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Log-skew-normal accelerated failure time models

Andrea Callegaro

Department of Statistical Sciences
University of Padua
Italy

Abstract: Accelerated Failure Time models (AFT) are useful alternatives to the Cox
model in survival analysis. Recently, AFT models for multivariate data have been consid-
ered with flexible distributions of the error term. In this paper, we focus on AFT models
with flexible distributions of random effects. In particular, we consider multivariate skew-
normally distributed random effects. When the sample size is large, flexible distribution of
the random effects provides a better description of the dependence structure on the data.
The performance of the model is evaluated by simulations. Further, the proposed log-skew-
normal AFT model is illustrated with data on multiple myeloma patients with autologous
transplantation from the European Bone Marrow Transplantation Registry.

Keywords: Accelerated failure time model, Frailty model, Multivariate Survival analysis,
Skewed-normal distribution

The Cox proportional hazards (PH) model (Cox, 1972) is now the most widely
used method for the analysis of survival data in the presence of covariates. On the
other hand, the Accelerated Failure Time model (AFT) has seldom been utilized
in the analysis of censored survival data. However, the AFT model is a useful
alternative to the Cox regression model in survival analysis for several reasons. First,
results have an intuitive physical interpretation (Wei, 1992). Second, fixed effect
parameters are robust toward neglected covariates (Hougaard, 1999). Finally, AFT
models should lead to more efficient parameter estimates than the Cox model under
certain circumstances (Cox, 1984).

AFT models can be rewritten specifying a direct relation between the logarithm
of the survival time and the explanatory variables, just as a multiple linear regression
model does. A parametric AFT model assumes that the error term of this linear
regression follows a distribution of a specific type (e.g., normal, logistic or Gumbel).
In contrast, semi-parametric procedures for the AFT model leave the density of the
error term unspecified and provide only the estimate of the regression parameters
(Kalbfleish and Prentice, 2002). Evidently, parametric AFT models can fit badly
in the case of an incorrect specification of the distribution. Estimates of the re-
gression parameters (with the exception of the intercept and the scale parameter)
are consistent, but some loss in efficiency is due to an incorrect assumption about
the error. In order to achieve more robustness, it is possible to considered a more
flexible parametric model, such as the generalized gamma, or the generalized F.

In the first part of this paper we consider parametric AFT models with flexible
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distribution of the error term given by the skew-normal (SN) distribution (Azzalini,
1985). The SN distribution is an extension of the normal distribution allowing for
non-zero skewness by means of a shape parameter. In recent years, this distribution,
in its univariate and multivariate version, has received considerable attention both
in theoretical studies, for its numerous stochastic properties, and in applied studies,
for the additional flexibility that it provides (Azzalini, 2005).

In the second part of the paper, multivariate survival data are considered. AFT
models have been widely used in univariate analysis (Kalbfleish and Prentice, 2002),
while multivariate life-time models have received less attention. There has been a
strong emphasis on semiparametric Cox PH models with random effects (frailties)
(Clayton, 1978; Yashin et al., 1995; McGilchrist & Aisbett, 1991), but there has been
little discussion of parametric families. Anderson et al. (1995) proposed a model for
bivariate survival data with a parametric or non-parametric frailty distribution.
Klein et al. (1999) derived a marginal-likelihood approach from a multivariate nor-
mal regression model, and Pan (2001) considered AFT models with gamma frailty.
More recently, in order to improve the fit, Komárek et al. (2005), Komárek & Lesaf-
fre (2006) and Lambert et al. (2004) have focused on multivariate AFT models with
flexible distributions of the error term. In this paper, instead, we focus on flexible
distributions of the random effects. We assume that the random effects are multi-
variate skew-normal distributed (Azzalini & Dalla Valle, 1996; Azzalini & Capitanio,
1999; Azzalini, 2005) and we show that flexible random effects models are of crucial
importance to describe the dependence structure present in the data.

The paper is organized as follows. Sections 2.1 and 2.2 introduce the skew-normal
distribution and the AFT models, respectively. In Section 2.3 we derive a univariate
model with skew-normal error terms. In Section 2.4 a multivariate AFT model
with skew-normal random effects is proposed. The marginal likelihood is derived
for the case when the error term is normal. An approximated likelihood approach
is proposed for maximum likelihood estimation. Section 3.1 presents the simulation
results. In Section 3.2 the proposed new method is illustrated by an application to
a real data set of multiple myeloma patients with autologous transplantation from
the European Bone Marrow Transplantation Registry. Finally, Section 4 presents a
discussion of the proposed models.

1 Methods

1.1 Skew-normal distribution

The skew-normal (SN) distribution is an extension of the normal distribution to allow
for non-zero skewness (Azzalini, 1985). In the one-dimensional case, the density with
location ξ, scale ω and shape parameter α (ξ, α ∈ R,ω ∈ R+) is given by

f(x, ξ, ω2, α) = 2ω−1φ($)Φ(α$), (1)

where $ = (x− ξ)/ω, φ and Φ denote the N(0,1) density and distribution function,
respectively. When α = 0, the density corresponds to the normal density. The
distribution is right skewed if α > 0 and it is left skewed if α < 0. An alternative
parametrization of the SN distribution can be derived in terms of the mean µ,
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the standard deviation σ and the Pearson’s index of skewness γ1 of X. We denote
(µ, σ2, γ1) as the “centred parameters” (CP) while the parameters (ξ,Ω, α) are called
direct (DP) because they can be read directly from (1). We will adopt the notation
X ∼ SNDP (ξ, ω2, α) if the density is expressed in terms of the direct parameters, and
X ∼ SNCP (µ, σ2, γ1) if the density is expressed in terms of the centred parameters.

The multivariate SN distribution with location ξ, scale Ω, and shape parameter
α is given by Azzalini & Capitanio (1999):

f(x, ξ,Ω, α) = 2φd(x− ξ; Ω)Φ(αTω−1(x− ξ)), (2)

where x ∈ Rd, α is the shape parameter (α ∈ Rd), and ω is the diagonal matrix
formed by the standard deviations of Ω. If a d-dimensional variable X has density
(2), we say that its distribution is multivariate SN and write Y ∼ SNDP (ξ,Ω, α).
The distribution can be expressed in terms of the centered parametrization Y ∼
SNCP (µ,Σ, γ1) where µ is the mean, Σ is the variance-covariance matrix and γ1 is
the multivariate index of skewness of X. For statistical inference it is known that
centred parametrization provides a more convenient parametrization than the direct
parametrization which is commonly employed for writing the density (Arellano et
al., 2008).

1.2 Accelerated Failure Time (AFT) models

The AFT model can be written as being log-linear with respect to time, giving

ln(Tj) = XT
j β + ωeej , (3)

where Tj and Xj denote the event time and the vector of covariates measured for
the j-th individual, respectively. ωe denotes the scale parameter and ej the random
error term for the j-th individual. The interpretation of model (3) is straightfor-
ward: the survival times are multiplied by a constant effect, and the exponentiated
coefficients, exp(βk), represents time ratios. The interpretation of the parameters
differs crucially from the interpretation of the parameters estimated by the propor-
tional hazard model, where exp(βk) represents hazard ratios. Only in the particular
case that the survival times follow a Weibull distribution, it can be shown that the
AFT and proportional hazard models are the same. The error terms are usually
assumed to follow a specific distributional form (normal, logistic, or Gumbel). Al-
ternative methods include semiparametric AFT models, in which the distribution of
the error term is estimated nonparametrically (Kalbfleish and Prentice, 2002). The
log-likelihood function may be written as

`(β, ωe) =
n∑
j=1

dj(− lnωe + ln fe($j)) + (1− dj) lnSe($j), (4)

where dj is the indicator of whether the j-th failure time is observed (dj = 1) or
is right censored (dj = 0), $j = (ln tj − Xjβ)/ωe, and Se(x) =

∫∞
x fe(u)du is the

survival function of the error term.
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For multivariate data, the accelerated failure time models have been extended
to include random effects

ln(Tij) = XT
ijβ + ZTijbi + ωeeij , (5)

with Tij the event time for subject j from cluster i, Xij the vector of covariates
for subject j from cluster i, β the vector containing the covariate effects, bi the
random effect for cluster i, Zij the known design vector for the random effects, ωe
the scale parameter, and finally eij the random error term for subject j from cluster
i. Different distributional assumptions have been proposed for the random effects
and for the error term (Klein et al., 1999; Pan, 2001; Chang, 2004; Komárek et al.,
2005; Komárek & Lesaffre, 2006; Lambert et al., 2004).

1.3 Univariate log-skew-normal AFT

Let us consider the univariate AFT model (3) where the error term ej follows a
skew-normal distribution with null location, unit scale, and shape parameter αe,
ej ∼ SNDP (0, 1, αe), then

Yj = lnTj ∼ SNDP (XT
j β, ω

2
e , αe). (6)

The density and the survival function of the error term are fe($) = 2φ($)Φ(αe$)
and Se($) = 1 − Φ($) + 2OT ($,αe), respectively, where OT is the Owen’s T
function and $ = (ln t − XTβ)/ωe. The corresponding hazard rate is given by
λ(t, β, ωe, αe) = fe($)/(tωeSe($)). Figure 1 shows the hazard function of the log-
skew-normal distribution with different values of skewness parameter. As expected,
the additional skewness parameter changes the shape of the hazard function consid-
erably.

The log-likelihood is given by equation (4). Maximum likelihood methods can
be employed to estimate the parameters of the distribution. A peculiar aspect of the
skew-normal log-likelihood function is that, for small/moderate sample size, it can
be monotone in αe. To solve this problem we propose a penalize likelihood approach
(see Appendix A for details). The performance of the penalized approach will be
evaluated by simulations.

An alternative univariate model can be obtained assuming a null mean error
term ej ∼ SNCP (0, 1, γ1e). An advantage of this null mean model with respect to
the null location model of equation (6) is that the parameters β and ωe have the
same interpretation as the parameters estimated by the classical log-normal AFT
model.

1.4 Multivariate log-skew-normal AFT

Let us consider the multivariate AFT model (5) where the random effect bi is mul-
tivariate skew-normal distributed bi ∼ SNCP (0,Σb, γ1,b). The log-likelihood of the
i-th cluster conditional on the random effects bi can be expressed by

`Ci (β, ωe|bi) =
ni∑
j=1

dij [− log(ωetij) + log fe($ij)] + (1− dij) logSe($ij),
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where $ij =
log(tij)−Xijβ−ZT

ijbi
ωe

and Se(x) =
∫∞
x fe(u)du. The marginal likelihood is

then

L(θ) =
G∏
i=1

∫
exp{`Ci (β, ωe|bi) + log fb(bi)}dbi. (7)

Note that different distributions of the error term (extreme value, normal, skew-
normal, logistic) can be combined with skew normal random effects. For example, if
the error term follows a standard type I extreme value (Gumbel) distribution, then
fe(x) = exp(x − exp(x)) and Se(x) = exp(− exp(x)). If the error term follows a
logistic distribution, then fe(x) = exp(x)(1+exp(x))−2 and Se(x) = (1+exp(x))−1.

If the error term is normally distributed: eij ∼ N(0, 1), then fe(x) = φ(x)
and Se(x) = 1 − Φ(x). In this case Y follows a skew normal distribution: Y ∼
SNDP,n(ξ,Ω, α). The contribution to the likelihood of a group where all failure
times are observed (n = nD) is the joint density function of equation (2). If there
are any censored observations among the n individuals, then rewrite Y = (YC , YD),
where YD is the vector of the (log-transformed) failure times and YD is the vector
of the censored failure times. The contribution to the marginal likelihood is the
product of the (marginal) density of YD times the conditional survival function of
YC given YD evaluated at y. In this case, the contribution to the likelihood for this
group is given by

L(θ) = φnD(yD − ξD,ΩD)
∫ ∞
$∗

C·D

φnC+1(u, Ω̄∗C·D)du.

All of the parameters (ξ,Ω, α, ξD,ΩD, $
∗
C·D, Ω̄

∗
C·D) are derived in Appendix B . The

derived marginal likelihood is an extension of the marginal likelihood proposed by
Klein et al. (1999) for normal random effects and normal error terms. In appendix B
the marginal likelihood is also derived in the case that random effects are Gaussian
and the error terms are skew normally distributed.

If the error term is not normal, then it is more complex to derive the marginal
likelihood (7). It is, however, possible to approximate the likelihood by numerical
methods or Monte Carlo simulation. In this paper, we use a Gaussian quadrature
method with 100 nodes. The parameters are estimated maximizing the approxi-
mated likelihood. In order to speed up the estimation we propose a two-step proce-
dure. In the first step of the procedure, all of the parameters, with the exception of
the skewness parameters, are estimated assuming normal distributed random effects.
In the second step, the approximated marginal likelihood is maximized with respect
to the skewness parameters, with all the other parameters fixed at the values esti-
mated at the first step. Standard software can be used to estimate the parameters at
the first step. In particular, penalized likelihood approaches (Therneau et al., 2003)
implemented in the R package are particularly fast and efficient. The performance of
the two-step (fast) procedure will be evaluated by simulations. Standard errors for
the estimates will be computed by inverting the Hessian matrix of the approximated
likelihood.

For prediction of the random effects, it is possible to use the conditional expec-
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tations of the random effects

E{bi} =
∫
bi exp[`Ci + log fb(bi)]dbi∫
exp[`Ci + log fb(bi)]dbi

.

The integral can be approximated by numerical methods or Monte Carlo simulations.
Prediction is beyond the scope of this paper and will not be further considered.

1.4.1 Shared AFT model

In this section we study the relation between the skewness of the random effects and
the dependence structure of the data. To simplify the exposition, we consider the
bivariate case (nj = 2) with shared random effects:

ln(Tij) = Yij = XT
ijβ + bi + ωeeij , (8)

where bi ∼ SNCP (0, σ2
b , γ1,b) is the null mean random effect with standard deviation

σb and the Pearson index of skewness is given by γ1,b, i = 1, ..., G and j = 1, 2.
If the error term is normal, eij ∼ N(0, 1), then parameters are easily inter-

pretable. In fact, E{Yij} = XT
ijβ; var{Yij} = σ2

b +ω2
e , and cov{Yik, Yil} = σ2

b , k 6= l.
The correlation between the log-survival times of any two members of a group is
ρ = σ2

b/(σ
2
b + ω2

e).
A classical measure of local dependence is given by the cross-ratio function (Clay-

ton, 1978). The cross-ratio function can be expressed as the ratio of two hazards,
i.e., the ratio of the hazard of subject j given that subject l “died” at tl and the
hazard of j given that Tl > tl.

CR(t1, t2) =
λ(t1|T2 = t2)
λ(t1|T2 > t2)

=
S(t1, t2)D1D2S(t1, t2)
D1S(t1, t2)D2S(t1, t2)

, (9)

where Dj = ∂
∂tj

and, in an obvious notation,

S(t1, t2) =
∫ ∞
−∞

Se($1)Se($2)fb(u)du.

denotes the marginal bivariate survival function, with $j = (yj −XT
j β − u)/ωe. In

our case, the marginal survival function does not have a closed form, and we use
Gaussian quadrature to approximate it.

Figure 2 shows the marginal survival function and the cross-ratio function CR(t, t)
for the bivariate log-skew-normal AFT model (8) with three different values of the
skewness parameter γ1,b = −0.9, 0, and 0.9, respectively. Figure 2(a) shows the
marginal survival function of the log-normal AFT model with normal error terms,
β = 0, σb = 0.5, and ωe = 1. Figure 2(b) shows the cross-ration function of the
model with normal error terms. If γ1,b is null, this model corresponds to the mul-
tivariate log-normal AFT model proposed by Klein et al. (1999). The dependence
induced by this model is a function that decreases over time. When γ1,b is nega-
tive (positive), the dependence decreases over time at a smaller (higher) rate with
respect to the log-normal model. Figure 2(c) shows the cross-ratio function of the
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model with logistic error terms. The dependence induced by this model is qualita-
tively similar to the dependence structure induced by the model with normal error
terms. Finally, Figure 2(d) shows the cross-ratio function of the model with extreme
value distributed error terms. Interestingly, in this case the skew parameter has a
strong effect on the dependence structure. When the skew parameter is negative, the
cross-ratio function increases at the beginning of the follow-up, and then it decreases
slowly over time.

2 Results

2.1 Simulation study

Two numerical studies, based upon 500 replications of simulated data, are presented
to evaluate the performance of the proposed estimation procedures.

First, we consider the univariate case. The log-transformed survival times Yj
were generated using a skew-normal distribution SNCP (µj , ω2

e , γ1,e) with µj = β0 +
β1xj , β0 = 5, β1 = 0.3 and xj ∼ N(0, 1). The corresponding censoring times Cj were
generated from a uniform distribution between infinity and a lower limit determined
in order to achieve approximately the right censoring rate around 30%. Data were
simulated with ωe = 1 and skewness parameters γ1,e equal to -0.9, 0 or 0.9. We
considered a sample size of n = 200. Table 1 shows the results of the univariate log-
skew-normal AFT method with penalized likelihood (as described in Appendix A ).
The penalty avoids infinity estimates of the shape parameter, with a very small bias.
As a comparison, we also fitted the classical log-normal AFT model using survreg
in the survival package in R. As expected, when the shape parameter differs from
zero, the proposed model outperforms the log-normal AFT model.

Secondly, we investigate the performance of the multivariate skew-normal AFT
model. The log-transformed survival times Yij , conditioned on the random intercept
bi, were generated using a normal distribution N(µij + bi, ω

2
e) with µij = β0 +β1xij ,

β0 = 5, β1 = 0.3, xij ∼ N(0, 1). The random intercept was skew-normally dis-
tributed bi ∼ SN(0, σ2

b , γ1,b) with σb = 0.5 and skew parameters γ1,b = −0.9, 0, or
0.9. We considered G = 200 clusters with ni = 10 subjects in each cluster. The
corresponding censoring times Cij were generated from a uniform distribution be-
tween infinity and a lower limit determined in order to achieve approximately the
right censoring rate around 30%. Table 2 shows the parameters estimated by the
two-step (fast) version of the maximum likelihood estimation approach. In the first
step we estimated (β̃, ω̃e, σ̃b) using survreg in the R survival package with Gaussian
frailties and Gaussian errors. In the second step, γ1,b was estimated by maximiz-
ing the approximated marginal likelihood (7) with fixed (β̃, ω̃e, σ̃b). Integrals were
computed by means of Gaussian quadrature with 100 nodes. First, note that the
parameters estimated by the penalized likelihood (Therneau et al., 2003) approach
are slightly biased. In particular, ωe is underestimated, irrespectively of the skew
parameter. A different method (software) could be used in the first step. Second,
note that the estimated skew-parameter is biased toward zero however, even in the
presence of this bias, the power to detect skewed random effects at the level of 5% is
about 80%. Finally, note that with this sample size the approximated log-likelihood
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is not monotone in γ1,b (data not shown).

2.2 Application to multiple myeloma patients with autologous trans-
plantation

We applied the proposed skew-normal AFT model to a real data set from the Eu-
ropean Group for Blood and Marrow Transplantation (EBMT) registry. Multiple
Myeloma (MM) patients with autologous transplantation were considered. The orig-
inal MM autologous registry includes about 52,000 cases. As an illustration, in
this analysis we considered only a subset of 3,081 patients i) with common myelo-
mas (IgA, IgG), ii) transplanted after 1998, and iii) without inconsistent records or
missing values in a list of relevant prognostic factors. Since missing data may be
centre/patient-related, with potential patterns of selection bias, this application is
not meant to reach conclusions relevant to clinical knowledge or practice.

Patients are clustered into G =190 centres with a mean of 16 individuals per
cluster (median 7, minimum=1, maximum=134). We studied Progression Free Sur-
vival (PFS), where the failure time is defined as the time from autologous trans-
plantation to any of the three following events: a) disease progression, b) disease
relapse/recurrence (for patients transplanted in Complete Remission (CR) or achiev-
ing CR later on), and c) death without relapse/progression. The number of observed
events is 1,548 (51%), and the median PFS time is 14.85 months (minimum=0.03,
maximum=119.18). We considered the following risk factors: year of the transplant
(from 1999 to 2009), gender (female 42% versus male 58%), stage at diagnosis (I
16%, II 26%, and III 58%), disease status at conditioning (no complete remission
89% versus complete remission 11%), serum beta(2)-microglobulin level at diagnosis
(31% > 4 versus 69% ≤ 4), the interval between diagnosis and the first transplant in
years (median 0.6, minimum=0.003, maximum=17.8), and age at transplant (me-
dian 58.4, minimum=20, maximum=78.9).

Initially, different models were fit without random effects, in order to identify the
distribution of the error term. The failure times were modelled using Weibull, log-
logistic, log-normal and log-skew-normal distributions. No skewness was detected
by the log-skew-normal AFT model, and the log-likelihood value of the Weibull, log-
normal, and log-logistic AFT model were -3204.4, -3191.9, and -3163.7, respectively.
Based on the AIC criterion, we selected the log-logistic model. To check the model
adequacy, we stratified the linear predictor values XT

j β̂ into seven categories. The
estimated survivor functions were computed for each patient and averaged within
each stratum. Figure 3(a) shows the fitted survival functions and the Kaplan-Meier
estimates for the first, fourth, and seventh strata of the skew-normal AFT model.
The data are fit reasonably well by the considered model, especially before 30 months
of follow-up, where most of the observed events are concentrated.

Secondly, we performed a multivariate analysis where centre effects were mod-
elled through a shared random effect. We fitted a shared AFT model with skew-
normal random effects and logistic error terms (see the third column of Table 3).
The estimated skew parameter is -0.78 (se= 0.21). Both Wald type and likelihood
ratio tests indicates that the centre effect is negatively skewed. Further, we fitted the
penalized method of Therneau et al. (2003) with logistic error term and log-normal
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(penalized log-likelihood value= -7442.25) or gamma distributed frailties (penalized
log-likelihood value= -7418.25) (see the first two columns of Table 3). The great
difference in the values of the two penalized likelihoods confirms what was detected
by the proposed model. Further, it is interesting to note that the frailty distribution
has little or no effect on the estimates of the fixed effects (see Table 3).

Finally, we extended the model by including the country effect. Centres are
clustered into 26 countries, with a mean of 118 centres per country (median 30,
minimum=1, maximum=690). The log-transformed PFS time was modelled by

Ykij = XT
kijβ + aki + ck + ωeekij , (10)

where the centre random effect aki ∼ SNCP (0, σa, γ1,a) was independent of the
country random effect ck ∼ SNCP (0, σc, γ1,c), k = 1, ..., 26. The error term ekij was
assumed to be logistic distributed. Note that model (10) is slightly different from the
general model discussed in Section 2.4. In fact, the sum of two independent skew-
normal random variables is not generally skew-normal. The marginal likelihood was
approximated using Gaussian quadrature, with 100 nodes for each random effect.
The estimated parameters of the random effects are (σ̂c, γ̂1,c) = (0.27,−0.99) and
(σ̂a, γ̂1,a) = (0.19,−0.60). The other estimated parameters are substantially un-
changed with respect to the model without country effects. Both random effects
are significant and left skewed. Figure 3(b) shows the approximated profile log-
likelihood of the shape parameter α1,c (which is just a reparametrization of γ1,c).
It is evident from the profile log-likelihood that the shape parameter is significantly
different from zero, so the dependence due to the country effect is slowly decreasing
over time, as shown in Figure 2(c).

3 Discussion

In this paper, we have described accelerated failure time models with skew-normal
distributed (Azzalini, 1985) random effects and/or error terms.

For univariate data, the model is an extension of the lognormal AFT model,
with an additional parameter to allow for non-zero skewness of the error term. In
order to prevent bias of the shape parameter, we proposed a penalized likelihood
approach. Simulation results show that, in the presence of skewed error terms, the
proposed model outperforms the classical log-normal AFT model.

For multivariate data, we considered log-linear regression models with multivari-
ate skew-normal (Azzalini & Dalla Valle, 1996) random effects and general distri-
bution of the error terms. We derived the marginal likelihood for the model with
normal error terms and we studied the effect of the skewness on bivariate survival
times with shared random effects. We showed that the skewness parameter qual-
itatively changes the cross-ratio function. It follows that the proposed model is
useful to better understand the dependence structure between multivariate failure
times. To estimate the parameters, we proposed to maximize the marginal likelihood
approximated through Gaussian quadrature. In order to speed up the estimation
procedure we developed a two-step procedure where at the first step parameters
are estimated assuming Gaussian random effects. Simulation results showed good
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performance of this approach. As illustration, we analyzed a real data of multiple
myeloma patients with autologous transplantation. We fitted a hierarchical AFT
model with logistic error terms and skew normal centres nested within skew normal
countries. Both random effects were negatively skewed, confirming the usefulness of
the proposed model.

Recent literature (Komárek et al., 2005; Komárek & Lesaffre, 2006; Lambert et
al., 2004) has emphasized the fact that often the choice of the distribution of the
random effect is not important. This is true for small/moderate sample sizes. On the
other hand, for large samples, AFT models with flexible distribution of the random
effects are crucial to arrive at a good description of the dependence structure present
in the data.

The R code used in this paper is available upon request to the author.

Appendix

Appendix A: bias correction for the shape parameter αe

In order to solve the problem of the monotone likelihood in αe, we propose a penal-
ized likelihood approach

`(θ)∗ = `(θ) +
1
2

ln[−∂
2`(θ)
∂α2

e

],

where `(θ) is given by Equation (4) with fe($) = 2φ($)Φ(αe$) and Se($) =
1−Φ($) + 2OT ($,αe). This approach is similar in spirit to the Firth’s method for
bias prevention (Firth, 1993) in generalized linear models. Sartori (2006) proposed to
use Firth’s correction for the shape parameter of the scalar skew-normal distribution.

Appendix B: marginal likelihood derivation when the error term is normal

Let Yi = ln(Ti) be a (ni × 1) vector of the log-transformed times of the i-th cluster,
i = 1, ...,m

Yi = Xiβ + Zibi + ei,

where bi ∼ SNq,DP (0,Ωb, αb) and ei ∼ Nn(0,Ωei). For the skew-normal distribution
we use the parametrization proposed by Azzalini & Capitanio (1999). It follows that

Yi|bi ∼ Nni,DP (Xiβ + Zibi,Ωei),
bi ∼ SNq,DP (0,Ωb, αb).

The sum of a multivariate SN variate and an independent multivariate normal
variate is Yi ∼ SNn(ξi,Ωi, αi), where ξi = Xiβ, Ωi = ZiΩbZ

T
i + Ωei and

αi =
ωiΩi

−1BT
i αb

(1 + αTb (Ω̄b −BiΩ−1
i BT

i )αb)1/2

Bi = ω−1
b ΩbZ

T
i .

(see Appendix C). In Appendix C, αi is also derived for the case when bi ∼ Nq(0,Ωb)
and ei ∼ Nn(0,Ωei, αei).
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In the following, for ease of notation, the subscript i is omitted. Let d =
∑n

k=1 dk
be the number of observed failure times in the group. If there are censored obser-
vations among the n individuals, then rewrite Y = (YD, YC), where YD is the d-
dimensional vector of the log death times and YC is the n− d-dimensional vector of
censored observations. The contribution to the likelihood for the group of n obser-
vations is the product of the density function for YD times the conditional survival
function of YC , given YD evaluated at yD = ln[tD].

First of all, we consider the contribution of the n observed failure times. Their
marginal distribution is YD ∼ SNnD,DP (ξD,ΩDD, αD(C)), so their contribution to
the likelihood is

LD = 2φd(yD − ξD; ΩDD)Φ(τC·D),

where τC·D = αTD(C)ω
−1
D (yD−ξD), with Ω̄CC·D = Ω̄CC− Ω̄CDΩ̄−1

DDΩ̄DC and αD(C) =

(αD + Ω̄−1
DDΩ̄DCαC)(1 + αTCΩ̄CC·DαC)−1/2, which is the shape parameter of the

marginal distribution of YD.
Now we consider the contribution to the likelihood of the censored observations.

The conditional distribution of YC |YD ∼ SNn−d,DP (ξC·D,ΩCC·D, αC·D, τC·D) is an
extension of the classical skew normal distribution with an additional parameter
(τC·D). The multivariate survival function of this conditional distribution is given
by Capitanio et al. (2003)

LC = P (YC ≥ yC |YD = yD) =
1

Φ(τC·D)

∫ ∞
$∗

C·D

φn−d+1(u, Ω̄∗CC·D)du,

where

Ω̄∗CC·D =
(

1 −δ̃TC·D
−δ̃C·D Ω̃CC·D

)
,

Ω̃CC·D = ω̃−1
C·DΩ̄CC·Dω̃

−1
C·D is the correlation matrix associated to Ω̄CC·D and

δ̃C·D = Ω̃CC·DαC·D/(1 + αTC·DΩ̃CC·DαC·D)1/2

$∗C·D = (τC·D, (yC − ξC·D)ω̃−1
C·D)T .

The log-likelihood is given by the sum of the contributions of the m independent
clusters:

` =
m∑
i=1

logLD,i + logLC,i.

If random effects are assumed to have zero means, then the location parameter
of Yi becomes ξi = XT

i β −
√

2/πδ, with δ = Ω̄α(1 + αT Ω̄α)−1/2.

Appendix C: derivation of the multivariate α

The sum of a multivariate SN variate and a multivariate normal variate is SN. This
can be easily seen using the moment generating function. The cumulant generating
function of the SN b ∼ SNq,DP (0,Ωb, αb) is

Kb(ti) =
1
2
tTΩbt+ ζ0(δTb ωbt),
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where
δb = Ω̄bαb(1 + αTb Ω̄bαb)−1/2.

The cumulant generating function of e ∼ Nn(0,Ωe) is

Ke(ti) =
1
2
tTΩet.

The cumulant generating function of Y = Zb+ e, is given by

KY (ti) =
1
2
tTΩt+ ζ0(δTb ωbZ

T t),

where Ω = ZΩbZ
T + Ωe. It follows that the distribution is still SN with δTω =

δTb ωbZ
T , so δT = δTb ωbZ

Tω−1. Further, using the following relations α = (1 −
δT Ω̄δ)−1/2Ω̄−1δ and δb = (1 + αTb Ω̄bαb)−1/2Ω̄bαb, then

α =
ωΩ−1BTαb

(1 + αTb (Ω̄b −BΩ−1BT )αb)1/2

B = ω−1
b ΩbZ

T .

If we assume that the residual term is skewed b ∼ Nq(0,Ωb) and e ∼ SNn,DP (0,Ωe, αe),
then Y ∼ SNn,DP (ξ,Ω, α), with

α =
ωΩ−1BTαe

(1 + αTe (Ω̄e −BΩ−1BT )αe)1/2

B = ω−1
e Ωe.
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Figure 1: Log-skew-normal hazard function with mean µ = 0, and different values
of standard deviation σ and skewness γ1. Straight, dotted and dashed lines denote
the hazard function with γ1 = 0, -0.9, and 0.9, respectively.
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Figure 2: Cross-ratio function of bivariate AFT models with skew-normal random
effect and different distributions of the error term. Figure (a): marginal survival
function with normal error term and β0 = (0, 0)T , σb = 0.5, ωe = 1. Figures (b), (c),
and (d) show the cross-ratio functions CR(t, t) with error term following the normal,
the logistic, and the extreme value distribution, respectively. Straight, dotted, and
dashed lines denote the cross-ratio function with γ1,b = 0, -0.9, and 0.9, respectively.



REFERENCES 17

0 20 40 60 80 120

0.0
0.2

0.4
0.6

0.8
1.0

(a)

time

Es
tim

ate
d s

ur
viv

al 
fun

cti
on

−100 −50 0 50 100

−3
12

2
−3

12
1

−3
12

0
−3

11
9

−3
11

8

(b)

α1,c

Pr
ofi

le 
log

−li
ke

lih
oo

d

Figure 3: Multiple myeloma data analysis. Figure (a): Kaplan-Meier estimates and
fitted log-logistic survival functions (dashed lines) for patients with low, average,
and good prognosis, respectively. Figure (b): hierarchical model with skew-normal
centres nested within skew-normal countries. Profile log-likelihood of the shape
parameter α1,c.

Table 1: Simulation results of data generated from the univariate AFT model with
skew normal error terms eij ∼ SNCP (0, 1, γ1,e). Results are based on 500 simulations
with n = 200 individuals.

log-normal log-skew-normal
Bias MSE Bias MSE

Param. true mean (×100) (×100) mean (×100) (×100)

β0 5.00 5.07 6.62 0.97 5.00 -0.24 0.52
β1 -0.30 -0.32 -1.77 0.69 -0.31 -0.92 0.52
ωe 1.00 1.10 9.88 1.61 1.00 -0.10 0.39
γ1,e -0.90 - - - -0.84 5.98 1.95

β0 5.00 5.00 -0.09 0.56 5.00 0.14 0.60
β1 -0.30 -0.30 0.20 0.54 -0.30 0.24 0.55
ωe 1.00 0.99 -0.65 0.36 1.00 -0.02 0.41
γ1,e -0.90 - - - 0.04 3.92 5.66

β0 5.00 4.97 -2.68 0.61 5.01 0.75 0.58
β1 -0.30 -0.31 -0.51 0.52 -0.30 -0.32 0.28
ωe 1.00 0.92 -7.63 0.93 1.00 0.25 0.46
γ1,e -0.90 - - - 0.90 -0.45 0.30
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Table 2: Simulation results of data generated from the multivariate AFT model
with random effects bij ∼ SNCP (0, σ2

b , γ1,b) and normal error terms eij ∼ N(0, 1).
Results are based on 500 simulations with G = 200 clusters and ni = 10 individuals
per cluster.

Emp. Bias MSE
Param. true mean SE SE (×100) (×100)

β0 5.00 4.99 0.04 0.04 -1.32 0.21
β1 -0.30 -0.30 0.03 0.02 0.36 0.07
ωe 1.00 0.95 0.02 0.02 -5.03 0.29
σb 0.50 0.51 0.04 0.04 1.16 0.19
γ1,b -0.90 -0.78 0.22 0.23 12.11 6.56

β0 5.00 4.98 0.04 0.04 -1.71 0.21
β1 -0.30 -0.30 0.03 0.02 0.24 0.07
ωe 1.00 0.95 0.02 0.02 -4.95 0.29
σb 0.50 0.50 0.04 0.04 0.31 0.14
γ1,b 0 0.01 0.30 0.30 0.87 8.90

β0 5.00 4.99 0.05 0.04 -1.37 0.24
β1 -0.30 -0.30 0.02 0.02 0.04 0.06
ωe 1.00 0.95 0.02 0.02 -4.55 0.25
σb 0.50 0.49 0.04 0.04 -0.83 0.16
γ1,b 0.90 0.81 0.21 0.20 -9.25 5.05

Table 3: Model fits to the multiple myeloma data with logistic error term.

β̂ (SE)
Variable Penal gamma Penal lognormal log-skew-normal
Intercept 49.61(20.23) 49.24(19.72) 49.27(19.75)
Stage -0.16(0.03) -0.15(0.03) -0.16(0.03)
Status at cond. (no CR vs CR) -0.33(0.08) -0.31(0.08) -0.31(0.08)
Serum beta(2)-mic. > 4 vs < 4 -0.28(0.05) -0.28(0.05) -0.28(0.05)
Age at transplant (+10 yr) -0.02(0.03) -0.02(0.03) -0.04(0.03)
Year (+10) -0.23(0.10) -0.22(0.10) -0.23(0.10)
Gender (F vs M) 0.13(0.05) 0.12(0.05) 0.13(0.05)
Interval diag.-auto. (+1 yr) -0.04(0.02) -0.04(0.02) -0.04(0.02)
Scale (ω̂e) 0.62(0.01) 0.63(0.01) 0.64(0.01)
Centre SD (σ̂b) 0.27(-) 0.18(-) 0.18(0.07)
Centre skew (γ̂1,b) -0.78(0.21)
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