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Italy

Abstract: Competition between rival brands within the same category gives rise to special
competition/substitution effects of great interest for involved firms. In the companion article,
we studied balanced models that are adequate to describe a homogeneous category for which
within-brand and cross-brand word-of-mouth effects are indistinguishable. Conversely, in
this paper we propose an unbalanced model that, besides separating these two imitative
sources, also allows for a change in the parameter values of the first entrant as soon as the
second one enters the market. We prove that our model has a closed-form solution allowing
parameters to be estimated with sales data. Moreover, we compare our model with other
unbalanced models, both from a theoretical point of view and from an empirical one, by
comparing their performance on pharmaceutical drug data.

Keywords: multivariate cellular automata, multivariate diffusion process, generalized
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1 Introduction

The competition among different brands within a common category may give rise to
significant interaction effects in the diffusions of each product. As in the compan-
ion article, Guseo and Mortarino (2010a), we consider multi-product growth models
that refer to a category based on substitute products. In this sense, we assume that
category level diffusions generate specific diffusion processes that are product class
driven (Parker and Gatignon, 1994). In other words, we assume that there is a com-
mon residual market for both products, which is obtained as the difference between
the initial market potential and the past category sales. This assumption differs, for
instance, from Peterson and Mahajan (1978), where brand specific residual markets
are assumed.

A relevant aspect of multi-product growth modelling is related to the interper-
sonal communication effects due to word-of-mouth. In the companion article, we
analyzed a balanced model, that is a model where the word-of-mouth (w.o.m.) ef-
fect does not separate the adoptions of each brand from those of the competitor.
However, the relative knowledge may be decomposed in brand specific factors (Peter-
son and Mahajan, 1978; Kalish et al., 1995; Mahajan et al., 1993). The components
of interpersonal communication may be focused on two main contributions which
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are proportional to the adoptions of each brand, both within-brand and cross-brand
effects. Within-brand component depicts the contribution of relative knowledge that
is specific to the current brand. Cross-brand component is a contribution (positive or
negative) of interpersonal communication on current sales, which depends upon the
relative knowledge of competing products in the category. In this paper, we focus on
unbalanced models, that is models that distinguish within-brand from cross-brand
w.o.m. effects.

A further crucial aspect in multi-product growth modelling is the entrance tim-
ing of different competitors. In current literature, much effort is concentrated in
simultaneous or synchronic modelling, a special case. Only a few papers deal with
diachronic models. An important contribution in this context is developed in Savin
and Terwiesch (2005). In addition, a necessary adjustment has been proposed in
Guseo and Mortarino (2010b). Savin and Terwiesch propose an unbalanced model,
with exogenously determined parameters, that is applied in order to estimate the op-
timal launch timing of a competitor. In that work, a very interesting result pertains
to the equivalence of any diachronic competition with a corresponding synchronic
one. However, perhaps due to the different aim of their work, Savin and Terwiesch
(2005) do not deal with the diffusion of the first entrant before competition. For a
reduced application of Savin and Terwiesh modelling see Libai et al. (2009).

A more general approach takes into account entrance differences and regime
changes in the parameters, which may describe, in particular, a non-uniform be-
haviour of the first entrant over time. Recent approaches emphasize the rational
claim that simultaneous multi-product growth modelling had to identify and jointly
estimate parameters of different and parallel regimes in order to detect and test
specific perturbation effects due to a late entrant. This aim is strongly simplified if
the corresponding complex system’s equations give rise to closed-form solutions for
the corresponding multiple regimes.

In this article, we start from a general duopolistic diachronic model, UNID,
which assumes category level diffusions and totally free within-brand and cross-
brand effects that may change after the late entrance. This general framework does
not have a closed-form solution. With a weak restriction on the equivalence of
“discrimination” between specific within-brand and cross-brand effects in interper-
sonal communication, we obtain a duopolistic multi-regime model, UNCD, with a
closed-form solution. This model includes, as special cases, the Savin and Terwi-
esch (2005) model, STD (and consequently the more restricted one by Libai et al.,
2009, LMPD) and also includes the balanced GBD model described in Guseo and
Mortarino (2010a) (and, therefore, the nested model KBKD by Krishnan et al.,
2000).

The paper is organized as follows. In Section 2, we introduce a duopolistic or
twofold diachronic competition model, UNID, and discuss the first weak restriction,
which leads to UNCD between “discrimination” parameters δ and γ. These param-
eters describe specific separation between within-brand and cross-brand effects in
interpersonal communication. In Section 3, we report the main results concerning
the UNCD model and its components. Moreover, we obtain explicit forms for the
corresponding synchronic case, UNC. Section 4 discusses the relative generality of
the proposed model UNCD (or UNC) with respect to other relevant constrained
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models: STD, LMPD, GBD and KBKD or related synchronic versions, ST, LMP,
GB, KBK. Section 5 depicts an application to two pharmaceutical drugs and com-
pares the obtained results with corresponding nested models. Section 6 is devoted to
final remarks and discussion. In the Appendix, we report the details of the UNCD
solution, and its coherence with the solutions of the GBD model presented in the
companion article, Guseo and Mortarino (2010a).

2 Twofold diachronic competition: the UNID model

Consider a situation in which two brands of a common category compete for the same
customers. We will analyze here a case in which the brands are similar enough to
each other to have a common market potential, m, and, correspondingly, a common
residual market, m−z(t), where z(t) = z1(t)+z2(t) denotes the cumulative category
sales, zi(t), i = 1, 2, the cumulative sales of product i.

Competition might start since the common launch (synchronic competition) or
it may arise after a monopolistic period of time (diachronic competition). Since it
is a common experience to observe the late entrance of a new product and exact
synchrony is rather infrequent, we will focus here on diachronic competition and
evaluate synchronic solutions as a special case. Let us consider a twofold case with
the late entrance of the second competitor at time t = c2 with c2 > 0 where t = 0
denotes the time origin for the first competitor:

z′1(t) = m

{[
p1a + q1a

z(t)
m

]
(1− It>c2)+

+
[
p1c + (q1c + δ)

z1(t)
m

+ q1c
z2(t)
m

]
It>c2

}[
1− z(t)

m

]
z′2(t) = m

[
p2 + (q2 − γ)

z1(t)
m

+ q2
z2(t)
m

] [
1− z(t)

m

]
It>c2 (1)

m = ma(1− It>c2) +mcIt>c2 ,

z(t) = z1(t) + z2(t)It>c2 .

Here z′i(t), i = 1, 2, represents instantaneous adoptions of product i.
The previous system describes a unified twofold model, UNID (Unified totally In-

dependent Diachronic Model), that takes into account different aspects of diachronic
diffusion. It is assumed that the first entrant product is characterized by three pa-
rameters: external influence p1a, internal influence q1a, and market potential ma,
during the stand alone period, t ≤ c2. The competition period, for t > c2, is charac-
terized by a free behavior of all involved parameters in order to describe situations in
which a new product entering the market may change the older product’s diffusion.
Market potential assumes a new value, mc, that may be lower or greater than the
stand alone state, ma. The first entrant product presents a new external influence
p1c and two w.o.m. effects. The first one takes into account imitation due to informa-
tion conveyed by adopters of the same brand (modulated through the within-brand
imitative coefficient (q1c + δ)); the second one describes imitation due to relevant
information conveyed by adopters of the competing product (modelled through the



4 Renato Guseo, Cinzia Mortarino

cross-brand imitative coefficient, q1c). The second entrant has three corresponding
free parameters: p2 for external influence, q2 for the specific within-brand effect and
(q2 − γ) for cross-brand communication. We denote here the difference between
the within-brand effect and the cross-brand effect of each product with the term
“discrimination.” Both discriminations δ and γ may be either positive or negative
according to specific categories with within-brand effect either stronger or weaker
than cross-brand one.

This structure can be interpreted also in a different way, if the first two equations
of system (1), for t > c2, are rearranged as follows:

z′1(t)It>c2 ∝ p1c + q1c
z1(t) + z2(t)

m
+ δ

z1(t)
m

z′2(t)It>c2 ∝ p2 + (q2 − γ)
z1(t) + z2(t)

m
+ γ

z2(t)
m

Previous equations describe a system where each product is characterized by an
imitation coefficient at the category level (q1c, for the first entrant, or q2− γ, for the
second one) and a different imitation coefficient specific for the brand level (δ or γ).

Model (1) was also stated in Savin and Terwiesch (2005) and Libai et al. (2009)
assuming that competition does not modify the parameters of the first competitor.
Moreover, as explained in detail in Section 4, the models effectively used in these
papers and for which a closed-form solution is given, are further restricted with
additional constraints.

Notice that the last equation in (1) denotes the aggregate diffusion of the category
product. It is characterized by a closed-form solution if the constraint

q1c + δ + q2 − γ = q1c + q2 ⇔ γ = δ (2)

is satisfied, i.e., the local discriminations, in terms of different sources of w.o.m., are
equivalent. For this situation, we obtain,

z′(t) = m

{[
p1a + q1a

z(t)
m

]
(1− It>c2)+

+
[
(p1c + p2) + (q1c + q2)

z1(t)
m

+ (q1c + q2)
z2(t)
m

]
It>c2

}[
1− z(t)

m

]
= m

{[
p1a + q1a

z(t)
m

]
(1− It>c2)+ (3)

+
[
(p1c + p2) + (q1c + q2)

z(t)
m

]
It>c2

}[
1− z(t)

m

]
.

The aggregate equation is a two–regime Bass model: BM(ma, p1a, q1a) with the
initial condition z(0) = 0 for the first part, and BM(mc, p1c + p2, q1c + q2) with
the initial condition zs = z(c2) = z1(c2) for the second one (Guseo and Mortarino,
2010b). We denote system (1) under restriction (2) the UNCD (UNified Constrained
Diachronic) model.
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3 Analysis of the UNCD model

In expanded form, model (1) with the constraint (2) gives

z′1(t) = m

{[
p1a + q1a

z(t)
m

]
(1− It>c2)+ (4)

+
[
p1c + (q1c + δ)

z1(t)
m

+ q1c
z2(t)
m

]
It>c2

}[
1− z(t)

m

]
z′2(t) = m

[
p2 + (q2 − δ)

z1(t)
m

+ q2
z2(t)
m

] [
1− z(t)

m

]
It>c2 (5)

m = ma(1− It>c2) +mcIt>c2

z(t) = z1(t) + z2(t)It>c2 .

The constraint (2) imposes that the discriminations δ and γ between the w.o.m.
effects on a product due to adopters of the same product and adopters of the com-
petitor one are the same for the two products: δ = γ. This restriction is obviously
weaker than the assumption of common imitative parameters for both products
for which δ = γ = 0. As defined above, discrimination represents the difference
between within-brand w.o.m. effect and cross-brand w.o.m. effect. In the border-
line case where products are completely identical to each other, brands can not be
distinguished. Information conveyed by an adoption of any brand is equivalent to
information conveyed by an adoption of the competitor (null discrimination). Con-
versely, in the less unusual case where substitute products do somehow differ, each
product receives a different feedback from adoptions of its own brand and adoptions
of its competitor (the discrimination is either positive or negative, according to the
level of satisfaction/dissatisfaction of adopters). In these terms, discrimination can
be interpreted as a measure of difference between the two information sources. It
may be reasonable to model it symmetrically, δ = γ.

If we study model (4), we observe that before competition, the first entrant’s
sales follow a Bass model:

z1(t)It≤c2 = ma
1− e−(p1a+q1a)t

1 + q1a
p1a
e−(p1a+q1a)t

. (6)

As explained above, after the beginning of the competition, the aggregate process
is a standard Bass model BM(mc, p1c + p2, q1c + q2), with the initial condition zs =
z(c2) = z1(c2), where

zs = ma
1− e−(p1a+q1a)c2

1 + q1a
p1a
e−(p1a+q1a)c2

.

Let p = p1c+p2 and q = q1c+q2. It follows that the aggregate cumulative sales cz(t)
are

cz(t) = mc

1 + q
p
zs
mc
−
(

1− zs
mc

)
e−(p+q)(t−c2)

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

It>c2 . (7)
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In the Appendix it is proven that, for δ 6= q,

z1(t) = mc
q1c

(q − δ)
w(t) +

q2 − δ
q − δ

zs +

+
[
mc

p

δ

(
p1c

p
− q1c

q − δ

)
+
q2 − δ
q − δ

zs

] [
y(t)

δ
q − 1

]
(8)

z2(t) = mc

(
q2 − δ
q − δ

)
w(t)− q2 − δ

q − δ
zs + (9)

+
[
mc

p

δ

(
p2

p
− q2 − δ

q − δ

)
− q2 − δ

q − δ
zs

] [
y(t)

δ
q − 1

]
, (10)

where

w(t) =
1 + q

p
zs
mc
−
(

1− zs
mc

)
e−(p+q)(t−c2)

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

(11)

y(t) =
1 + q

p

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

. (12)

Observe that w(t) represents the relative aggregate sales, cz(t)/mc. In the special
case when δ = q, the solution of the system (4) is:

z1(t) =

[
mc

(
p1c

p
− q1c

q

)
+ zs

q

p

1− p1c
p + q1c

q

1 + q
p
zs
mc

]
w(t) + zs

(
1− p1c

p + q1c
q

)
(

1 + q
p
zs
mc

) +

+mc
q1cp

q2

(
1 +

q

p

zs
mc

)
y(t) ln y(t) (13)

z2(t) =
(

1− p1c

p
+
q1c

q

)(
mc − zs

q

p

1
1 + q

p
zs
mc

)
w(t)− zs

(
1− p1c

p + q1c
q

)
(

1 + q
p
zs
mc

) +

−mc
q1cp

q2

(
1 +

q

p

zs
mc

)
y(t) ln y(t). (14)

The three terms in equation (8) can be interpreted respectively as,

1. a baseline process, i.e., a fraction of the aggregate process: b1(t) =
q1c

q − δ c
z(t);

2. a constant departure: D1 =
q2 − δ
q − δ

zs;

3. a time dependent departure, r1(t), (monotonically increasing or decreasing,
according to the parameters’ values).

In a similar way, equation (10) is composed by the baseline process, i.e., b2(t) =
q2−δ
q−δ cz(t), and by departures D2 = −D1 and r2(t) = −r1(t). The baseline compo-

nents denote that the aggregate sales are split between the competitors according
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to the factors’ shares q1c/(q − δ) and (q2 − δ)/(q − δ), respectively. The departure
components allow a deeper analysis of the competition dynamics and quantify the
extra amount of sales achieved by one of the competitors at the other one’s expense.
The relative size of the three components can be easily interpreted in real applica-
tions, once model fitting to sales data produces parameters’ estimates (see, for an
example, Sect. 5).

Asymptotically, the solutions (8) and (10) converge to:

lim
t→∞

z1(t) = mc
q1c

q − δ
+
q2 − δ
q − δ

zs +

+
[
mc

p

δ

(
p1c

p
− q1c

q − δ

)
+
q2 − δ
q − δ

zs

]( 1 + q
p

1 + q
p
zs
mc

) δ
q

− 1

 (15)

lim
t→∞

z2(t) = mc
q2 − δ
q − δ

− q2 − δ
q − δ

zs +

+
[
mc

p

δ

(
p2

p
− q2 − δ

q − δ

)
− q2 − δ

q − δ
zs

]( 1 + q
p

1 + q
p
zs
mc

) δ
q

− 1

 . (16)

For the sake of completeness, we observe that in the special case of a synchronous
competition, the original system (4) reduces to:

z′1(t) = m

[
p1 + (q1 + δ)

z1(t)
m

+ q1
z2(t)
m

] [
1− z(t)

m

]
(17)

z′2(t) = m

[
p2 + q2

z2(t)
m

+ (q2 − δ)
z1(t)
m

] [
1− z(t)

m

]
. (18)

The solutions’ expressions simplify, for δ 6= q, to:

z1(t) = m
q1

q − δ
1− e−(p+q)t

1 + q
pe
−(p+q)t

+m
p

δ

(
p1

p
− q1

q − δ

)
[

1 + q
p

1 + q
pe
−(p+q)t

] δ
q

− 1

 (19)

z2(t) = m
q2 − δ
q − δ

1− e−(p+q)t

1 + q
pe
−(p+q)t

+m
p

δ

(
p2

p
− q2 − δ

q − δ

)
[

1 + q
p

1 + q
pe
−(p+q)t

] δ
q

− 1

 .(20)

On the other hand, for δ = q 6= 0, we obtain

z1(t) = m

(
p1

p
− q1

q

)
1− e−(p+q)t

1 + q
pe
−(p+q)t

+m
q1p

q2

[
1 + q

p

1 + q
pe
−(p+q)t

]
ln

[
1 + q

p

1 + q
pe
−(p+q)t

]

z2(t) = m

(
1 +

p2

p
− q2

q

)
1− e−(p+q)t

1 + q
pe
−(p+q)t

+

+m
p

q

(
q2

q
− 1
)[ 1 + q

p

1 + q
pe
−(p+q)t

]
ln

[
1 + q

p

1 + q
pe
−(p+q)t

]
.
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Table 1: Synchronic models. UNI=unified model, UNC=unified model with a one–
dimensional constraint, GB=I part model, ST=Savin and Terwiesch (2005) model,
KBK= Krishnan et al. (2000) model, LMP= Libai et al. (2009) model. PR1= first
entrant product, PR2=second entrant product, AGG= aggregate model.

Synchronic Constraints
Models inn im within im cross mkt pot imposed on UNI

UNI PR1 p1 q1 + δ q1

(# p. 7) PR2 p2 q2 q2 − γ m

(# a.p. 4) AGG p1 + p2 q1 + q2 (δ − γ)(∗)

UNC PR1 p1 q1 + δ q1

(# p. 6) PR2 p2 q2 q2 − δ m γ = δ
(# a.p. 3) AGG p1 + p2 q1 + q2

GB PR1 p1 q1 q1 δ = 0
(# p. 5) PR2 p2 q2 q2 m γ = 0
(# a.p. 3) AGG p1 + p2 q1 + q2

ST PR1 p1 q1 q1 − δ
(# p. 6) PR2 p2 q2 q2 − δ m γ = δ
(# a.p. 3) AGG p1 + p2 q1 + q2 − δ
KBK PR1 p1 q1 q1 δ = 0
(# p. 5) PR2 p2 q2 q2 m γ = 0
(# a.p. 3) AGG p1 + p2 q1 + q2

LMP PR1 p1 q1 q1 − δ q2 = q1 + δ
(# p. 5) PR2 p2 q1 q1 − δ m q2 − γ = q1

(# a.p. 3) AGG p1 + p2 2q1 − δ (⇒ γ = δ)

(∗)(w.r.t. z1(t))

H

H

H

H

4 A comparison with other models

Condition (2) is satisfied by three different models within UNCD in the sense that
they add further restrictions. We examine comparatively STD (ST) by Savin and
Terwiesch (2005), KBKD (or KBK) by Krishnan et al. (2000), LMPD (or LMP)
by Libai et al. (2009) and GBD (or GB) described in the companion paper. The
parametric characterization of above mentioned models is specified in Table 1 (for
the synchronic case) and in Table 2 (for the diachronic case, D suffix).

We observe that GBD is a simple reduction imposed on UNCD by a further
restriction of equivalence between within-brand and cross-brand effects. In GBD
we assume δ = γ = 0. There is no differential contribution to the knowledge of
competing products arising from different past adoptions (or adopters). We remark
that equations (8) and (10) generalize the solutions of the GBD model found in Guseo
and Mortarino (2010a), since the latter represent the limit, as δ → 0, of the former
(see proof in the Appendix). We notice that KBKD is a nested model within GBD
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Table 2: Diachronic models. UNID=unified model, UNCD=unified model with a
one–dimensional constraint, GBD= I part model, STD=Savin and Terwiesch (2005)
model, KBKD= Krishnan et al. (2000) model, LMPD= Libai et al. (2009) model.
PR1= first entrant product, PR2=second entrant product, AGG= aggregate model.

Before Under
competition competition

Diachronic t < c2 t ≥ c2 Constraints
Models mkt im im mkt imposed

inn im pot inn within cross pot on UNID

UNID PR1 p1a q1a p1c q1c + δ q1c

(# p. 10) PR2 0 0 ma p2 q2 q2 − γ mc

(# a.p. 7) AGG p1a q1a p1c + p2 q1c + q2 (δ − γ)(∗)

UNCD PR1 p1a q1a p1c q1c + δ q1c

(# p. 9) PR2 0 0 ma p2 q2 q2 − δ mc γ = δ
(# a.p. 6) AGG p1a q1a p1c + p2 q1c + q2

GBD PR1 p1a q1a p1c q1c q1c δ = 0
(# p. 8) PR2 0 0 ma p2 q2 q2 mc γ = 0
(# a.p. 6) AGG p1a q1a p1c + p2 q1c + q2

STD PR1 p1a q1a p1a q1a q1a − δ p1c = p1a

(# p. 6) PR2 0 0 m p2 q2 q2 − δ m q1c + δ = q1a; γ = δ
(# a.p. 5) AGG p1a q1a p1a + p2 q1a + q2 − δ mc = ma (= m)
KBKD PR1 p1a q1a p1a q1c q1c p1c = p1a; δ = 0
(# p. 6) PR2 0 0 ma 0 q2 q2 mc p2 = 0; γ = 0
(# a.p. 5) AGG p1a q1a p1a q1c + q2

LMPD PR1 p1a q1a p1a q1a q1a − δ p1c = p1a; q1c + δ = q1a

(# p. 5) PR2 0 0 m p2 q1a q1a − δ m q2 = q1c + δ; q2 − γ = q1c

(# a.p. 5) AGG p1a q1a p1a + p2 2q1a − δ (⇒ γ = δ); mc = ma (= m)

(∗)(w.r.t. z1(t))

because it adds two further constraints: no possible variation in external influence
parameter for the first entrant during competition, p1c = p1a; and the exclusion of
an external effect for the second entrant, p2 = 0.

On the other hand, model STD is based on a different class of reductions imposed
on UNCD. In particular, it is assumed that there is no variation in the external
influence parameter during competition for the first entrant, p1c = p1a, and that the
within-brand effect for the first entrant, q1c + δ does not change under competition,
q1c + δ = q1a. A further restriction, which may be weakened, refers to the assumed
constant market potential in the two regimes, ma = mc. We underline that the
solution to the UNCD model is coherent also with the solution of the STD model,
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Figure 1: Cumulative and rate sales (quarterly data). Source: IMS-Health, Italy.
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if equation (15) of Savin and Terwiesch (2005) is corrected as explained in Guseo
and Mortarino (2010b). The special case δ = q corresponds in Savin and Terwiesch
(2005) notation to α1 = α2 = 1, although, probably due to a typo, in the cited
equation the condition α1 + α2 = 2 is used.

In their paper, Savin and Terwiesch (2005) write that closed-form solutions can
still be obtained also for the case ma 6= mc. In the rest of their paper, however,
the authors assume that ma = mc. For this reason, we will denote by STD their
model with that constraint, and by STDE (extended) the model obtained when that
assumption is relaxed. Both versions of Savin and Terwiesch (2005) model will be
applied to our data in the next section, in order to compare them with the UNCD
model. We notice that LMPD is a nested model within STD because it adds a
further constraint. In particular, the second entrant does not have a specific within-
brand effect during competition, but duplicates the corresponding one of the first
entrant, q2 = q1a = q1c + δ.

A correct comparison between GBD and STD, and correspondingly between
KBKD and LMPD, may not be addressed theoretically: it is a function of observed
data. Preference depends upon the real-world situation. Obviously, the UNCD in-
cludes monotonically two different branches GBD (⊃ KBKD) and STD (⊃ LMPD),
and must have, therefore, a better performance.

Previous monotonicity conditions for the diachronic case are obviously confirmed
in the synchronic case summarized in Table 1. For this case we observe the natural
equivalences UNC ↔ ST and GB ↔ KBK.

5 An application

Our data, provided by IMS-Health, Italy, consist of the cumulative quarterly number
of packages sold in Italy by Trigger and Raniben. Data are available until the third
quarter of 1991 (32 observations for Trigger and 20 observations for Raniben. See
also the companion article, Guseo and Mortarino (2010a).

The equations stemming from model (4), i.e., (6), (8) and (10), were fitted si-
multaneously by applying the Beauchamp and Cornell (1966) technique. Parameter
estimates are summarized in Table 3 and the agreement between observed and fitted
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Table 3: Estimation results for UNCD model, (4).
Estimate Standard Error 95% Confidence Interval

ma 1330.09 60.6351 (1208.57, 1451.61)
mc 9792.73 899.989 (7989.11, 11596.3)
p1a 0.01419 0.00038 (0.01342, 0.01496)
q1a 0.29802 0.01318 (0.27161, 0.32444)
p1c 0.01708 0.00167 (0.01373, 0.02044)
q1c 0.10684 0.00959 (0.08762, 0.12605)
p2 -0.00855 0.00160 (-0.01175, -0.00535)
q2 -0.03547 0.00920 (-0.05390, -0.01704)
δ -0.16917 0.01719 (-0.20362, -0.13471)
R2 = 0.999959

Figure 2: Comparison between observed and fitted values, UNCD model.

0 10 20 30 40

0

500

1000

1500

2000

2500

3000

3500

predRANI
predTRIG
RANIBEN
TRIGGER

0 10 20 30 40
20

40

60

80

100

120

140

predRANIBEN
predTRIGGER
RANIBEN
TRIGGER

values is shown in Figure 2. We observe a noteworthy increase in market potential
after the beginning of competition. If we focus on innovation parameters, we see
that after Raniben’s launch innovators increase their trust in Trigger (p̂1c > p̂1a)
and hold the new entrant back (p̂2 < 0). This is not a surprising behavior in the
drugs market: the two products are based upon the same active compound, and the
older one may be considered safer since it is not at risk for unknown counterindica-
tions. Imitative parameters have to be interpreted with reference to the proposed
model (e.g., the comparison between q̂1c and q̂1a is meaningless because they mea-
sure something different; moreover, the analysis of q̂2 may be misleading, if we do
not interpret it in the light of δ̂). If we substitute the obtained estimates in the
model (4), we have, after Raniben’s launch, that

z′1(t) ∝ 0.0171− 0.0623
z1(t)
mc

+ 0.1068
z2(t)
mc

z′2(t) ∝ −0.0086 + 0.1337
z1(t)
mc
− 0.0355

z2(t)
mc

.

We observe that not only the cross-brand effect is much stronger than the within-
brand effect, but also the within-brand effect has a negative sign. That situation
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Figure 3: Model components.
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Table 4: Squared Pearson correlation coefficient between observed and fitted values
for alternative models.

UNCD STDE STD LMP
ρ2 model model model model

(B&C) (B&C) (B&C) (B&C)

trigger (n=32) 0.999924 0.999076 0.997828 0.995353
raniben (n=20) 0.999646 0.999589 0.998847 0.996632
#parameters 9 7 6 5

R̃2 w.r.t. UNCD – 0.926745 0.968493 0.988439

F test – 347.9 563.552 1175.57

describes a market where consumers of both products are substantially unsatisfied
with their drug and turn to the alternative one. The new buyers of Raniben use
the knowledge of the active principle spread through Trigger’s diffusion. Conversely,
Trigger is kept vital because it is based on an active compound that is perceived as
efficacious enough to generate a new drug.

The effect of competition between the two products can be studied also with the
help of Figure 3 where the three components described in Section 3 are plotted. Here
the first competitor reached less than a half of the aggregate sales ( q1cq−δ = 0.444),
but gained through small positive departures D1 and r1(t).

In order to compare the previous model with alternative solutions, the same data
were also used to fit the model of Savin and Terwiesch (2005), both in the standard
version (STD) and in the extended version (STDE), in which the market potential
after competition, mc, is not constrained to be equal to the market potential before
competition, ma, and the joint model (LMPD) of Libai et al. (2009). The model
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Figure 4: Comparisons among residuals of UNCD, STDE, STDE and LMPD models
with the Beauchamp and Cornell (1966) technique.
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KBKD of Krishnan et al. (2000), which is presented in Table 2 was not included in
this comparison because it does not separate cross-brand from within-brand effect.
The results of the application of KBKD model to these data are presented in the
companion article, Guseo and Mortarino (2010a).

The comparison among different models is performed through a simple measure-
ment, the squared Pearson correlation coefficient between observed and fitted values.
Results are proposed in Table 4. Moreover since LMPD, STD, and STDE are nested
models in the UNCD model, the squared multiple partial correlation coefficient

R̃2 = (R2
UNCD −R2

M )/(1−R2
M ) (21)

was calculated (here R2
M denotes the determination index of the reduced model that

in turn has to be compared to the UNCD). A possible test to verify the significance
of the s parameters of the UNCD that are not included in model M may be given
by

F = [R̃2(N − k)]/[(1− R̃2)s], (22)

where N denotes the number of observations used to fit the model and k is the
number of parameters included in the UNCD. Under the null hypothesis of equiva-
lence between model M and the UNCD, (22) is distributed as a Snedecor’s F with
(s,N − k) degrees of freedom, if ε(t) is normal i.i.d. Nevertheless, F-ratio (22) can
be used as an approximate robust criterion to compare model M nested in UNCD
(Guseo et al., 2007), by considering the well-known common threshold 4. Statistics
R̃2 and F are calculated for the three alternative models to UNCD and the results
are summarized in Table 4. Although the distribution of F is only approximately
equal to the nominal one, all values in the final row are incredibly higher than the
standard threshold of 4, giving strong support to the use of UNCD to model our
data.

The analysis of residuals (see Figure 4) confirms that the UNCD model (4) is
essential to catch the features of the first competitor, and, to a smaller extent, of
the second competitor. The LMPD model fit is quite lower both for the first and
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Figure 5: Comparison among observed and fitted values for GBD and UNCD models.
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the second competitor. This fact essentially tells us that assumptions required to
implement the LMPD model (equality of parameters of the two competitors and
unmodified market potential after competition’s beginning) are not adequate to our
application. Also the STD model does not capture the features of the competition.
The fact that the UNCD, for this dataset, is distinctly superior to STDE, which is the
more complex alternative, denotes that Raniben’s launch modified substantially the
evolution of Trigger. With reference to the UNCD, we note that STDE introduces
two more constraints: p1c = p1a and q1c + δ = q1a. That fact is obviously not an
assumption supposed to hold in any application, but we think that as a first step,
the more general UNCD model should be applied. Further restrictions might be
subsequently added in order to reduce the model’s complexity, only if data support
them.

As a concluding remark, we notice that the UNCD model proved to be superior
to the GBD (see Table 5 and Figure 5). In particular, the UNCD model seems to
prevail on the GBD because it is flexible enough to ”follow” very well the profile
of Trigger’s sales. The proposed unbalanced application highlights the utility of
a separation between within-brand and cross-brand effects with reference to the
balanced approach GBD as denoted by the F -ratio, F = 118 (see Table 5). At
the same time, competing unbalanced models like STDE, STD, LMPD present a
stronger departure in terms of F -ratios, that is 348, 564 and 1176, respectively. In
particular, LMPD is characterized by a poor performance, and this aspect is clearly
confirmed by the graphical analysis of residuals.

6 Final remarks and discussion

In this paper we introduced, for a duopolistic setting, a UNID model based on
diffusions accessing a common (or category) residual market. Interpersonal com-
munication effects are separated into natural components in order to examine and
test separately for each competitor, within-brand and cross-brand effects. The main
emphasis is on a diachronic setting, which may be reduced to a synchronic case. The
product specific within-brand and cross-brand discriminations, δ and γ, which are
free in UNID general model, are then restricted to be equivalent for each competitor,
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δ = γ, thus obtaining a closed-form solution for the corresponding system, UNCD.
The theoretical comparisons between rival models GBD, STD, KBKD and LMPD
reveal that they are locally nested.

The UNCD model deals with competition between products that arises after a
monopolistic regime, and it is particularly suitable to describe situations when the
start of competition upsets the diffusion that the first entrant was facing before
that timepoint. Moreover, we remark that the UNCD model can be extended to
deal with more than two competitors with parameter constraints similar to the ones
described in this paper.

The theoretical generality of the proposed model UNCD, with reference to hie-
rarchical-included competing models, does not automatically warrant a systematic
weak departure from the more general UNID model for which there is no closed-
form solution useful to correctly compare performances. Nevertheless, the global
high value placed on the determination index in current application suggests a very
limited space for the natural improvement. On the other hand, a different modelling
of within-brand and cross-brand components based on an overcoming of linear (con-
strained) assumption based on an increased order (second order, etc.) may deserve
theoretical interest. However, in an applied perspective, the natural improvement
may appear of limited size if we look, for example, at the present case study.

Appendix. Proofs

Proof of equations (8) and (10) (case δ 6= q). We denote by

E =
[(

1− zs
mc

)
/

(
1 +

q

p

zs
mc

)]
e−(p+q)(t−c2).

with W = w(t) = cz(t)/mc =
1− E

1 + (q/p)E
, w(c2) = zs/mc. Conversely the expression

of t as a function of W is equal to:

t =
1

p+ q
ln

(
1 + q

pW

1−W

)
+ c2 +

1
p+ q

ln

(
1− zs

mc

1 + q
p
zs
mc

)

Table 5: Comparison between GBD and UNCD.
UNCD UNCD GBD GBD

ρ2 model model model model
(B&C) (direct) (B&C) (direct)

trigger (n=32) 0.999924 0.999924 0.999823 0.999837
raniben (n=20) 0.999646 0.999651 0.999578 0.999528
#parameters 9 9 8 8

R̃2 w.r.t. UNCD – – 0.681198 0.447068

F test – – 117.521 44.4697
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and
dt =

1
p(1−W )(1 + q

pW )
dW. (23)

The first equation of the system (4) (after competition) can be rewritten as

z′1(t)It>c2 = cz
′
1(t) = mc

[
p1c + q1cw(t) + δ

z1(t)
mc

]
[1− w(t)] ,

whose solution, with the initial condition cz1(c2) = zs, is

cz1(t) = zse
−∆(t) + e−∆(t)

∫ t

c2

Q(τ)e∆(τ)dτ, with ∆(t) =
∫ t

c2

P (τ)dτ, (24)

and

Q(t) = mc[p1c + q1cw(t)][1− w(t)] (25)
P (t) = −δ[1− w(t)]. (26)

It is easy to prove, through equation (23), that

∆(t) = −δ
p

∫ W

zs
mc

1
(1 + q

pω)
dω = −δ

q
ln

(
1 + q

pW

1 + q
p
zs
mc

)
. (27)

It may be useful to denote by k the ratio δ/q. Equation (27) entails that

e−∆(t) =

(
1 + q

pW

1 + q
p
zs
mc

)k
. (28)

The first integral in equation (24) can be solved again through the substitution of
the integration variable:∫ t

c2

Q(τ)e∆(τ)dτ =
∫ t

c2

mc[p1c + q1cw(τ)][1− w(τ)]

[
1 + q

p
zs
mc

1 + q
pw(τ)

]k
dτ

=
mc

p

(
1 +

q

p

zs
mc

)k ∫ W

zs
mc

(p1c + q1cω)
(

1 +
q

p
ω

)−k−1

dω.(29)

In order to solve the general case, we have to assume that k 6= 0, and subsequently
evaluate the limit of the solution as k → 0 (this result will be equal to the solution
found for δ = 0 in Guseo and Mortarino, 2010a). Moreover we have to separate from
the rest of the analysis the case k = 1(δ = q).

For k 6= 1, the integral in (29) has the following solution:

∫
(p1c + q1cω)

(
1 +

q

p
ω

)−k−1

dω = −

(
1 + q

pω
)−k {

q1c + q
p [(k − 1)p1c + kq1cω]

}
k(k − 1)(q/p)2

+ C

= − p2

δ(δ − q)

(
1 +

q

p
ω

)−k (
q1c +

δ − q
p

p1c +
δ

p
q1c ω

)
+ C. (30)
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By equations (29) and (30) it follows that∫ t

c2

Q(τ)e∆(τ)dτ =
mcp

δ(δ − q)

[
q1c +

δ − q
p

p1c+

+
δ

p
q1c

zs
mc
−

(
1 + q

p
zs
mc

1 + q
pW

)k (
q1c +

δ − q
p

p1c +
δ

p
q1cW

) . (31)

Finally, by using equations (28) and (31), we obtain:

z1(t) = zse
−∆(t) + e−∆(t)

∫ t

c2

Q(τ)e∆(τ)dτ

= zs

(
1 + q

pW

1 + q
p
zs
mc

)k
+

mcp

δ(δ − q)

(q1c −
q − δ
p

p1c +
δ

p
q1c

zs
mc

)( 1 + q
pW

1 + q
p
zs
mc

)k
+

−
(
q1c −

q − δ
p

p1c +
δ

p
q1cW

)]

= mc
q1c

q − δ
W + zs

(
1 + q

pW

1 + q
p
zs
mc

)k (
1− q1c

q − δ

)
+

+
mc

δ(q − δ)
[q1cp− (q − δ)p1c]

1−

(
1 + q

pW

1 + q
p
zs
mc

)k
= mc

q1c

q − δ
W − zs

q2 − δ
q − δ

1−

(
1 + q

pW

1 + q
p
zs
mc

)k+
q2 − δ
q − δ

zs +

+mc
p

δ

(
q1c

q − δ
− p1c

p

)1−

(
1 + q

pW

1 + q
p
zs
mc

)k
= mc

q1c

q − δ
W +

q2 − δ
q − δ

zs

+
[
mc

p

δ

(
p1c

p
− q1c

q − δ

)
+
q2 − δ
q − δ

zs

]( 1 + q
pW

1 + q
p
zs
mc

)k
− 1

 . (32)

Through

W = w(t) =
1− E

1 + q
pE

=
1 + q

p
zs
mc
−
(

1− zs
mc

)
e−(p+q)(t−c2)

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

, (33)

and

1 +
q

p
w(t) =

1 + q
p
zs
mc

+ q
p + q2

p2
zs
mc

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

=
(

1 +
q

p

zs
mc

)
y(t), (34)
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the final expression for z1(t) can be evaluated:

z1(t) = mc
q1c

q − δ
w(t) +

q2 − δ
q − δ

zs +
[
mc

p

δ

(
p1c

p
− q1c

q − δ

)
+
q2 − δ
q − δ

zs

] [
y(t)

δ
q − 1

]
,

which is equal to equation (8). The expression for z2(t) in (10) can be derived as
the difference between equation (7) and equation (8):

z2(t) = mc

(
q2 − δ
q − δ

)
w(t)− q2 − δ

q − δ
zs+

+
[
mc

p

δ

(
p2

p
− q2 − δ

q − δ

)
− q2 − δ

q − δ
zs

] [
y(t)

δ
q − 1

]
.

�

Proof of equations (13) and (14) (case δ = q). We start from equation (29).
For k = 1, the integral has the following solution:∫

(p1c + q1cω)
(

1 +
q

p
ω

)−2

dω =
− q
pp1c + q1c(

1 + q
pω
)

(q/p)2
+
q1c ln

(
1 + q

pω
)

(q/p)2
+ C.

Hence∫ t

c2

Q(τ)e∆(τ) = mc
p

q2

(
1 +

q

p

zs
mc

)[− q
pp1c + q1c

1 + q
pW

−
− q
pp1c + q1c

1 + q
p
zs
mc

+ q1c ln

(
1 + q

pW

1 + q
p
zs
mc

)]

=
mc

q

(
−q
p
p1c + q1c

) zs
mc
−W

1 + q
pW

+mc
q1cp

q2

(
1 +

q

p

zs
mc

)
ln

(
1 + q

pW

1 + q
p
zs
mc

)

and the solution for z1(t) is the following:

z1(t) = zse
−∆(t) + e−∆(t)

∫ t

c2

Q(τ)e∆(τ)dτ

= zs

(
1 + q

pW

1 + q
p
zs
mc

)
+
mc

q

(
−q
p
p1c + q1c

) zs
mc
−W

1 + q
p
zs
mc

+

+mc
q1cp

q2

(
1 +

q

p
W

)
ln

(
1 + q

pW

1 + q
p
zs
mc

)

=
zs
q
p +mc

(
p1c
p −

q1c
q

)
1 + q

p
zs
mc

W +
zs − p1c

p zs + q1c
q zs

1 + q
p
zs
mc

+

+mc
q1cp

q2

(
1 +

q

p
W

)
ln

(
1 + q

pW

1 + q
p
zs
mc

)

=

mc

(
p1c

p
− q1c

q

)
+
zs
q
p +mc

(
p1c
p −

q1c
q

)
−mc

(
p1c
p −

q1c
q

)
(1 + q

p
zs
mc

)

1 + q
p
zs
mc

W +

+zs

(
1− p1c

p + q1c
q

)
1 + q

p
zs
mc

+mc
q1cp

q2

(
1 +

q

p
W

)
ln

(
1 + q

pW

1 + q
p
zs
mc

)
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=

[
mc

(
p1c

p
− q1c

q

)
+ zs

q

p

1− p1c
p + q1c

q

1 + q
p
zs
mc

]
W +

+zs

(
1− p1c

p + q1c
q

)
1 + q

p
zs
mc

+mc
q1cp

q2

(
1 +

q

p
W

)
ln

(
1 + q

pW

1 + q
p
zs
mc

)

(33)+(34)
=

[
mc

(
p1c

p
− q1c

q

)
+ zs

q

p

1− p1c
p + q1c

q

1 + q
p
zs
mc

]
w(t) + zs

(
1− p1c

p + q1c
q

)
(

1 + q
p
zs
mc

) +

+mc
q1cp

q2

(
1 +

q

p

zs
mc

)
y(t) ln y(t).

The solution for z2(t) is:

z2(t) =
(

1− p1c

p
+
q1c

q

)[
mc − zs

q

p

1
1 + q

p
zc
mc

]
w(t)− zs

(
1− p1c

p + q1c
q

)
(

1 + q
p
zs
mc

) +

−mc
q1cp

q2

(
1 +

q

p

zs
mc

)
y(t) ln y(t). �

�

Proof of coherence with the results in Guseo and Mortarino (2010a).
It is easy to show that the limit as δ → 0 of the equations (8) and (10) are equal,
respectively, to the solutions found in Guseo and Mortarino (2010a) for the special
case of cross-brand effect equal to within-brand effect (δ = 0). By l’Hôpital’s rule,

lim
δ→0

z1(t) = mc
q1c

q
w(t) +

q2

q
zs +mcp

(
p1c

p
− q1c

q

)
lim
δ→0

[y(t)]
δ
q · ln y(t)

1
q

+ zs
q2

q
· 0

= mc
q1c

q
w(t) +

q2

q
zs +mc

p

q

(
p1c

p
− q1c

q

)
ln(y(t).

If we remind that the last two terms in equation (8) are the opposite of the corre-
sponding terms in equation (10), it is straightforward to see that

lim
δ→0

z2(t) = mc
q2

q
w(t)− q2

q
zs +mc

p

q

(
p2

p
− q2

q

)
ln y(t).
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