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Emergence of a Pharmaceutical Drug as New Entrant in a
Category: Ex Ante Diffusion of Innovation Modeling and
Forecasting

R. Guseo, A. Dalla Valle, C. Furlan, M. Guidolin, C. Mortarino

Department of Statistical Sciences
University of Padua
Italy

Abstract: The emergence of a product, new entrant in a category, is a relevant issue in
marketing strategy implementation. Usually, diffusion of innovation models analyze single
products or services when they are active in the marketplace for a sufficient time interval
as compared with related life cycles. If product sales data are available since the launch,
robust inference and prediction for each item may be efficiently performed. More complex
and risky is the prediction with no specific data for a new entrant.

This paper analyzes the temporal sequence of observed life cycles in a category to as-

sess and estimate ex ante the dynamics that characterize the launch time and the future

features of a new entrant. A case study is examined: the introduction in Italy of a new

pharmaceutical drug within the category of treatments for acid-related disorders based on

the ranitidine.

Keywords: Ex ante modeling, Bass model, Generalized Bass model, Guseo–Guidolin

model, Evolutionary behavior of a category, Prediction with no data, NLS.

1 Introduction

Theoretical and empirical research in diffusion of innovations has raised a growing
interest in the past four decades. Basic ideas and perspectives stimulated by Rogers
[29] were developed in many disciplines such as sociology, marketing, operations
research, management, physics of complex systems, biology, epidemiology, science
of networks, statistics, etc. Relevant reviews in the area of quantitative marketing
may constitute a litmus paper of the increasing advancements in a context that is
open to different and complementary contributions. See, among others, [21], [22],
[23], [25], [28].

A pioneering paper by Bass [1] gave a sound formal approach to Rogers’ intuitive
ideas concerning the timing of the adoption events in a system (marketplace). Rel-
evance of the social network of relationships was expressed by considering only two
different sources of information that characterize two basic sub-classes of adopters
(or adoptions). Innovators introduce to the system a seeding effect determined by
an external force, an institutional communication channel. Imitators expand the
adoption process through an internal independent information channel related to
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word-of-mouth or social signals. The differential equation characterizing the stan-
dard Bass model, BM, is a restricted version of an autonomous Riccati equation
whose solution is positive for t > 0 and zero elsewhere.

The limitations of the standard Bass model, which is locally symmetric, uni-
modal, insensitive to the heterogeneity of agents, independent upon external dy-
namic control factors, and not able to describe variations in market potential over
time, suggested different directions of research. The most important perspectives
may be focused on the following topics: heterogeneity of agents, control tools on
life cycle dynamics, treatment of latent dynamics in market potential modulation,
competition among few product or services in a common market, competition-
cooperation among a large number of partially substitute products entering the
market in different instants, etc.

Heterogeneity of agents may be represented by different approaches that distin-
guish the discrete case (see, for instance, Karmeshu and Goswami [19]) from other
unimodal approaches with continuous mixing functions such as in the Bemmaor
approach [3], [4].

An extremely important advance in including control factors in the life cycle
dynamics modeling was proposed by Bass et al. [2] through the Generalized Bass
model, GBM. The pioneering paper emphasizes a special version of the controlling
function x(t) based upon relative changes in prices and advertising efforts. Neverthe-
less, the proposed solution – again a special non-autonomous member of the Riccati
family with some added constraints – is quite general and allows the recognition of
local discrete interventions, mean-reverting or not, that are very flexible.

Both models, BM and GBM, assume a constant market potential over the entire
life cycle, and in particular, the intervention function modifies the time-allocation
of adoption events, and not the scale aspect over time. In other words, the market
potential m in BM and GBM is constant, and the intervention function x(t) cannot
modify it.

A quite general treatment of latent dynamics in market potential is proposed
through the Guseo-Guidolin model, GGM, [10], [11], and [12] that assumes a complex
system approach followed by a mean-field approximation in order to represent an
aggregate dynamic. The model, which has a closed form solution for a general market
potential m(t) and a substantially free control function x(t), extends the GBM,
emphasizing the distinction between a communication component, that affects the
potential, and an adoption component, which defines the final decision stage of the
diffusion process. Both components are time-dependent.

Competition modeling through systems of differential equations, within the field
of diffusion of innovations, has received limited attention in literature, usually re-
ferred to few competitors due to the complexity of involved interactions. Recent
closed form solutions may be found in Savin and Terwiesch [30] and Guseo and
Mortarino [13], [14].

If the competition-cooperation dynamic is defined for a large number of partially
substitute products entering the market at different times, then the study of the
corresponding differential systems may be extremely difficult. For example, this
situation emerges when we describe a wide category of pharmaceutical drugs with
similar active principles and partially overlapping products that entered the market
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of a pathology in different times, generating different life cycles.
Within this more complex framework, where interaction among life cycles is not

easily estimable, there is a further issue of central interest for the management: the
ex ante estimation of the features of a new entrant for which no data are available.
In this context, a prediction based on analogies or, more properly, a meta-estimation
based on the dynamic sequence of similar parameters describing successive life cy-
cles, may be a reasonable proposal.

The focus of this paper is two-fold: the ex ante estimate of the launch date
and the individual dynamic character definition of a new entrant by examining
the sequential properties of older members active in the category. The underlying
theoretical hypothesis assumes a patterned evolution of the parameters in a family
of homogeneous life cycle models where each member of the category may take a
special shape under competition. To our knowledge, this problem is not addressed
in diffusion of innovation literature.

The paper is organized as follows. In Section 2, we introduce the rationale
for a patterned evolution of competing products in a category and some details
on BM, GBM, and GGM models. In Section 3, we examine a special category of
pharmaceutical drugs in Italy: the ranitidine. We limit the time window in order
to estimate ex ante the properties of a “future” entrant in the category. Section
4 studies the dynamics of the involved parameters and proposes a “meta-estimate”
for the new entrant: Ulkobrin. A comparison between predicted and observed sales
for Ulkobrin is discussed. Section 5 is devoted to concluding remarks and final
comments.

2 Some diffusion of innovation models

The diffusion of innovations in a social system has always been of relevant inter-
est in very different contexts. The basic assumptions that determine a particular
evolutionary process may be summarized by the following conditions:

a) An innovation such as a new technology, a new service, a new cultural paradigm,
a new pharmaceutical treatment, etc., exhibits, at the aggregate level (over
space), a limited horizon (a limited life cycle), i.e., the relevant time inter-
val is finite. Rogers [29], among others, separates different sub-populations
such as “innovators,” “early adopters,” “early majority,” “late majority,” and
“laggards.” These are non-overlapping sub-categories over a finite life cycle.
Communication channels are partially independent and characterize previous
sub-classes.

b) Heterogeneity of agents is not systematically embedded in basic diffusion models
by assuming perfect mixed sub-populations. This reduction may force dynam-
ics within special unimodal distributions over time.

c) The communication channels, such as advertising and internal word-of-mouth,
may be insufficient. External control functions may interact with the adoption
process by including relevant environmental, cultural, legal, political actions
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that usually define a third party with respect to firms’ communication ef-
forts and internal systems of signals and word-of-mouth among agents (final
adopters).

d) The description of a category of partially substitute products with different entry
times usually highlight a patterned structure over time. This structure may
be recognized when competitors/collaborators are very few. See, for instance,
Savin and Terwiesch [30] and Guseo and Mortarino [13], [14]. For a more
complex context with a large number of competitors, the direct study, via a
meta-analysis, of the sequence of the parameters characterizing the subsequent
life cycles may be much more flexible.

In the following sub-section we highlight the basic features of three hierarchical
models: BM, GBM, and GGM.

2.1 Standard Bass model, BM

The standard Bass model is characterized through a differential equation that defines
the hazard of the adoption process at time t. It is a mixture of three sub-populations:
innovators, imitators (through word-of-mouth), and neutrals characterized by p, q,
and 1 − p − q shares, respectively, with different but stable conditional preferences
toward adoption within the life cycle. These preferences are conditional probabilities
defined by 1, F (t), and zero, respectively,

z′(t)

m− z(t)
=

f(t)

1− F (t)
= p · 1 + q · F (t) + (1− p− q) · 0 = p+ qF (t), (1)

where z(t) = mF (t) denotes the observed cumulative sales up to time t, z(0) = 0
is an initial condition relevant for counting processes, and m is the asymptotic
fixed market potential. F (t) represents the corresponding normalized distribution
function, F (t) = z(t)/m, for t > 0 with the further constraint F (t) = 0 for t < 0,
and the rate function f(t) = F ′(t) is the density related to the distribution function
F (t). Equation (1) may be simplified as follows:

f(t) = (p+ qF (t))(1− F (t)), F (0) = 0, t ≥ 0, (2)

and zero elsewhere.

Equation (2) is an autonomous Riccati equation, and its constrained solution is

F (t) =
1− e−(p+q)t

1 + q
pe

−(p+q)t
, F (0) = 0, t ≥ 0, p, q > 0, (3)

and F (t) = 0 for t < 0.

The Bass density, f(t), is a local symmetric function in the interval [0, 2t+],

f(t) =
p(p+ q)2 − e−(p+q)t

(p+ qe−(p+q)t)2
, t ≥ 0, (4)
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where t+ = (ln(q/p))/(p+ q) is the time to peak. A useful approximation of density
f(t) in Equation (4) is

f(t) ≃ F (t+ 0.5)− F (t− 0.5), t ≥ 0. (5)

The standard Bass model, introduced by Bass in 1969 (cfr. ref. [1]), has had
an outstanding position in emphasizing the strategic role of sales forecasting within
current life cycles. Nevertheless, it suffers from strong limitations, for example, local
symmetry of sales, unimodality, and risk of underestimating the life cycle features
if the initial time series of sales is short and very far from the peak time. Further
limitations are related to some omissions in the definition of the equilibrium function
(2), in particular, the unrealistic assumption of invariance and independence upon
external controls or interventions, and the coarse assumption of a constant market
potential over the entire life cycle.

2.2 Generalized Bass model, GBM

The dependence of a diffusion process upon external control functions was developed
by Bass, Krishnan, and Jain in 1994 (cfr. ref. [2]) after about 25 years of fruitless
attempts. The modeling setting is elegant and efficient. For simplicity, we use
again previous notations for density f(t) and distribution function F (t) in the new
context to avoid cumbersome symbols. The new equation that integrates exogenous
time-dependent covariates is:

f(t) = (p+ qF (t))(1− F (t))x(t), F (0) = 0, t ≥ 0, (6)

where the function x(t) describes a very general intervention function acting on the
residual normalized market (1− F (t)).

For x(t) = 1 uniformly, Equation (6) reduces to the standard Bass model. Devi-
ations from the equilibrium level 1 have different interpretations. For 0 < x(t) < 1,
we observe a slower dynamic in adoption and, vice versa, for x(t) > 1, the adoption
process is accelerated over its life cycle.

The general solution for the GBM with initial condition F (t) = 0 and the further
constraint F (t) = 0 for t < 0 is:

F (t) =
1− e−(p+q)

∫ t
0 x(τ)dτ

1 + q
pe

−(p+q)
∫ t
0 x(τ)dτ

, t ≥ 0 p, q > 0 (7)

and zero elsewhere.
The modulation of the intervention function x(t) may be performed through

different strategies. Function x(t) may collect and combine various time-dependent
covariates that are supposed to affect the diffusion process. A different perspective
may be considered when controls or interventions are thought to describe rare events,
for instance exponential shocks:

x(t) = 1 + c1e
−b1(t−a1)It≥a1 , (8)

where I(e) is an indicator function equal to 1 if proposition e is true and zero in the
opposite case, c1 measures the amplitude of the impulse starting at time a1, and
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b1 > 0 denotes a memory effect that is decaying over time. For b1 < 0, the proposed
intervention is not mean reverting to the stationary equilibrium represented by the
neutral factor 1 and describes a permanent modification of the system over time.

A quite different control may describe an essentially stable behavior within a
limited time window. It is usually a regulatory regime:

x(t) = 1 + c2It≥a2 · It≤b2 . (9)

The ability of a GBM to consider covariates or local shocks has proved its perfor-
mances in different contexts where policies, marketing strategies, advertising cam-
paigns, etc. exert possibly significant effects. Such models may test these exogenous
components in a simple and efficient way. For recent applications, see, for instance,
[8], [9], [7], and [6].

2.3 Guseo-Guidolin model, GGM

The GGM defines a special approach in formalizing an important characteristic omit-
ted by both the standard BM and the related extension, the GBM, which integrates
control factors modifying adoption allocation over time. The relevant feature is the
general shape of latent market potential, m(t), as contrasted with the constant as-
sumption m in BM and GBM. The topic was treated in literature by modifying the
residual market, (m(t)− z(t)), or the word-of-mouth component. See, for instance,
[24], [15], [18], [32], [16], and [27]. Sometimes, the shape of m(t) is determined
by exogenous control variables. See, for example, [24], [17], and [15]. In a limited
number of papers the market potential is assumed to follow exponential function of
time. See, for example, [32], [5], and [26]. The basic idea of GGM is the inclusion
of a general function m(t) for the market potential description, which is a direct
function of a variable awareness on the relevance, fitness, efficiency, and efficacy of
the product of interest. If we omit, for simplicity, a decay component in the original
model, its general aggregate differential form is:

z′(t) = m(t)

{(
ps + qs

z(t)

m(t)

)(
1− z(t)

m(t)

)}
x(t) + z(t)

m′(t)

m(t)
, z(0) = 0, t ≥ 0,

(10)
with the usual constraint, z(t) = 0 for t < 0, where z(t) denotes the cumulative
sales, m(t) the variable potential, x(t) an intervention function, and z(t)m′(t)/m(t)
a collective reinforcing effect that emphasizes or depresses sales on the basis of the
sign of m′(t). Parameters ps and qs denote the local dynamics of the adoption
process.

Equation (10) was obtained in [10] as a mean-field approximation of a Cellular
Automaton. The general solution to Equation (10) with initial condition z(0) = 0
and z(t) = 0 for t < 0 is:

z(t) = m(t)
1− e−(ps+qs)

∫ t
0 x(τ)dτ

1 + qs
ps
e−(ps+qs)

∫ t
0 x(τ)dτ

, t ≥ 0 ps, qs > 0, (11)

and zero elsewhere. Solution (11) does not depend upon special choices of m(t)
and x(t). The issue of a realistic definition of a variable potential m(t) for specific
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problems was treated in [10] and [12] through the dynamic description of an evolu-
tionary network among individuals in a social system with autonomous expression
and saturation of awareness, which allows a better understanding of the parallel po-
tential. A Cellular Automaton for the description of the increasing relationships was
implemented and reduced with the aid of a mean-field approximation. The special
result for this particular approach is:

m(t) = K

√
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

, (12)

where pc, qc denote the communication parameters generating the non-constant mar-
ket potential, and K is the asymptotic market potential. The proposed approach
in [10] and [12] is quite interesting because the separation of two main forces, com-
munication and adoption, may give rise to different prevalent allocations over time
of the two components. See, in particular, [12], where some explicit examples in
pharmaceutical drug diffusions may exhibit saddle or slowdown effects relevant for
marketers because the temporal dominance of one factor during the launch stage
may suggest convenient strategies of support.

2.4 Statistical inference

In previous sub-sections we have introduced the standard Bass model, BM; a relevant
extension, the GBM, and a further extension, the GGM.

A reasonable and robust inferential methodology for the estimation and testing
the performance of the proposed models may be described through a nonlinear
regressive model, i.e.,

w(t) = η(β, t) + ε(t), (13)

where w(t) represents the observed cumulative sales data, η(β, t) denotes a sys-
tematic rescaled cumulative distribution function of time t and some parameters β
typical of BM, GBM, GGM; and ε(t) is usually a white noise or a more complex
stationary process if seasonality and/or autoregressive components are included as
stochastic components. For estimation purposes, we use a two-phase procedure.

Firstly, we apply a robust nonlinear least squares algorithm, NLS, which ignores
the stochastic structure of ε(t), under the well-known Levenberg-Marquardt correc-
tion of the Gauss-Newton recursive procedure. See, for instance, Seber and Wild
[31].

Secondly, the prediction η(β̂, t) based on an NLS solution, β̂, may be used in a
SARMAX framework (Seasonal, Autoregressive, Moving Average process with an
input X) in order to improve short-term prediction. This second stage is imple-
mented if the residuals of the first one do not follow a standard white noise. The
Durbin-Watson statistic may be an exploratory test.

The proposed nonlinear models in Section 2 are essentially nested. The sig-
nificance of an extended model, M2, as compared with a simpler one, M1, may
be studied through a normalized squared multiple partial correlation coefficient R̃2

within the interval [0; 1], namely,

R̃2 = (R2
M2

−R2
M1

)/(1−R2
M1

), (14)
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where R2
Mi

, i = 1, 2 is the standard determination index. An equivalent statistic,
normalized in the interval (0,+∞), is the corresponding F -ratio. Let n denote the
number of observations, v the number of parameters involved in the richer model
M2, and u the number of parameters that generalize model M2 with respect to the
reduced model M1. The dual F -ratio, which is a standard tool in linear models, has
a one-to-one correspondence with R̃2, i.e.,

F = [R̃2(n− v)]/[(1− R̃2)u]. (15)

Under stronger assumptions on ε(t) term in Equation (13), namely, i.i.d. and nor-
mality, the F -ratio is a statistical variable with Snedecor’s F distribution, F ∼
Fu,n−v. A common upper threshold for the F -ratio (15), without strong assump-
tions on error distributions, is 4.

The above-mentioned SARMAX improvement for short-term predictions rests on
the following equation based on polynomial function of backward operators, namely,

Ψ(B)Φ(Bs) [z′(t)− c η(β̂, t)] = ϑ(B)Θ(Bs) at, (16)

with at a WN process; B, Bs the standard and seasonal backward operators; and
Ψ(B), Φ(Bs), ϑ(B), and Θ(Bs) the usual backward polynomials of order p, P , q,
and Q, respectively. The calibration parameter c allows a global assessment on the
stability of the predicted regressive values stemming from model η(β, t).

2.5 Ex ante modeling of a new entrant

In previous sub-sections we presented some univariate models for the description of
the temporal trajectory of a product. It is a common experience to observe pos-
sible competition among few products pertaining to the same category. Savin and
Terwiesch [30]; Guseo and Mortarino [13], [14]; Krishnan, Bass, and Kumar [20];
among others, examined directly the competition among few products by means of
a system of related differential equations with interesting closed-form solutions. Nev-
ertheless, previous approaches assume a sufficient development of the observed series
to provide reliable response or parameters’ estimates. When competition involves a
large number of partially substitute products, the direct differential description may
appear cumbersome, awkward, or not applicable. Moreover, the complete lack of
information on the future series of a new entrant product highlights a non-standard
class of inferential problems.

The latter limitation, summarized by the lack of data for a new entrant, may sug-
gest a different approach based on the recognition of possible patterns of sequential
life cycles in a common product category.

The main issues to deal with are:

a) the definition or estimate of the launch time for the new entrant;

b) the ex ante estimate, with no specific information, of the parameters character-
izing a new entrant under reasonable assumptions.

For point a) we may follow different strategies. A possible way is to study the birth
events over time within specific classes. For instance, the antidiabetic type 2 drugs
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are classified through ATC codes (Anatomical Therapeutical Chemical classification
system): A10BA (biguanides), A10BB (sulfonamides), A10BD (combinations or oral
glucose lowering drugs), etc. Within previous homogeneous sub-classes or at the
general level, some estimate of the birth time of a new entrant may be performed
by implementing a BM, GBM or GGM model within common or equivalent active
principles. Following, for simplicity, a Bass model F (t), as defined in Equation
(3), under the hypothesis of a good performance, where m̂, p̂, and q̂ are the usual
estimates and tLO the time of the younger observation, we may solve the following
equation in δ,

1 = m̂ [F̂ (tLO + δ)− F̂ (tLO)], (17)

in order to obtain an estimate for the new birth time: tLO + δ̂.

For point b), a different path to define the time of a new entry may be obtained
within a model that exhibits a slowdown or a saddle. This special time period may
be interpreted as a kind of pause in the evolutionary behavior of the last competitor
that entered the category. During that pause a new entrant has a limited number
of difficulties in sustaining and increasing its market share. The Guseo-Guidolin
model allows for a bimodal performance with a better understanding of the reasons
motivating such a saddle.

Usually, the communication component that determines the shape of market
potential is positioned in the first part of a product’s life cycle. In some cases,
especially for products that are of wide interest for a community, we observe a
different order. Adoption is the first driver and communication efforts take place
in a second moment in order to reinforce or stabilize the performance. The latter
modality is normally associated with particular pharmaceutical drugs that are well
known by patients affected by serious illness.

After the launch time determination for a new product, the second issue to be
solved is the ex ante evaluation of plausible parameters’ estimates within a common
univariate model for each competing product in a category. A simple idea, proposed
in this paper, rests on the evolutionary study over time of each parameter of the
competing products. The basic proposal is to determine at a first step a convenient
time-dependent function (polynomial or other) and evaluate their estimated values
at the predicted launch date of the new entrant.

3 An application: the ranitidine diffusion in Italy

Ranitidine is a histamine H2-receptor antagonist that normalizes stomach acid pro-
duction. It is currently used in the treatment of gastroesophageal reflux disease,
heartburn, and peptic ulcers. It was developed by Glaxo in the summer of 1976
as a response to Smith, Kline and French which introduced, in 1976, the first his-
tamine H2-receptor antagonist, cimetidine, launched in the UK with the trade name
Tagamet.

The main difference of ranitidine was the substitution of the imidazole-ring of
cimetidine with a furan-ring. The new active principle introduced a significant im-
provement in terms of tolerability with a reduction of adverse drug effects, a longer-
lasting action, and an excellent activity as compared with cimetidine. Ranitidine
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Figure 1: Ranidil, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1981.

Figure 2: Zantac, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1981.

was introduced worldwide in 1981 and was the “winner” in this area.

The launch in the Italian market dates back to the fourth quarter of 1981, 4/81
for brevity. Zantac by Glaxo (now GlaxoSmithKline) and Ranidil by Menarini (now
Menarini Industrie Farmaceutiche Riunite) were the first two members of the rani-
tidine category. Further competitors entered the market with new launches in the
subsequent years, namely, Trigger (4/83), Ulcex (4/83), Ranibloc (2/85), Raniben
(4/86), and Mauran (4/86). A further drug for acid-related disorders based on
ranitidine was Ulkobrin, launched in the fourth quarter of 1988 by Salus Researches.

The data, provided by IMS-Health, Italy, refer to the cumulative quarterly num-
ber of packages sold in Italy and are available until the third quarter of 1991.

In the sequel, we examine the dynamics of the above-mentioned drugs excluding
Ulkobrin that plays the role of new entrant in the proposed analysis.

Ranidil was launched by Menarini as a parallel product. Zantac was the main
driver sustained and promoted by Glaxo. A comparison between the twin products
may be of interest.
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Figure 3: Trigger, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1983.

Figure 4: Ulcex, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1983.

Figure 5: Ranibloc, Italy: quarterly packages sold (in thousands). GGM and
Sarmax-GGM models. Launch: 2/1985.
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Figure 6: Raniben, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1986.

Figure 7: Mauran, Italy: quarterly packages sold (in thousands). GGM and Sarmax-
GGM models. Launch: 4/1986.

The introductory analysis is based on the BM which tends to underestimate
the life cycle of both products. The determination index in Table 1 defines a good
approximation, R2 = 0.99967 for Ranidil and R2 = 0.99968 for Zantac, but the
rigidity of the assumed fixed market potential is not able to recognize a kind of
learning effect within the system.

The idea that market potential may present a structure that is time-dependent
is well described by the GGM as denoted by Equations (11) and (12). They define
an evident advantage over BM. We observe in Table 1 good levels of determination
indexes, R2 = 0.999926 for Ranidil and R2 = 0.999894 for Zantac. What is much
more relevant is the significance of the squared partial coefficients, R̃2

B|GG = 0.77

for Ranidil and R̃2
B|GG = 0.67 for Zantac. A confirmation of the significance of the

extended GGM with respect to BM in both cases is highlighted by the high values
of F -ratios, FB|GG = 59.6 for Ranidil and FB|GG = 35.2 for Zantac.
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The performance of the GGM is satisfactory even if we observe some instability
in the definition of the approximate confidence limits for the parameters. However,
what is more important is the global stability of the system response.

Some remarks may be of interest. The asymptotic potential of Zantac is greater,
1509820 versus 937643. Nevertheless, the levels of pc, 0.206 for Ranidil and 0.113 for
Zantac, are relevant. This is an evident signal of the effort spent, at the communica-
tion level, by Menarini in sustaining Ranidil as compared with Zantac, where Glaxo
obtained an optimal performance without forcing the market. The negative values of
qc denote a non-significant effect of imitative component within the communication
factor.

A subsequent analysis through SARMAX models, where the X component is the
estimated mean trajectory based on GGM, gives good results. For both models we
observe a confirmation of the GGM over the BM, where parameter c equals 1.0002
and 0.99968, with a high value of t-statistic, 1483.01 and 880.51, respectively. The
improvement generated by SARMAX with respect to GGM is denoted by the high
values of R̃2

GG|S , namely 0.913 and 0.946, versus FGG|S = 35.4 and 38.2, respectively.

We observe in Figures 1 and 2 that the slowdown is positioned at 2/1985 and
2/1986, respectively. This is a typical effect of the GGM and usually describes a
change of regime between the prevalence of the communication driver in promoting
sales in a first phase followed by a more standard dynamic due to the adoption
process in itself.

In the fourth quarter of 1983, we register the introduction of two new members
within the ranitidine principle, namely, Trigger by Polifarma (licensed by Glaxo)
and Ulcex (Laboratori Guidotti and Lusofarmaco).

Trigger is characterized by a typical GGM behavior: a wide effort during launch
phase; a deep slowdown, which is a kind of saddle, and a subsequent takeoff. See,
in particular, Figure 3. Its absolute dimension is not very high as compared with
Zantac and Ranidil. It captures only a particular niche. A confirmation of the GGM
relevance, with respect to BM, is given in Table 1 by two fundamental tests: R̃2

B|GG =
0.961 and FB|GG = 441.04. We observe a further improvement of SARMAX for

short-term predictions, i.e., R̃2
GG|S = 0.86 and FGG|S = 17.48. The specific firm’s

effort during the introduction of Trigger in the market category is well described by
the parameters qc = 0.33 and pc = 0.026. The subsequent adoption phase is quite
normal. SARMAX analysis for short-term prediction is quite effective as determined
by the estimate c = 0.99983 with t-statistic tGGM = 1167.13 and R̃2

GG|S = 0.86 or,
equivalently, FGG|S = 17.48 to confirm the global improvement.

Also, Ulcex is characterized by a particular GGM behavior even if the separation
between the launch communication effect and the adoption process is small so that
the latter is nearly superimposed on the former. The global performance under
BM is not satisfactory, while GGM improves the fitting with R̃2

B|GG = 0.73 and
FB|GG = 47.49. See, in particular, Figure 4. The asymptotic performance of the
market potential is about 1/10 of Ranidil or Zantac considered as a benchmark.
SARMAX improvement is quite satisfactory.

Ranibloc, introduced in the second quarter of 1985 by GlaxoSmithKlein, has a
special behavior in the introductory phase. The commercial communication effort is
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quite limited, and the observed takeoff is comparatively slow. This behavior is well
described by a standard BM with a reasonable determination index R2 = 0.9972.
The contribution of GGM in this case is not relevant because R̃2

B|GG = 0.10 and
FB|GG = 1.97. See, in particular, Figure 5. The improvement due to SARMAX
framework is significant as expressed by FGG|S = 66.66.

Raniben, introduced by Firma in the fourth quarter of 1986, has a limited share,
and its behavior is well described by a GGM as compared with a BM. See, in
particular, Figure 6. The F -ratio is significant, FB|GG = 18.9, and a SARMAX
improvement is well determined.

Mauran, introduced by Coli in the fourth quarter of 1984, reached a very lim-
ited expansion, and its life cycle was very short. In this case a BM is sufficient for
interpretation. A confirmation is given by FB|GG = 0.35 that excludes the appropri-
ateness of a GGM. See, in particular, Figure 7. The particular short-term history
of Mauran, very far from the previous ones, and very limited in time, suggests an
exclusion of this product from the subsequent meta-analysis.

An important aspect of the GGM applied to Ranidil, Zantac, Trigger, Ulcex,
Ranibloc, and Raniben is that the slowdown period of the products is related to the
launch of successive competitors. The particular choice is quite reasonable because
a local depression on sales allows the introduction of a new entrant with minor
difficulties. For this reason we estimate the fourth quarter of 1988 as the possible
entry time of a new competitor. This date was actually the launch date of Ulkobrin.

4 Meta-analysis point estimate of a new entrant: Ulkobrin

The key idea for the estimation of the main features of a new entrant in the category
of ranitidine in the fourth quarter of 1988 is grounded in the hypothesis that the
subsequent competitors may evolve according to the local opportunities and con-
straints of the category. The sequential introduction of competitors that develop
with specific characteristics may give information about the expandability of the
category or its evolutionary contraction. We have modeled all competing products
with a common-model GGM, which is usually particularly suitable in describing the
life cycle of pharmaceutical drugs dynamics. We express the pattern of the subse-
quent products by modeling the common five parameters K, pc, qc, ps, and qs over
time through convenient regressive models.

In Table 2, we have summarized, for each parameter, the selected model under
suitable restrictions. For instance, the K parameter exhibits two large values related
to Ranidil and Zantac that may be considered outliers with respect to the followers.
In this case the suggested model K = (a+b/t)2 is limited to the four younger series.
A similar discussion was reserved to the qc dynamical evolution where Ranibloc
may be considered as an outlier. For the other parameters we introduced specific
functions that are (with some exception) quite reasonable in estimating the observed
temporal evolution. The parameter qs is quite stable over the examined period, and
the low level of R2 is a confirmation.

The last column of Table 2 includes the suggested estimates, computed at entry
time 4/88, for the new entrant, Ulkobrin. In Figure 8, we propose a graphical com-
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Figure 8: Ulkobrin, Italy: quarterly packages sold (in thousands). GGM and
Sarmax-GGM models. Launch: 4/1988.

parison between observed Ulkobrin cumulative sales and the meta-estimate obtained
by induction. The agreement appears quite good even if stability of single models
is sometimes not very high and the number of older competitors is limited to few
actors.

5 Conclusions

The proposed strategy in estimating ex ante the launch data and specific features of
a new entrant in an existing category of pharmaceutical drugs is not an easy issue.
There are many sources of uncertainty that may affect the procedure.

A basic assumption and, therefore, a limitation, is due to the necessity of im-
plementing a single family of models for the individual description. The second
constraint is a consequence of an informative assumption on the existence of a pat-
tern of the subsequent trajectories that define the global properties of the category
evolving over time.

In a certain sense we consider that the sequence of the alternative product is not
a random white noise, but exhibits a kind of meta life cycle.

The statistical precision and stability of estimates strongly depends upon a kind
of local minimal stationarity in order to estimate with few data some plausible future
for a new entrant. Obviously, orphan pharmaceutical drugs cannot be examined with
the proposed methodology because the learning component is totally absent. In this
case, a common strategy is usually defined through a mean value determination of
the parameters pertaining to similar or affine products.
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Table 1: Parameter estimates of standard Bass model, BM, and Guseo–Guidolin
model, GGM. SARMAX model is an improvement of GGM. ( ) marginal linearized
asymptotic 95% confidence limits. [ ] t statistic. ∗: significant, 95%. ∗∗: strongly
significant, 99%. The subscripts of R̃2 and F define the involved nested models, in
particular, B|GG denotes the comparison between BM and GGM, and GG|S the
comparison between GGM and SARMAX models.

par. Ranidil Zantac Trigger Ulcex Ranibloc Raniben Mauran
Model 4/81 4/81 4/83 4/83 2/85 4/86 4/86

m 164414 158686 3708.88 7121.4 4281.0 3117.39 568.25
BM (126543) (120224) (3299.71) (6062.42) (283.294) (2673.98) (553.159)

(202285) (197147) (4118.06) (8179.86) (8278.7) (3560.8) (583.342)
p 0.004693 0.005443 0.012323 0.01023 0.005109 0.013332 0.018308

(0.00376) (0.00428) (0.01148) (0.00931) (0.00089) (0.01219) (0.01353)
(0.00563) (0.00660) (0.01317) (0.01114) (0.00933) (0.01448) (0.02309)

q 0.041373 0.003590 0.087470 0.072470 0.073000 0.124238 0.386722
(0.03643) (0.03077) (0.07166) (0.06010) (0.04662) (0.10703) (0.33306)
(0.04632) (0.04114) (0.10329) (0.08483) (0.09938) (0.14144) (0.44038)

R2 0.999674 0.999681 0.997668 0.998678 0.997247 0.999403 0.995978
RSS 3838820 3613170 56628.2 78091.2 10319.3 3822.47 3293.39

K 937643 1509820 78329.0 128682 111266 97912.2 571.673
GGM (-4402630) (-13227000) (76993.8) (-146673) (-280439) (-95968.2) (548.821)

(6277920) (16246700) (79664.2) (404036) (502971) (291793) (594.525)
qc -0.025046 -0.276337 0.332404 -0.046149 -1.897870 -0.06918 0.366790

(-0.24212) (-0.37853) (0.29164) (-0.17577) (-14.0876) (-0.16757) (-7.36113)
(0.19293) (-0.17415) (0.37316) (0.08347) (10.2919) (0.02920) (8.09471)

pc 0.20603 0.11343 0.02617 0.03898 0.061233 0.04454 0.28390
(0.14324) (-0.22530) (0.02096) (-0.13444) (-17.5480) (-0.14030) (-1.45413)
(0.26883) (0.45216) (0.03137) (0.21241) (17.6705) (0.22938) (2.02193)

qs 0.02535 0.02003 0.01233 0.00321 0.055216 0.016790 0.358643
(0.00896) (-0.00834) (0.01114) (-761.281) (-392774) (-386.07) (0.13730)
(0.04170) (0.04839) (0.01352) (761.288) (392774) (386.102) (0.57998)

ps 0.00093 0.000999 0.00093 0.00144 0.001185 0.001254 0.02152
(-0.00436) (-0.00998) (-14436.4) (-9091.18) (-1.4057E6) (-3043.57) (-0.01641)
(0.00622) (0.01198) (14436.4) (9091.19) (1,4057E6) (3043.58) (0.05944)

R2 0.999926 0.999894 0.999911 0.999644 0.997526 0.999713 0.996058
RSS 875222 1206230 2161.89 21010.9 9276.26 1835.46 3228.53

R̃2
B|GG 0.77301 0.66771 0.96183 0.73071 0.10108 0.51982 0.01968

FB|GG 59.6 35.165 441.04 47.49 1.97 18.945 0.35

AR1 1.17015* 1.33057* -0.519946* 1.58315* 1.50803* 1.58483* 0.763015
Sarmax AR2 -0.04423 -0.79038* — -0.90740* -0.972585* -1.00913* -0.135526

+ AR3 -0.400743 — — — — — 0.347262
prGGM AR4 — — — — — — 0.078015

SAR1 1.15990* 1.30197* 0.35227 1.14969* 0.863138* 0.908757* -0.03024
SAR2 — -0.97882* 0.610592* — -0.814298 — 1.00052
SAR3 — 0.628512* — — 0.975279 — 0.032378
SAR4 — — — — — — —
MA1 -0.0607202 -0.0553874 -1.38737* — 0.903295* 0.989182* -1.51889*
MA2 0.473702* -0.864262* -0.954608* — — — -0.603104*
MA3 0.822918* -0.0458505 — — — — —
MA4 — -0.749604* — — — — —
SMA1 1.12057* 1.60100* 1.29839* 0.272824 0.59379* -0.493494* 0.451533
SMA2 — -0.828773* -0.597629* 0.902611* -0.433146* — 0.521321
SMA3 — — — — — — -0.18182
SMA4 — — — — — — —

RSS 76158.9 65202.84 303.761 1527.128 220.768 164.23 221.091

R̃2
GG|S 0.912983 0.945945 0.859493 0.927317 0.972601 0.910526 0.931596

FGG|S 35.41** 38.18** 17.48* 56.14** 66.66** 20.35* 3.40

prGGM c 1.0002** 0.99968** 0.99983** 1.0034** 0.98901* 0.99741* 1.0388*
tGGM [1483.01] [880.501] [1167.13] [223.94] [675.91] [610.86] [14.62]
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Table 2: Meta-analysis for Ulkobrin.

Par. function: g(t) Conditions Ulkobrin (4/1988)
(a+ b/t)2 t > 830

K R2 = 0.9954 observations: 4 81466
a+ bt+ ct2 outlier: Ranibloc

qc R2 = 0.465 observations: 5 -0.65
1/(a+ b ln(t)) —

pc R2 = 0.2015 observations: 6 0.031
a+ bt+ ct2 —

qs R2 = 0.07 observations: 6 0.046
a+ bt —

ps R2 = 0.3005 observations: 6 0.0014
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