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Section 1 Introduction 1

Testing for Linearity in Markov Switching Models: A Boot-
strap Approach

Silvestro Di Sanzo

Department of Statistical Sciences
University of Padua
Italy

Abstract: Testing for linearity in the context of Markov switching models is complicated
because standard regularity conditions for likelihood based inference are violated. This is
due to the fact that, under the null hypothesis of linearity, some parameters are not identi-
fied and scores are identically zero. Thus the asymptotic distribution of the test statistic of
interest does not possess the standard χ2-distribution. In this paper we propose a bootstrap
resampling scheme to approximate the distribution of the test statistic of interest under the
null of linearity. The procedure is relatively easy to program and the computation require-
ments are reasonable. We investigate the performance of the bootstrap-based test using
Monte Carlo simulations. We find that the test works well and outperforms the Hansen test
and the Carrasco et al. test. The use of the various methods is also illustrated by means of
empirical examples.

Keywords: Markov switching autoregressive models; Nuisance parameters; Bootstrap pro-
cedures; Monte Carlo simulation.

1 Introduction

The class of Markov switching (MS) models introduced by Hamilton (1989), where
changes between states (or regimes) are governed by the outcome of an unobserv-
able Markov process, have been widely applied to many economic and financial
time series1 (see, among others, Hamilton (1989), Cecchetti et al. (1990) and Lam
(1990) for aggregate output, Engel and Hamilton (1990) for exchange rates and
Hamilton (1988) and Garcia and Perron (1996) for interest rates). A key problem
which arises in empirical applications is how to determine the number of states (or
regimes) required for an MS model to be an adequate characterization of the data.
Hamilton (1989) offers suggestive evidence that a two-state MS model outperforms
linear models in terms of forecasts, but no statistical tests. A more formal statistical
procedure for determining the number of regimes is to test the null hypothesis of
a linear model against the alternative hypothesis of an MS model using likelihood
ratio (LR) tests. Such tests are complicated because usual regularity conditions

1Closely related parametric models have been proposed by Goldfield and Quandt (1973), Sclove
(1983) and Cosslet and Lee (1985), among others.
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required to apply the asymptotic theory are no longer respected. In fact, under the
null of linearity, the likelihood function is nonquadratic and flat with respect to the
nuisance parameters at the optimum and the scores are identically zero. Hence, in
this case, conventional statistics do not have an asymptotic standard χ2-distribution
under the null hypothesis. Hansen (1992, 1996) proposes a theory of hypothesis test-
ing which avoids these problems, but his procedure only gives bounds for the LR
statistic and requires extensive computation, which involves large scale simulation
and optimization over a three-dimensional grid. A less computationally demanding
test procedure is discussed in Garcia (1998), but his method is theoretically little
attractive since it overlooks the problem of the singular information matrix. Re-
cently, Carrasco et al. (2004) propose a new test for the stability of parameters in
MS models which only requires the estimation of the model under the null. This is
a great advantage over the tests of Hansen (1992, 1996) and Garcia (1998), since it
is well-known that the estimation of MS models is particularly burdensome. In this
paper we propose an alternative way to perform a test of linearity in this framework.
To calculate an appropriate p-value for the test of linearity, we propose a bootstrap
procedure which is an extension of the parametric bootstrap proposed by McLachan
(1987) in finite mixture models.2. We analyze the finite sample properties of the
bootstrap test by means of Monte Carlo simulations. More precisely, we compare
the size and power obtained with the bootstrap procedure with those obtained us-
ing Hansen (1992, 1996) and Carrasco et al. (2004) tests. The aim is to provide to
applied researchers a guide about the best method to test for linearity.

The paper proceeds as follows. Section 2 gives a description of the Markov
switching autoregressive model and outlines the maximum likelihood estimation pro-
cedure. Section 3 reviews the test procedures of interest. In section 4, we propose a
bootstrap resampling scheme to compute the p-value for a linearity test under the
framework of interest. Section 5 discusses the design of Monte Carlo experiments
that are used to investigate the small-sample performance of various test procedures
and presents the results of the experiments. Section 6 provides two illustrative ex-
amples involving real-world data. Section 7 concludes. Tables are relegated to the
Appendix.

2 Autoregressive Models with Markov Switching Regime

We focus on the class of models of the form:

xt = µ(st) +
m∑

τ=1
φτ (st) {xt−τ − µ(st−τ}+ σ(st)ut, (1)

µ(st) =
r∑

i=1
µ(i)I(st = i),

σ(st) =
r∑

i=1
σ(i)I(st = i),

φτ (st) =
r∑
i=1φ

(i)
τ I(st = i), τ = 1, ..., m,

2Feng and McCulloch (1996) provide the mathematical background to justify the use of bootstrap
likelihood ratios in this framework.
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where m is a positive integer, {ut} is a sequence of independent and identically
distributed (i.i.d.) real-valued random variables with mean zero and unit variance,
st is a random variable which takes values in the finite set Υ = (1, ..., r) and which
indicates the unobservable state of the system at time t, φ

(i)
τ , σ(i), µ(i) (i = 1.2, ..r)

are real constants and I(A) is an indicator function of event A. The process {st}
is assumed to form a strictly stationary, time-homogenous, first-order Markov chain
on Υ = (1, ..., r) with transition probability matrix P = (pij)′i,j∈Υ, where

pij = Pr(st = j|st−1 = i), i, j ∈ Υ

and
r∑

j=1
pij = 1 for i ∈ Υ. It is also assumed that {st} is independent of {ut} and

that P is ergodic.
Model (1) represents a Markov mixture of r autoregressive models and hereafter

will be called a r-state m-order Markov switching autoregressive (MSAR(r,m))
model.

We can obtain the maximum likelihood estimator (MLE) of the vector of pa-
rameters of interest θ = {pij , φ

(i)
τ , σ(i), µ(i)} using the filter proposed by Hamilton

(1989). Suppose for simplicity the case of an MSAR(2, 1). In this case, θ = {p11,

p22, φ
(1)
1 , φ

(2)
1 , σ(1), σ(2), µ(1), µ(2)}.

The inference is performed iteratively for t = 1, 2, ..., T , with step t accepting as
input the values

ξit−1 = Pr(st−1 = i|Ωt−1; θ) i ∈ {1, 2} ,

and producing as output

ξjt = Pr(st = j|Ωt; θ) j ∈ {1, 2} ,

where Ωt−1 = {xt−1, xt−2,...,x0} denotes the information available up to time t − 1,
and θ for now is assumed to be known.

The key magnitudes we need to perform this iteration are the densities under
the two regimes,

f(xt|st = j, st−1 = i,Ωt−1; θ) =
1

σ(j)
√

2π
exp{− 1

2σ(j)2
(xt−µ(j)−φ1(j)[xt−1−µ(i)])2},

for i, j ∈ {1, 2} .Specifically, given the input ξit−1, we can derive the conditional
density of the tth observation from

f(xt|Ωt−1; θ) =
2∑

i=1

2∑

j=1

pijξit−1f(xt|st = j, st−1 = i,Ωt−1; θ),
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and the desiderated output is

ξjt =

2∑
i=1

pijξit−1f(xt|st = j, st−1 = i, Ωt−1; θ)

f(xt|Ωt−1; θ)
.

A byproduct of the filter is the evaluation of the sample conditional log-likelihood
of the observed data

L(θ|ΩT ) =
T∑

t=1

log f(xt|Ωt−1; θ)

for the specified value of θ. Therefore, the MLE of θ can be obtained by maximizing
the log-likelihood by numerical optimization.

To start the filter, we need of the value ξi0, i ∈ {1, 2}. We can set ξi0 equal to
its limiting unconditional probabilities

ξi0 = Pr(s0 = i) =
1− pjj

2− pii−pjj
.

Other alternatives are simply to set ξi0 = 1/2 or estimate ξi0 by maximum
likelihood.

In this paper we are interested in testing the null hypothesis of a linear model
against the alternative hypothesis of an MS model. For example, for the model
described above, the test of interest takes the form:

H0 : µ(1) = µ(2), σ(1) = σ(2), φ
(1)
1 = φ

(2)
1 ,

H1 : µ(1) 6= µ(2), σ(1) 6= σ(2), φ
(1)
1 6= φ

(2)
1 .

Note that transition probabilities, p11 and p22, are unidentified under the null
since any value between 0 and 1 leaves the likelihood function unchanged. Moreover,
the scores are identically zero when evaluated at the null hypothesis. Under these
conditions the asymptotic null distribution of the likelihood ratio test statistic is not
a χ2 with one degree of freedom.

3 Tests for Linearity in MS Models

In this section, we describe the most important hypothesis testing theories proposed
in the literature to test for linearity in MS models. The linearity tests considered
include the Hansen test and the Carrasco et al. test. In our subsequent Monte
Carlo analysis, we consider both procedures and compare their size and power with
those obtained with the bootstrap method. Since these tests have been discussed
extensively in the literature, our description here will be relatively brief.
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3.1 The Hansen Test

Hansen (1992, 1996) proposes a theory of hypothesis testing which allows to perform
a test of linearity in the presence of nuisance parameters and scores identically zero
under the null hypothesis, which is the case of MS models. This author considers the
likelihood function as a function of unknown parameters and employes the empirical
process theory to bound the asymptotic distribution of a standardized LR statistic.
Now, we discuss formally the procedure.

The parameter vector θ is first split into two subvectors: a subvector of parame-
ters of interest α, and a subvector of nuisance parameters λ, where the subvector α
includes the transition probabilities and the regime-switching parameters.

The subvector α is further partitioned into β and γ. The null hypothesis takes
the form

H0 : β = 0, H1 : β 6= 0,

and γ is not identified under H0.
For example, for the case of an MSAR(2, 1) with switches only in the mean of

the process, we obtain:

θ =
{

µ(1), µ(2), p11, p22, φ1, σ2
}

, α =
{

µ(1) − µ(2), p11, p22

}
,

λ =
{

φ1, σ2, µ(1)
}

, β =
{

µ(1) − µ(2)
}

, γ = {p11, p22} .

Let ft(α, λ) be the conditional log-likelihood of the tth observation evaluated at
α and λ:

ft(α, λ) = log f(xt|Ωt−1; α, λ).

For any α, let λ̂(α) denote the value of λ that maximizes the log-likelihood with
respect to λ taking α as given. Define

qt(α) = ft[α, λ̂(α)]− ft[α0, λ̂(α0)],

where α0 is the value of α under the null. The sample mean of this variable is

q(α) = T−1
T∑

t=1
qt(α). The LR test of the null hypothesis that α = α0 against the

specific alternative represented by α could be represented as Tq(α). Hansen (1992,
1996) suggests calculating the following standardized LR test statistic:

Ĥ = max{
α∈Γ

Tq(α)(
T∑

t=1

[qt(α)− q(α)]2)−1/2},

where Γ is a grid containing the possible values of α.
He shows that under the null α = α0, for large samples, the probability that Ĥ

would exceed a critical value z is less than the probability that the statistic below
would exceed the same value z:
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max{
α∈Γ

(1 + M)−1/2(
M∑

k=0

T∑

t=1

[qt(α)− q(α)]ut−k)−1(
T∑

t=1

[qt(α)− q(α)]2)−1/2}

where ut is an i.i.d. N(0, 1) sequence generated by Monte Carlo and M is a parameter
corresponding to the maximum order of autocorrelation allowed at qt(α).

As we point out in the introduction, this procedure has two main shortcomings.
First, it requires to set a grid for each element of the vector α, that is for each
switching parameter plus the transition probabilities. For each value of this grid,
we need to optimize the likelihood function with respect to the nuisance parameters
of the model. Clearly, this becomes computationally burdensome as the grid search
becomes more extensive and the model becomes more complex. Second, as we have
seen above, this procedure provides a bound for the LR statistic and not a critical
value, which means that this test may be conservative, i.e. under-rejection of the
null hypothesis when it is true.

3.2 The Carrasco et al. Test

Carrasco et al. (2004) propose an optimal test for the stability of parameters in
the framework of MS models. They derive a class of information matrix-type tests,
strongly related as that proposed by White (1982), and show that it is equivalent to
the LR test. Hence, their test is asymptotically optimal. To describe the procedure,
let ft(θ) denote the conditional log-likelihood of the tth observation under the null
hypothesis of no Markov switching and let f1

t (θ) and f2
t (θ) denote its gradient and

Hessian, respectively.
Define:

γt(ρ, θ̂) = h′[f2(θ̂) + [f1
t (θ̂)f1

t (θ̂)′] + 2
∑
s<t

ρt−sf1
t (θ̂)f1

s (θ̂)′]h

where h and ρ are nuisance parameters. Specifically, parameter h measures the dif-
ference between the states and ρ is a parameter characterizing the serial correlation
of the Markov chain for st under the alternative hypothesis of Markov-switching. θ̂
is the MLE under the null hypothesis of constant parameters.

Finally, let ε̂t(ρ, h, θ̂) denote the tth residual from the OLS regression of (1/2)γt(ρ, θ̂)
on f1

t (θ̂). Carrasco et al. (2004) propose calculating

supTS = sup
{h,ρ:‖h‖=1,ρ<ρ<ρ}

[max{0,

∑T
t=1 γt(ρ, h)

2
√∑

ε̂t(ρ, h, θ̂)2
}]2

To calculate this test we need to use a grid search over the two-dimensional space
(h, ρ). To execute this grid search, we have to pick a region over which to search.
Carrasco et al. (2004) suggest to generate h uniformly over the unit sphere and
select ρ from an equispaced grid. The asymptotic distribution of this test is not
free of nuisance parameters, then we have to rely on Monte Carlo simulations to
compute critical values.
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4 The Bootstrap Algorithm

In this section we discuss a bootstrap approximation of the distribution of the LR
test statistic under the null of linearity. We follow a similar approach to that used
in McLachlan (1987) for bootstrapping the LR test statistic for the number of com-
ponents in a normal mixture, though now we assess the number of components in a
MS model. This bootstrap approximation can be used to calculate the p-values of
the linearity test. The procedure is not very difficult to program and computation
requirements are quite reasonable.

The bootstrap runs as follows:

STEP1: Construct some estimation of the coefficients of the model under the
null hypothesis of linearity, θ̂0 = {µ̂, φ̂τ , σ̂2} with τ = 1, 2, ..., m. For example, using
the MLE.

STEP2: Compute the estimated residuals under H0 as follows:

ût = xt − µ̂−
m∑

τ=1

φ̂τ {xt−τ − µ̂} , t = m + 1, ..., T.

STEP3: Estimate the model under H1 and compute the LR statistic,

LR = 2
[
L(θ̂|ΩT )− L(θ̂0|ΩT )

]
,

where θ̂ denotes the unrestricted MLE of θ, and θ̂0 denotes the MLE estimate under
the null hypothesis.

STEP4: Generate the bootstrap errors u∗t , t = m + 1, ..., T , by sampling with
replacement from the residual series ût. Construct the bootstrap sample as follows:

x∗t = µ̂ +
m∑

τ=1

φ̂τ

{
x∗t−τ − µ̂

}
+ u∗t

We need to establish a set of initial values for (x0, x−1, x−2, ..., x−m+1). We take
the simple approach of conditioning on the observed values, so hold these values fixed
in repeated samples. Naturally, some other ways to model the initial conditions can
be used. The distribution of x∗t is the bootstrap distribution of the data.

STEP5: Use the bootstrap sample x∗t to calculate the LR statistic. Call its
value LR∗. The distribution of LR∗ is the bootstrap distribution of LR.

The experiment consist of repeating the above steps B times. We compute the
bootstrap p-value as pB = card(LR∗ ≥ LR)/B, that is the fraction of LR∗ values
that are greater than the observed value LR.
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5 Monte Carlo Study

In this section we report a series of Monte Carlo experiments designed to compare
the finite sample performance of the bootstrap procedure with the performance of
the tests of Hansen and Carrasco et al.. We begin describing the data-generating
processes and the experimental design used in our simulations. A discussion of the
results of the experiments follows.

5.1 Experimental Design

To assess the size (rejection frequency under the null) of the tests, we have to
generate the data under the null hypothesis of linearity. We use as data generating
process (DGP ) a first-order autoregressive linear model:

DGP0 :

xt = µ + φ(Xt−1 − µ) + ut, with ut ∼ N(0, 1),
µ = 1.5, φ = 0.3

On the other hand, to assess the power (rejection frequency under the alter-
native) of the tests, we need to generate data under the alternative hypothesis of
Markov switching. In our experiments, to keep the calculations manageable, we
use as DGP an MSAR(2, 1) model with ut ∼ N(0, 1). We consider the following
parameterizations:

DGP1 :

µ(1) = 1, µ(2) ∈ {2, 3} ,

σ(1) = 1, σ(2) ∈ {1,
√

1.5},
φ

(1)
1 = 0.3, φ

(2)
1 ∈ {0.3, 0.0.6, 0.9} ,

(p11, p22) ∈ {(0.6, 0.4), (0.9, 0.9), (0.9, 0.98)} .

Transition probabilities (p11, p22) = (0.6, 0.4) imply that the regime indicator
variables {st} are uncorrelated. This means that the state of the system at time t
does not depend on the state at time t−1. On the other hand, the pairs (p11, p22) =
(0.9, 0.9) and (p11, p22) = (0.9, 0.98) allow the regimes to be highly persistent with
the regime corresponding to st = 2 being almost absorbing in the latter case (the
stationary distribution of {st} is (0.5, 0.5) and (0.1667, 0.8333), respectively).

Note that in the class of MSAR(2, 1) models presented under DGP1, the condi-
tional distribution of a realization depends upon the previous value of the Markov
process and the model parameters varies between states. These are the primary
sources of intensive computational requirements. In this framework, as pointed out
by Hansen (1992, 1996), to perform a Monte Carlo study is not feasible because the
computational requirement is enormous. Therefore, to compare the bootstrap and
Carrasco et al. tests with the Hansen test we use a simpler class of DGP s, which
are employed by Hansen (1992, 1996) in his Monte Carlo study.

To generate data under the null, we consider a simple model with no autoregres-
sive parameters:
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DGPH
1 :

Xt = µ + ut,

µ = 0.057, σ = 0.983.

To study the power, we use the following nonlinear model:

DGPH
2 :

Xt = µ(st) + ut,

µ(1) = −0.359, µ(2) = 1.522, σ = 0.769, p11 = 0.904, p22 = 0.755.

To see if the autoregressive parameters affect the size and the power of the tests
we employ DGPH

3 and DGPH
4 , respectively:

DGPH
3 :

Xt = µ +
4∑

τ=1

φτxt−τ + ut,

µ = 0.557, σ = 0.983, φ1 = 0.310, φ2 = 0.127, φ3 = −0.121, φ4 = −0.089.

DGPH
4 :

Xt = µ(st) +
4∑

τ=1

φτxt−τ + ut,

µ(1) = −0.447, µ(2) = 1.560, σ = 0.789, p11 = 0.912, p22 = 0.669,

φ1 = 0.112, φ2 = 0.065, φ3 = −0.126, φ4 = −0.136.

From DGPH
1 to DGPH

4 , the parameters are the maximum likelihood estimates
obtained by fitting the models to the U.S. real GNP series ranging from 1952:2
to 1984:4. Note also that in DGPH

2 and DGPH
4 , the conditional likelihood only

depends upon the current state. As a result, the computational burdens are much
less demanding.

The experiments proceed by generating an artificial time series of length T + 50
according to each one of the DGP s under study, with T ∈ {100, 250} for DGP0

and DGP1 and T = 131 for DGPH
1 − DGPH

4 . Initial values are set to zero in
all specifications. The initial value of the Markov chain {st} is drawn randomly
from its stationary distribution, that is, p(st = 1) = (1 − p22)/(2 − p11 − p22) and
p(st = 2) = (1 − p11)/(2 − p11 − p22). The first 50 pseudo-data points are then
discarded to minimize the effect of initial conditions and the remaining T points are
used to compute the test statistics.

For each simulated sample we test the null hypothesis of linearity using the boot-
strap procedure and the Carrasco et al. test described in the previous section. We
employ B = 500 bootstrap replications, and for the Carrasco et al. test we generate
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h over the unit sphere and ρ is selected from an equispaced grid of (−0.7, 0.7). The
number of Monte Carlo replication experiments for each design point is R = 1000.
The processing time becomes excessive when greater values of B or R are used.

The relevant test is deemed to reject at 10%, 5% and 1% level if its associ-
ated p-value is smaller than 0.10, 0.05 and 0.01, respectively. Since no substantial
differences are observed across significance levels, results are only reported for the
5% significance level. Moreover, for DGP1, we only report the results obtained with
state-dependent variances because when the variance is kept constant across regimes
we obtain similar results.

We start analyzing the size and the power properties of the bootstrap and Car-
rasco et al. tests obtained with DGP0 and DGP1, respectively. Table 1 records the
Monte Carlo estimates of the empirical size, and Tables 2 shows the estimates of
the power. The empirical size of the tests is remarkably close to its nominal value
even for a small sample size T = 100. If the sample size is increased to T = 250, the
empirical size is more accurate.

Regarding the power, it is evident that the performance of the tests improves
as the difference between the values of the parameters in the two regimes increases.
This is true for both changes in autoregressive parameters, φ1(st), and changes in
the mean parameters, µ(st). For example, when we consider the largest changes
included in our experiments (µ(2) − µ(1) = 2, φ(2) − φ(1) = 0.6), both tests have an
excellent power even for T = 100. Using the bootstrap test, the rejection rate ranges
from 95.1 to 98.7. If the Carrasco et al. test is used, the rejection rate ranges from
93.8 to 96.3. In the context of normal mixture models, McLachlan (1987) also finds
that the power of the bootstrap is very good if the components of the mixture are
widely separated.

The magnitude of the transition probabilities also affects the power. More pre-
cisely, when the sample size and the changes between parameters are small, both
tests suffer a significant loss of power in the case of uncorrelared Markov chains,
especiallly for the Carrasco et al. test . This may be due to the frequent regime
transitions that take place when p11 = 1− p22, combined with small changes in pa-
rameters, tend to make the MSAR(2, 1) series look very much like a heteroskedastic
white noise3. However, the performance of the tests improves considerably when the
magnitude of the parameter changes and the persistence of the Markov regimes in-
crease, especially when we use the bootstrap test.

Turning to the properties of individual tests, it is clear that the bootstrap pro-
cedure outperforms the Carrasco et al. test. When the sample size is small and
parameter changes are moderate, the bootstrap is far superior to the Carrasco et al.
test. For example, for T = 100, µ(2)−µ(1) = 1 and φ(2)− φ(1) = 0, the power of the
bootstrap ranges from 52.8 to 71.2, while in the Carrasco et al. test it ranges from
21.3 to 47.6. When T increases, the power of both procedures improves substantially.

Now, we consider the second set of DGP s to compare the performance of the
bootstrap and Carrasco et al. tests with the Hansen test. We report the empirical
size and power obtained with DGPH

1 and DGPH
3 in Table 3. The size and power

obtained by Hansen (1992, 1996) for the corresponding DGP s are reported in Table
3Psaradakis and Spagnolo (2003) obtain similar results in the analysis of the properties of

complexity-penalized criteria to select the correct state dimension of an MSAR(r, m) model.
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4. As we pointed out in the previous section, the Hansen test may be conservative,
in fact, we see that this test under-rejects with an empirical size ranging from 0
to 2. On the other hand, for the Carrasco et al. test and the bootstrap test, the
empirical size is remarkably close to its nominal value. All tests have a good power.
In Table 5, we report the results for the bootstrap test and the Carrasco et al. test
obtained with DGPH

2 and DGPH
4 . The corresponding results for the test of Hansen

are reported in Table 6. In this case, we obtain an interesting result. The Hansen
and the Carrasco et al. tests suffer a significant loss of power. The Hansen test has
a deterioration of power from 74 to 20, and the Carrasco et al. test from 69.0 to
40.7, while the power of the bootstrap erodes from 83.3 to 70.0. Therefore, the effect
of the autoregressive parameters is quite strong, indicating that for the Hansen and
Carrasco et al. tests the cost of over-fitting is higher.

To summarize, the following general conclusions can be drawn from the discus-
sion above:

1) In general, the bootstrap method is the best procedure overall. In fact, it
works well when the size of the sample is small, parameters changes are moderate,
or the Markov chain is not persistent.

2) For simple models with no autoregressive components, the three testing pro-
cedures have a similar performance. In this case, the Carrasco et al. test and the
bootstrap procedure are preferable because they are much easier to implement.

3) For models with more complicated behaviour, the Carrasco et al. and the
bootstrap tests outperform the Hansen test. But the bootstrap is the method with
the highest power. It has a lower over-fitting cost.

6 Empirical Examples

To illustrate the practical use of the test procedures descibed before, we provide two
examples involving real-world data sets. More precisely, we analyze

the following time series:
1. The quarterly three-month US treasury bill rates for the period 1962:1-1987:3.
2. The quarterly precentage changes in real US GNP for the period 1952:2-

1984:4.
For the nominal interest rate data, Hamilton (1988) found support for an MSAR

(2,4) model with state-independent autoregressive coefficients and switching in the
mean and the variance of the process. For the real GNP series, Hamilton (1989)
fitted a MSAR(2,4) model with no switching in the innovation variance or the au-
toregressive coefficients. On the other hand, Albert and Chib (1993) found evidence
for a specification with mean switching but no autoregressive dynamics. However,
we wish investigate here whether the more parsimonious MSAR (2,0) model pro-
posed by Albert and Chib (1993) is statistically significant. In Table 7 we report
the P-values obtained with the test procedures described before. For the real GNP
data, all three tests reject the null of linearity. Therefore, the model proposed by
Albert and Chib (1993) is statistically significant. This result is in according with
that obtained by Psaradakis (1998). For the nominal interest rate , the Carrasco et
al and the bootstrap test reject the null of linearity, while the Hansen test provides
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evidence in favour of a linear specification. In this case no definite answer is possible.
However, our simulation evidence suggested that the power of the Hansen test is low
in presence of autoregressive dyamics. This is certainly not conclusive evidence, but
it is fair to conclude that model is statistically significant.

7 Conclusion

In this paper we propose a bootstrap algorithm to calculate an appropriate p-value
for the test of linearity in the framework of Markov switching models inspired by
the bootstrap likelihood ratio proposed by McLachlan (1987) in the context of finite
mixture models . We analyze the finite sample properties of the test procedure by
means of Monte Carlo simulations. We find that the bootstrap-based test works well
and that it outperforms the tests of Hansen and Carrasco et al.. We conclude that,
in applied research, the bootstrap procedure may be a valid alternative to Carrasco
et al. and Hansen tests.

8 Appendix

TABLE 1: Monte Carlo size, DGP0, 5% nominal level
T = 100 T = 250

Bootstrap 4.7 5.0
Carrasco et al. 4.3 5.2
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TABLE 2: Monte Carlo power, DGP1, 5% nominal level

T = 100 T = 250

µ(1) = 1, µ(2) = 2, σ(1) = 1, σ(2) =
√

1.5
φ

(1)
1 − φ

(2)
1 = 0

(p11, p11) = (0.6, 0.4)
Bootstrap
Carrasco et al.

58.8
21.3

63.4
41.2

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

71.2
47.6

82.0
56.8

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

70.1
44.5

77.5
49.2

φ
(1)
1 − φ

(2)
1 = 0.3

(p11, p11) = (0.6, 0.4)
Bootstrap
Carrasco et al.

73.3
53.0

75.1
71.4

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

79.5
67.0

85.3
75.7

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

76.2
63.4

83.1
71.7

φ
(1)
1 − φ

(2)
1 = 0.6

(p11, p11) = (0.6, 0.4)
Bootstrap
Carrasco et al.

80.6
65.1

85.3
84.2

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

86.0
75.9

92.4
85.0

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

83.9
73.7

86.3
84.5
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TABLE 2 (Continued)
T = 100 T = 250

µ(1) = 1, µ(2) = 3, σ(1) = 1, σ(2) =
√

1.5
φ

(1)
1 − φ

(2)
1 = 0

(p11, p11) = (0.6, 0.4)
Bootstrap
Carrasco et al.

68.0
43.6

76.1
72.4

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

87.0
81.5

90.3
89.4

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

78.6
75.2

81.6
76.7

φ
(1)
1 − φ

(2)
1 = 0.3

(p11, p11) = (0.6, 0.4)
Bootstrap
Carrasco et al.

82.5
80.1

88.6
86.9

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

91.9
88.6

93.4
91.2

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

84.3
83.0

87.5
85.3

φ
(1)
1 − φ

(2)
1 = 0.6

(p11, p11) = (0.5, 0.5)
Bootstrap
Carrasco et al.

95.1
93.8

97.7
96.6

(p11, p11) = (0.9, 0.9)
Bootstrap
Carrasco et al.

98.7
96.3

99.3
97.4

(p11, p11) = (0.9, 0.98)
Bootstrap
Carrasco et al.

98.0
95.2

98.8
97.3
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TABLE 3: Monte Carlo with no autoregressive components 5% nominal
level

Size Power

Bootstrap 5.2 83.3
Carrasco et al. 4.4 69.0

TABLE 4: Monte Carlo with autoregressive components 5% nominal
level

Size Power

Bootstrap 5.4 70.0
Carrasco et al. 4.0 40.7

TABLE 5: Monte Carlo with no autoregressive components, 5% nominal
level, (Results reported in Hansen (1996, p. 197))

M=0
size
power

0
74

M=1
size
power

0
74

M=2
size
power

2
74

M=3
size
power

2
74

M=4
size
power

2
74
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TABLE 6: Monte Carlo with autoregressive components, 5% nominal
level, (Results reported in Hansen (1996, p. 197))

M=0
size
power

14
24

M=1
size
power

16
24

M=2
size
power

16
22

M=3
size
power

16
24

M=4
size
power

16
20

TABLE 7: Test P-values
Hansen test Bootstrap test Carrasco et al. test

Interest rate 0.21 0.003 0.004
Real output 0.034 0.000 0.000
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