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Analysis of heat waves effects on health using GAM
and bootstrap based model selection
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Abstract: It is known that high summer temperature may lead to worsening health conditions

among fragile individuals within exposed populations. It is also argued that multi-day patterns of

high temperature – heat waves – may have relevant effects on health. We will discuss the possi-

ble measures of heat waves intensity to be included in a generalized additive model explaining the

number of hospital admissions occurred during summer months in Milano. The issue of variable se-

lection is central to the analysis: a computational method is discussed which may help in assessing

the robustness of model selection method. Eventually, we obtain evidence supporting the relevance

of heat waves in driving adverse health episodes.

Keywords: UBRE; hospital admissions; Milano; non-linear temperature effect.

1 Introduction

Ambient temperature is recognized to be an important factor in determining health status of

human beings. Evidence shows that an ideal temperature can be identified and that when

ambient temperature is different than ideal temperature, mortality and morbidity among

exposed population increase (Donaldson et al. (2003)). Moreover, the persistence of high

temperature –a heat wave– may have a stronger effect than the same temperature experi-

enced in non consecutive days. The cumulative effect, in other words, may be stronger

than the sum of the effects. The effect of temperature on hospital admissions can be ana-

lyzed using generalized additive models (GAM, (Hastie and Tibshirani (1990))) in which

the daily number of admissions is the response variable and a measure of daily temperature

is included among the covariates. GAM are widely used in investigating epidemiological

time series, for instance, they are the typical choice in modeling the effect of pollutant con-

centration on health (see Epidemiology, vol. 16, issue 4 on Ozone and mortality). There are

various reasons to choose GAM in this context: we can model a non gaussian response; we

can estimate a non linear effect of some of the covariates without a prior assumption on its

form; we will be able –thanks to the additive structure of the model– to distinguish the effect

of each covariate. We can assess whether or not a cumulative effect is in place by adding,

to the basic temperature-admissions model, one or more further temperature-related covari-
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ates measuring the heat wave (sections 3 and 4). In this context the selection of the model

plays an important role, being the main evidence of relevance of heat waves in explaining

the number of hospital admissions. Things are further ocmplicated by the fact that a lot of

competing models, quite similar to each other, are considered. To select among alternative

models we employ Un-Biased Risk Estimator (UBRE), which is a very convenient choice

from a practical point of view, but we also deepen the results of model selection employing

a resampling technique (section 5).

2 Data

In order to understand the relationship between meteorological variables and frequency of

hospital admissions, we collect data on the number of health episodes in a given population

and its level of exposure to temperature. This ideally implies knowledge of actual personal

exposure, in practice we restrict our analysis to Milano urban population and we consider

meteorological data measured at a weather station located in the town center; these are

assumed to be representative of the exposure of all urban population (Richardson and Best

(2003)).

Weather conditions are seldom the direct and unique reason for admission to the hospi-

tal, usually adverse meteorological patterns favor acute health episodes in people weakened

by existing pathologies or belonging to population groups which are more fragile, like the

elderly and the youngest. We consider hospital admissions due to all non-incidental causes

(all codes ICD-IX except 800-999) of people aged more than 75 years, occurred in all hos-

pitals located in Milano during summer periods (June-July-August) of years 1995 to 2003.

In order to consider relevant admissions to the hospital, only those events corresponding to

admissions not required by the general practitioner, not related to a surgical event and not

scheduled to last less than one day are selected. We exclude events for which the reason for

admission is not specified. Daily hospital admissions data are obtained from the Regional

Health Informative System.

Meteorological data for the period 1995-2003 are obtained from the Regional Agency

for Environmental Protection (ARPA Lombardia). Hourly data are collected on tempera-

ture, rain, wind velocity and direction and, from year 2000, humidity.

In the end, due to the presence of missing data in meteorological time series we could

use observations for 812 days. The average number of admissions per day is 38.91 (s.d.

9.78), the range is 13 to 108; data are depicted in figure 1.

3 Definition of heat wave

If we accept that heat waves pose a risk on health, as is maintainec in various sources (a par-

tial list of these is in table 1), it is also natural to expect the excess mortality and morbidity

due to a heat wave to depend on its characteristics: the duration and the temperature level

which is reached. Table 1 outlines a number of definitions of heat wave, it is worth to look

through them in order to determine the main distinctive elements before discussing how to

measure it for our purposes.

Proposed definitions differ both qualitatively and quantitatively. Qualitative differences

concern the variables involved or the pattern which defines the heat wave. Distinctive ele-
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Source Definition of Heat Wave

(a) Merriam Webster dictionary (on-

line)

A period of unusually hot weather

(b) EM-DAT: The OFDA/CRED

International Disaster Database

- www.em-dat.net - Universit

Catholique de Louvain - Brussels -

Belgium

Long lasting period with extremely high surface temperature.

(c) Environment Canada (2001) A period of more than three consecutive days of T (max) at or above 32◦C.

The same definition is used in Nashold et al. (1996), Lene and Grymes (1997),

Donoghue et al. (2003).

(d) Michelozzi et al. (2004) A h.w. is experienced if Maximum Apparent Temperature greater than 90th

percentile and an increase of 2◦C compared with the previous day has occurred.

(e) National Weather Service (U.S.) (1) A period of abnormally and uncomfortably hot and unusually humid weather.

Typically a heat wave lasts two or more days.

(2) Heat Advisory: Issued within 12 hours of the onset of the following condi-

tions: heat index of at least 40.56◦C but less than 46.11◦C for less than 3 hours

per day, or nighttime lows above 26.67◦C for 2 consecutive days.

(f) Netherlands Royal Meteorological

Institute (as in Huynen et al. (2001))

At least 5 days with T (max) > 25◦C of which at least 3 with T (max) > 30◦C

(g) Meehl and Tebaldi (2004) (1) Several consecutive nights with no relief (high nighttime temperature)

(2) Let T1, T2 be, respectively, the percentiles 97.5 and 81 of the distribution of

temperature. A h.w. is then a period of consecutive days for which: T (max) > T1

for at least three days; mean of daily max greater than T1; T (max) > T2 for the

whole period.

(h) Kalkstein and Sheridan (1999) No definition of heat wave, but the authors discuss threshold temperature above

which mortality increase, these are 29◦C for Montreal; 33◦C for Toronto.

Table 1: Some alternative definitions of what a heat wave is.

ments are: the inclusion of other than temperature meteorological variables like humidity

(d) (letters refer to table 1); the minimum duration (which is not set only in case (d)); which

temperature is considered, many authors do not refer only to maximum temperature, sug-

gesting that the lack of relief due to high nighttime temperature (g.1, e.1) or, more generally,

high mean temperature (f, g.2) may be relevant as well.

As far as quantitative differences are concerned, we must recall that, as the analysis of

Donaldson et al. (2003), among others, showed, the relationship between temperature and

health is strongly dependent on the local climate (in more intuitive terms it depends on the

meteorological condition which the population is used to). Then, it is intuitively clear that

the temperature threshold above which a heat wave is said to occur should depend on the

climate of the area and also on the period we refer to. This is apparent in the definitions of

table 1 when percentiles of the distribution of temperature are used (d, g), those definitions

which use fixed values (c, e, f, h) should be considered valid only for the area they refer to.

We define a heat wave as a minimum of n consecutive days (n = 2, 3) during which

the daily maximum temperature is above a threshold. Since a reasonable threshold should

be relative to (local) usual weather, we define the threshold as a quantile of the probability

distribution of daily maximum temperature. Different thresholds arise depending on the

particular quantile which is chosen and on whether a stationary or non stationary model for

temperature is used.

Let T
(max)
t represent the observations of maximum temperature on day t and let yt be

the calendar year to which day t belongs.

The simplest choice of a threshold is a constant value for the whole observation period:
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this corresponds to a stationary model, T
(max)
t ∼ F (·) ∀i, the threshold is then the q-quantile

of F , si = F̂−1(q) ∀i, where F̂ is the empirical distribution function. In practice, we use

fixed thresholds at 30◦C , 31◦C , 32◦C , 33◦C .

We also consider thresholds based on non stationary models for temperature: we assume

first that mean of temperature varies as a smooth function f of time

T
(max)
t = g(t) + εt εt ∼ IID(N (0, σ2)), (1)

alternatively, we assume that the temperature distribution is the same for all days in each

calendar year,

T
(max)
t ∼ Fyt

(·). (2)

The threshold, according to model (1), is st = ĝ(t)+ σ̂Φ−1(q) where estimates are obtained

fitting a GAM with a spline function with 3 equivalent degrees of freedom for g. According

to model (2) we define st = F̂−1
yt

(q). Examples of threshold computed according to the

three methods are in figure 1, where the relationship between occurrence of heat waves and

spikes in the number of admissions is also pointed out.

It is worth noting that the above definitions lead to significantly different thresholds in

Milano because the relevant time series of maximum daily temperature is non stationary.

We should recall that we are trying to assess the characteristics that a heat wave should

have to qualify as a source of additional risk for the health of the elderly. The types of thresh-

olds considered can be discussed on this respect and with respect to adaptation, which is a

well known concept in scientific discussion related to changes in climate conditions (IPCC

(2001)). Adaptation, in the context of the relationship between health and temperature,

means that if the base temperature increases, exposed population get used to it (either due

to physiological changes or –more likely in such a short period– due to a greater risk aware-

ness and consequent changes in the behavior) so that adverse effects take place at higher

levels than before. A constant threshold over the years corresponds to the idea that the

population does not adapt: loosely speaking, what is harmful in year 1995 is harmful to the

same extent in year 2003. A continuously varying threshold means a continuous adaptation,

a threshold which varies year by year correspond to assuming that people adapt from year

to year.

On this respect all three definitions can be criticized, the less reasonable is the one

assuming continuous adaptation, while the others, albeit imperfect, may be advocated: a

constant threshold, in particular, is reasonable if we assume that few years is too short a

period to significantly adapt to new conditions. We may draw a conclusion on whether

adaptation takes place or not during the period under consideration by comparing the fit of

the models employing different threshold definitions.

4 Models

For each of the heat wave definitions in section 3 we consider a set of alternative models,

each employing a different measure of intensity of the heat wave.

Besides heat wave variables, all models may include as covariates maximum daily tem-

perature and calendar effects: day of the week to allow for event scheduling, year and day

of the year (yday) to control for time trend and seasonality. Day of the week (wday) and
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year (year) have been included into the models through sets of dummy variables while the

covariate day of the year (yday), transformed on a [0, 1] scale (0 being the 1st of June, 1

being the 31st of August), is included into the models through a spline, thus allowing for a

non-linear effect. Other meteorological variables are not significant and hence are dropped.

This may appear surprising, especially for humidity which is expected to worsen the effect

of heat. When humidity is included in a model along with temperature, however, its role

is not clear, for example in Ballester et al. (1997) humidity is not significant, in Tobı́as and

Saez (2004) and Pauli and Rizzi (2005) it has a protective effect.

Finally, we include in the model a variable which is null unless the day belongs to a

heat wave or immediately follows it; this variable is chosen among: duration of the heat

wave (Dt); maximum temperature observed during the heat wave (Mt); position of the day

within the heat wave (Pt); cumulative temperature within the heat wave (Ct); same as Pt

but the first day after a heat wave has value equal to the last day of the heat wave (P
(L)
t );

same as Ct but the first day after a heat wave has value equal to the last day of the heat wave

( C
(L)
t ). Variable D is included in the linear predictor as factor, while variables C , C(L), P ,

P (L) are included as smooth functions.

Being then Xt the number of events occurred in day t, we assume Xt ∼ Poisson(λt)
where

log(λt) = α +

6∑

j=1

βjwday
(j)
t +

2003∑

i=1996

γiyear
(i)
t + g(ydayt) + temp, (3)

where wday
(j)
t and year

(i)
t are dummy variables for days of the week and calendar years,

respectively (wday
(1)
t is 1 if day t is a Monday and 0 otherwise, with obvious extension for

j = 2, . . . , 6; year
(i)
t is 1 if day t is in year i and 0 otherwise); ydayt is the time within year

scaled to be in [0, 1].

For the temperature model (temp) part we consider the alternative specifications listed

in table 2. Choice of model and of the degree of smoothness for the non linear components

is decided by UBRE (Wahba (1990)) which is a modification of more usual criteria such as

GCV or AIC to be preferred in GAM when scale parameter is known (Hastie and Tibshirani

(1990), Wood (2000)). UBRE score is given by D
n

+ 2 p
n
,where D is the deviance (twice the

difference between the log-likelihood for the saturated model and the log-likelihood for the

present model), and p is the total degrees of freedom (including the estimated d.o.f. of the

smooth functions). UBRE is a very convenient choice from a computational point of view,

is readily available in most statistical software and is the preferred choice in most applied

works. On the other hand, criteria such as UBRE are judged to be unstable as a tool for

model selection, meaning that little difference among datasets may lead to different models

selected (Hastie et al. (2001)).

5 Results

As already pointed out, the selection of the model plays in this work an important role,

being the main evidence of relevance of heat waves in explaining the number of hospital

admissions. Things are not made easier by the fact that a lot of competing models, quite

similar to each other, are considered.
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Alternative “temperature models” in (3)

no temp. model (α)

f(T
(min)
t ) (β)

f(T
(mean)
t ) (γ)

(a) f(T
(max)
t ) (δ)

(b) f(T
(max)
t ) + as.factor(Dt)

(c) f(T
(max)
t ) + s(Mt)

(d) f(T
(max)
t ) + s(Pt)

(e) f(T
(max)
t ) + s(Ct)

(f) f(T
(max)
t (1 − St)) + as.factor(Dt)

(g) f(T
(max)
t (1 − St)) + s(MtSt)

(h) f(T
(max)
t (1 − St)) + s(Pt)

(i) f(T
(max)
t ) + s(P

(L)
t )

f(T
(mean)
t ) + s(C

(L)
t ) (κ)

(j) f(T
(max)
t ) + s(C

(L)
t ) (ζ)

Table 2: Legend of alternative temperature components of models. St is a variable which

is equal to 1 if day t belong to a heat wave and 0 otherwise; T
(max)
t is maximum daily

temperature on day t. Legend in leftmost column is used in section 4 and can be referred to

different choices of heat wave definition, that in rightmost column is used in 5 and is always

referred to h.w. defined as at least two days above 32◦C . For the sake of brevity we write

as.factor instead of explicitly representing dummy variables when used and s for smooth

functions.

Model comparison based on UBRE is summarized in table 3. The UBRE score for

model not including heat waves ((a) in table 2) is 0.218, higher than most of the scores

for models in table 3. The improvement of model prediction ability, mesured by UBRE

score, induced by the inclusion of a measure of high temperature persistence suggests the

relevance of the heat wave effect. Best model according to UBRE is based on heat waves

defined as at least two days with maximum temperature above 31◦C (figure 1, bottom row)

and C
(L)
t as heat wave intensity measure.

In order to improve on UBRE, alternative criteria have been proposed, sometimes with

interesting results. We, however, adopt a different approach: we want to stick with UBRE

as the basic criterion, because of the computational and practical advantages, but we want

to keep into account its variability in drawing conclusions.

In order to allow for the variability of the UBRE score in choosing among I models

we resample (with replacement) the time series B times and for each sample we reckon

UBRE scores according to the models under consideration, obtaining, for each model i =
1, . . . , I a sample UBRE∗b

i , b = 1, . . . , B. Then, we compare models based on resampling
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model Constant threshold Smooth threshold Yearly threshold

30 31 32 33 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

Minimum duration: 2 day

(b) 0.209 0.206 0.218 0.224 0.210 0.233 0.216 0.218 0.219 0.202 0.190 0.220

(c) 0.203 0.213 0.220 0.220 0.211 0.214 0.164 0.214 0.165 0.173 0.188

(d) 0.139 0.128 0.148 0.158 0.175 0.178 0.149 0.165 0.163

(e) 0.133 0.127 0.150 0.164 0.163 0.172 0.200 0.179 0.139 0.167 0.156 0.206

(f) 0.298 0.280 0.257 0.263 0.256 0.270 0.249 0.233 0.271 0.266 0.242 0.262

(g) 0.289 0.284 0.266 0.262 0.236 0.241 0.166 0.250 0.168 0.178 0.179

(h) 0.176 0.141 0.155 0.160 0.229 0.224 0.197 0.257 0.258

(i) 0.140 0.125 0.126 0.136 0.166 0.169 0.157 0.150 0.163

(j) 0.131 0.123 0.128 0.143 0.145 0.163 0.191 0.174 0.148 0.154 0.157 0.162

Minimum duration: 3 day

(b) 0.209 0.206 0.218 0.224 0.210 0.233 0.216 0.218 0.219 0.202 0.190 0.220

(c) 0.206 0.212 0.220 0.209 0.190 0.214 0.164 0.168

(d) 0.139 0.128 0.148 0.159 0.174 0.178 0.149 0.165 0.164

(e) 0.133 0.127 0.149 0.163 0.157 0.170 0.201 0.212 0.139 0.167 0.156 0.213

(f) 0.298 0.280 0.257 0.263 0.256 0.269 0.250 0.250 0.271 0.266 0.242 0.261

(g) 0.292 0.281 0.244 0.233 0.236 0.249 0.167 0.174

(h) 0.178 0.141 0.155 0.160 0.229 0.227 0.200 0.255 0.251

(i) 0.140 0.125 0.127 0.143 0.165 0.170 0.157 0.150 0.164

(j) 0.131 0.123 0.129 0.147 0.139 0.162 0.190 0.168 0.148 0.154 0.158 0.164

Table 3: UBRE scores for alternative models differing for the variables included in the

linear predictor (see table 2) and the definition of heat wave. The UBRE score for model

not including heat wave effect is 0.218.

distributions of UBRE scores of different models in order to compare them.

This analysis is performed for the models marked with Greek letters in table 2: we limit

ourselves to six models, a reference null model including only calendar variables, three

models including daily temperature as a covariate through, respectively, daily minimum,

daily mean and daily maximum and two models including heat wave effect, where a heat

wave is defined as a minimum of two days with temperature above 31◦C .

Resampled UBRE scores are pairwise dependent, the comparison of the (marginal) re-

sampling distributions of the UBREi may then be misleading, so we compare models i and

j by looking at the probability distribution of ∆∗b
ij = UBRE∗b

i − UBRE∗b
j . Prior to present-

ing the results it is worth noting that many of the alternative models are quite similar to each

other, so we expect the model confidence set to include many different models. It would be

surprising, for instance, to find a strong difference between models (d) and (i) or between

(e) and (j) which differ only for the value of one covariate in a few data points. The compar-

ison (figure 2) allows to conclude that models (κ) and (ζ) improve on all other models to

substantially the same extent; models (β), (γ) and (δ) improve on reference model and are

substantially equivalent to each other. Hence, evidence shows that allowing for heat wave

effect improves on predictive performance while choice of temperature measure does not

lead to substantial changes.

Another approach we consider to complement model selection decision is the bumping

procedure suggested in Tibshirani and Knight (1995). The authors consider the problem

of determining the best among a set of models indexed by a parameter θ which has to be

estimated by minimizing a criterion R(z; θ), so that θ̂ = argminθR(z; θ). In our case the
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criterion R is minus the penalized log likelihood (Wood (2000))

R(z; θ) = −l(z; θ) +
1

2

∑

j

νjJ(φj).

The parameter θ has components (α, β, γ, φ1, . . . , φd) where α, β and γ are introduced

in equation (3) and φj is the vector of coefficients of the i-th smooth component (that is,

is the vector of coefficients multiplying the basis function of the spline). We recall that

all models involve a smooth component modeling seasonality (g(ydayt) in equation (3))

and one or two smooth components related to temperature, (f and s in table 2). The log-

likelihood is then l(z; θ) =
∑n

t=1(zt ln λt − λt) with λt as in equation (3) and z the vector

of daily observations. For each smooth function in the model a penalization factor νjJ(φj)
is applied which is smaller the smoother is the spline determined by φj , νj is the smoothing

coefficient determining the smoothness of the final estimate and is chosen according to

UBRE criterion. Tibshirani and Knight (1995) suggest drawing bootstrap samples z
∗b and

consequently obtain a bootstrap sample for the estimate of θ: θ∗b = argminθR(z∗b; θ)
(including choice of smoothing coefficients νi.) This sample is then used to obtain the

bumping estimate of θ, θ̂B = argminbR(z; θ∗b), but can also be used to obtain confidence

sets for models. If θ∗1, . . . , θ∗B is the sequence of bootstrap estimates ordered according to

the value of the criterion R (R(z; θ∗i) ≤ R(z; θ∗j) if i < j) an approximate confidence set

of level α is given by {θ∗1, . . . , θ∗[αB]}, being [αB] the integer part of αB.

Pairwise comparison of resampled penalized likelihood suggests the same conclusion

drawn based on resampled UBRE scores: models (κ) and (ζ) lead to the highest scores;

models (β), (γ) and (δ) are a second best; (α) is ruled out.

The most interesting result is that the model not including any heat wave effect is always

ruled out. The conclusion that heat wave effect has to be included into the model is then

confirmed.

Non linear contributions to the linear predictor of final model are depicted in figure 3

which confirms the increasing risk posed by the temperature but also the worsening effect

of persistence of high temperature. Heat wave effect is depicted in figure 3(c), risk in-

creases as cumulative temperature during the heat wave gets higher, when a certain level is

reached, however, the additional risk decrease, this may be due to a harvesting effect. If we

compare the curve for maximum daily temperature estimated within the model with heat

wave explicitly allowed for (figure 3(a)) and the one reported in figure 3(b) and relative to

no-heat-wave model, we see that the latter is much more steep in its final part. Finally, the

comparison of normal probability plots of deviance residuals (figure 3(d) and (e)) reveals

that the inclusion of the heat wave effects improves model fit, especially in the right tail of

the distribution.

6 Discussion

We examine data on hospital admissions in Milano in order to understand the relationship

between temperature and number of hospital admissions. In particular, we want to assess

the additional effect of heat waves, if any, with respect to the effect of daily temperature

alone.
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For this purpose we compare a basic model, in which mean daily number of admissions

is explained by daily maximum temperature and calendar variables only, and alternative

models including an additional heat wave effect. A number of different alternative criteria

based on the pattern of daily maximum temperature in consecutive days are used to define

heat wave measures to be compared. Criteria are based on different plausible assumptions

on the sensitivity of the population to surrounding climate.

The choice of the heat wave measure to be used and, thus, the uncertainty on model se-

lection is investigated using a resampling scheme in which we replicate the model selection

process to check the stability of its conclusions.

Results of model selection are strongly in favor of the inclusion of heat wave effect in

the model. The stress due to high temperature cumulate from day to day and the risk of

hospitalization increases the more hot days are experienced consecutively.

In order to appreciate the increase in estimated risk we compare (figure 4) the relative

risk due to temperature computed for summer 2003 according to the base model and the

model allowing for heat wave effect selected by UBRE. The relative risk is computed on

a day by day basis and is the ratio of expected number of episodes for day t according to

model including temperature and expected number of events according to the model not

including temperature (taken as baseline risk). In the Poisson model this reduces to the

exponential of the temperature part of the model.
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Figure 1: Observed heat waves defined as (from top to bottom): at least two consecutive

days with T (max) higher than the 85-th percentile of the year distribution; at least three

consecutive days with maximum temperature higher than the 85-th percentile of T (max)

distribution computed according to a smooth trend model; at least two consecutive days

with T (max) > 31◦C .
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Figure 2: Boxplots of resampling distributions of ∆∗b
ij = UBRE∗b

i − UBRE∗b
j , panel (j)

depicts boxplots for ∆∗b
ij for each i 6= j.
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Figure 3: Comparison of model including T (max) and C(L) (on the left) and model includ-

ing T (max) only (on the right). Top row is f(T (max)); middle row is s(C(L)); bottom row is

normal probability plot of deviance residuals.
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Figure 4: Comparison of relative risks estimated from model with T (max) only (solid black

line) and best model according to UBRE (dashed red line).
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