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Abstract: Most of the data obtained by statistical agencies have to be adjusted, corrected or
somehow processed by statisticians in order to arrive at useful, consistent and publishable
values. When temporally and contemporaneously aggregated series are known, temporal
(e.g., between quarterly and annual data) and contemporaneous (between the quarterly
aggregate and the sum of its component series) discrepancies can be eliminated using var-
ious reconciliation procedures. In this paper we consider (i) an extension of the univariate
benchmarking approach by Denton (1971), founded on a well known movement preservation
principle, and (ii) a data-based benchmarking procedure (Guerrero and Nieto, 1999) which
exploits the autoregressive features of the preliminary series to be adjusted. In order to
evaluate their performance in practical situations, both procedures are applied to simulated
and real world data.
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1 Introduction

Most applications of economic models to real world issues must deal with the problem
of extracting results from data, or economic relationships, with noise. One particular
problem which arises from the presence of errors in variables, or due to the nature
of the statistical procedures the data have passed through, is that of reconciling a
data set of observed variables which should satisfy a number of linear1 accounting
restrictions, but, for any reason, these restrictions are not met.

This happens, for example, because economic data are frequently collected by
different methods, using different sample surveys or different pieces of measuring
equipment. Many applied fields are touched by this problem: during the complex

1Reconciliation of economic data may sometimes involve also non-linear accounting restrictions,
for example when dealing with aggregates expressed in both current and constant prices (see Weale,
1988; Antonello, 1990).
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production process of national accounts and balance of payments, data are often
incomplete at some level of disaggregation. A consequence of this is that there
could be different estimates of the same variable or, more generally, linear restric-
tions which the observations should satisfy but fail to (Weale, 1985, 1992). In such
situations economic statisticians may choose to make indirect estimates of missing
items. The question then arises how to use this information efficiently in order to
produce fit-to-use estimates of the variables (Guerrero and Peña, 2000).

Two principles normally guide such estimation. First, estimates of the missing
data are usually constrained so that they are consistent with observed and prior
restrictions on their values. Secondly, values are preferred which more closely - in
terms of a pre-specified distance metric - reflect prior estimates. These principles
form the basis for the famous RAS method of Stone (1961)2 and for a number of
data reconciliation procedures, the most preminent of which is the least-squares ad-
justment method originally developed by Stone, Champernowne, and Meade (1942)
for balancing national accounts.

For a long time the main emphasis of data reconciliation has been on the problem
of interpolating input-output tables, for which the RAS method is computationally
easier to use than the least-squares adjustment. But the times are somehow chang-
ing, and since Byron (1978) attention has reverted to least-squares reconciliation
(van der Ploeg, 1982, 1984, 1985; Barker, van der Ploeg, and Weale, 1984; Weale,
1988, 1992; Solomou and Weale, 1993; Arkhipoff, 1995; Pedullà, 1995; Sefton and
Weale, 1995; Smith, Weale, and Satchell, 1998).

In this paper we deal with the estimation of a system (expressed in form of a
table) of high-frequency (say, quarterly) series subject to contemporaneous (between
variables) and temporal (within variables) constraints. We assume that the available
information is given by a table of high-frequency preliminary series to be reconciled
in line with (i) known - assumed ‘true’ - temporal aggregates (say, the annual series
of the variables of interest) and with (ii) a high frequency contemporaneously aggre-
gated series (say, the quarterly sum of the various constitutive aggregates), either
assumed known or not.

In the time series literature this problem, involving either one or many time se-
ries, is generally known as temporal disaggregation or benchmarking of time series3,
where the latter definition (benchmarking) naturally matches with the ‘philosophy’
of the data reconciliation procedures4 introduced so far.

The links between least-squares reconciliation procedures and benchmarking are

2As far as the origin of RAS is concerned, “at least as early as the 1930s, researchers documented
biproportional adjustment techniques - also known as ‘iterative proportional fitting’ or ‘raking’. (...)
The two first documented pieces were by Kruithof (1937) (...) and - according to Bregman (1967)
- by Leningrad architect G.V. Sheleikhovskii” (Lahr and de Mesnard, 2004, p 115).

3Eurostat (1999) contains a survey, taxonomy and description of the main temporal disaggrega-
tion methods proposed by literature, and in Bloem, Dippelsman, and Mæhle (2001) two chapters
analyze the relevant techniques to be used for benchmarking, extrapolation and related problems
occurring in the compilation of quarterly national accounts. More complete references can be found
in Di Fonzo and Marini (2006).

4Cholette (1987, p. 14) states: “Benchmarking is the process of optimally combining the original
sub-annual series with the annual benchmarks and with the sub-annual benchmarks, in order to
obtain a more reliable sub-annual series and a more reliable annual series”.
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indeed very strict, in the sense that practically any relevant benchmarking technique
can be seen as a particular reconciliation procedure. The crucial point is whether
(and how) the covariance matrix of the preliminary series is estimated or defined
(and imposed) once and for all.

One reason that researchers seem to have moved away from RAS is that it was
difficult to incorporate information (when available) on the relative reliability of
the data. In fact, the classical formulation of RAS does not take into account any
measure of preliminary estimates’ accuracy5. Needless to say, balancing matrices
composed of data with different data qualities can be an imposing challenge, espe-
cially for the national accounting agencies, which typically draw upon a variety of
data sources in constructing the economic aggregates.

The distinctive feature of the least-squares reconciliation approach is instead
that it can take into account the precision of the various constitutive aggregates of
the accounting tables. However, for a long time these procedures have depended on
the assumption that the covariance matrix (or any other indicators of the estimates’
accuracy) of the figures to be reconciled was known. In this case, the data are
adjusted in the light of their relative variances so as to satisfy the linear restrictions.
But another - perhaps more delicate - challenge raises when any reliability measure,
neither coming from a survey nor of subjective nature, is available: the solutions
proposed in literature for this case are basically of two types, both of which are
consistent with the least-squares approach of Stone et al. (1942):

1. mathematical/mechanical solutions: the data-set is balanced by minimizing
a penalty criterion which ‘induces’ a covariance matrix (which is simply a
statistical artifact);

2. data-based solutions: the variability of the data to be reconciled is estimated
using the available observations6.

In this paper we discuss two different procedures of benchmarking a system of high-
frequency time series in line with a set of pre-specified accounting constraints, and
precisely (i) an extension (Eurostat, 1999; Di Fonzo, 2002) of the univariate approach
by Denton (1971), founded on a well known movement preservation principle, and
(ii) a data-based benchmarking procedure (Guerrero and Nieto, 1999) which exploits
the autoregressive properties of the preliminary series to be adjusted.

Both procedures take into account the fact that the data to be reconciled come
from time series, and thus explicitely allows for temporal autocorrelation. But, as
Solomou and Weale (1993, p. 90) point out, “there is (...) no theoretical problem in
balancing estimates of national income in a manner which takes account of autocor-
relation. The difficulties are practical. First, the structure of autocorrelation must
be identified from information about the way in which the data were constructed.

5Robinson, Cattaneo, and El-Said (2001) briefly summarize the efforts undertaken by a few
authors to handle differing data reliabilities in a RAS framework.

6Weale (1992) presents an estimator for use with a sequence of observations when the data
variances are not known which is calculated from the time-series variances and covariances of the
inconsistent observations. Solomou and Weale (1993) extend this result in order to account for
the autocorrelation which is likely to characterize economic variables when measurement errors are
present.
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Secondly, because the data are all balanced in one step, V is typically a matrix of
large proportions and so the problem must be solved in a way which exploits the
sparsity of this matrix”, where V denotes the covariance matrix of the preliminary
data to be reconciled.

As we shall see, both procedures suffer from the problems due to the dimensions
of the involved matrices7. However, while the extension of Denton’s approach is a
mathematical/mechanical device, working under a pre-specified condition according
to which the temporal dynamics of the estimated series should be as close as possible
to those of the preliminary counterparts, the data-based procedure by Guerrero and
Nieto is intended to ‘extract’ information about the variability of the series making
use of the observed data.

The rationale behind the latter way of recovering information on the reliabilities
of the preliminary series seems in line with Weale (1992, p. 168): “It may seem
strange that the variance of the measurement error can be inferred from the time-
series variances. An immediate reaction might be that genuinely volatile data will be
treated as unreliable. However, the reason that the time-series variance can be used
is that the accounting constraint can be used to purge the genuine volatility, leaving
only the noise”. Moreover, when in a system of time series it is deemed unlikely that
the measurement errors are independent of the true data, the data-based procedure
by Guerrero and Nieto (1999) provides a means of identifying information about the
data (un)reliability: by extending the approach to the benchmarking of a single time
series proposed by Guerrero (1990), a VAR specification valid for the preliminary
series is exploited in order to infer the covariance matrix of the disturbances to be
used in the final reconciliation formula.

The paper is organized as follows. In section 2 we review the reconciliation prob-
lem and discuss it in the light of the classical matrix balancing solutions proposed
in literature (RAS and the least-squares procedure by Stone et al., 1942). Section
3 is devoted to the formulation of the specific problem tackled in this paper, the
benchmarking of a system of time series subject to both contemporaneous and tem-
poral constraints. In section 4 we present the generalization of Denton’s approach
to benchmark a table of time series, while the procedure by Guerrero and Nieto
is described in section 5. In section 6 both procedures are applied to simulated
and real world data, in order to appreciate the way the procedures work and their
performances in practical situations. Section 7 presents some conclusive remarks.

2 Reconciliation of economic data as a matrix balancing
problem

Matrix balancing is an important problem that has attracted attention in many
different fields: the need of adjusting the entries of a large matrix to satisfy prior

7We agree with Cholette (1987, p. 45): “Practical experience with simultaneous benchmarking
may show that very similar results can be achieved with some combination of individual bench-
marking with raking (...) However, simultaneous benchmarking does provide a standard, i.e. a
norm, against which alternative and simpler approaches may be assessed”. Di Fonzo and Marini
(2003) present simplified expressions of the extended Denton’s procedure which save computation
times and matrix storage space.
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consistency requirements occurs frequently in economics, urban planning, statistics,
demography, and stochastic modeling (Schneider and Zenios, 1990), and a large
amount of both theoretical results and real-life-data applications of matrix balancing
can be found in the specialized literature for all these fields.

In economics, data reconciliation might typically involve the updating and bal-
ancing of input-output or social and economic accounts matrices (see, inter alia,
van der Ploeg, 1982; Barker, van der Ploeg, and Weale, 1984; Harrigan and Mc-
Nicoll, 1986). In other words, many economic statistics, set in the form of tables
spanning on one or several time periods, face this problem.

Denoting by Y the (m × n) matrix of entries to be reconciled, the above issue
can be formalised as a matrix balancing problem (Bacharach, 1970). A well stud-
ied instance of this problem occurring in transportation planning and input-output
analysis requires that Y be adjusted so that the row and column totals equal fixed
positive values. A related problem occurring in developmental economics requires
that the row and column totals (of a square matrix) be equal to each other, but not
necessarily to prespecified values. As we shall see, mutatis mutandis, both cases8

are of interest when a table of time series must be estimated in such a way as all
accounting constraints are fulfilled.

A matrix balancing problem is typically posed as follows:
Given an (m×n) matrix Y, determine an (m×n) matrix Y∗ that is close to Y

and satisfies a given set of linear restrictions on its entries.
There are several balancing problems, each with different consistency require-

ments, so the definition of a balanced matrix is problem dependent. In general, we
can say that a matrix is defined to be balanced if it satisfies the given set of linear
restrictions for the problem. As such, there are infinitely many matrices satisfy-
ing the consistency restrictions: the problem is to find a matrix that satisfies the
restrictions and is related to the original matrix Y in a suitably defined manner.

The matrix balancing applications of interest for our work can be formulated in
general as one of two problems.

Problem 1. Given an (m×n) matrix Y and two vectors u and v of dimensions m
and n, respectively, determine a nearby (m×n) matrix Y∗ such that

∑n
j=1 y∗ij = ui,

for i = 1, . . . ,m, and
∑m

i=1 y∗ij = vi, for j = 1, . . . , n.
Problem 2. Given an (n×n) matrix Y, determine a nearby (n×n) matrix Y∗

such that
∑n

j=1 y∗ij =
∑n

i=1 y∗ij , i, j = 1, . . . , n.
Of course, for either problem to be well posed, some restrictions must be placed

on the adjustments that can be made to Y so that the requirement of a nearby
matrix is well defined. In input-output analysis, for example, if a direct coefficients
matrix has to be updated/projected, matrices Y and Y∗ and vectors u and v must
be nonnegative and a sign-preservation-condition (y∗ij > 0 only if yij > 0) is usually
requested. This is not the case, however, for a table of national accounts, where
negative entries can occur.

Different algorithmic approaches follow naturally from different types of restric-
tions. Moreover, it should be noted that, if we abstract from any specific application,

8In the former case the known marginal totals are exogenous constraints, while in the latter the
constraints are endogenous.
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a data reconciliation problem can be defined as a mathematical programming prob-
lem with a strictly convex minimand and linear constraints. The minimand reflects
some informal measure of the ‘distance’9 between a set of prior and posterior es-
timates, and the constraints embody accounting and any other restrictions on the
posterior estimates. Assuming the feasible set is non-empty, data reconciliation
problems of this form yield a unique solution (Harrigan, 1990).

2.1 Procedures for matrix balancing: RAS and QPD optimization

Procedures for matrix balancing can be separated into two broad classes: bipropor-
tional, or scaling, algorithms (like RAS) and non biproportional algorithms.

Scaling algorithms are identified by the way they balance matrices: they iter-
atively multiply rows and columns of Y by positive constants to derive a series of
candidate solution matrices until the matrix is balanced. However, despite their
strong empirical characterization, biproportional procedures are also provided by a
substantial theoretical basis. As it is well known (Uribe, de Leeuw, and Theil, 1965;
Bacharach, 1970), the RAS procedure generates a solution equivalent to minimizing
Kullback’s information gain (Theil, 1967)10, given by

m∑
i=1

n∑
j=1

y∗ij log
y∗ij
yij

.

So the target matrix is as close as possible to the prior in the sense that “one
estimates the unknown matrix as that value which, if realized, would occasion the
least ‘surprise’ in view of the prior” (Bacharach, 1970, p. 84).

RAS algorithm can be used to estimate the ‘interior’ of the accounting matrix
in the case formulated as Problem 1, that is when the row and columns totals of
an accounting matrix are known and have been balanced so that the sum of the
row sums equals the sum of the column sums. A classic example is where a prior
benchmark input-output table is updated to be in line with national accounts of a
later year. Since the national accounts have already been balanced, generally at a
much higher level of aggregation, the condition concerning the row and column sums
is satisfied. In fact, in such a case the row and column sums are exogenous variables,
whereas they are endogenous variables in the balancing of the national accounts
themselves where one starts out with a macro difference between total supply and
total use of products. A similar situation occurs when a system of quarterly time
series must be reconciled in line with a quarterly aggregate given by the sum of
the component series and with the known annual series of each component variable.
When the quarterly grand-total series is known, an exogenous constraint must be
imposed in the estimation procedure, while when this is not the case, the constraint
is endogenous.

9Here the term ‘distance’ is used in an informal sense. The minimands need not, in general,
satisfy either the symmetry or triangle inequality properties of true distance measures (Harrigan,
1990).

10Moreover, “de Mesnard (1994) demonstrated that all algorithms with a biproportional form
(...) do, in fact, yeld the same results” (Lahr and de Mesnard, 2004, p. 123).
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Non bipoportional algorithms are all general constrained matrix problems that
cannot be solved using the simpler set of scaling techniques11. They generally consist
in optimization algorithms that minimize some measure of distance between all
elements of a candidate balanced matrix from the original matrix Y; the balance
conditions are constraints in the optimization model so that the optimal solution
is the balanced matrix closest to Y according to the metric induced by the chosen
penalty function.

The objective function of these optimization problems can take many forms.
Here we consider two simple criteria12: (i) that first presented to an input-output
audience by Almon (1968), who proposed the minimization of the square of the
Euclidean distance between Y∗ (the target) and Y (the prior), and (ii) Pearson’s
χ2 or the normalized squared differences used by Deming and Stephan (1940) and
Friedlander (1961).

More precisely, Almon (1968) consider the objective function

m∑
i=1

n∑
j=1

(
y∗ij − yij

)2
,

while the minimand of Deming and Stephan (1940) and Friedlander (1961) is

m∑
i=1

n∑
j=1

(
y∗ij − yij

)2

yij
.

It should be noted that, given the accounting constraints, this class of methods
can generate negative-valued elements in Y∗ even if there are none in Y: that is, sign
is not always preserved. Furthermore, it is immediately recognized that, provided
Y is a nonnegative matrix13, both the objective functions are Quadratic Positive
Definite (QPD)14 minimands (Harrigan, 1990) of the form

(y∗ − y)′ Q−1 (y∗ − y) (1)

where y∗ and y are both (mn × 1) vectors containing the elements of Y and Y∗,
respectively, Q = Imn for the Almon’s formulation and Q = ŷ for the latter, with
ŷ = diag(y).

As these two constrained optimization problems can be seen as a particular case
of the Stone et al. (1942) procedure, provided a specific choice of the covariance
matrix of the data to be reconciled is made, the solution to these optimization
problems will be presented in the next subsection.

11Non biproportional techniques involving nonlinear networks methods, conjugate gradient algo-
rithms, Lagrangian relaxation, and successive overrelaxation, are not discussed here. The interested
reader can refer to Schneider and Zenios (1990).

12For other objective functions proposed in literature, see Jackson and Murray (2004).
13Obviously, for the objective function to be QPD, nonnegativity is needed for Deming and

Stephan (1940) and Friedlander (1961) minimand.
14Harrigan (1990) compares the use of a quadratic positive definite objective function with the

Kullback-Leibler cross-entropy measure according to which RAS can be re-interpreted. He concludes
that both “possess the desirable property that they give posterior estimates which better reflect the
unknown, true values than do the associated prior estimates”.
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2.2 Least squares adjustment of economic data subject to linear restric-
tions

Let ỹ be a (mn × 1) vector of unknown data which should satisfy the system of
linear independent accounting constraints

Aỹ = a (2)

where A is a (k × mn) matrix, with rank(A) = k < mn, and a is a (k × 1) vector
of known constants. Let y be a (mn × 1) vector of observed data, not fulfilling the
linear constraint (2), related to ỹ by the linear model

y = ỹ + e (3)

where e is a (mn × 1) vector of disturbances with zero mean and known covariance
matrix V. Building on Stone et al. (1942), it has been demonstrated that an efficient
estimator y∗ of ỹ, which minimizes (1) for Q ≡ V and satisfies constraints (2), is
given by

y∗ = y + VA′ (AVA′)−1 (a − Ay) (4)

with
E (y∗ − ỹ) = V − VA′ (AVA′)−1 V. (5)

Contrary to RAS, the Stone et al. (1942) procedure automatically balances
when row and column totals are endogenous variables. It can therefore be applied
to the problem of balancing the national accounts and to other situations of practical
relevance, as those considered in this paper. Another advantage of this algorithm
is that it is based on the least-squares principle and thus leans on a long and solid
tradition in statistics. The fact that the data are adjusted in the light of their relative
variances so as to satisfy the linear restrictions is certainly appreciable. Moreover,
under normality assumptions the reconciled estimates are ML (Weale, 1985, 1988)
and thus the standard tools of statistical inference can be applied.

A rather usual, simplified assumption on the disturbance terms, in line with
Stone (1990), postulates they are independent. In this case V is diagonal. Taking
the definition of probability as a “degree of reasonable belief”, Stone proposes to de-
termine var(yi) as vii = (θyi)2, i = 1, . . . ,mn, where θi is a subjectively determined
reliability rating, expressing the percentage ratio of the standard error to the prior
mean value of yi.

The chief drawback from a conceptual point of view is that it does not guarantee
preservation of sign of the variables, which sometimes can be problematic. Another
possible weakness of the procedure depends on the assumption that the covariance
matrix of the various estimates is known. In fact, in the past its application has
been limited15 by both its computational intensity and the possible lack of any
good, objective basis for specifying the variance matrix, which is crucial in the
minimization of least squares16.

15Valuable exceptions are Byron (1978), van der Ploeg (1982, 1984, 1985), Barker, van der Ploeg,
and Weale (1984), Weale (1992), Solomou and Weale (1993), Pedullà (1995), Smith, Weale, and
Satchell (1998), Toh (1998), Gilchrist and St. Louis (1999).

16Practical applications of the Stone et al. (1942) algorithm have been relatively few and typ-
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3 Benchmarking a system of time series with exogenous
constraints

We deal with an indirect estimation problem involving a system of variables rather
than a single one. More precisely, we wish to estimate M unknown (n × 1) vectors
of high-frequency data, each pertaining to M basic (i.e., disaggregate) time series
which have to satisfy both contemporaneous and temporal aggregation constraints.

The information basis is given by the following M + 1 aggregated vectors:

1. z, (n × 1) vector of contemporaneously aggregated data;

2. y0j , j = 1, . . . ,M , (N×1) vectors of temporally aggregated data (say, annual).

We consider the case where M preliminary high-frequency (say, quarterly) time
series, yj, j = 1, . . . ,M , are available17, where

∑M
j=1 yj �= z and/or yj doesn’t

comply with y0j . Denoting by y∗
j , j = 1, . . . ,M , the (n×1) vectors of the reconciled

data to be estimated, the following accounting constraints must hold:

M∑
j=1

y∗
j = z (6)

Jy∗
j = y0j , j = 1, . . . ,M (7)

where J is the (N×n) aggregation matrix converting high-frequency in low frequency
data. Each element of y0j can be viewed as a non overlapping linear combination of
y∗

j , with coefficients given by the (s × 1) vector j, s being the temporal aggregation

order. Thus, in general matrix J is equal to J =
[
IN ⊗ j′

... 0
]
, where 0 is a null

(N × (n − sN)M) matrix18.
Constraint (6) can be re-written as (1′

M ⊗ In)y∗ = z, where 1M is an (M×1) vec-

tor of ones and y∗ =
[
y∗

1
′ · · ·y∗

j
′ · · ·y∗

M
′
]′

. As far as temporal aggregation constraints

(7) are concerned, we have (IM ⊗ J)y∗ = y0, where y0 =
[
y′

01 · · ·y′
0j · · ·y′

0M

]′
. Let

H be the ((n + NM × nM) × nM) aggregation matrix

H =
[

1′
M ⊗ In

IM ⊗ J

]

ically of an ad hoc nature. The privileged approach has been to specify some kind of quadratic
loss function and assume information about the statistical properties of the error distributions.
Harrigan and McNicoll (1986) argue persuasively for the advantages of a constrained maximization
estimation approach in terms of flexibility, but are aware of the statistical problems. Byron (1978)
and Schneider and Zenios (1990) also argue in favour of a constrained maximization approach, and
are also skeptical of imposing strong statistical assumptions. Only a few authors (Weale, 1992;
Solomou and Weale, 1993; Sefton and Weale, 1995; Smith et al. , 1998) take into account the
autocorrelation which is likely to feature data subject to measurement errors.

17Rossi (1982), Di Fonzo (1990, 2002) and Cabrer and Pav́ıa (1999) consider the more general
case where a set of high-frequency related indicators is used to obtain indirect estimates of the M
unknown time series. It should be noted that the distinction is not necessarily as strict as it seems,
in that preliminary high-frequency series could have been individually obtained by using related
indicators, as in Guerrero and Nieto (1999).

18The null matrix in J permits to deal with extrapolation. Obviously, when n = sN , J = [IN ⊗ j′].
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and ya the ((n+NM)×nM)) vector ya = [z′ y′
0]
′ containing both contemporaneous

and temporal aggregates. The complete set of constraints between the reconciled
values and the available aggregated information can be expressed in matrix form as

Hy∗ = ya. (8)

Notice that the contemporaneous aggregation of temporally aggregated series implies

M∑
j=1

y0j,T =
s∑

h=1

zs(T−1)+h = z0,T , T = 1, . . . , N,

that is, in matrix form,
1′

M ⊗ IN = Jz, (9)

where J is the temporal aggregation matrix with j = 1s. ¿From relationship (9)
it follows that only r = n + N(M − 1) aggregated observations are ‘free’, while N
aggregated observations are redundant, thus matrix H has rank r. To clarify this
fact, partition H in such a way as to distinguish the temporal aggregation constraints
linking y∗

M to y0M from the remainder:

H =

⎡
⎣ Hw

. . .
HM

⎤
⎦ ,

where Hw =
[

1′
M−1 ⊗ In In

IM−1 ⊗ J 0

]
and HM =

[
0

... J
]

are matrices (r×Mn) and (N×

Mn), respectively. Denoting W the (N × r) matrix19 W =
[
J

... − (1′
M−1 ⊗ IN)

]
and R the ((r + N)× r) matrix R = [Ir W′] we have HM = WHw and H = RHw.

Without loss of generality, consider the (r× 1) vector w, which is simply the ag-
gregated vector ya bereft of its last M rows20: w =

[
z′ y′

01 . . . y′
0M−1

]′. After some
algebra (Di Fonzo and Marini, 2003), it can be demonstrated that the constraints
operating on vector y∗, expressed in (8) in terms of matrix H – which has not full
row rank –, can now be expressed as a system of linearly independent constraints as
in (2), with A ≡ Hw, instead of ỹ and a ≡ w, that is

Hy∗ = w.

3.1 Benchmarking as a least-squares reconciliation problem

Assume that the available data yj are distributed without bias around the ‘true’
series ỹj according to the model

yj = ỹj + ej, j = 1, . . . ,M, (10)

19Matrix W is very similar to matrix B defined by Chen and Dagum (1997).
20As shown by Di Fonzo and Marini (2006), contrary to what Chen and Dagum (1997) state,

the results are invariant with respect to the choice of a particular sub-vector of ya, provided it has
dimension (N × 1).
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where ej are (n × 1) zero-mean random disturbances, with E
(
eie′j

)
= Vij , i, j =

1, . . . ,M , and Vij are (n×n) known matrices. Putting together the M relationships
(10) we have the complete model y = ỹ + e, with E(e) = 0 and E(ee′) = V, as
in section 2.2. The simultaneously benchmarked series are the solution of the least
squares problem

min (y − y∗)′ V−1 (y − y∗) subject to Hỹ = ya.

However, the constraints (8) being linearly dependent, an extension of the classical
result by Stone et al. (1942) is needed due to the rank of the matrices involved in
the procedure. It can be shown (Di Fonzo and Marini, 2003) that the benchmarked
estimates can be expressed as

y∗ = y + VH′(HVH′)−(ya − Hy), (11)

where (HVH′)− denotes the Moore-Penrose generalized inverse of Va = HVH′.
A solution, equivalent to (11), and which does not involve singular matrices to be
inverted, can be expressed in terms of the r ‘free’ constraints. In fact, the singular
matrix HVH′ can be written as RHwVH′

wR′ = RVwR′, where Vw = HwVH′
w is

a full rank (r× r) matrix. Furthermore, it can be readily checked (see Di Fonzo and
Marini, 2006) that V−

a is univocally given by

V−
a = (HVH′)− = R(R′R)−1V−1

w (R′R)−1R′. (12)

By substituting (12) into (11), and taking into account that R′H = R′RHw, after
some algebra we find the more feasible benchmarking formula

y∗ = y + VH′
wV−1

w (w − Hwy). (13)

The benchmarked estimates are thus obtained by distributing a linear combination
of the discrepancies pertaining to r unconstrained observations of the aggregated
vector ya over the original unbenchmarked data. It should be noted that expression
(13) involves the inversion only of full rank matrices and fulfils both temporal and
contemporaneous constraints.

4 Reconciliation with an exogenous constraint according to
Denton’s multivariate benchmarking

The multivariate extension of Denton’s benchmarking procedure can be seen as a
simple generalization to M > 1 time series of the ‘movement preservation principle’
stated by Denton (1971)21, according to which the temporal dynamics of the recon-
ciled series should be as close as possible to those of the preliminary figures. As it is
well known (Bloem et al., 2001), this principle operates by focusing on, respectively,
the simple period-to-period changes

(y∗j,t − y∗j,t−1) − (yj,t − yj,t−1) ≡ (y∗j,t − yj,t) − (y∗j,t−1 − yj,t−1), j = 1, . . . ,M,

21See also Cholette (1988).
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or the proportional period-to-period changes22,

y∗j,t − yj,t

yj,t
− y∗j,t−1 − yj,t−1

yj,t−1
≡ y∗j,t

yj,t
− y∗j,t−1

yj,t−1
, j = 1, . . . ,M.

The objective functions to be minimized23 are thus given by

M∑
j=1

n∑
t=2

[
(y∗j,t − yj,t) − (y∗j,t−1 − yj,t−1)

]2 Additive First Differences (AFD)

and

M∑
j=1

n∑
t=2

(
y∗j,t
yj,t

− y∗j,t−1

yj,t−1

)2

Proportional First Differences (PFD)

respectively. Using matrix notation, let us consider the (Mn × Mn) matrices
ΩAFD = IM ⊗ (Δ′Δ) and ΩPFD = ŷ−1 [IM ⊗ (Δ′Δ)] ŷ−1 = ŷ−1ΩAFDŷ−1, where
ŷ = diag(y) and Δ is the ((n − 1) × n) matrix performing first differences:

Δ =

⎡
⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

⎤
⎥⎥⎥⎦ .

The simultaneously benchmarked series can be obtained by solving the following
minimization problem:

min (y∗ − y)′ Ω−1 (y∗ − y) subject to Hwy∗ = w,

where Ω = ΩAFD for the additive variant, or Ω = ΩPFD for the proportional
formulation, respectively.

In both cases matrix Ω has not full rank, so that the analogy with the least
squares solution (13) - with V = Ω−1 - cannot be immediately established24. For
computational convenience, in line with the original proposal of Denton (1971), we
can consider a (n × n) ‘approximate’ first differences matrix, D, given by

D =

⎡
⎢⎢⎢⎣

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

⎤
⎥⎥⎥⎦ .

In this case both matrices Ω̃AFD = IM ⊗ (D′D) and Ω̃PFD = ŷ−1 [IM ⊗ (D′D)] ŷ−1

have full rank, and the least-squares reconciliation can be performed by assuming
22In this case, it must be yj,t �= 0, j = 1, . . . , M , t = 1, . . . , n.
23Benchmarking procedures which satisfy a movement preservation principle explicitly referred

to the rates of change have been derived, for either one series or a table of series, by Bozik and Otto
(1988) and Di Fonzo and Marini (2003), respectively.

24The exact solution is derived in Di Fonzo and Marini (2006).
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V = Ω̃−1. The ‘approximate’ multivariate Denton’s benchmarking formula can thus
be expressed as

y∗ = y + Ω̃−1Hw(w − Hwy). (14)

Even by using this approximation, the dimensions of the matrices involved in the
calculations can be considerable in practical situations, possibly giving rise to com-
putational burdens. However, a valuable saving of computation time and of storage
area can be obtained by exploiting the partitioned form of the matrices involved
(Di Fonzo and Marini, 2003).

5 A data based benchmarking procedure

Guerrero and Nieto (1999) developed a benchmarking method which exploits the
autoregressive features of the preliminary series to determine the unobserved values
of multiple time series whose temporal and contemporaneous aggregates are known.

The notation used by Guerrero and Nieto is different from that we adopted
so far, in the sense that the vectorized data-matrix is stacked by time25. So, let
y0T,g = (y1,0T . . . yM,0T )′ be the (M × 1) vector of temporally aggregated data for
M variables at time T , T = 1, . . . , N . Such vectors are stacked into the (MN × 1)
vector y0,g = (y′

01,g . . .y′
0N,g)

′.
The (n × 1) vector of contemporaneously aggregated data is still given by z =

(z1 . . . zn)′, while we denote by ỹg = (ỹ′
1,g . . . ỹ′

n,g)′ the (Mn × 1) stacked vector of
unobserved variables at higher-frequency.

Now, to deal with the temporal and contemporaneous constraints, let us denote
by (cj1, . . . , cjs) the coefficients defining the temporal aggregation constraint valid for
variable j, and define the (M ×M) matrices Ch, h = 1, . . . , s, as diag(c1h, . . . , cMh).
The following relationships hold:

Temporal aggregation of flows variables: Ch = IM h = 1, . . . , s;
Temporal aggregation of index variables: Ch = 1

sIM h = 1, . . . , s;

Temporal aggregation of end-of-period stock variables: Ch =
{

0 h = 1, .., s − 1
IM h = s

;

Temporal aggregation of beginning-of-period stock variables: Ch =
{

IM h = 1
0 h = 2, . . . , s

.

Vector ỹg satisfies both temporal and contemporaneous constraints through the
expression

ya,g =
(

y0,g

z

)
=
(

IN ⊗ C0

In ⊗ b′

)
ỹg = Cỹg,

where C0 = (C1 . . . Cs) is a (M×Ms) matrix, b is the known constant vector which
defines the contemporaneous aggregation constraint (in case of simple summation,

b = 1M ), and C =
(

IN ⊗ C0

In ⊗ b′

)
is the complete ((MN + n) × Mn) aggregation

matrix.
25In the following, where possible, we try to use a similar notation with the subscript g. A

formulation where the vectorised data-matrix is stacked by variable is shown in Di Fonzo and
Marini (2006).
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According to Di Fonzo (1990), it is also possible to deal with both constrained and
pure extrapolation problems: define the (MR×1) vector ỹe,g = (ỹ′

n+1,g . . . ỹ′
n+R,g)

′,
and consider the new aggregation matrices operating on the enlarged (M(n+R)×1)
unobserved high-frequency vector ỹe

g = (ỹ′
g ỹ′

e,g)′:

Ce,c =
[

IN ⊗ C0 0
In ⊗ b′ IR ⊗ b′

]
constrained extrapolation

Ce,p =
[

IN ⊗ C0 0
In ⊗ b′ 0

]
pure extrapolation

The proposal by Guerrero and Nieto grounds on some assumptions defining the
relationship between preliminary and true (unobservable) values, that is, in our
notation, ỹt,g and yt,g, respectively:

1. Before observing yg, it is assumed that ỹt,g − yt,g admits a stationary VAR
representation of order p ≥ 1:

Π(L)(ỹt,g − yt,g) = εt,g, t = 1, . . . , n, (15)

where Π(L) is a matrix polynomial in the backshift operator L and εt,g is a
zero-mean vector white noise process. Model (15) can be expressed in matrix
notation as26

Π(ỹg − yg) = εg, (16)

where Π is an (Mn×Mn) matrix formed by the coefficients’ matrices π1, . . . , πp

(for details see Di Fonzo and Marini, 2006).

2. Once yg is given, (16) still holds true with E(εgε
′
g|yg) = P ⊗ Σ, where P is

a (n × n) positive definite matrix to be derived from the data (Guerrero and
Nieto, 1999, p. 462).

3. ỹg and yg admit the same VAR representation, in the sense that Π(L)ỹt,g =
dt + ãt,g, where ãt,g and at,g are white noise processes with different covariance
matrices, and dt is a vector of deterministic components that includes the
constant term.

Now, denoting Vg the (Mn × Mn) matrix

Vg =
(
Π−1

)
(Π ⊗ Σ)

(
Π−1

)′
,

Guerrero and Nieto (1999) show that the MMSE27 for ỹg given yg and ya,g is given
by

y∗
g = yg + F(ya,g − Cyg), (17)

with F = VgC′(CVgC′)−, where the superscript − denotes Moore-Penrose in-
verse28, and

Cov(y∗
g − ỹg|yg) = (IMn − FC)Vg.

26By assuming ε1−p,g = . . . = ε0,g = 0.
27Guerrero and Nieto (1999, p. 464) remark that the estimator (17) is also BLUE (y∗

g is unbiased
given yg), so that ỹg can be estimated once Π, P and Σ are known.

28As shown in section 3, it is possible to express the benchmarking formula in terms of the r
linear independent constraints, which prevents from using the generalized inverse (see Di Fonzo and
Marini, 2006).
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5.1 Feasible benchmarked estimates

A two-stage operational procedure is proposed to validate the model (16) through
the available data and to obtain a feasible expression for y∗

g.
To begin with, a vector yg of observed preliminary series corresponding to ỹg

is needed29. In the first step, a VAR(p) model is estimated for the preliminary
series yg, with p chosen according to some reasonable statistical criterion (e.g., AIC,
SC, HQ). An estimate of Π, say Π̂, can thus be obtained through OLS equation
by equation. Furthermore, through relationship (17), while assuming P = In, we
obtain a tentative benchmarked series ŷ∗

g in line with all constraints.
A test on whiteness of the residual series Π̂(ŷ∗

g − yg) = ε̂g is then required to
verify whether the assumption P = In is supported by the data. If it is not, then
another VAR model is considered for the residuals ε̂g. This model can be expressed
as

Λ(ŷ∗
g − yg) = (Q ⊗ IM )Π(ŷ∗

g − yg) = eg, (18)

where Q is a non-singular matrix such that QPQ′ = In. After this transformation
we have

E(eg|yg) = 0 and E(ege′g|yg) = (Q ⊗ IM)(P ⊗ Σ)(Q′ ⊗ IM) = In ⊗ Σ.

The coefficients in Λ can be estimated through OLS, and matrix Σ can be consis-
tently estimated by the residuals of model (18) as Σ̂ = 1

n−p′
∑n

t=1 êtê′t, where p′

denotes the number of parameters in each equation of the VAR model (18).
Now, we can calculate a new estimate of Vg, a new smoothing matrix F and a

new benchmarked vector ˆ̂y∗
g by using the equivalence relationship

V̂g =
(
Π̂−1

)(
Π̂ ⊗ Σ̂

)(
Π̂−1

)′
=
(
Λ̂−1

)(
In ⊗ Σ̂

)(
Λ̂−1

)′
.

Guerrero and Nieto (1999) propose also a discrepancy measure to validate empir-
ically the ‘compatibility’ between the benchmarked estimates ˆ̂y∗

g and yg, in other
words, to test the maintained hypothesis that they share essentially the same VAR
model. Assuming the normality of {εg|yg}, it follows that

ya,g − Cyg = CΠ−1εq � N(0,CVgC′).

Thus, when Π, P and Σ are estimated, the Wald statistic

DM = (ya,g −Cyg)′[CVgC′](ya,g − Cyg) (19)

is asymptotically distributed as a χ2
r, with r = rank(CVgC′). When DM rejects

the compatibility assumption, other preliminary series should be found. Guerrero
and Nieto (1999) suggest to compute the compatibility test also when the residuals
show evidence of non-whiteness at the first stage, that is between ŷ∗

g and yg: the
rejection of the hypothesis should be taken as an evidence that the second stage is
appropriate.

29Guerrero and Nieto suggest to derive such series by means of related indicators using the
univariate approach proposed in Guerrero (1990). In our opinion, this is not a crucial assumption,
provided the disaggregation method is statistically well-founded.
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6 Applications on simulated and real-life data

In this section we present some results obtained in applying the benchmarking tech-
niques described in the paper. First, we set up a Monte Carlo experiment to assess
their accuracy in reproducing a simulated set of time series fulfilling both temporal
and contemporaneous constraints. Then, we consider an application on economic
time series where neither temporal nor contemporaneous constraints are fulfilled by
a set of preliminary series. In this latter case the evaluation is performed by com-
paring the amount of adjustment made to the rates of changes of the preliminary
series.

6.1 A simulation exercise

Following Guerrero and Nieto (1999), we generate quarterly bivariate series accord-
ing to the restricted VAR(2) model

ỹ1,t = 0.02 + 0.5ỹ1,t−1 + ã1,t

ỹ2,t = 0.03 + 0.4ỹ1,t−1 + 0.5ỹ2,t−1 + 0.25ỹ1,t−2 + ã2,t
(20)

with Σ = E(ãtã′
t) =

(
0.04 0
0 0.01

)
and ãt = (ã1,t, ã2,t)′.

The bivariate variable ỹt = (ỹ1,t ỹ2,t)′ is the objective series of our exercise. To
generate it we operate as follows. We extract a number from U [1; 10, 000] and fix it as
the common seed in the procedure used to generate the normal random numbers30.
This allows to reduce the distance between objective and preliminary series. Then,
we generate the bivariate disturbance series at with covariance matrix Σ, for t =
1, . . . , 88 and calculate recursively the relationships in model (20), assuming ỹ1,0 =
ỹ1,−1 = ỹ2,0 = 0 as starting conditions of the VAR. The initial 44 observations are
discarded from each series to cancel the effects of the starting conditions. Finally,
we derive the annual and contemporaneous constraints y0t and zt by aggregating ỹt.
The same steps are performed to simulate another bivariate series yt = (y1,t y2,t)′,
which differs from ỹt only for the usage of the covariance matrix Ψ = E(ata′

t) =(
0.05 0
0 0.02

)
. This introduces a larger volatility in yt, and in so far it can be

considered as a preliminary version of ỹt.
The benchmarking techniques by Guerrero and Nieto and the extension of Den-

ton’s univariate PFD approach (hereafter denoted by GN and PFD, respectively)
are used to reconcile the preliminary series yt to the totals y0t and zt. Their per-
formances are evaluated by calculating simple descriptive statistics on relative and
absolute discrepancies y∗

t − yt, t = 1, . . . , 44, where y∗
t is the benchmarked series.

We replicate the experiment 1,000 times and calculate average and standard
deviation of the discrepancies statistics, as summarized in Table 1. Since we are
dealing with a bivariate system, the amount of adjustment is symmetric in the
variables: only the corrections made to y1,t are thus shown in the table.

30We use proc rndn of program GAUSS, version 6.
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Table 1: Discrepancies statistics for series y1,t. Simulated data with uncorrelated
disturbances (Σ and Ψ).

relative discrepancies discrepancies
median min max range mean std

PFD
average 0.0013 -0.0664 0.0713 0.1377 0.0154 0.0169
std. dev. 0.0014 0.0289 0.0386 0.0628 0.0050 0.0073
GN
average 0.0001 -0.0412 0.0414 0.0826 0.0149 0.0112
std. dev. 0.0020 0.0096 0.0092 0.0160 0.0022 0.0018
PFD: Multivariate Proportional Denton First Differences
GN: Guerrero and Nieto

The minimum and maximum corrections are both larger for PFD: the range is
0.1377 against 0.0826 obtained with GN. Moreover, it can be noted that the results
by GN are more stable than those by PFD (the standard deviations of the range
are equal to 0.0160 and 0.0628, respectively). On average, the corrections are very
close to each other, but the greater stability of the results by GN is confirmed.

The same exercise is performed again with non-diagonal covariance matrices. We

use Σ∗ =
(

0.04 0.005
0.005 0.01

)
and Ψ∗ =

(
0.05 0.005
0.005 0.02

)
, that is, we introduce a

positive correlation in the disturbances, for both the objective and the preliminary
series. In this case it is reasonable to expect an improvement of the performance
by GN over PFD: for, the data-based method should be able to recognize some cor-
relation pattern in the disturbance process and to exploit it in the benchmarking
formula, whereas the Denton’s solution always mechanically applies the same dis-
tribution scheme of the discrepancies without considering the properties of the data
at hand.

Table 2 confirms the expectations: the range of corrections by GN is even reduced
with respect to the case of a diagonal covariance matrix (0.0577), while PFD sensibly
augments the level of correction in the benchmarked series (0.2059). The average
correction increases to 0.0193 for PFD and decreases to 0.0107 for GN.

6.2 Benchmarking monthly estimates of Italian industrial value added

The second exercise is an application of benchmarking techniques to reconcile monthly
estimates of Italian industrial value added. The official estimates are issued by IS-
TAT at quarterly frequency in the framework of quarterly national accounts. We
obtain tentative estimates of value added at monthly level by using industrial pro-
duction indices; in fact, the sum of these estimates will sum up neither to the official
quarterly series nor to a “fictitious” monthly contemporaneous constraint. PFD
and GN procedures are thus used, and their performances are evaluated through
the amount of adjustment done to the preliminary series.
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Table 2: Discrepancies statistics for series y1,t. Simulated data with correlated dis-
turbances (Σ∗ and Ψ∗).

relative discrepancies discrepancies
median min max range mean std

PFD
average -0.0010 -0.0960 0.1098 0.2059 0.0193 0.0238
std. dev. 0.0018 0.0778 0.0928 0.1659 0.0071 0.0163
GN
average -0.0002 -0.0299 0.0278 0.0577 0.0107 0.0080
std. dev. 0.0009 0.0067 0.0048 0.0085 0.0013 0.0011
PFD: Multivariate Proportional Denton First Differences
GN: Guerrero and Nieto

We consider the quarterly value added (at constant prices and seasonally ad-
justed) for six sectors of the manufacturing activity31 and we use the monthly in-
dustrial production indices to derive monthly preliminary estimates and a monthly
accounting constraint in the following way.Each quarterly series of value added is
regressed on a constant, a trend and its own production index. The estimated coef-
ficients are applied at monthly level to obtain the preliminary disaggregated figures
for each sector. Since the regressions do not consider any temporal constraint, the
monthly sum of these estimates does not comply with the quartlerly value added
(the temporal discrepancies (in %) are shown for each variable in Figure 1). The
total quarterly value added for the six sectors is monthly disaggregated using as
related series the corresponding production index, derived as a weighted average of
the sectoral indices. The Chow and Lin (1971) procedure with AR(1) disturbances
is employed to this purpose. The resulting series represents the vector of contem-
poraneously aggregated data, that is z. In Figure 2 the percentage discrepancies
between the sum of the preliminary series and z are shown.

The practical application of the two-step GN data-based procedure we described
in section 5 starts by estimating at different lag lengths a VAR model (with constant
term) for the preliminary series y. The choice of the lag length is made on the basis
of various information criteria (AIC, SC and HQ) 32: an unrestricted VAR(1) model
is deemed adequate for the preliminary series.

We obtain a tentative benchmarked time series ŷ∗ fulfilling both temporal and
contemporaneous restrictions and validate empirically the compatibility between ŷ∗

and y by considering the DM statistic as defined in (19). While the obtained value
is not significant (DM = 0.38), the Ljung-Box tests on the estimated residuals show
evidence of autocorrelation, supporting the choice of performing the second stage of
the procedure.

31Manufacturing of food products, textiles, chemicals, basic metals, machinery, and electrical
equipment (DA, DB, DG, DJ, DK, and DL in the NACE rev. 11 classification).

32Detailed results on lag length selection and estimated coefficients of the VAR can be found in
Di Fonzo and Marini (2006).
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Figure 1: Benchmarking Italian monthly industrial value added. Temporal discrep-
ancies (%) before reconciliation (quarterly).

An unrestricted VAR for the differences between the tentative disaggregated and
the preliminary series, (ŷ∗ − y), is thus estimated. In this case the selection of the
lag length is not uniform among the criteria: in line with a parsimony principle, we
decided to follow the indication of SC, thus a VAR(3) model has been fitted to the
discrepancies (ŷ∗ − y). The resulting estimates are used in (17) to derive the new
benchmarked series ˆ̂y∗, for which the Wald test does not reject the compatibility
assumption (DM = 0.14), and no residual autocorrelation is detected now. Accord-
ing to the nature of the considered procedure, ˆ̂y∗ is in line with all the restrictions
of the problem and maintains as much as possible the autocorrelation structure of
the preliminary series y.

Finally, we use also Denton’s PFD to make a comparison with a mechanical
solution. In table 3 some descriptive statistics of the adjustments made to the
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Figure 2: Benchmarking Italian monthly industrial value added. Contemporaneous
discrepancies (%) before reconciliation (monthly).

preliminary monthly rates of changes are shown. The series showing the largest
corrections in both cases is y6, which is also the most variable series: GN bench-
marking produces adjustments between a maximum of 8.87% and a minimum of
-6.33% (8.19% and -6.17% for PFD). Smaller adjustments by PFD are also obtained
for y5 (5.45% against 5.55%). The results are opposite for the remaining four series:
the range of the adjustment made by GN is 8.19% for y1 (8.59% for PFD), 6.92%
for y2 (7.23% for PFD), 7.29% for y3 (7.68% for PFD), and 6.37% for y4 (7.76% for
PFD).

Table 3: Benchmarking Italian monthly industrial value added. Performance indi-
cators (corrections to monthly rates of change).

PFD GN
sect. med min max range std med min max range std

1 0.00 -4.60 3.99 8.59 1.51 -0.11 -4.21 3.98 8.19 1.56
2 0.01 -3.61 3.62 7.23 1.16 0.04 -3.53 3.39 6.92 1.16
3 -0.07 -2.68 5.00 7.68 1.30 -0.16 -3.07 4.22 7.29 1.36
4 0.11 -4.10 3.66 7.76 1.53 0.03 -3.36 3.01 6.37 1.45
5 -0.03 -3.09 2.36 5.45 0.98 0.06 -2.58 2.97 5.55 0.86
6 -0.04 -6.17 8.19 14.36 1.99 -0.17 -6.33 8.87 15.19 2.72

PFD: Multivariate Proportional Denton First Differences
GN: Guerrero and Nieto
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7 Conclusion

In this paper we have discussed the reconciliation of high-frequency time series sub-
ject to contemporaneous and temporal constraints in the framework of a constrained
matrix problem. We have presented some general features of the problem and dis-
cussed the solutions given by (i) a mathematical/mechanical optimization procedure
based on a movement preservation principle, and (ii) a data-based benchmarking
procedure which exploits the autoregressive features of the time series to be recon-
ciled.

The attention has been focused on the problem of reconciliating a table of one-
way classified time series (e.g., quarterly regional time series) with both temporal
(e.g., annual regional time series) and contemporaneous (e.g, the quarterly national
grand-total) exogenous constraints. In order to avoid cumbersome expressions, we
did not present some other cases which are of interest in practical applications:
(i) benchmarking a table of one-way classified time series when the contemporane-
ous constraint is endogenous instead of externally given (e.g., the ‘true’ quarterly
national grand-total is not available, while possibly a preliminary estimate has to
be adjusted in line with the accounting constraints); (ii) benchmarking a table of
two-way classified time series when the contemporaneous constraints are either en-
dogenous or exogenous. First results on these issues can be found in Di Fonzo and
Marini (2003).

The extension of Denton’s univariate benchmarking procedure is grounded on a
rather simple and appreciable principle, according to which the reconciled dynamic
profiles have to be as close as possible to those shown by the preliminary series. The
proportional variant of the method is generally preferred to the additive variant,
particularly when the series to be reconciled have different magnitude, in order
to avoid relatively large corrections to small aggregates, and the consequent risk
of having unpleasant negative figures. However, the proportional adjustment of a
system of time series mostly alters those component series having greater magnitude
(Di Fonzo and Marini, 2003), a result which sometimes could be counter-intuitive
(e.g., if one thinks that the most reliable series of a survey are generally the greater
ones, and viceversa).

An attempt to overcome this kind of problem could be made by considering
benchmarking according to a movement preservation principle explicitly referred to
the growth rates. In this case, the criterion to be minimised would be

M∑
j=1

⎡
⎣ n∑

t=2

(
y∗j,t − y∗j,t−1

y∗j,t−1

− yj,t − yj,t−1

yj,t−1

)2
⎤
⎦ ≡

M∑
j=1

⎡
⎣ n∑

t=2

(
y∗j,t

y∗j,t−1

− yj,t

yj,t−1

)2
⎤
⎦ .

Some authors (Helfand et al., 1977; Bozik and Otto, 1988; Bloem et al., 2001) con-
sider this criterion as ‘the ideal objective formulation’ (Bloem et al., 2001, p. 100),
but it is not generally pursued33 because of the inherent nonlinearity of the prob-
lem and because the proportional variant of Denton’s procedure has been gener-
ally considered a good approximation (Helfand et al., 1977). Di Fonzo and Marini

33An exception is Bozik and Otto (1988).
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(2003) present a solution to benchmarking a table of time series based on a log-
transformation which extends a result used in temporal disaggregation of a single
time series (Salazar et al., 2004; Aadland, 2000; Di Fonzo, 2003).

However expressed, though reasonable, Denton’s ‘closeness condition’ is let down
upon all the series, whatever characteristics each variable possesses, without any link
with the relative accuracy of the data to be reconciled. Nevertheless, the issue of
recovering measures of reliability from time series variables observed with noise is not
straightforward. In line with the contributions by Weale (1992), Solomou and Weale
(1993) and Smith et al. (1998), the data-based procedure by Guerrero and Nieto is
intended to extract information about the variability of the series making use of the
observed data, in order to get an estimate of the covariance matrix to be used in
the least-squares adjustment according to Stone et al. (1942). Another interesting
feature of this procedure lies on the opportunity of evaluating the compatibility of
the preliminary series by means of relatively simple statistical tools, which could
help in stressing possible deficiencies in (part of) the information basis.

We finally presented some results obtained in applying the benchmarking tech-
niques described in the paper to simulated and real-world data. First, we set up a
Monte Carlo experiment to assess their accuracy in reproducing a simulated set of
time series fulfilling both temporal and contemporaneous constraints. Then, we con-
sidered real-life economic time series where neither temporal nor contemporaneous
constraints were fulfilled by a set of preliminary series. From the simulation exercise
it resulted that the data-based benchmarking technique can outperform mechanical
solutions which do not take into account the properties of the data, particularly
when there is contemporaneous correlation between the series. The evidence com-
ing from the application on real-life data is less uniform. Nevertheless, it seems
to confirm the ability of the data-based benchmarking procedure to induce smaller
alterations to the dynamic profile of the preliminary estimates than those generated
by the PFD procedure (this holds true for 4 of 6 series forming the system). In
so far a larger volatility of the preliminary series is a signal of lower quality, the
data-based benchmarked procedure seems to take into account this characteristics,
producing relatively larger corrections to such series than those registered by the
other, relatively less variable, series. However, our implementation of the proce-
dure is still rather raw, given that modelization in levels of an unconstrained VAR
has been kept into consideration. Further research will necessarily provide insights
on better specified models, both in terms of restricting the VAR specification and
possibly by working with log and/or differenced time series.

References

Aadland, D. (2000): “Distribution and interpolation using transformed data,”
Journal of Applied Statistics, 27, 141–156.

Almon, C. (1968): “Recent methodological advances in input-output in the United
States and Canada,” paper presented at the Fourth International Conference on
Input-Output Techniques, Geneva.



REFERENCES 23

Antonello, P. (1990): “Simultaneous balancing of input-output tables at cur-
rent and constant prices with first order vector autocorrelated errors,” Economic
Systems Research, 2, 157–171.

Arkhipoff, O. (1995): “A “neglected problem” revisited. The consistency, balanc-
ing and reliability of National Accounts,” in Annali di Statistica, 124, serie X.
Istat, Rome.

Bacharach, M. (1970): Biproportional matrices and input-output change. Cam-
bridge University Press, Cambridge.

Barker, T., F. van der Ploeg, and M. Weale (1984): “A balanced system of
national accounts for the United Kingdom,” The Review of Income and Wealth,
30, 461–485.

Bloem, A., R. Dippelsman, and N. Mæhle (2001): Quarterly National Accounts
Manual. Concepts, Data Sources, and Compilation. International Monetary Fund,
Washington DC.

Bozik, J., and M. Otto (1988): “Benchmarking: Evaluating methods that pre-
serve month-to-month changes,” Bureau of the Census - Statistical Research Di-
vision, CENSUS/SRD/RR-88/07.

Bregman, L. (1967): “Proof of convergence of Sheleikhovskii’s method for a prob-
lem with transportation constraints,” USSR Computational Mathematics and
Mathematical Physics, 1, 191–204.

Byron, R. (1978): “The estimation of large social accounts matrices,” Journal of
the Royal Statistical Society A, 141, 359–367.

Cabrer, B., and J. Pav́ıa (1999): “Estimating M (¿1) quarterly time series in
fulfilling annual and quarterly constraints,” International Advances in Economic
Research, 5, 339–349.

Chen, Z., and E. Dagum (1997): “A recursive method for predicting variables with
temporal and contemporaneous constraints,” American Statistical Association,
Proceedings of the Business and Economic Statistics Section: 229-233.

Cholette, P. (1987): “Concepts, definitions and principles of benchmarking and
interpolation of time series,” Statistics Canada, Time Series Research and Anal-
ysis Division, Working Paper No TSRA-87-014E.

(1988): “Benchmarking systems of socio-economic time series,” Statistics
Canada, Time Series Research and Analysis Division, Working Paper No TSRA-
88-017E.

de Mesnard, L. (1994): “Unicity of biproportion,” SIAM Journal on Matrix Anal-
ysis and Applications, 15, 490–495.



24 REFERENCES

Deming, W., and F. Stephan (1940): “On a least-squares adjustment of a sam-
pled frequency table when the expected marginal totals are known,” Annals of
Mathematical Statistics, 11, 427–444.

Denton, F. (1971): “Adjustment of monthly or quarterly series to annual totals:
An approach based on quadratic minimization,” Journal of the American Statis-
tical Association, 66, 99–102.

Di Fonzo, T. (1990): “The estimation of M disaggregated time series when con-
temporaneous and temporal aggregates are known,” The Review of Economics
and Statistics, 72, 178–182.

(2002): “Temporal disaggregation of a system of time series when the
aggregate is known. Optimal vs. adjustment methods,” Workshop on Quarterly
National Accounts, Eurostat, Theme 2 Economy and finance: 63-77.

(2003): “Temporal disaggregation using related series: log-transformation
and dynamic extensions,” Rivista Internazionale di Scienze Economiche e Com-
merciali, 50, 371–400.

Di Fonzo, T., and M. Marini (2003): “Benchmarking systems of seasonally ad-
justed time series according to Denton’s movement preservation principle,” Di-
partimento di Scienze Statistiche, Università di Padova, working paper 2003.9.
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