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Abstract: In this paper we present an extensive comparison of four different classes of

models for daily forecasting of spot electricity prices, including ARMAX, constant and

time-varying parameter regression models as well as non linear Markov regime-switching

regressions. They are selected for particular reasons related to the emerging body of re-

search on the price formation processes observed in electricity markets. The analyses are

conducted for representative trading periods of the day in the UK Power Exchange prompt

market, with the price series adjusted for their deterministic components and spikes. They

show that relative out-of-sample forecasting performances are distinctly different for each

trading period, season and across the actual performance metrics. No model consistently

outperforms the others, but the ARMAX approach performs well in most cases and the

Diebold and Mariano test indicates that, when it is not the best, the ARMAX model is

not statistically different from the best. Nevertheless, we suggest that subtle differences in

performance between different methods under different conditions are consistent with the

apparent variations in the price formation processes by time of day and by season. We

conclude with some observations on the disparities between the model specifications ap-

propriate for understanding in-sample price formation and those for accurate out-of-sample

predictions.
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1 Introduction

Whilst price forecasting is clearly an important activity for managing operational,
financial and trading risks in the liberalised electricity sector, the substantive body
of research which has emerged to model power price formation does not generally
have a predominantly predictive orientation. The research challenges of specifying
adequate econometric models to describe the delicate, nonlinear and evolutionary
interactions of fundamental and market conduct variables known to influence power
price formation have sustained an increasing amount of work aimed primarily at
describing the ex post properties of the market prices, the conduct of participants
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and questions of market efficiency (Bunn, 2004; Weron, 2006). How well these
models perform out-of-sample for predictive purposes is therefore still incompletely
understood. Furthermore, the forecasting models which have been published offer
limited insights into their comparative performances, often being conducted in very
different contexts (see Aggarwal et al., 2009), and to the extent that comparisons
are included, no consistent conclusions have been emerging.

The published work is methodologically quite wide and includes purely time se-
ries forecasting models (Crespo Cuaresma et al., 2004; Conejo, Contreras, Esṕınola
and Plazas, 2005; Conejo, Plazas, Esṕınola and Molina, 2005; Weron and Misiorek,
2005), the performances of which are generally improved with exogenous variables
(eg Nogales et al., 2002; Contreras et al., 2003; Knittel and Roberts, 2005; Weron and
Misiorek, 2005 and Misiorek et al., 2006). Power prices often show heteroskedasticity
(Guirguis and Felder, 2004; Garcia et al., 2005; Knittel and Roberts, 2005; Misiorek
et al., 2006; Bowden and Payne, 2008) and irregular spikes (Duffie et al., 1998) mo-
tivating price specifications involving GARCH (Koopman et al., 2007), jump com-
ponents (Escribano et al., 2002; Karakatsani and Bunn, 2004), or regime switching
(Kosater and Mosler, 2006; Misiorek et al., 2006). Time-varying parameter mod-
els (Pedregal and Trapero, 2007; Karakatsani and Bunn, 2008) appear particularly
attractive (Granger, 2008) in capturing the evolutionary nature of power markets.
Cross-comparisons within this body of work are difficult, however, because basic
specifications vary (working with prices or log prices are equally common; unit root
tests sometimes indicate mean reversion, sometimes the need to model returns; the
deterministic components are incorporated in different ways and whether spikes are
modelled or excluded are also discretionary modelling choices). Moreover markets
are idiosyncratic (eg PJM, EEX, and NordPool have many different characteris-
tics), and in terms of experimental designs, the out-of sample forecasting periods
are sometimes insufficient to compare conclusions, recursive re-estimations are often
not undertaken and the reported prediction error statistics also vary. Furthermore, if
comparisons are undertaken, their statistical significances are often untested. More
fundamentally, however, in addition to these general issues of methodological com-
parability, which are common to most areas of applied forecasting research, as it is
becoming clear that the price formation processes for spot electricity may vary by
time of day and by season (Karakatsani and Bunn, 2008), so it is plausible that there
may be systematic, periodic, variations in the relative appropriateness of different
forecasting methods as well. To the extent that such an effect exists, it may well
confound simple cross-comparisons if it were not part of their experimental designs.

In this paper, we report a detailed forecasting comparison that involves four
different classes of models, each one characterised by specific generalisable features.
Since it would be possible to suggest a very wide range of different models, we
focus instead upon some critical characteristics. One approach follows from the
proposition that a well specified ARMA model, applied for short term forecasting,
should be able to incorporate indirectly the time series effects of many exogenous
variables, particularly the slowly moving ones. We do not explore this approach in
its simplest form, however, since it is very well-known that the reserve margin is a
crucial variable that determines the competitiveness of pricing, and to the extent
that the market operator may provide timely forecasts of this variable, it will be
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valuable. So, we propose an ARMAX, with this extra variable, but the approach is
essentially one of using ARMA to indirectly reflect the many other driving influences.
The second approach is a constant parameter linear regression model (LR), with
explicit representation of some of the possible exogenous driving variables. The
linear model has often been advocated in forecasting out-of-sample, even if nonlinear
models have been shown to fit better in-sample (Kosater and Mosler, 2006; Misiorek
et al., 2006). The third approach relaxes the constant parameter aspect of the
explicit regression approach to use time-varying coefficients. We specified this with
random-walk coefficients, allowing for price dynamics that continuously adapt as the
price formation process evolves. Finally the stylised fact of power prices being spiky
suggests that a Markov regime-switching approach would be most suitable for the
irregular, but repeated, discontinuities in the price series, distinguishing between
normal and high-price regimes. We undertake a direct comparison of these four
distinct approaches for both fitting and forecasting day ahead UK power prices,
with a clear focus upon time of day and seasonal characterisation.

The paper is organized as follows. In section 2 we present a preliminary data
analysis of the UK electricity prices and the methods that we use for processing the
price series. We describe also the price drivers included in the models as regres-
sors. Section 3 focuses on the description of the models, while section 4 includes the
experimental design. Section 5 presents the comparative results obtained through
various prediction error statistics and the Diebold-Mariano significance tests. Sec-
tion 6 concludes.

2 Data Analysis of the UKPX electricity market

2.1 Preliminary data analysis

This work considers the prices for the half-hourly trading periods in the British
wholesale power market, which is generally regarded as the most mature and com-
petitive in Europe. These are the reference prices from the UKPX, a power exchange
which offered continuous bilateral trading from day ahead to an hour ahead of real-
time. The data start from April 1st, 2005, when the market had just been extended
to include Scotland, to September 30th, 2006. Each day consists of 48 load periods:
period 1 is defined as 00:00-00:30am, period 2 as 00:30-01:00am, and so on up to pe-
riod 48 (23:30-00.00pm). We denote by Pjt the spot price at time t and load period
j (t = 1, 2, ..., N , j = 1, 2, ..., 48). All weekends and holidays were removed from the
data, yielding 380 days for each load period. The load profiles are quite different
for those days, and in dropping them from the analysis, there was no significant
loss of information (Ramanathan et al., 1997; Karakatsani and Bunn, 2008). The
prices are spiky, mainly due to occasional supply shocks, and to stabilise variance,
logarithmic transformations were used.

Figure 1 shows the distributions of the 48 half-hourly log price series. The usual
daily cycle appears quite clearly. In particular, we observe very high prices at about
17:00-19:00pm (peak hours), corresponding to load periods 35-38: this evening peak
is more pronounced in winter (see figure 2). Moreover, not only the average level
of prices but also their variability depends on the load period. Power markets op-
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Figure 1: Boxplots of price logarithms for the 48 load periods.
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erate with low marginal cost generators providing ”baseload power” throughout the
day, while flexible plants, typically with high marginal costs, are used only dur-
ing peak hours. Consequently, prices show an extremely high volatility on a daily
basis and because of nonstorability, electricity products traded in different hours
really constitute separate commodities. Formulating the time series problem as a
sequence of day-by-day observations for a particular trading period, rather than
as a sequence of trading periods throughout the day, has become well-established
for electricity loads and prices (Ramanathan et al., 1997; Bunn, 2000; Bunn and
Karakatsani, 2003). The improvement in fitting and prediction accuracy is a result
of the increase in homogeneity of the day-by-day time series for a particular period
in comparison with the contiguous period-by-period sequence. For next-day price
forecasting, 48 one-step-ahead forecasts calculated everyday, contain less noise than
forecasts with prediction horizons varying from 1 to 48. Thus, our models were
estimated separately for each load period. In particular, we used five representative
periods of the day: load periods 6 (02:30-03:00am), 18 (08:30-09:00am), 28 (13:30-
14:00pm), 38 (18:30-19:00pm) and 44 (21:30-22:00pm).
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As figure 2 shows, the log price series have a deterministic component linked to
variations in demand. The night-time load period 6 is more stable. In periods 18,
28 and 38 volatility is very high, with sudden peaks during winter and summer in
both 2005 and 2006. The deterministic component changes according to the load
period. Some authors prefer to include it in the models (Karakatsani and Bunn,
2008), others prefer to remove it and to work on the adjusted price series (Geman
and Roncoroni, 2006; Misiorek et al., 2006). We followed this second approach.
Thus, we removed the deterministic component from the log price series and we es-
timated the models on the filtered series. Common tools for modelling deterministic
components include functions with dummies (Haldrup and Nielsen, 2006), functions
of time (Weron et al., 2004; Cartea and Figueroa, 2005) using sinusoidal approaches
(Pilipovic, 1998) or a combination of both (Kosater and Mosler, 2006; Misiorek et al.,
2006). However, these are idiosyncratic to the data. In fact our prices show the ef-
fects of two components: one affected by the seasonal use of lighting and heating in
winter and to a lesser extent by the increasing use of air conditioning in summer,
and the other caused by long run market behaviour. Instead of using a parametric
method we pursued the Friedman’s Supersmoother (Friedman, 1984), which is a
very flexible method to estimate a deterministic component of a time series. It is
a nonparametric technique based on the nearest neighbor method characterised by
specific procedures for the selection of the smoothing parameter.

Let Djt be the estimate of the deterministic component obtained applying the
Friedman’s Supersmoother to the log price series logPjt. Then, the adjusted series
of log prices is given by pjt = logPjt −Djt (t = 1, 2, ..., N and j = 6, 18, 28, 38, 44).
Table 1 displays some descriptive statistics of the adjusted log price series pjt for the

Table 1: Descriptive statistics for adjusted log price series, load periods 6, 18, 28,
38 and 44 over the period April 2005 - September 2006.

Period 6 Period 18 Period 28 Period 38 Period 44

mean 0.002 0.004 0.002 <0.001 0.001
st.deviation 0.128 0.191 0.291 0.285 0.141

skewness 1.119 1.694 1.926 1.808 2.342
kurtosis 7.250 10.075 9.967 8.902 17.185

five load periods. Load period 6 has the lowest standard deviation value, followed
by load period 44, 18, 38 and 28. This is reasonable considering that period 6 is an
off-peak hour, while load periods 28 and 38 are super-peak hours. The high variance
of the peak hours is due to spikes. The values of skewness and kurtosis show that all
the periods are characterized by positive asymmetry and fat tails, and they deviate
considerably from normality. Augmented Dickey-Fuller (Said and Dickey, 1984) and
KPSS (Kwiatkowski et al., 1992) tests are applied to the log prices before and after
removing the deterministic component to assess the stationarity of the series. Table
2 shows results for the unit root tests. If the tests applied to the log price series
show non stationarity, after adjusting for the deterministic component, Augmented
Dickey-Fuller unit root test for pjt across the five load periods rejected the unit root
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Figure 2: Electricity price logarithms for the considered load periods from April 2005
to September 2006.
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null hypothesis at the 1% significance level. In the same way, KPSS stationarity test
did not reject the null hypothesis at the 5% significance level.

Table 2: Unit root tests results for log prices and adjusted log price series in the
considered load periods.

Log Prices Adj Log Prices

Load Period ADF KPSS ADF KPSS

6 (02:30-03:00am) −1.981 0.958∗ −7.795∗ 0.015
18 (08:30-09:00am) −2.973 0.829∗ −6.917∗ 0.017
28 (13:30-14:00pm) −3.537∗∗ 0.417∗ −6.372∗ 0.015
38 (18:30-19:00pm) −2.442 1.002∗ −7.309∗ 0.014
44 (21:30-22:00pm) −2.455 0.914∗ −7.555∗ 0.016

Note: ∗, ∗∗ means that the null hypothesis is rejected at 1% and 5% significance level
respectively. ADF stands for augmented Dickey-Fuller test. Lag lengths are chosen
following Ng and Perron (1995) method.

As figure 2 shows, our series present a number of very high, sudden spikes, which
will affect model estimation and, consequently, the forecasting experiments. A char-
acteristic feature of these spikes is that prices fall back to normal levels almost
immediately when the weather condition or outage that caused the peak is over.
In Weron and Przyby lowicz (2000) and Weron (2002) the R/S analysis, detrended
fluctuation analysis and periodogram regression methods were used to verify anti-
persistence in electricity prices. One approach is to treat spikes as outliers and
use some procedure to preprocess the data, as in Conejo, Contreras, Esṕınola and
Plazas (2005) and Weron and Misiorek (2008). We decided to conduct our analy-
seis on the series with and without spikes. For our despiked analyses, we followed
Weron (2006), and did not cut the spikes at a specified threshold, but dampened
them by differentiating between jumps and extreme jumps. The method is iterative
(until a stop criterion was satisfied) on the spot price series Pjt. At each iteration
a threshold is set. If the adjusted price is higher than the threshold, it is replaced
by a logarithmic function depending on both the price and the threshold. Then
the series is transformed again into spot prices and the deterministic component is
recalculated. For period j, the procedure at the i-th iteration is as follows:

1. remove the deterministic component from the spot price series P i/ exp(Di);

2. set the threshold T i = µi + 3σi where µi and σi are respectively the mean and
standard deviation calculated from the adjusted price series;

3. for t = 1, ..., N , if P i
t > T i, set P

(i+1)
t = T i +T i log10(P

i
t /T

i), else P
(i+1)
t = P i

t ;

4. insert exp(Di) in the new price series P
(i+1)
t and recalculate the deterministic

component as D(i+1);

5. if the maximum difference between the prices of the old series and the new one
is bigger than 0.1, restart from point 1 (i = i + 1), else stop.
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Section 5 contains the forecasting results for the models estimated on the adjusted
logarithmic price series with and without spikes. Moreover, results from a direct
comparison between the two studies are presented.

2.2 Market data

As Karakatsani and Bunn (2008) observed on the UK market, there is a strong
linkage between prices and market fundamentals. In our research we considered the
following variables (in logs):

Demand Forecast (demFt). This is the national day-ahead demand forecast pub-
lished by the system operator for each load period. The term ’day ahead’
means that demFt is available at time t− 1.

Indicated Margin (margint).This is the available capacity margin and it is de-
fined as the difference between the sum of the maximum export limits nomi-
nated by each generator prior to each trading period, as its maximum available
output capacity, and the demand forecast.

To face possible non linear relations between price and demand, and price and mar-
gin, we introduce a quadratic polynomial of demF and margin. To resolve collinear-
ity, at every estimation step we demeaned the variables and then we calculated the
quadratic components, denoted as demF 2 and margin2.

Gas Price . This is the daily UK natural gas one-day forward price, from the main
National Balancing Point (NBP) hub. At the time, the UK power market was
widely recognised as being a ”spark spread” market, i.e. driven by underlying
gas prices. This is also in accord with Serletis and Shahmoradi (2006) who
observed that the general relation between gas and electricity price is strong,
not only on the mean but also on the variance. For consistency, our models in-
clude the series of deviations (gasF.rest) of gas prices from their deterministic
components calculated with the Friedman’s Supersmoother.

For autocorrelation and heteroskedasticity, we included the following variables:

Past Prices (pt−j). They are the lagged spot prices. In particular, lags 1 and 5,
corresponding to a daily and weekly lag were considered.

Volatilities (V olt). This is an indicator of instability and risk for both for the elec-
tricity price series (priceV olt) and for the demand forecast series (demV olt).
Volatility is computed as the coefficient of variation calculated on a rolling
windows of the last 5 days.

3 Predictive models

The first general model class that we have considered is the AutoRegressive Moving
Average model with exogenous variables ARMAX(p, q,m1, ...,mk). The current
value yt of the time series is expressed linearly in terms of its p past values, of
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q past shocks and of some past values of k exogenous variables. A general formula
for the ARMAX(p, q,m1, ...,mk) model can be compactly written as:

ϕp(B)yt = θq(B)εt +

k∑
i=1

βi(B)zit, εt ∼ WN(0, σ2), (1)

where εt is the error term, z1, ..., zk are the exogenous variables, B is the lag operator,
βi(B) = βi

0 + βi
1B + · · · + βi

mi
Bmi , ϕp(B) = 1 − ϕ1B − · · · − ϕpB

p and θq(B) =
1 + θ1B + · · · + θqB

q.
For our dataset the identified model is the ARMAX(1,1,1)

pjt = ϕjpj(t−1) + εjt + θjεj(t−1) + βjzjt, εjt ∼ WN(0, σ2
j ), (2)

where the exogenous variable zjt is the indicated margin. ϕj , θj , βj are constant
coefficients. This model, estimated through maximum likelihood, is the simplest
among our models.
For each load period j, the out-of-sample one-day ahead price forecast is given by:

fj(t+1) = ϕ̂jpjt + θ̂j ε̂jt + β̂jzj(t+1).

The second class of model is linear regression (LR), which explicitly accounts for
the relation between prices and price drivers. The model is specified as:

pjt = β′
jXjt + εjt, εjt ∼ i.i.d(0, σ2

j ) (3)

where βj is a k×1 vector of constant coefficients and εjt is an i.i.d. error term. Xjt is
a k× 1 vector of regressors selected in-sample with stepwise backward identification
(AIC criterion). The regressors are listed in Table 3. These final sets of regressors are
also used for models (4) and (7). Only regressors pt−1 and margint were significant

Table 3: Final sets of regressors obtained with stepwise backward techniques.

Period 6 Period 18 Period 28 Period 38 Period 44

intercept
√ √ √ √ √

pt−1
√ √ √ √ √

demFt —
√ √ √

—
demF 2

t —
√

—
√

—
margint

√ √ √ √ √

margin2
t

√
— —

√
—

gasF.rest
√ √

— —
√

demV olt
√

— — — —
priceV olt — — — —

√

for all the load periods. The demand (and its quadratic term) is not significant in
load periods 6 and 44, as it affects prices mainly during peak hours.
At each time t parameters βj are estimated by OLS using an expanding dataset,
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then out-of-sample one-day ahead price forecasts for the adjusted series are obtained
as:

fj(t+1) = β̂
′
jXj(t+1).

Model (3) assumes that the parameters, β, are constant over the estimation
sample. However, the application of the CUSUM and CUSUMSQ tests for stability
(see Brown et al., 1975) shows that there is strong evidence of instability in the
parameters for all the models. Thus, it may be useful to model the dynamics of
parameter evolutions. To consider also nonlinearity and heteroskedasticity issues,
we used two methods: one in which the changes in the parameters are assumed to
be generated by a random walk (time-varying parameter, TVP, regression model)
and one in which the changes are determined by a discrete variable which evolves
according to a Markov process (a Markov regime-switching, MS, model).

The TVP approach would appear to be most suited to the situations where the
response of the prices to the various market fundamentals may change continuously.
This is specified as:

pjt = β′
jtXjt + εjt, εjt ∼ WN(0, σ2

εj ), (4)

βj(t+1) = βjt + νjt, νjt ∼ WNk(0,Hj), (5)

where βjt is a k× 1 vector of coefficients and Xjt the k× 1 vector of regressors. εjt
is the error term of the measurement equation, while νjt is the error term vector of
the transition equation, E(εjt,νjt) = 0 and Hj = diag{σ2

νjk
}.

The estimation of this model was performed using state space methods and the
Kalman filter (Hamilton, 1994 and Durbin and Koopman, 2001).
The above formulation can be written in a state space form:(

βj(t+1)

pjt

)
= Φjtβjt + µjt, (6)

where Φjt =

(
Ik
X′

jt

)
, µjt =

(
νjt

εjt

)
∼ WNk+1(0,Ωj) and Ωj =

(
Hj 0
0 σ2

εj

)
.

We choose βj1 ∼ WNk(a,P) as initial values. Since βjt is I(1) the initial state
vector does not have finite variance and so the Kalman filter has to be initialised
using diffuse priors. This procedure assigns very large initial value to the covariance
matrix while the initial values of the time varying coefficients are arbitrarily chosen.
We set a = 0 and P = κIk where κ is large (κ = 106).
For each load period j, the out-of-sample one-day ahead spot price forecasts are
obtained as:

fj(t+1) = β̂
′
j(t+1|t)Xj(t+1).

The presence of jumps in electricity price series suggests that, distinct from a
continuously evolving structure, there could more appropriately be a discontinuous
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non-linear functionality switching between normal and high-price regimes. The most
common modelling approach to this is the Markov regime-switching model (MS)
defined as:

pjt = β′
jSt

Xjt + εjt, εjt ∼ WN(0, σ2
jSt

), (7)

Pr(St = i|St−1 = h) = πih, ∀i, h ∈ S (8)

where St the latent regime at time t, S = {1, 2} the set of possible states (say, base
and peak), βjSt

a k × 1 vector of coefficients in regime St, Xjt a k × 1 vector of
regressors, σ2

jSt
the error variance in regime St and πih the transition probability

between states i and h.
This class of models assumes that the market at each time point is in one of the
2 possible states, indexed by the unobservable discrete variable St, which evolves
according to a first-order irreducible homogeneous ergodic Markov process. Each
market regime is characterised by a distinct regression price model, i.e. the model
parameters are a function of the prevailing state St at each time point. Prices are
classified into regimes endogenously through the latent state estimation and prob-
abilistic inference. Maximum likelihood estimates of βjSt

and σ2
jSt

are performed
using the EM algorithm while for smoothed inferences of regimes, Kim’s algorithm
was used (Hamilton, 1994; Kim, 1994).
Parameters βjSt

and σ2
jSt

are estimated both on a daily expanding dataset (MS)
and on a rolling window of 6 months (MS6).
Once a MS model has been estimated, price forecasts are the linear combinations of
predicted prices across regimes weighted by predicted regime probabilities:

fj(t+1) =
2∑

i=1

f i
j(t+1) · P̂(St+1 = i|It)

=
2∑

i=1

f i
j(t+1) ·

[
2∑

h=1

(Pr(St+1 = i|St = h)Pr(St = h|It))

]
.

4 Experimental design

In order to make out-of-sample predictions, the data have been split into an in-
sample period (April 1st, 2005 - December 31th, 2005) and an out-of-sample period
(January 1st, 2006 - September 30th, 2006). Moreover, the out-of-sample period was
divided in three sub-periods, associated with the different seasons (January-March,
64 data, April-June, 61 data and July-September, 64 data), in order to understand
how much the forecasting accuracy of our models is influenced by the period of the
year.
To formulate on day t a price forecast for period j on day t + 1, the parameters
of the models were estimated at each step from a daily expanding dataset or from
rolling windows of specified lengths.
The forecasting experiment is carried out for all the models described in section 3
estimated on both the basic filtered log price series and the filtered log price series
without spikes. However, predictions are always made in terms of the original spot
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prices.
To compare forecasting results we used 4 prediction error statistics:

MSE =
1

m

m∑
t=1

(Pt − Ft)
2 MSPE =

1

m

m∑
t=1

(
100 × Pt − Ft

Pt

)2

MAE =
1

m

m∑
t=1

|Pt − Ft| MAPE =
1

m

m∑
t=1

∣∣∣∣100 × Pt − Ft

Pt

∣∣∣∣
where m is the size of the forecasting period, Pt is the observed spot price at time t
and Ft is the forecast at time t. We obtain the forecasts for the spot prices using the
inverse transformation from the filtered log price, that is through Ft = exp(ft +Dt).
The Mean Squared Error (MSE) is popular, largely because of its closeness to vari-
ance and its consequent theoretical relevance in statistical modelling. However, it
is more sensitive to jumps than the Mean Absolute Error (MAE). Percentage er-
rors have the advantage of being scale-independent and, in our case with very high
spikes, this could be important.
One of the contributions of this paper is to test if there are significant differences
in forecasting accuracy among models. For this we used the Diebold-Mariano test
(Diebold and Mariano, 1995), whose null hypothesis is of no differences in the ac-
curacy of two competing forecasts. It works under quite general loss functions and
errors are allowed to be non-Gaussian as well as serially and cross-correlated. In our
case, the test was carried out using squared error (adjusted Diebold-Mariano test,
see Harvey et al., 1997) and absolute error loss functions.

5 Forecasting results

The first step is the evaluation of the in-sample performances (fitting) for the four
classes of models. At this step, we omit MS6, because it is a variant of MS and it
gave similar results. All of our results, fitting and forecasting, refer to the original
data, not the smoothed series. With respect to despiking, Table 4 shows that the
performance indicators are not dramatically affected by adjusting for spikes and,
rather surprisingly, they appear to be negatively affected, with despiking caused a
deterioration in fit. The reason is that when the models are fitted on the despiked
series, they systematically underestimate peaks and this causes large differences in
the in-sample errors corresponding to peaks. This is particularly true for TVR
which, being very flexible, is able to adapt itself to follow the peaks. However, only
in period 6 for the TVR models, was despiking significantly worse at the 5% level.
As regards the comparison among models, in terms of descriptive statistics (MSE,
MSPE, MAE and MAPE) nonlinear models, i.e. Markov regime-switching and time-
varying parameter regression models, always give better results than linear ones. At
5% significance level, the Diebold and Mariano test indicates that, whether spikes
are present or not, nonlinear models significantly outperform linear models in terms
of fit (see Table 5). This is not surprising given the extra parameterisation and
the inclusive nature of linear within the nonlinear specifications. This question is
whether this represents over-fitting, and the forecasting insights in the next section
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will address that. Note also that TVR performs substantially better than MS, even
with the spikes, and significantly so in periods 6 and 38. Again this is not surprising
as the coefficients are modelled as random walks, and in these specifications, it is
well known that the model fit can appear high precisely because the parametric
noise components incorporate a lot of the randomness from the price series. Again
the out-of-sample forecasting may reveal whether this outperformance generalises.

Thus, with the out-of-sample predictions, the results are quite revealing. Firstly,
we performed a direct comparison between forecasting accuracy of the best models
estimated on the filtered log price series with and without spikes. Despiking the data
produces better performance indicators in the 49% of the cases, and similar or worst
(especially during peak hours) in the remaining cases. The Diebold and Mariano
test shows that only in very few cases, clustered in load periods 6 and 44, are the
improvements statistically significant (see Table 6). Thus, in our case, preprocessing
data through a despiking procedure does not seem to be a critical issue in general
for producing better forecasts.

Turning to the out-of-sample predictive accuracy of the models. Tables 7-9 show
the results for both the with- and without-spikes cases, this time including also MS6.
For each descriptive error statistic, season and load period, they display the best
model and the ratio between the error statistics of the best model and the ARMAX
model:

RMSE =
MSEBest

MSEARMAX
RMSPE =

MSPEBest

MSPEARMAX

RMAE =
MAEBest

MAEARMAX
RMAPE =

MAPEBest

MAPEARMAX
.

We used ARMAX as the base comparator, as it was the best in most cases. We
used the Diebold and Mariano test for equal prediction accuracy, using both squared
and absolute error loss functions. At 5% of significance level, the results in Tables
10-14 indicate that in our study, no model is significantly more accurate than the
ARMAX. Instead, the only model that produces significantly better forecasts for
some of the periods with respect to all the others is the ARMAX.

Overall, we observe therefore that, at least for our data, the overwhelmingly
better in-sample fit of the MS and TVR models did not lead to similarly better out-
of-sample forecasting and that the ability of linear time series to perform well was
endorsed. However, looking at some of the individual trading periods and seasonal
results, it is possible to see indications of plausible model discrimination. Looking at
the evening peak, for example, period 38, this has the largest spikes, and in winter
these will be most serious, caused by extreme weather conditions and occasional gas
price spikes. The MS model appears to perform best in these situations on all four
error criteria (but not significantly so). In the low demand, period 6 in winter, price
variations will be influenced mainly by the weather and transitions will not be so
abrupt. The TVR would be expected to pick that up, and indeed TVR appears to
perform best over all criteria. The MSE criterion will give most weight to extreme
errors, and on this criterion, MS appears to perform best in 3, and TVR in two, out
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of the 5 trading periods (with spikes) for winter. Thus, there are indications that
winter conditions lead to more volatile and extreme prices which may be effectively
modelled by the nonlinear methods, even if pairwise significance tests do not provide
convincing evidence.

6 Summary and Conclusions

In summary, we compared the modelling and forecasting performance of four classes
of linear and nonlinear models, using data from the UKPX prompt market. Par-
ticular attention was paid in order to obtain comparability among models across
different load periods and seasons. The classes of models were Constant and Time-
Varying Parameter Regressions, ARMAX and Markov Regime-Switching models.
The results lead us to conclude that: (i) despiking does not seem to be a critical
issue in modelling and forecasting, (ii) when in-sample fit is considered, non lin-
ear models were significantly better than linear models, but they may overfit, and
(iii) for out-of-sample forecasting, no single model completely outperforms all other
models. Forecasting accuracy depends on load period, season and performance in-
dicator, as well as the methods. However, the model which in most cases leads to
better performance is the ARMAX model. Moreover, when the ARMAX is not the
best, no model significantly outperforms it. There is however some indicative, but
not statistically significant, evidence that the nonlinear methods of regime switch-
ing and time-varying parameters can forecast the more spiky and volatile winter
prices better. In winter, extreme weather conditions, supply interruptions and gas
price spikes can cause scarcity pricing to emerge suddenly - hence the value of these
approaches. For the rest of the year, price formations are less subject to abrupt
shocks and the weather effects are less extreme, such that the an ARMAX may well
adequately adjust to their more steady evolution. Overall, this work has contributed
to the emerging body of research on power price formation, emphasising the delicate
process of model specification, especially for forecasting. Price formation does vary
by time of day and time of year, and this may suggest the use of different models.
However, this work also links to the conventional wisdom in applied forecasting that,
out-of-sample, it is hard to show convincingly that simple linear time series models
can be outperformed in general and on average. This is in line with findings in
Clements and Krolzig (1998): while nonlinear models are superior to linear ones in
capturing certain features of the data series, from a forecasting perspective linear
models appear to be robust for prediction, even when the data are generated by a
nonlinear model.
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Table 4: In-sample results (fitting) with and without spikes.

Estimation with spikes Estimation without spikes
Model MSE MSPE MAE MAPE MSE MSPE MAE MAPE

Load Period 6

REG 9.48 84.94 1.94 6.82 10.13 84.28 1.94 6.76
TVR 2.35 23.21 0.98 3.47 9.34 77.91 1.77 6.15
MS 6.55 58.73 1.70 6.00 8.52 69.02 1.73 6.01
ARMAX 10.78 89.79 2.03 6.99 10.95 88.23 2.02 6.94

Load Period 18

REG 44.24 127.68 4.30 8.82 45.73 125.88 4.29 8.72
TVR 21.58 78.69 2.97 6.61 23.47 78.28 2.97 6.54
MS 23.35 80.83 2.97 6.51 20.37 68.39 2.78 6.13
ARMAX 72.83 191.46 5.00 9.98 74.09 191.65 5.01 9.96

Load Period 28

REG 120.42 308.48 7.01 13.76 121.13 305.65 7.01 13.71
TVR 76.06 224.44 5.53 11.29 76.86 216.89 5.47 11.08
MS 68.99 171.48 4.79 9.35 71.53 173.64 4.88 9.47
ARMAX 159.90 374.01 7.95 15.41 159.07 369.48 7.89 15.24

Load Period 38

REG 674.25 501.08 11.46 16.07 738.73 471.85 11.64 15.81
TVR 67.37 63.58 3.88 5.60 390.23 108.06 5.80 6.87
MS 449.26 371.15 9.80 13.63 449.74 303.56 8.88 12.39
ARMAX 820.45 519.24 12.41 16.38 841.22 499.89 12.36 16.10

Load Period 44

REG 22.89 104.96 3.14 7.75 23.69 103.18 3.11 7.65
TVR 12.90 64.70 2.40 5.96 14.28 66.13 2.46 6.05
MS 15.75 75.37 2.51 6.21 17.16 76.56 2.59 6.33
ARMAX 24.09 103.04 3.13 7.75 24.79 102.39 3.14 7.74
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Table 5: In sample p-values of the Diebold and Mariano test with squared error
(adjusted version) and absolute error loss function.

Adj D-M Test (se) D-M Test (ae)

REG MS TVR REG MS TVR

Estimation with spikes

Load Period 6 MS 0.047 — — 0.026 — —
TVR 0.009 0.002 — 0.000 0.000 —

ARMAX 0.221 0.079 0.025 0.188 0.013 0.000
Load Period 18 MS 0.000 — — 0.000 — —

TVR 0.004 0.665 — 0.000 0.999 —
ARMAX 0.044 0.004 0.011 0.096 0.000 0.000

Load Period 28 MS 0.000 — — 0.000 — —
TVR 0.007 0.468 — 0.000 0.026 —

ARMAX 0.037 0.000 0.005 0.033 0.000 0.000
Load Period 38 MS 0.203 — — 0.029 — —

TVR 0.045 0.009 — 0.000 0.000 —
ARMAX 0.008 0.026 0.017 0.000 0.000 0.000

Load Period 44 MS 0.006 — — 0.000 — —
TVR 0.015 0.228 — 0.000 0.479 —

ARMAX 0.729 0.103 0.082 0.962 0.004 0.009

Estimation without spikes

Load Period 6 MS 0.049 — — 0.000 — —
TVR 0.020 0.167 — 0.002 0.462 —

ARMAX 0.187 0.071 0.056 0.159 0.000 0.000
Load Period 18 MS 0.000 — — 0.000 — —

TVR 0.004 0.438 — 0.000 0.379 —
ARMAX 0.037 0.002 0.009 0.078 0.000 0.000

Load Period 28 MS 0.000 — — 0.000 — —
TVR 0.005 0.557 — 0.000 0.072 —

ARMAX 0.036 0.000 0.004 0.035 0.000 0.000
Load Period 38 MS 0.038 — — 0.001 — —

TVR 0.002 0.262 — 0.000 0.000 —
ARMAX 0.156 0.039 0.007 0.152 0.002 0.000

Load Period 44 MS 0.010 — — 0.000 — —
TVR 0.008 0.127 — 0.000 0.298 —

ARMAX 0.732 0.111 0.069 0.855 0.005 0.004
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Table 6: P-values of the Diebold and Mariano test with squared error (adjusted ver-
sion) and absolute error loss function between the best models for each indicator
estimated with and without spikes.

Adjusted D-M Test (se) D-M Test (ae)

F.P. BMSE BMSPE BMAE BMAPE BMSE BMSPE BMAE BMAPE

Period 6 Jan-Mar 0.927 0.927 0.927 0.927 0.835 0.835 0.835 0.835
Apr-Jun 0.622 0.111 0.111 0.111 0.474 0.229 0.229 0.229
Jul-Sept 0.566 0.062 0.567 0.567 0.104 0.046 0.291 0.291
Whole 0.998 0.975 0.998 0.766 0.765 0.002 0.765 0.999

Period 18 Jan-Mar 0.126 0.200 0.242 0.264 0.113 0.328 0.417 0.195
Apr-Jun 0.504 0.504 0.504 0.504 0.753 0.753 0.753 0.753
Jul-Sept 0.338 0.361 0.972 0.394 0.548 0.560 0.535 0.496
Whole 0.213 0.361 0.219 0.219 0.765 0.762 0.336 0.336

Period 28 Jan-Mar 0.544 0.236 0.236 0.236 0.834 0.357 0.357 0.357
Apr-Jun 0.346 0.070 0.346 0.070 0.067 0.340 0.067 0.340
Jul-Sept 0.243 0.243 0.243 0.243 0.272 0.272 0.272 0.272
Whole 0.237 0.188 0.237 0.188 0.241 0.278 0.241 0.278

Period 38 Jan-Mar 0.375 0.164 0.164 0.164 0.804 0.202 0.202 0.202
Apr-Jun 0.423 0.763 0.970 0.763 0.081 0.525 0.592 0.525
Jul-Sept 0.286 0.286 0.286 0.295 0.335 0.335 0.335 0.409
Whole 0.324 0.229 0.145 0.229 0.814 0.587 0.562 0.587

Period 44 Jan-Mar 0.387 0.399 0.399 0.399 0.657 0.354 0.354 0.354
Apr-Jun 0.262 0.085 0.019 0.019 0.129 0.057 0.022 0.022
Jul-Sept 0.949 0.949 0.456 0.526 0.280 0.280 0.248 0.415
Whole 0.461 0.490 0.490 0.490 0.183 0.031 0.031 0.031

Note: the best models for each indicator, obtained with and without spikes, are pre-
sented in Tables 7-9.
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Table 7: Out-of-sample forecasting results: ratios between the prediction error statis-
tics of the best models and the statistics of ARMAX.

Load Period 6

Forecasting Period RMSE RMSPE RMAE RMAPE

Estimation with spikes

January-March Statistics Value 0.732 0.866 0.829 0.840
Best Model TVR TVR TVR TVR

April-June Statistics Value 0.812 1.000 1.000 1.000
Best Model MS ARMAX ARMAX ARMAX

July-September Statistics Value 1.000 0.966 1.000 1.000
Best Model ARMAX REG ARMAX ARMAX

Whole Period Statistics Value 0.793 1.000 0.920 0.976
Best Model TVR ARMAX TVR MS

Estimation without spikes

January-March Statistics Value 0.735 0.923 0.896 0.911
Best Model TVR TVR TVR TVR

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 1.000 0.924 0.942 0.967
Best Model ARMAX REG TVR TVR

Whole Period Statistics Value 0.795 1.000 0.962 1.000
Best Model TVR ARMAX TVR ARMAX

Load Period 18

Forecasting Period RMSE RMSPE RMAE RMAPE

Estimation with spikes

January-March Statistics Value 0.821 0.998 0.923 1.000
Best Model MS6 MS6 MS6 ARMAX

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 0.982 0.725 0.952 0.910
Best Model MS6 REG MS MS

Whole Period Statistics Value 0.902 0.988 1.000 1.000
Best Model MS6 MS ARMAX ARMAX

Estimation without spikes

January-March Statistics Value 0.824 0.989 0.961 1.000
Best Model MS TVR MS6 ARMAX

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 0.967 0.901 1.000 0.972
Best Model TVR REG ARMAX MS

Whole Period Statistics Value 0.891 1.000 1.000 1.000
Best Model TVR ARMAX ARMAX ARMAX
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Table 8: Out-of-sample forecasting results: ratios between the prediction error statis-
tics of the best models and the statistics of ARMAX.

Load Period 28

Forecasting Period RMSE RMSPE RMAE RMAPE

Estimation with spikes

January-March Statistics Value 0.995 1.000 1.000 1.000
Best Model TVR ARMAX ARMAX ARMAX

April-June Statistics Value 1.000 0.992 1.000 0.994
Best Model ARMAX TVR ARMAX TVR

July-September Statistics Value 0.561 0.633 0.738 0.779
Best Model TVR TVR TVR TVR

Whole Period Statistics Value 0.697 0.856 0.893 0.926
Best Model TVR TVR TVR TVR

Estimation without spikes

January-March Statistics Value 0.931 1.000 1.000 1.000
Best Model TVR ARMAX ARMAX ARMAX

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 0.866 0.930 0.946 0.966
Best Model TVR TVR TVR TVR

Whole Period Statistics Value 0.890 1.000 0.992 1.000
Best Model TVR ARMAX TVR ARMAX

Load Period 38

Forecasting Period RMSE RMSPE RMAE RMAPE

Estimation with spikes

January-March Statistics Value 0.946 0.849 0.934 0.918
Best Model MS MS6 MS6 MS6

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 0.543 0.781 0.867 0.920
Best Model TVR TVR TVR TVR

Whole Period Statistics Value 0.948 1.000 0.992 1.000
Best Model MS ARMAX MS6 ARMAX

Estimation without spikes

January-March Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

April-June Statistics Value 1.000 0.942 0.976 0.965
Best Model ARMAX MS TVR MS

July-September Statistics Value 0.732 0.992 0.967 1.000
Best Model TVR TVR TVR ARMAX

Whole Period Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX
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Table 9: Out-of-sample forecasting results: ratios between the prediction error statis-
tics of the best models and the statistics of ARMAX.

Load Period 44

Forecasting Period RMSE RMSPE RMAE RMAPE

Estimation with spikes

January-March Statistics Value 0.881 1.000 1.000 1.000
Best Model MS ARMAX ARMAX ARMAX

April-June Statistics Value 0.934 0.977 1.000 1.000
Best Model MS MS6 ARMAX ARMAX

July-September Statistics Value 0.989 0.984 0.996 1.000
Best Model REG REG REG ARMAX

Whole Period Statistics Value 0.908 1.000 1.000 1.000
Best Model MS ARMAX ARMAX ARMAX

Estimation without spikes

January-March Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

April-June Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX

July-September Statistics Value 1.000 1.000 0.995 0.977
Best Model ARMAX ARMAX MS MS

Whole Period Statistics Value 1.000 1.000 1.000 1.000
Best Model ARMAX ARMAX ARMAX ARMAX
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Table 10: P-values of the Diebold and Mariano test with squared error (adjusted
version) and absolute error loss function. Load period 6.

Adjusted D-M Test (se) D-M Test (ae)

F.P. REG MS MS6 TVR REG MS MS6 TVR

Estimation with spikes

Jan-Mar MS 0.725 — — — 0.843 — — —
MS6 0.945 0.395 — — 0.321 0.583 — —
TVR 0.381 0.390 0.482 — 0.286 0.412 0.520 —

ARMAX 0.380 0.759 0.571 0.324 0.280 0.389 0.250 0.107
Apr-Jun MS 0.257 — — — 0.323 — — —

MS6 0.474 0.066 — — 0.283 0.084 — —
TVR 0.870 0.219 0.837 — 0.881 0.419 0.500 —

ARMAX 0.812 0.259 0.569 0.708 0.425 0.905 0.207 0.481
Jul-Sept MS 0.875 — — — 0.635 — — —

MS6 0.319 0.349 — — 0.801 0.567 — —
TVR 0.395 0.295 0.846 — 0.994 0.723 0.885 —

ARMAX 0.603 0.730 0.265 0.218 0.496 0.853 0.464 0.640
Whole MS 0.818 — — — 0.454 — — —

MS6 0.920 0.750 — — 0.816 0.486 — —
TVR 0.495 0.524 0.496 — 0.353 0.719 0.392 —

ARMAX 0.417 0.732 0.647 0.392 0.794 0.450 0.764 0.321

Estimation without spikes

Jan-Mar MS 0.753 — — — 0.306 — — —
MS6 0.493 0.611 — — 0.739 0.689 — —
TVR 0.269 0.381 0.326 — 0.207 0.507 0.477 —

ARMAX 0.356 0.053 0.542 0.303 0.778 0.180 0.677 0.199
Apr-Jun MS 0.939 — — — 0.953 — — —

MS6 0.027 0.052 — — 0.026 0.077 — —
TVR 0.263 0.367 0.905 — 0.463 0.606 0.563 —

ARMAX 0.791 0.735 0.071 0.372 0.316 0.143 0.009 0.267
Jul-Sept MS 0.465 — — — 0.735 — — —

MS6 0.433 0.946 — — 0.904 0.622 — —
TVR 0.613 0.753 0.787 — 0.398 0.224 0.380 —

ARMAX 0.951 0.552 0.496 0.494 0.592 0.350 0.636 0.480
Whole MS 0.726 — — — 0.507 — — —

MS6 0.342 0.433 — — 0.590 0.317 — —
TVR 0.419 0.478 0.339 — 0.303 0.536 0.273 —

ARMAX 0.376 0.088 0.723 0.375 0.679 0.921 0.500 0.571
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Table 11: P-values of the Diebold and Mariano test with squared error (adjusted
version) and absolute error loss function. Load period 18.

Adjusted D-M Test (se) D-M Test (ae)

F.P. REG MS MS6 TVR REG MS MS6 TVR

Estimation with spikes

Jan-Mar MS 0.297 — — — 0.850 — — —
MS6 0.223 0.784 — — 0.154 0.046 — —
TVR 0.911 0.336 0.128 — 0.767 0.844 0.278 —

ARMAX 0.461 0.347 0.276 0.440 0.710 0.777 0.553 0.855
Apr-Jun MS 0.397 — — — 0.559 — — —

MS6 0.672 0.502 — — 0.158 0.108 — —
TVR 0.322 0.391 0.213 — 0.755 0.671 0.550 —

ARMAX 0.025 0.039 0.021 0.517 0.021 0.030 0.000 0.004
Jul-Sept MS 0.250 — — — 0.642 — — —

MS6 0.669 0.608 — — 0.121 0.114 — —
TVR 0.583 0.635 0.220 — 0.233 0.198 0.386 —

ARMAX 0.762 0.692 0.683 0.131 0.696 0.593 0.222 0.100
Whole MS 0.349 — — — 0.687 — — —

MS6 0.277 0.622 — — 0.876 0.942 — —
TVR 0.750 0.464 0.124 — 0.410 0.297 0.317 —

ARMAX 0.840 0.623 0.378 0.912 0.361 0.451 0.506 0.055

Estimation without spikes

Jan-Mar MS 0.473 — — — 0.959 — — —
MS6 0.688 0.478 — — 0.082 0.332 — —
TVR 0.588 0.822 0.464 — 0.507 0.539 0.977 —

ARMAX 0.353 0.361 0.310 0.316 0.906 0.937 0.654 0.693
Apr-Jun MS 0.069 — — — 0.013 — — —

MS6 0.579 0.569 — — 0.754 0.309 — —
TVR 0.450 0.918 0.646 — 0.688 0.111 0.520 —

ARMAX 0.028 0.081 0.031 0.272 0.028 0.152 0.007 0.002
Jul-Sept MS 0.292 — — — 0.957 — — —

MS6 0.647 0.555 — — 0.089 0.159 — —
TVR 0.589 0.548 0.573 — 0.627 0.641 0.641 —

ARMAX 0.538 0.485 0.432 0.664 0.986 0.977 0.158 0.298
Whole MS 0.486 — — — 0.503 — — —

MS6 0.910 0.714 — — 0.716 0.738 — —
TVR 0.389 0.694 0.316 — 0.912 0.748 0.927 —

ARMAX 0.606 0.554 0.479 0.330 0.421 0.686 0.472 0.450
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Table 12: P-values of the Diebold and Mariano test with squared error (adjusted
version) and absolute error loss function. Load period 28.

Adjusted D-M Test (se) D-M Test (ae)

F.P. REG MS MS6 TVR REG MS MS6 TVR

Estimation with spikes

Jan-Mar MS 0.400 — — — 0.574 — — —
MS6 0.469 0.433 — — 0.384 0.865 — —
TVR 0.677 0.512 0.604 — 0.237 0.361 0.366 —

ARMAX 0.193 0.198 0.000 0.968 0.034 0.040 0.039 0.323
Apr-Jun MS 0.637 — — — 0.211 — — —

MS6 0.292 0.216 — — 0.228 0.109 — —
TVR 0.039 0.034 0.019 — 0.011 0.011 0.000 —

ARMAX 0.002 0.002 0.001 0.147 0.001 0.000 0.000 0.569
Jul-Sept MS 0.343 — — — 0.940 — — —

MS6 0.703 0.619 — — 0.394 0.434 — —
TVR 0.189 0.183 0.130 — 0.161 0.168 0.123 —

ARMAX 0.266 0.242 0.558 0.162 0.902 0.949 0.329 0.071
Whole MS 0.240 — — — 0.557 — — —

MS6 0.768 0.553 — — 0.597 0.899 — —
TVR 0.175 0.150 0.108 — 0.046 0.064 0.017 —

ARMAX 0.178 0.114 0.331 0.179 0.023 0.073 0.025 0.162

Estimation without spikes

Jan-Mar MS 0.296 — — — 0.572 — — —
MS6 0.682 0.327 — — 0.615 0.902 — —
TVR 0.436 0.345 0.414 — 0.106 0.169 0.120 —

ARMAX 0.715 0.233 0.608 0.496 0.037 0.029 0.035 0.935
Apr-Jun MS 0.147 — — — 0.029 — — —

MS6 0.792 0.685 — — 0.980 0.353 — —
TVR 0.081 0.181 0.009 — 0.088 0.239 0.016 —

ARMAX 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000
Jul-Sept MS 0.124 — — — 0.012 — — —

MS6 0.104 0.188 — — 0.008 0.069 — —
TVR 0.143 0.138 0.134 — 0.168 0.078 0.059 —

ARMAX 0.165 0.154 0.137 0.143 0.379 0.138 0.070 0.103
Whole MS 0.092 — — — 0.767 — — —

MS6 0.111 0.957 — — 0.371 0.165 — —
TVR 0.110 0.090 0.107 — 0.014 0.016 0.005 —

ARMAX 0.121 0.076 0.108 0.131 0.001 0.000 0.000 0.724
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Table 13: P-values of the Diebold and Mariano test with squared error (adjusted
version) and absolute error loss function. Load period 38.

Adjusted D-M Test (se) D-M Test (ae)

F.P. REG MS MS6 TVR REG MS MS6 TVR

Estimation with spikes

Jan-Mar MS 0.320 — — — 0.577 — — —
MS6 0.079 0.977 — — 0.015 0.180 — —
TVR 0.647 0.292 0.287 — 0.463 0.310 0.072 —

ARMAX 0.405 0.760 0.625 0.149 0.363 0.775 0.406 0.059
Apr-Jun MS 0.003 — — — 0.018 — — —

MS6 0.078 0.029 — — 0.006 0.001 — —
TVR 0.308 0.778 0.028 — 0.333 0.840 0.006 —

ARMAX 0.107 0.356 0.002 0.404 0.259 0.762 0.000 0.899
Jul-Sept MS 0.339 — — — 0.212 — — —

MS6 0.270 0.732 — — 0.251 0.913 — —
TVR 0.255 0.235 0.233 — 0.166 0.384 0.147 —

ARMAX 0.611 0.444 0.335 0.237 0.812 0.494 0.542 0.152
Whole MS 0.257 — — — 0.304 — — —

MS6 0.070 0.919 — — 0.081 0.685 — —
TVR 0.923 0.482 0.511 — 0.918 0.469 0.336 —

ARMAX 0.340 0.726 0.638 0.505 0.257 0.872 0.889 0.241

Estimation without spikes

Jan-Mar MS 0.755 — — — 0.556 — — —
MS6 0.643 0.660 — — 0.426 0.739 — —
TVR 0.546 0.518 0.484 — 0.583 0.708 0.810 —

ARMAX 0.155 0.118 0.120 0.294 0.361 0.241 0.186 0.044
Apr-Jun MS 0.001 — — — 0.001 — — —

MS6 0.046 0.002 — — 0.001 0.000 — —
TVR 0.054 0.760 0.007 — 0.147 0.874 0.001 —

ARMAX 0.043 0.530 0.003 0.813 0.096 0.879 0.000 0.822
Jul-Sept MS 0.404 — — — 0.102 — — —

MS6 0.318 0.322 — — 0.635 0.860 — —
TVR 0.273 0.279 0.371 — 0.398 0.641 0.801 —

ARMAX 0.185 0.214 0.356 0.304 0.513 0.930 0.890 0.600
Whole MS 0.822 — — — 0.287 — — —

MS6 0.806 0.758 — — 0.299 0.129 — —
TVR 0.260 0.264 0.409 — 0.856 0.889 0.394 —

ARMAX 0.106 0.084 0.324 0.993 0.132 0.289 0.043 0.205
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Table 14: P-values of the Diebold and Mariano test with squared error (adjusted
version) and absolute error loss function. Load period 44.

Adjusted D-M Test (se) D-M Test (ae)

F.P. REG MS MS6 TVR REG MS MS6 TVR

Estimation with spikes

Jan-Mar MS 0.218 — — — 0.000 — — —
MS6 0.504 0.288 — — 0.766 0.301 — —
TVR 0.047 0.078 0.055 — 0.050 0.017 0.059 —

ARMAX 0.206 0.383 0.685 0.027 0.045 0.898 0.263 0.008
Apr-Jun MS 0.112 — — — 0.186 — — —

MS6 0.065 0.622 — — 0.051 0.944 — —
TVR 0.497 0.097 0.206 — 0.579 0.215 0.241 —

ARMAX 0.212 0.625 0.749 0.306 0.133 0.700 0.623 0.237
Jul-Sept MS 0.362 — — — 0.619 — — —

MS6 0.375 0.380 — — 0.637 0.927 — —
TVR 0.308 0.313 0.258 — 0.552 0.809 0.809 —

ARMAX 0.838 0.397 0.411 0.326 0.928 0.663 0.705 0.566
Whole MS 0.273 — — — 0.042 — — —

MS6 0.978 0.275 — — 0.724 0.324 — —
TVR 0.035 0.067 0.046 — 0.042 0.014 0.040 —

ARMAX 0.183 0.454 0.426 0.021 0.027 0.631 0.220 0.006

Estimation without spikes

Jan-Mar MS 0.667 — — — 0.328 — — —
MS6 0.243 0.486 — — 0.491 0.209 — —
TVR 0.131 0.508 0.832 — 0.361 0.099 0.799 —

ARMAX 0.317 0.055 0.130 0.076 0.012 0.179 0.038 0.007
Apr-Jun MS 0.209 — — — 0.198 — — —

MS6 0.846 0.231 — — 0.792 0.519 — —
TVR 0.861 0.547 0.802 — 0.995 0.706 0.895 —

ARMAX 0.087 0.265 0.080 0.372 0.069 0.162 0.087 0.312
Jul-Sept MS 0.386 — — — 0.927 — — —

MS6 0.243 0.753 — — 0.227 0.133 — —
TVR 0.300 0.271 0.340 — 0.567 0.476 0.963 —

ARMAX 0.502 0.362 0.252 0.291 0.974 0.937 0.393 0.554
Whole MS 0.541 — — — 0.210 — — —

MS6 0.164 0.436 — — 0.380 0.091 — —
TVR 0.091 0.200 0.735 — 0.389 0.102 0.785 —

ARMAX 0.174 0.030 0.064 0.039 0.005 0.111 0.009 0.012
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