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Abstract: In some problems of practical interest, a standard Bayesian analysis can be
difficult to perform. This is true, for example, when the class of sampling parametric models
is unknown or if robustness with respect to data or to model misspecifications is required.
These situations can be usefully handled by using a posterior distribution for the parameter
of interest which is based on a pseudo-likelihood function derived from estimating equations,
i.e. on a quasi-likelihood, and on a suitable prior distribution.

The aim of this paper is to propose and discuss the construction of a default prior

distribution for a scalar parameter of interest to be used together with a quasi-likelihood

function. We show that the proposed default prior can be interpreted as a Jeffreys-type

prior, since it is proportional to the square-root of the expected information derived from

the quasi-likelihood. The frequentist coverage of the credible regions, based on the proposed

procedure, is studied through Monte Carlo simulations in the context of robustness theory
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1 Introduction

The theory and the use of estimating equations and of the related quasi- and quasi-
profile likelihood functions has received much attention in recent years; see, among
others, Liang and Zeger (1995), Barndorff-Nielsen (1995), Desmond (1997), Heyde
(1997), Adimari and Ventura (2002), Severini (2002), Wang and Hanfelt (2003),
Jorgensen and Knudsen (2004), and Bellio et al. (2008). In addition, Lin (2006) and
Greco et al. (2008) discussed the use of quasi-likelihood functions in the Bayesian
setting. In this paper we derive a default prior distribution for a parameter of interest
to be used together with a quasi- or a quasi-profile likelihood function derived from
estimating functions. The corresponding posterior distribution allows to deal with
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those problems in which standard Bayesian analyses are difficult to perform or not
available.

Let y = (y1, . . . , yn) be a random sample of size n drawn from Fθ = F (y; θ),
θ ∈ Θ ⊆ IRp, p ≥ 1. Bayesian inference on θ, or a scalar component of θ, is usually
based on the likelihood function L(θ) = L(θ; y) and on a suitable prior π(θ) on θ,
which is often derived throught default procedures, in order to avoid the difficulties
related to the elicitation. However, complementary to likelihood-based procedures,
in many situations of practical interest it is preferable to base inference on estimating
equations and on the related quasi- and quasi-profile likelihood functions. This is
true, for example, in the context of robustness theory when stability with respect
to small deviations from the assumed model is required (see Hampel et al., 1986),
or in the context of generalized linear models with overdispersion or random effects
(see McCullagh and Nelder, 1989). For inference about the parameter of interest, a
quasi-likelihood function LQ(θ) can be defined, with the standard limiting behaviour
(McCullagh, 1991, Adimari and Ventura, 2002). In a Bayesian approach, if one treats
LQ(θ) as a true likelihood then a posterior distribution for θ can be considered, given
by

πQ(θ|y) ∝ π(θ)LQ(θ) . (1)

Some properties of πQ(θ|y) follow from the used LQ(θ). For instance, if LQ(θ)
is derived from a robust estimating equation, then the posterior distribution (1)
provides inferential procedures which are reliable when the underlying distribution
lies in a neighborhood of Fθ (Greco et al., 2008).

Although the use of a pseudo-likelihood function, in the Bayesian inference can-
not be considered as orthodox, it is actually widely shared. Papers which discuss
the use of pseudo-likelihoods in the Bayesian perspective are Efron (1993), Bertolino
and Racugno (1992, 1994), Raftery et al. (1996), Fraser et al. (2003), Cabras et al.

(2006), Lin (2006), Chang and Mukerjee (2006), Greco et al. (2008) and Pauli et al.

(2008). Papers which are more specifically related to the validation of a posterior
distribution based on an alternative likelihood are Monahan and Boos (1992), Sev-
erini (1999), Lazar (2003), Schennach (2005), Racugno et al. (2008) and Ventura et

al. (2008).

In this paper, we show that the proposed default priors to be used in (1) assume
an expression analogue to the Jeffreys priors, since π(θ) turns to be proportional
to the square root of the expected quasi-information. This information is related
to the asymptotic variance of the quasi-maximum likelihood estimator. Such result
agrees with the Welch and Peers (1963) solution in a model with a scalar parameter
and with the Ventura et al. (2008) solution for a scalar parameter of interest in
the presence of nuisance parameters. The proposed procedure is illustrated in the
context of robust scale-location models and of log-linear models for count data with
overdispersion. Monte Carlo studies are also provided in order to investigate the
frequentist coverage of the credible regions based on πQ(θ|y).

The remainder of the paper is organized as follows. Section 2 briefly reviews
the background theory on estimating equations and on the related quasi- and quasi-
profile likelihood functions. In Section 3 the proposed default priors are discussed.
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Section 4 illustrates two examples and provides Monte Carlo studies. Section 5 is
devoted to some final remarks.

2 Estimating equations and quasi-likelihoods

Let Ψθ = Ψ(y; θ) =
∑n

i=1
ψ(yi; θ) be an unbiased estimating function for θ based

on y, i.e. such that Eθ(Ψθ) = 0, where ψ(·) is given function and Eθ(·) denotes
expectation under Fθ. A general M -estimator of θ is defined as the solution θ̃ of
the estimating equation Ψθ = 0 (see, e.g., Hampel et al., 1986). The class of M -
estimators includes well-known estimators: for example, if Ψθ is the likelihood score
function, then θ̃ is the maximum likelihood estimator. Under regularity conditions
assumed throughout this paper (see e.g. Huber, 1981), M -estimators are consistent
and asymptotically normally distributed with mean θ and covariance matrix

V (θ) = M−1Ω(M−1)T , (2)

where M = M(θ) = −Eθ(∂Ψθ/∂θT ) and Ω = Ω(θ) = Eθ(ΨθΨ
T

θ ). Moreover, if
ψ(y; θ) is bounded, the M -estimator θ̃ is B-robust (see, e.g., Hampel et al., 1986),
i.e. it has bounded influence function.

A quasi-likelihood for θ based on Ψθ (see e.g. McCullagh, 1991) is given by

LQ(θ) = exp

{

n
∑

i=1

∫ θ

c0

A(t)ψ(yi; t) dt

}

, (3)

where A(θ)T = Ω−1M and c0 is an arbitrary constant. When p = 1, a quasi
likelihood for θ is usually easy to derive. However, when p > 1, LQ(θ) exists if
and only if the matrix M is symmetric. Matrix A(θ) in (3) allows to obtain a
quasi-observed information with the usual relation with V (θ) and a quasi-likelihood
ratio statistic WQ(θ) = 2{ℓQ(θ̃) − ℓQ(θ)} with a standard χ2

p distribution, where

ℓQ(θ) = log LQ(θ). Moreover, A(θ) does not modify the robustness properties of θ̃
because it does not change its influence function. According to the results obtained
in Heritier and Ronchetti (1994), such robustness properties will carry over to quasi-
likelihood based inferential procedures.

Assume now θ partitioned as θ = (τ, λ), where τ is a scalar parameter of interest
and λ a (p − 1)−dimensional nuisance parameter. Similarly, Ψθ = (Ψτ , Ψλ), where
Ψτ =

∑n
i=1

ψτ (yi; τ, λ) and Ψλ =
∑n

i=1
ψλ(yi; τ, λ) are the estimating functions

corresponding to τ and λ, respectively. Let λ̃τ be the M -estimate for λ derived
from Ψλ for fixed τ , i.e. from Ψλ = 0. A quasi-profile likelihood for τ (Adimari and
Ventura, 2002) is given by

LQP (τ) = exp

{

n
∑

i=1

∫ τ

c0

w(t, λ̃t)ψτ (yi; t, λ̃t) dt

}

, (4)

where

w(τ, λ) =
−νττ − κbaντaνbτ

Eθ(Ψ2
τ ) + 2ντaκbaEθ(ΨτΨb) + ντaντbκcaκdbEθ(ΨcΨd)

. (5)
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In (5) index notation has been used: components of λ and Ψλ are denoted by λa and
Ψa, respectively, and derivatives of Ψτ and Ψa with respect to the components of λ
are Ψτa = (∂/∂λa)Ψτ and Ψab = (∂/∂λb)Ψa, where a, b = 1, . . . , p − 1. Moreover,
νττ = Eθ((∂/∂τ)Ψτ ), ντa = Eθ(Ψτa), νab = Eθ(Ψab), and κab is the inverse matrix
of −νab. The quasi-profile likelihood (4) has all the desired standard first-order
properties. In particular, the quasi-maximum likelihood estimator τ̃ is consistent
and asymptotically normal, with mean τ and variance

Vττ (τ) = (M ττ )2Ωττ + 2M τλΩλτ (M
ττ )T + M τλΩλλ(M τλ)T

∣

∣

∣

λ=λ̃τ

, (6)

where M ττ and M τλ denote the (τ, τ)-element and the (τ, λ)-block of the inverse of
M(θ), respectively, and Ωττ , Ωλτ and Ωλλ are the blocks of Ω. When the dimension
of λ is large relative to n (see e.g. Di Ciccio et al., 1996, Liang and Zeger, 1995,
Severini, 2002), it may be preferable to consider a modification of LQP (τ) (see
Bellio et al., 2008), which is given by

LQPM (τ) = LQP (τ) exp

{

−

∫ τ

c0

w(t, λ̃t)m(t, λ̃t) dt

}

, (7)

where m(τ, λ) is of order O(1) and is given by

m(τ, λ) = κbaEθ(ΨbΨτa) + ντaκ
caκdbEθ(ΨdΨcb) +

1

2
ντaνdbcκ

daκebκfcEθ(ΨeΨf )

+
1

2
ντabκ

daκcbEθ(ΨdΨc) . (8)

Note that the first-order bias correction (8) involves only the first two derivatives
with respect to λ of (Ψτ , Ψλ).

3 A default prior from quasi-likelihoods

Let us assume that the parameter of interest τ is a scalar function of θ, τ = τ(θ)
say. If θ is scalar, we have τ = θ; otherwise, θ = (τ, λ). Let us denote with ℓ∗(τ) =
log L∗(τ) a pseudo-loglikelihood function for τ , i.e. a function of the parameter of
interest and of the data with properties similar to a genuine likelihood. In particular,
in the context of this paper, ℓ∗(τ) may be given by (3) when θ = τ , or by (4) or (7),
when θ = (τ, λ).

Let ℓ∗(τ) be differentiable with derivatives ℓ∗1(τ), ℓ∗2(τ), ℓ∗3(τ). For the ex-
pected values of these derivatives, we use the notation ν2 = Eθ(ℓ

∗2(τ)) and ν1,1 =
Eθ(ℓ

∗1(τ)2), which we assume of order O(n). These assumptions are typically satis-
fied in practice, when the pseudo-score function ℓ∗1(τ) behaves asymptotically like
the sum of n independent random variables. Under these regularity conditions, ℓ∗(τ)
can be expanded in a Taylor series about its maxima, i.e. τ̃ , giving

ℓ∗(τ) = ℓ∗(τ̃) −
1

2
(τ − τ̃)2j∗(τ̃) + Rn ,

where j∗(τ) = −ℓ∗2(τ) is the pseudo-observed information and Rn is a remainder
term of order Op(n

−1/2).
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In general, unlike as it happens with a genuine likelihood, the identity ν2 +
ν1,1 = 0, analogous to the information identity, does not hold. However, for the
pseudo-likelihood functions considered in this paper, i.e. (3), (4) and (7), we have
ν2 + ν1,1 = o(n) and

j∗(τ) = i∗(τ) + op(n) , (9)

where i∗(τ) = ν2
2/ν1,1 is the expected pseudo-information. The asymptotic variance

of τ̃ can be expressed as

i∗(τ)−1 =
ν1,1

ν2
2

. (10)

In the context of the quasi-likelihood and the quasi-profile likelihood, (10) reduces
to (2) and (6), respectively.

A default prior distribution for τ can be obtained defining an uniform distribution
that takes into account the geometry of the parameter space (see e.g. Ghosh et al.,
2007, Chapter 5). Let φ = φ(τ) be a smooth one-to-one transformation. Then

i∗φ(φ0) = i∗(τ0)

(

dτ

dφ

)2

,

where τ0 is a fixed value, φ0 = φ(τ0) and i∗φ(·) denotes the expected pseudo-

information in the new parameterization. If φ(τ) is chosen so that (dτ/dφ)2 ∝
(i∗(τ0))

−1/2, then i∗φ(φ0) will be a constant. Thus, the metric for which a locally
uniform prior is approximately noninformative can be obtained from the relation-
ship dφ/dτ ∝ i∗(τ)1/2. This, in turn, implies that the corresponding default prior
invariant under one-to-one transformation of τ is

π(τ) ∝ i∗(τ)1/2 . (11)

This means that a parametrization invariant prior distribution for τ , derived from a
pseudo-likelihood function, is proportional to the square root of the pseudo-expected
information. The expression of this prior is analogous to the Jeffreys prior.

In the context of quasi-likelihood functions, when θ = τ the default prior (11)
leads to the posterior distribution

π(θ|y) ∝ V (θ)1/2LQ(θ) . (12)

If θ = (τ, λ), the posterior distribution based on a quasi-profile likelihood and (11)
is given by

π(τ |y) ∝ Vττ (τ)1/2LQP (τ) , (13)

or by

π(τ |y) ∝ Vττ (τ)1/2LQPM (τ) . (14)

These results agree with the Welch and Peers (1963) solution in a model with a
scalar parameter and with the Ventura et al. (2008) solution for a scalar parameter
of interest in the presence of nuisance parameters based on pseudo-likelihoods.
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4 Examples and simulation results

In this section we discuss two examples to illustrate the use of (13) and (14) and
to evaluate the frequentist coverage of the corresponding credible sets. Interest is
focused on quasi-profile likelihood functions derived from estimating equations in
the context of a robust scale–location model and of a log-linear model for count
data with overdispersion. In the first example, a proper posterior distribution for
the parameter of interest is available, but it is not robust with respect to model
misspecifications (see Greco et al., 2008). In the second example a genuine likelihood
function is not available and the comparison with a marginal posterior distribution is
not possible. In both the simulation studies, the number of Monte Carlo replications
is set to 5000.

4.1 Robust inference for scale-location model

Let θ = (τ, λ), where τ ∈ IR is a location parameter and λ > 0 a scale parameter.
In this case we have F (y; τ, λ) = F0((y − τ)/λ), ψ(y; τ, λ) = ψ((y − τ)/λ), Ω(τ, λ) =
n

∫

ψ(x)ψ(x)T dF0(x) = Ω, M(τ, λ) = (n/λ)
∫

ψ̇(x)ρ(x)T dF0(x) = M/λ, where ρ(x)
is the column vector (1, x), and A(τ, λ)T = (1/λ)Ω−1M = AT /λ.

Consider robust inference about τ when λ is the nuisance parameter. For a
symmetric model, a well-known location and scale M -estimator is the Huber esti-
mator (Hampel et al., 1986, Section 4.2). The Huber’s estimator for (τ, λ) is the
solution of the unbiased estimating equations Ψτ =

∑n
i=1

ψk((yi − τ)/λ), where
ψk(x) = x min{1, k/|x|} for some k > 0, and Ψλ =

∑n
i=1

ψk1
((yi − τ)/λ)2 − k2,

where k1 and k2 are appropriate constants.
In general, when Ψτ and Ψλ are odd and even functions, respectively, the quasi-

profile likelihood (4) for τ is given by (Adimari and Ventura, 2001, Bellio et al.,
2008)

LQP (τ) = exp

{

Aττ

∫ τ

c0

n
∑

i=1

1

λ̃t

ψτ

(

yi − t

λ̃t

)

dt

}

, (15)

where λ̃τ is the estimate for λ derived from Ψλ when τ is considered as known. The
factor Aττ = Mττ/Ωττ is the diagonal element of the matrix A corresponding to τ .
When the central model is the normal one and the Huber estimator is used, then
the factor Aττ has expression

Aττ =
Φ(k) − Φ(−k)

2(k2Φ(−k) − kφ(k) + Φ(k) − 1/2)
,

where φ(x) and Φ(x) are the density and the cumulative density function of the
standard normal model N(0, 1), respectively.

It is straightforward to show that, in this case, the default prior (11) reduces to
π(τ) ∝ λ̃−1

τ , so that the posterior distribution (13) is given by

π(τ |y) ∝ LQP (τ) λ̃−1
τ . (16)

The normalizing constant of (16) is computationally demanding, because of the
integral in (15), and it has been obtained using numerical integration after the
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approximation of the posterior kernel LQP (τ)λ̃−1
τ in a grid of 100 points with a

fitted smooth spline on them.

Table 1 gives the frequentist coverages for 95% posterior credible intervals for the
pseudo-posterior (16) compared with the classical confidence intervals for the mean
of a normal distribution, which are also the posterior credible intervals with the
usual Jeffreys’ prior πJ(τ, λ) ∝ λ−2. The numerical study is carried out under two
different distributions: the N(0, 1), and the N(0, 1) contaminated by a N(0, 100).
The contamination percentage is set at 10%. The Huber estimators are used with
k = k1 = 1.5 and k2 = 0. From Table 1, it can be noted that inference based on
π(τ |y) is quite satisfactory when the model is correctly specified and is preferable
to πJ(τ |y) under departures from the standard normal model.

N(0, 1) N(0, 1) cont. by N(0, 100)
n π(τ |y) πJ(τ |y) π(τ |y) πJ(τ |y)

5 0.993 0.966 0.957 0.975
15 0.984 0.951 0.954 0.976

Table 1: Frequentist coverages of 95% posterior credible intervals for the location-
scale model.

4.2 Overdispersion in count data

Let us consider a log-linear regression with overdispersion for count data (see Mc-
Cullagh and Nelder, 1989). The responses yi are realizations of independent random
variables with mean µi = exp(xT

i β), β ∈ IRp, p ≥ 1, i = 1, . . . , n. We focus on the
situation where the variance is assumed to be a quadratic function of the mean, i.e.
Vi = µi(1 + α), with α > 0, i = 1, . . . , n.

An unbiased estimating function for β is the score function from the Poisson
likelihood, given by

Ψβ =

n
∑

i=1

(yi − µi)xT

i .

An estimating function for α can be obtained from the method of moments (Lawless,
1987), that is

Ψα =
n

∑

i=1

(yi − µi)
2

Vi
− (n − p) .

Assume that the parameter of interest τ is a scalar regression coefficient, i.e.
τ = βj (1 ≤ j ≤ p). In the presence of overdispersion, a genuine likelihood for τ is
not available, but it is possibile to resort to a quasi-profile likelihood (see Bellio et al.,
2008). Let Ψτ and Ψλ be unbiased estimating functions for τ and λ, respectively,
with τ = βj and λ = (β1, . . . , βj−1, βj+1, . . . , βd, α). In this setting, for inference
about τ we use (7), which accounts for the consequences of the overdispersion for
inference on τ .
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Since the assumptions on the variance are typical of a negative binomial model
for the response, this distribution can be used for computing the adjustments in (7)
and the prior (11).

We apply this procedure to the Ames Salmonella data (see Lawless, 1987, and
Bellio et al., 2008) and we use this design matrix to assess the coverage of posterior
credible intervals in a Monte Carlo study. In this example yi, i = 1, . . . , n, represents
the number of revertant colonies on a plate, and covariates are based on the dose
level of quinoline on the plate. We assume

log(µi) = β0 + β1xi + τ log(xi + 10) ,

for i = 1, . . . , 18.

The prior distribution (11) does not have in this case an analytical form and
it can be approximated by averaging the observed pseudo-information for τ on 100
parametric bootstrap samples from the negative binomial model, with τ chosen in
a grid of points and λ fixed. This average is supposed to approximate îPS(τ) and
so πPS(τ) at point τ .

In order to evaluate the frequentist coverages of 95% posterior credible intervals
based on (14), we ran a simulation study generating data under a negative binomial
model. In particular, the data were simulated according to the same design and
parameter values similar to those obtained from the Ames Salmonella data (see
Bellio et al., 2008). The frequentist coverage of credible intervals of π(τ |y) is 0.968,
quite near to the nominal 95%. Other scenarios are showed in second and third rows
of Table 2. We note that in all cases considered, despite the small dimension of the
sample size, credible intervals of π(τ |y) have accurate frequentist coverages.

τ λ = (β0, β1, α) π(τ |y)

0.3 (1,0,2) 0.968
0 (1,0,0.01) 0.956
0 (1,0,0.05) 0.945

Table 2: Frequentist coverages of 95% posterior credible intervals in the log-linear
model for count data.

5 Final remarks

In this paper a Jeffreys-type prior for a parameter of interest is derived and discussed
for Bayesian inference based quasi- and quasi-profile likelihood functions. Other ex-
amples of pseudo-likelihoods for which (9) is satisfied, and for which the default
prior can be derived, are the marginal, the conditional, the profile and its modified
versions, the approximate conditional, the empirical likelihood functions; see, e.g.,
Barndorff-Nielsen (1995), DiCiccio et al. (1996), Severini (1998), and Adimari and
Ventura (2002). For the marginal, the conditional and the modified profile likeli-
hoods in Ventura et al. (2008) it is shown that these Jefrreys-type priors have also
matching properties.
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