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1 Introduction

Let us denote by y = (y1, . . . , yn) the available data, considered for simplicity as a
random sample of size n, i.e. as a realisation of a random variable Y = (Y1, . . . , Yn)
having independent and identically distributed components. Moreover, let p(y; θ) =
p(y; ψ, λ) =

∏n
i=1 p

Yi
(yi; ψ, λ) denote the density of Y , with θ = (ψ, λ) ∈ Θ ⊆ IRd,

where ψ is a p-dimensional parameter of interest and λ is a q-dimensional nuisance
parameter, with d = p + q.

When the whole parameter θ is of interest, the likelihood function represents, up
to a multiplicative constant, the probability of observing Y in a neighbourhood of
the actually obtained data y, for each given θ ∈ Θ. Even when the primary interest
of inference is about the component ψ, a similar interpretation holds for the profile
likelihood function. It represents, up to a multiplicative constant, the plug-in esti-
mate of the probability of observing Y in a neighbourhood of the actually obtained
data y, for each given ψ. Plug-in refers here to maximum likelihood estimation of λ
for each given value of ψ. On the other hand, the profile likelihood is proportional
to the estimative predictive density, evaluated at y, of a future Y when ψ is treated
as known. A first-order link between likelihood theory and prediction in frequentist
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inference is thus depicted. This paper aims at enquiring second-order links.
The profile likelihood, as well as the estimative predictive density, does not take

into account uncertainty introduced by sampling variability of the maximum like-
lihood estimator of the nuisance component λ with ψ treated as known. In order
to accomodate for the bias ensuing from mere plug-in estimation, various proposals
have been put forward, starting from the modified profile likelihood of Barndorff-
Nielsen (1980, 1983) in likelihood theory and from the suggestions of Aichinson
(1975) and Harris (1989) in prediction. See Severini (2000, Chapter 9) and Young
and Smith (2005, Chapter 10) for recent accounts.

We study here the asymptotic connection between adjustments of the profile
likelihood in likelihood theory and refinements of the estimative predictive density
in prediction. We show that there exists a direct, second-order, likelihood inter-
pretation for modified profile likelihoods. This new rationale for modifications of
the profile likelihood complements the results in Severini (1998a) and in Pace and
Salvan (2006).

In more detail, the main result we show can be summarized as follows. Let (y, x)
be a 2n-dimensional data vector from (Y, X), where X is an independent copy of Y .
Consider first the refined estimative predictive density of Komaki (1996) for X based
on y for a given ψ. Sub-sample y is thus used to eliminate the nuisance component λ
in order to obtain an inferentially accurate predictive density for X depending only
on ψ. Consider next that such a predictive density, when evaluated at the observed
x, defines a pseudo-likelihood for ψ. It turns out that, on average, inference about
ψ based on the resulting pseudo-likelihood, i.e. on the 2n-dimensional sample (y, x),
is, to second order, equivalent to inference about ψ based on the modified profile
likelihood using data y alone. This result outlines a form of consistency to second
order between likelihood theory and prediction in frequentist inference.

Notation and background material are given in Section 2. For clarity and mo-
tivation, connections between adjustments of the profile likelihood and refinements
of the estimative predictive density are explored through two introductory examples
in Section 3. The main result is proved in Section 4.

2 Notation and background

Let us consider first the typical setting of likelihood theory for inference about ψ
in the presence of the nuisance parameter λ. Let us denote by ℓ(θ) = ℓ(ψ, λ) =
ℓ(ψ, λ; y) = log p(y; θ) the loglikelihood function based on y and by θ̂ = (ψ̂, λ̂) the
maximum likelihood estimate of θ = (ψ, λ). Moreover, let λ̂ψ be the constrained

maximum likelihood estimate of λ for a given value of ψ and let θ̂ψ = (ψ, λ̂ψ). In the
presence of a nuisance parameter, inference on the interest parameter is, whenever
possible, based on exact reduction by marginalisation or by conditioning, leading to
marginal or conditional likelihoods. When no exact reduction by marginalisation or
conditioning is available, likelihood inference is often based on a pseudo-likelihood,
i.e. on a function of ψ and y having properties similar to those of a genuine likelihood
for ψ. The most commonly used pseudo-loglikelihood is the profile loglikelihood

ℓ
P
(ψ) = ℓ

P
(ψ; y) = ℓ(θ̂ψ) = ℓ(ψ, λ̂ψ) . (1)
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As is well known, (1) shares most first-order properties of a genuine loglikelihood
for ψ (see Barndorff-Nielsen and Cox, 1994, Section 3.4).

Elimination of nuisance parameters through maximum likelihood estimates is
widely considered in prediction as well. In the simplest instance of this setting, the
object of inference is a future or as yet unobserved random vector X = (X1, . . . , Xh),
h ≥ 1, independent of Y = (Y1, . . . , Yn), and having independent and identically
distributed components, where X1 has the same distribution as Y1. Let us denote
by p

X
(x; θ) = p

X
(x; ψ, λ) the density of X. For notational consistency with the

likelihood setting in the presence of nuisance parameters, ψ has to be treated as
known, while λ is unknown. The simplest frequentist approach to prediction of X,
on the basis of the observed y from Y , consists in using the estimative predictive
density function

pe(x; ψ) = p
X

(x; ψ, λ̂ψ) , (2)

obtained by substituting the unknown λ with its maximum likelihood estimate for
the given ψ, based on y, denoted by λ̂ψ = λ̂ψ(y).

The estimative, or plug-in, device considered in first-order likelihood theory and
prediction neglects sampling variability of the estimated nuisance parameter. Par-
ticularly serious inaccuracies may occur when the dimension of λ is large relative to
n. See e.g. Sartori (2003) and Vidoni (1995) for likelihood theory and prediction,
respectively.

We briefly recall below the expression of notable instances of adjustments of
profile loglikelihood and of refinements of the estimative predictive density.

2.1 Modifications of profile likelihood

Let us denote by ℓψ(θ) and ℓλ(θ) blocks of the score (column) vector ∂ℓ(θ)/∂θ.
Moreover, let jψψ(θ), jψλ(θ) and jλλ(θ) be blocks of the observed information j(θ) =
−∂2ℓ(θ)/(∂θ∂θ⊤). Similarly, we will denote by iψψ(θ), iψλ(θ) and iλλ(θ) blocks of
the expected information i(θ) = Eθ(j(θ)), where Eθ(·) denotes expectation under θ.
Assume that the minimal sufficient statistic for the model is a one-to-one function
of (ψ̂, λ̂, a), where a is an ancillary statistic, either exactly or approximately, so that
ℓ(ψ, λ; y) = ℓ(ψ, λ; ψ̂, λ̂, a). Then, the modified profile loglikelihood of Barndorff-
Nielsen (1980, 1983) is

ℓ
M

(ψ) = ℓ
M

(ψ; y) = ℓ
P
(ψ) − 1

2
log | j

λλ
(θ̂ψ) | − log

∣

∣

∣

∣

∣

∂λ̂ψ

∂λ̂

∣

∣

∣

∣

∣

, (3)

where
∣

∣

∣

∣

∣

∂λ̂ψ

∂λ̂

∣

∣

∣

∣

∣

=
| ℓ

λ;λ̂
(θ̂ψ) |

| j
λλ

(θ̂ψ) |

involves the sample space derivatives ℓ
λ;λ̂

(ψ, λ) = ∂2ℓ(ψ, λ; ψ̂, λ̂, a)/(∂λ ∂λ̂⊤). Calcu-
lation of sample space derivatives is straightforward only in special classes of models,
notably exponential and group families. When ψ and λ are orthogonal, i.e. when

iψλ(θ) = 0, such a calculation can be avoided because log
∣

∣

∣
∂λ̂ψ/∂λ̂

∣

∣

∣
= Op(n

−1) when
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ψ − ψ̂ = Op(n
−1/2). This leads to the approximate conditional loglikelihood of Cox

and Reid (1987)

ℓ
A
(ψ) = ℓ

A
(ψ; y) = ℓ

P
(ψ) − 1

2
log | j

λλ
(θ̂ψ) | ,

which approximates ℓ
M

(ψ) with error of order Op(n
−1), i.e. to second order. See

Severini (2000, Section 9.5) for a review of approximate calculation of sample space
derivatives. In particular, the approximation to ℓ

M
(ψ) developed in Severini (1998b)

is

ℓ̄
M

(ψ) = ℓ̄
M

(ψ; y) = ℓ
P
(ψ) +

1

2
log |jλλ(θ̂ψ)| − log |νλ,λ(θ̂ψ, θ̂; θ̂)| , (4)

where

νλ,λ(θ1, θ2; θ0) = Eθ0
(ℓλ(θ1)ℓλ(θ2)

⊤) (5)

and θ0 = (ψ0, λ0) denotes the true parameter value. An asymptotically equiva-
lent version of (4) is obtained by replacing νλ,λ(θ̂ψ, θ̂; θ̂) with its empirical analogue

ν̂λ,λ(θ̂ψ, θ̂), where

ν̂λ,λ(θ1, θ2) =
n

∑

i=1

ℓ
(i)
λ (θ1)ℓ

(i)
λ (θ2)

⊤ , (6)

with ℓ
(i)
λ (θ) = ∂ log p

Y1
(yi; ψ, λ)/∂λ (cf. Severini, 2000, Section 9.5.5).

In Pace and Salvan (2006) various on average second-order equivalent versions
of ℓ

M
(ψ), denoted by ℓ

AP
(ψ), are discussed. Second-order equivalence on average

means that Eθ0
(ℓ

AP
(ψ)− ℓ

M
(ψ)) = c+O(n−1), where c is a constant. In particular,

for the purposes of this paper, the following version is relevant

ℓ
AP

(ψ) = ℓ
P
(ψ) − 1

2
tr{jλλ(θ̂ψ)−1νλ,λ(θ̂ψ, θ̂ψ; θ̂)} . (7)

This is the straightforward generalization to q > 1 of the adjusted profile loglikeli-
hood ℓ

P
(ψ) − aII(ψ), with aII(ψ) as given in Pace and Salvan (2006, Section 3.3).

2.2 Refinements of the estimative predictive density

Even in the setting of prediction, exact reductions are sometimes possible, in partic-
ular when an exact pivot for λ of the form T (Y, X, ψ), for short an exact predictive
pivot, is available (see Barndorff-Nielsen and Cox, 1996, and the examples in Section
3). This reduction parallels the construction of marginal likelihoods in likelihood
theory. When no exact predictive pivot exists, asymptotic methods may be consid-
ered, with the estimative predictive density (2) playing the same role as the profile
likelihood in likelihood theory.

For curved exponential families and h = 1, Komaki (1996) obtains the optimal
improvement over pe(x; ψ) in terms of average Kullback–Leibler divergence, up to
and including terms of order O(n−1), i.e. to second order. To give the expression
of the resulting modified estimative density p

K
(x; ψ), index notation and Einstein

summation convention are convenient. Generic components of λ will be denoted
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by λr, λs, . . . , with r, s, . . . = 1, . . . , q. Let ℓ(θ; x) = log p
X

(x; ψ, λ), ℓr(θ; x) =
∂ log p

X
(x; ψ, λ)/∂λr and ℓrs(θ; x) = ∂2 log p

X
(x; ψ, λ)/(∂λr∂λs). Then,

p
K

(x; ψ) = pe(x; ψ)

[

1 +
1

2

{

hrs(θ̂ψ; x) − Γt
rs(θ̂ψ)ℓt(θ̂ψ; x)

}

irs(θ̂ψ)

]

, (8)

where

hrs(θ; x) = ℓrs(θ; x) + ℓr(θ; x)ℓs(θ; x) ,

Γt
rs(θ) = itu(θ)Eθ{hrs(θ; X)ℓu(θ; X)}

and irs(θ) denotes the generic element of the inverse matrix of iλλ(θ).

Corcuera and Giummolè (2000) show that (8) is, to second order, the optimal
improvement over (2) in terms of average Kullback-Leibler divergence also for general
regular models. Moreover, they give the form of the optimal correction under a
general α-divergence.

3 From prediction to likelihood: two examples

“Exact” or refined estimative predictive densities treating ψ as known can be ex-
ploited to define a pseudo-loglikelihood for ψ. Suppose in particular that T =
T (Y, X1, ψ) is an exact pivot for λ, based on X1, Y and, possibly, ψ. Let Rα be a
set such that Prψ{T (Y, X1, ψ) ∈ Rα} = 1 − α. Then, a prediction set based on T
with exact level 1 − α is

Sα(y) = {x1 : T (y, x1, ψ) ∈ Rα} .

A formal predictive density p̂(x1; y, ψ) such that

∫

Sα(y)
p̂(x1; y, ψ)dx1 = 1 − α

for every α ∈ (0, 1) will be called an exact predictive density for X1 based on y for
a given ψ.

Given an exact predictive density for X1, the corresponding predictive density
of n independent copies of X1, i.e. of the random sample X = (X1, . . . , Xn), is

p̂(x; y, ψ) =

n
∏

i=1

p̂(xi; y, ψ) . (9)

A natural pseudo-loglikelihood for ψ may be defined by treating log p̂(x; y, ψ) as
a function of ψ for the observed (y, x). We argue in the two examples below that
such a pseudo-loglikelihood for ψ agrees on average with ℓ

M
(ψ), to second order.

When no exact pivot is available second-order agreement is maintained if p̂(xi; y, ψ)
in (9) is replaced by the refined estimative predictive density of the form (8), as will
be shown in Section 4.
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Example 1: Random sampling from a normal distribution

Let (y, x), with y = (y1, . . . , yn) and x = (x1, . . . , xn), be a random sample of size
2n from a normal distribution with mean µ and variance σ2. In order to obtain
a pseudo-loglikelihood for σ2 based on (9), let us consider y as a random sample
from a normal distribution with unknown mean µ and fixed variance σ2. Let Ȳn

be the sample mean and X1 be an independent future observation from the same
distribution. Based on the exact pivot X1 − Ȳn, the exact predictive density of X1

is

p̂(x1; y, σ2) =
1√

2πσ
√

1 + n−1
exp

{

−1

2

(x1 − ȳn)2

σ2(1 + n−1)

}

,

i.e. normal with mean ȳn and variance σ2(1 + n−1).
The modified profile loglikelihood (3) for σ2 takes the form

ℓ
M

(σ2) = ℓ
M

(σ2; y) = ℓ
P
(σ2; y) +

1

2
log σ2 ,

with

ℓ
P
(σ2; y) = −n

2
log σ2 − n

2

σ̂2
y

σ2
,

where σ̂2
y = n−1

∑n
i=1(yi − ȳn)2 is the maximum likelihood estimate of σ2 based on

y. Let θ0 = (µ0, σ
2
0). Then for σ2 − σ2

0 = O(n−1/2), considering σ̂2
y as a random

variable, under θ0 we have the stochastic expansion

log
σ2

σ̂2
y

= − log

(

1 +
σ̂2

y

σ2
− 1

)

= −
(

σ̂2
y

σ2
− 1

)

+ Op(n
−1/2) ,

giving

ℓ
M

(σ2; Y ) = ℓ
P
(σ2; Y ) − 1

2

σ̂2
y

σ2
+ Op(n

−1/2) .

The predictive density of the random sample X = (X1, . . . , Xn) is, in view of
(9),

p̂(x; y, σ2) = (2π)−n/2(σ2)−n/2(1+n−1)−n/2 exp

{

− 1

2σ2(1+n−1)

n
∑

i=1

(xi−ȳn)2

}

.

Hence, neglecting constants,

log p̂(x; y, σ2)= −n

2
log σ2 − 1

2σ2(1+n−1)

n
∑

i=1

(xi − x̄n)2 − 1

2σ2(1+n−1)
n(ȳn − x̄n)2 .

Let σ̂2
x = n−1

∑n
i=1(xi − x̄n)2. Then,

log p̂(x; y, σ2) = −n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2
− 1

2σ2
n(ȳn − x̄n)2 + O(n−1) .

Under θ0 the quantity n(ȳn − x̄n)2 is a realization of 2σ2
0W , where W is a chi-square

on one degree of freedom. Therefore,

log p̂(X; Y, σ2) = −n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2
− σ2

0

σ2
W + Op(n

−1) .
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Moreover, using Eθ0
(σ2

0W ) = Eθ0
(σ̂2

x) + O(n−1),

Eθ0
(log p̂(X; Y, σ2)) = Eθ0

(

−n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2

)

− Eθ0
(σ̂2

x)

σ2
+ O(n−1)

= Eθ0

(

−n

2
log σ2 − n

2

σ̂2
x

σ2
− 1

2

σ̂2
x

σ2

)

+ O(n−1)

= Eθ0
(ℓ

M
(σ2; X)) + O(n−1)

= Eθ0
(ℓ

M
(σ2; Y )) + O(n−1) .

The last identity follows from the fact that Y is a copy of X. This shows that ℓ
M

(σ2)
agrees on average to second-order with the pseudo-loglikelihood for σ2 derived from
log p̂(x; y, σ2).

Example 2: Random sampling from a gamma distribution

Let us consider y = (y1, . . . , yn) as a random sample from a gamma distribu-
tion with unknown scale parameter λ and fixed shape parameter ψ. Let X1 be an
independent future observation from the same distribution, i.e. with density

p(x1; ψ, λ) =
1

Γ(ψ)
λψxψ−1

1 exp{−λx1} , x1 > 0 .

The maximum likelihood estimate of λ with ψ fixed is λ̂ψ = λ̂ψ(y) = ψ/ȳn. Based

on the pivot λ̂ψX1, the exact predictive density of X1 may be expanded as (Vidoni,
1995, Example 4.2)

p̂(x1; y, ψ) = p(x1; ψ, λ̂ψ) (10)
[

1 +
1

2nψ

{

λ̂2
ψx2

1 − 2λ̂ψ(ψ + 1)x1 + ψ(ψ + 1)
}

+ O(n−2)

]

.

The modified profile loglikelihood (3) for ψ is

ℓ
M

(ψ) = ℓ
M

(ψ; y) = ℓ
P
(ψ; y) − 1

2
log ψ ,

where

ℓ
P
(ψ; y) = (ψ − 1)

n
∑

i=1

log yi − nψ + nψ log ψ − nψ log ȳn − n log Γ(ψ) .

Let θ0 = (ψ0, λ0). Then for ψ − ψ0 = O(n−1/2), and neglecting constants, under θ0,

ℓ
M

(ψ; Y ) = ℓ
P
(ψ; Y ) − 1

2

ψ

ψ̂
+ Op(n

−1/2) ,
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where ψ̂ = ψ̂(Y ). Using in (9) the predictive density (10), we get

log p̂(X; Y, ψ) = (ψ − 1)
n

∑

i=1

log Xi − n log Γ(ψ) − λ̂ψ(Y )
n

∑

i=1

Xi + nψ log λ̂ψ(Y )

+

n
∑

i=1

1

2nψ

{

λ̂2
ψ(Y )X2

i − 2λ̂ψ(Y )(ψ + 1)Xi + ψ(ψ + 1)
}

+Op(n
−1)

= ℓ
P
(ψ; X) − nψ(F − 1) + nψ log F

+

n
∑

i=1

1

2nψ

{

λ̂2
ψ(Y )X2

i − 2λ̂ψ(Y )(ψ + 1)Xi + ψ(ψ + 1)
}

+Op(n
−1) ,

where F = λ̂ψ(Y )/λ̂ψ(X) is distributed, under θ0 = (ψ0, λ0), as the ratio of two
independent gamma variates with common shape parameter nψ0 and common unit
scale. As a consequence, Eθ0

(F ) = 1 + (nψ0)
−1 + O(n−2) and Eθ0

(log F ) = O(n−2).
Moreover, under θ0, we have λ̂ψ(Y ) = ψλ0/ψ0 + Op(n

−1/2),
∑

Xi/n = ψ0/λ0 +
Op(n

−1/2) and
∑

X2
i /n = ψ0(ψ0 + 1)/λ2

0 + Op(n
−1/2).

Hence, under θ0,

log p̂(X; Y, ψ) = ℓ
P
(ψ; X) − nψ(F − 1) + nψ log F +

ψ

2ψ0
− 1

2
+ Op(n

−1/2) .

Note that, when taking expectations, the above terms of order Op(n
−1/2) vanish.

Hence, neglecting additive constants,

Eθ0
(log p̂(X; Y, ψ)) = Eθ0

(ℓ
P
(ψ; X)) − ψ

2ψ0
+ O(n−1)

= Eθ0

(

ℓ
P
(ψ; X) − ψ

2ψ̂

)

+ O(n−1)

= Eθ0
(ℓ

M
(ψ; X)) + O(n−1)

= Eθ0
(ℓ

M
(ψ; Y )) + O(n−1) .

4 Adjusted profile loglikelihood from an optimal predictive

density

In this section we show that the result of Examples 1 and 2 of the previous section
carries over in wide generality. Let us consider prediction of X based on a random
sample y = (y1, . . . , yn) from Y = (Y1, . . . , Yn). We suppose that X is independent
of Y and has n independent and identically distributed components, with X1 having
the same distribution as Y1, with density p(x1; ψ, λ). As before, we treat ψ as known.

We show below that, if expression (8) is used for p̂(xi; y, ψ) in (9), i = 1, . . . , n,
then

Eθ0
{log p̂(X; Y, ψ)} = c + Eθ0

{ℓ
M

(ψ; Y )} + O(n−1) , (11)
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where c is a constant. Relation (11) suggests the following direct likelihood in-
terpretation for ℓ

M
(ψ). Based on a 2n-dimensional data vector (y, x), the func-

tion log p̂(x; y, ψ) constitutes a pseudo-loglikelihood for ψ. It amounts to use the
sub-sample y to eliminate the nuisance component λ in order to obtain an infer-
entially accurate predictive density for X depending only on ψ. When evaluated
at the observed sub-sample x, such a predictive density produces an inferentially
accurate pseudo-loglikelihood for ψ, that, on average, agrees with ℓ

M
(ψ; y), up to

terms of order O(n−1). This contrasts with what happens for ℓ
P
(ψ; y) for which

Eθ0
(log p̂(X; Y, ψ)) = c + Eθ0

(ℓ
P
(ψ; Y )) + O(1).

Relation (11) can be proved as follows. Using expression (8) for p̂(xi; y, ψ), we
get

log p̂(X; Y, ψ) =
n

∑

i=1

log pe(Xi; ψ) +
n

∑

i=1

log

[

1 +
1

2

{

hrs(ψ, λ̂ψ(Y ); Xi)

−Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

irs(ψ, λ̂ψ(Y ))
]

=
n

∑

i=1

log p(Xi; ψ, λ̂ψ(Y ))

+
1

2
irs(ψ, λ̂ψ(Y ))

n
∑

i=1

{

hrs(ψ, λ̂ψ(Y ); Xi)

−Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

+ Op(n
−1) . (12)

Let us consider first the expansion of
∑n

i=1 log p(Xi; ψ, λ̂ψ(Y )) as a function of λ̂ψ(Y )

around λ̂ψ(X). We obtain

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y )) =
n

∑

i=1

log p(Xi; ψ, λ̂ψ(X))

+
(

λ̂ψ(Y ) − λ̂ψ(X)
)

r

n
∑

i=1

ℓr(ψ, λ̂ψ(X); Xi)

+
1

2

(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs

n
∑

i=1

ℓrs(ψ, λ̂ψ(X); Xi)

+Op(n
−1/2) ,

where
(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
=

(

λ̂ψ(Y ) − λ̂ψ(X)
)

r

(

λ̂ψ(Y ) − λ̂ψ(X)
)

s
. Above, the

first summand on the right-hand side is the profile loglikelihood for ψ based on X.
The second summand vanishes because it involves the likelihood equation for λ with
ψ fixed. Hence,

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y )) = ℓ
P
(ψ; X)

−1

2

(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
jrs(ψ, λ̂ψ(X); X)

+Op(n
−1/2) ,
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where jrs(ψ, λ; x) = −∑n
i=1 ℓrs(ψ, λ; xi).

Let us denote by λψ the maximiser with respect to λ of Eθ0
(ℓ(ψ, λ)), with ψ

fixed, cf. Severini (2000, Section 4.8). We also let θψ = (ψ, λψ). Under regularity

conditions, λ̂ψ is a consistent estimator of λψ (Cox, 1961; Huber, 1967). Moreover,
we let irs(θψ; θ0) denote a generic element of iλλ(θψ; θ0) = Eθ0

(jλλ(θψ)). A generic
element of iλλ(θψ; θ0)

−1 is denoted by irs(θψ; θ0).
Using results in the Appendix of Pace and Salvan (2006), we obtain
(

λ̂ψ(Y ) − λ̂ψ(X)
)

r
=

(

λ̂ψ(Y ) − λψ − λ̂ψ(X) + λψ

)

r

= irt(θψ; θ0)ℓt(θψ; Y ) − irt(θψ; θ0)ℓt(θψ; X) + Op(n
−1)

= irt(θψ; θ0) {ℓt(θψ; Y ) − ℓt(θψ; X)} + Op(n
−1) , (13)

while
(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
= irt(θψ; θ0) {ℓt(θψ; Y ) − ℓt(θψ; X)}

isu(θψ; θ0) {ℓu(θψ; Y ) − ℓu(θψ; X)}
+Op(n

−3/2)

= irt(θψ; θ0)i
su(θψ; θ0)

{ℓt(θψ; Y )ℓu(θψ; Y ) − ℓt(θψ; Y )ℓu(θψ; X)

−ℓt(θψ; X)ℓu(θψ; Y ) + ℓt(θψ; X)ℓu(θψ; X)}
+Op(n

−3/2) .

Therefore,

Eθ0

[(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs

]

= 2irt(θψ; θ0)i
su(θψ; θ0)νt,u(θψ, θψ; θ0) + O(n−2) ,

where νt,u(θ1, θ2; θ0) is the (t, u) element of ν(θ1, θ2; θ0) defined by (5).
Moreover,

jrs(ψ, λ̂ψ(X); X) = irs(θψ; θ0) + Op(n
1/2) .

Hence, the leading term on the right-hand side of (12) has the expansion

Eθ0

{

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y ))

}

= Eθ0
(ℓ

P
(ψ; X))

−irs(θψ; θ0)i
rt(θψ; θ0)i

su(θψ; θ0)νt,u(θψ, θψ; θ0)

+O(n−1)

= Eθ0
(ℓ

P
(ψ; X)) − irs(θψ; θ0)νr,s(θψ, θψ; θ0)

+O(n−1)

= Eθ0
(ℓ

P
(ψ; X))−tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+O(n−1) . (14)

Let us now denote by A twice the adjustment term of order Op(1) on the right-
hand side of (12), i.e. we let

A = irs(ψ, λ̂ψ(Y ))
n

∑

i=1

{

hrs(ψ, λ̂ψ(Y ); Xi) − Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

.
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Then, using (13),

A = irs(ψ, λ̂ψ(X))
n

∑

i=1

{

hrs(ψ, λ̂ψ(X); Xi) − Γt
rs(ψ, λ̂ψ(X))ℓt(ψ, λ̂ψ(X); Xi)

}

+Op(n
−1/2)

= irs(ψ, λ̂ψ(X))

{

n
∑

i=1

lrs(ψ, λ̂ψ(X); Xi) +
n

∑

i=1

lr(ψ, λ̂ψ(X); Xi)ls(ψ, λ̂ψ(X); Xi)

−Γt
rs(ψ, λ̂ψ(X))

n
∑

i=1

ℓt(ψ, λ̂ψ(X); Xi)

}

+ Op(n
−1/2)

= irs(ψ, λ̂ψ(X))
{

−jrs(ψ, λ̂ψ(X); X) + ν̂r,s(θ̂ψ(X), θ̂ψ(X))
}

+ Op(n
−1/2) ,

where ν̂r,s(θ1, θ2) is the (r, s) element of ν̂(θ1, θ2) defined by (6) and the likelihood

equation
∑n

i=1 ℓt(ψ, λ̂ψ(X); Xi) = 0 has been used.

With a further expansion around λψ of terms depending on λ̂ψ(X) and using
formula (9.17) in Pace and Salvan (1997), we get

A =
{

irs(θψ; θ0) + Op(n
−3/2)

}

{

−irs(θψ; θ0) + Op(n
1/2) + νr,s(θψ, θψ; θ0) + Op(n

1/2)
}

,

so that
Eθ0

(A) = c + tr
[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+ O(n−1) , (15)

where c is a constant and where the expectation of the terms of order Op(n
r/2),

with odd r, is easily seen to be of order O(n(r−1)/2) (see e.g. Pace and Salvan 1997,
Section 9.2.2).

¿From (14) and (15), using results in Section 2.1 and neglecting additive con-
stants, we obtain

Eθ0
{log p̂(X; Y, ψ)} = Eθ0

(ℓ
P
(ψ; X)) − tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+
1

2
tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+ O(n−1)

= Eθ0
{ℓ

AP
(ψ; X)} + O(n−1)

= Eθ0
{ℓ

M
(ψ; X)} + O(n−1)

= Eθ0
{ℓ

M
(ψ; Y )} + O(n−1) .

This shows relation (11).
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