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Composite Likelihood Function in State Space Models

Nadia Frigo

Department of Statistical Sciences
University of Padua
Italy

Abstract: In general state space models, where the computational effort required in the

evaluation of the full likelihood function is infeasible, we analyze the problem of static pa-

rameter estimation based on composite likelihood functions, in particular pairwise likelihood

functions. We discuss consistency and efficiency properties of the estimators obtained by

maximizing these functions in state space scenario, linking these properties to the charac-

teristics of the model. We empirically compare the efficiency between maximum pairwise

likelihood and maximum full likelihood estimators. We suggest the existence of a ‘best’ dis-

tance between pairs of observations, in terms of variance of the maximum pairwise likelihood

estimator.

Keywords: Pairwise likelihood, Split data likelihood, Efficiency.

1 Introduction

State space models are a general class of time series capable of modeling dependent
observations in a natural and interpretable way. They consist of a Markov process
(called hidden/latent state process) not observed directly, but only through another
process. When the parameter describing the model is known, sequential inference on
the latent process is typically based on the sequence of joint posterior distributions,
where each summarizes all the information collected about the latent process up to
the current time. Sequential estimation of these distributions is achieved by optimal
filtering recursions. Such recursions rarely admit a closed form expression, but it
is possible to resort to efficient numerical approximations. Sequential Monte Carlo
(SMC) methods (aka particle filters) are a class of numerical algorithms available to
approximate the sequence of joint posterior distributions sequentially in time [Doucet
et al., 2001]. This methodology is now well developed and the theory supporting
this approach is also well established [Del Moral, 2004].

In most real-world scenarios, the parameter is unknown and needs to be esti-
mated. Although apparently simpler than optimal filtering, the static parameter es-
timation problem has proved to be much more difficult: no closed form solutions are,
in general, available, even for linear gaussian and finite state space hidden Markov
models. A possible way to address this problem is based on SMC methods. There
have been many attempts to develop elaborate sequential algorithms, but all of them
suffer from a common intrinsic problem, namely path degeneracy. This phenomenon
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is the result of the resampling stage and has long been observed [Gordon et al.,
1993]. It reflects a fundamental weakness of SMC methods: with limited resources,
it is not possible to consistently estimate the sequence of posterior distributions at
every instant time [Del Moral, 2004]. Direct application of SMC techniques is hence
inappropriate for static parameter inference [Chopin, 2004, Kitagawa, 1998, Liu and
West, 2001, Andrieu et al., 1999, Fernhead, 2002, Gilks and Berzuini, 2001, Storvik,
2002]. A different approach consists on developing an inferential procedure based on
full likelihood function to compute point estimates from the data. Recently, some
results on the consistency and asymptotic normality of the maximum likelihood es-
timator in state space models have been proved [Douc et al., 2004]. Anyway, when
the latent process is continuous, the computational effort required in the evaluation
of the full likelihood function is infeasible. Approximated solutions, based on Monte
Carlo or numerical methods, have been considered, but none of the proposed so-
lutions are completely satisfactory. A possible way to overcome this problem is to
replace the likelihood function by another function, easier to determine. In this di-
rection, composite likelihood approaches have been suggested. The term composite
likelihood indicates a likelihood type object formed by taking the product of individ-
ual component likelihoods, each of which corresponds to a marginal or conditional
event. This is useful when the joint density is difficult to evaluate but computing
likelihoods for some subsets of the data is possible, as in general state space models
framework. This idea dates back probably to Besag [1974] even though the term
composite likelihood was stated by Lindsay [1988].

In this paper we analyze the problem of static parameter estimation based on
composite likelihood functions, in particular pairwise likelihood functions. We study
the asymptotic properties of the pairwise likelihood function and of the parameter
estimators obtained by maximizing this function in state space scenario, in connec-
tion with stationary and ergodic properties of the processes involved. The paper is
organized as follows. In Section 2 we present the model and we define two particu-
lar cases of composite likelihood function, i.e.pairwise likelihood (PL) and split data
likelihood (SDL) functions. In Section 3 we discuss which kind of pairwise likelihood
function is better to use among some possible choices for the weights. In Section 4
we study the asymptotic properties of the maximum PL estimator, related to the
characteristic of the state space model. In particular, we prove the consistency of
the maximum PL estimator of order L. Section 5 gives some comments about the
loss of efficiency of maximum PL estimator wrt the maximum likelihood estimator
and in Section 6 we empirically compare the efficiency between maximum PL and
maximum full likelihood estimators as well as the efficiency between maximum SDL
(when blocks of observations are allowed to overlap) and maximum PL estimators.
Section 7 gives some concluding remarks.

2 The Framework

State space models can be defined in the following form. For any parameter θ ∈ Θ,
the hidden/latent state process {Xk; k ≥ 1} ⊂ XN is a Markov process, characterized
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by its Markov transition probability distribution fθ(x
′|x), i.e. X1 ∼ ν and for n ≥ 1,

Xn+1|(Xn = x) ∼ fθ(·|x). (1)

The process {Xk; k ≥ 1} is observed, not directly, but through another process
{Yk; k ≥ 1} ⊂ YN. The observations are assumed to be conditionally independent
given {Xk; k ≥ 1}, and their common marginal probability distribution is of the
form gθ(y|x), i.e. for 1 ≤ n ≤ m,

Yn|(X1, . . . , Xn = x, . . . , Xm) ∼ gθ(·|x). (2)

From now on, we will assume that the process {Zk; k ≥ 1} = {(Xk, Yk); k ≥ 1} is
stationary (in the strict sense) with joint distribution given by

pθ(x1:n, y1:n) = πθ(x1)gθ(y1|x1)
n
∏

i=2

fθ(xi|xi−1)gθ(yi|xi),

where we denote by πθ the marginal for {Xk; k ≥ 1} of the invariant distribution. We
assume that there is a ‘true’ parameter value θ∗ generating the data {Yk; k ≥ 1} and
that this value is unknown. We focus here on point estimation methods developing
an inferential procedure based on likelihood quantities to compute point estimates
of θ∗ from {Yk; k ≥ 1} rather than a series of estimates of the posterior distributions
{p(θ, Y1:n);n ≥ 1}. As a result no particle method is required in the parameter
space, and it should also be pointed out that SMC methods in the state space X
are, in general, also not necessary.

The most natural approach of point estimate consists of maximizing the series
of likelihoods {pθ(Y1:n);n ≥ 1}. With our notation, the likelihood for a sequence of
observations y1, . . . , yn is

L(θ; y1:n) = pθ(y1:n) =

∫

Xn

πθ(x1)gθ(y1|x1)
n
∏

i=2

fθ(xi|xi−1)gθ(yi|xi)dx1:n,

which is simply obtained by taking into account the dependence structure charac-
terizing the model.

Recently, some results on the consistency and asymptotic normality of the max-
imum likelihood estimator (MLE) can be found in Douc et al. [2004] (see also the
references therein). Anyway, when {Xk; k ≥ 1} is continuous, evaluation of the full
likelihood requires an integration over an n-dimensional space. This task is insur-
mountable for typical values of n and exact methods for computing and maximizing
the likelihood function are usually not feasible. Approximated solutions, based on
Monte Carlo or numerical methods, have been considered, but none of the proposed
solutions are completely satisfactory. Markov Chain Monte Carlo (MCMC) meth-
ods are usually difficult to implement while Particle Filters (PF) are well suited but
suffer from the well known degeneracy problem.

Even if the full likelihood approach is the most natural and leads to an efficient
estimation of the parameter, the computational effort required in the evaluation and
maximization of the function suggests to develop new procedures in order to reduce
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the computational burden. In this way it is possible to fit highly structured statis-
tical models, even when the use of standard likelihood methods is not practically
possible. A possible way to overcome this problem is to replace the likelihood by
another function, easier to determine. Any function which (asymptotically) has its
maximum at the true parameter point is a potential candidate. In this direction
composite likelihood approaches have been suggested. Given the observations y1:n,
a composite likelihood is defined by specifying a set of K marginal or conditional
events Ak(y1:n), k = 1, . . . ,K, with likelihood given by Lk(θ; y1:n) = L(θ;Ak(y1:n)).
Then, the composite likelihood is obtained by composing these likelihood objects
and it corresponds to

LC(θ; y1:n) =
K
∏

k=1

Lk(θ; y1:n)
ωk ,

with ωk suitable non-negative weights. This class contains, and thus generalizes, the
usual ordinary likelihood, as well as many other interesting alternatives. Examples
include the Besag pseudolikelihood [Besag, 1974, 1977], the m-th order likelihood
for stationary processes [Azzalini, 1983] and composite likelihoods constructed from
marginal densities [Cox and Reid, 2004]. Typical attention is paid to composi-
tions of low-dimensional marginals, since their computation involves usually lower
dimensional integrals. This is the case of the pairwise likelihood [Le Cessie and
Van Houwelingen, 1994],

LP,ω(θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi, yj)
ωij , (3)

where ωij , i = 1, . . . , n − 1, j = i + 1, . . . , n are suitable non-negative weights, or
of the split data likelihood (SDL) proposed by Ryden [1994] as an alternative to
maximum likelihood for inference in hidden Markov models. This is a composite
likelihood constructed by splitting the n = mL observations into m groups of fixed
size L and assuming these groups are independent

LSD(θ; y1:n) =
m
∏

i=1

pθ(yL(i−1)+1:iL).

In the SDL framework, it is also possible to consider overlapping blocks of the form
(Y1:L, Y2:L+1, . . . , Yn−L+1:n). In this case we define

L
(ov)
SD (θ; y1:n) =

n−L+1
∏

i=1

pθ(yi:L+i−1). (4)

3 Different choices for the weights

We consider the pairwise likelihood function and the asymptotic properties of the
parameter estimator obtained by maximizing this function in state space scenario.

Starting from (3), a suitable choice for the weights allows one to consider different
types of PL. We consider only 0 − 1 weights and we shall concentrate on the PL
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that takes into account all the n(n− 1)/2 pairs (obtained choosing ωij = 1, ∀i =
1, . . . , n− 1, j = i+ 1, . . . , n), that is

LP (θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi, yj) (5)

and on the so called L-th order PL, which is based on all the pairs of observations
with a lag distance not greater than L ∈ {1, . . . , n− 1}, that is

L
(L)
P (θ; y1:n) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi, yj).

Note that L
(n−1)
P (θ; y1:n) corresponds to (5). Given the dependence structure of the

model (1, 2), for every i = 1, . . . , n− 1, j = i+ 1 . . . , n

pθ(yi, yj) =

∫

X j−i+1

πθ(xi)gθ(yi|xi)

[

j
∏

k=i+1

fθ(xk|xk−1)

]

gθ(yj |xj)dxi:j . (6)

The numerical computation of (6) involves in general a (j − i+ 1)- dimensional
integral. If j − i is bounded by a constant that does not depend on n, the com-
putation is likely easier compared to the full likelihood approach. In the case of
pairwise likelihood with all the pairs, the integral dimension increases with n, so its
evaluation might be still infeasible, depending on the structure of fθ(·|x). This is
one of the motivations why people usually do not work with pairwise likelihood with
all the pairs but prefer using pairwise likelihood of order L, for some L ≥ 1.
Moreover, even if the computation of (5) were feasible, the process has good prop-
erties and the invariant distribution is known, we expect that the normalized log
pairwise likelihood

lP (θ; y1:n) =
1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=i+1

log[pθ(yi, yj)] (7)

will be well approximated by

1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)] (8)

for n large enough, where mn is chosen in such a way that, for every i, mn/(n− i)
and mnlogn

n
go to zero as n goes to infinity.

Roughly speaking, (8) tells us that if n grows there are more pairs that are far
apart than pairs that are close and, if the process is ergodic, the pairs that are far
away act as they were independent. In this case it is clear that all the information
about the dependence structure of the model are lost, since only the marginal density
is taken into account. More precisely, we prove the following theorem
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Theorem 1. Under the Assumptions (C1) and (C2) defined in Appendix A

lP (θ; y1:n) ≈
1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]

for n large enough, where, for every i, mn/(n − i) and mnlogn
n

go to zero as n goes
to infinity.

Proof. By definition (7),

lP (θ; y1:n) =
1

n− 1

n−1
∑

i=1

1

n− i





mn+i
∑

j=i+1

log[pθ(yi, yj)] +
n
∑

j=mn+i+1

log[pθ(yi, yj)]



 ,

where for every i, mn/(n − i) goes to zero as n goes to infinity to ensure that mn

does not grow ‘too much’ compared to n and hence the second sum makes sense.
We concentrate first in the term

L1(n,mn) :=
1

n− 1

n−1
∑

i=1

1

n− i

mn+i
∑

j=i+1

log[pθ(yi, yj)].

We have that

|L1(n,mn)| ≤
1

n− 1

n−1
∑

i=1

1

n− i

mn+i
∑

j=i+1

|log[pθ(yi, yj)]|

≤
1

n− 1

n−1
∑

i=1

Cmn

n− i
,

with C ∈ (0,+∞). The result above follows from Assumption (C1), which ensure
that pθ(yi, yj) is bounded away from zero for every i, j, and from the following
identity, valid for any x, y ∈ (0,+∞),

| log x− log y| ≤
|x− y|

x ∧ y
. (9)

Now

1

n− 1

n−1
∑

i=1

Cmn

n− i
=

Cmn

n− 1

n−1
∑

i=1

1

i

≈
Cmn

n− 1
(log[n− 1] + γ),

where γ is the Euler constant. If mnlogn
n

goes to zero as n goes to infinity, then the
term L1(n,mn) goes to zero. Hence, the contribution to the log pairwise likelihood
of the pairs with lag distance not greater than mn vanishes as n goes to infinity.
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Note that this condition holds, for example, when mn is a constant.
We look now at

L2(n,mn) :=
1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

log[pθ(yi, yj)].

We can rewrite L2(n,mn) as

L2(n,mn) =
1

n− 1

n−1
∑

i=1

[ 1

n− i

n
∑

j=mn+i+1

(log[pθ(yi, yj)]− log[pθ(yi)pθ(yj)])+

+
1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]
]

.

By ergodic properties, there exist constants C̃ ∈ (0,+∞) and ρ ∈ [0, 1) such that,
for every i, j

|pθ(yi, yj)− pθ(yi)pθ(yj)| ≤ C̃ρj−i.

Using again identity (9), the absolute value of first term in L2(n,mn) satisfies
∣

∣

∣

∣

∣

∣

1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

(log[pθ(yi, yj)]− log[pθ(yi)pθ(yj)])

∣

∣

∣

∣

∣

∣

≤
1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

Cρj−i ≤
C

(1− ρ)(n− 1)

n−1
∑

i=1

ρmn − ρn−i

n− i

=
Cρmn

(1− ρ)(n− 1)

n−1
∑

i=1

1

i
−

C

(1− ρ)(n− 1)

n−1
∑

i=1

ρi

i
,

for a suitable constant C ∈ (0,+∞). For n large enough

Cρmn

(1− ρ)(n− 1)

n−1
∑

i=1

1

i
≈

Cρmn

(1− ρ)(n− 1)
(log[n− 1] + γ)

n→+∞
→ 0,

since ρ is a constant less than one. On the other hand

C

(1− ρ)(n− 1)

n−1
∑

i=1

ρi

i
≤

C

(1− ρ)(n− 1)

n−1
∑

i=1

ρi

=
C

(1− ρ)(n− 1)

(

1− ρn

1− ρ
− 1

)

n→+∞
→ 0.

We have that

L2(n,mn) ≈
1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)]

for n large enough and combining this with the result about L1(n,mn), we are able
to conclude that

lP (θ; y1:n) ≈
1

n− 1

n−1
∑

i=1

1

n− i

n
∑

j=mn+i+1

log[pθ(yi)pθ(yj)].
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4 Strong consistency of the maximum PL estimator of order

L

In this section we consider the PL function of order L, defined as

L
(L)
P (θ; y1:n) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi, yj), (10)

where pθ(yi, yj) is defined by (6) and L ≥ 1 is a fixed constant (under the hypothesis
that πθ is known). We study the properties of the maximum PL estimator, i. e. the
estimator obtained by maximizing (10) with respect to the parameter θ. We denote

by θ̂
(L)
P any global maximum point of L

(L)
P (θ; y1:n). In order to study the properties

of θ̂
(L)
P we need to point out the asymptotic behavior of the normalized log likelihood

l
(L)
P (θ; y1:n) =

1

n− 1

n−1
∑

i=1





1

L

min{i+L,n}
∑

j=i+1

log[pθ(yi, yj)]



 (11)

as n goes to infinity. Since L−1
∑min{i+L,n}

j=i+1 log[pθ(yi, yj)] is a function of the ob-
servations (yi, . . . , yi+L) (let us denote this function as ϕ), under suitable ergodic
assumptions

1

n− 1

n−1
∑

i=1

ϕ(yi, . . . , yi+L)
n→+∞
→ Eθ∗ [ϕ(Y1, . . . , YL+1)] =

=

∫

YL+1

ϕ(y1, . . . , yL+1)pθ∗(y1:L+1)dy1:L+1

=
1

L

L+1
∑

j=2

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj , (12)

where Eθ∗ [·] is the expectation associated to the stationary process {Zk; k ≥ 1}
generated by the model defined in (1) and (2) for θ = θ∗ ∈ Θ.
Hence

lim
n→+∞

l
(L)
P (θ; y1:n) = l

(L)
P (θ),

where l
(L)
P (θ) is defined by (12). With appropriate conditions, it can be shown that

the set of parameters maximizing l
(L)
P (θ) includes the true parameter and hence the

L-th order PL is an objective function that, when maximized, leads to a reasonable

estimator of the parameter. This follows from the fact that maximizing l
(L)
P (θ) is

equivalent to minimizing the following Kullback-Leibler divergence

K
(L)
P (θ, θ∗) = l

(L)
P (θ∗)− l

(L)
P (θ) ≥ 0.

Varin and Vidoni [2005] called K
(L)
P (θ, θ∗) composite Kullback-Leibler divergence

since it can be seen as the linear combination of the Kullback-Leibler divergences
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associated with each component of the composite likelihood. In this case

K
(L)
P (θ, θ∗) =

1

L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

, (13)

which preserves the non-negativity as soon as the ordinary Kullback-Leibler diver-
gence does (see Appendix B).

Following the standard technique introduced by Wald [1949] and asking that the
bivariate process {Xk, Yk} is uniformly ergodic and that the functions fθ and gθ are
continuous in θ, the estimator obtained by maximizing the pairwise likelihood of
order L is strongly consistent, i. e. it converges almost surely to the true parameter
value as n goes to infinity.
More precisely, we prove the following theorem (middle results can be found in
Appendix B)

Theorem 2 (Strong consistency). Assume that conditions (C1−C7) in Appendix A

hold and let θ̂
(L)
P be the L-order pairwise likelihood estimator based on n observations.

Then θ̂
(L)
P → θ∗ Pθ∗-almost surely as n → ∞.

Proof. Given an arbitrary ǫ > 0, set Sǫ = {θ ∈ Θ; |θ − θ∗| < ǫ} and C = Θ ∩ Sc
ǫ .

Lemma 3 allows us to choose a positive number b such that, for every j = 2, . . . , L+1

Eθ∗

[

sup
θ:|θ|>b

log pθ(y1, yj)

]

≤ Eθ∗ [log pθ∗(y1, yj)]− 1 (14)

and let C1 = C ∩ {θ ∈ Θ; |θ| ≤ b}. It follows from Lemma 1 and Lemma 2 that for
each θ ∈ C1 there is a ǫθ > 0 and an open neighborhood Gθ of θ such that

Eθ∗

[

sup
θ′∈Gθ

log pθ′(y1, yj)

]

≤ Eθ∗ [log pθ(y1, yj)] ≤ Eθ∗ [log pθ∗(y1, yj)]− ǫθ. (15)

Note that C1 is a compact set (from Assumption C2) and thus there is a finite
set {θ1, . . . , θd} ⊆ Θ such that C1 ⊆ ∪d

i=1Gi, where Gi = Gθi and define G0 = {θ ∈
Θ; |θ| > b}. We have that

sup
θ∈Sc

ǫ

(

logL
(L)
P (θ; y1:n)− logL

(L)
P (θ∗; y1:n)

)

=

= max
0≤i≤d

(

sup
θ∈Gi

logL
(L)
P (θ; y1:n)− logL

(L)
P (θ∗; y1:n)

)

.

From Assumption (C1), for every i, 1 ≤ i ≤ d

sup
θ∈Gi

(

l
(L)
P (θ; y1:n)− l

(L)
P (θ∗; y1:n)

)

n→∞
→

1

L

L+1
∑

j=2

Eθ∗

[

sup
θ∈Gi

log pθ(y1, yj)

]

−
1

L

L+1
∑

j=2

Eθ∗ [log pθ∗(y1, yj)]



10 Nadia Frigo

and by Equation (15) the right term above is less or equal to −ǫθi < 0.
Again by Assumption (C1)

sup
θ∈G0

(

l
(L)
P (θ; y1:n)− l

(L)
P (θ∗; y1:n)

)

n→∞
→

1

L

L+1
∑

j=2

Eθ∗

[

sup
θ∈G0

log pθ(y1, yj)

]

−
1

L

L+1
∑

j=2

Eθ∗ [log pθ∗(y1, yj)]

and by Equation (14) the right term above is less or equal to −1 < 0.
This proves that

max
0≤i≤d

(

sup
θ∈Gi

log[L(n− 1)l
(L)
P (θ; y1:n)]− log[L(n− 1)l

(L)
P (θ∗; y1:n)]

)

n→∞
→ −∞ Pθ∗ − a.s.,

that is

Pθ∗

{

lim
n→∞

sup
θ∈Sc

ǫ

(

logL
(L)
P (θ; y1:n)− logL

(L)
P (θ∗; y1:n)

)

= −∞

}

= 1. (16)

Now, we use the result in (16) to prove the strong consistency of θ̂
(L)
P , i.e. that

Pθ∗

{

limn→∞ θ̂
(L)
P = θ∗

}

= 1. Since θ̂
(L)
P is a global maximum point of L

(L)
P (θ; y1:n),

we have that
L
(L)
P (θ̂

(L)
P ; y1:n) ≥ L

(L)
P (θ∗; y1:n)

for all n. It is sufficient to prove that for any ǫ > 0 the probability that there exists

a limit point θ̂ of the sequence {θ̂
(L)
P } such that |θ̂−θ∗| > ǫ is zero. If such a θ̂ exists

than supθ∈Sc
ǫ
L
(L)
P (θ; y1:n) ≥ L

(L)
P (θ̂

(L)
m ; y1:n) for infinitely many n. But then

supθ∈Sc
ǫ
L
(L)
P (θ; y1:n)

L
(L)
P (θ∗; y1:n)

> 0

for infinitely many n. Since, according to (16), this is an event with probability

zero, we have shown that the probability that all limit points θ̂ of {θ̂
(L)
P } satisfy the

inequality |θ̂−θ∗| ≤ ǫ is one. By the arbitrariness of ǫ, θ̂
(L)
P is strongly consistent.

Remark 1. Starting from expression (12), for j large enough, by ergodicity, pθ(y1, yj)
is well approximated by pθ(y1)pθ(yj), for every θ ∈ Θ. Hence, for j large enough

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj

is well approximated by
∫

Y2

log[pθ(y1)pθ(yj)]pθ∗(y1)pθ∗(yj)dy1dyj =

=

∫

Y
log[pθ(y1)]pθ∗(y1)dy1 +

∫

Y
log[pθ(yj)]pθ∗(yj)dyj .
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By stationarity assumption, pθ(y1) = pθ(yj) for every j and for every θ ∈ Θ and
using Cesaro sum we have that

lim
L→+∞

1

L

L+1
∑

j=2

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj = 2

∫

Y
log[pθ(y1)]pθ∗(y1)dy1.

Hence, if L is allowed to grow to infinity, all the information about the dependence
structure of the model are lost, since only the marginal density is taken into account.

In the next section, we discuss the loss of asymptotic efficiency introduced by the

use of l
(L)
P (θ) in place of the full likelihood, through the analysis of the asymptotic

variance of the estimator θ̂
(L)
P .

5 Loss of efficiency

If L is fixed, the use of L-th order PL suggests that information about the parameter
can be extracted from the dependence structure of the pairs of observations with a
lag distance not greater than L. Usually, it happens that the maximum pairwise
likelihood estimators tend to lose efficiency, with respect to those based on the full
likelihood. Even if this behavior is obviously reliable, until now, no general results
about the evaluation of this gap are available.

Instead of comparing the efficiency between the PL and the full likelihood, we
would like to compare the efficiency of SDL and PL. This choice is justified by the
fact that for general state space models the full likelihood function is unavailable, as
we discussed before, and hence the estimator obtained by maximizing this function
is not actually a real alternative. Moreover, for non overlapping version of split data
likelihood estimator, some theoretical results about the behavior of its variance have
already been proved. Anyway, maximum full likelihood estimator is the benchmark
we have to refer to when we discuss efficiency of any estimator.

We would like to take into account the overlapping version of the SDL, as defined
in (4) and consider the case where πθ is known. We expect that, for a general model,
there will be a loss of efficiency when we use PL of order L instead of overlapping
SDL. The quantification of this loss can be achieved through the evaluation of the

asymptotic variance of the estimator θ̂
(L)
P . Andrieu et al. [2007] characterize the

asymptotic variance in the non overlapping version of SDL, called ΣL, and quantify
the loss of efficiency by comparing ΣL to its counterpart associated to the full like-
lihood based criterion. More precisely, they state that there exists a C ∈ (0,+∞)
and ρ ∈ [0, 1) such that for any L ≥ 2

|Σ− ΣL| ≤ C

[

log (L)2

L log (ρ)2
+

ρ

L(1− ρ)
+

ρL+1

1− ρL

]

, (17)

where Σ denotes the asymptotic variance of the full likelihood estimator. Since

ΣL = H−1
L (θ∗)GL(θ

∗)H−T
L (θ∗),
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where

HL(θ
∗) =

1

L
E[∇logpθ∗(Y0)∇

T logpθ∗(Y0)],

GL(θ
∗) =

1

L
E[∇logpθ∗(Y0)∇

T logpθ∗(Y0)] +
2

L

+∞
∑

k=1

E[∇logpθ∗(Y0)∇
T logpθ∗(Yk)],

with Yk = (YkL+1, . . . , Y(k+1)L), the result in (17) comes from the fact that

1

L
|E[∇logpθ∗(Y0)∇

T logpθ∗(Y0)]− Σ| ≤
ρ

L(1− ρ)
,

1

L
|E[∇logpθ∗(Y0)∇

T logpθ∗(Y1)]| ≤ C
log (L)2

L log (ρ)2
,

1

L
|E[∇logpθ∗(Y0)∇

T logpθ∗(Yk)]| ≤ CLρ(k−1)L+1 ∀k ≥ 2,

for a suitable C ∈ (0,+∞) and ρ ∈ [0, 1). Equation (17) proves that the loss of
efficiency compared to the maximum likelihood estimator vanishes as L increases
and depends on the mixing properties of the model. Extending their results to
the overlapping version of the maximum split data likelihood estimator is far from
being easy. The difficulties arise because the dependency structure between blocks
is more complex when blocks are allowed to overlap instead of being disjoint. This
translates to a more complicated calculation for the counterpart of GL(θ

∗), necessary
to evaluate the asymptotic variance of the estimator.

For our purpose, we shall evaluate the asymptotic variances of the estimators

obtained by maximizing (4) and (10). We refer to these quantities as Σ
(ov)
SD and Σ

(L)
P

respectively. As we discussed above, evaluation of Σ
(ov)
SD and a fortiori evaluation of

Σ
(L)
P is not easy to obtain, even for simple models. A deep theoretical analysis of

the efficiency problem in pairwise and overlapping split data likelihood inferential

procedures is beyond the scope of this paper. Anyway, while we suspect that Σ
(ov)
SD

still decreases if L grows, we do not expect that Σ
(L)
P will do the same if L grows,

unlike ΣL does. This idea is consistent to Varin and Vidoni [2009]. In the next
section, we give an empirical evidence of these behaviors and we suggest the existence
of a ‘best’ lag L, in term of variance of the PL estimator. Anyway, how to determine
L optimally is still a good open question.

6 Simulation study about efficiency

In this section, we empirically compare the efficiency between maximum pairwise
likelihood and maximum full likelihood estimators, as well as the efficiency between
maximum overlapping split data likelihood and maximum pairwise likelihood esti-
mators. Even if we do not have theoretical results that state the behavior of their
variances, our intuitions, suggested in Section 5, are confirmed in this simple exam-
ple. We consider a linear gaussian state space model, where invariant distribution is
known and the likelihood function is available in a closed form. Even if it is only an
empirical study in a simple context, these preliminary results may be a useful guide
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when we move to more complex settings where we can not compute the likelihood
function in a closed form.

We illustrate here by means of simulation experiments, the performance of the
maximum pairwise likelihood estimator of order L and we compare it with the
maximum split data likelihood estimator, where the blocks defining the likelihood
function are allowed to overlap.
We consider a state space model where the latent process follows an autoregressive
dynamic and the marginal distributions of the observations are explicitly known

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

In this case

fθ(x
′|x) = N(φx, τ2) and gθ(y|x) = N(x, σ2).

We assume that the process is stationary, so |φ| < 1 and πθ ∼ N
(

0, τ2

1−φ2

)

. The

unknown parameter is θ = (φ, τ, σ). The full likelihood function is available in
a closed form and it can be efficiently computed by the Kalman filter recursions.
Thus we can compare the performance of the maximum likelihood, the maximum
pairwise likelihood and the maximum split data likelihood estimators. Moreover, we
can empirically compare the variance of the maximum pairwise and the split data
likelihood estimators in order to study their relationship in term of efficiency. Since
we set the parameter space in such a way that the process is stationary, the bivariate
distribution of the pairs (Yi, Yj), i = 1, . . . , n− 1; j = i+ 1, . . . , n is

(

Yi
Yj

)

∼ N

{

(

0
0

)

,

(

σ2 + τ2

1−φ2 φj−i τ2

1−φ2

φj−i τ2

1−φ2 σ2 + τ2

1−φ2

)}

,

and hence the pairwise likelihood of order L is easy to compute.
It is worthwhile to underline that the statistical model corresponding to the choice
L = 1 is not identifiable. If L = 1 there exist at least two different sets of parameters
values for θ which give the same value for the pairwise likelihood function. This
problem can be easily overcome by adding pairs at lag distance greater than one.
On the other hand, under stationarity conditions, the marginal distribution of the
blocks (Yi, . . . , YL+i−1), i = 1, . . . , n− L+ 1 is







Yi
...

YL+i−1






∼ N

































0
...
0






,















σ2 + τ2

1−φ2 φ τ2

1−φ2 . . . φL−1 τ2

1−φ2

φ τ2

1−φ2

. . .
. . . φL−2 τ2

1−φ2

...
. . .

. . .
...

φL−1 τ2

1−φ2 . . . . . . σ2 + τ2

1−φ2









































,

and hence the split data likelihood with blocks of length L turns out to be easy to
compute.

We compare the empirical properties of θ̂
(L)
P and θ̂

(L)
SD, with L = 2, . . . , 29. We

consider 300 time series of length n = 1000 from the AR(1) model plus additive
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Table 1: AR(1) model plus observation noise, with θ∗ = (0.7, 1, 1). Sample mean
and standard deviation (in brackets), for the maximum likelihood estimator θ̂ML.
Calculations based on 300 simulated time series of length 1000.

φ̂ML τ̂ML σ̂ML

0.6952 0.996 0.9932
(0.0473) (0.0952) (0.0798)

observation noise, with φ∗ = 0.7, σ∗ = 1, τ∗ = 1 as true parameter values. Here-
after, in order to find the maximum point of the pairwise and split data likelihood
functions, we adopt an optimization procedure based on the Nelder and Mead down-
hill simplex method, with a relative convergence tolerance of 10−8. We repeat the
optimization procedure starting from different values in the parameter space, find-
ing similar results. The sample means and standard deviations for the maximum
pairwise and split data likelihood estimators, for some L, are summarized in Table
2 as well as for the maximum full likelihood estimator (Table 1). The results pre-
sented here are obtained taking as starting values for the optimization procedure
φ0 = 0.9, σ0 = 0.8, τ0 = 0.5.

Table 2: AR(1) model plus observation noise, with θ∗ =
(0.7, 1, 1). Sample means and standard deviations (in brack-

ets) for the maximum pairwise likelihood estimator θ̂
(L)
P and

split data likelihood estimator θ̂
(L)
SD as L increases. Calcula-

tions based on 300 simulated time series of length 1000.

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
SD τ̂

(L)
SD σ̂

(L)
SD

2 0.6968 0.9928 0.992 0.6968 0.9929 0.9919
(0.0561) (0.119) (0.095) (0.0562) (0.1191) (0.0951)

3 0.6963 0.9936 0.9944 0.6956 0.9953 0.9923
(0.0494) (0.1006) (0.0827) (0.0507) (0.1048) (0.0866)

4 0.696 0.9939 0.9948 0.6952 0.9961 0.9924
(0.0481) (0.0963) (0.0803) (0.049) (0.1003) (0.0837)

5 0.6964 0.9932 0.9951 0.6951 0.9964 0.9924
(0.0487) (0.0983) (0.0832) (0.0484) (0.0985) (0.0825)

6 0.6954 0.9954 0.9925 0.6951 0.9965 0.9925
(0.0505) (0.1041) (0.0882) (0.048) (0.0975) (0.0817)

7 0.6945 0.9976 0.99 0.6951 0.9965 0.9926
(0.052) (0.1085) (0.0922) (0.0479) (0.0971) (0.0814)

8 0.694 0.9987 0.9885 0.6951 0.9965 0.9927
(0.0534) (0.113) (0.0955) (0.0478) (0.0969) (0.0811)

Table 2: Continued on next page
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Table 2: continued from previous page

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
SD τ̂

(L)
SD σ̂

(L)
SD

9 0.6937 0.9995 0.9871 0.6951 0.9965 0.9928
(0.055) (0.1173) (0.0995) (0.0477) (0.0968) (0.0809)

10 0.6937 0.9995 0.9869 0.6951 0.9964 0.9928
(0.0558) (0.12) (0.1008) (0.0477) (0.0967) (0.0807)

11 0.6935 0.9998 0.9864 0.6952 0.9964 0.9929
(0.0566) (0.1225) (0.1026) (0.0477) (0.0966) (0.0806)

12 0.6937 0.9993 0.9865 0.6951 0.9964 0.9929
(0.0573) (0.1246) (0.1042) (0.0476) (0.0965) (0.0805)

13 0.6943 0.9977 0.9875 0.6952 0.9963 0.993
(0.0584) (0.1279) (0.1065) (0.0476) (0.0964) (0.0804)

14 0.6946 0.9971 0.9879 0.6952 0.9962 0.9931
(0.0588) (0.1294) (0.1075) (0.0476) (0.0964) (0.0802)

15 0.6949 0.9962 0.9886 0.6952 0.9962 0.9931
(0.0593) (0.1307) (0.1083) (0.0475) (0.0963) (0.0802)

16 0.695 0.9957 0.9889 0.6952 0.9962 0.9931
(0.0598) (0.1322) (0.1092) (0.0475) (0.0963) (0.0801)

17 0.6953 0.995 0.9894 0.6952 0.9962 0.9932
(0.0601) (0.1334) (0.1095) (0.0475) (0.0963) (0.08)

18 0.6955 0.9945 0.9897 0.6952 0.9962 0.9932
(0.0605) (0.1345) (0.1105) (0.0475) (0.0963) (0.08)

19 0.6958 0.9937 0.9904 0.6952 0.9962 0.9932
(0.0607) (0.1354) (0.111) (0.0475) (0.0963) (0.08)

20 0.6957 0.9938 0.9902 0.6952 0.9962 0.9932
(0.061) (0.1362) (0.1113) (0.0475) (0.0963) (0.08)

21 0.6958 0.9935 0.9906 0.6951 0.9962 0.9933
(0.0611) (0.1363) (0.1108) (0.0474) (0.0963) (0.0799)

22 0.696 0.9932 0.9907 0.6951 0.9962 0.9933
(0.0613) (0.1372) (0.1117) (0.0474) (0.0963) (0.0799)

23 0.6961 0.9928 0.9912 0.6951 0.9962 0.9933
(0.0612) (0.1371) (0.1117) (0.0474) (0.0964) (0.0799)

24 0.6959 0.9933 0.9906 0.6951 0.9962 0.9933
(0.0614) (0.1374) (0.1121) (0.0474) (0.0963) (0.0798)

25 0.6959 0.9932 0.9908 0.6951 0.9962 0.9934
(0.0612) (0.137) (0.1116) (0.0473) (0.0963) (0.0798)

26 0.696 0.9931 0.9908 0.6951 0.9961 0.9934
(0.0612) (0.1371) (0.1118) (0.0474) (0.0963) (0.0798)

27 0.6961 0.9928 0.9912 0.6951 0.9961 0.9934
(0.0611) (0.1366) (0.111) (0.0473) (0.0963) (0.0798)

28 0.6959 0.9932 0.9907 0.6951 0.9961 0.9934
(0.0612) (0.1371) (0.1118) (0.0473) (0.0964) (0.0798)

Table 2: Continued on next page
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Table 2: continued from previous page

Pairwise Likelihood Split data Likelihood

Lag φ̂
(L)
P τ̂

(L)
P σ̂

(L)
P φ̂

(L)
SD τ̂

(L)
SD σ̂

(L)
SD

29 0.6959 0.9932 0.9907 0.6951 0.9961 0.9935
(0.0612) (0.1369) (0.1115) (0.0474) (0.0964) (0.0798)

We clearly see that the behavior of the variance of the maximum pairwise like-
lihood estimator is not monotonic: this is consistent with the existence of a ‘best’
lag distance L∗, in terms of minimum variance. Table 2 reports also the estimates
and the variances of the estimates referred to the maximum split data likelihood
estimator. Our empirical study shows that the variance in this case decreases to the
variance of the maximum full likelihood estimator as L grows. These results em-
pirically prove that maximum SDL estimator goes to the maximum full likelihood
estimator as the length of the blocks of observations goes to infinity [Andrieu et al.,
2007].

Figure 1 displays the behavior of the variances of the two estimators (PL and
SDL) compared to the variance of the maximum full likelihood estimator. We clearly
identify L∗ as L∗ = 4 and the monotonic decreasing trend of the SDL variance.
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Figure 1: AR(1) model plus observation noise, with θ∗ = (0.7, 1, 1). Standard devia-
tions for the maximum likelihood estimator θ̂ML (solid line), the maximum pairwise

likelihood estimator θ̂LP (top) and the maximum split data likelihood estimator θ̂
(L)
SD

(bottom), with L = 2, . . . , 29 denoting the maximum distance between the observa-
tions. Calculations based on 300 simulated time series of length 1000.

We repeat the simulation changing the values of θ∗. While σ∗ and τ∗ (and in
particular the signal-to noise ratio τ2/σ2) do not seem to affect the optimal value
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L∗, increasing the value of φ∗ results in a bigger optimal value L∗ (we recover the
best order equal to six given in Varin and Vidoni [2009] when φ∗ = 0.95). This
is probably connected to the weaker or stronger dependence structure of the pairs.
Anyway, the fact that the optimal choice for the lag distance between the pairs
depends on the unknown true parameter values makes its investigation ambiguous
in real scenarios.

7 Conclusion

This paper dealt with the problem of static parameter estimation in general state
space models. Given the difficulties arising in this framework, we have focused on
inferential procedures based on composite likelihood functions, in particular pair-
wise and split data likelihood functions. Asymptotic properties of the parameter
estimators obtained by maximizing these functions in general state space scenario
were investigated. We proved that standard results, as strong consistency, depend
on the properties of the processes involved, in particular stationarity and ergodicity
that ensure forgetting behavior of the filter.

We also investigated efficiency problem in pairwise and split data likelihood
framework as L, i.e. the lag distance between pairs or the length of a block, re-
spectively, increases. We empirically proved that the loss of efficiency, with respect
to maximum likelihood estimator, of the maximum split data likelihood estimator
vanishes as L increases, while the variance of the maximum pairwise likelihood esti-
mator decreases until a certain L∗ and then it tends to increase. Anyway, until now,
no general results about evaluation of this loss are available, even if this behavior is
observed also in Varin and Vidoni [2009]. Moreover, we suggested the existence of
a ‘best lag’ L∗, in terms of variance of the maximum pairwise likelihood estimator.
However, we have not theoretically analyzed yet how to determine such value. In
further research, we will investigate this topic through the evaluation of the asymp-
totic variance of the maximum pairwise likelihood estimator, in order to obtain an
expression that depends on the lag distance L. We would like to follow the idea of
Andrieu et al. [2007] in the non overlapping version of split data likelihood function.
To do that, we need to quantify the loss of efficiency with respect to the full like-
lihood function. This requires a deep study of the dependence structures between
pairs of observations, exploiting ergodic properties of the processes involved.

A Assumptions

Our results hold under the following assumptions

(C1) There exists f0, g0 > 0 and f0, g0 < ∞ such that far all x, x′, y, θ ∈ X 2×Y×Θ

f0 ≤ fθ(x
′|x) ≤ f0, g0 ≤ gθ(y|x) ≤ g0

(C2) Θ is a compact set, θ∗ is a unique global maximum of lP (θ) and belongs to the
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interior of Θ, denoted
◦
Θ. Moreover lP (θ) is twice continuously differentiable

on
◦
Θ and HP (θ

∗) := ∇2lP (θ
∗) is positive definite.

(C3) fθ and gθ are continuous as functions of θ

There is an integer L ≥ 1 such that, for every j = 2, . . . , L+ 1

(C4) pθ(y1, yj) = pθ∗(y1, yj) if and only if θ = θ∗

(C5) for the true parameter value θ∗ we have E[|log[pθ∗(y1, yj)]|] < ∞

(C6) for each θ there is a δ > 0 (sufficiently small) such that

Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

< ∞

and there is a b > 0 (sufficiently large) such that

Eθ∗

[(

sup
θ′:|θ′|>b

log pθ′(y1, yj)

)+]

< ∞,

where h+ denotes the positive part of the function h

(C7) if limi→∞ |θi| = ∞ then limi→∞ pθi(y1, yj) = 0.

Condition (C1) implies that the process {Xk, Yk} is an uniformly ergodic Markov
chain.

B Technical results about consistency

We prove here some middle results necessary to state that pairwise likelihood es-
timator is strongly consistent, as proved in Theorem 2. We start with a lemma
concerning the L-dimensional Kullback-Leibler information. We recall that under

the ergodicity assumption (C1), the log pairwise likelihood l
(L)
P (θ, y1:n) satisfies

lim
n→∞

l
(L)
P (θ, y1:n) = l

(L)
P (θ).

Lemma 1. Assume that Conditions (C4 − C6) hold. Then K
(L)
P (θ, θ∗) ≥ 0 with

equality if and only if θ∗ = θ.

Proof. By Conditions (C6), the expected values l
(L)
P (θ∗) and l

(L)
P (θ) exist. Because

of the Assumption (C5), we have that l
(L)
P (θ∗) is finite. If l

(L)
P (θ) = −∞, Lemma

1 obviously holds. Thus we shall consider the case when l
(L)
P (θ) is finite. Then
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K
(L)
P (θ, θ∗) = l

(L)
P (θ∗) − l

(L)
P (θ) exists finite. For every j = 2, . . . , L + 1, by Jensen

inequality we have that

∫

Y2

log
pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

≤ log

[∫

Y2

pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

]

= log

[∫

Y2

pθ(y1, yj)dy1dyj

]

= log[1] = 0. (18)

Since

−K
(L)
P (θ, θ∗) =

1

L

L+1
∑

j=2

∫

Y2

log
pθ(y1, yj)

pθ∗(y1, yj)
pθ∗(y1, yj)dy1dyj

and given the result in (18), K
(L)
P (θ, θ∗) ≥ 0 and this proves the first part of the

lemma. The equality holds if and only if, for every j = 2, . . . , L + 1, pθ(y1, yj) =
pθ∗(y1, yj) almost everywhere. By Condition (C4), this is true if and only if θ =
θ∗.

Lemma 2. Assume that Conditions (C3) and (C6) hold. Then for every θ ∈ Θ and
for every j = 2, . . . , L+ 1

lim
δ→0

Eθ∗

[

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

]

= Eθ∗ [log pθ(y1, yj)] .

Proof. By Condition (C3), pθ(y1, yj) is continuous for all y1, yj , j = 2, . . . , L + 1.
Then

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+

= (log pθ(y1, yj))
+,

except perhaps on a set whose probability measure is zero.

Since
(

supθ′:|θ′−θ|≤δ log pθ′(y1, yj)
)+

is an increasing function of δ, it follows from

Assumption (C6) that

lim
δ→0

Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

= Eθ∗

[

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)+]

= Eθ∗
[

(log pθ(y1, yj))
+] . (19)

Again by Condition (C3)

lim
δ→0

(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)−

= (log pθ(y1, yj))
−,
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except perhaps on a set whose probability measure is zero, where h− denotes the
negative part of the function h. Then the relation

lim
δ→0

Eθ∗

[(

sup
θ′:|θ′−θ|≤δ

log pθ′(y1, yj)

)−]

= Eθ∗
[

(log pθ(y1, yj))
−
]

(20)

is clearly satisfied in both cases, when Eθ∗

[

(

supθ′:|θ′−θ|≤δ log pθ′(y1, yj)
)−
]

is finite

and when it is equal to +∞. Lemma 2 is a consequence of (19) and (20).

Lemma 3. Assume that Conditions (C3, C6, C7) hold. Then, for every j = 2, . . . , L+
1

lim
b→∞

Eθ∗

[

sup
θ:|θ|>b

log pθ(y1, yj)

]

= −∞.

Proof. From Assumptions (C3) and (C7)

lim
b→∞

sup
θ:|θ|>b

log pθ(y1, yj) = lim
θ→∞

log pθ(y1, yj) = −∞.

According to Assumption (C6),

Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)+]

< ∞,

and since
(

supθ:|θ|>b log pθ(y1, yj)
)+

is a decreasing function of b we have that

lim
b→∞

Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)+]

= 0. (21)

Since
(

supθ:|θ|>b log pθ(y1, yj)
)−

is an increasing function of b, in the same way we

have that

lim
b→∞

Eθ∗

[(

sup
θ:|θ|>b

log pθ(y1, yj)

)−]

= +∞ (22)

in both cases, when Eθ∗

[

(

supθ:|θ|>b log pθ(y1, yj)
)−
]

is finite and when it is equal

to +∞. Lemma 3 is a consequence of (21) and (22).
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