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1 Introduction

Long memory can been observed in natural, economic and financial series and it
has been deeply studied in the past years giving raise to a wide and rich literature.
We concentrate our attention on AutoRegressive Fractionally Integrated Moving
Average (hereafter ARFIMA) processes, a useful and flexible tool to model the
aforesaid time series. These processes exhibit long memory when the parameter d
assumes any real value in the interval (0, 0.5). Recent and past literature focused on
the estimation of the long memory parameter d with parametric and semi-parametric
techniques: among the others, we recall the parametric Whittle estimator (Fox and
Taqqu, 1986), the semi-parametric GPH (Geweke and Porter-Hudak, 1983) and local
Whittle (Robinson, 1995a). Parametric estimators are very efficient when the model
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is correctly specified but exhibit large biases otherwise, whereas semi-parametric and
non-parametric techniques can estimate only the long memory parameter d but they
have large standard deviations and slow convergence rates (Bisaglia and Guègan,
1998).

Despite the existence of a wide literature on bootstrap procedures for time series
(see, Davison and Hinkley, 1997; Li and Maddala, 1996), at the moment there are
no satisfactory bootstrap methods to replicate long memory. On the other hand,
short and long memory can confound each other when the parameters, describing
the short memory behaviour, are near the boundary of non-stationarity. Bootstrap
methods are widely used to improve estimators or to build confidence intervals for
the parameters. Usually, they provide estimators with smaller standard errors and
confidence intervals with a coverage level closer to the nominal level than confidence
intervals obtained by applying asymptotic results.

In this paper we investigate an alternative bootstrap method based on the em-
pirical autocorrelation function and the Durbin-Levinson algorithm that seems to
give satisfactory performance especially with Gaussian long memory processes. Even
though the method is equivalent to a Cholesky decomposition, its applicability is
wider and has some interesting advantages. Cholesky decomposition requires the
inversion of a square matrix of the same dimension as the length of the observed
series. Increasing the length of the series, also the most powerful calculators can
have problems to finish the calculation in a reasonable time and anyway the effect
of rounding can lead to huge and unpredictable errors. On the contrary, the method
we introduce is iterative and avoids the problem of large matrices. The ACF boot-
strap, as we call it, is based on a result of Ramsey (1974) (see below) and requires
Gaussianity of the observed process Xt. This assumption is quite restrictive, how-
ever we will show that some deviations from Normality do not affect substantially
the method.

We assess, by mean of a wide Monte Carlo experiment, the validity of ACF
bootstrap for ARFIMA(p, d, q) processes in three different scenarios:

- ACF bootstrap improves the performance of semi-parametric estimators of the
memory parameter d;

- the proposed method is robust against non-Gaussian innovations, asymmetry
and fat tails, and

- it gives better results if applied to build confidence intervals for d in terms of
coverage level.

In the first scenario, we perform an extensive Monte Carlo experiment to es-
timate the memory parameter d when the data generating process (shortly DGP)
is a fractionally integrated noise (ARFIMA(0, d, 0)). We compare ACF bootstrap
performance with the performance of other well known bootstrap procedures like
local and sieve bootstraps in terms of reduction of standard error and mean square
error of the estimates.

Then, we conduct experiments on processes to test robustness of the ACF boot-
strap when the observed series is non-Normal, using Chi-squared and Student t
innovations to test against skewness and fat tails, respectively.
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In the last scenario, we aim to improve the coverage of confidence intervals
for the memory parameter d in two different situations. Firstly, we consider the
Whittle estimator. Even though the Whittle estimator is asymptotically normal,
if the assumption of correctly specified model is satisfied then confidence intervals
based on short series (n = 128, 300) have an actual coverage level lower than the
nominal coverage level. Secondly, we study the confounding effects when both long
and short memory are present in the series. It has already been highlighted by
Agiakloglou et al. (1993) that short memory introduces bias in the GPH estimates,
and also the coverage of confidence intervals is affected.

The plan of the paper is the following. In Section 2 we briefly introduce long
memory ARFIMA(p, d, q) processes and the estimation techniques we use to esti-
mate the long memory parameter d. Section 3 recalls bootstrap for long memory
time series. Section 4 is dedicated to introducing the new bootstrap method: the
ACF bootstrap. Sections 5 and 6 present the Monte Carlo results on the estimation
of the memory parameter d and on the bootstrap confidence intervals. Conclusions
are reported in the last section.

2 ARFIMA(p, d, q) processes: an introduction

There exist different definitions of long memory processes. In the time domain, a sta-
tionary discrete time series is said to be long memory if its autocorrelation function
decays to zero like a power function. This definition implies that the dependence
between successive observations decays slowly as the number of lags tends to infin-
ity. On the other hand, in the frequency domain, a stationary discrete time series
is said to be long memory if its spectral density is unbounded at low frequencies.
Other definitions are equivalent and can be found in Beran (1994). More recently
the paper of Boutahar et al. (2007) provides an updated review on the topic.

In this paper we consider one of the most popular long memory processes that
takes into account this particular behaviour of the autocorrelation and of the spectral
density function, i.e. the ARFIMA(p, d, q), independently introduced by Granger
and Joyeux (1980) and Hosking (1981). This process simply generalizes the usual
ARIMA(p, d, q) process by allowing d to assume any real value.

Let εt be a white noise process having E[ε2t ] = σ2. The process {Xt, t ∈ Z} is
said to be an ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5), if it is stationary and
satisfies the difference equation

Φ(B) ∆(B) (Xt − µ) = Θ(B) εt, (1)

where Φ(z) and Θ(z) are polynomials of degree p and q, respectively, satisfying
Φ(B) 6= 0 and Θ(B) 6= 0 for all z such that |z| ≤ 1, B is the backward shift operator,
∆(B) = (1−B)d =

∑∞
j=0 πjB

j with πj = Γ(j − d)/[Γ(j + 1)Γ(−d)], and Γ(·) is the
gamma function.

If p = q = 0 the process {Xt, t ∈ Z} is called Fractionally Integrated Noise
and denoted by I(d). When d ∈ (0, 0.5) the ARFIMA(p, d, q) process is stationary
and the autocorrelation function decays to zero hyperbolically at a rate O(k2d−1),
where k denotes the lag. In this case we say that the process has a long memory
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behaviour. When d ∈ (−0.5, 0) the ARFIMA(p, d, q) process is a stationary process
with intermediate memory. In the following we will concentrate on I(d) processes
with d ∈ (0, 0.5): for this range of values the process is stationary, invertible and
possesses long range dependence. Without loss of generality, we will assume for
convenience and without loss of generality that σ2 = 1 and µ = 0.

The estimation of the long memory parameter d has been of interest to many
authors. Many estimators are well described in Palma (2007). In this contest,
three of the most common will be considered. We will try to improve the semi-
parametric estimators local Whittle and GPH, while the parametric Whittle is used
as benchmark.

2.1 The Whittle estimator

Fox and Taqqu (1986) introduced a maximum likelihood method based on the fre-
quency domain, i.e. the MLE is found by maximizing the function

1
σ

exp
{
−ZT−1

n Z
2nσ2

}
,

where Z = (Xn − µ̂1), ϑ = (σ2, d, φ1, . . . , φp, θ1, . . . , θq) is the vector of parameters
of dimension m = p + q + 2, µ̂ is a consistent estimate of the mean of the process
(e.g., the sample mean X̄), 1 is a column vector of ones and Tn(ϑ) is the Toeplitz
matrix of generic element j, k

Tn;j,k(ϑ) =
∫ π

−π
exp{iω(j − k)}f(ω;ϑ)dω j, k = 1, 2, . . . , n,

with f(ω;ϑ) the spectral density of the processXt where we highlight the dependence
on the parameter ϑ. They followed a suggestion of Whittle (1951), who proposed to
use an approximation to invert the Toeplitz matrix Tn(ϑ). By Parseval’s relation it
is possible to show that a good approximation for T−1

n is given by the matrix An(ϑ)
of generic element j, k

aj,k(ϑ) =
1

(2π)2

∫ π

−π
exp{i(j − k)ω} [f(ω;ϑ)]−1 dω.

This estimator extends the results of Hannan (1973), who applied Whittle’s method
to the estimation of the parameters of ARMA models. Fox and Taqqu’s result, later
generalized by Dahlhaus (1989) to the exact maximum likelihood estimator, is the
basis of one of the most used methods for estimating the long (and short, if both are
present) memory parameters in Gaussian time series. Giraitis and Surgailis (1990)
generalized the result of Fox and Taqqu in order to prove the asymptotic normality
of Whittle’s estimator relaxing the Gaussianity assumption.

The exact maximum likelihood estimator has the drawback of requiring a large
computational burden and it might also cause computational problems when calcu-
lating the autocovariances needed to evaluate the likelihood function (Sowell, 1992).
These difficulties do not occur when using the Whittle estimator, which has the fur-
ther advantage of not requiring the estimation of the mean of the series (generally



Section 2 ARFIMA(p, d, q) processes: an introduction 5

unknown in practice). Besides, under some regularity assumptions (Fox and Taqqu,
1986; Dahlhaus, 1989) fulfilled by ARFIMA(p, d, q) processes, it is possible to prove
that the Whittle estimator has the same asymptotic distribution as the exact max-
imum likelihood estimator and it converges to the true value of the parameter at
the usual rate of n−1/2. Eventually, for Gaussian processes the Whittle estimator is
asymptotically efficient in the sense of Fisher.

If the Whittle approximation to the log-likelihood function is used, the parameter
vector ϑ is estimated by minimizing, with respect to ϑ, the estimated variance of
the underlying white noise process:

σ2(ϑ) =
1

2π

[(n−1)/2]∑
j=1

I(ωj)
f(ωj ;ϑ)

,

where f(ωj ;ϑ) indicates the spectral density of the ARFIMA process at the Fourier
frequencies ωj = (2πj/n), j = 1, 2, . . . , n∗ and n∗ is the integer part of (n− 1)/2.

The drawback of this estimator is that it is necessary to assume the parametric
form of the spectral density to be known a priori. If the specified spectral density
function is not the correct one (as it is often the case), the estimated parameters
may be dramatically biased.

2.2 The GPH estimator

This is one of the best known methods to estimate in a semi-parametric way the
fractional parameters d of long range dependence behaviour. The advantage of this
method is that the specification of the model is not really necessary because the
only information we need is the behaviour of the spectral density near the origin.
Furthermore, the long memory parameter can be estimated alone.

This method was first introduced by Geweke and Porter-Hudak (1983) for the
Gaussian case when d belongs to (−0.5, 0) and then it was developed by Robinson
(1995b).

Assume that the process {Xt}, t = 1, 2, . . . , n, is an ARFIMA(p, d, q) model as
defined in equation (1), then we can observe that the spectral density of this model
is proportional to (4 sin2(ω/2))−d near the origin, i.e.

f(ω) ∼ cf (4 sin2(ω/2))−d, (2)

when ω tends to 0, cf being a slowly varying function at zero. Since the peri-
odogram I(ω) is an asymptotically unbiased estimate of the spectral density, i.e.
limω→0E[I(ω)] = f(ω), it is possible to estimate d applying the least squares method
to the equation

log(I(ωj)) = log cf − d log(4 sin2(ωj/2)) + uj (3)

where uj , j = 1, 2, . . . , n∗ are i.i.d. error terms, ωj are the Fourier frequencies defined
above.

Equation (2) is an asymptotic relation that holds only in a neighbourhood of the
origin, thus if we use this relation from all periodogram ordinates (−π < ω < π)
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the estimator of d can be highly biased. Geweke and Porter-Hudak (1983) proposed
to consider only the first

√
n frequencies since the long memory feature influences

mostly the lower frequencies. The higher frequencies are influenced only by the short
memory ARMA part.

An interesting advantage with respect to the Whittle is that the GPH estimator
can be easily applied without specifying the orders p and q of the ARMA part. The
main drawback of this estimator is its high standard deviation. Moreover Agiak-
loglou et al. (1993) showed that it is biased in presence of ARMA parameters near
the non-stationary boundary.

2.3 The local Whittle estimator

The local Whittle estimator is another semi-parametric estimator of the memory
parameter d developed by Robinson (1995a) following a suggestion of Künsch (1987).
Robinson (1995a) demonstrated that the local Whittle estimator is asymptotically
more efficient than the GPH in the stationary case, although it is not defined in
closed form and numerical optimization methods are needed to calculate it.

It can be found minimizing the following expression:

R(d) = log

 1
m

m∑
j=1

ωdj I(ωj)

− d 1
m

m∑
j=1

logωdj , (4)

where I(ωj) is the periodogram at the Fourier frequencies and m is an integer less
than n/2.

Under slight conditions Robinson (1995a) showed that this estimator is weakly
consistent. Moreover, under stronger conditions, he proved the asymptotic normality
even if the convergence rate is slower than in the Whittle case. The rate depends on
m1/2, the number of frequencies considered in the estimate. Usually it is considered
a value of m = b

√
nc. Thus, the local Whittle estimate is much less efficient than

parametric estimates, like, for example, the Whittle one, when they happen to be
based on a correct model, but it is asymptotically more efficient than the GPH
estimate.

3 Bootstrap for time series

Bootstrap methods were introduced firstly by Efron (1979) and they have since
become a popular statistical tool caused by their easiness of use combined to the
advent of strong calculators. For a review of the bootstrap methodology, see Hinkley
(1988); monographs on the topic include Efron and Tibshirani (1993) and Davison
and Hinkley (1997).

Special care is needed when applying bootstrap techniques to time series anal-
ysis, since the correlation structure among the variables is possibly complicated
and simple methods designed for independent and identically distributed variables
are not appropriate. Li and Maddala (1996) discussed the difficulties found in the
use of bootstrap for time series models, and gave some guidelines. More recently,
Bühlmann (2002) and Politis (2003) review and compare some bootstrap methods
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for time series illuminating theoretical aspects of the procedure as well as their per-
formance on finite-sample data. In spite of the great number of papers on bootstrap
techniques for time series, the problem is still open since these techniques are not
always satisfactory, especially if the time series exhibits long range dependence.

In this section we define the bootstrap methods used when data present long
memory behaviour. Parametric bootstrap is not considered since it requires the
knowledge of the correct model to work well. We briefly introduce sieve bootstrap,
local bootstrap and log-periodogram regression.

3.1 Sieve bootstrap

The sieve bootstrap was first introduced by Kreiss (1992) and then developed by
Bühlmann (1997). This method is based on the idea of sieve approximation: it
approximates a general linear, invertible process by a finite autoregressive model
with order increasing with the series length, and resampling from the approximated
autoregressions. By viewing such autoregressive approximations as a sieve for the
underlying infinite-order process, the bootstrap procedure may still be regarded as a
non-parametric one. This method is computationally simple and yields a (condition-
ally) stationary bootstrap sample that does not exhibit artefacts in the dependence
structure. In a very recent paper, Kapetanios and Psaradakis (2006) study the
properties of the sieve bootstrap for a class of linear processes with long range de-
pendence. The authors established the first order asymptotic validity of the sieve
bootstrap in the case of the sample mean and sample autocovariances, but the re-
sults of a Monte Carlo experiment are disappointing. Poskitt (2008) proves some
theoretical results on the validity of the sieve bootstrap to replicate Gaussian long
memory.

Given the time series X1, X2, . . . , Xn, the scheme for the sieve bootstrap is as
follows. Fit an AR(p(n)) model to the data choosing the optimal p using the AIC cri-
terion. It is important to note that we fit the autoregressive process with increasing
order p(n) as the sample size n increases. Estimate the residuals:

ε̂t,n =
p(n)∑
j=0

φ̂j,n(Xt−j − X̄), φ̂0,n = 1 (t = p+ 1, . . . , n), (5)

where x̄ is the sample mean and φ̂j,n are the autoregressive coefficients’ estimates.
Before bootstrapping the residuals, they have to be centred. At last each bootstrap
replicate can be calculated using the following recursion:

p(n)∑
j=0

φ̂j,n(X∗t−j − X̄) = ε̂∗t,n (6)

where ε̂∗t,n are the centred bootstrapped residuals.

3.2 The local bootstrap

Paparoditis and Politis (1999) have proposed the non-parametric local bootstrap
for weakly dependent stationary processes. It produces surrogate versions of the
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periodogram I(ωj) of the observed process {Xt} so that it is useful when the aim
is to make inference through the spectrum (e.g. confidence interval for the memory
parameter d in case of long memory).

Silva et al. (2006) apply the local bootstrap to the estimation of the long mem-
ory parameter d and, by means of simulations, compare its performance with that
of other bootstrap approaches. The authors established the efficacy of the local
bootstrap in terms of low bias, short confidence intervals and low CPU times.

Given the data X1, · · · , Xn, the local bootstrap algorithm that generates boot-
strap replicates I∗x(ωj), j = 0, 1, · · · , n∗ of the periodogram can then be described
as follows.

1. Select a resampling width kn where kn = k(n) ∈ N and kn ≤ [n/2].

2. Define i.i.d discrete random variables J1, J2, · · · , JN taking values in the set
{−kn,−kn + 1, · · · , kn} with probability pkn,s, i.e. P (Ji = s) = pkn,s for
s = 0,±1, · · · ,±kn such that pkn,s = pkn,−s.

3. The bootstrap periodogram is then defined by I∗X(ωj) = IX(ωJj+j) for j =
1, 2, · · · , n/2, I∗X(ωj) = I∗X(−ωj) for ωj ≤ 0 and for ωj = 0 we set I∗X(0) = 0.

Paparoditis and Politis (1999) have showed that the local bootstrap is asymp-
totically valid but some care should be taken for the choice of the resampling widths
kn, in the case of a finite sample size n. Following a suggestion of Silva et al. (2006),
in this paper we will consider kn = 1 with uniform sample probability since the
results are very similar when kn = 2.

3.3 The log-periodogram regression

This method has been introduced by Arteche and Orbe (2005) to improve the effi-
ciency of the GPH estimator in presence of short memory behaviour. At the moment
the applicability of the method is specific only to the GPH estimator of the memory
parameter.

It assumes the residuals of the regression model given in Equation (3) to be
independent and identically distributed. The three steps to obtain the bootstrap
distribution of d̂ are quite straightforward.

1. Calculate the least-squared estimates of a = log{σ2fε(0)2π} and d to estimate
the residuals ûj = log(I(ωj))− â+ d̂ log(4 sin2(ωj/2));

2. resample B bootstrap samples from the residuals ûj . Using the empirical
distribution function of the residuals we obtain the corresponding bootstrap
dependent variable log(I(ωj,N )) = â− d̂ log(4 sin2(ωj/2)) + û∗j ;

3. estimate d from the new models and compute its bootstrap distribution.

Even if the method is very specific, it gave nice results on building confidence in-
tervals for d and we will compare its performance with the new bootstrap introduced
in a later section of this paper.
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3.4 Confidence intervals

We dedicate this section to study the performance of the ACF bootstrap to build
confidence intervals for the memory parameter in two different scenarios. This is an
interesting problem and is directly related with the problem of testing the hypothesis
of existence of long memory.

We analyse the finite sample performance of the Whittle estimator in building
confidence intervals for the memory parameter and test whether or not they can be
improved by building confidence intervals based on bootstrap replications.

As we already pointed out, it is useful to estimate and study long range behaviour
separately from short range memory, because the two behaviours tend to confound
each other and it can be difficult to distinguish between them. This is not possible
with parametric estimators since we need to specify the whole model a priori. On
the other hand, Agiakloglou et al. (1993) showed that the GPH estimator is influ-
enced by the short memory part and its bias increases when the parameters of the
short memory part approach the non-stationarity boundary. In their paper Arteche
and Orbe (2005) reduced the coverage error of confidence intervals for the memory
parameter built with the GPH estimator. Their method is specifically designed for,
and limited to, the GPH estimator. The methodology proposed in this paper, the
ACF bootstrap, has a more general applicability and can be used not only with the
GPH estimator but also with other estimators of d, such as the local Whittle and
the Whittle estimators.

In the following we introduce briefly four of the most common confidence intervals
for the memory parameter d, describing their principal advantages and drawbacks.
We consider the methods that gave best results in the paper of Arteche and Orbe
(2005): they performed simulations with many methods, but not all improved the
actual coverage level and it is not worth to consider them.

1. Asymptotic distribution of d̂: this interval is based on the asymptotic distri-
bution of d̂ and is symmetric by construction. It is given by

CIse(1− α) = d̂± zα/2se(d̂),

where zα is the 100α percentile of the standard normal distribution.

2. Percentile confidence intervals:

CIpc(1− α) =
(
d̂∗α/2, d̂

∗
1−α/2

)
,

where d∗α is the 100α percentile of the bootstrap distribution of d̂∗. This
interval can be asymmetric but it is equal-tailed.

3. Percentile-t confidence intervals (Hall, 1988, 1992)

CIpt(1− α) =
(
d̂− se(d̂)t̂1−α/2, d̂− se(d̂)t̂α/2

)
,

where tα is the 100α percentile of t = (d̂∗ − d̂)/ŝe(d̂∗). Percentile-t has been
criticized because it produces bad results if the estimate of the variance is poor
and because it is not invariant to transformations.
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4. Bootstrap standard error confidence intervals

CIse∗(1− α) = d̂± zα/2se∗(d̂∗).

4 ACF bootstrap

In this section we introduce an alternative bootstrap method based on a theorem of
Ramsey (1974) that derives the distribution of Xt conditionally on the past values
X0, . . . , Xt−1 of the process. Its distribution is Normal with mean and variance given
in the theorem below if the observed process is Gaussian itself.

Theorem 4.1: Let Xt be a Gaussian, wide-sense stationary time series with
mean µ and variance γ0. Then the conditional distribution of Xt given X0, · · · , Xt−1

is Gaussian with mean and variance given by

mt = E(Xt|X0, · · · , Xt−1) =
t∑

j=1

φtjXt−j , (7)

vt = Var(Xt|X0, · · · , Xt−1) = γ0

t∏
j=1

(1− φjj), (8)

where φjj is the jth partial autocorrelation and φtj is the jth autoregressive coefficient
in an autoregressive fit of order t.

Proof. See Ramsey (1974).

The coefficients φtj and φjj can easily be obtained through the Durbin-Levinson
(see, e.g., Brockwell and Davis, 1991) recursion:

φtt = Nt/Dt (9)
φtj = φt−1,j − φttφt−1,t−j , j = 1, · · · , n− 1, (10)

where

N0 = 0
D0 = 1

Nt = ρt −
t−1∑
j=1

φt−1,jρt−j

Dt = Dt−1 −N2
t−1/Dt−1

and ρt is the autocorrelation function of Xt at lag t.
The hypotheses of Theorem 4.1 admit all processes with an MA-infinite repre-

sentation, e.g., stationary ARMA processes, ARFIMA processes with 0 ≤ d < 1/2.
Instead of using a theoretical autocovariance function, the idea is to use the

empirical autocorrelation function of an observed time series to generate bootstrap
copies through the conditional mean and the conditional variance given in Equations
(7)-(8). The steps to generate a bootstrap series X∗t are:
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1. compute the empirical autocorrelation function, ρ̂k, from the observed time
series Xt;

2. perform the Durbin-Levinson recursion, given in Equations (9) and (10), for
φ̂tt and φ̂tj based on the empirical autocorrelation function;

3. generate a starting value of X∗0 from an N(0, v0) distribution where v0 is the
sample variance of Xt;

4. calculate vt based on Equation (8) and m∗t as follows

m∗t = E(X∗t |X∗0 , · · · , X∗t−1) =
t∑

j=1

φ̂tjX
∗
t−j ,

and thus m∗t depends on the past values of the bootstrap series and the ob-
served autocorrelation function of the original one; and

5. generate the bootstrap replicate of X∗t from N(m∗t , vt); and

6. repeat steps 4 and 5 until t = n, where n is the series length.

It is interesting to notice that the conditional means m∗t depend on each bootstrap
time series, whereas the conditional variances vt are determined from the observed
process and do not change for each bootstrap replication. The steps 3 to 6 have to
be repeated for b = 1, . . . , B, where B is the total number of bootstrap replicates.
We omit the b subscript in the following when it is clear that we are referring to
bootstrap replicates and the double subscript (e.g. X∗t,b) would be redundant.

5 Monte Carlo and bootstrap estimates of the memory pa-
rameter

In this section we conduct experiments with simulated data to assess the validity of
the ACF bootstrap method with respect to the existing methods in the literature.
In particular, we apply the proposed bootstrap method to long memory time series.
We use the ACF, the sieve and the local bootstrap methods to replicate the ob-
served series, and GPH and local Whittle estimators to estimate the long memory
parameter d.

As we said in the introduction, we are interested in fractionally integrated pro-
cesses, and especially in improving the performance of two semi-parametric estima-
tors for the memory parameter d: the GPH and the local Whittle. Both of them
estimate the parameter d through the periodogram of the observed series. We use
the Whittle estimator as a benchmark since it is a parametric estimator used with-
out the risk of misspecification, given the parametric assumptions in our simulation,
thus it is the most efficient.

In the simulation study we generated series by I(d) models for different values of
the long memory parameter, d = 0.1, 0.2, 0.3, 0.4, 0.45, and increasing sample sizes,
n = 200, 500, 1000.
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The series are generated using the recursive Durbin-Levinson algorithm (see
Brockwell and Davis, 1991). For each model we consider S = 1000 realizations
and B = 1000 bootstrap replications. For each estimation method we calculate the
Monte Carlo estimate, i.e.,

d̂ =
1
S

S∑
j=1

d̂j ,

where d̂j is the estimated value for a single realization obtained with one of the
estimators (Whittle, GPH, local Whittle) or the average of the bootstrap estimates.
To compare the performance of estimators and bootstrap methods, we compute
standard errors

ŝe(d̂) =

√√√√ 1
S − 1

S∑
j=1

(d̂j − d)2

and mean squared errors

ˆMSE(d̂) = Var(d̂) + Bias(d̂)2 =
1

S − 1

S∑
j=1

(d̂j − d)2 + (d̂− d)2

The results are presented in Tables 1-2 where also the Whittle estimator is in-
cluded as a benchmark. The tables report results on d̂ (in boldface), standard error
of d̂ (italic font) and MSE of d̂ (normal font) for the two estimators treated and for
the three bootstrap methods.

The Monte Carlo estimates are in accordance with known results (see, for ex-
ample, Bisaglia and Guègan, 1998). As we expected, the Whittle estimator largely
outperforms all the others, since it is a parametric estimator in the best conditions,
i.e., the estimates are based on the correctly specified parametric model.

With regard to the other two methods, both gave satisfactory results compared
with the same estimators in the Monte Carlo simulations: the ACF is a slightly more
biased but its standard deviation and the mean squared error are always smaller than
using the local bootstrap.

Table 2 reports the gain, namely

GAIN% =
ŝe(d̂i)− ŝe(d̂∗i )

ŝe(d̂i)
× 100 (11)

(where i = GPH, lW) calculated as a percentage, when using the ACF and local
bootstrap with respect to the Monte Carlo estimates, for the GPH and local Whittle
bootstrap estimators. The results confirm that the gain is always greater for the
ACF bootstrap even if it decreases with increasing the series length. It is interesting
that for the local bootstrap the gain is almost irrelevant for n = 500 and negative
for n = 1000.
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5.1 Non-Gaussian innovations

The assumption of Gaussianity is very restrictive and it would be interesting to
see how much deviations from Normality affect the performance of the proposed
bootstrap methods even though Gaussianity is one of the assumptions of Theorem
4.1. To this end we perform some simulations to compare the estimators when the
observed process is non-Gaussian. We consider two different deviations from Nor-
mality. To test robustness against asymmetry, we generate long memory processes
with Chi-squared innovations with one degree of freedom, giving skewness γ1 = 2

√
2.

To test robustness against fat tails, we use the Student t distributions with four and
six degrees of freedom: the former does not have the fourth moment finite, the latter
has excess of kurtosis γ2 = 3.

In Tables 3-5 we report the results. All the estimates, Monte Carlo and boot-
strap, are very similar to the results obtained with Gaussian innovations, in terms
of both standard error and mean squared error. This suggests that ACF bootstrap
can be useful also relaxing the Gaussianity assumption. There is not the danger of
obtaining bad results when there is the suspect of non-Gaussian innovations and it
is not necessary to correct or exclude extreme values. Also in this case the standard
error and the mean squared error are smaller for the bootstrap estimates. These re-
sults are very important in view of applying the method to replicate the dependence
structure of heteroskedastic data, such as data with GARCH effects or stochastic
volatility processes.

6 Monte Carlo and bootstrap confidence intervals for the
memory parameter

In this section we describe two Monte Carlo experiment, which aim is to show the
improvements, given by bootstrap methods, in estimating confidence intervals for
the memory parameter d.

6.1 Finite sample performance of ACF bootstrap

Even if the Whittle estimator is very efficient in the case of correct specification of
the model, its performance in estimating long memory for small samples is not very
good. Also the nominal level of confidence intervals for the memory parameter d is
usually far from the actual level. Especially when detecting long range behaviour, it
is necessary to have quite long series. We deem that bootstrap methods can improve
the coverage level and give satisfactory results with finite sample sizes. We compare
Monte Carlo results of the Whittle estimator with the results given applying the
ACF and local bootstrap.

Following the simulation plan of Arteche and Orbe (2005), we run simulations
with n = 200, 500, 1000 and d = 0, 0.2, 0.45,−0.45. For each model we consider
S = 1000 realizations and B = 1000 bootstrap replications. The results are given
in Table 6. For small values of the parameter, d = 0, 0.2, the confidence intervals
based on ACF bootstrap are all better than the Monte Carlo intervals. The best
results are given by the percentile method. For larger values of the parameter in
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absolute value, d = |0.45|, it appears to be more difficult to have actual coverage
close to the nominal, but the intervals obtained with the standard deviation and
with percentile of ACF bootstrap outperform the asymptotic results especially for
small sample sizes. Overall the best intervals are built with the standard deviation
estimated using the ACF bootstrap.

The confidence intervals built with the local bootstrap give very poor results.
Only the t percentile method gives reasonable results for d = 0, 0.2 but these intervals
are very similar to the Monte Carlo, and it is not worth using a bootstrap method
if it does not lead to any improvement.

6.2 The influence of the short memory part

It is known that the semi-parametric estimators, which we introduced above, are
biased in the presence of short memory behaviour affecting also the coverage level
of confidence intervals. In this work we aim to improve confidence intervals for the
memory parameter when the data generating process is a simple ARFIMA(1, d, 0),
given by

(1−B)d(1− φ)Xt = εt,

where |φ| < 1 to assure stationarity. The problem is when φ gets close to unity:
short memory and long memory confound each other and it is really difficult to
distinguish the effects of the two parameters and consequently to build reliable
confidence intervals for d. Arteche and Orbe (2005) proposed a solution to the
problem of the bias introduced by short memory behaviour in the estimation of d,
bootstrapping the log-periodogram, however the method can be applied only to the
GPH estimator.

Since in the first part of the article we showed that the ACF bootstrap can
replicate long memory behaviour, it is rational to think that it could also improve
the coverage level of confidence intervals.

The Monte Carlo experiments were run for all combinations of n = 200, 300
1000, d = 0, 0.2, 0.45, −0.45 and φ = 0, 0.2, 0.4, 0.6, 0.8. The number of bootstrap
replicates was B = 1000 and each experiment was repeated S = 2000 times.

All the results are reported in Tables 7, 8 and 9 and may be summarized as
follows:

• the log-periodogram regression is still the best method to build confidence
intervals through the GPH for the memory parameter d;

• the local bootstrap gives results quite similar to the Monte Carlo, thus it is
not useful for this problem; and

• the ACF bootstrap gives satisfactory results applied to the GPH estimator but
not as good as the log-periodogram; however it is the best method to build
confidence intervals when estimating d with the local Whittle.
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7 Conclusions

In this paper, we proposed a new bootstrap method for time series, the ACF boot-
strap, which seems to be promising for long memory Gaussian processes. The Monte
Carlo experiments showed that the ACF bootstrap is better than the existing meth-
ods, local and sieve bootstrap. It outperformed both of them in terms of reduction of
standard error and mean squared error of the estimates of d. The method is robust
against deviations from Normality, asymmetry (Chi-squared distribution with one
degree of freedom) and fat tails (Student t distribution with four and six degrees of
freedom), suggesting the possibility of wider application.

Nominal coverage for confidence intervals for d based on the asymptotic distri-
bution of the Whittle estimator are improved by using ACF bootstrap especially
when the sample size is small, such as n = 128; also in this case the method we
proposed outperformed the local bootstrap. In the presence of short memory the
ACF bootstrap gave some improvements to the local Whittle. As regard as the GPH
estimator, the log-periodogram regression by Arteche and Orbe (2005) is still the
best solution to build confidence interval but also the .

The result given in this paper are illustrative, more exhaustive tables are avail-
able, upon request, from the corresponding author.
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Monte Carlo ACF Local B. SIEVE

d Whittle GPH LW GPH LW GPH LW GPH LW

0.0817 0.0961 0.1232 0.0664 0.1337 0.0897 0.1322 0.0253 0.0831
0.1 0.0553 0.2318 0.1346 0.1714 0.1012 0.2175 0.1165 0.0706 0.0502

0.0034 0.0537 0.0186 0.0305 0.0114 0.0474 0.0146 0.0106 0.0028

0.1802 0.2074 0.2065 0.1672 0.1996 0.1946 0.2052 0.0789 0.1197
0.2 0.0613 0.2305 0.1620 0.1773 0.1249 0.2162 0.1417 0.1072 0.0842

0.0041 0.0532 0.0263 0.0325 0.0156 0.0468 0.0201 0.0262 0.0135

0.2786 0.3070 0.2916 0.2625 0.2700 0.2853 0.2825 0.1497 0.1742
0.3 0.0618 0.2270 0.1767 0.1752 0.1401 0.2148 0.1581 0.1382 0.1159

0.0043 0.0516 0.0313 0.0321 0.0205 0.0464 0.0253 0.0417 0.0293

0.3817 0.4107 0.3871 0.3584 0.3533 0.3846 0.3736 0.2481 0.2577
0.4 0.0629 0.2316 0.1890 0.1820 0.1564 0.2189 0.1736 0.1652 0.1497

0.0043 0.0538 0.0359 0.0348 0.0266 0.0481 0.0308 0.0504 0.0427

0.4366 0.4604 0.4365 0.4073 0.3955 0.4284 0.4181 0.3067 0.3110
0.45 0.0621 0.2306 0.1875 0.1784 0.1578 0.2214 0.1773 0.1752 0.1628

0.0040 0.0533 0.0353 0.0337 0.0279 0.0495 0.0325 0.0513 0.0458

0.0945 0.0981 0.1024 0.0807 0.1074 0.0950 0.1069 0.0153 0.0486
0.1 0.0256 0.1393 0.0908 0.1089 0.0730 0.1361 0.0823 0.0354 0.0272

0.0007 0.0194 0.0083 0.0122 0.0054 0.0185 0.0068 0.0084 0.0034

0.1954 0.1955 0.1907 0.1775 0.1812 0.1889 0.1873 0.0645 0.0844
0.2 0.0258 0.1394 0.1078 0.1135 0.0919 0.1375 0.1004 0.0718 0.0623

0.0007 0.0194 0.0117 0.0134 0.0088 0.0190 0.0102 0.0235 0.0173

0.2972 0.3059 0.2930 0.2813 0.2733 0.2970 0.2857 0.1574 0.1658
0.3 0.0258 0.1353 0.1105 0.1105 0.1019 0.1338 0.1078 0.1110 0.1075

0.0007 0.0183 0.0123 0.0126 0.0111 0.0179 0.0118 0.0326 0.0296

0.3984 0.4031 0.3925 0.3801 0.3697 0.3919 0.3841 0.2755 0.2826
0.4 0.0257 0.1381 0.1120 0.1126 0.1062 0.1355 0.1115 0.1325 0.1363

0.0007 0.0191 0.0126 0.0131 0.0122 0.0184 0.0127 0.0330 0.0324

0.4488 0.4657 0.4535 0.4383 0.4276 0.4522 0.4445 0.3489 0.3586
0.45 0.0264 0.1389 0.1163 0.1145 0.1111 0.1370 0.1170 0.1461 0.1516

0.0007 0.0195 0.0135 0.0132 0.0128 0.0188 0.0137 0.0316 0.0313

Table 1: Results of the estimators (Whittle, GPH and local Whittle, LW) analysed
with parameter values d = 0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000
and replications S = 2000: average value (boldface), standard error (italic), mean
squared error (normal font): top of the table series length n = 200, bottom part
n = 1000.
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n = 200 n = 500 n = 1000
d GPH LW GPH LW GPH LW

0.1 26.05 24.82 19.67 21.25 21.79 19.66
43.23 39.03 32.96 36.31 36.93 34.84

0.2 23.11 22.91 20.38 18.60 18.56 14.75
38.92 40.66 33.92 32.50 31.13 24.86

0.3 22.82 20.71 19.99 13.45 18.31 7.75
37.75 34.40 33.55 20.58 31.48 9.41

0.4 21.43 17.28 20.37 9.91 18.49 5.25
35.17 25.83 34.01 11.61 31.51 3.35

0.45 22.61 15.83 18.11 6.74 17.60 4.49
36.81 21.12 31.08 5.96 32.25 5.16

n = 200 n = 500 n = 1000
d GPH LW GPH LW GPH LW

0.1 6.17 13.39 3.26 10.31 2.31 9.34
11.80 21.58 6.33 18.24 4.45 17.30

0.2 6.21 12.53 3.90 8.84 1.34 6.88
12.06 23.50 7.59 16.69 2.12 12.55

0.3 5.37 10.53 3.02 5.60 1.10 2.41
10.12 19.14 5.99 9.62 2.32 3.47

0.4 5.49 8.17 3.69 3.40 1.94 0.45
10.42 14.12 7.23 5.14 3.55 -0.68

0.45 3.98 5.43 2.77 0.94 1.41 -0.61
7.11 8.14 5.66 0.40 4.00 -1.36

Table 2: Percentage of gain (see Equation (11))comparing the Monte Carlo results
of estimators GPH and local Whittle (LW) with the bootstrap results in terms of
standard deviation (italic) and mean squared error (normal font): in the first part
of the table there is the gain using the ACF bootstrap, whereas in the second part
there is the gain using the local bootstrap.
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Monte Carlo ACF Local B.
d Whittle GPH LW GPH LW GPH LW

0.0816 0.0978 0.1158 0.0630 0.1286 0.0906 0.1264
0.1 0.0558 0.2230 0.1303 0.1655 0.0977 0.2111 0.1146

0.0035 0.0498 0.0172 0.0288 0.0104 0.0446 0.0138

0.1818 0.1974 0.1940 0.1577 0.1897 0.1837 0.1949
0.2 0.0608 0.2294 0.1571 0.1705 0.1192 0.2145 0.1367

0.0040 0.0526 0.0247 0.0309 0.0143 0.0463 0.0187

0.2804 0.3051 0.2908 0.2607 0.2696 0.2859 0.2830
0.3 0.0606 0.2299 0.1760 0.1763 0.1413 0.2174 0.1592

0.0041 0.0529 0.0311 0.0326 0.0209 0.0475 0.0256

0.3856 0.4091 0.3896 0.3605 0.3549 0.3832 0.3745
0.4 0.0621 0.2274 0.1824 0.1772 0.1523 0.2123 0.1680

0.0041 0.0518 0.0334 0.0329 0.0252 0.0453 0.0289

0.4360 0.4628 0.4387 0.4088 0.3972 0.4319 0.4207
0.45 0.0627 0.2266 0.1861 0.1769 0.1568 0.2156 0.1745

0.0041 0.0515 0.0348 0.0330 0.0274 0.0468 0.0313

0.0913 0.0995 0.1096 0.0787 0.1170 0.0948 0.1155
0.1 0.0361 0.1753 0.1066 0.1324 0.0837 0.1699 0.0960

0.0014 0.0307 0.0115 0.0180 0.0073 0.0289 0.0095

0.1911 0.1997 0.1935 0.1743 0.1865 0.1921 0.1927
0.2 0.0361 0.1755 0.1279 0.1396 0.1058 0.1696 0.1177

0.0014 0.0308 0.0164 0.0201 0.0114 0.0288 0.0139

0.2932 0.3072 0.2940 0.2764 0.2727 0.2946 0.2852
0.3 0.0370 0.1678 0.1353 0.1352 0.1186 0.1618 0.1271

0.0014 0.0282 0.0183 0.0188 0.0148 0.0262 0.0164

0.3949 0.4092 0.3950 0.3770 0.3661 0.3926 0.3834
0.4 0.0367 0.1705 0.1399 0.1379 0.1276 0.1667 0.1365

0.0014 0.0292 0.0196 0.0195 0.0174 0.0278 0.0189

0.4448 0.4633 0.4447 0.4266 0.4128 0.4460 0.4335
0.45 0.0382 0.1675 0.1389 0.1348 0.1284 0.1621 0.1377

0.0015 0.0282 0.0193 0.0187 0.0179 0.0263 0.0192

Table 3: Simulated series with Chi-squared 1 d.f.innovations: results of the estima-
tors (Whittle, GPH and local Whittle, LW) analysed with memory parameter values
d = 0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replica-
tions S = 2000: average value (boldface), standard error (italic), mean squared error
(normal font). In the upper part n = 200, whereas in the lower part n = 500.
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Monte Carlo ACF Local B.

d Whittle GPH LW GPH LW GPH LW

0.0822 0.0995 0.1232 0.0686 0.1344 0.0915 0.1325
0.1 0.0554 0.2334 0.1328 0.1744 0.1005 0.2189 0.1168

0.0034 0.0545 0.0182 0.0314 0.0113 0.0480 0.0147

0.1779 0.2050 0.2014 0.1632 0.1968 0.1924 0.2026
0.2 0.0614 0.2304 0.1623 0.1791 0.1265 0.2174 0.1437

0.0043 0.0531 0.0263 0.0334 0.0160 0.0473 0.0206

0.2796 0.2936 0.2869 0.2538 0.2681 0.2771 0.2805
0.3 0.0625 0.2347 0.1816 0.1861 0.1462 0.2231 0.1641

0.0043 0.0551 0.0332 0.0368 0.0224 0.0503 0.0273

0.3832 0.4092 0.3890 0.3593 0.3544 0.3819 0.3729
0.4 0.0644 0.2310 0.1852 0.1788 0.1530 0.2157 0.1691

0.0044 0.0534 0.0344 0.0336 0.0255 0.0469 0.0293

0.4365 0.4650 0.4407 0.4094 0.3995 0.4368 0.4237
0.45 0.0623 0.2382 0.1941 0.1864 0.1629 0.2219 0.1804

0.0041 0.0570 0.0378 0.0364 0.0291 0.0494 0.0332

0.0899 0.1008 0.1076 0.0747 0.1150 0.0960 0.1140
0.1 0.0376 0.1698 0.1035 0.1316 0.0814 0.1645 0.0921

0.0015 0.0288 0.0108 0.0180 0.0068 0.0271 0.0087

0.1907 0.1980 0.1913 0.1710 0.1842 0.1898 0.1899
0.2 0.0374 0.1759 0.1259 0.1386 0.1027 0.1691 0.1137

0.0015 0.0309 0.0159 0.0201 0.0108 0.0287 0.0130

0.2933 0.3023 0.2902 0.2728 0.2701 0.2915 0.2830
0.3 0.0365 0.1720 0.1362 0.1359 0.1184 0.1667 0.1289

0.0014 0.0296 0.0186 0.0192 0.0149 0.0279 0.0169

0.3950 0.4104 0.3924 0.3767 0.3642 0.3948 0.3819
0.4 0.0372 0.1716 0.1413 0.1386 0.1282 0.1638 0.1371

0.0014 0.0295 0.0200 0.0198 0.0177 0.0268 0.0191

0.4448 0.4645 0.4474 0.4288 0.4154 0.4448 0.4344
0.45 0.0375 0.1678 0.1401 0.1366 0.1306 0.1623 0.1374

0.0014 0.0284 0.0196 0.0191 0.0183 0.0264 0.0191

Table 4: Simulated series with Student t 4 d.f. innovations: results of the estimators
(Whittle, GPH and local Whittle, LW) analysed with memory parameter values d =
0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replications
S = 2000: average value (boldface), standard error (italic), mean squared error
(normal font). In the upper part n = 200, whereas in the lower part n = 500.
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Monte Carlo ACF Local B.

d Whittle GPH LW GPH LW GPH LW

0.0808 0.0987 0.1227 0.0662 0.1330 0.0909 0.1317
0.1 0.0544 0.2303 0.1336 0.1735 0.1009 0.2167 0.1166

0.0033 0.0530 0.0184 0.0312 0.0113 0.0470 0.0146

0.1793 0.1930 0.1930 0.1551 0.1897 0.1820 0.1940
0.2 0.0626 0.2296 0.1602 0.1758 0.1234 0.2138 0.1407

0.0044 0.0528 0.0257 0.0329 0.0153 0.0461 0.0198

0.2799 0.3082 0.2902 0.2598 0.2685 0.2896 0.2825
0.3 0.0625 0.2254 0.1724 0.1754 0.1376 0.2116 0.1548

0.0043 0.0509 0.0298 0.0324 0.0199 0.0449 0.0243

0.3834 0.4084 0.3865 0.3580 0.3519 0.3845 0.3722
0.4 0.0622 0.2307 0.1871 0.1804 0.1556 0.2155 0.1725

0.0041 0.0533 0.0352 0.0343 0.0265 0.0467 0.0305

0.4372 0.4719 0.4462 0.4138 0.4034 0.4402 0.4275
0.45 0.0626 0.2349 0.1924 0.1834 0.1620 0.2214 0.1791

0.0041 0.0557 0.0370 0.0350 0.0284 0.0491 0.0326

0.0908 0.1006 0.1099 0.0778 0.1175 0.0961 0.1167
0.1 0.0369 0.1740 0.1075 0.1336 0.0848 0.1699 0.0970

0.0014 0.0303 0.0117 0.0183 0.0075 0.0289 0.0097

0.1913 0.2021 0.1938 0.1740 0.1858 0.1946 0.1927
0.2 0.0369 0.1700 0.1254 0.1332 0.1022 0.1647 0.1150

0.0014 0.0289 0.0158 0.0184 0.0106 0.0271 0.0133

0.2918 0.3029 0.2891 0.2740 0.2690 0.2910 0.2818
0.3 0.0363 0.1714 0.1353 0.1366 0.1174 0.1669 0.1288

0.0014 0.0294 0.0184 0.0193 0.0147 0.0279 0.0169

0.3943 0.4065 0.3909 0.3733 0.3626 0.3913 0.3798
0.4 0.0382 0.1731 0.1435 0.1407 0.1307 0.1656 0.1396

0.0015 0.0300 0.0207 0.0205 0.0185 0.0275 0.0199

0.4455 0.4635 0.4470 0.4288 0.4153 0.4442 0.4345
0.45 0.0388 0.1756 0.1432 0.1410 0.1320 0.1705 0.1415

0.0015 0.0310 0.0205 0.0203 0.0186 0.0291 0.0203

Table 5: Simulated series with Student t 6 d.f. innovations: results of the estimators
(Whittle, GPH and local Whittle, LW) analysed with memory parameter values d =
0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replications
S = 2000: average value (boldface), standard error (italic), mean squared error
(normal font). In the upper part n = 200, whereas in the lower part n = 500.
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ACF bootstrap local bootstrap
d n MC SD P PT SD P PT

200 0.9025 0.9705 0.9635 0.9065 0.8450 0.8190 0.9055
0 500 0.9200 0.9765 0.9705 0.9290 0.8520 0.8465 0.9230

1000 0.9360 0.9880 0.9830 0.9405 0.8690 0.8615 0.9365
200 0.9000 0.9770 0.9570 0.9090 0.8280 0.8010 0.9070

0.2 500 0.9350 0.9830 0.9770 0.9350 0.8765 0.8690 0.9340
1000 0.9470 0.9870 0.9820 0.9500 0.8825 0.8735 0.9520
200 0.9240 0.9755 0.9680 0.6975 0.8080 0.8355 0.7140

0.45 500 0.9405 0.9390 0.9665 0.7160 0.7925 0.8445 0.7565
1000 0.9330 0.9515 0.9810 0.7995 0.8450 0.8730 0.8455
200 0.9670 0.9670 0.9905 0.5810 0.7340 0.8425 0.6075

-0.45 500 0.9635 0.9510 0.9905 0.6635 0.7665 0.8490 0.7140
1000 0.9235 0.9490 0.9880 0.7685 0.8160 0.8575 0.8175

Table 6: Observed coverage (%) of the Whittle estimator relative to a confidence
interval with nominal level 1 − α = 0.95 for different values of the parameter
d = 0, 0.2, 0.45,−0.45 and different sample sizes n = 200, 500, 1000 computed using
Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), percentile t
(PT) methods and two different bootstrap procedures (ACF and local bootstrap).
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