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Abstract: The presence of a slowdown in new products’ life cycle has recently received
notable attention from many innovation diffusion scholars, who have tried to explain and
model it on a typical dual-market hypothesis (early market-main market). In this paper we
propose an alternative explanation for the slowdown pattern, based on the co–evolutionary
model by Guseo and Guidolin, where diffusion results from the synergy between two driving
forces: communication and adoption. We test the model on the sales data of six pharmaceu-
tical drugs presenting a slowdown in their life cycle and observe that this is always identified
almost perfectly by the model. A deeper analysis of the synergistic interaction between
communication and adoption, based on the likelihood ratio order and on the usual stochas-
tic order, shows that location indexes of each component (communication and adoption),
such as mode, median and mean, can inform which of the two had a driving role in early
diffusion. Contrary to the general expectation, according to which communication should
precede adoptions, our findings show that in two cases adoptions were the main driver in
early life cycle. We argue that this different behaviour may be due to the nature of the drug
considered; new drugs developed for severe pathologies will be likely to have an accumu-
lated demand at the time of launch, while drugs for minor ailments will present a normal
behaviour, “first communication, then adoption”.

Keywords: Co–evolutionary diffusion process, Dual–effect market, Communication net-
work, Slowdown, Saddle, Chasm, New drugs, Likelihood ratio order.

1 Introduction

Some recent literature on innovation diffusion has followed the idea that the market
for new products needs to be divided into two major segments, usually termed
“visionaries and pragmatists” (see Moore (1991)), “early market and main market”
(see Goldenberg et al. (2002), Muller and Yogev (2006), Karmeshu and Goswami
(2001), Vakratsas and Kolsarici (2008)), “influentials and imitators” (see Van den
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Bulte and Joshi (2007)).
In particular Moore, building on the well–known categorization of adopters pro-

posed by Rogers (2003), suggested that the market for innovations is initially just
represented by early adopters and that the main market develops in a second stage
of diffusion. Early and main markets are different in their attitudes and expectations
towards novelties, and this difference may result in a precise separation between the
two, implying a different treatment in terms of marketing strategies (see Mahajan
and Muller (1998)). Such separation has been theorized as a possible explanation
for the slowdown pattern –also known with minor differences as chasm, saddle or
dip– that many diffusion processes show when, after a rapid takeoff, a product’s
sales reach an initial peak followed by a decline –whose length and depth may vary–
and eventually by a resumption that may exceed the initial peak. The difference
between early market and main market may be so deep and the slowdown so intense
as to provoke product failure. Grounding on Moore’s intuition, Goldenberg et al.
(2002) have suggested that the existence of a saddle may be seen as a dual–market
symptom. Their analysis has been based, first, on two exploratory studies on artifi-
cial markets realized with Cellular Automata models in order to verify the frequency
of the saddle phenomenon in simulated situations, and then on an aggregate model
–the details of which are not provided in the paper– to tie the dual–market expla-
nation to saddle phenomena emerging in real situations. From the reported values
of the determination index, R2, which range from 79% to 99.1% with an average of
92.1%, we may argue that the performance of this aggregate model is quite unsat-
isfactory. Moreover, the parameters’ estimates are not presented, which makes it
difficult to understand the theoretical conclusions.

In the spirit of the work by Goldenberg et al. (2002), Muller and Yogev (2006)
have developed a dual–market diffusion model, in which the dynamics of the early
market are expressed in Equation (1)

dI(t)
dt

=
(

pi + qi
I(t)
Ni

)
(Ni − I(t)). (1)

As one may observe the early market’s cumulative adoptions, I(t), are described
through a simple Bass model, where parameters pi and qi have the usual meaning
and Ni is the market potential of the early market. Instead, cumulative adoptions
of the main market, M(t), present a more complex structure,

dM(t)
dt

=
(

pm + qm
M(t)

Ni + Nm
+ qim

I(t)
Ni + Nm

)
(Nm −M(t)). (2)

Equation (2) proposes a bipartition of the word-of-mouth effect, which would be
partly due to communication among the main market’s individuals, qm, and partly
to cross-market communications between the early and the main markets, qim.

Although the authors do not provide much detail about the statistical implemen-
tation of the model, they recognize the difficulty in working with a model of seven
parameters and thus the need to reduce it to five by assuming pm = 0 and estimating
Nm (the market potential of the main market) “from external sources”. Whereas
the external estimation of Nm represents a weakness of the model, we observe the
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interesting assumption that each segment, namely early and main market, has its
specific market potential, and the growth of the main market includes the early
market potential; in other words, it implicitly admits the possibility of a market
potential that changes over time.

Karmeshu and Goswami (2001) have introduced a different methodology in order
to take into account heterogeneity of agents in a standard normalized Bass model

dX(t)
dt

= α(1−X) + βX(1−X), X(0) = X0 (3)

by modifying its basic structure via a general assumption about the stochastic nature
of α and β parameters. The solution process corresponding to model (3) is the usual
one conditionally on α, β and X0. The authors study particular moments of the
previous process describing a general joint mixing distribution φ(α, β) by the means
of the so–called “two–point–distribution” (TPD) formalism allowing an approximate
representation, through six parameters µi, σi, νi, (i = α, β), i.e., local means, stan-
dard deviations and skewness. This is an innovative approach which allows a formal
definition of the dynamic mean value M(t) of the cumulative adoption process as
a linear combination of four Bass standard cumulative distributions. Studying the
variation of dM(t)

dt with reference to time t for various choices of parameters, it is
possible to describe unimodal and bimodal life cycles where the latter is obtained
for increasing values of standard deviations σα and σβ. This decomposition allows
a flexible description of diffusion evolution, but not a clear and interpretable origin
of the components dominating over time.

Following a different path, another work that has recently dealt with the exis-
tence of a dual market and the slowdown in diffusion arguably related to it is that of
Van den Bulte and Joshi (2007). The authors have developed a two-segment mixture
model, to account for the presence of two distinct segments, namely influentials and
imitators, whose adoption behaviour is captured by the following hazard functions,

h1(t) = p1 + q1F1(t), (4)

h2(t) = p2 + q2[wF1(t) + (1− w)F2(t)]. (5)

Consistently with the influentials–imitators hypothesis, Equations (4) and (5) show
an asymmetry; in fact, type 1 may influence type 2, but the reverse cannot occur.
The overall adoption process is the weighted sum of the adoption of the two segments,
under the assumption that these may not have the same importance, i.e.

Fm(t) = ϑF1(t) + (1− ϑ)F2(t), (6)

where F1(t) and F2(t) are probability distribution functions. Similarly, the weighted
sum of the corresponding densities yields

fm(t) = ϑf1(t) + (1− ϑ)f2(t). (7)

The so–called Asymmetric Influence Model (AIM) by Van den Bulte and Joshi is
defined by calculating closed-form solutions of F1(t) and F2(t). The solution of
F1(t) is that of the standard Bass model, while F2(t) presents a much more complex
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structure, referable to a Riccati equation. Though we do not report the details of
such a solution, the impressive mathematical effort of the overall construction is
noteworthy indeed. At the same time we must notice that the closed–form solution
depends on the Gaussian hypergeometric function

2F 1(1; b; c; k) =
∞∑

n=0

Γ(b + n)Γ(c)kn

Γ(b)Γ(c + n)
(8)

which is convergent for arbitrary b, c if |k| < 1 and for c > 1 + b if k ± 1. As the
authors themselves recognize, the estimation of function (6) is very troublesome,
since function (8) is a series with infinite terms which may converge slowly. Aban-
doning the “closed-form” solution of F2 they have proposed a numerical solution of
Equation (9)

dX(t)
dt

= M [ϑf1(t) + (1− ϑ)f2(t)] + ε(t). (9)

Van den Bulte and Joshi’s model proposes a mixture of two sub–populations of
adopters as a possible explanation of the chasm (or dip) exhibited by several diffusion
processes: specifically such a pattern appears when considering Equation (7), i.e.,
the weighted sum of two densities.

Another model recently proposed by Guseo and Guidolin (2009) shows that a
slowdown in diffusion emerges as a consequence of the sum of “two densities” i.e., the
existence of a “dual-effect” in market evolution; however, the approach adopted in
this model radically differs from that of Van den Bulte and Joshi (2007), since such
a duality does not come from a separation into segments of adopters, but rather the
interpretation of diffusion as composed of two distinct, yet co–evolving processes:
communication and adoption. In particular, communication dynamics are seen as
determinants of the market potential, whose structure is not fixed, but generated
through time as a function of the spread of knowledge about an innovation. As we
have noticed, the work of Muller and Yogev (2006) seems to admit a variable market
potential too, assuming the existence of two sub–populations of adopters with their
own potential: in Guseo and Guidolin (2009) there is not an arbitrary division into
two major segments and the structure of the market potential does not depend on
an assumed heterogeneity of individuals, but rather on the aggregate process of com-
munication that leads to the formation of a social acceptance of an innovation, or
vice versa. The “dual-effect” modelling allows the recognition of a more interesting
aspect than the pure determination of a slowdown, expressing a dynamic ranking
between the two co–evolving processes with different managerial implications. In
some situations, probably the majority, the communication component is dominant,
while in others we empirically identify an opposite behaviour, where the adoption
process has a driving role.

The paper is organized as follows. In Section 2 we present some definitions and
basic properties of the Guseo and Guidolin (2009) co–evolutionary model with a
particular specification of a dynamic market potential. In Section 3 we consider
six different pharmaceutical drug diffusions in Italian geographic areas that exhibit
slowdowns and saddle effects well–recognized by previous model. In Section 4 we
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propose a natural decomposition of model density which allows a simple interpreta-
tion of the drivers in evolution due to main effects exerted by communication and
adoption forces. The Likelihood ratio order explains the different time position of
these forces. In Section 5 a further weak ordering, based on simple location indexes,
is proposed and compared with the likelihood ratio order or the usual stochastic
order, confirming a direct managerial usefulness of discovering the driving role be-
tween adoption and communication. Final comments and discussion are presented
in Section 6.

2 Co–evolution of Market Potential and Diffusion of an In-
novation

We have highlighted in Section 1 that some interesting research effort was done in the
last decade to represent heterogeneity of agents, by specifying mixture models that
take into account different local structures of market responses, due to an assumed
latent decomposition of adopters in sub–populations over time (see, for instance,
Van den Bulte and Joshi (2007), Karmeshu and Goswami (2001), Muller and Yogev
(2006), Goldenberg et al. (2002) among others). A recurring assumption of previous
mixtures or mixed models is the existence of different local market potentials.
In Guseo and Guidolin (2009) this discrete, probably unnecessary, taxonomy has
been overcome through a special Cellular Automaton description whose aggregate
mean–field approximation, in continuous time, is expressed by the following Equa-
tion

y′(t) = m(t)
{
−rs

y(t)
m(t)

+
(

ps + qs
y(t)
m(t)

)(
1− y(t)

m(t)

)}
+ y(t)

m′(t)
m(t)

, (10)

where y′(t) represents instantaneous adoptions at time t, y(t) denotes the corre-
sponding cumulative adoptions, ps and qs are the usual Bass like parameters de-
picting innovation (external) and imitation (internal) effects, and rs accounts for a
possible decay effect due to not retained adoptions. In this model particular atten-
tion is devoted to a general representation of the market potential via a non–negative
flexible function m(t) ≥ 0. We highlight that it is not a function of a special family.

A characteristic claim in Equation (10), the “self–reinforcing” term, y(t)m′(t)
m(t) ,

emphasizes the instantaneous variations in y′(t) due to a collective or inertial move-
ment of global market potential. An expanding m(t) induces a benefit in instan-
taneous adoptions and, vice versa, a declining m(t) implies a shrinkage. Under a
constant market potential, m(t) = m, the self–reinforcing effect is absent.

An extension of Equation (10) is based on the modification over time of uniform
dynamics due to exogenous intervention effects (source of external heterogeneity)
during the diffusion process. A similar approach is developed by Bass et al. (1994)
in the Generalized Bass Model (GBM) under an assumed fixed potential m.

This more flexible context is modelled in Guseo and Guidolin (2009) through a
multiplicative intervention function, x(t), whose neutral level is x(t) = 1∀t, which
may incorporate exogenous factors, like marketing mix strategies, different political
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regulations or incentive measures,

y′(t) = m(t)
{
−rs

y(t)
m(t)

+
(

ps + qs
y(t)
m(t)

) (
1− y(t)

m(t)

)}
x(t) + y(t)

m′(t)
m(t)

. (11)

Notice that function x(t) only exerts its effect on the first component of Equation
(11),which is a function of the future, and not on the self–reinforcing term, which
depends on the past.

The original GBM is a particular sub–model in Equation (11), because two
special constraints apply: the decay parameter is excluded, rs = 0, and the market
potential is constant, m(t) = m.

Equation (11) defines a nested co–evolutionary model as a special non–autono-
mous Riccati equation. Its closed form solution is determined on the basis of Equa-
tion (25) (see Appendix A), with an initial condition C = 0, for g(·) = m(·) and
f(·) = x(·)

y(t) = m(t)
1− e−Ds

R t
0 x(τ)dτ

1
sr2

− 1
sr1

e−Ds
R t
0 x(τ)dτ

, Ds =
√

(qs − ps − rs)2 + 4qsps > 0, (12)

where sri = (−(qs − ps − rs)±Ds)/(−2qs), i = 1, 2, with sr2 > sr1.
The obtained solution highlights the natural multiplicative role of the market

potential m(t), a very simple extension of the corresponding GBM based on the
substitution of m with m(t). The time dependent market potential m(t) penalizes
or magnifies with different emphases the evolution of the natural purchase process.
Notice that the m(t) flexible shape may be modelled according to different perspec-
tives.

In Guseo and Guidolin (2009) we can find a special proposal based on a formal
description of knowledge dynamics regarding a specific innovation, and interpreted
as a growing network constituting a basic precursor to market potential. Communi-
cation dynamics are represented by a Network Automata model whose mean–field
approximation, in continuous time, is proportional to an autonomous Riccati equa-
tion, namely,

ν ′(t) = −(qc + wc)ν2(t) + (qc − pc − ec)ν(t) + pc, qc > pc > 0, (13)

where pc denotes the external or innovative component of the communication pro-
cess while qc and wc represent positive and negative word–of–mouth effects and ec

is a decay effect representing the natural loss of information due to ageing. If we
exclude ec and wc components, we obtain a standard Bass model referring to net-
work growth. This is a technical way to express knowledge dynamics or increasing
awareness about an innovation translating a qualitative rationale –absorptive capac-
ity– due to Cohen and Levinthal (1990).

Equation (13) may be solved by recognizing in it a special version of Equation
(25) (see Appendix A). For initial conditions ν(0) = 0, f(·) = 1 and g(·) = 1, we
obtain

ν(t) =
1− e−Dct

1
cr2

− 1
cr1

e−Dct
, Dc =

√
(qc − pc − ec)2 + 4(qc + wc)pc > 0, (14)
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where cri = (−(qc − pc − ec) ± Dc)/(−2(qc + wc)), i = 1, 2, with cr2 > cr1. If, for
instance, ec > 0 then the limit of ν(t) for t → +∞ may be less than 1.

2.1 Market potential definition

Function Uν(t) defines an aggregate temporal evolution of the knowledge about an
innovation within the proposed communication network. This knowledge may be
transformed in a dynamic market potential in order to define a potential boundary
to the nested adoption process. This potential boundary is a latent structure that
we cannot measure directly.

Without loss of generality, we can consider the positive squared root of Uν(t),
i.e., h(t) =

√
U

√
ν(t), that depicts the number of informed individuals. Notice that

h(t) is proportional to
√

ν(t), so that we may assume

m(t) = K
√

ν(t) (15)

as the actual market potential, where K is a free parameter useful for repeated
adoptions.

Figure 1: Two normalized (K = 1) dynamic market potentials over time (x). Good communication:

pc = 0.15, qc = 0.90. Bad communication: pc = 0.01, qc = 0.06.

If communication effects are persistent, i.e. with no decay effect, ec = 0, and no
negative word–of–mouth, wc = 0, then Dc = qc + pc and cr1 = −pc/qc, cr2 = 1 so
that

m(t) = K

√
1− e−(pc+qc)t

1 + qc

pc
e−(pc+qc)t

. (16)

In Equation (16), the limiting behaviour of m(t) for t → +∞ equals the constant
carrying capacity K.
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In Figure 1 we compare two different situations concerning communication.
Higher parameters qc and pc allow a steeper–ascent behaviour towards the stationary
upper asymptotic limit.

Figure 2 shows three different co–evolutionary processes for the instantaneous
case by assuming, for simplicity, exit parameters, ec, wc and rs, set to zero. Cases
A and B have two peaks with a good slowdown and a saddle. In case B, the higher
value of parameter pc (0.045) increases earlier adoptions. Case C, characterized by
higher adoption parameters, generates a unimodal behaviour without slowdown and
with a weaker right tail.

Figure 2: Three different co–evolutionary instantaneous adoption processes. Case B depicts earlier adop-

tions than case A in the first part of the cycle due to a higher pc parameter. Both A and B present slowdown

and saddle effects. Case C shows a unimodal distribution over time with a short right tail.

The statistical implementation of model (12) may require alternative error struc-
tures. In a nonlinear regressive approach we consider a particular model for obser-
vations, w(t) = y(t) + ε(t), with an i.i.d. residual ε(t). A more realistic approach is
based on ARMAX representation with a standard nonlinear estimation as a first step
that acts as a “covariate” parallel to the autocorrelated residual components (see,
for instance Guseo (2004), Guseo and Dalla Valle (2005) and Guseo et al. (2007)).

As is well–known, joint identifiability of parameters in Equation (13) is not
possible because the autonomous Riccati Equation (25), under f(·) = g(·) = 1,
is characterized by three independent parameters. We have to set one of the four
parameters to a specified level, and a reasonable choice may be ec or wc exclusion.

3 Pharmaceutical Drugs’ Diffusion in Italian Geographic Ar-
eas

In this section we present some applications of the Guseo and Guidolin model to the
diffusion of six new pharmaceutical drugs, introduced in the Italian market in 2005.

The data, provided by IMS Health, cover the period between August 2005 and
July 2007 with a spatial disaggregation by areas (“NordEst”, “NordOvest”, “Cen-
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tro”, “Sud”). This kind of information allows interesting comparisons between areas
and considerations on their different level of receptiveness.

The aim of these applications is to show the performance of the model, to discuss
its main results in terms of statistical identification, fitting and parameter estimates,
and to highlight the recurring presence of a slowdown in all of the cases considered.
The need to account for a dynamic market potential in the pharmaceutical context
has been justified by Guseo and Guidolin by stressing that communication, in the
institutional form of detailing, physician meetings, medical journals, advertising and
in the form of word-of-mouth, within the medical community and among patients,
plays a conclusive role in new drugs’ diffusion, facilitating the formation of the mar-
ket potential. Thus, pharmaceutical products appear to be an ideal candidate for
modelling the co-evolution of communication and adoption, where the first usually
precedes and pulls the second. However, the general behaviour according to which
communication precedes adoption may be contradicted in some cases, where adop-
tion dynamics have a driving role. A recent work on the diffusion of new drugs
by Vakratsas and Kolsarici (2008) interestingly remarks that the market for phar-
maceuticals is typically created from patients’ need for treatment, as diagnosed by
physicians, and that this need will be unfulfilled if no prescription is available at
the time of the diagnosis. This will result in an accumulation of demand, prior
to product launch. Vakratsas and Kolsarici use this observation to motivate their
dual-market model for new prescription drugs, with an early and main market, re-
spectively formed by patients with severe and easily diagnosed pathologies and by
patients with mild problems or lack of persistent symptoms. Instead, we will employ
the severity of pathology and the lack of an adequate treatment as a criterion to
evaluate the different nature of prescription drugs and the related diffusion process.
In particular, we may expect that a new drug, treating a severe pathology, will
be characterized by a diffusion process where the accumulated demand of patients
determines an early dominance of adoptions.

For simplicity and space reasons we only examine the following six different
configurations: “FOL–NordEst”, “FOL–Centro”, “LIB–NordEst”, “REX–Italy”,
“KEP–NordEst” and “LYR–Italy” where the first part of the code refers to spe-
cific drugs: “FOL”, “LIB”, “REX”, “KEP” and “LYR”.

“FOL” was introduced in Italy in August 2005 and prescribed by physicians to
prevent fetus malformations such as exencephaly and neoplasms. Based on Folic
Acid, this drug is prescribed by physicians to expectant mothers during early ges-
tation. The consumption of Folic Acid by expectant mothers and by women who
are planning a pregnancy has been the subject of educational campaigns in many
countries. The objective of a daily consumption of Folic Acid has required an in-
creasing commitment by both physicians and patients. In addition to the availability
of food fortified with it, the recent possibility to take a specific drug that guarantees
a quantity of Folic Acid considered adequate for preventing malformations is seen
as a fundamental step forward.

Based on the active principle of Barnidipine, “LIB” is a new calcium–antagonist
introduced in Italy in April 2005 for the treatment of mild–to–moderate hyperten-
sion. Several studies have documented that high blood pressure must be controlled
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Figure 3: FOL-Centro, Italy: Co–evolutionary non–cumulative model with no exit
rule, ARMAX sharpening, and actual weekly “FOL” packages sales data.

both with life style modifications, such as weight reduction, dietary sodium reduc-
tion and physical activity, and with an appropriate pharmacological treatment that
helps to prevent the risks of heart trouble. The innovativeness of LIB would just
rely on the active principle based on a new molecule, whose effect lasts for 24 hours.
Indeed, Barnidipine is the 12th calcium–antagonist put into commerce and has been
proven to be essentially equivalent to other, less recent calcium–antagonists. The
current modified release product is based on barnidipine hydrochloride. Some recent
applications refer to atherosclerosis (atheroma) and related atherogenesis, oxidative
stress and clotting activity.

“REX” was introduced in Italy in August 2005. Its active principle is Lovas-
tatin. The most commonly covered diseases are hypercholesterolemia, familial hy-
percholesterolemia and hyperlipoproteinemias when a prudent diet is not sufficient
or effective. This product also provides a useful option in the management of pa-
tients with dislipidemia and in prevention of coronary heart diseases. Lovastatin
is the most recent statin introduced in Italy. If taken in dose of 20–40 mg/day, it
has been proven effective in lowering cholesterol level, and in reducing the risk of
infarction and cardiac arrest.

“KEP” was launched in Italy in April 2005. The new active principle on which
the drug is base is Ketoprofen, which is commonly employed for treating pain and
inflammation. In particular, the topical Ketoprofen patch appears an effective and
safe option for the treatment of painful inflammations.
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Figure 4: FOL-NordEst, Italy: Co–evolutionary non–cumulative model with no exit
rule, ARMAX sharpening, and actual weekly “FOL” packages sales data.

Based on the active principle of Pregabalin, “LYR” was initially approved for
treating epilepsy (as adjunctive therapy), neuropathic pain and post-herpetic neu-
ralgia pain, that is, to treat pain caused by nerve damage due to diabetes and herpes
zoster infection. In particular, Pregabalin is considered a valuable addition to the
still–limited options to the treatment of neuropathic pain, proving to be effective
in patients who have previously failed to respond to other active principles (e.g.,
Gabapentin). In 2006 the European Commission approved Pregabalin for the treat-
ment of generalized anxiety disorder. More recently, some studies have shown that
Pregabalin is effective in treating chronic pain in disorders such as fibromylagia; in
June 2007 the Food and Drug Administration approved “LYR” as the first treat-
ment for fibromyalgia.

We choose to compare all six cases by applying the model in its reduced form,
without considering exit rates (parameters wc = ec = rs = 0) and exogenous inter-
ventions (function x(t) = 1),

w(t) = K

√
1− e−(pc+qc)t

1 + qc

pc
e−(pc+qc)t

1− e−(ps+qs)t

1 + qs

ps
e−(ps+qs)t

+ ε(t). (17)

In Table 1 we summarize the estimation results for the proposed cases under a
standard nonlinear least squares approach (Levemberg–Marquardt; see, for instance,
Seber and Wild (1989)) in the co–evolutionary model as expressed in Equation (17).

As we may notice from the values of the determination index, R2
1, the models

present very high levels of global fitting and all the involved parameters are signif-
icant. Recall that in S–shaped models it is quite common to obtain high levels for
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Table 1: Pharmaceutical drugs’ diffusion. Parameters’ estimates of co–evolutionary
models for “FOL-NordEst”, “FOL-Centro”, “LIB-NordEst”, “REX-Italy”, “KEP-
NordEst”, “LYR-Italy” areas of Italy with no exit rule. ( ) marginal linearized
asymptotic 95% confidence limits

“FOL-NordEst”
K qc pc qs ps R2

1 D −W
339352 0.09430 0.01969 0.02487 0.00175 0.999961 0.556

(320070) (0.07664) (0.01657) (0.02385) (0.00170) SSE :
(358633) (0.11196) (0.02282) (0.02590) (0.00180) [8.39324E6]

“FOL-Centro”
763867 0.08190 0.01192 0.01728 0.00175 0.999967 0.476

(638683) (0.07342) (0.01099) (0.01549) (0.00154) SSE :
(889051) (0.09038) (0.01229) (0.01908) (0.00197) [1.99934E7]

“LIB-NordEst”
647061 0.08114 0.00385 0.01853 0.00100 0.999939 0.264

(533821) (0.07483) (0.00345) (0.01696) (0.00088) SSE :
(760300) (0.08746) (0.00427) (0.02010) (0.00112) [2.88209E7]

“REX-Italy”
1748620 0.04429 0.00026 0.08186 0.00938 0.999957 0.328

(1664410) (0.04288) (0.00025) (0.07727) (0.00889) SSE :
(1832830) (0.04571) (0.00027) (0.08646) (0.00986) [4.24433E8]

“KEP-NordEst”
1652380 0.05573 0.01699 0.00409 0.00116 0.99964 0.047

(–) (0.03446) (0.01361) (-0.00608) (-0.00385) SSE :
(9000760) (0.07699) (0.02038) (0.01426) (0.00617) [2.80659E8]

“LYR-Italy”
5116020 0.05322 0.00090 0.09451 0.03408 0.999908 0.172

(5066630) (0.05207) (0.00087) (0.07987) (0.03056) SSE :
(5165410) (0.05438) (0.00093) (0.10914) (0.03759) [1.77303E10]

the determination index R2. For instance, R2 = 0.95 is a low goodness–of–fit value
because the competing model is too elementary: the constant one.

As already observed in Guseo and Guidolin (2009), for “FOL” the communication
parameters have a higher value in the area of “NordEst”, while they are much lower
in “Centro”, despite the apparently better diffusion process in this area (see market
potential K).

We may simply test wether the difference is significant by observing the confi-
dence intervals of the estimated parameters: for example, if we consider parameter
estimates for “NordEst” we will see that, except for parameter ps, the others have a
higher value than that of the upper confidence interval of correspondent parameters
for “Centro”.

In both cases, the presence of a slowdown in data evolution strongly departs from
a classical bell–shaped Bass model (BM). This effect is quite perfectly absorbed by
the model. See Figures 3 and 4.

The Durbin-Watson statistic in both cases (0.556 and 0.476) suggests the pres-
ence of autocorrelated residuals that may be seen by observing the original instan-
taneous data plotted in Figures 3 and 4.

This problem may be overcome by implementing an appropriate ARMAX pro-
cedure. The main results are outlined in Table 2 for the co–evolutionary model
folCcoevCM of the“Centro” area, and in Table 3 for the co–evolutionary model
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folNEcoevCM of the “NordEst” area.

Table 2: FOL-Centro, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(1,0,1) sharpening. ( ) t–statistic; [ ] p–values

AR(1) MA(1) folCcoevCM mean SSE indexes
0.62285 -0.365964 1.0000 -9.10578 7.78466E6 R2

2 = 0.999987
(6.09150) (-3.06161) (776.197) (-0.05328) {d.f.94} P 2 = 0.610
[0.000000] [0.002871] [0.000000] [0.957614] F ' 71

The significance of ARMAX sharpening with respect to the co–evolutionary
model folCcoevCM may be easily determined via a squared multiple partial cor-
relation coefficient, P 2 = (R2

2 − R2
1)/(1 − R2

1) and the corresponding F–ratio, i.e.,
F = P 2(N − k)/[(1− P 2)s]. In particular, we obtain P 2

C = 0.61 and FC ' 71.
Similarly, for the “NordEst” area we obtain P 2

NE = 0.58 and FNE ' 62.
Both ARMAX extensions are significant. For a graphical comparison among ac-

tual data, co–evolutionary modelling and ARMAX sharpening for “FOL” in “NordEst”
and “Centro”, see Figures 3 and 4.

Table 3: FOL-NordEst, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(1,0,1) sharpening. ( ) t–statistic; [ ] p–values

AR(1) MA(1) folNEcoevCM mean SSE indexes
0.51913 -0.47710 1.00075 -58.562 3.555071E6 R2

2 = 0.999983
(4.57612) (-4.07077) (794.163) (-0.603505) {d.f.94} P 2 = 0.576436
[0.000014] [0.000098] [0.000000] [0.547626] F ' 62

With reference to “LIB–NordEst” we observe a very good behaviour of diffusion
with a noticeable NLS fitting, R2

1 = 0.999939. A low level of the Durbin–Watson
statistic, D −W = 0.264, denotes a high level of autocorrelation of residuals. With
an ARMAX procedure we obtain a significant improvement, as one may see by the
squared partial correlation, P 2 = 0.76 and F -ratio, F ' 114. Detailed results are
reported in Table 4. Figure 5 highlights a weak but visible slowdown effect.

Table 4: LIB–NordEst, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(1,0,1) sharpening. ( ) t–statistic; [ ] p–values

AR(1) MA(1) libNEcoevCM mean SSE indexes
0.84483 -0.20266 1.0101 1051.21 7.027450E6 R2

2 = 0.999985
(14.75) (-1.99748) (375.787) (3.7364) {d.f.114} P 2 = 0.756168

[0.000000] [0.048155] [0.000000] [0.000293] F ' 114

“REX-Italy” presents a good behaviour at the national level with an excellent
NLS fitting, R2

1 = 0.999957 and its instantaneous evolution emphasizes a pronounced
slowdown. See, in particular, Figure 6. A corresponding ARMAX(1,0,1) sharpening
allows a significant improvement, confirmed by squared the partial correlation P 2 =
0.727 and a high F–ratio, F ' 124 (see Table 5).
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Figure 5: LIB-NordEst, Italy: Co–evolutionary non–cumulative model with no exit
rule, ARMAX sharpening, and actual weekly “LIB” packages sales data.

Table 5: “REX-Italy”, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(1,0,1) sharpening. ( ) t–statistic; [ ] p–values

AR(1) MA(1) rexItcoevCM mean SSE indexes
0.731513 -0.396113 1.00061 -228.84 1.1580927E8 R2

2 = 0.9999883
(9.02578) (-3.72637) (594.591) (-0.255711) {d.f. 97} P 2 = 0.7271436
[0.000000] [0.000327] [0.000000] [0.798715] F ' 124

“KEP” denotes an acceptable behaviour in the “NordEst” area with a good
NLS fitting, R2 = 0.99964. We can see the origin of such a non-smooth shape
by inspecting Figure 7, exactly in the earlier stages where the product presents
“stop–and–go” movements. We notice a consistent slowdown generating a proper
saddle effect. In this case the ARMAX(2,0,2) sharpening is strongly effective, R2

2 =
0.99999178, with a very high squared partial correlation, P 2 = 0.9772, and a very
large F–ratio, F ' 933. See, in particular, the results reported in Table 6.

“LYR-Italy” presents a mature life cycle with some evidence of market contrac-
tion. The NLS fitting is excellent, R2

1 = 0.99991, and the subsequent ARMAX(2,0,2)
sharpening is quite effective, P 2 = 0.8952 and F ' 188 (see Table 7). The presence
of a bimodal behaviour is well-recognized by the co–evolutionary model with an
evident saddle effect (see Figure 8).

Previous results highlight different dynamics in diffusion of these new pharma-
ceutical drugs. In all the examined cases we report the presence of a slowdown effect
in the earlier part of diffusion. In some cases its shape is quite pronounced and de-
fines a saddle. The next Section will prove that these effects may be easily explained
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Figure 6: “REX-Italy”, Italy: Co–evolutionary non cumulative model with no exit
rule, ARMAX sharpening, and actual weekly “REX” packages sales data.

Table 6: “KEP-Italy”, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(2,0,2) sharpening. ( ) t–statistic; [ ] p–values

AR(1) AR(2) MA(1) MA(2) kepNEcoevCM mean SSE indexes
1.9705 -0.9908 0.6563 0.3352 0.99685 354.02 6.40772E6 R2

2 = 0.9999918
(101.7) (-51.04) (8.624) (4.321) (1075.5) (3.021) {d.f. 113} P 2 = 0.9771690
[0.0000] [0.0000] [0.0000] [0.0001] [0.00000] [0.0031] F ' 933

through an interaction between variable market potential and corresponding adop-
tion process. The multiplicative model allows a viable interpretation of the basic
components that may be sufficiently separated over time, not requiring the hypoth-
esis of a dual market or dual segment market characterizing agents’ heterogeneity.

4 Some statistical aspects of a co–evolutionary model

In this Section we analyze some behavioural aspects of the Guseo and Guidolin co–
evolutionary model. For the sake of clarity we will refer to the simplest version, i.e.,
Equation (17), without considering exit rates (parameter wc = ec = rs = 0) and
external intervention (function x(t) = 1). We may consider a simple reparameteri-
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Figure 7: “KEP-NordEst”, Italy: Co–evolutionary non–cumulative model with no
exit rule, ARMAX sharpening, and actual weekly “KEP” packages sales data.

Table 7: “LYR-Italy”, Italy: Co-evolutionary cumulative model with no exit rule
and ARMAX(2,0,2) sharpening. ( ) t–statistic; [ ] p–values

AR(1) AR(2) MA(1) MA(2) lyrcevCM mean SSE indexes
1.8721 -0.9392 0.7180 0.2906 1.00071 -1384.72 1.8585021E9 R2

2 = 0.9999904
(40.19) (-20.343) (8.6091) (3.3500) (2205.34) (-1.1176) {d.f. 91} P 2 = 0.8951793
[0.0000] [0.0000] [0.0000] [0.0012] [0.0000] [0.2667] F ' 188

zation for adoption and communication components,

a = ps + qs; b = qs/ps; c = pc + qc; d = qc/pc,

(18)
ps = a/(1 + b); qs = ab/(1 + b); pc = c/(1 + d); qc = cd/(1 + d).

The corresponding co–evolutionary model is

w(t) = K ·
√

1− e−ct

1 + de−ct

1− e−at

1 + be−at
+ ε(t)

= K ·K(t, a, b, c, d) + ε(t)
= K ·

√
F (t, c, d) G(t, a, b) + ε(t)

= K ·
√

F (t) G(t) + ε(t), (19)

where F (t) = F (t, c, d) = (1−e−ct)/(1+de−ct) and G(t) = G(t, a, b) = (1−e−at)/(1+
be−at). Under the usual internal unimodality assumptions on diffusion parameters,
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Figure 8: “LYR-Italy”, Italy: Co–evolutionary non–cumulative model with no exit
rule, ARMAX sharpening, and actual weekly “LYR” packages sales data.

0 < ps < qs and 0 < pc < qc or, simply under the non–negativity of parameters pc,
qc, ps and qs, we highlight that K(t) =

√
F (t) G(t) = K(t, a, b, c, d) is a probability

distribution function.
Let us consider a representation of its density k(t) = ∂K(t)/∂t with a reduced

notation, i.e.,

k(t) =
1
2
F (t)−1/2G(t)f(t) + F (t)1/2g(t) = k1(t) + k2(t), t > 0, (20)

where f(t) = ∂F (t)/∂t and g(t) = ∂G(t)/∂t.
We may consider a normalization of non–negative functions k1(t) and k2(t) de-

riving two corresponding densities k̃i(t) = ki(t)/Ki with Ki =
∫∞
0 ki(t)dt, i = 1, 2.

Suppose that a random variable X is associated to k̃1(t) and, similarly, a random
variable Y to k̃2(t).
Definition. We say that Y is larger than X in likelihood ratio order, X ≤lr Y , if X
and Y have densities such that, for all s ≤ t,

k̃1(t) · k̃2(s) ≤ k̃1(s) · k̃2(t). (21)

Notice that the inequality based on k̃i(t), i = 1, 2 densities does not depend on the
quantities K1 or K2 or their ratio, so that we can directly compare ki(t), i = 1, 2.
Equation (21) states that k̃2(t)/k̃1(t) or k2(t)/k1(t) is increasing, avoiding the special
cases with vanishing denominators.

It is well–known that the likelihood ratio order is stronger than the usual stochas-
tic order, i.e., if X ≤lr Y then X ≤st Y (see, e.g., theorem 1.4.4 in Müller and Stoyan
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Figure 9: Likelihood Ratio Order between k2(t) and k1(t) for pharmaceutical drugs “FOL-NordEst”,

“FOL-Centro”, “LIB-NordEst” and “KEP-NordEst” in Italy. The increasing ratio denotes a (first order)

stochastic dominance of k2(t) component or, equivalently, a driving role of communication, k1(t). Data

source: IMS-Health, Italy. Normalized weekly packages sold; period: 8/2005 – 7/2007.

Figure 10: Likelihood Ratio Order between k2(t) and k1(t) for pharmaceutical drugs “REX-Italy” and

“LYR-Italy” in Italy. The decreasing ratio denotes a (first order) stochastic dominance of k1(t) component

or, equivalently, a driving role of adoption, k2(t). Data source: IMS-Health, Italy. Normalized weekly

packages sold; period: 8/2005 – 7/2007.

(2002)). Notice that a random variable X is smaller than a random variable Y un-
der the usual stochastic order, X ≤st Y , if the corresponding distribution functions
satisfy, for all t, inequality FX(t) ≥ FY (t).

As a direct control, we can compute the likelihood ratios k̃2(t)/k̃1(t) or k2(t)/k1(t)
pertaining to the diffusions of the six pharmaceutical drugs, i.e., “FOL-NordEst”,
“FOL-Centro”, “LIB-NordEst”,“REX-Italy”, “KEP-NordEst” and “LYR-Italy”.

We report the results concerning likelihood ratios in two separate plots. Figure
9 highlights a practically increasing behaviour of “FOL-NordEst”, “FOL-Centro”,
“LIB-NordEst”and “KEP-NordEst”. This allows a simple interpretation: the effect
associated to k1(t), i.e., the communication effect, has an earlier dominance in the
evolution of these drugs.
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Vice versa, Figure 10 depicts the opposite diffusion structure of “REX-Italy”
and “LYR-Italy” with an earlier driving role pertaining to adoption forces. The

Figure 11: “FOL-NordEst”: two synergistic components. Communication (k1) is a precursor of adoption

(k2) for “FOL” in the “NordEst” area of Italy. Data source: IMS-Health, Italy. Normalized weekly packages

sold; period: 8/2005 – 7/2007.

Figure 12: “FOL-Centro”: two synergistic components. Communication (k1) is a precursor of adoption

(k2) for “FOL” in the “Centro” area of Italy. Data source: IMS-Health, Italy. Normalized weekly packages

sold; period: 8/2005 – 7/2007.

direct use of the likelihood ratio criterion gives a strong result for the order of basic
components k1(t) and k2(t). Nevertheless, this ratio requires plotting features to
recognize dominance between adoption and communication effects. We propose, as
an alternative procedure, some location indexes for detecting such a dominance, in
a weak order sense.

Equation (20) highlights that density k(t) is the sum of two non negative com-
ponents, k1(t) and k2(t) which, in turn, are special transformations of the basic Bass
densities f(t) and, respectively, g(t).
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Figure 13: “LIB-NordEst”: two synergistic components. Communication (k1) is a precursor of adoption

(k2) for “LIB” in the “NordEst” area of Italy. Data source: IMS-Health, Italy. Normalized weekly packages

sold; period: 8/2005 – 7/2007.

Figure 14: “REX-Italy”: two synergistic components. Adoption (k2) is a precursor of communication

(k1) for “REX” in Italy. Data source: IMS-Health, Italy. Normalized weekly packages sold; period: 8/2005

– 7/2007.

We can emphasize this aspect with an equivalent form of Equation (20), i.e.,

k(t) =
1
2
F (t)1/2

(
G(t)
F (t)

f(t) + 2g(t)
)

=
(G(t) + 2F (t))

2F (t)1/2

(
G(t)f(t) + 2F (t)g(t)

G(t) + 2F (t)

)
. (22)

The second factor is a special normalized convex adaptive mixture of the two
basic densities, where adaptive weighting depends upon t level. If we consider two
random variables in time domain, TF , and TG, with distribution functions F (t)
and G(t), respectively, then we say, following the usual stochastic order, that TF is
stochastically inferior to TG, TF ≤st TG, if and only if F (t) ≥ G(t) for all t ∈ R.
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Let us consider the second factor in Equation (22),

h(t) =
(

G(t)f(t) + 2F (t)g(t)
G(t) + 2F (t)

)
. (23)

We may neglect the first factor in Equation (22) because it is an increasing monotone
function of the variable t, and this omission does not alter the modal value t+, which
is the same for k(t) or h(t).

Let us consider, for clarity, a strong departure between random variables TF and
TG. If TF ≤st TG then h(t) ' g(t), and vice versa, for TG ≤st TF we attain that
h(t) ' f(t). Notice that the usual stochastic order between TF and TG, e.g. ≤st,
implies an analogous (total) weak order of corresponding mean values, E(TF ) ≤
E(TG), associated to f(t) and g(t) respectively (see, e.g., theorem 1.2.9 in Müller
and Stoyan (2002)). We may use different location indexes related to the random
variables TF and TG, the mode, t+, the median, t0.5, and the mean value, t̄, i.e.,

t+com =
ln d

c
; F t0.5 =

1
c

ln(2 + d); E(TF ) = t̄F =
1
qc

ln(1 + d),

(24)

t+ado =
ln b

a
; Gt0.5 =

1
a

ln(2 + b); E(TG) = t̄G =
1
qs

ln(1 + b).

For 0 < pc < qc and 0 < ps < qs the location indexes within TF and TG – mode,
median and mean value – are increasing values, t+ < t0.5 < t̄. Moreover, we can
prove that the likelihood ratio order or the usual stochastic order imply an equivalent
weak order in terms of medians: TF ≤st TG → F t0.5 ≤ Gt0.5.

Figure 15: “KEP-NordEst”: two synergistic components. Communication (k1) is a precursor of adoption

(k2) for “KEP” in the “NordEst” area of Italy. Data source: IMS-Health, Italy. Normalized weekly packages

sold; period: 8/2005 – 7/2007.

The reverse version of the above mentioned theorem 1.2.9, or an equivalent form
for medians, is not true in general. Nevertheless, the total weak order based on
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Figure 16: “LYR-Italy”: two synergistic components. Adoption (k2) is a precursor of communication

(k1) for “LYR” in Italy. Data source: IMS-Health, Italy. Normalized weekly packages sold; period: 8/2005

– 7/2007.

mean values or medians or modes (24) may be a strong symptom of the existence
of an analogous usual stochastic order. Therefore, we can obtain some information
on the relative time position of components k1(t) and k2(t) by diagnosing it via
couples of corresponding location indexes. In particular, observing that t+com < t+ado,
F t0.5 < Gt0.5 and t̄F < t̄G, we may argue that we are facing the most common
situation where the communication process is the main driver of a possible take–off
in diffusion, so that we have TF smaller than TG, following a location weak order
denoted by the symbol <<, k1(t) << k2(t). The actual order may be a stronger
one, i.e., ≤lr or ≤st.

Vice versa, for t+com > t+ado, F t0.5 > Gt0.5 and t̄F > t̄G we expect a reverse order
in time domain, i.e., in this case the adoption component is the main driver, and
communication gives rise to a maintenance effect.

5 Pharmaceutical drugs in Italy: driving forces effects

In this Section we examine, with some detail, the six pharmaceutical drugs re-
ported in previous Sections with the aim to detect and interpret the relative position-
ing of the two synergistic forces, communication and adoption, in the corresponding
co–evolutionary diffusion process through a weak order based on simple location
indexes.

These effects are not directly observable, but the multiplicative co-evolutionary
model allows conceptual and statistical identification just using adoption data.

We underline that neither components k1(t) and k2(t) in Equation (20) represent
pure effects: they are functions of the four parameters pc, qc, ps and qs. However,
interpretation may establish reasonable associations, k1(t) ! f(t) and k2(t) !
g(t).

In Table 8 we summarize the basic estimates, the modal time values, t+com, t+ado,
the median time values, F t0.5, Gt0.5, and the mean values, t̄F , t̄G, referred to com-
munication and adoption components, respectively.
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Table 8: Pharmaceutical drugs’ diffusion. Parameters’ estimates of co–evolutionary models for “FOL”,

“LIB”, “REX”, “KEP” and “LYR” in some areas of Italy with no exit rule. t+com, F t0.5, t̄F and t+ado, Gt0.5,

t̄G define the modal, median and mean times of communication and adoption components; the weak order

between communication component, k1(t), and adoption component, k2(t), is denoted by symbol “<<”.

drug-area qc pc qs ps R2 t+com t+ado
FOL-NordEst 0.0943024 0.0196989 0.0248782 0.0017474 0.999961 13.7 99.7
FOL-Centro 0.0819014 0.0119233 0.0172877 0.0017533 0.999967 20.5 120.2
LIB-NordEst 0.0811441 0.0038496 0.0185339 0.0010017 0.999939 35.9 149.4
REX-Italy 0.0442932 0.0002624 0.0818634 0.0093773 0.999957 115.1 23.7
KEP-NordEst 0.0557249 0.0169986 0.0040877 0.0011603 0.999640 16.3 239.9
LYR-Italy 0.0532225 0.0008988 0.0945056 0.0340769 0.999531 75.4 7.9

drug-area t+com F t0.5 t̄F order t+ado Gt0.5 t̄G
FOL-NordEst 13.7 16.8 18.6 << 99.7 104.7 109.5
FOL-Centro 20.5 23.3 25.2 << 120.2 129.9 138.0
LIB-NordEst 35.9 36.9 38.1 << 149.4 154.6 160.3
REX-Italy 115.1 115.4 115.9 >> 23.7 26.0 27.8
KEP-NordEst 16.3 22.9 26.1 << 239.9 325.6 369.2
LYR-Italy 75.4 76.0 77.0 >> 7.9 12.2 14.1

Observing Figures 11, 12, 13, 15, we see that in four cases, namely “FOL–
NordEst”, “FOL–Centro”, “LIB–NordEst”, “KEP–NordEst”, the weak order based
on location indexes confirms a predictable behaviour, according to which commu-
nication has a driving role, preceding and pulling adoptions. Instead, in the cases
of “REX–Italy” and “LYR–Italy”, depicted in Figures 14 and 16, we observe an
explicit inversion, so that the adoption component appears to dominate the first
part of diffusion. We believe that this difference in behaviour may be related to the
nature of the drugs considered.

As we anticipated in Section 3, drugs developed for treating severe pathologies
typically present an accumulated demand at the time of their launch into market,
so that an early growth of adoptions is to be expected: this may be exactly the case
for both “LYR” and “REX”.

“LYR” was originally developed for neuropathic pain, a symptom common to
various pathologies that are extremely difficult to understand and to treat. The
painful condition of patients affected by this problem makes their continuous search
for every possible solution unsurprising. The use of antiepileptic drugs for neu-
ropathic pain management began with two active principles, Carbamazepine and
Gabapentin: however, as reported in Gawande (2002), these drugs did not always
have the expected results, so that physicians and patients were waiting for the an-
nounced new generation of “neurostabilizers” drugs. Thus, when “LYR” was put
into commerce there probably was an accumulation of demand for it: consistently
with this fact, we have seen that adoption dynamics have a driving role in the first
part of its diffusion process. Moreover, “LYR” exhibits a saturating life cycle, proba-
bly due to its special formulation, which is based on a cumulative concentration with
a natural delayed response, and to the cost of a prolonged therapy. These aspects
may explain the reduction in adoptions and a possible reversion to Gabapentin.

A similar perspective may be adopted in analyzing the case of “REX”, which
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is based on a new statin for the treatment of hypercholesterolemia: as reported
by several studies, statins are the most effective forms of treatment of high choles-
terol, when dietary advices prove insufficient. Some studies have shown that diet
can reduce cholesterol levels by 15%. That is, a modest decrease in cholesterol lev-
els suggests that diet may be sufficient in the treatment of mildly elevated levels.
Although hypercholesterolemia is not a disease per se, its correlation with cardio-
vascular diseases has been widely observed. The fact that “REX” has experienced
an early dominance of adoptions would confirm that for those patients affected by
severe hypercholesterolemia, pharmaceutical treatment is a reasonable measure to
prevent hard cardiovascular outcomes, such as death or myocardial infarction. This
prompt response of patients to the new statin (for the Italian market) is arguably
due to previous negative interactions of Cerivastatin.

On the other side, “FOL”, “LIB” and “KEP” are drugs that do not treat spe-
cific pathologies but are assumed as a precautionary measure to avoid more serious
consequences (“FOL” and “LIB”) or as a treatment for minor ailments (“KEP”).
In these cases we may conclude that communication, both institutional and infor-
mal, has exerted its natural effect of stimulating adoptions through the generation
of market potential.

In particular, we have seen that “FOL” is prescribed to expectant mothers to
prevent fetal malformations and that the assumption of Folic Acid has been rec-
ommended through various informative campaigns, involving both physicians and
patients, to create a wide awareness about the importance of a precautionary be-
haviour against neural tube defects by women intending to become pregnant. “LIB”
and “KEP” do not seem to have the characteristics of really innovative products,
so that in these cases we argue that the pattern “first communication, then adop-
tion” is explained by the simple need for promoting the new product when put into
commerce.

In Table 9 we report the corresponding reparameterization and some information
regarding the presence of a slowdown. In two cases, “KEP-NordEst” and “LYR-
Italy”, we observe a deeper effect, a saddle, indicating a stronger separation between
communication and adoption.

The slowdown observed in the analyzed cases does not emerge as a natural ele-
ment of the model: as one may see in Figure 2, for certain parameter combinations,
the model yields a classical bell–shaped curve, while for others the slowdown and
the saddle appear. Consequently, the presence of slowdown and saddle may depend
on managerial choices.

6 Final Remarks and Discussion

This paper examines theoretical, technical and applied aspects of a well–known dif-
fusion of innovations class of effects: slowdown, dip, saddle or chasm. The proposed
framework emphasizes a new interpretation of such a systematic depression in the
early stages of the diffusion process. This effect may be described by a binary model
for an adoption process nested in a communication network that evolves over time,
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Table 9: Pharmaceutical drugs’ diffusion. Parameters’ estimates of co–evolutionary models for “FOL”,

“LIB”, “REX”, “KEP” and “LYR” in some areas of Italy with no exit rule. New parameterization: a and

b refer to adoption, c and d to communication.

drug-area a = ps + qs b = qs/ps c = pc + qc d = qc/pc k1 ∼ k2 slowdown saddle
FOL-NordEst 0.0266256 14.2369409 0.1140013 4.7871912 << yes no
FOL-Centro 0.0190407 9.8617798 0.0938247 6.8690212 << yes no
LIB-NordEst 0.0195356 18.5018917 0.0849937 21.0784701 << yes no
REX-Italy 0.0912407 8.7299915 0.0445556 168.777793 >> yes no
KEP-NordEst 0.0052480 3.5227298 0.0727235 3.2782053 << yes yes
LYR-Italy 0.1285825 2.7747829 0.0541213 59.2168434 >> yes yes

generating a basic precursor to the corresponding latent variable market potential
(see Guseo and Guidolin (2009)).

As a general remark for innovation diffusion theory, we highlight that the “dual–
effect” approach recognizes levels and locations of two fundamental forces in mar-
ket expansion. Radical innovations, dominating their own market niche and often
patented, may exhibit an interesting inversion –adoption/communication– that sug-
gests oriented managerial actions towards specialized agents (hubs). Vice versa, in-
cremental innovations, based on an already existing technology and competing in a
mature marketplace, may require a more common managerial effort based on contin-
uous and diffuse communication actions. The proposed “dual–effect” approach may
assess, during the evolution of the co–evolving processes, the relative performances
of competing products or services in different areas or markets. This normative indi-
cation will be confirmed or not by a direct check through the temporal distribution
of sales’ data.

In the sequel, we summarize some specific properties of the co–evolutionary
approach with reference to alternatives:

a) There is incontrovertible evidence concerning the non-uniqueness of the causal
forces generating a slowdown. Dual–market interpretations or correlated mix-
ture modelling representations introduce a two–segment partition of adopters
simply because a temporal decomposition of adoptions pertaining to rigid seg-
ments is assumed. We note that repeated adoptions due to the same adopter
may be realized in different contexts and with different awareness levels;

b) The segmented sub–population approach does not explain why “two–level” is so
special or characteristic. Why not three or four levels?

Karmeshu and Goswami’s (2001) interpolatory approach is very flexible, but
introduces seven parameters: one for the assumed fixed market potential and
six for the “internal” and “external” dynamics with, in our opinion, some
difficulties in interpreting results;

c) A slowdown effect may be originated by an external environmental effect, which
is an approach totally different from internal heterogeneity of agents. If we can
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absorb a local depression with a generalized Bass model (GBM) following, e.g.,
Guseo and Dalla Valle (2005) or Guseo et al. (2007), we have to adequately
motivate or support such a modelling choice, which may be correct in some
circumstances but not in others;

d) We believe that the proposed decomposition of density related to Guseo and
Guidolin’s model allows a simple interpretation of internal heterogeneity effects
which are not imputed to different and stable characteristics of agents. This
decomposition recognizes the existence of a self–reinforcing diffusion governed
by two synergistic forces, communication and adoption, that are not ordered
in a fixed way during time evolution;

e) The Guseo and Guidolin model allows an interchangeable allocation of the two
driving forces. As we have recognized by examining six new pharmaceutical
drugs introduced in Italy from August 2005 to July 2007, for two of them,
“REX” and “LYR”, there is an “inversion” in the role of adoption due to an
interpretable context effect, namely the severity of disease and the accumulat-
ing demand effect in initial stages;

f) The recognition of the alternative order is simple to discover with a strong like-
lihood ratio order or, much more practically, through a simplified weak order
based on easy to compute location indexes: mode, median, mean values;

g) The model only requires time series of adoptions. In particular, the dynamics of
market potential, which take into account the evolution of the communication
effort and related word–of–mouth, are estimated through the only observable
adoption data;

h) From a computational and statistical point of view, the proposed framework is
easy to implement with common commercial software.

APPENDIX A

A Riccati Equation

Let us consider the following special non–autonomous Riccati equation in (X,Y) real
space

y′x = a
f(x)
g(x)

y2 +
(

bf(x) +
g′(x)
g(x)

)
y + cf(x)g(x), (25)

where a, b, c ∈ R, D =
√

b2 − 4ac > 0 and g(x) 6= 0, f(x) are real functions. Its
general discussion may be found in Guseo and Guidolin (2009). Here we report the
final results concerning its closed form solution.

Let us consider the real roots of equation az2+bz+c = 0, i.e., ri = (−b±D)/2a ∈
R, i = 1, 2, where D = a(r2 − r1) =

√
b2 − 4ac > 0.

The general solution of Equation (25) is,

y(x) = g(x)
r1r2(1−G(x))− C(r1 − r2G(x))

r2 − r1G(x)− C(1−G(x))
, (26)
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where G(x) = eD
R x
0 f(τ)dτ , and C is an arbitrary constant of integration.

If the initial condition is set to zero, y(0) = 0, we obtain C = 0 and, therefore,

y(x) = g(x)
1− e−D

R x
0 f(τ)dτ

1
r2
− 1

r1
e−D

R x
0 f(τ)dτ

. (27)

If limx→∞
∫ x
0 f(τ)dτ = +∞, we obtain an interesting limiting behaviour of y(x),

i.e., limx→∞ y(x) = r2 limx→∞ g(x).
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