =
∂2f (x)

∂xi∂xj
=

∂gi

∂xj
, i, j = 1, . . . , n.

Notice that the Hessian matrix is both symmetric and tri-diagonal, that is its non-
zero items are ht,t, t = 1, . . . , n, ht−1,t, t = 2, . . . , n, and ht+1,t, t = 1, . . . , n − 1.
After some calculations, we find:

h11 = 2
x2

x31

(

3
x2

x1
− 2

p2

p1

)

ht,t =
2

x2t−1

+ 2
xt+1

x3t

(

3
xt+1

xt
− 2

pt+1

pt

)

t = 2, . . . , n− 1

hn,n =
2

x2n−1

hij = −
2

x2i

(

2
xj

xi
−

pj

pi

)

i = j + 1, j = 1, . . . , n− 1 ∨ i = j − 1, j = 2, . . . , n.

For example, assuming n = 4 we have:

g (x) =































−2
x2

x21

(

x2

x1
−

p2

p1

)

2

x1

(

x2

x1
−

p2

p1

)

− 2
x3

x22

(

x3

x2
−

p3

p2

)

2

x2

(

x3

x2
−

p3

p2

)

− 2
x4

x23

(

x4

x3
−

p4

p3

)

2

x3

(

x4

x3
−

p4

p3

)































,

Section 4 From a constrained to an unconstrained minimization problem 7

while the lower triangle of the Hessian matrix is:

H (x) =

































2
x2

x3

1

(

3
x2

x1

− 2
p2

p1

)

−
2

x2

1

(

2
x2

x1

−
p2

p1

)

2

x2

1

+ 2
x3

x3

2

(

3
x3

x2

− 2
p3

p2

)

0 −
2

x2
2

(

2
x3

x2

−
p3

p2

)

2

x2
2

+ 2
x4

x3
3

(

3
x4

x3

− 2
p4

p3

)

0 0 −
2

x2

3

(

2
x4

x3

−
p4

p3

)

2

x2

3

































. .

This last formula can be used in a simple numerical example to check that the GRP

criterion (2) is non-convex. Consider the (4 × 1) vectors x =
(

1 2 3 4
)T

and

p =
(

8 5 6 7
)T

, respectively. Simple calculations give

H(x) =









19 −6.75 0 0
−6.75 3.575 −0.9 0

0 −0.9 0.9938 −0.3333
0 0 −0.3333 0.2222









, and |H(x)| = −0.9660.

Because its Hessian has a negative determinant, theGRP criterion (2) is non-convex.
In addition, the upper left (3× 3) matrix





19 −6.75 0
−6.75 3.575 −0.9

0 −0.9 0.9938





has a positive determinant, equal to 6.8345, thus H(x) is an indefinite (neither
positive nor negative definite) matrix. Thus, unlike the convex case, function f(x)
is not guaranteed to have a unique, global minimum. This is an important feature
of the minimization problem (3), to be taken into considerations when, in order to
solve it, we use minimization procedures which are generally local.

4 From a constrained to an unconstrained minimization prob-

lem

One possible approach to solving the linear equality constrained minimization prob-
lem (3) is to eliminate the constraints, and to solve the resulting problem with
algorithms for unconstrained minimization.

In this section we show that the equality constrained problem (3) can be trans-
formed into an equivalent unconstrained problem, after which an unconstrained
minimization method can be used to solve it.

As we shall see, the process of eliminating the equality constraints (and recon-
structing the solution of the original problem from the solution of the transformed
problem) involves standard linear algebra operations. Moreover, for most tempo-
ral benchmarking problems, the pattern of the constraint matrix A (see section

8 Tommaso Di Fonzo - Marco Marini

2), makes it possible to develop a simple and numerical stable approach to the
elimination of the variables, which requires neither complex nor time consuming
computation programs. Thus, unlike the cases where it is better to retain the equal-
ity constraints, since eliminating them can make the problem harder to understand
and analyze, or ruin the efficiency of an algorithm that solves it4, for our problem
the proposed approach turns out to be simple, cheap and effective in computational
terms.

4.1 Eliminating the Linear Equality Constraints

We start by assuming that the temporal aggregation matrix A defining the con-
straints in problem (3) has full row rank m < n, which means that the constraints
are independent (i.e., not redundant). It should be noted that this property is always
satisfied by matrices A as defined in (1).

As many variables (m out of n) as independent constraints can be eliminated by
considering a re-parametrization of the affine feasible set defined by the constraints:

F = {x ∈ R
n : Ax = b}. (6)

Since any n-dimensional vector can be written uniquely as the sum of a range-space
and a null space-component, we can write (Nocedal and Wright, 2006):

x = y + z, (7)

with y ∈ R(AT) and z ∈ N (A), where

R(AT) = {y ∈ R
n : y = ATλ for some λ ∈ R

m}

and
N (A) = {z ∈ R

n : Az = 0},

denote the range-space of matrix AT and the null-space of matrix A, respectively.
If we denote by Y a (n × m) basis matrix for R(AT), and by Z a (n × (n − m))
basis matrix for N (A), expression (7) can be written as

x = YxY + ZxZ , (8)

where xY and xZ are (m × 1) and ((n −m)× 1) vectors, respectively. Notice that
matrix Z is such that AZ = 0.

For any feasible point x, the pre-multiplication by A of expression (8) gives
AYxY = b, which means that, for any choice of matrixY, xY is uniquely determined
as

xY = (AY)−1b. (9)

Ultimately, it follows that any feasible x can be written as

x = x̄+ ZxZ , (10)

where x̄ = Y(AY)−1b is a feasible (n×1) vector (i.e, Ax̄ = b). In other words, the
n constrained variables in x have been transformed into the n − m unconstrained
variables in xZ .

4This could happen, for example, when x has very large dimension, and eliminating the equal-
ity constraints would destroy sparsity of some other useful structure of the problem (Boyd and
Vandenberghe, 2004, p. 143).

Section 4 From a constrained to an unconstrained minimization problem 9

4.2 Generating an Elimination Matrix by QR Factorization

Matrix Z in (10) is called elimination matrix (Boyd and Vandenberghe, 2004, p.
524). It is not uniquely defined, and its choice should be made carefully, because it
could have a deep impact on the performance of the optimization procedure (Nocedal
and Wright, 2006, pp. 430-431).

We propose to compute a null-space matrix forA by aQR factorization of matrix
AT , which permits to define an orthonormal basis of Rn “ideal from the point of
view of numerical stability” (Nocedal and Wright, 2006, p. 433)5. We discuss how
this result can be obtained, and show that for A as defined by (1), this factorization
involves simple and readily available matrices, which need not to be calculated by
any numerical procedure6.

Let us consider the orthonormal QR factorization (Nocedal and Wright, 2006):

ATΠ = QR, (11)

where Π is an (m×m) permutation matrix, Q is an (n×n) orthogonal matrix (i.e.,
QTQ = QQT = In), and R is an upper triangular (n × m) matrix, respectively.
Now, let us partition matrices Q and R as:

Q = [Q1 Q2] R =

[

R1

0

]

, (12)

where Q1, Q2 and R1 are (n×m), (n×(n−m)) and (m×m) matrices, respectively.
Since both Π and Q are orthogonal matrices, it follows that AQ = ΠRT , or

AQ1 = ΠRT
1 and AQ2 = 0.

Thus, Y = Q1 is a basis for the range-space of AT , and Z = Q2 is a basis for the
null-space of A, with YTY = Im and ZTZ = In−m.

The pattern of the constraint matrix, A = Im ⊗ aT (see section 2), makes it
possible to compute a QR factorization of AT involving matrices formulated in
compact form and once for all, ready to be implemented in a program code without
any further (possibly complex and time consuming) elaboration. A simple, and
effective choice for the matrices involved in (11)-(12) is the following:

Π = Im, Q1 = Im ⊗ κ1s, Q2 = Im ⊗K, R1 = κ−1Im,

where the scalar quantity κ and the (s × (s − 1)) matrix K depend on the type of
aggregation:

Stocks
Flows Average (End/Begin-of-period)

κ = − 1√
s

κ = − s√
s

κ = 1

5Other methods for generating null-space matrices can be found in Griva et al. (2009, pp. 86-91).
6This fact prevents problems deriving from possible large dimensions of the series to be bench-

marked, since in practice no computing effort is required to perform the QR factorization.

10 Tommaso Di Fonzo - Marco Marini

Flows and Average E-o-p stocks B-o-p stocks

K =





























√

s−1
s

0 . . . 0

−
√

1
s(s−1)

√

s−2
s−1 . . . 0

−
√

1
s(s−1) −

√

1
(s−1)(s−2) . . . 0

...
...

. . .
...

−
√

1
s(s−1) −

√

1
(s−1)(s−2) . . . −

√

1
2

−
√

1
s(s−1) −

√

1
(s−1)(s−2) . . .

√

1
2





























K =

[

Is−1

0T

]

K =

[

0T

Is−1

]

Notice that in any case it is KTK = Is−1, while for both types of stocks we have
Q1 = AT .

It can be easily shown that, according to this choice of Q1 and Q2, matrix Q is
orthonormal, as one can see by checking the following relationships:

QT
1 Q1 = Im

QT
2 Q2 = In−m

QT
1 Q2 = 0

QT
2 Q1 = 0

QQT = QTQ = In,

where the zero matrices have dimensions (m × m(s − 1)) and (m(s − 1) × m),
respectively.

For example, for flows variables and s = 4, as for the quarterly-to-annual bench-
marking, it is

κ = −0.5 and K =









0.8660 0 0
−0.2887 0.8165 0
−0.2887 −0.4082 −0.7071
−0.2887 −0.4082 0.7071









,

while for s = 12, as for the monthly-to-annual benchmarking, it is κ = −0.2887 and

K =





































0.9574 0 0 0 0 0 0 0 0 0 0

−0.0870 0.9535 0 0 0 0 0 0 0 0 0

−0.0870 −0.0953 0.9487 0 0 0 0 0 0 0 0

−0.0870 −0.0953 −0.1054 0.9428 0 0 0 0 0 0 0

−0.0870 −0.0953 −0.1054 −0.1179 0.9354 0 0 0 0 0 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 0.9258 0 0 0 0 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 0.9129 0 0 0 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 −0.1826 0.8944 0 0 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 −0.1826 −0.2236 0.8660 0 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 −0.1826 −0.2236 −0.2887 0.8165 0

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 −0.1826 −0.2236 −0.2887 −0.4082 −0.7071

−0.0870 −0.0953 −0.1054 −0.1179 −0.1336 −0.1543 −0.1826 −0.2236 −0.2887 −0.4082 0.7071





































.

Section 5 Line-Search Algorithms for Unconstrained Minimization 11

4.3 The Reduced Unconstrained Minimization Problem

The optimization problem with equality constraints (3) can be transformed into an
equivalent unconstrained problem by incorporating the constraints into the objective
function. For, we need only to consider the restricted variables x = x̄ + ZxZ , and
the function

f̃(xZ) = f(x̄+ ZxZ). (13)

The argument of this function, xZ , is a vector with n−m elements, instead of n as
in the original function f . The unconstrained minimum of f̃ , say x∗

Z , is however the
solution to the original constrained problem.

Since ZTZ = In−m and ZTY = QT
2 Q1 = 0, xZ can be written as xZ = ZTx,

and thus the Jacobian of the transformation is

∂xZ

∂xT
= ZT .

If we assume differentiability of f , gradient and Hessian of the reduced function can
be expressed in terms of the original function:

∇f̃(xZ) = ZT [∇f(x)]

∇2f̃(xZ) = ZT
[

∇2f(x)
]

Z
. (14)

The relationship of the properties of stationary points to the derivatives (14) are the
conditions that determine a minimum of the reduced objective function (13). Thus
x∗ = x̄+ Zx∗

Z is a minimum if and only if

• ZT [∇f(x∗)] = 0,

• ZT
[

∇2f(x∗)
]

Z is positive definite, and

• Ax∗ = b.

The first two relationships are standard conditions for a minimum, while the third
condition derives from the constrained nature of the problem. Considered together,
these relationships provide the basis for the solution to the original optimization
problem (3).

5 Line-Search Algorithms for Unconstrained Minimization

A general algorithm for solving the unconstrained minimization problem

min
xZ

f̃ (xZ) (15)

can be stated as follows

1. Specify some initial guess of the solution: xZ,0 = ZTx0;
7

2. For k = 0, 1, . . ., if xZ,k is optimal, then stop. Otherwise:

7In agreement with Causey and Trager (1981), we assume x0 = xPFD, solution to system (5).

12 Tommaso Di Fonzo - Marco Marini

(a) determine a search direction dk;

(b) determine a step length αk that leads to an improved estimate of the
solution

xZ,k+1 = xZ,k + αkdk. (16)

Once the direction dk has been computed, the step length αk is found by solving
some auxiliary one-dimensional problem (Nocedal and Wright, 2006). It is typically
required that the search direction dk be a descent direction for the function f̃ at the
point xZ,k. This means that for “small” steps taken along dk the function value is
guaranteed to decrease:

f̃ (xZ,k + αdk) < f̃ (xZ,k) for 0 < α ≤ ǫ

for some ǫ > 0.
This algorithm with its three major steps - the optimality test, computation of

dk, and computation of αk through a line-search approach - has been the basis for
many successful optimization algorithms, and has been used to develop many soft-
ware packages for nonlinear optimization. However, it is not the only approach pos-
sible. Another effective nonlinear optimization approach is the trust-region method

(Nocedal and Wright, 2006). In this paper we follow the line-search approach due
to its effectiveness and simplicity, also in terms of software implementation.

5.1 Newton’s Method with Hessian Modification

In its classical form, Newton’s method basically consists in determining dk in (16)
as the solution to the Newton equations

[

∇2f̃(xZ,k)
]

dk = −
[

∇f̃ (xZ,k)
]

. (17)

Since it can fail or diverge, and even if it does converge, it might not converge to a
minimum, Newton’s method is rarely used in its classical form. Possible solutions to
guarantee that the method will converge to a stationary point and possibly a local
minimum, if one exists, is to use the Newton direction within the general recursion
(16), and to consider a modification of the Hessian matrix in order to have a positive
definite matrix in the Newton equations (17). Thus, a practical version of Newton’s
method, that is guaranteed to converge and does not assume that ∇2f̃ (xZ,k) is
positive definite for all values of k, can be summarized as follows.

1. Specify some initial guess of the solution, xZ,0, and specify a convergence
tolerance ǫ.

2. For k = 0, 1, . . ., if ‖∇f̃ (xZ,k) ‖1 < ǫ, then stop. Otherwise:

(a) Compute a modified factorization of the Hessian:

∇2f̃ (xZ,k) +E = LDLT ,

where L and D are lower triangular and diagonal, respectively, (n−m)×
(n−m) matrices. Then, solve

(

LDLT
)

dk = −
[

∇f̃ (xZ,k)
]

Section 5 Line-Search Algorithms for Unconstrained Minimization 13

for the search direction dk. Notice that E will be zero if ∇2f̃ (xZ,k) is
positive definite.

(b) Perform a line search to determine the new estimate of the solution (16).

A principal advantage of the Newton’s method with Hessian modification is that
it converges rapidly when the current estimate of the variables is close to the solution.
Its main disadvantage is represented by possible high computational costs, since it
requires the derivation, computation, and storage of the Hessian matrix, and the
solution of a system of linear equations. This last task could give raise to high
computational costs if the dimension of the problem (n−m) is not small and/or the
problem is not sparse.

However, for the problem in hand, in section 4 we have shown the analytical
expressions and the patterns of gradient and Hessian matrix of the problem, so
we can take advantage of sparsity, and greatly reduce the computational costs of
Newton’s method, making it an effective tool in practice.

5.2 Steepest Descent and Quasi-Newton Methods

Both steepest descent and quasi-Newton methods can be seen as compromises to
Newton’s method (Griva et al., 2009), that reduce one or more of its costs. In
exchange, these methods generally have slower convergence rates.

These methods can be interpreted as computing the search direction dk by solv-
ing the linear system

Bkdk = −
[

∇f̃ (xZ,k)
]

, (18)

where Bk is a positive-definite matrix. Since in the case of Newton’s method, Bk =
∇2f̃ (xZ,k), assuming that the Hessian matrix is positive definite, intuitively Bk

should be some approximation to ∇2f̃(xZ,k).

5.2.1 Steepest Descent Method

The steepest-descent method computes the search direction by assumingBk = In−m,

which gives the search direction dk = −
[

∇f̃ (xZ,k)
]

, and then uses a line search to

determine the updated approximate solution xZ,k+1 according to (16).
This is an old, widely known and cheap method, whose performance is usually

very low. It is much simpler than Newton’s method because it does not require the
computation of second derivatives, no system of linear equations must be solved to
compute the search direction, and no matrix storage is needed. On the negative side,
it has a slower convergence rate than Newton’s method, and sometimes it converges
so slowly that xZ,k+1 − xZ,k is below the precision of computer arithmetic and the
method fails.

5.2.2 Quasi-Newton Methods

Quasi-Newton methods are currently among the most widely used Newton-type
methods for nonlinear optimization problems of moderate size, where matrices can
be stored. They are incorporated in many software libraries, and they are effective in

14 Tommaso Di Fonzo - Marco Marini

solving a wide variety of small to mid-size problems, in particular when the Hessian
is hard to compute.

There are many different quasi-Newton methods, but they are all based on ap-
proximating the Hessian ∇2f̃ (xZ,k) by another matrix Bk that is available at lower
cost. Then the search direction is obtained by solving equation (18). If the matrix
Bk is positive definite, then this is equivalent to minimizing the quadratic model

q (dk) = f̃ (xZ,k) +
[

∇f̃ (xZ,k)
]T

dk +
1

2
dT
kBkdk.

There are several advantages to this approach. First, an approximation Bk can
be found using only first-derivative information. Second, the search direction can
be computed using only O(n2) operations (vs. O(n3) for Newton’s method in the
nonsparse case). There are also disadvantages, but they are minor. Quasi-Newton
methods do not converge quadratically, but they can converge superlinearly (Nocedal
and Wright, 2006). At the precision of computer arithmetic, there is not much
practical difference between these two rates of convergence. Also, quasi-Newton
methods still require matrix storage, so they are not normally used to solve large
problems8.

The various quasi-Newton methods differ in the choice of Bk. A variety of meth-
ods are obtained by imposing conditions on the approximation Bk. These conditions
are usually properties of the Hessian matrix that the approximation should share,
like symmetry and positive definiteness. Due to its effectiveness, the most widely
used expression for Bk is the update formula by Broyden, Fletcher, Goldfarb, and
Shanno (BFGS):

Bk+1 = Bk −
(Bksk) (Bksk)

T

sTkBksk
+

yky
T
k

yT
k sk

, (19)

where sk = xZ,k+1 − xZ,k, yk = ∇f̃ (xZ,k+1)−∇f̃ (xZ,k), and B0 = In−m.

5.3 Nonlinear Conjugate Gradient

Conjugate gradient methods are generally considered as an excellent choice to solve
a nonlinear unconstrained minimization problem, since they do not require the eval-
uation of the Hessian matrix neither the storage of an approximation of it. Nonlinear
conjugate gradient algorithms are of a considerable interest from both theoretical
and practical points of view, particularly for their convergence properties (Hager
and Zhang, 2006), a very easy implementation effort in computer programs, and
their efficiency in solving large-scale problems.

Starting from an initial guess xZ,0, the nonlinear conjugate gradient method
generates a sequence xZ,k according to the relationship (16), where the positive step
size αk is obtained by a line search, and the direction dk is recursively defined by

dk =

{

−g̃0 for k = 0
−g̃k + βkdk−1 for k ≥ 1

, (20)

8This drawback can be overcome by using a ‘limited’ version of the algorithm, like the LBFGS

method (Nocedal and Wright, 2006).

Section 6 Projected Steepest Descent and Conjugate Gradient Directions 15

where g̃k = ∇f̃ (xZ,k), and βk is the CG update parameter. Different CG methods
correspond to different choices for the scalar βk (Hager and Zhang, 2006, Andrei,
2008). Table 1 provides a (partial) list of some choices for the CG update parameters.

CG update parameter Authors

βHS
k =

g̃T
k
yk−1

dT
k−1

yk−1

Hestenes and Stiefel (1952)

βFR
k =

g̃T
k
g̃k

g̃T
k−1

g̃k−1

Fletcher and Reeves (1964)

βPRP
k =

g̃T
k
yk−1

g̃T
k−1

g̃k−1

Polak and Ribière (1969) and Polyak (1969)

βPRP+
k = max{0,

g̃T
k+1

yk

g̃T
k
g̃k

} Powell (1984)

βCD
k =

g̃T
k+1

g̃k

−dT
k−1

g̃k−1

Fletcher (1987) (CD stands for Conjugate Descent)

βDY
k =

g̃T
k
g̃k

dT
k−1

yk−1

Dai and Yuan (1999)

Table 1: Various choices for the CG update parameter (yk = g̃k − g̃k−1)

Notice that if f̃ is a strongly convex quadratic, then in theory all 6 choices for
the update parameter in table 1 are equivalent with an exact line search. For non-
quadratic functions, however, each choice for the update parameter leads to different
performance.

Since numerical experience indicates that the PRP+ algorithm tends to be more
robust and efficient (Gilbert and Nocedal, 1992; Nocedal and Wright, 2006, pp.
122-124), in this paper we use βPRP+ as CG update parameter. We consider also
a restarting strategy9 suggested by Powell (1977), which consists in setting βk = 0
whenever two consecutive gradients are far from orthogonal, as measured by the
condition (Nocedal and Wright, 2006, p. 125)

|g̃T
k g̃k−1|

g̃T
k g̃k

≥ 0.1. (21)

6 Projected Steepest Descent and Conjugate Gradient Di-
rections

Causey and Trager (1981) developed a benchmarking procedure grounded on a con-
strained Steepest Descent (SD) algorithm. Brown (2010) suggests to apply a simi-
lar procedure by using the non-linear Conjugate Gradient (CG) algorithm. In both
cases the minimization problem is solved in the original variables x, by using a
feasible directions method according to which the iterations are given by

xk+1 = xk + αkvk,

9As Nocedal and Wright (2006, p. 124) stress, “Restarting serves to periodically refresh the
algorithm, erasing old information that may not be beneficial”.

16 Tommaso Di Fonzo - Marco Marini

where αk is a positive step length, and vk is such that Avk = 0. Thanks to this
property, if xk is feasible (Axk = b), then xk+1 is feasible too (i.e, vk is a feasible
direction).

The main idea is to ‘project’ at each iteration the unconstrained search direction
dk ∈ R

n onto the null-space of matrix A by means of the (n × n) orthogonal
projection matrix

Vk =
1

vk

[

In −AT (AAT)−1A
]

=
1

vk
N,

where vk =
(

dT
kNdk

)
1

2 , and to compute vk = −Vkdk. Since Avk = 0, vk is
a feasible direction. It can be shown (see the Appendix 1) that matrix Vk is an
orthogonal projection matrix onto the affine feasible set F defined by the constraints.

Causey and Trager (1981) compute the unconstrained search direction as the
steepest descent direction, namely dk = −gk. Brown (2010) suggests the update
formula dk = −gk + βPRP

k dk−1, within a non-linear CG-PRP algorithm with a
restart procedure (Powell, 1977; see section 5.3).

7 Solvers’ efficiency and quality

In this section we present numerical results about the performance of the techniques
considered so far on the artificial series used by Denton (1971) in his seminal paper
on benchmarking (section 7.2), and in benchmarking 61 quarterly series and 236
monthly series to their annual counterparts (section 7.3).

The GRP -benchmarked series are computed by applying the following uncon-
strained non-linear optimization algorithms to the reduced problem (15) obtained
by transformation and elimination of some original variables:

• Steepest Descent (SD),

• Conjugate Gradient (CG),

• Quasi-Newton BFGS (QN -BFGS),

• Newton’s method with Hessian modification (MN).

Even though this is not the main focus of the paper, when presenting the results
we will look at the ability of the GRP benchmarked estimates in preserving the
dynamics of the preliminary series, as compared to the Denton’s PFD solution. We
use the two indices (Di Fonzo and Marini, 2010):

rq =













n
∑

t=2

∣

∣

∣

∣

∣

xGRP
t

xGRP
t−1

−
pt

pt−1

∣

∣

∣

∣

∣

q

n
∑

t=2

∣

∣

∣

∣

∣

xPFD
t

xPFD
t−1

−
pt

pt−1

∣

∣

∣

∣

∣

q













1

q

, q = 1, 2, (22)

where the series xGRP have been calculated using the algorithms described so far.

Section 7 Solvers’ efficiency and quality 17

Index r1 can be seen as the ratio between two mean absolute differences between
the growth rates of the benchmarked (GRP and PFD, respectively) and the pre-
liminary series. Sometimes this index can be larger than 1, thus indicating that,
according to this metric, the movement is better preserved by Denton PFD. When
q = 2, the index (22) is simply the square root of the ratio between the Causey and
Trager movement preservation criteria (2), computed for the GRP and the PFD

benchmarked estimates, respectively. Obviously, we expect the GRP technique al-
ways reaches a lower (or at least equal) value of the chosen criterion than PFD, and
thus the index r2 should be never larger than 1.

We have used the Matlab function minFunc (Schmidt, 2006), which is a free
analogous of the function Fminunc of the Optimization Toolbox of Matlab (The
Mathworks, 2009). A valuable feature of minFunc is that the scripts of the function
are available to the user, who can change them according to her/his needs10.

As for the options used, the conjugate gradient’s update parameter (βk) is com-
puted according to the PRP+ formula (see table 1), and the restart condition (21)
is considered. Convergence is achieved when the norm of the reduced gradient of
the objective function is negligible. More precisely, a GRP benchmarked series
x∗ = x̄+ Zx∗

Z is obtained when

‖∇f̃ (x∗
Z) ‖1 ≡

n−m
∑

i=1

|g̃i (x
∗
Z)| ≤ 10−7, (23)

where g̃i (x
∗
Z), i = 1, . . . , n−m, is the generic element of the reduced gradient vector

∇f̃ (x∗
Z). If condition (23) is not satisfied after 5,000 iterations, the algorithm ends,

and returns the most recent (feasible) solution11.

For comparisons’ completeness, we consider also the GRP benchmarked series
produced by the DOS-executable programme BMK1.exe, based on the projected
steepest descent algorithm by Causey and Trager (1981, see section 6), which has
been used for a long time by the U.S. Bureau of the Census.

The convergence condition of this programme is

f (xk−1)

f (xk)
< 1.00001,

which must be fulfilled within 200 iterations. No information on the number of
function evaluations is given, and the xPFD series is returned as the final solution
if the algorithm has a breakdown (this never happened for the series we consider in
the paper).

Due to the limited possibilities of ‘tuning’ the optimization options of BMK1,
we used it as a sort of ‘black-box’. The comparisons could thus seem rather un-
fair. Indeed, in our view such comparisons should only serve to give an idea of the
improvements (if any) we can obtain by using the procedures we present in this

10For example, the original function does not compute the PRP+ variant of the CG algorithm,
and considers a restart condition slightly different from (21).

11 The experiments were run on a PC equipped with a 32-bit Intel I5 processor with 4GB of
RAM memory and Windows 7 Professional.

18 Tommaso Di Fonzo - Marco Marini

paper, as compared to the only (as far as we know) currently available tool for GRP

benchmarking.

According to the specialized literature (Mittelmann and Pruessner, 2006), in
order to compare different solvers/algorithms for NLP problems we should consider
(i) efficiency, (ii) robustness, and (iii) quality of solution of the solvers.

Efficiency, which refers to the amount of computation resources needed to find
the solution, is generally measured in terms of solver resource time (runtime). Ro-
bustness refers to the ability of the solver to succeed in finding one solution, and
is generally measured by the number of problems for which a feasible solution is
produced (the labelling of a solution as either ‘successfull’ or not, is usually summa-
rized by a solve status return code). While considering these two aspects is sufficient
when dealing with convex minimization problems (such as in linear programs or for
certain quadratic programs), where the found minimum is generally the global one,
for non-convex models, which may admit several local minima, other factors involv-
ing solution quality play an important role as well. For example, one solver may
indeed be more efficient (i.e., faster), but the solution may be worse than that of a
solver which is slower in terms of elapsed time.

For the problem in hand, however, robustness is not a concern, since all the
techniques we consider are ‘feasible point methods’ - i.e. at each iterate they produce
series in line with the temporal aggregation constraints - designed in such a way as
they always give solutions ‘not worse’ than xPFD. In other words, in any case a
feasible solution, say x̃, is obtained, such that Ax̃ = b, and f (x̃) ≤ f

(

xPFD
)

.

Therefore, if we were only interested in the efficiency in finding a local minimum,
we would simply look for the fastest solver. Instead, if we wish that the comparison
takes into account also the quality of the solution, it seems sensible to consider the
best solution within the available ones,

x̂ = argmin
x̃

f (x̃) ,

and to refer to the relative objective value error between x̃ and x̂. More precisely,
given a positive small tolerance δ, the expression12

f (x̃)− f (x̂)

f (x̂)
≤ δ (24)

can be used to define a simple quality ranking between the solutions provided by
different solvers, which turns out to be effective when a large number of problems
has to be considered. Clearly, the ‘true’ best objective value corresponds to a choice
of δ = 0, but actually a tolerance close to 0 is used (e.g., δ = 0.0001). Thus we say
that the solution x̃ is

1. the best, if expression (24) holds for δ = 0.0001;

2. very accurate, if expression (24) holds for δ = 0.001;

12The relative objective value error is usually defined by considering the absolute values of both
the numerator and denominator of expression (24). Here this is not necessary, because it is always
f (x̃) ≤ f (x̂), and f (x̂) > 0.

Section 7 Solvers’ efficiency and quality 19

3. accurate, if expression (24) holds for δ = 0.01;

4. acceptable, if expression (24) holds for δ = 0.1.

In other words, we consider very accurate a solution whose objective function is
within 0.1% of the best possible solution, accurate within 1%, and acceptable within
10%. A solution for which the objective value is 10% larger than the best one, is
considered of bad quality.

The main concern in presenting an efficiency comparison involving several solvers,
is in removing some of the ambiguity in interpreting the results, mostly if the number
of problems is high (in our case, each series to be benchmarked gives raise to a
NLP problem). At this end, we accompany the above quality information with the
performance profiles (Dolan and Morè, 2002), a descriptive tool providing a wealth of
information such as efficiency, robustness and probability of success of the technique
in a very impressive graphical form, which can also include information on quality
of solution, as it has been previously defined. We briefly summarize this effective
tool in the next section.

7.1 Performance Profiles

Dolan and Moré (2002) define an efficiency comparison13 in terms of a set P of np

problems to be solved, and a set S of ns optimization algorithms (solvers). Let tp,s
be (say) the solver resource time used by solver s on problem p. A performance ratio

can be defined as

ρp,s =
tp,s

min{tp,s : 1 ≤ s ≤ ns}
. (25)

For solvers s that do not solve problem p, we adopt the convention ρp,s = ∞ (in
practice, we set a value ρM = 2max ρp,s). The performance profile of a solver s ∈ S
is defined as the fraction of problems where the performance ratio is at most τ :

ρs(τ) =
1

np

size{p ∈ P : ρp,s ≤ τ}. (26)

Thus ρs(τ) : R → [0, 1] is the probability that a performance ratio ρp,s is within τ of
the best ratio. The function in equation (26) is the cumulative distribution function
for the performance ratio in equation (25). Furthermore, it is piecewise constant,
monotonically increasing and continuous from the right at each of the breakpoints.
Note that the best solver for a particular problem attains the lower bound ρp,s = 1.

A performance profile seeks to capture how well the solver performs relative to
the other solvers in S on the set of problems in P. Note, in particular, that ρs(1)
is the fraction of problems for which solver s ∈ S performs the best and that for τ
sufficiently large, ρs(τ) is the fraction of problems solved by s ∈ S. In general, ρs(τ)
is the fraction of problems with a performance ratio ρp,s bounded by τ , and thus
solvers with high values for ρs(τ) are preferable.

13In order to avoid confusion in the terminology, we changed the original term ‘benchmark’, used
by Dolan and Moré (2002), with ‘efficiency comparison’.

20 Tommaso Di Fonzo - Marco Marini

The profile gives much information, including information about solver robust-
ness and efficiency. If a user is only interested in solver efficiency, then he can ex-
amine profile values ρs(τ) for τ = 1 of different solvers s. The values ρs(1) specifies
the probability that a solver will ‘win’ over all other solvers. For the profile defined
in terms of computing time, we define a ‘win’ as the solver who finds any optimal
solution in the least amount of time. It is clearly possible to choose different defini-
tions of ‘win’ based on different performance ratios (e.g., defined in terms of number
of iterations, of function evaluations, of objective functions at the minimum).

If a user is only interested in the probability of success of a solver for the problem
set P, then the user may examine

lim
τ→∞

ρs(τ) (27)

For ratios τ approaching ∞, we are looking at the probability of success of a solver
given unlimited resource time.

If the user is also interested in information on quality of the solution returned
by a solver (which is of particular interest for non-convex problems, as the one of
interest for us, see section 3), the ratio (25) can be modified as follows. If op,s is the
value of the objective function at the solution found by solver s for problem p, and
bp is the best value within those found by all solvers s ∈ S for problem p, we define
a new performance ratio as

ρp,s =



















tp,s

min{tp,s : 1 ≤ s ≤ ns}
if

∣

∣

∣

∣

op,s − bp

bp

∣

∣

∣

∣

≤ δ

ρM if

∣

∣

∣

∣

op,s − bp

bp

∣

∣

∣

∣

> δ

, (28)

where δ is, as before, a user-defined relative objective function difference threshold,
and ρM is an upper bound on ρp,s over all problems p and solvers s. The ratio (28)
is similar as before, except that we consider a solver successful only if the returned
solution is within δ of the best solution found.

7.2 Denton (1971) series

The first example we consider is the series used in the seminal paper of Denton
(1971). It consists of a five-year artificial quarterly series, with a fixed seasonal
pattern invariant from year to year. The values are 50, 100, 150 and 100 in the four
quarters, for a total yearly amount of 400. The annual benchmarks are assumed
to be 500, 400, 300, 400 and 500 in the five successive years. The corresponding
discrepancies (i.e., the differences between the known benchmarks and the annual
sums of the preliminary series) are therefore 100, 0, -100, 0 and 100, respectively.

The performance of the GRP benchmarked series as compared to the PFD

one has been analyzed by Di Fonzo and Marini (2010). Here suffice to say that,
as expected, the GRP procedure shows better results as regards the movement
preservation (r1 = 0.539 and r2 = 0.553).

Figure 1 and Table 2 show the different performances obtained by the considered

Section 7 Solvers’ efficiency and quality 21

procedures14. The Newton’s method, which uses the analytic Hessian formula, need
very few iterations and function evaluations (in both cases, 4) to converge, whereas
after 4 iterations the other algorithms are rather far from the minimum. However, all
the procedures succeed in finding the minimum of the objective function. According
to the quality ranking defined in section 7, all solvers yield ‘very accurate’ solutions,
the ‘best’ being given by quasi-Newton and modified Newton’s methods.

The steepest descent (as we implemented it) appears to be less performing as
compared to the conjugate gradient (a larger objective function, 36 iterations vs.

15, and 113 function evaluations vs. 57). Notice that the two steepest descent-
based techniques - BMK1 and SD - show very similar performance, with a slight
preference for BMK1, both in terms of target criterion and number of iterations. As
for the quasi-Newton BFGS performance, the objective function and the number
of function evaluations are less than SD and CG, but the number of iterations is
larger.

n. of n. of function Objective
Algorithm iterations evaluations function

Steepest descent (BMK1) 30 n.a. 0.04412603
Steepest descent 36 113 0.04412774
Conjugate gradient 15 57 0.04412700
Quasi-Newton BFGS 39 41 0.04411658
Newton with Hessian modification 4 4 0.04411656

Table 2: Denton series: iterations, function evaluations and final GRP function

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS

Figure 1: Denton (1971) series: GRP objective function in the first 14 iterations
steps

14In figure 1 BMK1 is not present, because it does not provide the needed information.

22 Tommaso Di Fonzo - Marco Marini

7.3 EUQSA and MRTS series

The EUQSA dataset consists of 61 raw (not seasonally adjusted) quarterly series
from the European Quarterly Sector Accounts, which are not in line with their
known annual counterpart. The preliminary series span the period from 1999-Q1 to
2005-Q4 (28 quarters), and annual benchmarks are available for each variable15.

As shown in Appendix 2, these variables present temporal discrepancies which
are in some cases very small (less than 0.5% of the original level) and in other cases
rather large (up to 50% of the original level). As it is usual in National Accounts,
the temporal discrepancies for a single variable are often either all negative or all
positive, which is a clear indication that the preliminary quarterly series are biased
with respect to the annual benchmarks.

We consider also 236 monthly series of the Canadian Monthly Retail Trade Sur-
vey. For 226 out of 236 series, the dataset covers the period from January 1991 to
December 2003, while the remaining 10 series start on January 1999. When these
flow series are seasonally adjusted (SA), the temporal aggregation constraints valid
for the raw series are typically ‘destroyed’, since the annual sum of the SA series
might show differences with the annual totals from the raw series, due to the fact
that a non-deterministic seasonal component is normally assumed.

We mimic the situations faced by a data-producer wishing to restore the tem-
poral additivity relationships between the SA and the raw data. The X12-ARIMA
procedure was applied to the 236 monthly series with automatic options. Obviously,
we did not use the optional spec FORCE (U.S. Census Bureau, 2009), so the yearly
sums of the SA series are in general different from those of the original series16.
The computations have been done using the interface program Demetra (version
2.2, see Eurostat, 2007). The SA series resulting from X12-ARIMA have thus been
considered as preliminary SA series to be temporally benchmarked.

The temporal discrepancies are quite variable (see Appendix 3), but less marked
than those of the EUQSA series. In fact, the mean absolute percentage discrepancy
ranges from 0.02% to 4.52%.

Table 3 reports on the quality, according to the previously defined metric, of
the solutions found for the 61 EUQSA series and the 236 MRTS series. The first
column refers to the series benchmarked according to Denton PFD, which is used
as starting point by all the NLP solvers considered in this work. Clearly, Denton
PFD is not a true GRP benchmarking procedure, but it is generally considered a
good approximation of it. In this comparison it is used as a sort of ‘baseline’: for
the whole set of 297 series, and with reference to the GRP objective function (2),
Denton PFD yields solutions which are acceptable in about 80% of cases, accurate in
about 37% and very accurate in about 2%, thus confirming the good approximation
property generally claimed in literature. Anyway, in about 20% of cases this does
not hold true, as the solutions by Denton PFD attain a GRP criterion which is

15A complete description of both EUQSA and MRTS datasets can be found in Di Fonzo and
Marini (2011).

16We stress that the quality of seasonal adjustment is not a primary concern of the paper. We
have replicated the exercise performing the seasonal adjustment by TRAMO-SEATS, and the results
we found as regards the different impact of the GRP and PFD benchmarking procedures on the
temporal profiles of the SA series, were not significantly affected.

Section 7 Solvers’ efficiency and quality 23

more than 10% larger than the best one.

Quality of Denton SD QN
solution (tol.%) PFD BMK1 SD CG BFGS Newton

EUQSA (61 series)
Bad (>10%) 26 1 4 3 1 0

Acceptable (10%) 35 60 57 58 60 61
Accurate (1%) 15 60 49 51 54 61

Very accurate (0.1%) 3 60 30 34 44 61
Best (0.01%) 0 51 21 25 38 61

MRTS (236 series)
Bad (>10%) 33 7 6 1 0 0

Acceptable (10%) 203 229 230 235 236 236
Accurate (1%) 96 227 207 216 218 236

Very accurate (0.1%) 3 212 102 125 162 236
Best (0.01%) 0 94 46 74 153 235

TOTAL (297 series)
Bad (>10%) 59 8 10 4 1 0

Acceptable (10%) 238 289 287 293 296 297
Accurate (1%) 111 287 256 267 272 297

Very accurate (0.1%) 6 272 132 159 206 297
Best (0.01%) 0 145 67 99 191 296

TOTAL (%)
Bad (>10%) 19.87 2.69 3.37 1.35 0.34 0

Acceptable (10%) 80.13 97.31 96.63 98.65 99.66 100
Accurate (1%) 37.37 96.63 86.20 89.90 91.58 100

Very accurate (0.1%) 2.02 91.58 44.44 53.54 69.36 100
Best (0.01%) 0.00 48.82 22.56 33.33 64.31 99.66

Table 3: EUQSA and MRTS series: quality of the solutions found with different
GRP benchmarking procedures

Passing now to consider the ‘true’ NLP solvers, the a priori expectation of a
predominance of the Newton’s method with Hessian modification is fully confirmed
by the results: the Hessian-based procedure never results in solutions of bad quality,
and produces by far the best results for almost all series, the unique exception being
one of the MRTS series, for which the solution is very accurate, but cannot be
considered as the best.

All the gradient-based procedures produce some solutions of bad quality (1 series
out of 296 for QN -BFGS, 4 for CG, 8 for SD-BMK1 and 10 for SD). Furthermore,
we note that the SD-BMK1 algorithm is uniformly better than the SD solver, and
produces very accurate solutions in over 91% of cases, a very good performance as
compared to more sophisticated optimization algorithms, as CG and QN -BFGS

are.
Table 4 presents some information on the computational efforts made by each

solver, namely median, standard deviation and maximum values of number of it-
erations, function evaluations, and elapsed time. We restrict this comparison on
very accurate solutions only (reported in the first column), that is on those prob-
lems where solvers achieve a final objective function satisfying condition (24) with
δ = 10−3. It is confirmed the good performance of the Newton’s method, that
solved all problems within few iterations and function evaluations, with a maximum
runtime under 0.1 seconds.

24 Tommaso Di Fonzo - Marco Marini

Iterations Func. Evaluations Runtime
Algorithm # series med std max med std max med std max

EUQSA (61 series)
SD-BMK1 60 11 18 70 n.a. n.a. n.a. 0.06 0.26 2.04
SD 30 35 95 352 219 693 2578 0.08 0.21 0.79
CG 34 10 499 2922 84 1031 6094 0.03 0.32 1.92
QN-BFGS 44 13 40 263 20 40 264 0.01 0.01 0.08
MN 61 1 1 4 2 1 7 0.00 0.01 0.09

MRTS (236 series)
SD-BMK1 212 13 11 64 n.a. n.a. n.a. 0.07 0.01 0.12
SD 102 38 662 3307 262 2487 10004 0.08 2.43 13.39
CG 125 17 590 4967 128 1244 10001 0.04 2.56 27.67
QN-BFGS 162 37 154 1060 45 153 1061 0.03 0.17 1.57
MN 236 1 1 6 2 1 8 0.01 0.00 0.03

SD: steepest descent; CG: conjugate gradient; QN : quasi-Newton; MN : modified Newton.

Table 4: EUQSA and MRTS series: statistics on iterations, function evaluations and
runtime for very accurate solutions (δ = 10−3)

Table 5 shows the same statistics on the subset of series for which each solver
did not achieve a very accurate solution. For these problems, SD-BMK1 often
reached the maximum number of iterations allowed by the programme (201). Steep-
est descent algorithms often display slow convergence rates and zigzagging when the
objective function is flat around the minimum, as it might be the case for these series
and other cases where SD shows a similar behavior. On the other hand, very often
CG and QN -BFGS stop after few iterations, when a significant descent direction
is not found.

Iterations Func. Evaluations Runtime
Algorithm # series med std max med std max med std max

EUQSA (61 series)
SD-BMK1 1 201 0 201 n.a. n.a. n.a. 0.09 0.00 0.09
SD 31 1 897 5000 1 1459 8152 0.01 0.81 4.54
CG 27 1 2 8 1 15 59 0.00 0.00 0.02
QN-BFGS 17 1 1 7 1 3 15 0.00 0.00 0.01
MN 0 - - - - - - - - -

MRTS (236 series)
SD-BMK1 24 103 59 201 n.a. n.a. n.a. 0.11 0.02 0.16
SD 134 1 1169 5000 1 1714 10001 0.01 5.00 27.24
CG 111 1 604 4990 1 1335 10001 0.01 3.17 27.72
QN-BFGS 74 1 29 254 1 30 258 0.01 0.02 0.16
MN 0 - - - - - - - - -
SD: steepest descent; CG: conjugate gradient; QN : quasi-Newton; MN : modified Newton.

Table 5: EUQSA and MRTS series: statistics on iterations, function evaluations and
runtime for not very accurate solutions (δ = 10−3)

Looking at these solutions, the movements in the original series are better pre-
served by the Newton’s method. Tables 6 and 7 report median, standard deviation,
minimum and maximum values of r1 and r2 indices, as defined by (22). The me-
dian value of MD is always smaller than those of other algorithms. Gradient-based
solvers do not move away from the starting condition (i.e. the Denton PFD solu-

Section 7 Solvers’ efficiency and quality 25

tion), and thus r2 = 1 in most cases. However, it should be noted that the impact
of these differences in the movements of the benchmarked series is relatively small,
since it is practically impossible to detect them on a time-series graph.

series r1 r2
Algorithm out of 61 med std min max med std min max

SD-BMK1 1 0.323 0.000 0.323 0.323 0.233 0.000 0.233 0.233
MN 0.133 0.000 0.133 0.133 0.108 0.000 0.108 0.108

SD 31 1.000 0.186 0.230 1.004 1.000 0.198 0.181 1.000
MN 0.979 0.213 0.133 1.005 0.987 0.212 0.108 0.999

CG 27 1.000 0.153 0.389 1.000 1.000 0.155 0.361 1.000
MN 0.979 0.169 0.306 1.005 0.988 0.162 0.324 0.999

QN-BFGS 17 1.000 0.108 0.556 1.000 1.000 0.095 0.609 1.000
MN 0.981 0.106 0.552 1.005 0.997 0.094 0.608 0.999
SD: steepest descent; CG: conjugate gradient; QN : quasi-Newton; MN : modified Newton.

Table 6: EUQSA series: statistics on r1 and r2 indices for not very accurate solutions
(δ = 10−3), and comparison with modified Newton’s results

series r1 r2
Algorithm out of 236 med std min max med std min max

SD-BMK1 24 0.908 0.122 0.614 1.005 0.859 0.222 0.195 0.971
MN 0.874 0.158 0.449 1.015 0.845 0.238 0.146 0.971

SD 134 1.000 0.071 0.595 1.000 1.000 0.122 0.206 1.000
MN 0.996 0.089 0.449 1.015 0.996 0.130 0.146 0.999

CG 111 1.000 0.047 0.526 1.000 1.000 0.082 0.163 1.000
MN 0.996 0.054 0.449 1.003 0.996 0.084 0.146 0.999

QN-BFGS 74 1.000 0.018 0.843 1.000 1.000 0.029 0.747 1.000
MN 0.997 0.018 0.847 1.000 0.997 0.029 0.745 0.999
SD: steepest descent; CG: conjugate gradient; QN : quasi-Newton; MN : modified Newton.

Table 7: MRTS series: statistics on indices r1 and r2 for not very accurate solutions
(δ = 10−3), and comparison with modified Newton’s results

Figures 2 and 3 show the performance profiles, where the X-axis is expressed in
log2-scale, based on runtime for, respectively, δ = 0.1 and δ = 0.001 in formula (28).
The profiles refer to all series (297), and show the performance, as measured by
the resource time17, when acceptable solutions (δ = 0.1) and very accurate solutions
(δ = 0.001) are considered. The former case gives us information about the efficiency
of the solvers, while the latter shows their quality.

The best performance of the Newton’s method, both in terms of efficiency and
quality, is now confirmed also visually: the solutions are almost always of better qual-
ity (ρs(1) is about 0.6 for acceptable solutions, and 0.7 for very accurate solutions),

17In Appendix 4 we present the performance profiles distinct by dataset, based on runtime and
also on number of iterations and of function evaluations. In this last case, SD-BMK1 is missing,
since the programme does not provide the needed information.

26 Tommaso Di Fonzo - Marco Marini

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

Figure 2: EUQSA and MRTS series: performance profiles for acceptable solutions
(δ = 10−1)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

Figure 3: EUQSA and MRTS series: performance profiles for very accurate solutions
(δ = 10−3)

and required less computation efforts than the other solvers. The quasi-Newton
algorithm shows a valuable level of efficiency (almost all successful solutions in less
time) as compared to the other gradient-based methods, followed by the conjugate
gradient solver. It is also confirmed the good quality performance of SD-BMK1: for
δ = 0.001 and large τ , its curve is higher than the other gradient based methods18.

18We think that one possible reason for this interesting result could be the line-search procedure
worked out by Causey and Trager (1981), which looks for a step-length αk within a specific bounded
interval, whose limits depend on the objective function. This point is currently under study.

Section 8 Conclusions 27

8 Conclusions

In this work, we present a Newton’s method with Hessian modification for bench-
marking a time series according to the growth rates preservation principle by Causey
and Trager (1981). This method exploits the analytic Hessian of the GRP objective
function, making full use of all the derivative information at disposal. In addition,
we show that the proposed technique is easy to implement and robust, making it a
plausible competitor of the classical modified Denton’s PFD benchmarking proce-
dure, also in a data-production process involving a considerable amount of series.

From the analysis of the artificial series of Denton (1971), and of quarterly and
monthly real-life time series, it is strongly demonstrated that the new proposed
technique overwhelmingly outperforms first-order (gradient-based) techniques, as
the projected steepest descent technique originally proposed by Causey and Trager
(1981), a technique based on the conjugate gradient algorithm (according to the re-
cent proposal by Brown, 2010), and a Quasi-Newton method which at each iteration
makes use of an approximated Hessian according to the BFGS algorithm.

Our future work will be concentrated in (i) expanding these results also to the
extrapolation case, when the benchmarks (one or more) for the most recent years
are unavailable, and the relevant preliminary values have to be benchmarked, (ii)
developing benchmarking techniques focussed on growth rates preservation princi-
ples other than GRP , for example by considering the absolute value instead of the
square of the difference between target and preliminary growth rates:

n
∑

t=2

∣

∣

∣

∣

xt

xt−1
−

pt

pt−1

∣

∣

∣

∣

,

(iii) considering also the ‘annual’ growth rates in the movement to be preserved (i.e.,
xt

xt−s

instead of, or combined with,
xt

xt−1
, see Fagan, 1995), and (iv) investigating

the possibility of including the GRP principle in a reconciliation framework, where
a system of time series has to be benchmarked in order to be in line with both
temporal and contemporaneous constraints (Dagum and Cholette, 2006; Fortier and
Quenneville, 2009; Di Fonzo and Marini, 2011).

As regards the first point, we are also studying the ‘GRP -analog’ of the regression-
based benchmarking model by Dagum and Cholette (2006), according to which (in a
simplified form) the benchmarked estimates are the solution to the constrained min-

imization problem of an objective function in the proportionate corrections
xt − pt

pt
:

n
∑

t=2

(

xt − pt

pt
− φ

xt−1 − pt−1

pt−1

)2

,

where 0 < φ < 1 is a smoothing parameter, usually fixed by the user, which turns
out to be useful mostly in extrapolation situations (Quenneville et al., 2003). A
rather natural extension would in fact consider

n
∑

t=2

[(

xt

xt−1
− 1

)

− φ

(

pt

pt−1
− 1

)]2

or

n
∑

t=2

∣

∣

∣

∣

(

xt

xt−1
− 1

)

− φ

(

pt

pt−1
− 1

)∣

∣

∣

∣

.

28 Tommaso Di Fonzo - Marco Marini

Appendix 1. Feasible direction according to Causey and Trager

(1981)

Given an (n × 1) (unconstrained) direction vector d, we are looking for an (n × 1)
vector v, solution to the following constrained linear problem:

min
v

vTd s.t. vTv = 1 and Av = 0. (29)

In other terms, we wish that the direction v have unitary norm (vTv = 1), and be
feasible (Av = 0).

Consider the Lagrangean function

L = vTd+
λ∗

2

(

vTv − 1
)

+ λT (Av) , (30)

where λ∗ and λ are a scalar and a (m×1) vector of Lagrange multipliers, respectively.
The first order condition is given by































∂L

∂v
= 0

∂L

∂λ∗ = 0

∂L

∂λ
= 0

⇒
d+ λ∗v +ATλ = 0

vTv = 1
Av = 0

. (31)

Pre-multiplying the first equation in (31) by matrix A and solving for λ, we find

λ = −
(

AAT
)−1

Ad, (32)

and, by sostitution in (31),

λ∗v = −
[

In −AT
(

AAT
)−1

A
]

d. (33)

Noting that matrix N =
[

In −AT
(

AAT
)−1

A
]

is idempotent (NTN = N), and

given that vTv = 1, by taking the square of both sides of (33), we obtain:

(λ∗)2 vTv = dTNd ⇒ λ∗ ≡ v =
(

dTNd
)

1

2 .

Finally, by denoting V = 1
v
N, and after substitution in (33), we obtain the result:

v = −Vd.

Appendix 2 29

Appendix 2. Temporal discrepancies (%) of the EUQSA se-

ries

Series mean absm st. dev min max range
1 0.00 0.11 0.12 -0.13 0.23 0.35
2 0.00 0.04 0.05 -0.11 0.05 0.16
3 0.00 0.02 0.03 -0.07 0.03 0.10
4 0.01 0.25 0.31 -0.44 0.49 0.92
5 0.01 0.22 0.23 -0.24 0.35 0.58
6 0.73 8.49 11.50 -11.96 26.00 37.96
7 1.08 14.07 17.42 -12.33 38.20 50.52
8 -0.06 0.67 0.78 -1.37 0.77 2.13
9 -0.01 0.48 0.54 -0.73 0.91 1.64

10 0.09 1.42 1.77 -2.29 3.45 5.74
11 0.06 1.09 1.36 -1.83 2.59 4.42
12 0.00 0.22 0.23 -0.24 0.34 0.58
13 -0.41 4.83 6.34 -10.59 10.69 21.29
14 0.41 12.07 14.08 -28.59 13.37 41.96
15 -0.09 0.67 0.80 -1.43 0.71 2.13
16 -0.34 0.57 0.57 -1.02 0.48 1.50
17 -0.01 0.13 0.14 -0.17 0.19 0.36
18 -0.01 0.23 0.24 -0.26 0.33 0.59
19 0.04 0.68 0.77 -1.09 1.22 2.31
20 0.02 0.52 0.59 -0.84 0.92 1.76
21 0.00 0.03 0.03 -0.04 0.05 0.09
22 -0.01 0.09 0.11 -0.20 0.11 0.31
23 -0.05 0.70 0.82 -1.43 0.80 2.24
24 0.03 0.41 0.46 -0.63 0.71 1.34
25 0.00 0.13 0.15 -0.20 0.25 0.45
26 1.80 12.08 14.52 -15.19 25.56 40.75
27 0.75 7.06 7.93 -10.36 10.62 20.98
28 -0.02 0.94 1.22 -2.43 1.49 3.92
29 0.04 0.77 1.02 -1.69 1.84 3.53
30 0.05 0.67 0.86 -0.66 1.87 2.53
31 -0.04 3.97 4.42 -6.91 6.40 13.31
32 0.00 0.03 0.03 -0.06 0.05 0.11
33 0.00 0.22 0.24 -0.34 0.24 0.58
34 0.39 3.60 4.82 -11.23 3.91 15.13
35 0.54 4.24 5.16 -5.82 10.62 16.44
36 0.22 2.45 3.35 -7.80 2.78 10.58
37 0.00 0.05 0.07 -0.12 0.09 0.22
38 -0.05 0.79 0.94 -1.49 1.07 2.56
39 -0.04 0.42 0.48 -0.74 0.63 1.37
40 0.00 0.13 0.19 -0.25 0.42 0.68
41 0.01 0.22 0.24 -0.34 0.25 0.58
42 -0.33 14.43 20.20 -17.50 47.11 64.60
43 -0.01 0.17 0.23 -0.27 0.45 0.72
44 -0.05 5.43 7.88 -6.49 18.31 24.80
45 0.01 0.06 0.08 -0.15 0.12 0.28
46 -0.11 0.76 0.94 -1.55 0.99 2.54
47 -0.09 0.46 0.50 -0.85 0.52 1.37
48 0.00 0.14 0.20 -0.25 0.44 0.69
49 0.01 0.23 0.24 -0.34 0.25 0.59
50 -0.01 0.51 0.60 -0.95 0.88 1.83
51 -0.01 0.51 0.60 -0.95 0.88 1.83
52 0.00 0.08 0.10 -0.19 0.15 0.34
53 0.00 0.02 0.02 -0.03 0.03 0.06
54 -0.06 0.78 0.94 -1.50 1.05 2.55
55 -0.02 0.42 0.48 -0.74 0.68 1.42
56 0.06 0.96 1.24 -2.71 1.02 3.73
57 -0.01 0.11 0.13 -0.25 0.13 0.38
58 0.00 0.13 0.19 -0.25 0.43 0.68
59 0.00 0.86 1.06 -0.77 2.31 3.08
60 0.04 0.61 0.71 -0.70 1.30 2.00
61 -0.29 3.73 4.09 -5.40 5.70 11.10

30 Tommaso Di Fonzo - Marco Marini

Appendix 3. Temporal discrepancies (%) of the MRTS series

Series mean absm std min max range
1 -0.02 0.34 0.55 -1.23 1.39 2.62
2 -0.10 0.41 0.43 -0.78 0.48 1.26
3 -0.06 0.15 0.17 -0.34 0.31 0.65
4 -0.13 0.28 0.32 -0.63 0.39 1.01
5 -0.22 0.39 0.37 -0.62 0.42 1.04
6 -0.07 0.15 0.16 -0.35 0.16 0.50
7 -0.07 0.16 0.20 -0.40 0.30 0.70
8 -0.09 0.14 0.16 -0.42 0.17 0.58
9 -0.06 0.23 0.28 -0.58 0.28 0.86

10 -0.02 0.12 0.18 -0.44 0.40 0.84
11 0.26 0.64 0.78 -1.05 1.90 2.95
12 0.28 0.51 0.65 -1.01 1.78 2.80
13 0.21 0.35 0.59 -0.46 2.08 2.55
14 -0.14 0.36 0.45 -1.23 0.49 1.72
15 -0.16 0.40 0.46 -0.93 0.77 1.70
16 -0.23 0.69 0.83 -2.11 1.06 3.17
17 -0.07 0.18 0.22 -0.52 0.36 0.87
18 -0.08 0.30 0.35 -0.79 0.49 1.28
19 0.25 0.42 0.49 -0.40 1.42 1.82
20 0.05 0.26 0.31 -0.50 0.68 1.18
21 0.00 0.20 0.26 -0.53 0.52 1.06
22 -0.09 0.26 0.27 -0.46 0.36 0.82
23 -0.08 0.60 0.75 -1.26 1.19 2.45
24 0.02 0.55 0.71 -0.91 1.91 2.82
25 -2.28 3.36 2.70 -4.69 2.69 7.38
26 -0.16 0.92 1.12 -2.13 2.49 4.61
27 -0.18 0.28 0.31 -0.67 0.33 1.00
28 -0.18 0.34 0.44 -1.14 0.37 1.51
29 -0.15 0.34 0.38 -0.63 0.61 1.24
30 -0.23 0.39 0.39 -0.83 0.40 1.23
31 -0.11 0.23 0.25 -0.39 0.62 1.00
32 -0.25 0.32 0.26 -0.73 0.23 0.96
33 -0.28 0.42 0.46 -1.30 0.54 1.83
34 -0.20 0.27 0.24 -0.61 0.28 0.89
35 -0.18 0.24 0.25 -0.59 0.20 0.80
36 -0.10 1.11 1.24 -2.08 1.82 3.90
37 -0.38 0.50 0.55 -1.31 0.33 1.64
38 0.72 0.78 0.75 -0.45 2.19 2.64
39 -0.31 0.85 0.89 -2.00 1.35 3.35
40 -0.05 0.72 0.84 -1.49 1.38 2.87
41 -0.37 0.50 0.53 -1.46 0.56 2.02
42 -0.18 0.23 0.24 -0.59 0.21 0.80
43 -0.26 0.32 0.32 -0.73 0.41 1.14
44 -0.09 0.32 0.40 -1.04 0.38 1.41
45 -0.16 0.40 0.44 -0.80 0.72 1.52
46 -0.25 0.31 0.26 -0.82 0.38 1.20
47 -0.19 0.25 0.22 -0.56 0.21 0.77
48 -0.36 0.72 0.77 -1.68 0.89 2.57
49 -0.01 2.36 2.94 -6.05 4.44 10.49
50 1.41 4.52 5.33 -6.60 10.99 17.59
51 0.72 2.65 3.13 -6.02 5.41 11.43
52 0.31 0.70 0.76 -1.02 1.50 2.51
53 1.11 2.17 2.49 -2.26 6.17 8.43
54 0.02 0.77 0.90 -1.36 1.82 3.18
55 0.02 0.44 0.51 -0.88 0.85 1.73
56 -0.01 0.27 0.35 -0.77 0.45 1.22
57 -0.15 0.19 0.14 -0.31 0.13 0.44
58 -0.06 0.34 0.41 -0.68 0.70 1.38
59 -0.08 0.16 0.21 -0.51 0.36 0.87
60 0.12 0.33 0.34 -0.58 0.52 1.11

% continue

Appendix 3 31

% Appendix 3 continued

Series mean absm std min max range
61 0.57 1.35 1.89 -2.44 5.62 8.05
62 -1.21 2.85 3.21 -6.00 3.72 9.72
63 -0.49 0.94 1.01 -2.18 1.63 3.81
64 -0.48 1.27 1.64 -4.56 1.34 5.90
65 -0.30 0.50 0.56 -1.36 0.68 2.03
66 -0.25 0.64 0.73 -1.38 1.43 2.81
67 -0.31 0.48 0.53 -1.23 0.60 1.83
68 -0.30 0.58 0.61 -1.23 0.93 2.16
69 -0.40 0.46 0.51 -1.65 0.25 1.91
70 -0.46 0.85 0.89 -1.69 1.65 3.34
71 -0.42 0.43 0.39 -1.38 0.03 1.41
72 -0.36 0.45 0.35 -0.78 0.36 1.14
73 0.11 1.18 1.69 -2.27 5.03 7.29
74 -0.09 0.73 0.93 -1.28 2.24 3.52
75 -0.64 0.87 0.99 -2.65 1.49 4.15
76 -0.67 1.08 1.20 -2.68 0.99 3.67
77 -0.36 0.54 0.50 -1.29 0.93 2.22
78 -0.23 0.44 0.50 -1.02 0.46 1.49
79 -0.12 0.50 0.57 -1.00 0.83 1.83
80 -0.18 0.50 0.59 -1.32 1.01 2.34
81 -0.18 0.66 0.76 -1.64 1.32 2.96
82 -0.42 0.87 0.91 -2.04 1.33 3.37
83 -0.28 0.54 0.57 -1.25 1.13 2.38
84 0.02 0.76 0.91 -1.63 1.39 3.02
85 -0.17 1.31 1.52 -2.02 2.88 4.90
86 -0.21 2.38 2.80 -4.55 4.44 8.99
87 -0.18 0.49 0.56 -1.22 0.85 2.07
88 0.48 1.70 1.90 -2.98 3.06 6.04
89 0.21 0.73 1.64 -1.03 5.78 6.81
90 -0.77 1.16 1.51 -5.07 1.44 6.51
91 -0.09 0.56 0.73 -1.19 1.50 2.69
92 -0.33 0.54 0.53 -1.18 0.40 1.58
93 0.35 1.63 2.36 -2.23 7.20 9.43
94 0.03 0.71 1.14 -2.12 3.27 5.39
95 0.96 0.96 1.37 0.18 5.56 5.38
96 0.02 0.46 0.55 -0.60 1.12 1.72
97 1.52 2.89 4.02 -3.00 11.98 14.98
98 1.15 3.24 4.99 -6.62 14.20 20.83
99 -0.04 0.16 0.18 -0.30 0.19 0.49

100 -0.07 0.16 0.17 -0.30 0.22 0.52
101 0.03 0.09 0.12 -0.21 0.24 0.46
102 -0.05 0.15 0.17 -0.37 0.27 0.63
103 -0.03 0.13 0.14 -0.25 0.22 0.46
104 -0.05 0.14 0.16 -0.34 0.27 0.61
105 -0.06 0.14 0.16 -0.33 0.21 0.53
106 -0.08 0.13 0.15 -0.35 0.19 0.53
107 -0.07 0.12 0.13 -0.30 0.13 0.43
108 -0.04 0.13 0.16 -0.30 0.20 0.50
109 -0.12 0.15 0.15 -0.43 0.16 0.60
110 0.07 0.16 0.18 -0.28 0.34 0.62
111 -0.13 0.19 0.18 -0.36 0.15 0.51
112 -0.04 0.16 0.19 -0.34 0.23 0.56
113 -0.27 0.30 0.43 -1.64 0.14 1.78
114 -0.18 0.39 0.58 -1.97 0.41 2.38
115 -0.11 0.14 0.18 -0.49 0.10 0.59
116 -0.05 0.09 0.08 -0.19 0.10 0.28
117 -0.09 0.16 0.18 -0.46 0.25 0.71
118 -0.06 0.15 0.16 -0.27 0.20 0.47
119 -0.07 0.16 0.18 -0.35 0.40 0.75
120 -0.03 0.05 0.10 -0.36 0.05 0.41

% continue

32 Tommaso Di Fonzo - Marco Marini

% Appendix 3 continued

Series mean absm std min max range
121 -0.10 0.22 0.26 -0.61 0.36 0.97
122 -0.02 0.37 0.51 -0.48 1.47 1.95
123 -0.01 0.29 0.35 -0.67 0.39 1.06
124 -0.02 0.27 0.32 -0.43 0.50 0.93
125 0.03 1.10 1.43 -3.08 2.33 5.41
126 -0.03 0.38 0.49 -0.86 1.05 1.91
127 -0.14 0.20 0.21 -0.47 0.33 0.80
128 -0.27 0.36 0.37 -1.06 0.44 1.50
129 -0.52 0.71 0.81 -1.90 0.32 2.22
130 -0.19 0.44 0.53 -1.17 0.67 1.84
131 -0.14 0.23 0.30 -0.84 0.34 1.18
132 -0.07 0.44 0.62 -1.01 1.29 2.30
133 -0.26 0.27 0.28 -0.96 0.04 1.00
134 -0.09 0.32 0.37 -0.67 0.46 1.12
135 0.33 0.52 0.66 -0.53 1.85 2.38
136 -0.09 0.32 0.38 -0.94 0.61 1.55
137 0.05 1.65 2.15 -1.53 4.24 5.77
138 -0.04 0.12 0.16 -0.23 0.42 0.65
139 -0.02 0.08 0.10 -0.13 0.28 0.42
140 0.01 0.08 0.10 -0.14 0.19 0.33
141 -0.10 0.16 0.15 -0.32 0.20 0.52
142 0.03 0.09 0.10 -0.17 0.16 0.33
143 0.00 0.09 0.12 -0.34 0.17 0.51
144 -0.04 0.10 0.15 -0.40 0.23 0.62
145 -0.04 0.04 0.04 -0.11 0.01 0.12
146 -0.06 0.06 0.08 -0.24 0.02 0.26
147 -0.11 0.16 0.20 -0.63 0.27 0.90
148 0.01 0.02 0.02 -0.04 0.05 0.08
149 -0.03 0.15 0.20 -0.58 0.16 0.74
150 -0.05 0.10 0.16 -0.36 0.09 0.45
151 -0.02 0.17 0.22 -0.39 0.42 0.80
152 -0.04 0.38 0.47 -0.74 0.75 1.49
153 0.06 0.29 0.34 -0.42 0.73 1.15
154 0.00 0.21 0.24 -0.31 0.40 0.71
155 0.06 0.13 0.16 -0.22 0.42 0.64
156 0.02 0.12 0.17 -0.19 0.47 0.66
157 0.04 0.10 0.12 -0.19 0.22 0.41
158 0.00 0.10 0.12 -0.25 0.25 0.50
159 -0.03 0.10 0.12 -0.30 0.17 0.47
160 0.05 0.15 0.20 -0.30 0.47 0.78
161 -0.11 0.47 0.62 -1.44 0.81 2.25
162 0.04 0.38 0.47 -0.64 0.85 1.49
163 0.06 0.14 0.16 -0.16 0.33 0.49
164 -0.35 0.69 0.68 -1.41 1.11 2.53
165 -0.09 0.93 1.30 -2.56 2.65 5.21
166 -0.08 0.34 0.47 -1.10 0.86 1.97
167 -0.08 0.45 0.53 -0.87 0.96 1.83
168 -0.13 0.19 0.23 -0.78 0.21 0.99
169 -0.21 0.33 0.35 -1.07 0.50 1.57
170 -0.03 0.18 0.23 -0.42 0.47 0.89
171 -0.13 0.44 0.57 -1.30 0.59 1.89
172 -0.15 0.38 0.50 -1.36 0.57 1.93
173 -0.24 0.32 0.40 -1.28 0.26 1.54
174 -0.41 0.76 0.87 -2.14 1.02 3.16
175 -0.42 1.04 1.54 -4.97 1.50 6.46
176 -0.02 0.59 0.78 -1.72 1.22 2.94
177 -0.37 0.46 0.59 -2.06 0.45 2.51
178 0.07 0.42 0.54 -0.66 1.36 2.02
179 -0.11 0.65 0.74 -1.62 0.98 2.60
180 -0.13 0.29 0.31 -0.58 0.53 1.10

% continue

Appendix 3 33

% Appendix 3 continued

Series mean absm std min max range
181 0.02 0.43 0.56 -0.59 1.34 1.93
182 -0.11 0.42 0.58 -1.66 0.71 2.37
183 -0.12 0.31 0.38 -0.73 0.59 1.32
184 -0.16 0.28 0.37 -0.98 0.33 1.32
185 -0.15 0.45 0.54 -1.24 0.86 2.10
186 -0.25 1.30 1.79 -4.63 1.52 6.16
187 -0.14 0.91 1.06 -2.30 1.25 3.55
188 -0.15 0.44 0.51 -1.04 0.59 1.62
189 -0.23 0.54 0.69 -1.64 0.78 2.43
190 -0.21 0.43 0.52 -1.42 0.63 2.05
191 -0.11 0.49 0.61 -1.14 1.32 2.46
192 -0.08 0.28 0.33 -0.66 0.35 1.01
193 -0.11 0.36 0.43 -0.84 0.89 1.73
194 -0.18 0.28 0.35 -0.74 0.32 1.06
195 -0.12 0.34 0.48 -1.15 0.82 1.97
196 -0.11 0.27 0.30 -0.67 0.51 1.18
197 -0.10 0.35 0.47 -1.32 0.41 1.73
198 -0.28 0.58 0.69 -1.70 0.98 2.69
199 0.21 0.77 0.86 -1.30 1.37 2.67
200 -0.31 0.45 0.46 -1.07 0.65 1.72
201 -0.13 1.17 1.75 -3.48 3.69 7.17
202 -0.31 0.47 0.51 -1.28 0.45 1.74
203 -0.31 0.40 0.36 -1.13 0.24 1.37
204 -0.20 0.25 0.20 -0.44 0.31 0.75
205 -0.19 0.37 0.38 -0.78 0.39 1.17
206 -0.16 0.24 0.30 -0.74 0.36 1.10
207 -0.17 0.19 0.17 -0.52 0.08 0.60
208 -0.22 0.39 0.44 -1.11 0.46 1.57
209 -0.04 0.23 0.27 -0.48 0.47 0.95
210 -0.23 0.23 0.17 -0.55 -0.02 0.52
211 0.15 0.50 0.66 -0.97 1.35 2.32
212 -0.22 0.46 0.50 -1.05 0.64 1.69
213 -0.08 0.29 0.33 -0.48 0.69 1.17
214 -0.07 0.32 0.46 -1.39 0.52 1.91
215 -0.23 0.26 0.23 -0.73 0.09 0.82
216 -0.18 0.23 0.23 -0.68 0.12 0.80
217 -0.14 0.23 0.26 -0.72 0.28 1.00
218 -0.13 0.23 0.27 -0.65 0.29 0.93
219 -0.13 0.29 0.32 -0.68 0.46 1.14
220 -0.20 0.26 0.26 -0.69 0.19 0.88
221 -0.57 0.72 0.66 -1.54 0.44 1.97
222 -0.07 0.15 0.15 -0.28 0.17 0.45
223 -0.10 0.17 0.17 -0.33 0.15 0.48
224 -0.15 0.64 0.83 -1.92 1.30 3.23
225 -0.64 1.09 1.27 -3.34 0.91 4.25
226 -0.30 0.59 0.58 -0.93 1.18 2.11
227 -0.03 0.03 0.02 -0.06 -0.01 0.05
228 0.03 0.13 0.16 -0.31 0.29 0.60
229 -0.07 0.08 0.07 -0.19 0.03 0.22
230 -0.29 0.36 0.36 -1.01 0.35 1.36
231 -0.02 0.34 0.41 -0.64 0.85 1.49
232 -0.17 0.21 0.20 -0.56 0.14 0.70
233 -0.13 0.22 0.24 -0.58 0.26 0.84
234 0.95 1.58 1.74 -1.65 3.66 5.31
235 0.18 0.77 0.92 -1.60 1.94 3.54

34 Tommaso Di Fonzo - Marco Marini

Appendix 4. Performance profiles

Appendix 4 35

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Runtime

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iterations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS

Figure 4: EUQSA series: performance profiles for acceptable solutions (δ = 10−1)

36 Tommaso Di Fonzo - Marco Marini

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Runtime

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iterations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS

Figure 5: EUQSA series: performance profiles for very accurate solutions (δ = 10−3)

Appendix 4 37

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Runtime

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iterations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS

Figure 6: MRTS series: performance profiles for acceptable solutions (δ = 10−1)

38 Tommaso Di Fonzo - Marco Marini

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Runtime

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iterations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS
BMK1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluations

log
2
(τ)

P
er

ce
nt

 o
f b

en
ch

m
ar

ke
d

se
rie

s

Newton
Steepest Descent
Conjugate Gradient
Quasi−Newton BFGS

Figure 7: MRTS series: performance profiles for very accurate solutions (δ = 10−3)

REFERENCES 39

References

[1] Andrei, N. (2008), 40 conjugate gradient algorithms for unconstrained op-

timization. A survey on their definition, ICI Technical Report No. 13/08.
http://camo.ici.ro/neculai/p13a08.pdf

[2] Bloem, A., Dippelsman, R., Mæhle, N. (2001), Quarterly National Accounts

Manual. Concepts, Data Sources, and Compilation, International Monetary
Fund, Washington DC.

[3] Boyd, S., Vandenberghe, L. (2004), Convex Optimization, Springer, New York.

[4] Bozik, J.E., Otto, M.C. (1988), Benchmarking: Evaluating methods that pre-
serve month-to-month changes. Bureau of the Census - Statistical Research
Division, RR-88/07. http://www.census.gov/srd/papers/pdf/rr88-07.pdf

[5] Brown, I. (2010), An empirical comparison of constrained optimization methods
for benchmarking economic time series. In JSM 2009 Proceedings, Business and

Economic Statistics Section, 2131–2143.

[6] Causey, B., Trager, M.L. (1981), Derivation of Solution to the Benchmarking

Problem: Trend Revision. Unpublished research notes, U.S. Census Bureau,
Washington D.C.. Available as an appendix in Bozik and Otto (1988).

[7] Cholette, P. (1984), “Adjusting sub-annual series to yearly benchmarks”, Survey
Methodology, 10, 35–49.

[8] Cholette, P.A., Chhab, N.B. (1991), “Converting aggregates of weekly data into
monthly values”, Applied Statistics, 40, 411–422.

[9] Cohen, K.J, Müller, W.M., Padberg M.W. (1971), “Autoregressive approaches
to disaggregation of time series data”, Applied Statistics, 20, 119–129.

[10] Dagum, E.B., Cholette, P.A. (2006), Benchmarking, Temporal Distribution,

and Reconciliation Methods for Time Series. Springer, New York.

[11] Dai, Y.H., Yuan Y. (1999), “A nonlinear conjugate gradient method with a
strong global convergence property”, SIAM Journal on Optimization, 10, 177–
182.

[12] Denton, F. (1971), “Adjustment of monthly or quarterly series to annual to-
tals: An approach based on quadratic minimization”, Journal of the American

Statistical Association, 66, 99–102.

[13] Di Fonzo, T., Marini, M. (2010), Benchmarking and movement preser-

vation. Evidences from real-life and simulated series. Department of Sta-
tistical Sciences, University of Padua, Working Paper Series, n. 14.
http://www.stat.unipd.it/ricerca/fulltext?wp=422

[14] Di Fonzo, T., Marini, M. (2011), “Simultaneous and Two-step Reconciliation
of Systems of Time Series: Methodological and Practical Issues”, Journal of
the Royal Statistical Society C, 60, 143–164.

[15] Dolan, E.D., Moré, J.J. (2002), “Benchmarking optimization software with per-
formance profiles”, Mathematical Programming, 91, 201–213.

http://camo.ici.ro/neculai/p13a08.pdf
http://www.census.gov/srd/papers/pdf/rr88-07.pdf
http://www.stat.unipd.it/ricerca/fulltext?wp=422

40 REFERENCES

[16] Eurostat (2007), “Demetra. Advanced Seasonal Adjustment Interface”.
http://circa.europa.eu/irc/dsis/eurosam/info/data/demetra.htm

[17] Fagan, J. (1995), Benchmarking. Unpublished note (mimeo).

[18] Fletcher, R., Reeves, J. (1964), “Function minimization by conjugate gradi-
ents”, The Computer Journal, 7, 149–154.

[19] Fletcher, R. (1987), Practical methods of optimization vol. 1: Unconstrained

optimization. Wiley, New York.

[20] Fortier, S., Quenneville, B. (2009), Reconciliation and Balancing of Accounts
and Time Series. From Concepts to a SAS procedure. In JSM 2009 Proceedings,
Business and Economic Statistics Section. Alexandria, VA: American Statistical
Association, pp. 130–144.

[21] Gilbert, J.C., Nocedal, J.(1992), “Global convergence properties of conjugate
gradient methods for optimization”, SIAM Journal on Optimization, 2, 21–42.

[22] Griva, I., Nash, S.G., Sofer, A. (2009), Linear and Nonlinear Optimization.
SIAM, Philadelphia.

[23] Hager, W.H., Zhang, H. (2006), “A survey of nonlinear conjugate gradient
methods”, Pacific Journal of Optimization, 2, 35–58.

[24] Harvill Hood, C.C. (2005), An empirical comparison of methods for bench-

marking seasonally adjusted series to annual totals. Paper presented at the
Workshop on Frontiers in Benchmarking Techniques and their Applications to
Official Statistics, Luxembourg, 7-8 April 2005.

[25] Hestenes, M.R., Stiefel, E.L. (1952), “Methods of conjugate gradients for solving
linear systems”, Journal of Research of the National Bureau of Standards, 49,
409–436.

[26] Mittelmann, H.D., Pruessner, A. (2006), “A server for automated performance
analysis of benchmarking data”, Optimization Methods and Software, 21, 105–
120.

[27] Monsour, N.J., Trager, M.L. (1979), Revision and benchmarking of business
time series. American Statistical Association, Proceedings of the Business and

Economic Statistics Section, 333-337.

[28] Nocedal, J., Wright, S. (2006), Numerical Optimization. 2nd edition. Springer,
New York.

[29] Polak E., Ribière G. (1969), “Note sur la convergence de directions conjugées”,
Revue Francaise d’Informatique et Recherche Opérationelle, 16, 35–43.

[30] Polyak T. (1969), “The conjugate gradient method in extremal problems”,
U.S.S.R. Computational Mathematics and Mathematical Physics, 9, 94–112.

[31] Powell, M.J.D. (1977), “Restart procedures for the conjugate gradient method”,
Mathematical Programming, 12, 241–254.

http://circa.europa.eu/irc/dsis/eurosam/info/data/demetra.htm

REFERENCES 41

[32] Powell, M.J.D. (1984), “Nonconvex minimization calculations and the conjugate
gradient method”. In Lecture Notes in Mathematics, vol. 1066, Springer, Berlin,
122–141.

[33] Quenneville, B., Huot, G., Cholette, P., Chiu, K., Di Fonzo, T. (2003), Adjust-
ment of seasonally adjusted series to annual totals. In Proceedings of Statistics

Canada Symposium 2003 - Challenges in Survey Taking for the Next Decade,
2–12.

[34] Schmidt, M. (2006), The minFunc Toolbox for Matlab.
http://www.cs.ubc.ca/~schmidtm

[35] The MathWorks (2009), Optimization ToolboxTM4 User’s Guide. Natick, MA.

[36] Titova, N, Findley, D., Monsell, B.C. (2010), Comparing the Causey-Trager
method to the multiplicative Cholette-Dagum regression-based method of
benchmarking sub-annual data to annual benchmarks. In JSM 2010 Proceed-

ings, Business and Economic Statistics Section, 3007–3021.

[37] Trager, M.L. (1982), Derivation of Solution to the Benchmarking Problem: Rel-

ative Revision. Unpublished research notes, U.S. Census Bureau, Washington
D.C.. Available as an appendix in Bozik and Otto (1988).

[38] U.S. Census Bureau (2009), X-12-ARIMA Reference manual, Version 0.3.
U.S. Census Bureau, U.S. Department of Commerce, Washington D.C..
http://www.census.gov/srd/www/x12a/

http://www.cs.ubc.ca/~schmidtm
http://www.census.gov/srd/www/x12a/

42 REFERENCES

Acknowledgements

We are grateful to Brian Monsell and Irene Brown, of the U.S. Bureau of the Cen-
sus. The former made the executable of program BMK1 available to us, the latter
informed us about important characteristics of BMK1, not described in the available
documentation. We alone are responsible for the errors of the paper. The views
expressed herein are those of the authors and should not be attributed to the IMF,
its Executive Board, or its management. Financing from MIUR is also gratefully
acknowledged by T. Di Fonzo.

Working Paper Series
Department of Statistical Sciences, University of Padua

You may order paper copies of the working papers by emailing wp@stat.unipd.it

Most of the working papers can also be found at the following url: http://wp.stat.unipd.it

	Introduction
	Growth Rates Preservation and Temporal Benchmarking
	Modified Denton PFD

	Gradient Vector and Hessian Matrix of the GRP criterion
	From a constrained to an unconstrained minimization problem
	Eliminating the Linear Equality Constraints
	Generating an Elimination Matrix by QR Factorization
	The Reduced Unconstrained Minimization Problem

	Line-Search Algorithms for Unconstrained Minimization
	Newton's Method with Hessian Modification
	Steepest Descent and Quasi-Newton Methods
	Steepest Descent Method
	Quasi-Newton Methods

	Nonlinear Conjugate Gradient

	Projected Steepest Descent and Conjugate Gradient Directions
	Solvers' efficiency and quality
	Performance Profiles
	Denton (1971) series
	EUQSA and MRTS series

	Conclusions
	Appendix 1. Feasible direction according to Causey and Trager (1981)
	Appendix 2. Temporal discrepancies (%) of the EUQSA series
	Appendix 3. Temporal discrepancies (%) of the MRTS series
	Appendix 4. Performance profiles
	References

