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Abstract: We explore the possibility of composing the results of a fixed number of Gaussian

graphical model selections on some partially overlapping variables. This appears to be an

useful approach in all the research areas where a large amount of data from different sources

and types of experiments is available. Therefore the focus is in binding together information

coming from heterogeneous studies to improve the understanding of a particular phenomenon

of interest. The proposed approach relies on numerical results on artificial and real data.
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1 Introduction and aim

Motivated by the idea of performing statistical inference on some phenomenon by
taking into account information coming from different sources, Massa (2008) and
Massa and Lauritzen (2009) present a general framework for combining statistical
models. Combining models allows to reach a deeper understanding of the phe-
nomenon under study, especially when the sources of information are readily acces-
sible.

Various applications motivate such theoretical developments. Recent advances
in the field of genomics, for instance, have made available a large amount of different
data and a great effort is concentrated in putting such information together. See,
for example, Garret-Mayer et al. (2008), where three different types of datasets are
combined together to improve the understanding of biological processes, and Goh
et al. (2007), where a combination of networks representing different diseases with
some recurrent genes is shown.

Combining models is a difficult task which involves many issues. Firstly, the
models involved in a combination need to respect some form of compatibility. They
should need some common elements (variables), but also the information that they
provide must not be in conflict. Furthermore, one should be able to recover the initial
information when restricting the attention (marginalizing) on the initial variables.
Finally, one needs to exactly specify how the combination is performed. All these
issues are addressed from a theoretical point of view in Massa and Lauritzen (2009).

Even though the approach presented in the above mentioned paper is quite gen-
eral, the main application concerns the combination of Gaussian graphical models.
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These are families of multivariate normal distributions respecting conditional inde-
pendence relations between the variables that can be easily visualized by a graph G.
As a simple example of combination, consider two Gaussian graphical models with
some common variables which respect some form of compatibility and represent two
different studies. Following Massa and Lauritzen (2009), one can find the simplest
graphical model that incorporates the information (the conditional independence
statements) brought by the two original sets of variables and can be considered the
combination of them. Clearly, this is not always possible.

In this paper, we aim at exploring the potential of graphical models combina-
tion for model building. We will restrict our attention to the cases in which the
combination of initial Gaussian graphical models is possible, i.e., it leads to a joint
family of distributions that can itself be defined a Gaussian graphical model. In
particular, we will try to build a joint model by combining two submodels repre-
senting two different studies involving some common variables. The approach that
we will propose is based on performing composition of Gaussian graphical models
selections (covariance selections) on the two studies. Adequacy and effectiveness of
this approach will be discussed by analyzing simulated and real data.

The outline of the paper is as follows. Section 2 provides some essentials about
Gaussian graphical models and briefly reviews some procedures for Gaussian graph-
ical models selection. Section 3 describes the main idea of the paper and presents
some numerical studies. Section 4 gives some concluding remarks.

2 Some approaches to model selection for Gaussian graph-

ical models: a review

A Gaussian graphical model (Dempster, 1972; Whittaker, 1990; Lauritzen, 1996;
Edwards, 2000) is the family of distributions F = {Y ∼ Np(µ,Σ), Σ−1 ∈ S+(G)},
where S+(G) is the set of positive definite concentration matrices according to the
graph G. If we let Σ = {σij} and Σ−1 = {σij}, then σij = 0 if and only if there
is a missing edge between variables Yi and Yj on the graph G corresponding to
the pairwise Markov property Yi ⊥⊥Yj |YV \{i,j}. An equivalent condition is that the
partial correlation coefficient ρij|V \{i,j} between Yi and Yj is null, since it is well
known that

ρij|V \{i,j} =
−σij

(σiiσjj)0.5
.

Note also that ρij|V \{i,j} is the correlation coefficient of Yi and Yj computed from the
conditional distribution of Yi and Yj given the remaining variables (see Lauritzen,
1996).

Given some data, the procedure of model selection for Gaussian graphical mod-
els, also called covariance selection (Dempster, 1972), aims at choosing a Gaussian
family of distributions and a dependence graph with the properties above described.
More in detail, if y = (y1, · · · , yn) is a sample from an unknown multivariate normal
distribution Y ∼ Np(0, Σ), with Σ positive definite, we are interested in detecting
the undirected graph G such that Σ−1 ∈ S+(G). Clearly, this is equivalent to finding
an estimate of the concentration matrix and detect its structural null elements. If
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the focus is only on the structure of the graph, model selection is called also struc-
tural learning, as it happens in artificial intelligence and machine learning research.
Recently, this area of research has attracted more interest, especially to detect the
structure of large amount of microarray data (see Section 3 of Castelo and Roverato
(2006) for an accurate review), where the number of variables p is very small in
comparison with the sample size n. In this paper, we will focus on the classical
approach to model selection, i.e., we will work in the n > p setting. This constraint
ensures that the sample covariance matrix is a.s. non-singular (Buhl, 1993).

A frequentist view for graphical models selection is founded on a hypothesis
testing approach (Edwards, 2000) based on backward stepwise selection. Given some
data corresponding to p variables, one usually starts by imposing a complete graph
(with all the edges present) and successively checks the inclusion of all the possible
edges by testing p(p − 1)/2 times the null hypothesis H0 : ρij|V \{i,j} = 0 against
the alternative H1 : ρij|V \{i,j} 6= 0, at a specified level α. Then, the statistically not
significant edges are removed and the procedure is repeated until a reduced graph
with no edges removed is found. Note that, as pointed out by Edwards (2000) and
remarked by Drton and Perlman (2004, 2007), this cannot be seen as a simultaneous
testing procedure because the overall error rate cannot be controlled and there is no
clear relation with the error level α. Recently, a multi-testing approach for model
selection for graphical models was proposed by Drton and Perlman (2004, 2007).
Their approach permits to recover the graph and also to control error rates for
incorrect edge inclusion.

Another route to model selection is given by maximizing a goodness of fit score
by searching through the space of all possible graphs. The goodness of fit scores
are given, for example, by the Akaike Information Criterion (Akaike (1974), AIC
in the following), the Bayesian Information Criterion (Schwarz (1978), BIC in the
following) or the Takeuchi (1976) criterion. However, it is well known that these
methods are unfeasible for large values of p, because the number of total graphs

deducible from p nodes is in general too big, i.e., 2(
p

2
). A method that reduces the

number of graphs to be searched is the EH procedure of Edwards and Havránek
(1985, 1987), which is a global search strategy among all possible models based
on the coherence principle of Gabriel (1969). It is based on the assumption that
rejection of a model implies rejection of all submodels and acceptance of a model
implies acceptance of all models including it.

Recently, some quite new approaches using penalized likelihood methods have
been proposed, focussed in particular to estimation of the structural zeros in large
sparse concentration matrices. Meinshausen and Bühlmann (2006) introduce the
idea of neighborhood selection, which is obtained by fitting a lasso model (Tibshirani,
1996) to each variable. For each variable (node) in the graph, a linear regression
(lasso) is performed by using all the other variables as predictors. The non-null
coefficients of the regression define the variables on the neighborhood of the initial
node. In particular, they set σ̂ab = 0 if both the coefficients of Yb and Ya, obtained
by regressing Ya versus all the other variables and Yb versus all the other variables,
respectively, are zero. Note that, in this way, they only find the structure of the
graph. However, once the graph is known, the estimation of the concentration matrix
can be achieved in the usual way (see Lauritzen, 1996). Their method is also feasible
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for the case n < p. Yuan and Lin (2007) propose a sparse and shrinkage estimator
of the concentration matrix by imposing a penalization on its off-diagonal elements.
Li and Gui (2006) propose a gradient descent algorithm and Banerjee et al. (2008) a
block coordinate descent algorithm which is the starting point of the graphical lasso
by Friedman et al. (2008).

3 Combination of covariance selections: numerical studies

Suppose to have some observations from two experiments performed independently
from two laboratories and suppose that the intent is to build a reasonable simple
model embracing information coming from both the studies. We propose to achieve
such construction by composing the results of model selections performed on the
two studies. By this, we simply mean that the two graphs obtained through the
selection procedures are connected to form a new graph. We tacitly assume that
this is admissible by considering only graphs with the same induced subgraphs on
the common variables (therefore the conditional independence constraints involving
only these variables are the same). In this section, we explore the effectiveness of
this approach through some simulation work.

In all the numerical studies, we fix a graph G with p vertices and choose two
induced subgraphs GA and GB such that if we connect them we obtain G. The two
induced subgraphs have q and r vertices, respectively, with q, r < p, the intersection
of the vertex sets of GA and GB is non-empty, and they have the same edges between
the common variables. We interpret these three graphs as the true graphs. Then,
we generate a sample of size n, y = (y1, . . . , yn), from the Gaussian graphical model
corresponding to G, Y ∼ Np(0, Σ) with Σ−1 ∈ S+(G). From this sample, we retrieve
two subsamples yA, of size nA, and yB, of size nB, for the variables that are in the
vertex set of GA and GB. From the theory of multivariate normal distributions,
these samples are realizations of the corresponding random vectors YA ∼ Nq(0, Ω)
and YB ∼ Nr(0, Φ), respectively.

The main interest is to identify some reasonable Gaussian graphical model for
Y . In this simulation setting, this can be achieved in two ways: 1) by selecting a
Gaussian graphical model Ĝ starting from y; 2) by selecting a Gaussian graphical
model ĜA from yA and a Gaussian graphical model ĜB from yB and then by com-
bining them to obtain Ĝcomb. The final models obtained in the two ways can then
be compared to check whether their structures coincide.

In more detail, in each simulation, we record (i) the number of times that the
selection procedure finds a graph Ĝ with the same structure of G, (cont1 ); (ii)
the number of times that the selection procedure finds a graph ĜA with the same
structure of GA, (cont2 ); (iii) the number of times that the selection procedure
finds a graph ĜB with the same structure of GB, (cont3 ); (iv) the number of times
that the selection procedure finds simultaneously a graph ĜA and ĜB with the
same structures of GA and GB, (cont4 ). Note that if a selection procedure on the
subsamples yA and yB retrieves both the induced subgraphs GA and GB, it also
finds the initial one, because their composition is G. When cont4 (which depends
on cont1 and cont2 ) is greater than cont1, the combination of two models may be
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considered more convenient than the model selection procedure on all the variables.
To broaden the perspective of the simulation exercise, experiments are divided

into balanced and unbalanced. In the first case, it is assumed that the number of
observations available for each study is the same. In this case, we set nA = nB = n.
This corresponds to the situation in which model selection on a large set of variables
is broken down in selections on smaller subsets of variables followed by a composition
of the partial selections. In the unbalanced case, we assume that the number of
observations in the two studies is different. As the aim of such unbalanced studies is
to test the efficiency of the combination in more general and less favorable contexts,
it is assumed that nA and nB are smaller than n. For simplicity, we also assume
that nA + nB = n. All the simulations have been performed using R.

3.1 Balanced samples

For the balanced case, we consider two different scenarios, pictured in Figure 1
(p = 4, q = r = 3), and Figure 2 (p = 7, q = r = 5). To estimate graphs Ĝ, ĜA, ĜB

from samples y, yA and yB, we resort on three different selection procedures: (1)
unrestricted stepwise backward model selection (Edwards, 2000); (2) model selection
based on BIC criterion (Schwarz, 1978); (3) graphical lasso (Friedman et al., 2008).
The stepwise and BIC procedures are implemented in the package ’mimR’, whereas
graphical lasso is implemented in the package ’glasso’. It is worth noting that the
use of graphical lasso requires the definition of a penalty parameter λ. The choice
of the penalty to be used for estimating Ĝ, ĜA and ĜB was made by performing
a preliminary ad hoc analysis. We run the graphical lasso for the selection of the
true graphs for values of the penalty parameter going from 0.01 to 2; then, we
chose the value of λ that maximized the number of times that the true conditional
independencies were identified. In this way, we tried to let glasso work at its best.

For the first scenario (Figure 1), we set n = nA = nB = 100 and generate data
from the multivariate normal distribution Y ∼ N4(0, Σ), with Σ−1 ∈ S+(G). We
consider three different choices for Σ, i.e., Σ1, Σ2, Σ3 given as

Σ1 =







2.0000 −1.7807 −0.9121 1.3406

2.0000 0.6424 −1.7697

2.0000 0.0593

2.0000






, Σ2 =







2.0000 1.4445 0.0032 1.1479

2.0000 0.9234 −0.0087

2.0000 −1.1540

2.0000







and

Σ3 =







2.0000 −1.8689 −1.0958 −0.3287

2.0000 0.9283 −0.0753

2.0000 1.1081

2.0000






.

In all the three cases, we set the penalty parameter equal to 0.13, for estimation
of G, and to 0.04, for estimation of GA and GB. The results are shown in Table 1,
which, for each considered model, reports the results for 1000 runs. In general, the
results depend on the initial covariance matrix from which the data were generated,
which, in turn, depends on the initial partial correlation matrix. For example, we
can see that the behaviour with matrix Σ3 is slightly worse than with the other
two. The results of the three selection procedures are comparable, but, as one
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Figure 1: Graph G and induced subgraphs GA and GB for the first study with
balanced samples.

would have expected, selections using BIC criterion slightly outperform results of
the other methods. It is worth noting, however, that feasibility of the BIC procedure
decreases rapidly when the dimension of the graph grows.
If Σ2 is chosen as initial covariance matrix, the graphical lasso performs better than
the competing selection procedures, whereas with the other two covariance matrices
the graphical lasso is not able to detect the true structure of G. In more detail,
if we consider matrix Σ1, the graphical lasso correctly detects about 42% of the
times the absence of only one edge, but this is different from (b,d); in the remaining
cases it wrongly detects two or more missing edeges. If we consider matrix Σ3, the
same happens about 60% of the times. Therefore, it seems that, for Σ1 and Σ3,
the graphical lasso recognizes one missing edge, but, unfortunately, this is not the
wanted one. We remark that this behaviour does not depend on the chosen value
for the penalty parameter as we found the same evidence in the analyses performed
to select the values of λ (results not reported here).
For all three choices of Σ, cont4 is bigger than cont1, showing that the combination
is more capable to retrieve the true structure of G.

Matrix Method cont1 cont2 cont3 cont4

Stepwise 945 1000 1000 1000
Σ1 BIC 961 1000 1000 1000

Glasso 0 977 1000 977

Stepwise 920 1000 961 961
Σ2 BIC 935 1000 940 940

Glasso 948 1000 1000 1000

Stepwise 811 1000 988 988
Σ3 BIC 831 1000 977 977

Glasso 0 980 995 975

Table 1: Results for the first study with balanced samples. They refer to the graphs
in Figure 1.

In the second scenario (Figure 2), we set n = nA = nB = 200 and generate data
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from the multivariate normal distribution Y ∼ N7(0, Σ), with Σ−1 ∈ S+(G) and

Σ =















2.0000 1.2000 0.9622 1.2000 0.8401 0.7727 0.7909

2.0000 1.2000 0.99331 0.8955 0.9931 1.2000

2.0000 1.2000 1.2000 1.2000 0.9622

2.0000 1.2000 0.9342 0.7727

2.0000 1.2000 0.8401

2.0000 1.2000

2.0000















.

We set the penalty parameter for the graphical lasso equal to 1.0 for G, GA and
GB.

The results for 1000 runs are shown in Table 2. Even if we use more observations
in comparison with the previous example, the results show the difficulty of all the
procedures in reconstructing the true graph G. On the contrary, the true graphs GA

and GB are found about 60% of times. The BIC procedure provides better results
but in this case it is extremely slow because it has to test more than two millions
of models. The graphical lasso procedure does not provide comparable results. As
in previous experiment, the procedure finds the right number of missing edges, but
they are not in the right positions (results not shown). Also in this case, values of
cont4 are bigger than cont1.
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Figure 2: Graph G and induced subgraphs GA and GB for the second study with
balanced samples.

Overall, taking into account the computational cost of the BIC selection pro-
cedure, the stepwise procedure seems to reasonably compete with its competitors.
Moreover, combining covariance selections improves ability of the techniques in rec-
ognizing the true structures.

Matrix Method cont1 cont2 cont3 cont4

Stepwise 267 608 612 443
Σ BIC 373 602 494 361

Glasso 55 196 173 63

Table 2: Results for the second study with balanced samples. They refer to the
graphs in Figure 2.
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3.2 Unbalanced samples

For the unbalanced case, we consider again two scenarios, but we substitute to the
graph pictured in Figure 2 the graph pictured in Figure 3 (p = 5, q = 4, r = 3).
For this case, we report only results relative to the stepwise procedure, as we wish
to emphasize more on the effect of unbalancing than on the impact of selection
procedure. This allows us also to increase the number of runs to 10000.

For the graph in Figure 1, we set n = 100, and make nA and nB vary from 20 to
80, with nA +nB = 100 (see Table 3). Then we generate data from the multivariate
normal distribution Y ∼ N4(0, Σ), with Σ−1 ∈ S+(G), where Σ is chosen as

Σ =







2.0000 −1.7807 −0.9121 1.3406

2.0000 0.6424 −1.7697

2.0000 0.0593

2.0000






.

The results of Table 3 show that, apart when nA is small, that creates some dif-
ficulties in detecting the true model for GA, the results of cont4 always outperforms
the results of cont1.

n nA nB cont1 cont2 cont3 cont4

100 20 80 9457 7898 10000 7898
100 30 70 9419 9139 10000 9139
100 40 60 9437 9711 10000 9711
100 50 50 9418 9909 10000 9909
100 60 40 9465 9971 9998 9969
100 70 30 9467 9992 9961 9953
100 80 20 9451 9997 9667 9664

Table 3: Results of the first study with unbalanced samples. They refer to the graphs
in Figure 1.

For the graph in Figure 3, we set n = 100 and nA and nB as before. Then
we generate data from the multivariate normal distribution Y ∼ N6(0, Σ), with
Σ−1 ∈ S+(G). We consider two different choices for Σ, i.e., Σ1 and Σ2 given as

Σ1 =













2.0000 1.2000 0.9698 1.2000 0.5819 0.5819

2.0000 1.2000 0.9698 0.7200 0.7200

2.0000 1.2000 1.2000 1.2000

2.0000 0.7200 0.7200

2.000 0.7200

2.0000













,

Σ2 =















2.0000 1.9185 −0.3215 0.6645 −0.1832 −0.1944

2.0000 −0.3912 0.5939 −0.2230 −0.2366

2.0000 0.9179 1.1401 1.2095

2.0000 0.5233 0.5551

2.0000 0.6895

2.0000















.

Results in Table 4 and Table 5 show that the composition of GA and GB is almost
always more convenient. In fact, for nA ≥ 40, the two subgraphs GA and GB are
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obtained a greater number of times compared to G (cont2 > cont1, cont3 > cont1)
even though less observations are used. Of course, this increases the chances that
their combination correctly retrieves G. Note that cont3 > cont2, as the first counter
refers to a smaller graph, which is easier to be dealt with. Global performances of
the selection procedure depend, naturally, on the initial covariance matrix (compare
Table 5 with Table 4).
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Figure 3: Graph G and induced subgraphs GA and GB for the second study with
unbalanced samples.

n nA nB cont1 cont2 cont3 cont4

100 20 80 3990 1200 9510 1120
100 30 70 4174 3519 9423 3296
100 40 60 4400 5790 9290 5350
100 50 50 4324 7001 9310 6508
100 60 40 4326 7848 9059 7114
100 70 30 4254 8254 8414 6944
100 80 20 4274 8475 6675 5671

Table 4: Results of the second study with unbalanced samples. They refer to the
graphs in Figure 3 with initial covariance matrix Σ1.

n nA nB cont1 cont2 cont3 cont4

100 20 80 2244 1145 9417 1078
100 30 70 2325 1919 9399 1788
100 40 60 2256 2594 9365 2441
100 50 50 2261 3158 9278 2927
100 60 40 2216 3756 8987 3364
100 70 30 2304 3994 8281 3309
100 80 20 2244 4341 6362 2744

Table 5: Results of the second study with unbalanced samples. They refer to the
graphs in Figure 3 with initial covariance matrix Σ2.
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3.3 Real data application

We use microarray data on rhabdomyosarcoma, a fast-growing, highly malignant soft
tissue sarcoma in children, collected at the CRIBI biotechnology Center (University
of Padova) in a study involving 1200 genes and 138 children. Here, we will focus our
attention on six genes (variables) selected by the biologists as relevant to address a
particular research question. The aim is to build a reasonable network relating such
genes.

We concentrate on the six genes and we divide them into two subsets of three and
four genes, respectively, with one gene in common, and we go back over the same
steps followed in the simulation studies. The graphs are built by using the stepwise
procedure and the graphical lasso. The penalization parameter of the graphical lasso
for the estimation of G is chosen by looking at the graph in Figure 4, representing
the number of edges selected for the penalty parameter varying from 0.01 to 1. The
same graphs are obtained for the selection of the penalty parameters for GA and GB

(figures not displayed). Here, for the selection of G we set λ = 0.09, corresponding
to a graph with six edges (about 46% of total edges), for the selection of GA we set
λ = 0.1, corresponding to a graph with four edges, and for the selection of GB we
set λ = 0.12, corresponding to a graph of two edges. With the graphical lasso, the
composition of the two smaller graphs gives the same results as the selection on all
the variables (see Figure 5), but this is not the case for the stepwise procedure (see
Figure 6). However, we remark that for the stepwise procedure, the edge between
genes 3727 and 4086 can never be reconstructed by the composition of the two
subnetworks. A selection procedure finds this edge only when it is applied on a
set of variables containing both genes. This suggest that the final network selected
depends strongly on the chosen subsets of genes.
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8
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Figure 4: Penalty parameters versus number of edges for the estimation of the graph
G with 6 genes.
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Figure 5: Gaussian graphical models for 6 genes (on the left), for 4 genes (on the
center), for 3 genes (on the right) selected using graphical lasso with λ = 0.09, λ =
0.1, λ = 0.12, respectively.
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Figure 6: Gaussian graphical models for 6 genes (on the left), for 4 genes (on the
center), for 3 genes (on the right) selected using the stepwise procedure.

4 Conclusion

The main interest of this work was to explore the idea of combination of models
in the context of model building. In this framework, the intent is to choose a
reasonable simple model that is consistent with the available observations taken from
heterogeneous studies. In order to achieve this, one may perform separate model
selection procedures and then combine their results in some sensible way. Therefore
our effort was directed to combine the results of some fixed Gaussian graphical model
selections under the assumption of the presence of some overlapping variables.

To this aim, we performed some numerical studies with simulated and real data.
The results on simulated data showed that the Gaussian graphical model obtained
by combining the results of two Gaussian model selections corresponds more often
to the true underlying model from which the observations were generated. In fact,
they were compared to the resulting Gaussian graphical model selected on all the
variables. Of course, this behaviour was also influenced by the procedure used for
model selection and by the initial partial correlation among the variables.
In the brief experiment on real data, we tried to obtain a composition of the results
of covariance selections on two sets of observations coming from two sets of variables
(genes) with only one variable in common. We checked whether the network searched
for all the variables coincided with the network obtained by composition of the two
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subnetworks. Again, the results depended on the procedure used, in particular on
its ability on detecting the most significant conditional independence relations, and
on the chosen subsets of variables.

This preliminary study of the effectiveness of the proposed model building ap-
proach highlights both advantages and disadvantages. On the positive side, such
strategy is potentially generic to almost any models in which a common feature can
be inferred from a variety of studies, and where the wish is to compose a global
picture of the available information based, if possible, on a parsimonious model. On
the other side, for the cases in which the substudies to be composed are not naturally
defined, we do not yet propose a way of choosing the working subsets. However,
particular contexts should suggest appropriate criteria, and ’rules of thumb’ may
well be developed in the future.
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