
Working Paper Series, N. 5, February 2008

A Neyman-Scott phenomenon
in model discrimination

Luigi Pace

Department of Statistics
University of Udine
Italy

Alessandra Salvan, Laura Ventura

Department of Statistical Sciences
University of Padua
Italy

Abstract: The aim of this paper is to show through simulation that a

Neyman-Scott phenomenon may occur in discriminating among separate strat-

ified models. We focus on models which are scale families in each stratum.

We consider traditional model selection procedures, such as the Akaike and

Takeuchi information criteria, together with procedures based on the marginal

likelihood and its Laplace approximation. We perform two simulation studies.

Results indicate that, when the sample size in each stratum is fixed and the

number of strata increases, correct selection probabilities for traditional model

selection criteria may approach zero. On the other hand, model selection based

on exact or approximate marginal likelihoods, that exploit invariance, can be-

have far better.

Keywords: Akaike’s information criterion, Invariance, Laplace expansion,

Marginal likelihood, Nuisance parameter, Profile likelihood, Stratified model,

Takeuchi’s information criterion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@research

https://core.ac.uk/display/31144504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Neyman-Scott phenomenon
in model discrimination

Contents

1 Introduction 1

2 Likelihood procedures 2

3 Simulation results 4

4 Discussion 7

Department of Statistical Sciences

Via Cesare Battisti, 241
35121 Padova
Italy

tel: +39 049 8274168

fax: +39 049 8274170

http://www.stat.unipd.it

Corresponding author:

A.Salvan
tel: +39 049 827 4168
alessandra.salvan@unipd.it

http://www.stat.unipd.it/~salvan



Section 1 Introduction 1

A Neyman-Scott phenomenon
in model discrimination

Luigi Pace

Department of Statistics
University of Udine
Italy

Alessandra Salvan, Laura Ventura

Department of Statistical Sciences
University of Padua
Italy

Abstract: The aim of this paper is to show through simulation that a Neyman-Scott

phenomenon may occur in discriminating among separate stratified models. We focus on

models which are scale families in each stratum. We consider traditional model selection

procedures, such as the Akaike and Takeuchi information criteria, together with procedures
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1 Introduction

Consider models for independent stratified observations of the form

Yij ∼ p(yij ; ψ, λi) , (1)

with i = 1, . . . , q and j = 1, . . . , m, where q is the number of strata and m is the
size of each stratum. Here ψ is a parameter indexing a set of k competing models,
with ψ ∈ Ψ = {1, . . . , k}, k ≥ 2. The parameter λ = (λ1, . . . , λq) ∈ Λ is a nuisance
parameter, with λi allowing for detailed description of the i-th stratum. Note that
Λ, assumed to be a subset of a Euclidean space, does not depend on ψ.

The inference problem to be considered, on the basis of a sample y = (y11, . . . , yqm)
of size n = mq, with yij obeying (1), is to estimate ψ, i.e. to select one model among
those available. The simplest way is through maximum likelihood. This amounts
to select ψ maximising the profile likelihood (see e.g. Severini, 2000, Section 4.6 ).
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Penalisations of maximised likelihood depending only on the dimension of λ and the
sample size, such as the Akaike and the Bayesian information criteria, AIC (Akaike,
1973) and BIC (Schwarz, 1978), are equivalent to maximum likelihood for model
(1). On the other hand, selection based on the Takeuchi information criterion, TIC
(Takeuchi, 1976), that uses a data and model dependent penalisation, may differ
from maximum likelihood. When the competing models are group families under
the same group of transformations, selection can be based also on the marginal like-
lihood (see e.g. Quesenberry, 1985). The latter is expressed in terms of an integral.
If not available in a closed form, the marginal likelihood can be approximated using
Laplace expansion (see e.g. Ducharme and Frichot, 2003).

Models of form (1) have parameter whose dimension increases with the number
of strata. Likelihood inference about ψ is expected to perform poorly when q is large
relative to m. In particular, there are many well-known examples with ψ ranging in
an interval, where, when q diverges and m is fixed, the Neyman-Scott phenomenon
occurs, i.e. the maximum likelihood estimator of ψ is inconsistent (Neyman and
Scott, 1948).

The aim of this paper is to show through simulation that a form of Neyman-Scott
phenomenon may occur also in discriminating among separate stratified models. We
focus on stratified models which are separate scale families in each stratum. We
perform two simulation studies. In the first we consider selection between strati-
fied exponential and half-normal models. In the second we study selection between
stratified lognormal and inverse Gaussian models. The former selection problem
generalises to stratified models the Example in Section 7.6.1 of Burnham and An-
derson (2002). The latter problem generalises to stratified models the discrimination
problem considered by Strupczewski et al. (2006) in the context of flood frequency
analysis.

Results indicate that, when the sample size in each stratum is fixed and the
number of strata increases, correct selection probabilities for traditional model se-
lection criteria may approach zero. On the other hand, we find that model selection
based on exact and approximate marginal likelihoods, that exploit invariance, gives
far better results. Hence, if correct selection probabilities are considered impor-
tant, model selection should be based on exact, or at least accurate, elimination of
nuisance parameters.

The likelihood based selection procedures used in the simulation studies are
reviewed in Section 2. Section 3 presents the simulation results. The final section
contains a short discussion.

2 Likelihood procedures

Consider data yij generated from (1), with i = 1, . . . , q and j = 1, . . . , m, where q is
the number of strata and m is the size of each stratum. We assume in particular that
yij are realisations of independent random variables Yij with density p(yij ; ψ, λi) =
λi p(λiyij ; ψ, 1), ψ ∈ {0, 1}, λi > 0. Here λi represents a scale parameter for the i-th
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stratum. The full likelihood is

L(ψ, λ) =

q
∏

i=1

L(ψ, λi) ,

where L(ψ, λi) =
∏m

j=1 p(yij ; ψ, λi). The profile likelihood for ψ is

L
P
(ψ) =

q
∏

i=1

L(ψ, λ̂iψ) ,

where λ̂iψ is the maximum likelihood estimate of λi for a given ψ. We denote by
ℓ

P
(ψ) = log L

P
(ψ) the profile loglikelihood.

Under model (1), model selection based on maximization of L
P
(ψ) is equivalent

to selection based on minimisation of Akaike’s information criterion

AIC = 2(−ℓ
P
(ψ) + q) .

AIC corresponds to the penalised profile loglikelihood

ℓ
AIC

(ψ) = ℓ
P
(ψ) − q . (2)

Moreover, under model (1), model selection based on the profile likelihood is also
equivalent to selection based on the Bayesian information criterion

BIC = 2(−ℓ
P
(ψ) + q log n)

and on the corresponding penalised profile loglikelihood.
On the other hand, under model (1), Takeuchi’s information criterion (see Burn-

ham and Anderson, 2002, formula (7.38)) provides a different selection procedure,
based on minimisation of

TIC = 2

[

−ℓ
P
(ψ) +

q
∑

i=1

jλiλi
(ψ, λ̂iψ)−1ν̂λi,λi

(ψ, λ̂iψ)

]

,

where jλiλi
(ψ, λi) is the observed information for λi in the i-th stratum for a given

ψ, and

ν̂λi,λi
(ψ, λi)

m
∑

j=1

ℓ
(ij)
λi

(ψ, λi)ℓ
(ij)
λi

(ψ, λi) ,

with ℓ
(ij)
λi

(ψ, λi) = ∂ log p(yij ; ψ, λi)/∂λi. TIC corresponds to the penalised profile
loglikelihood

ℓ
TIC

(ψ)ℓ
P
(ψ) −

q
∑

i=1

jλiλi
(ψ, λ̂iψ)−1ν̂λi,λi

(ψ, λ̂iψ) . (3)

The marginal likelihood based on the maximal invariant under stratum-wise scale
transformations is given by

L
I
(ψ) =

q
∏

i=1

∫ +∞

0

1

λi
L(ψ, λi)dλi . (4)
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The Laplace approximation for ℓ
I
(ψ) = log L

I
(ψ) is

ℓ
L
(ψ) =

q

2
log(2π) + ℓ

P
(ψ) −

q
∑

i=1

log λ̂iψ − 1

2

q
∑

i=1

log jλiλi
(ψ, λ̂iψ) . (5)

Under model (1), ℓ
L
(ψ) coincides with the modified profile loglikelihood of Barndorff-

Nielsen (1983) and is invariant under interest respecting reparameterisations, so that
it has the same expression if the parameters λi are substituted by σi = 1/λi.

3 Simulation results

Example 1: Selection between stratified exponential and half-normal models.

Suppose that, under the first model, where ψ = 0, Yij has an exponential density
with mean 1/λi, i.e.

p(yij ; 0, λi) = λi exp(−λiyij) ,

while under the second model, where ψ = 1, Yij has a half-normal distribution with
mean 1/λi, i.e.

p(yij ; 1, λi) =
2

π
λi exp(−y2

ijλ
2
i /π) .

Let ȳi = (1/m)
∑m

j=1 yij and ỹi = (1/m)
∑m

j=1 y2
ij , i = 1, . . . , q. We have λ̂iψ =

1/ȳi if ψ = 0 and λ̂iψ =
√

π/(2ỹi) if ψ = 1, so that the profile loglikelihood is

ℓ
P
(ψ) =































−m

q
∑

i=1

log(ȳi) − mq if ψ = 0

mq

2
log

(

2

π

)

− m

2

q
∑

i=1

log(ỹi) −
mq

2
if ψ = 1 ,

which is equivalent to ℓ
AIC

(ψ) given by (2).
The marginal loglikelihood derived from (4) is

ℓ
I
(ψ) =































q log Γ(m) − m

q
∑

i=1

log(mȳi) if ψ = 0

q(m − 1) log 2 − qm

2
log π + q log Γ

(m

2

)

− m

2

q
∑

i=1

log(mỹi) if ψ = 1 .

For each model we can determine the likelihood quantities needed to compute
ℓ

TIC
(ψ) according to (3), and the Laplace approximation ℓ

L
(ψ) of the marginal

loglikelihood ℓ
I
(ψ) according to (5). We have

jλiλi
(ψ, λ̂iψ) =











mȳ2
i if ψ = 0

4mỹi/π if ψ = 1 ,
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and

ν̂λi,λi
(ψ, λ̂iψ) =











∑m
j=1(yij − ȳi)

2 if ψ = 0

2
∑m

j=1(y
2
ij − ỹi)

2/(π
√

ỹi) if ψ = 1 .

Table 1 gives estimated probabilities of correct selection under the stratified
exponential model (Exp) and under the stratified half-normal model (Hn), based on
10,000 samples. Different stratum sizes m are considered ranging from 3 to 20 with
a number q of strata increasing from 1 to 20 (the case m = 3 and q = 1 has been
omitted).

For all values of m and q, the marginal likelihood gives the highest sum of es-
timated probabilities of correct selection. This is in line with the Neyman-Pearson
optimality property among invariant tests of the likelihood ratio test L

I
(1)/L

I
(0)

with critical value equal to 1 (see e.g. Severini, 2000, Section 3.2). Estimated prob-
abilities of correct selection for ℓ

L
(ψ) are quite close to those for ℓ

I
(ψ) for m ≥ 5.

When q = 1, i.e. in the usual scenario of unstratified samples, all the procedures
behave similarly as m increases, with some unbalance between the probabilities of
correct selection under the two models when m = 5 for ℓ

AIC
(ψ) and ℓ

TIC
(ψ).

With small m (m = 3, 5), the traditional model selection criteria ℓ
AIC

(ψ) and
ℓ

TIC
(ψ) show severe unbalance as q increases, and a form of Neyman-Scott phe-

nomenon emerges. For m = 20 all the criteria become comparable with some resid-
ual unbalance for ℓ

AIC
(ψ) and ℓ

TIC
(ψ).

Example 2: Selection between stratified lognormal and inverse Gaussian mod-

els.

Suppose that, under the first model, where ψ = 0, Yij has a lognormal distribution
with mean λi and variance (kλi)

2, i.e.

p(yij ; 0, λi) =
1√

2πcyij

exp

{

− 1

2c
(log yij + 0.5c − log λi)

2

}

,

with c = log(k2 + 1) and k a known constant. Under the second model, ψ = 1, Yij

has an inverse Gaussian distribution with mean λi and variance λ2
i , i.e.

p(yij ; 1, λi) =

√
λi√

2πy
3/2
ij

exp

{

−(yij − λi)
2

2λiyij

}

.

Let y†i = m−1
∑m

j=1 log yij and y̌i = m−1
∑m

j=1 y−1
ij , i = 1, . . . , q. We have

λ̂iψ = λ̂i0 = exp(
m

∑

j=1

(log yij + 0.5c)/m)

when ψ = 0, and

λ̂iψ = λ̂i1 = (1 +
√

1 + 4ȳiy̌i)/(2y̌i)
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when ψ = 1. The profile loglikelihood is

ℓ
P
(ψ) =











































−mq

2
log(2πc) −

∑

i,j

log yij −
1

2c

∑

i,j

(log yij − y†i )
2 if ψ = 0

q(m + log 2 − m

2
log(2π)) − 3

2

∑

i,j

log yij +
m

2

q
∑

i=1

(

log λ̂i1 −
ȳi

λ̂i1

− y̌iλ̂i1

)

if ψ = 1.

As in the previous example, ℓ
P
(ψ) is equivalent to ℓ

AIC
(ψ).

The marginal loglikelihood based on (4) is

ℓ
I
(ψ) =











































− 1

2c

∑

i,j

(log yij − y†i )
2 − q(m−1)

2
log(2πc) − q

2
log m

∑

i,j

log yij if ψ = 0

q(m + log 2 − m

2
log(2π)) − 3

2

∑

i,j

log yij +
m

4

q
∑

i=1

log
ȳi

y̌i
+

q
∑

i=1

log ai

if ψ = 1 ,

with ai = Km

2

(m
√

ȳiy̌i), where Kν(x) is the modified Bessel function of the second
kind (Abramowitz and Stegun, 1972, Section 9.6).

For computing ℓ
L
(ψ) and ℓ

TIC
(ψ), we need

jλiλi
(ψ, λ̂iψ) =























m

cλ̂2
i0

if ψ = 0

m

2λ̂2
i1

+
mȳi

λ̂3
i1

if ψ = 1

and

ν̂λi,λi
(ψ, λ̂iψ) =



































1

c2λ̂2
i0

m
∑

j=1

(log yij − y†i )
2 if ψ = 0

1

4λ̂i1

m
∑

j=1

(

1 +
yij

λ̂i1

− λ̂i1

yij

)2

if ψ = 1 .

Table 2 gives estimated probabilities of correct selection, based on 10,000 samples
and using k = 1.2. Different stratum sizes m are considered ranging from 3 to 20
with a number q of strata increasing from 1 to 20 (the case m = 3 and q = 1 has
been omitted).

As expected, the marginal loglikelihood ℓ
I
(ψ) gives the highest sum of estimated

probabilities of correct selection. As the number of strata increases with m ≥ 5,
results for the Laplace approximation ℓ

L
(ψ) become comparable with those for the

optimal procedure based on ℓ
I
(ψ). On the other hand, the traditional model selec-

tion criteria ℓ
AIC

(ψ) and ℓ
TIC

(ψ) show severe unbalance for with small m, especially
as q increases.
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4 Discussion

Findings of the paper are limited to stratified group families. Related results for
scale and regression models are in Pace et al. (2006). Preliminary simulations
indicate that Neyman-Scott phenomena occur when discriminating between separate
stratified exponential models as well. The practical implication is that, if correct
selection probabilities are considered important, model selection should be based
on exact or accurate elimination of nuisance parameters. In group models this
requirement is easily met via the marginal likelihood and its Laplace expansion. No
analogous reduction seems to be available for exponential or more general models
and how to introduce inferentially sound criteria is an open problem. These new
criteria should extend to a discrete parameter of interest, in the presence of many
nuisance parameters, the nuisance parameter elimination carried out by the modified
profile likelihood in modern likelihood theory (see e.g. Severini, 2000, Chapter 9 and
Sartori, 2003).
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Loglikelihood ℓ
AIC

(ψ) ℓ
T IC

(ψ) ℓ
I
(ψ) ℓ

L
(ψ)

True model Exp Hn Exp Hn Exp Hn Exp Hn

m = 3, q = 3 0.12 0.97 0.00 1.00 0.59 0.65 0.62 0.60
m = 3, q = 10 0.01 0.99 0.00 1.00 0.68 0.71 0.77 0.59
m = 3, q = 20 0.00 1.00 0.00 1.00 0.76 0.78 0.86 0.68

m = 5, q = 1 0.34 0.83 0.31 0.85 0.55 0.65 0.55 0.65
m = 5, q = 3 0.29 0.94 0.23 0.95 0.65 0.71 0.67 0.69
m = 5, q = 10 0.19 0.99 0.09 1.00 0.80 0.82 0.80 0.81
m = 5, q = 20 0.10 1.00 0.03 1.00 0.88 0.90 0.88 0.88

m = 10, q = 1 0.50 0.83 0.57 0.77 0.63 0.71 0.63 0.71
m = 10, q = 3 0.55 0.94 0.67 0.87 0.76 0.80 0.79 0.79
m = 10, q = 10 0.62 1.00 0.83 0.97 0.92 0.93 0.92 0.91
m = 10, q = 20 0.69 1.00 0.92 1.00 0.98 0.98 0.98 0.98

m = 20, q = 1 0.64 0.85 0.71 0.78 0.72 0.78 0.73 0.78
m = 20, q = 3 0.78 0.95 0.88 0.89 0.88 0.90 0.88 0.90
m = 20, q = 10 0.93 0.99 0.98 0.98 0.98 0.99 0.98 0.99
m = 20, q = 20 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 1: Estimated probabilities of correct selection under stratified exponential (Exp) and
half-normal (Hn) models, Example 1.
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Loglikelihood ℓ
AIC

(ψ) ℓ
T IC

(ψ) ℓ
I
(ψ) ℓ

L
(ψ)

True model Ln Ig Ln Ig Ln Ig Ln Ig

m = 3, q = 3 0.14 0.96 0.22 0.77 0.45 0.73 0.40 0.78
m = 3, q = 10 0.12 0.99 0.19 0.81 0.57 0.74 0.46 0.82
m = 3, q = 20 0.08 0.99 0.17 0.84 0.65 0.75 0.53 0.84

m = 5, q = 1 0.24 0.86 0.30 0.75 0.38 0.75 0.34 0.76
m = 5, q = 3 0.28 0.92 0.36 0.74 0.51 0.74 0.49 0.76
m = 5, q = 10 0.28 0.98 0.40 0.79 0.67 0.77 0.62 0.81
m = 5, q = 20 0.25 0.99 0.42 0.82 0.77 0.82 0.71 0.87

m = 10, q = 1 0.39 0.84 0.45 0.72 0.50 0.75 0.49 0.75
m = 10, q = 3 0.46 0.89 0.56 0.73 0.61 0.77 0.61 0.77
m = 10, q = 10 0.57 0.98 0.72 0.82 0.80 0.88 0.79 0.89
m = 10, q = 20 0.67 0.99 0.83 0.89 0.90 0.95 0.89 0.96

m = 20, q = 1 0.51 0.80 0.56 0.72 0.58 0.75 0.58 0.75
m = 20, q = 3 0.65 0.91 0.74 0.79 0.75 0.83 0.75 0.83
m = 20, q = 10 0.80 0.98 0.90 0.90 0.91 0.95 0.91 0.95
m = 20, q = 20 0.93 0.99 0.97 0.96 0.98 0.99 0.98 0.99

Table 2: Estimated probabilities of correct selection under stratified lognormal (Ln) with
k = 1.2 and inverse Gaussian (Ig) models, Example 2.
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