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Cellular Automata with Network Incubation

in Information Technology Diffusion

Renato Guseo

Department of Statistical Sciences
University of Padua
Italy

Mariangela Guidolin

Department of Statistical Sciences
University of Padua
Italy

Abstract: Innovation diffusion of network goods determines direct network externalities
that exhibit delayed full benefits, depressing sales for long periods. We model a multiplicative
dynamic market potential driven by a latent heterogeneous individual threshold derived
from a basic economic theory by Economides and Himmelberg (1995) which is embedded in
a special Cellular Automata representation. The corresponding mean field approximation
of its aggregate version is a Riccati equation with a closed form solution. This allows the
detection of a change–point time separating an incubation period from a subsequent take–off
due to a sufficient critical mass acting as a collective threshold. Weighted nonlinear least
squares methodology is the main inferential technique. An application is analysed with
reference to USA fax machine diffusion.

Keywords: Network externalities, Threshold diffusion models, Chilling effect, Cellular
automata, Riccati equation, Generalized Bass Model, NLS.

1 Introduction

Innovation diffusion dynamics are strongly determined by the physical and techno-
logical character of a good or a service. Normal goods or stand–alone goods create
benefits for a buyer that do not depend on adoption by other potential or actual
buyers.

Network goods, i.e., telephone, electricity, natural gas, roadways, Internet, rail-
roads, facsimiles, etc., define expanding physical networks. The increase in sales of
network goods (network terminals or network services) determines external bene-
fits for all network participants, positively modifying their utility function. Such
external benefits are not market mediated and are usually termed direct network
externalities.

Network goods exhibit delayed full benefits so that sales are depressed for long
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periods, and successful industries, constrained by network externalities, highlight a
collective threshold, a positive critical mass, which precedes a rapid take–off. Such
a critical mass may be seen at the same time as both cause and effect of the ag-
gregate behaviour of heterogeneous agents oriented, in their purchase decisions, by
individual complex thresholds. Nevertheless, hedonic utility, which may explain a
personal assessment motivating adoptions, is a latent function: we only observe final
adoptions.

The issue of network externalities modelling has been addressed by many authors
in different areas. In economics, we mention, among others, Katz and Shapiro (1985),
Cabral (1990), Katz and Shapiro (1986), Economides and Himmelberg (1995),and
Grajek (2002). In marketing science there are interesting integrated contributions by
Goldenberg et al. (2005), Srinivasan et al. (2004), Rahmandad and Sterman (2004),
and Shuster (1998), and general review agendas by Hauser et al. (2006) and Muller
et al. (2007). In sociological and statistical sciences there are interesting advances
that emphasise some social and multiphase aspects of diffusion under network effects.
See, for instance, Rogers (2003), Granovetter (1978), Granovetter and Soong (1986),
Mahler and Rogers (1999), Seber and Wild (1989), Snijders et al. (2006), Guseo and
Guidolin (2008), Guseo and Guidolin (2009), and Young (2005).

In Complex System Analysis, modelling emphasises micro level aspects like
agents’ heterogeneity that generate an emerging macro behaviour. Some impor-
tant references, among others, are Young (2003), Moldovan and Goldenberg (2004),
Newman (2003), Windrum and Birchenhall (2005), Boccara (2004), Boccara et al.
(1997), and Wolfram (1983). In particular, Cellular Automata are special models
within Complex Systems theories. For some specific references see, for instance Boc-
cara and Fukś (1999), Ganguly et al. (2003), Goldenberg et al. (2001), and Guinot
(2002).

The aim of this paper is to present a model which takes into account the long–
lasting effects of network externalities in the early part of a network good’s diffusion
process.

In order to consider the incubation or chilling effect of network externalities
(see, for instance, Goldenberg et al. (2005)) we propose a general model based on
a Cellular Automata representation which describes an adoption process depending
on a dynamic market potential generated by heterogeneous individual thresholds.
For successful network goods we may argue, at the aggregate level, that the market
potential is characterised by a local depression which describes a change–point time,
t̂, separating two different regimes: a long preliminary incubation period followed
by a sudden take–off associated with the attainment of a positive critical mass.

Our Cellular Automata model is transformed into an aggregate form by a mean
field approximation which allows for a differential description. The proposed repre-
sentation, a Riccati equation, gives rise to a closed form solution. Some statistical
features are involved in the inferential process based on different contiguous regimes.
In particular, special weighting is essential within NLS (Nonlinear Least Squares)
techniques.

The paper is organised as follows. Section 2 is devoted to establishing an impor-
tant link between the economic theory representation of willingness to pay under
network externalities and an individual threshold device compared with cumulative
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share of sales. This allows the definition of a dynamic market potential. Section 3
illustrates Cellular Automata and introduces the specific CA model, its mean field
approximation, and the corresponding solution, which is described in the final Ap-
pendix. Section 4 examines a direct application to USA fax machines time series
with a special comparison between reduced models without network effects and the
new one. Section 5 is devoted to final remarks and discussion.

2 Economic and social modelling: a common key rule

Innovation diffusion is usually explained through information contagion, which
establishes some relationships between agents included in the residual market and
agents that are adopters by time t. Agents simply hear about an existing innovation:
The Bass model (see Bass (1969)) is a basic way to represent such a concept. A
quite different approach in Young (2005) is based on learning. An agent adopts if
the perceived gain due to adoption, based on decisions of other adopters, exceeds a
threshold which is a function of his/her beliefs. Heterogeneity of beliefs and related
thresholds may be described by a distribution. Young proposes a sharp separation
between contagion and learning, where the latter may produce super–exponential
growth rates in the early stages of adoption, contrary to standard contagion models.
This immediately raises a question: why not consider sub–exponential growth, which
is so typical in network goods’ diffusion? We certainly agree about the complexity
of the learning process that involves at least two separate effects: 1) increasing
adoptions that generate a positive information useful to persuade the residual agents
to adopt and 2) the remaining agents who are intrinsically more sceptical and surely
harder to persuade due to a stronger threshold system. It is not so obvious whether
the author’s modelling can qualitatively and formally express the above mentioned
aspects in order to test empirical situations. Continuous time representation is based
on a rigid equation, ṗ(t) = λ[F (p(t)) − p(t)], where p(t) denotes the proportion
of the group (market) who have adopted the product or the idea by time t, and
F (·) is the cumulative distribution of resistance or threshold which is equated to
the current proportion of adopters. Parameter λ > 0 expresses the well–known
fact that only a part of the proportion of individuals, who are prepared to adopt,
F (p(t)) − p(t), really do that at time t. The previous equation is very simple and
allows a closed form solution, namely, t = p−1(x). Nevertheless, considering a non–
constant function, F (p(t)), opposed to the usual assumption based on a unitary
potential, 1, is not sufficient. There is no effort to extend such an idea outside the
monomolecular (or exponential) vision of diffusion simply related to a proportion
λ of the residual normalised market. Why not introduce parallel contagion effects
with a greater attention to the commonly perceived fact that learning and contagion
are not sharply separable effects in real–world diffusions?

This aspect is jointly conceived in the present paper by considering that learning
and contagion both affect the dynamic market potential definition and the corre-
sponding adoption process. In particular, in our equation, the market potential m(t)
is a free function, so that we may include flexible distributive forms governing the
heterogeneous thresholds, which are time dependent in order to take into account
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not only previously mentioned point 1) about the complexity of a learning process,
but also point 2), which is not examined in Young’s paper.

Let us consider first a basic economic representation of critical mass effect due to
heterogeneous thresholds that characterise different customers in the marketplace.
We refer to Economides and Himmelberg (1995) with some terminological adapta-
tions in symbolic notation.

The authors assume that consumers expect a normalised network size νe such
that 0 ≤ νe ≤ 1 and define a network externalities function which represents the
overall value of the good

v(νe) = k + δf(νe), (1)

where k denotes the value of the good in the absence of network effects, δ is an
indicator function taking the value 1 if there are network externalities, and zero
elsewhere. Function f(·) is monotone increasing with initial condition f(0) = 0,
f ′(·) > 0 and f ′′(·) ≤ 0 in order to describe an increasing utility under larger
expected sizes of networks. This network externalities function describes a commonly
perceived value of the good, which is individual independent.

The authors assume a special definition of the willingness to pay for one unit of
the good in a network of expected size νe, i.e.,

w(h, νe) = hv(νe), (2)

where h ∈ [0, 1] is a penalising index characterising a specific consumer, consumer
index in the sequel, and P (h) is a corresponding cumulative distribution function
over the population of interest. This proposed multiplicative specification of the
willingness to pay by Economides and Himmelberg (1995) “allows different types of
consumers to receive differing values of network externality from the same network”.
This specification is extremely interesting for the purposes of the present paper and
diverges from the more common additive one (see, for instance, Katz and Shapiro
(1985), Cabral (1990)), under which all consumers receive the same benefit from the
same network.

Given expectations νe and price p, the authors define the index h∗ of marginal
consumer as a solution of equation p = w(h, νe) so that, in particular,

h∗ =
p

v(νe)
. (3)

Under given expectations and price, all consumers with index h ≥ h∗ buy the good,
so that the complementary normalised network size at price p is

d = 1− P (h∗), (4)

defining the demand for the network good: in this way they are able to write the
willingness to pay for the last consumer in a network of size 1− d with expectations
νe, i.e.,

p(d, νe) = v(νe)P−1(1− d). (5)
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Equation (5) is a basic tool for a systematic discussion of a critical mass under
different market structure hypotheses. Economides and Himmelberg (1995) define
critical mass as the smallest network size, ν0, that can be sustained in equilibrium.

In Equation (2) the authors consider v(νe) as a common benchmark for indi-
vidual evaluations and h summarises heterogeneity, i.e., all individual specificities
without any reference to personal comparisons. In their assumptions, a generic con-
sumer filters v(νe) with a passe–partout penalising coefficient h in order to derive
his or her willingness to pay.

We propose a different definition of consumer index h not focusing on the marginal
consumer at time t but with reference to a generic consumer. We emphasise the per-
sonal evaluation of the ratio

h =
p

ṽ(ν, νe)
(6)

expressing a kind of resistance to adoption, i.e., a threshold. In this case h high
values denote a strong resistance to buy, while the definition by Economides and
Himmelberg (1995) has an opposite meaning.

This ratio in the population may be interpreted as a random variable Ht at
time t representing an individual dependent assessment where p is the public price
and ṽ(ν, νe) is a personal evaluation of the “value of the good”, i.e., a network
externalities function more general than v(νe), as expressed in Equation (1). It is
based, at least, on the share of adoptions ν(t) = y(t)/m(t), i.e., a density ratio
between y(t), the absolute cumulative adoptions and m(t), the absolute dynamic
market potential. Unlike the static definition of demand d for network goods given
by Economides and Himmelberg (1995) in Equation (4), we consider a dynamic
perspective. This assumption is essential for identifying the incubation effect that
penalises the potential precisely in the first part of the corresponding life cycle.
Other components of function ṽ(·) include, explicitly, the personal expectations νe(t)
and, implicitly, a personal basic value k of the good which may be different among
current potential consumers, due to different knowledge levels, different perceived
performances, and different incomes.

Following our proposal, we argue that h ∈ Ht is a plausible individual expression
of divergence between the current price p and a personal evaluation of the “value of
the good” at time t. Notice that the ratio (6) is a dimensionless pure number and
it is less than one for potential adopters.

Dynamic market potential definition
We assume that a consumer may become a potential buyer if his or her ratio

h is lower than the expressed preferences summarised by the share of adoptions or
density ν(t). Accordingly, we define the normalised dynamic market potential by a
susceptibility probability,

n(t) = P (Ht ≤ ν(t)). (7)

If all potential consumers are characterised by a personal low threshold h as com-
pared with ν(t), then they are possible adopters, i.e., P (Ht ≤ ν(t)) ' 1. Otherwise,
penalisation operates especially with P (Ht ≤ ν(t)) << 1 during the network good
incubation period.
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The absolute dynamic market potential m(t) is defined as a function of the asymp-
totic market potential U and the susceptibility probability (7),

m(t) = U P (Ht ≤ ν(t)) = Un(t) = E[Bi(U,P (Ht ≤ ν(t)))] = U E
(
I(Ht≤ν(t))

)
.
(8)

Such a definition is useful to represent a possible depression of dynamic potential
during a long initial incubation period because it combines the density ν(t) and a
non–stationary preference distribution, Ht, which is characterised by its moments
and, in particular, by its location parameter, µ(t) = E(Ht), termed resistance in
the sequel.

Dynamics and control in individual threshold distribution
We may study the mean value of the threshold effect under a normality assump-

tion, Ht ∼ N (µ(t), σ),

m(t) = U P (Ht ≤ ν(t)) = U Φ
(

ν(t)− µ(t)
σ

)
. (9)

We model the mean µ(t) in order to avoid a stationarity assumption of threshold
distribution during the incubation period as compared with the successive regular
one. A mild positive evolution of the adoption process depicts a lower value of µ as
far as time elapses from the origin. The function

µ1(t) = a + bt−c, a, b, c > 0, (10)

represents the average resistance at time t because low levels of µ(t) with reference
to ν(t) imply high levels of n(t) or m(t). For t → 0 this effect is infinite, at time
t = 1 the level is a + b and asymptotically converges to a. Parameter c depicts the
decay speed of resistance during evolution.

An alternative resistance evolution may be an exponential one, i.e.,

µ2(t) = a + be−ct, a, b, c > 0. (11)

At time t = 0, the resistance is a + b and it decays to level a as far as t diverges.
Parameter c represents the decay speed in resistance evolution.

A flexible alternative in resistance description is based on a polynomial function,

µ3(t) = a + bt + ct2. (12)

This function may be used only within a limited incubation period and, under suit-
able circumstances, it may be unexpectedly increasing.

Critical mass
The definition of critical mass in our approach is an operational notion, related

to the joint combination of the share of adoptions ν(t) and the average resistance
µ(t), which controls the location of individual threshold distribution Ht. The critical
mass, cm, is the level of cumulative sales, a collective threshold, corresponding to a
suitable change–point t̂ which strictly separates the incubation period from a sudden
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take–off, cm = y(t̂). After t̂, the potential market m(t) is increasing and indicates a
regular growth of the corresponding adoption process. The technical identification
of t̂ is based on a minimum of P (Ht ≤ ν(t)).

In the subsequent Section 3 we jointly model the adoption process y(t) in the
presence of a dynamic market potential m(t) in order to take into account shrinking
and expanding effects due to heterogeneity of agents over time. We do this through
a Complex System representation.

3 Network Incubation Period in a Cellular Automaton

Cellular Automata, some notations
Agent–based models and Complexity theory dedicate considerable attention to

the micro level in system analysis in order to take into account detailed local hetero-
geneity of individuals in achieving a bottom–up macro behaviour. This is internally
characterised by simple local transition rules, g(·), and partially controllable inter-
vention tools, x(t), acting on system environment.

An Automaton W = {1, 2, . . . , i, . . . , U} is a set of cells i that may vary their
status on the basis of local and general transition rules. Each cell i in W may as-
sume, at time t, a special state denoted by the indicator function s(i; t). A cell may
be active, i.e., has adopted, if s(i; t) = 1.Viceversa, s(i; t) = 0 represents a neutral
cell or i ∈ W . Here we follow some notations expressed for Cellular Automata in
Boccara et al. (1997) and Boccara and Fukś (1999), and in Guseo and Guidolin
(2008).

Local pressure and transition rules
Let us define a kind of local pressure (probability) of the system, σs(i; t), upon cell

i to turn it from a neutral status, 0, towards an active one, 1. This pressure depends
on a flexible probability measure, pr ≥ 0, that allows a more general description of
a neighborhood, possibly i–dependent.

σs(i; t) =
∞∑

r=−∞
s(i + r; t)pr ;

∑
r

pr = 1. (13)

If the local pressure is translational invariant, we may consider the “mean field
approximation” that excludes the local effect of distribution pr (see, for instance
Boccara et al. (1997), Boccara and Fukś (1999), Wolfram (1983) and Guseo and
Guidolin (2008)),

σs(i; t) ' ν(t) =
∑

j∈W

s(j; t)
m(t)

=
y(t)
m(t)

, m(t) > 0, (14)

where y(t) denotes the cumulative observed adoptions (or active states) at time t
and ν(t) is the density of the adoption process at time t with reference to the dy-
namic potential m(t). For m(t) = 0 we assume ν(t) = 0.

The transition rule g(·), governing the state dynamics, must be properly spec-
ified in order to recover possible effects of an incubation period due to network
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externalities that affect diffusion. We suppose that the change of state of i–th unit,
i ∈ W = {1, 2, ..., U}, is driven by two major processes: the first one refers to in-
novative and imitative contributions to a perturbed residual market penalised by a
threshold or resistance effect; the second one is a global effect due to the relative
variation of dynamic market potential at time t,

s(i; t + 1) = s(i; t) +

+ I(hi≤ν(t)) · [Bi(1, p + q σs(i; t))]
x(t)
m(t)

I(s(i;t)=0) +

+ s(i; t) · m′(t)
m(t)

. (15)

Ht is a random variable expressing the individual threshold for susceptibility, hi ∈
Ht, and ν(t) represents the density of the adoption process. If the individual thresh-
old is lower than reference value ν(t), then the indicator function I(hi≤ν(t)) is set to
1, depicting the admissibility of the inductive experiments.

Binomial inductive experiment Bi(1, p + q σs(i; t)) represents the contributions
of innovative (p) and imitative (q) components and may performed if I(s(i;t)=0) = 1.

Integrable function x(t), namely the intervention function, allows a modification
of the perceived residual market, (m(t)− y(t)), and dynamically represents environ-
mental pressure variations, economic choices, political regulations, firms strategies
effects, or marketing mix policies. Its equilibrium value is 1. This factor is very
important as a contrasting tool against the delay of adoptions due to network exter-
nalities.

Parameter U denotes the asymptotic market, and the dynamic market potential,
m(t), is defined following Equation (8).

The component s(i; t).m
′(t)

m(t) in Equation (15) describes an infinitesimal variational
contribution to the individual state, a self–reinforcement effect, due to the dynamic
structure of the market potential.

Transition rule and macro effects
The average behaviour of Equation (15) followed by a summation of all cell states

s(i; t), i ∈ W is a discrete time cumulative evolutionary model under a mean field
approximation, i.e.,

y(t + 1) = y(t) + m(t)
{(

p + q
y(t)
m(t)

)
(m(t)− y(t))

m(t)
x(t)

}
+ y(t)

m′(t)
m(t)

. (16)

A continuous approximation of the previous equation is

y′(t) = m(t)
{(

p + q
y(t)
m(t)

)
(m(t)− y(t))

m(t)
x(t)

}
+ y(t)

m′(t)
m(t)

(17)

or (
y(t)
m(t)

)′
=

{(
p + q

y(t)
m(t)

)(
1− y(t)

m(t)

)
x(t)

}
. (18)

Let us recall position, ν(t) = y(t)/m(t), so that we attain

ν ′ = (p + qν)(1− ν)x(t). (19)
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Figure 1: Network externality effects: standard Bass profile (BM) vs. moving effects
due to externalities (NEBM): p = 0.03, q = 0.5, m = 1, H ∼ N (µ = 0.2, σ = 0.2) .

The general solution for the previous equation is discussed in Guseo and Guidolin
(2009) and briefly summarised in Appendix A, so that we obtain a simple aggregate
representation of our CA under network externalities effects, i.e.,

y(t) = m(t) · ν(t) = U P (Ht ≤ ν(t)) · ν(t), (20)

where,

ν(t) =
1− e−(p+q)

R t
0 x(τ)dτ

1 + q
pe−(p+q)

R t
0 x(τ)dτ

. (21)

The explicit closed form solution, as expressed by Equations (20 – 21), is im-
pressive for its simplicity. It is an extension of the Generalized Bass Model, GBM
(see Bass et al. (1994)), with a variable market potential (see, for instance, Guseo
(2004) and Guseo and Guidolin (2009)). The simultaneous description of network
externalities that affect dynamic market potential, and the formal presence of an
explicit intervention function x(t) that allows measurability of the effects of conve-
nient strategic marketing or management contrasting actions, are strength elements
of the present class of models. Notice that, by examining Equations (20 – 21), the
exponent

∫ t
0 x(τ)dτ modifies with compensative actions the geometry of time, and

not the asymptotic potential U , which is under the control of m(t).
In Figure 1 we represent two different non cumulative diffusion frameworks under

a limited life cycle hypothesis. The BM case considers a standard Bass diffusion
model (see, Bass (1969)) with parameter U = 1, p = 0.03 and q = 0.5.The NEBM
case exhibits the behaviour of the newly proposed model, with network externalities
effects producing a network incubation period necessary for critical mass attainment.
In the latter case, H ∼ N (µ = 0.2, σ = 0.2) introduces a stationary delay in
Equation (20) with dynamic market potential described by Equation (9).
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Figure 2: USA Fax Machines. Bass Model and network externalities: normal thresh-
old with linear resistance. Observed data and predictions under Norton–Bass–like
perspective.

4 USA Fax Machines: network externalities vs marketing
efforts

In order to examine the performance of the new model defined by Equations (20 –
21) we consider the well–known example of USA fax machines (1965–94). The orig-
inal source is CBEMA (1998) (Information Technology Industry Data Book). This
particular series starts in the mid–1960s with a long incubation period which lasts
for about twenty years, followed by a fast take–off. This long incubation period is
quite rare, since today the majority of durables and commodities present a short-
ened life cycle so that, sometimes, the presence in the series of significant incubation
periods preceding the take–off is not so easy to identify statistically.

A good reason for a long left tail in USA fax machine evolution is the net-
work externalities effect balanced with high price/quality ratios. Nevertheless, we
suppose that such a device was supported with a long and efficient marketing and
management effort by producing firms under evolving technologies.

In the sequel, we consider two strongly different evolutionary hypotheses.

4.1 Normal Network Externalities and Norton–Bass–like Evolution

The first hypothesis assumes a Norton and Bass (1987) like perspective of USA fax
machines by describing non cumulative sales as a change of regime from a lower
level (zero) to an upper stationary level. The main hypothesis is that the market
will reach a stable level in fax machines annual sales with an equilibrium not affected
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Figure 3: USA Fax Machines. Bass Model and network externalities: normal thresh-
old with linear resistance. Normalized dynamic market potential (Norton–Bass–like
perspective).

by successive absorbing generations. The previous hypothesis may make sense in a
suitable right neighborhood of observed data. We found a satisfactory performance
of NLS procedure under a simple weighting function, i.e., w(t) = 1/y(t) and a limited
action of threshold distribution during the incubation period. We noticed a good
performance of the model by assuming an extended incubation period between 1965
and 1987. Constant, power and exponential average resistance µ(t) did not exhibit
an acceptable behaviour for USA fax machines under normal threshold distribution.
On the contrary, the linear case is quite satisfactory. The estimation results are
summarized in Table 1.

Table 1: USA fax machine diffusion. Parameters estimates of a Bass model with
network externalities: normal threshold with linear resistance and weighted NLS.
Norton–Bass–like perspective. ( ) indicates marginal linearised asymptotic 95%
confidence limits

U p q a b σ R2
1 D −W

6464290 0.0000773 0.28078 -0.17579 0.01409 0.051295 0.994979 2.0046
(4684260) (0.0000410) (0.24827) (-0.27661) (0.00816) (0.022734) SSE :
(8244320) (0.0001135) (0.31330) (-0.07496) (0.02004) (0.079856) [88498]

We note a good global fitting, R2
1 = 0.994979, with a good performance in

linearised asymptotic marginal confidence intervals. The graphical representations
of both annual sales and Bass model under network externalities, with an assumed
average linear resistance and weighted NLS, are depicted in Figure 2. We note, in
particular, that the chilling effect during the incubation period is properly estimated.

Under previous results, we can examine some details of market potential evolu-
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Figure 4: USA Fax Machines. Standard Bass Model, no threshold. Norton–Bass–like
perspective.

tion m(t) = UΦ((ν(t)− µ(t))/σ) under a linear hypothesis about resistance µ(t).
In Figure 3 we represent, for USA fax machines, the corresponding normalised

version. Such a probability depicts a non–monotone behaviour of receptiveness
to innovation during the incubation period. In particular, network externalities
increase resistance, with a decreasing probability, from 1965 till 1983 (1964+19)
where a minimum in Φ(·) is attained for t̂ = 19. Such a time t̂ may denote the
temporal maturity of “social awareness” due to a perceived critical mass presence
of the new technology. Starting from 1983, the normalised potential, Φ(·), rapidly
emerges to its stationary level (complete receptiveness) in only a few years, by 1987.
The critical mass evaluated at 1983 is about 550000 fax machines.

Table 2: USA fax machine diffusion. Parameters estimates of a Bass model with-
out network externalities under weighted NLS. Norton–Bass–like perspective. ( )
indicates marginal linearised asymptotic 95% confidence limits

U p q R2
2 D −W

6457100 0.00000266 0.413402 0.949555 0.558276
(3032120) (0.00000039) (0.377258) SSE :
(9882080) (0.00000492) (0.449547) [889089]

In order to appreciate the strength of network externalities during the incuba-
tion period in USA fax machine technology, we may apply a standard Bass model,
following the Norton and Bass approach, to the annual sales data 1965–1994. We
avoid an improper (zero) underestimation during the incubation period by assuming
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Figure 5: USA Fax Machines. Standard Bass Model vs. a Bass model evolution with
dynamic normal threshold based on linear resistance. Norton–Bass–like perspective.

weighted NLS with weight w(t) = 1/y(t). Table 2 summarises the obtained results.
The incubation period is partially recognised, via weighted NLS (see, in partic-

ular, Figure 4). Nevertheless, determination index R2
2 = 0.949555 is very poor if

compared with the previous one, and the low level of Durbin–Watson statistic must
be interpreted correctly. It is not a departure from the i.i.d. error structure towards
an autocorrelated one. Rather it denotes a systematic model omission. See, in par-
ticular, Figure 5, where we can appreciate the departure between the standard Bass
model without network externalities and the proposed Bass model with a dynamic
normal threshold based on a linear resistance.

Following previous ideas, we can evaluate whether the chilling effect may be
properly described by a more precise function within the incubation period. In Table
3 we report a simple extension of the proposed model with a quadratic resistance,
µ(t) = a + bt + ct2.

Table 3: USA fax machine diffusion. Parameters estimates of a Bass model with
network externalities: normal threshold with quadratic resistance. Norton–Bass–
like perspective. ( ) indicates marginal linearised asymptotic 95% confidence limits

U p q a b c σ R2
3 D −W

8206410 0.0001303 0.24277 -0.00244 -0.002706 0.0003612 0.02943 0.99542 2.3682
(1270020) (-0.0000026) (0.15036) (-0.12241) (-0.011905) (0.000021) (0.00122) SSE :
(15142800) (0.00026312) (0.33518) (0.11752) (0.006493) (0.0007010) (0.05764) [80725]

We observe that R2
3 = 0.99542 denotes a very limited improvement with refer-
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Figure 6: USA Fax Machines. Bass Model and network externalities, normal thresh-
old probability with quadratic resistance. Norton–Bass–like perspective.

ence to the linear case and, in correspondence, marginal linearised asymptotic 95%
confidence limits highlight some instabilities.

Normalised potential plotting (see Figure 6), under normal threshold probability
and quadratic evolution of resistance µ(t), gives rise to a similar pattern if compared
with the linear case described in Figure 3.

4.2 Normal Network Externalities and Bass–like Cumulative Evolution

An alternative way to determine USA fax machine technology dynamics is based on
a different evolutionary approach following a Bass standard vision as a function of a
limited life cycle. In this case annual sales are not interpreted as a change of regime
from a low level to an upper stationary level, but as an evolving increasing perfor-
mance from a low level to the top level suddenly followed by a decreasing behaviour.
The selection between these alternatives cannot be anticipated in the very early
stage of evolution without further contextual information. A good discrimination
between competing models is given after peak sales attainment.

Here we examine this second hypothesis by using cumulative sales data for the
estimation of the Bass model under quadratic normal network externalities within
a limited (23 years) incubation period and a properly weighted NLS estimation
procedure, w(t) = 1/y(t).

In Table 4 we report the obtained results that are sufficiently satisfactory even
if with some instabilities in marginal linearised asymptotic 95% confidence limits.
Figure 7 illustrates the good performance of the model and Figure 8 represents the
normalised potential over the incubation period. We note a quite similar behaviour
if compared with the non–cumulative case.

5 Final Remarks and Discussion

Our final remarks and discussion are devoted to understanding the main dif-
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Table 4: USA fax machine diffusion. Parameters estimates of a Bass model with
network externalities: normal threshold with quadratic resistance. Bass–like per-
spective. ( ) indicates marginal linearised asymptotic 95% confidence limits

U p q a b c σ R2
4 D −W

84926400 0.0000169 0.28017 -0.47077 0.04095 -0.000819 0.0637185 0.999158 2.1051
(76420200) (0.0000149) (0.27407) (-0.47577) (-4.46845E6) (-1.84157E8) (-502200) SSE :
(93432500) (0.0000190) (0.28628) (-0.46576) (4.46845E6) (1.84157E8) (502200) [60819]

Figure 7: Cumulative USA Fax Machines. Bass Model and network externalities,
normal threshold with quadratic resistance. Bass–like perspective.

ferences between some well–known key papers in economics about diffusion under
network externality effects and the new proposed approach.

Positive consumption externalities are classified by Katz and Shapiro (1985) into
three main categories: direct, indirect, and service network. Nevertheless, there are
a number of further effects that may be included: information that is more available
for popular brands, market share as a signal of product quality, bandwagon effects,
etc.. What matters is the dependence of a utility function upon the number (and
structure) of users who are in the same network. The scope of the relevant net-
work depends on whether the products of different brands may be used together. A
small network reduces the consumer’s willingness to pay, which is based, in turn, on
expectations regarding the size of innovative competing networks. In other words,
some demand–side economies of scale may be observed where multiple fulfilled ex-
pectations equilibria may exist due to different costs and utility functions. The basic
assumptions in Katz and Shapiro (1985) are two: a) there are no income effects and
b) consumers act to maximize their surplus defined as a scale dependent difference
between a willingness to pay, r + v(ye), and a current price, p. Willingness to pay is
the sum of consumer type, r, “uniformly” distributed within an unlimited range, and



16 Guseo Guidolin

Figure 8: Cumulative USA Fax Machines. Bass Model and network externalities,
normal threshold with quadratic resistance. Bass–like perspective.

a common externality effect, v(ye), dependent upon an expected network size, ye. We
observe that agents’ heterogeneity is generally more complex and multidimensional
in nature so that the assumptions based upon consumers’ identical expectations of
network sizes and consumers’ basic willingness to pay, independent upon personal
assessments, and uniformly distributed over relevant network members, seem quite
debatable.

Cabral (1990) emphasises distributed preferences ν which are compared through
a probability distribution F with observed normalised adoption decisions x at time t.
In equilibrium at time t, the benefit flow satisfies equation B(ν, x, t) = 0, and for the
indifferent adopter’s level ν the corresponding representation is B(g(x, t), x, t) = 0.
The author defines function H(x, t) = 1 − F (g(x, t)), which depicts the fraction of
adopters at time t that have a preference parameter larger than g(x, t). A static
equilibrium at time t is that x for which x = H(x, t). The author obtains x =
1 − F (g(x, t)) or equivalently F−1(1 − x) = g(x, t). For fixed x we get y = g̃(t). If
g̃(·) is a function, we have g̃−1(y) = t, i.e., h(x) = t. The converse is not generally
true, so that the correspondence x = H(x, t) = φ(t) is not always a function and
gives rise to multiple equilibria. The graph of x = φ(t) is a smooth one–dimensional
manifold with singular points. The connection of such a theory with smooth s–
shaped diffusion models describing network externality effects is not so immediate.

In Grajek (2002) the approach is similar to the corresponding one by Cabral
(1990). Instead of a benefit (net benefit flow) that incorporates prices, Grajek
considers a utility function u(ν, xi(t− δ)) with preference ν for brand i and xi(t− δ)
a normalised extension of network at time t − δ. Indifferent consumer ν at time t
satisfies equation u(ν∗i,t, xi(t− δ)) = pi(t), where pi(t) is brand i price. Assuming no
multiplicity, he defines Hi(ν∗) as the number of consumers willing to buy brand i
within time t, Hi(ν∗) = 1 − F (ν∗), and F is the distribution function of a uniform
random variable. The author then equates the proposed theoretical model with
sales: yi(t) = Hi(ν∗). Further specifications refer to the polynomial definition of
the utility function, u(ν, xi(t − δ)) = aν + bxi(t − δ)) + cx2

i (t − δ). Within this
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logic there is no control over saturating effects due to the limited extension of the
market potential, and there is no memory of previous decisions. In its current
specification, externality effects do not modify market potential over time. The final
equation governing cumulative adoptions is assumed to be a polynomial regression:
yi,t = α + βpi,t + γ1xi,t−1 + γ2x

2
i,t−1 + εi,t. Notice that yi,t are simply the cumulative

sales of brand i, while xi,t−1 denotes the global relevant network at time t − 1 for
brand i. If brands are incompatible, then we have that xi,t−1 = yi,t−1.

The paper by Moldovan and Goldenberg (2004) is designed to uncover the in-
fluence of resistance of leaders that primarily inhibits the diffusion process and may
reduce market potentials. There are some similarities between resistance to innova-
tions and negative word–of–mouth. Resistance to change often occurs because new
technology is unfamiliar or complex. But complexity may involve the limited dif-
fusion and corresponding externality effects in network goods. Dissatisfaction may
arise from an expected inadequate performance of the network over time and space
and from a perceived high price. “Neutrality” to innovation and possible negative
word–of–mouth are common responses to the early diffusion of network goods.

The starting point of this paper is that network externalities depress sales in
the first part of a network good’s life cycle. We have captured this effect with a
multiplicative model simultaneously describing a dynamic market potential and the
corresponding adoption process.

We propose a dynamic market potential m(t) which depends on a heterogeneous
individual threshold derived from a simple reinterpretation of Economides and Him-
melberg’s consumer index h in willingness to pay definition. This dynamic mar-
ket potential is embedded in a Cellular Automata model which takes into account
threshold effects and innovative and imitative forces in adoptions under exogenous
interventions (marketing mix strategies). The heterogeneity of the local transition
rules effect is then simplified with a mean field approximation that allows a reduction
to a solvable Riccati equation.

Under the normality assumption on threshold customer index distribution, the
corresponding dynamic market potential exhibits, in a successful case (USA fax
machines), a joint representation of an incubation period followed by a subsequent
take–off, due to a sufficient critical mass. Probably, a failure in network goods
diffusion is characterised by a non–reversing monotony of market potential after a
long period of incubation so that a critical mass is not attained.

Our dynamic market potential is useful for managerial purposes. It allows the
identification of two important contiguous periods: the first one with a zero second
derivative, which depicts the starting point of an “awareness process” (see, for ex-
ample, Figure 3, point x = t = 12), and the second one with a zero first derivative,
which establishes the maturity of the awareness process, i.e., the reversion in market
potential dynamics (see, for example, Figure 3, point x = t = 19).

In the USA fax machine case, we have examined a different distributive approach,
not reported here, by implementing the beta family in market potential definition.
In spite of a possible a priori more flexible behaviour, the applied results do not
confirm such a hypothesis. Our results, were more efficient with a normal assump-
tion under a polynomial evolution of µ(t).
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The proposed dynamic market potential cannot be estimated accurately at a
very early stage of diffusion when there are no symptoms, in the data, of an actual
take–off. This aspect is not a special feature of the proposed model, but is a common
character of models with change-point events between different regimes.

Moreover, we highlight that the assumed evolution of the adoption process of
interest, following a Bass–like or a Norton–Bass–like perspective, implies different
theoretical and pragmatical choices that are external to the involved incubation effect
of network externalities and certainly not easy to determine in the early stages.

Appendix A

A Riccati Equation
Let us consider the following special non–autonomous Riccati equation in (X,Y)

real space

y′x = a
f(x)
g(x)

y2 +
(

bf(x) +
g′(x)
g(x)

)
y + cf(x)g(x), (22)

where a, b, c ∈ R, D =
√

b2 − 4ac > 0 and g(x) 6= 0, f(x) are real functions. Its
general discussion may be found in Guseo and Guidolin (2009). Here we report the
final results concerning its closed form solution.

Let us consider the real roots of equation az2+bz+c = 0, i.e., ri = (−b±D)/2a ∈
R, i = 1, 2, where D = a(r2 − r1) =

√
b2 − 4ac > 0.

The general solution of Equation (22) is,

y(x) = g(x)
r1r2(1−G(x))− C(r1 − r2G(x))

r2 − r1G(x)− C(1−G(x))
, (23)

where G(x) = eD
R x
0 f(τ)dτ , and C is an arbitrary constant of integration.

If the initial condition is set to zero, y(0) = 0, we obtain C = 0 and, therefore,

y(x) = g(x)
1− e−D

R x
0 f(τ)dτ

1
r2
− 1

r1
e−D

R x
0 f(τ)dτ

. (24)

If limx→∞
∫ x
0 f(τ)dτ = +∞, we obtain an interesting limiting behaviour of y(x),

i.e., limx→∞ y(x) = r2 limx→∞ g(x).
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