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1 Introduction

The huge amount of work in financial time series has led to a general consensus of
the scientific community about some empirical statistical features known as stylized

facts (i.e., positive correlation among square or absolute returns, conditional het-
eroskedasticity, clustering effects, leptokurtosis of return distributions) which have
been thoroughly investigated.

On the contrary, skewness in marginal and conditional return distributions has
been quite neglected and relatively little work has been done to detect it. As a
consequence, the occurrence of skewness, both unconditional and conditional, is still
disputable and the empirical findings are not univocal. While some authors found,
assumed or declared significant asymmetries in return distributions (e.g. Engle and
Patton, 2001, Cont, 2001, Chen et al., 2001, Hueng and McDonald, 2005, and Sil-
vennoinen et al., 2005), others (e.g. Peiró, 2004, Kim and White, 2004, Lisi, 2005,
and Premaratne and Bera, 2005) are more doubtful about the pervasive presence of
skewness in returns.

The existence (or lack) of both unconditional and conditional symmetry is impor-
tant in a number of situations relevant to both economic and statistical contexts.
From a financial perspective, skewness is crucial since it may itself be considered
as a measure of risk. For example, Kim and White (2004) stressed that, if in-
vestors prefer right-skewed portfolios then, for equal variance, one should expect
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a “skew premium” to reward investors willing to invest in left-skewed portfolios.
With respect to optimal portfolio allocation, Chunhachinda et al. (1997) showed
that allocation can change considerably if higher than second moments are consid-
ered in selection. Along the same lines, Jondeau and Rockinger (2004) measured
the advantages of using a strategy based on higher-order moments. With respect to
option pricing problems, Corrado and Su (1997) attributed the anomaly known as
“volatility skew” in option pricing to the skewness and kurtosis of the return distri-
bution. Kalimipalli and Sivakumar (2003) studied whether one can trade profitably
in the option market using time-varying skewness in the underlying asset returns,
finding that strategies based on skewness forecasts are profitable in out-of-sample
experiments.

In the context of hedge funds, some authors showed that the funds exhibit option-
like features in their returns and have significant left-tail risk (Fung and Hsieh, 2001,
Mitchell and Pulvino, 2001). Kat and Miffre (2006) found that systematic kurto-
sis and skewness risks are the two main drivers of hedge fund performance. The
role played by skewness in risk management is also described by Rosenberg and
Schuermann (2006) and in general it is reasonable to expect that, when skewness
is present, accounting for it may lead to better estimation of risk measures such as
Value-at-Risk or Expected Shortfall.

Several economic theories have been offered as an explanation of the the mecha-
nism generating the asymmetry, including leverage effects (Black, 1976, Christie, 1982),
the volatility feedback mechanism (Campbell and Hentschel, 1992), stochastic bub-
bles models (Blanchard and Watson, 1982) and investor heterogeneity (Hong and
Stein, 2003).

On the other hand, the interest in possible asymmetries is motivated also by
statistical reasons. For example, often estimation procedures assume conditional
symmetry and thus a proper evaluation of this assumption may be advisable. In
particular, Newey and Steigerwald (1997) showed that consistent estimation of the
GARCH parameters can be obtained by QMLE if both the true and the assumed
innovation densities are symmetric around zero and unimodal. When conditional
symmetry does not hold, an additional parameter is necessary to identify the location
of the innovation distribution. The assumption of conditional symmetry is also
commonly used in adaptive estimation.

It should also be noted that a good modeling of the conditional distribution may
be crucial in any dynamic analysis such as dynamic optimal portfolio allocation or
Value-at-Risk estimation.

An important statistical issue is the relation between unconditional and con-
ditional skewness. It is well known that asymmetry of marginal and conditional
distributions do not necessarily coincide. Referring to the coefficient of skewness
given by the standardized third moment, Engle and Gonzáles-Rivera (1991) show
that unconditional skewness is greater or equal than the conditional one. Their
proof assumes constant conditional skewness but, as we will show in this paper, this
is not always the case.

Within this context, we first analyze the statistical significance of unconditional
and conditional skewness in order to assess whether asymmetry is a widespread char-
acteristic of financial returns. In our analysis we consider nine time series of stock
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index returns for which marginal symmetry is investigated by means of a suitable
test. Then, for the same series, conditional skewness is studied using tests and a
non-Gaussian GARCH-type model. In both steps, skewness is assumed to be con-
stant. The possibility of conditional time varying skewness is introduced in a third
step, through a generalization of the previous GARCH-type representation, that
allows to dynamically model conditional variance, skewness and kurtosis. Although
other models with dynamic conditional skewness and kurtosis have been studied
in the literature (Hansen, 1994, Harvey and Siddique, 1999, Brooks et al., 2005),
the specific form of the proposed model is new. A second goal of this paper is to
analyze the economic significance and the financial impact of a correct modeling
of skewness. With this purpose Value-at-Risk, Expected Shortfall and connected
capital requirements as defined by the second Basel Accord (Basel Committee on
Banking Supervision, 1995, 1996) were considered for the stock index returns. The
performances of different models were compared.

The paper is organized as follows. Section 2 reviews some tests for marginal
and conditional skewness. Section 3 introduces a model which allows to study both
constant and time-varying conditional skewness and kurtosis. Empirical evidences
and statistical and economic significance of skewness are investigated in Section 4.
Some concluding remarks are presented in Section 5.

2 Testing for skewness

The first step of our study consists in testing for unconditional skewness by means of

the standardized third moment S = µ3/µ
3/2
2 , where µj is the j−th central moment.

In this context, it should first be noted that the standard asymptotic test based

on the relationship
√

n Ŝ
d−→ N(0, 6) does not work correctly, either for dependent

Gaussian or independent non-Gaussian data (Bai and Ng, 2005, Premaratne and
Bera, 2005, and Lisi, 2005). In particular, for leptokurtic distributions this test
strongly overestimates the asymmetry while the opposite happens when the distri-
bution is platykurtic.

Bai and Ng (2005) proposed a test for unconditional skewness, based on the
distribution of Ŝ, that works properly also for dependent and non-Gaussian data.
It is thus particularly useful for time series of financial returns. Let us denote
by y1, . . . , yn the observed series. Under the hypothesis of symmetry, assuming
the existence of the sixth moment and some mixing conditions, but without any
assumption of independence or Gaussianity, it is shown that

√
n Ŝ

d→ N(0, V ) , (1)

where V = α Γ α′/σ6, with σ2 = µ2, α = [1,−3σ2] and Γ defined as the 2×2 matrix
given by limn→∞ n E(Z̄ Z̄ ′), with Z̄ being the sample mean of

Zt =

[

(yt − µ)3

(yt − µ)

]

.

In this framework, the serial dependence in the observed series {yt} is explained
through Γ, which represents the spectral density matrix of Zt at frequency 0. It is
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clear that relationship (1) allows to verify the hypothesis H0: S = 0 by means of a
normal test.

Bai and Ng (2001) proposed an asymptotically distribution free test for con-
ditional symmetry in time series models. In particular, conditional symmetry is
tested by considering the empirical distribution function of the estimated residuals
{ε̂t} from the general model

yt = µt(It−1, θ) + σt(It−1, θ) εt, (2)

where θ represents a suitable set of parameters, It−1 is the information up to time
t − 1, µt is the conditional mean of yt, σ2

t is the conditional variance and εt is a
zero mean and unit variance disturbance, independent of the elements of It−1. Since
conditional symmetry of yt is equivalent to symmetry of εt about zero, the former
may be studied by comparing the empirical distribution function of εt to that of
−εt. To this end the standardized residuals ε̂t = (yt − µ̂t)/σ̂t are computed. Then,
the statistic

CS = max
y

|Sn(y)| (3)

is introduced, where

Sn(y) = Ŵn(y) − Ŵn(0) +

∫ 0

y
h−

n (x) dx , if y ≤ 0 ,

Sn(y) = Ŵn(y) − Ŵn(0) −
∫ y

0
h+

n (x) dx , if y > 0 ,

with Ŵn(y) = n−1/2
∑n

t=1 [I(ε̂t ≤ y) − I(−ε̂t ≤ y)] and

h−
n (x) = gn(x) fn(x)

[
∫ x

−∞

gn(z)2fn(z) dz

]−1 ∫ x

−∞

gn(z) dŴn(z) ,

h+
n (x) = gn(x) fn(x)

[
∫ ∞

x
gn(z)2fn(z) dz

]−1 ∫ ∞

x
gn(z) dŴn(z) .

Here fn represents an estimate of the density f of εt, and gn is an estimate of the ra-
tio ḟ /f , with ḟ being the derivative of f . Bai and Ng (2001) suggest to approximate
the integrals by summations and to estimate the density and its derivative by kernel
methods. In particular, they propose a Gaussian kernel with a bandwidth equal to
1.06n−1/5 times the standard error of εt. This choice minimizes the approximate
mean integrated squared error of the density estimate. Under some technical as-

sumptions, when conditional symmetry holds, CS
d→ max0≤s≤1 |B(s)| , where B(s)

is a standard Brownian motion on [0, 1]. The asymptotic critical values of the test
at 1%, 5% and 10% levels of significance are 2.78, 2.21 and 1.91, respectively.

Note that the Bai and Ng (2001) test is not based on the standardized third
moment. A test for conditional skewness based on S can be obtained by applying
the Bai and Ng (2005) test (or the standard asymptotic test) to {ε̂t} in model (2).

Obviously, for all tests which assume model (2), results depend crucially on a
correct specification and estimation of µt and σt.
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3 Models for skewness

Conditional skewness can also be assessed by using suitable models for asymmetric
behavior. In this study we propose to analyze the presence of conditional skew-
ness using a GARCH-type model with innovations having a Pearson’s Type IV
(henceforth PearsonIV ) distribution. This model represents a generalization of the
standard GARCH model because it can account for asymmetry and kurtosis in the
conditional distribution. Conditional skewness and kurtosis can be time-varying,
thus allowing to study possible dynamics in higher-order moments. In the following,
the acronym GARCHDSK (GARCH with dynamic skewness and kurtosis) will be
used to denote this model.

Time varying skewness and kurtosis were first introduced by Hansen (1994),
who extended the ARCH framework by proposing the adoption of a conditional
generalized Student’s t distribution, and modeling its parameters as functions of the
lagged errors. Approaches in which dynamics are imposed on shape parameters,
thus inducing time-varying skewness and kurtosis, have also been adopted, among
others, by Jondeau and Rockinger (2003) and Yan (2005). In other cases, higher
order moments are modeled directly. For example, Harvey and Siddique (1999)
introduce a GARCH-type expression for the conditional skewness, while Brooks et
al. (2005) use a similar representation for the kurtosis. León et al. (2005) employ a
GARCH specification for both conditional skewness and kurtosis.

In the spirit of Hansen (1994), here dynamics on skewness and kurtosis are intro-
duced by modeling shape parameters, rather than directly skewness and kurtosis. As
remarked by Yan (2005), this approach is less computationally intensive and allows
skewness and kurtosis to explode, while the shape parameters remain stationary.
This is particularly useful when modeling extremal events.

Concerning the choice of the conditional distribution, in the present paper we
follow Premaratne and Bera (2001) in the use of a PearsonIV distribution. This
distribution is flexible, in the sense that it implies a wide range of feasible skewness-
kurtosis couples. For example, the range associated with the Gram-Charlier density
studied in Jondeau and Rockinger (2001) and adopted by León et al. (2005) is
relatively rather limited (Yan, 2005). The PearsonIV is also found to approximate
the generalized Student’s t distribution on a large area of the skewness-kurtosis
plane, but is computationally less demanding (see Premaratne and Bera, 2001, and
the computational techniques discussed in Heinrich, 2004).

The GARCH-type model we will use to assess skewness has the following struc-
ture:

yt = µt + εt , t = 1, . . . , n , (4)

where µt = E(yt|It−1), and εt is such that εt | It−1 ∼ PearsonIV (λt, at, νt, rt).
Hence, the conditional density is defined by

f(εt | It−1) = Ct

[

1 +

(

εt − λt

at

)2
]−(rt+2)/2

exp

[

−νt arctan

(

εt − λt

at

)]

. (5)

Jointly, parameters λt, at, νt and rt control the conditional mean, variance, skewness
and kurtosis. The parameter Ct is a normalizing constant depending on at, νt and
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rt. The distribution is symmetric for νt = 0, positively skewed for νt < 0 and
negatively skewed for νt > 0. For fixed νt, increasing rt decreases the kurtosis.
The PearsonIV distribution is essentially a skewed version of the Student’s t and for
νt = 0, rt = gt − 1 and at =

√
gt reduces to a Student’s t with gt degrees of freedom.

The normal distribution is a limit case where νt = 0 and rt → ∞.
Setting λt = at νt/rt in order to have a zero mean error term, for the conditional

distribution of εt we have

E(εt|It−1) = 0 , (6)

σ2
t = Var(εt|It−1) =

a2
t

(

r2
t + ν2

t

)

r2
t (rt − 1)

, (7)

St = S(εt|It−1) =
−4 νt

rt − 2

√

rt − 1

r2
t + ν2

t

, (8)

Kt = K(εt|It−1) =
3 (rt − 1) [(rt + 6) (r2

t + ν2
t ) − 8r2

t ]

(rt − 2) (rt − 3) (r2
t + ν2

t )
, (9)

where St and Kt are the conditional skewness and kurtosis coefficients, given by the
standardized third and fourth moments.

In this framework, the conditional variance σ2
t depends jointly on at, νt and rt,

whereas conditional skewness and kurtosis depend only on νt and rt. In particular, if
νt = 0 then St = 0 and this is why νt can be interpreted as the “skewness parameter”.
When νt = ν and rt = r, ∀t, conditional skewness and kurtosis are constant.

For a complete model specification a critical point is how to describe the dy-
namics of σ2

t , St and Kt. Our proposal is to define it through the evolution of the
parameters at, νt and rt which, in turn, is induced by the following autoregressive
GARCH-type structure:

a2
t = ωa + αa ā2

t−1 + βa a2
t−1 , (10)

νt = ωv + αν ν̄t−1 + βν νt−1 , (11)

rt = ωr + αr r̄t−1 + βr rt−1 , (12)

with āt, ν̄t and r̄t being moment-based estimators of at, νt and rt (see Stuart and
Ord, 1994, and Heinrich, 2004) defined by

āt =

√

σ̄2
t

[

16 (r̄t − 1) − S̄2
t (r̄t − 2)2

]

4
, (13)

ν̄t = − r̄t (r̄t − 2)
√

S̄t
√

16 (r̄t − 1) − S̄2
t (r̄t − 2)2

, (14)

r̄t =
6 (K̄t − S̄2

t − 1)

2 K̄t − 3 S̄2
t − 6

. (15)

By σ̄2
t , S̄t and K̄t we have denoted suitable estimates of the variance, skewness and

kurtosis coefficients. In particular, the estimates defined in (13), (14) and (15) are
“local”, in the sense that only the m more recent values of the series are used in the
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computation of σ̄2
t , S̄t and K̄t. In the following, the choice of m will be based on

goodness-of-fit criteria.
Since at, νt and rt depend only on past information, conditional variance, skew-

ness and kurtosis at time t can be computed at time t − 1.
The introduction of the constraints αν = αr = βν = βr = 0 allows to estimate

models with constant skewness and kurtosis. However, note that for a dynamic
behavior of both conditional skewness and kurtosis, it is sufficient that at least one
of these parameters is different from zero.

Modeling at, νt and rt rather than directly variance, skewness and kurtosis turns
out to be easier because the latter quantities need to satisfy nonlinear constraints
which are difficult to impose at each point in time, while the constraints concerning
at, νt and rt can be implemented straightforwardly.

The issue of what constraints are necessary and sufficient to ensure the stationar-
ity of the model requires further study. However, by simulations, we found that the
following conditions, besides guaranteeing the positivity of the variance and kurtosis
parameters, are sufficient for a non-explosive behavior: ωa > 0, ωr > 3, αi, βi ≥ 0,
αi + βi < 1, for i = a, ν, r. In particular, the constraint ωr > 3 is needed to ensure
existence of the kurtosis.

Estimates for the ωi, αi and βi (i = a, v, r) parameters are obtained by maxi-
mizing the log-likelihood function

n
∑

t=1

{

log Ct −
rt + 2

2
log

[

1 +

(

ε̂t − λt

at

)2
]

− νt arctan

(

ε̂t − λt

at

)

}

, (16)

where ε̂t = yt − µ̂t. The estimate µ̂t is computed in a first step of the procedure, by
estimating a suitable ARMA model, which in the present context usually represents
a very weak correlation structure. Since parameters at, νt and rt are functions of
ωi, αi and βi (i = a, ν, r), expression (16) can be maximized with respect to these
latter. In principle, maximum likelihood can also be used to estimate the parameter
m in the definition of āt, ν̄t and r̄t. However, this would imply a large computational
burden. Hence, the choice of m will be based on goodness-of-fit considerations (see
the next section).

4 Applications

4.1 Empirical evidences and statistical significance of skewness

We now look for empirical evidences of asymmetry by applying the previous method-
ologies to the daily returns, adjusted for split and dividends, of 9 major international
stock indexes, namely the indexes CAC40, DAX, FTSE100, MIB30, Dow Jones,
S&P500, Nasdaq, Nikkey225 and SMI. The time series refer to different periods but
all end on December 13, 2005. The series are composed by a number of observations
between 1547 and 4023 (Table 1).

Most of the series present some abnormal values that do not seem to belong to
the standard dynamics of the phenomenon and can be, thus, classified as outliers.
Identification of outliers in heteroskedastic models is a delicate and relatively unex-
plored issue and is particularly important in skewness analysis. We do not consider
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in depth this problem here. However, since we are interested in the systematic skew-
ness in the data, in order to avoid strong dependence of results on possible outliers
we removed them. Identification was based on graphical examination of both the
return time series and the standardized residuals of a GARCH(1,1) model. The
number of identified outliers was very small: no outliers in 3 series, 1 outlier in 4
series, 2 outliers in 1 series and 3 outliers in 1 series. Outliers were replaced with the
mean of the data. All the analyzes were conducted on these outlier-adjusted time
series.

Sample skewness and kurtosis coefficients are given in Table 1: all indexes have
negative skewness and severe excess kurtosis. Only the Nikkey225 index has positive,
but very small, skewness. These results are consistent with other findings in the
literature (e.g. Cont, 2001, Belaire-Franch and Peiró, 2003, Kim and White, 2004,
and Peiró, 2004).

As a starting point, we looked for unconditional skewness by applying the Bai and
Ng (2005) test and, as a benchmark, the asymptotic standard test. The p−values
for the null hypothesis of symmetry are reported in Table 1, and show that the Bai
and Ng test accepts the null hypothesis, at the 5% level of significance, in 8 cases
on 9, with a p−value of 0.0464 for the FTSE100. Therefore, at the 1% level the Bai
and Ng test never rejects the null hypothesis. On the contrary, an erroneous, in the
sense described in Section 2, use of the standard asymptotic test would have led to
strongly reject the symmetry in all cases except for the Nikkey225.

These analyzes indicate that no clear evidence of unconditional asymmetry was
found in the analyzed time series.

As a second step, we investigate conditional skewness of the series. For the
moment we will assume skewness to be constant. The previous two tests and the
Bai and Ng (2001) test are employed.

In order to test for constant conditional skewness we assumed the data generating
process to be represented by model (2), then assessing the symmetry of εt. In
practice, this amounts to estimating suitable ARMA-GARCH models, then applying
the tests on the standardized residuals ε̂t = (yt − µ̂t)/σ̂t. The models estimated
included possible leverage effects used to represent the asymmetric impact that
returns may have on volatility.

Table 2 shows the sample skewness and kurtosis coefficients for standardized
residuals and the results of the tests. We note that although kurtosis coefficients for
the conditional distributions are always smaller than the marginal ones, this is not
the case for skewness coefficients, that tend to be higher, in absolute value, than
their unconditional counterparts. This is in contrast with the results by Engle and
Gonzáles-Rivera (1991). As in the marginal case, for the Nikkey225 index skewness
is very close to zero.

Concerning conditional skewness, results about the statistical significance are
quite different from those on the marginal distributions and show more evidence
of asymmetry. In particular, at the 5% significance level, the null hypothesis of
symmetry is rejected in 6 cases on 9 by the BN05 test (in other two cases skewness
is significant at the 9% level) and in 5 cases by the BN01 test. The Nikkey225
index is the only one for which all tests, even the asymptotic one, clearly agree on
accepting symmetry. In the whole the three tests lead to the same conclusions in 5
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cases on 9.

The presence of significant conditional skewness was further investigated by esti-
mating GARCHDSK models, as defined in Section 3, assuming constant conditional
skewness and kurtosis. This amounts to imposing αν = βν = αr = βr = 0, thus ob-
taining a subset of models that we will indicate with GARCHSK. The Kolmogorov-
Smirnov goodness-of-fit test described below led us to the choice of m = 10 in the
definition of āt, ν̄t and r̄t.

The maximum likelihood parameter estimates, with their asymptotic standard
deviations and t-statistics, are given in Table 3. The t-statistics in Table 3 indicate
that conditional skewness is statistically significant for all series except Nikkey225.
Table 4 lists the conditional skewness an kurtosis implied by models estimated in
Table 3 and shows that all indexes are negatively skewed with the Nikkey225 having
the smallest coefficient. Again, the absolute conditional skewness entailed by the
models is generally greater than the marginal one.

The model introduced in Section 3 also allows to investigate the presence of
dynamic, rather than constant, conditional skewness.

Table 5 lists the estimated parameters and shows that for 7 indexes the parameter
αν is significant implying that both skewness and kurtosis are time varying. For all
these models, the Ljung-Box test at lag 15 on standardized squared residuals accepts
the hypothesis of no residual correlation.

Some examples of time series of the estimated dynamic conditional skewness and
kurtosis are given in Figures 1, 2 and 3, where the horizontal lines are the levels of
skewness and kurtosis implied by the models when assumed constant. As expected,
time-varying conditional skewness moves around these levels as also evidenced in
Table 4.

In order to check goodness of fit, we applied the Kolmogorov-Smirnov test to
assess the uniformity of the values F̂ (ε̂t|It−1), t = 1, . . . , n, where F (·|It−1) denotes
the c.d.f. corresponding to the density defined in (5), and F̂ (·|It−1) is obtained by
substituting the ML parameter estimates in the c.d.f. definition. Table 6 lists the
test p-values for each series. The p-values for other models, described in the next
section, are also shown. At the standard 5% significance level, the null is accepted
for all models, suggesting that the GARCHDSK models are appropriate.

In summary, the results on the nine analyzed time series indicate that there
are no strong evidences of unconditional skewness, which seems to be more the
exception than the rule. Conditional skewness, on the other hand, appears to be
more widespread. In particular, there are clear indications of dynamic skewness that,
if modeled, may allow for a more realistic description of the evolution of financial
quantities of interest.

4.2 Measures of risk and economic significance

In the previous section we analyzed skewness mainly from a statistical viewpoint, by
looking at its statistical significance. In this section we mean to study the economic
and financial importance of skewness by analyzing its role in risk modeling, and
examining the performance of GARCHDSK models in this context.

With this purpose, for the nine stock indexes the time-varying Value-at-Risk
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(VaRt) and Expected Shortfall (ESt) were computed, with GARCHDSK and some
alternative models, in order to compare them.

Market Value-at-Risk is a crucial component of most risk analyzes and manage-
ment systems in financial and insurance industries. It measures how the market
value of an asset, or of a portfolio of assets, of value P is likely to decrease over a
certain time period under normal market conditions. It is typically used by security
houses or investment banks to measure the market risk of their asset portfolios, but
is actually a very general concept that has broad application.

VaR has two parameters: i) the holding (or horizon) period h, that is the length
of time over which the portfolio is planned to be held; ii) the confidence level,
denoted by (1 − α), at which we plan to make the estimate. Given these, the VaR
is a bound such that the loss over the holding period is less than this bound with
probability 1 − α. Basically, VaR is a high quantile of the profit/loss distribution.
If we assume the portfolio value at time t is Pt and the profits and losses over h
periods are represented by the log-returns of the portfolio, rt,h = log(Pt/Pt−h), with
distribution Fh, then VaR is given by

VaRh,α = −Pt−h

[

F−1
h (α)

]

. (17)

Another measure of risk is the the Expected Shortfall – or conditional VaR – which
describes the expectation of all losses exceeding a VaR. ES has recently been advo-
cated as an alternative to VaR because it takes into account both the probability
of a large loss (larger than VaR) and the expected loss given that the loss exceeds
VaR. Formally, it is given by

ESh,α = −Pt−h E
[

rt,h|rt,h < F−1
h (α)

]

. (18)

When the distribution of rt,h is not constant over time, VaR and ES are also time-
varying. In the following, we will use the typical holding period of 1 day, the 99%
confidence level, and will assume to have a unitary position (P = 1) in a portfolio
given by the index.

We computed time-varying VaRt and ESt by using the GARCHDSK models esti-
mated in the previous subsection, the Riskmetrics approach with the usual smooth-
ing parameter λ = 0.94 (see Alexander, 2001), a Gaussian GARCH(1,1) and a
GARCH(1,1) with Student’s t innovations. The means of the estimated values are
given in Table 7.

Table 8 shows the observed in-sample significance level α̂ when the nominal
level is 0.01. To compare nominal and observed levels a two-sided test for the null
H0: α = 0.01 was conducted. The asterisks in Table 8 indicate that the observed
level is not significantly different from the nominal one, at the 5% level. For the
GARCH-t and GARCHDSK models the levels are always statistically correct, while
for the Riskmetrics model the level is correct 8 times on 9. On the contrary, for the
Gaussian GARCH model, observed levels are generally significantly greater than the
nominal one. For this reason we will not comment further the results for this model.

In the whole, the Riskmetrics model leads to the smallest absolute mean values of
VaR, followed by the GARCH-t and GARCHDSK models. However, it is interesting
to note that the VaRDSK

t is not always (i.e. ∀t) greater than the VaRR
t ; for example,



Section 4 Applications 11

VaRDSK
t < VaRR

t approximately 17% of the times for MIB30, 10% of the times for
CAC40, 13% of the times for DAX and 15% of the times for FTSE100.

Value-at-Risk is also connected to the Market Risk Capital Requirements (MRCR)
adopted in 1995 by the Basel Accord on Banking Supervision (Basel Committee on
Banking Supervision, 1995, 1996). The Basel Accord sets minimum capital require-
ments which must be met by banks to face market risks, defined as the risk of losses
in on- and off-balance sheet positions arising from movements in market prices. The
Basel Committee carefully examined how banks’ value-at-risk measures can be con-
verted into a capital requirement that appropriately reflects the prudential concerns
of supervisors. The Committee eventually defined the Market Risk Capital Require-
ments as a function of past VaRs and of their violations. In particular, the accord
establishes that MRCR is expressed as the higher of: i) the previous day’s Value-at-
Risk; ii) an average of the Value-at-Risk measures on each of the last sixty business
days, multiplied by a factor K which depends on the number of VaR violations in the
last 250 business days, described in Table 9. MRCRt can be thus formally defined
as

MRCRt = max

(

VaRt−1; K
1

60

60
∑

i=1

VaRt−i

)

. (19)

In a prudential spirit, one of the proposals of Basel Committee is to provide
incentive to improve risk management systems, penalizing inaccurate risk models
and rewarding the most accurate ones. With this purpose, it allows banks to use
internal models for measuring exposure to market risk at the cost of proving that
their models work correctly.

In this framework, another way to evaluate a model – given the correct coverage
level – is to analyze the series of the number of VaR violations, since it is directly
connected to MRCR.

Figures 4, 5, 6 and 7 show these series for some of the considered indexes. As
expected, the Gaussian GARCH model leads to the greatest number of violations.
Despite the Gaussian assumption, the Riskmetrics approach gives results that are
comparable with those of a GARCH-t. However, the best results are those relative
to the GARCHDSK which, considering (dynamic) skewness and kurtosis, gives the
smallest number of violations greater than four. This is apparent for the CAC40
and MIB30 indexes, two examples of series with dynamic skewness and kurtosis.
This is also true for the S&P500 index, for which the GARCHDSK model leads to
only 9 occurrences of 6 VaR violations against the 174 of the Riskmetrics approach.
Advantages can be found even for the Nasdaq index, an example of significant con-
stant skewness. Using the Riskmetrics model, for Nasdaq we found 503 occurrences
of 5 violations, 174 of 6 and 97 of 7 whereas using the GARCHSK model they are,
respectively, 68, 108 and 0 (Figure 6). When there are no findings of skewness, for
example in the Nikkey225 case, the Riskmetrics model and the GARCHDSK model
give exactly the same small number of exceedances of four violations.
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5 Conclusions

This paper has focused on the issue of empirical evidence of asymmetry for time series
of financial returns. Nine series of daily stock index returns have been analyzed, in
order to assess whether skewness can be considered a stylized fact for real data.

We studied both unconditional and conditional skewness, by means of tests and
models. In particular, we proposed a new GARCH-type model, the GARCHDSK
model, which allows to take into account both skewness and kurtosis. A charac-
teristic feature of this approach is that skewness and kurtosis are allowed to evolve
dynamically. This is done by assuming Pearson’s Type IV errors and defining suit-
able dynamics for the distribution parameters. The dynamic structure depends on
moment-based estimators.

Our results indicate that for the considered series there are no strong evidences of
unconditional asymmetry which, therefore, does not appear to be a common feature
of financial returns.

Different conclusions are drawn with respect to conditional skewness, which was
found to be significantly present in eight of the nine stock index returns analyzed.
In particular, in seven of the eight cases, we found significant time-varying skewness
and kurtosis. These findings are consistent with those of studies by, among others,
Brooks et al. (2005), León et al. (2005) and Cappuccio et al. (2006).

To investigate the economic importance of a correct modeling of skewness, dif-
ferent models were compared with respect to Value-at-Risk, Expected Shortfall and
the Market Risk Capital Requirements adopted by the Basel Accord. All these an-
alyzes confirm that skewness is important not only from a statistical point of view,
but also from a financial perspective, particularly in risk management.
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Series n Ŝ K̂ BN05 AS
CAC40 3977 -0.103 5.798 0.393 0.008
DAX 3792 -0.117 6.204 0.326 0.003
FTSE100 5483 -0.264 6.362 0.046 0.000
MIB30 1547 -0.189 6.608 0.410 0.002
SMI 3797 -0.200 6.861 0.177 0.000
Dow Jones 4023 -0.223 7.548 0.227 0.000
Nasdaq 4023 -0.174 7.638 0.278 0.000
S&P500 4023 -0.103 6.767 0.504 0.008
Nikkey225 3926 0.038 5.098 0.691 0.332

Table 1: Unconditional symmetry tests for index returns. Ŝ and K̂ are the empirical
skewness and kurtosis coefficients for the observed series; columns BN05 and AS give
the p−values for the Bai and Ng (2005) and the standard asymptotic tests.

Series Ŝ K̂ BN05 BN01 AS
CAC40 -0.366 5.336 0.083 1.042 0.000
DAX -0.124 3.974 0.130 1.874 0.002
FTSE100 -0.208 3.941 0.008 2.608 0.000
MIB30 -0.419 4.237 0.003 2.43 0.000
SMI -0.280 3.915 0.000 2.777 0.000
Dow Jones -0.348 4.731 0.002 1.156 0.000
Nasdaq -0.412 4.316 0.000 4.665 0.000
S&P500 -0.345 4.759 0.002 0.719 0.000
Nikkey225 -0.053 4.578 0.616 0.956 0.179

Table 2: Conditional symmetry tests for index returns. Standardized residuals of
ARMA-GARCH models have been used. Ŝ and K̂ are the empirical skewness and
kurtosis coefficients for the standardized residuals; columns BN05 and AS give the
p−values for Bai and Ng (2005) and standard asymptotic tests; column BN01 gives
the value of the test statistic for the Bai and Ng (2001) test, to be compared to
critical values 2.21 and 2.78, for 5% and 1% levels of significance.
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Figure 1: CAC40, conditional skewness and kurtosis.
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Parameter Estimate Std. err. t-stat. Parameter Estimate Std. err. t-stat.
CAC40 Dow Jones

ωa 0.214 0.073 2.92 ωa 0.052 0.013 3.78
αa 0.075 0.009 7.60 αa 0.051 0.005 9.52
βa 0.914 0.011 83.12 βa 0.938 0.005 170.6
ων 1.801 0.678 2.65 ων 0.867 0.299 2.89
ωr 11.46 2.109 5.43 ωr 7.042 0.909 7.74

DAX Nasdaq
ωa 0.191 0.056 3.37 ωa 0.147 0.039 3.73
αa 0.101 0.010 9.66 αa 0.085 0.006 12.84
βa 0.888 0.010 83.01 βa 0.905 0.007 135.1
ων 1.386 0.479 2.89 ων 3.389 0.872 3.88
ωr 9.602 1.587 6.05 ωr 11.09 1.888 5.87

FTSE100 S&P500
ωa 0.141 0.046 3.03 ωa 0.083 0.024 3.47
αa 0.074 0.009 8.39 αa 0.098 0.011 9.31
βa 0.915 0.010 88.85 βa 0.891 0.011 80.28
ων 3.138 0.913 3.44 ων 0.891 0.315 2.82
ωr 14.39 2.512 5.73 ωr 7.168 1.016 7.05

MIB30 Nikkey225
ωa 0.112 0.045 2.49 ωa 0.195 0.057 3.44
αa 0.088 0.013 6.73 αa 0.081 0.009 8.58
βa 0.899 0.013 68.67 βa 0.906 0.010 87.12
ων 1.782 0.729 2.44 ων 0.307 0.252 1.21
ωr 7.829 1.934 4.05 ωr 6.859 0.906 7.56

SMI
ωa 0.163 0.049 3.32
αa 0.097 0.012 8.02
βa 0.886 0.013 64.71
ων 2.212 0.587 3.76
ωr 9.365 1.502 6.23

Table 3: ML estimates of GARCHSK model parameters (constant conditional sym-
metry and kurtosis), asymptotic standard errors and t-statistics.

GARCHSK GARCHDSK
Series S K Sav Kav

CAC40 -0.212 3.78 -0.288 3.71
DAX -0.219 3.99 -0.264 3.99
FTSE100 -0.253 3.62 -0.269 3.60
MIB30 -0.390 4.52 -0.354 3.40
SMI -0.365 4.17 -0.404 4.02
Dow Jones -0.239 4.59 -0.321 4.50
Nasdaq -0.407 4.02 -0.408 4.02
S&P500 -0.237 4.54 -0.329 4.23
Nikkey225 -0.089 4.56 0.00 4.55

Table 4: Conditional skewness and kurtosis implied by the GARCHSK and
GARCHDSK models (in the latter case the average conditional skewness and kur-
tosis are given).
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parameter estimate std. err. t-stat. parameter estimate std. err. t-stat.
CAC40 Dow Jones

ωa 0.242 0.085 2.83 ωa 0.058 0.017 3.41
αa 0.062 0.007 7.97 αa 0.054 0.006 8.80
βa 0.925 0.009 103.9 βa 0.935 0.007 138.4
ων 4.069 1.611 2.52 ων 1.658 0.551 3.00
αν 0.218 0.048 4.54 αν 0.280 0.068 4.10
ωr 14.63 3.598 4.06 ωr 8.064 1.334 6.05

DAX Nasdaq
ωa 0.166 0.053 3.11 ωa 0.147 0.039 3.73
αa 0.087 0.009 9.22 αa 0.084 0.007 12.85
βa 0.903 0.009 93.83 βa 0.905 0.007 135.07
ων 2.151 0.705 3.04 ων 3.389 0.872 3.88
αν 0.239 0.056 4.22 αν – – –
ωr 10.58 1.997 5.29 ωr 11.090 1.888 5.87

FTSE100 S&P500
ωa 0.155 0.047 3.28 ωa 0.079 0.027 2.85
αa 0.063 0.006 9.21 αa 0.076 0.008 9.17
βa 0.923 0.008 113.5 βa 0.913 0.008 106.6
ων 4.656 1.20 3.85 ων 2.296 1.192 1.92
αν 0.210 0.041 5.13 αν 0.275 0.061 4.47
ωr 16.86 3.119 5.40 ωr 9.431 2.533 3.72

MIB30 Nikkey225
ωa 0.410 0.253 1.61 ωa 0.195 0.057 3.44
αa 0.072 0.010 6.85 αa 0.081 0.009 8.58
βa 0.913 0.011 83.5 βa 0.906 0.010 87.12
ων 23.59 19.38 1.21 ων 0.306 0.252 1.21
αν 0.153 0.071 2.14 αν – – –
ωr 35.87 21.99 1.63 ωr 6.859 0.906 7.56

SMI
ωa 0.176 0.057 3.08
αa 0.085 0.011 7.73
βa 0.897 0.012 74.7
ων 3.918 1.215 3.22
αν 0.224 0.052 4.33
ωr 11.77 2.485 4.73

Table 5: ML estimates of GARCHDSK model parameters (time-varying conditional
skewness and kurtosis), asymptotic standard errors and t-statistics.

Riskmetrics GARCH-N GARCH-t GARCHDSK
CAC40 0.427 0.044 0.450 0.090
DAX 0.183 0.003 0.339 0.182
FTSE100 0.033 0.049 0.022 0.104
MIB30 0.002 <0.001 0.006 0.415
SMI 0.056 0.002 0.040 0.117
Dow Jones 0.028 <0.001 0.364 0.243
Nasdaq <0.001 <0.001 <0.001 0.295
S&P500 0.011 <0.001 0.297 0.090
Nikkey225 0.174 0.005 0.768 0.658

Table 6: p-values for the Kolmogorov-Smirnov goodness-of-fit test.
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Series VaRR VaRN VaRt VaRDSK ESR ESN ESt ESDSK

CAC40 2.90 2.94 3.14 3.37 3.32 3.36 3.82 4.07
DAX 2.96 3.02 3.24 3.43 3.39 3.46 3.96 4.20
FTSE100 2.16 2.19 2.33 2.46 2.48 2.51 2.81 2.96
MIB30 2.72 2.77 3.04 3.18 3.11 3.17 3.80 3.79
SMI 2.38 2.41 2.58 2.86 2.72 2.75 3.15 3.51
Dow Jones 2.15 2.20 2.39 2.55 2.47 2.52 2.99 3.19
Nasdaq 3.08 3.09 3.28 3.62 3.53 3.54 3.99 4.45
S&P500 2.17 2.21 2.39 2.59 2.48 2.53 2.98 3.20
Nikkey225 3.26 3.32 3.60 3.63 3.73 3.80 4.496 4.51

Table 7: Mean Value-at-Risk (VaR) and expected shortfall (ES) for returns time
series. The considered models are: Riskmetrics, Normal GARCH(1,1), Student’s t
GARCH(1,1) and GARCHDSK.

Series VaRR VaRN VaRt VaRDSK

CAC40 0.008* 0.014 0.011* 0.008*
DAX 0.008* 0.013* 0.010* 0.009*
FTSE100 0.007 0.013 0.010* 0.008*
MIB30 0.012* 0.020 0.013* 0.010*
SMI 0.009* 0.016 0.011* 0.008*
Dow Jones 0.008* 0.013* 0.009* 0.008*
Nasdaq 0.010* 0.014 0.012* 0.008*
S&P500 0.008* 0.014 0.009* 0.008*
Nikkey225 0.009* 0.015 0.009* 0.009*

Table 8: Value-at-Risk (in-sample observed levels when the nominal level is 0.01).
The asterisk indicates that the observed level is not significantly different from 0.01,
at the 5% level. The considered models are: Riskmetrics, Normal GARCH(1,1),
Student’s t GARCH(1,1) and GARCHDSK.

Zone n. of violations K
Green ≤ 4 3.00

5 3.40
6 3.50

Yellow 7 3.65
8 3.75
9 3.85

Red ≥ 10 4.00

Table 9: Basel accord penalty factor K. The number of violations refers to the last
250 business days.
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Figure 2: MIB30, conditional skewness and kurtosis.
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Figure 3: S&P500, conditional skewness and kurtosis.
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Figure 4: CAC40, number of VaR violations for the last 250 business days.
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Figure 5: MIB30, number of VaR violations for the last 250 business days.
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Figure 6: Nasdaq, number of VaR violations for the last 250 business days.
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Figure 7: Nikkey225, number of VaR violations for the last 250 business days.
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