
Working Paper Series, N. 1, February 2006

Robust inference
in composite transformation models

Luca Greco

Department of Statistics
University of Venice
Italy

Laura Ventura

Department of Statistical Sciences
University of Padua
Italy

Abstract: The aim of this paper is to base robust inference about a shape

parameter indexing a composite transformation model on a quasi- profile like-

lihood ratio test statistic. First, a general procedure is presented in order to

construct a bounded profile estimating function for shape parameters. This

method is based on a standard truncation argument from the theory of ro-

bustness. Hence, a quasi-likelihood test is derived. Numerical studies and

applications to real data show that its use reveals extremely powerful, leading

to improved inferences with respect to classical robust Wald and score-type

test statistics.

Keywords: Bootstrap, Generalized profile likelihood, Quasi-profile likelihood,

Unbiased estimating equations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@research

https://core.ac.uk/display/31144465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Robust inference
in composite transformation models

Contents

1 Introduction 1

2 Bounded profile estimating functions for shape parameters 3

3 Quasi-profile likelihood based inference 4

Department of Statistical Sciences

Via Cesare Battisti, 241
35121 Padova
Italy

tel: +39 049 8274168

fax: +39 049 8274170

http://www.stat.unipd.it

Corresponding author:

Luca Greco
tel: +39 041 234 7448
greco@dst.unive.it



Section 1 Introduction 1

Robust inference
in composite transformation models

Luca Greco

Department of Statistics
University of Venice
Italy

Laura Ventura

Department of Statistical Sciences
University of Padua
Italy

Abstract: The aim of this paper is to base robust inference about a shape parameter

indexing a composite transformation model on a quasi- profile likelihood ratio test statistic.

First, a general procedure is presented in order to construct a bounded profile estimating

function for shape parameters. This method is based on a standard truncation argument

from the theory of robustness. Hence, a quasi-likelihood test is derived. Numerical studies

and applications to real data show that its use reveals extremely powerful, leading to im-

proved inferences with respect to classical robust Wald and score-type test statistics.

Keywords: Bootstrap, Generalized profile likelihood, Quasi-profile likelihood, Unbiased

estimating equations.

1 Introduction

Composite transformation models include parametric models of the form

F (y; θ) = F (y;µ, σ, τ) = F0

(

y − µ

σ
; τ

)

, θ = (µ, σ, τ) , (1)

indexed by a location parameter µ ∈ IR, a scale parameter σ > 0 and a shape
parameter τ ∈ T ⊆ IR.

For instance, they are encountered in the setting of regression-scale and shape
models, in which µ = xTβ, where β ∈ IRp, p > 1, is a p-dimensional vector of
regression coefficients and x is a vector of covariates. In these models, the error
distribution is constructed by enlarging the normal model. Typically, this is achieved
by adding a shape parameter τ . An attractive feature of these models is that,
allowing τ to vary, they fit continuous variations from normality to non-normality.
Hence, they offer the possibility of checking the assumption of normality through
formal tests on the shape parameter.

Classical inference about τ in the presence of the nuisance parameter λ = (µ, σ),
or λ = (β, σ), is based on a pseudo-likelihood function, that is a function of y and
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τ having properties similar to those of a genuine likelihood function when there is
no nuisance parameter. The most commonly used pseudo-loglikelihood is the profile
loglikelihood

`p(τ) = `(τ, λ̂τ ) =
n

∑

i=1

`(τ, λ̂τ ; yi) , (2)

where `(θ) = `(τ, λ) denotes the usual loglikelihood for θ and λ̂τ is the maximum
likelihood estimate (MLE) of λ for fixed τ . Another solution is represented by the
marginal likelihood (Severini, 2000).

It is well-known that standard likelihood procedures can be badly affected by
data or model inadequacies. Mild deviations from F (y; θ) and from the related
hypotheses can give rise to non negligible changes in inferential results. For instance,
the maximum likelihood estimator becomes biased and inefficient under violations
of the strict model assumptions.

Suppose that the model F (y; θ) does not describe exactly the reality, because of
the occurrence of anomalous observations in the sample or the approximate character
of the theoretical model itself. Robust statistics provides procedures that help to
prevent the effects due to departures of the distribution of the data from the specified
model and, at the same time, preserve good properties of efficiency and consistency
when assumptions underlying the ideal model are relaxed (see Hampel et al., 1986;
Carroll and Ruppert, 1988; Markatou and Ronchetti, 1997). To this end, inferential
procedures are studied in a neighborhood of the model, aiming at fitting only the
majority of the data.

The theory of unbiased estimating equations supplies some effective tools for
robust inference. An estimating equation is an equation in θ of the form Ψ(θ; y) = 0,
whose solution defines an estimate for θ. The function Ψ(θ; y) is called an estimating
function. The estimating equation is said to be unbiased if Eθ(Ψ(θ;Y )) = 0, ∀θ ∈ Θ

Let θ̃ be a robust estimator for θ, solution of the unbiased estimating equation

Ψθ = Ψ(θ; y) =
n

∑

i=1

ψ(θ; y) = 0 , (3)

where ψ(·) is a suitable known real function. Estimators defined as solutions of
such estimating equations are called M-estimators. Under broad conditions, θ̃ is
consistent and asymptotically normal with mean θ and variance

V (θ) = M(θ)−1Ω(θ)(M(θ)−1)T

, where M(θ) = Eθ(Ψθ/θ) and Ω(θ) = Eθ(ΨθΨ
T
θ ), and the symbol / as a subscript

indicates differentiation. Moreover, θ̃ is said B-robust at the assumed model Fθ if its
influence function IF (y, θ̃, Fθ) = M(θ)−1Ψθ is bounded. It follows that θ̃ is B-robust
if and only if Ψθ is bounded.

Despite all the existing robust literature about inference on the whole parameter
θ, the situation with a nuisance parameter has been somewhat neglected. Nuisance
parameters, generally, are treated parallely with the parameters of interest. No
inferential techniques are considered to reduce or eliminate their effects. The aim
of this paper is to extend the results on the treatment of nuisance parameters in a
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natural fashion from the likelihood theory to the field of robust statistics. To this
end, the profile approach provides a general way to eliminate nuisance parameters.
In particular, the attempt is to make robust inference on the shape parameter τ in
(1) in a different spirit from that illustrated in Hampel et al. (1986, section 4.4).
Here, actually, the focus is on the use of bounded profile estimating functions and
robust quasi-profile likelihood functions.

The remainder of the paper is organized as follows. In the next section a general
method to find a bounded profile estimating function for the shape parameter τ is
outlined. In section 3 a robust quasi-profile likelihood ratio test for inference on the
shape parameter τ is obtained, starting from the proposed estimating functions, and
some numerical studies and applications are presented.

2 Bounded profile estimating functions for shape parame-

ters

Assume that, when θ splits up as θ = (τ, λ), Ψθ is similarly partitioned as (Ψτ ,Ψλ),
where Ψτ = Ψτ (θ; y) and Ψλ = Ψλ(θ; y) are the estimating functions corresponding
to τ and λ, respectively.

Paralleling classical likelihood inference, a profile-type estimating function for τ
is

Ψ̃τ = Ψ(τ, λ̃τ ; y) , (4)

where λ̃τ is an estimate of the nuisance parameter, evaluated for fixed τ , solution
of an unbiased estimating equation Ψλ = 0. The corresponding estimating equation
defines a B-robust estimator for τ if and only if both Ψτ and Ψλ are bounded.

Literature offers a wide variety of solutions for location and scale parameters but
it is difficult to dispose of any bounded estimating function for the shape parameter
in a composite transformation model. In order to obtain a bounded profile estimating
function (4) for the shape parameter τ , when nuisance parameters can be eliminated
by means of robust estimates of location and scale, we refer to a general approach
described in Greco and Ventura (2006). It consists in bounding the influence of
observation on a generalized profile score function by an appropriate downweighting
of its components. The generalized profile score function is defined as the gradient
with respect to τ of a generalized profile loglikelihood function `(τ, λ̃τ ), in which
the ordinary MLE λ̂τ is replaced by a consistent robust estimate λ̃τ of the nuisance
parameter (Severini, 1998).

A bounded profile estimating function for the shape parameter τ , in the presence
of the nuisance λ, is given by

Ψ̃τ =
n

∑

i=1

ψτ (yi; τ, λ̃τ ) =
n

∑

i=1

hi(τ ; c)`τ (τ, λ̃τ ; yi) , (5)

where the weighting function h(τ ; c) depends on y and on a tuning constant c which
controls the balance between robustness and efficiency.c The simplest choice for
h(τ ; c) may be similar to that involved in classical Huber-type estimation.
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A robust estimate for τ is defined as the root of the estimating equation Ψ̃τ = 0.
We call it robust generalized MLE (RGMLE). In general, to find the solution an
iteratively algorithm must be used, in which weights are updated on each iterations
based on the current value of τ .

Large-sample tests and confidence intervals for τ can be constructed following,
for instance, the theory presented in Stefanski and Boos (2002) about M -estimators.

3 Quasi-profile likelihood based inference

Robust inference about the parameter of interest τ may be based on a robust pseudo-
likelihood function, whose gradient is a bounded profile estimating function, derived
as in (5). In this way, on the one hand, it is possible to obtain a likelihood ratio-
type test statistic whose asymptotic distribution is the same as in the classical
framework; on the other hand we may improve robust inference on the parameter
of interest with respect to the use of Wald-type and score-type tests. Hence, the
availability of such a likelihood ratio-type test with the usual limiting behavior is an
important achievement. Then, the possibility of representing graphically the robust
pseudo-likelihood can give more information about the structure of the bulk of the
data.

A possible solution in this direction is provided by the quasi-profile loglikelihood
function (Adimari and Ventura, 2002). This quasi-profile loglikelihood function is
based on a suitable scale adjustment ω(·) to a profile estimating function Ψτ (τ, λ̃τ ),
leading to a rescaled function

Ψ̃†
τ (τ, λ̃τ ; y) = ω(τ, λ̃τ )Ψ̃τ (τ, λ̃τ ; y) ,

such that its variance is equal to minus the expected derivative matrix, when expec-
tations and derivatives are computed at (τ, λ̃τ ) (McCullagh and Tibshirani, 1990).

Actually, the scale adjustment ω(·) is obtained by requiring that

Var(τ,λ̃τ )Ψ̃
†
τ (τ) = −E(τ,λ̃τ )

{

∂Ψ̃†
τ

∂τ
(τ)

}

.

Solving for ω(τ, λ̂τ ), it turns out that

ω(τ, λ̃τ ) =

(

∂
∂τ E(τ,λ̃τ )(Ψ̃τ ) − E(τ,λ̃τ )(Ψ̃ττ )

)

Var(τ,λ̃τ )(Ψ̃τ )
. (6)

A first-order approximation to (6) can be computed by first-order asymptotic
expressions for the moments of the derivatives of the estimating function for τ (Adi-
mari and Ventura, 2002). Since the calculation of the analytical approximation can
be burdensome, it may be preferable to resort to a simulation process in which the
information bias of Ψ̃τ is estimated by parametric bootstrap. Anyway, even when
first order approximations are available, bootstrap provides an exact adjustment
which leads to improved inference.
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Figure 1: Gamma distribution: simulated sample of size n = 200.
WP (left) and W b

QP (right) for the shape parameter (the horizontal
dotted line gives the 0.95 confidence interval).

It is worth noting, then, that by multiplying Ψ̃τ by the factor ω(τ, λ), the induced
estimator for τ does not change, as well as its asymptotic behavior and its robustness
properties.

The quasi-profile loglikelihood function is given by

`QP (τ) =

∫ τ

ω(t, λ̃t)Ψτ (t, λ̃t) dt . (7)

Function (7) has properties similar to (2). In particular, for setting confidence
intervals or for testing hypothesis, it is possible to derive a quasi-likelihood ratio
statistic

WQP (τ) = 2{`QP (τ̃) − `QP (τ)} . (8)

Under the null hypothesis and usual regularity conditions, (8) is approximately χ2
1

distributed, as in the classical framework. For instance, confidence intervals for τ
with nominal level 1−α can be constructed as {τ : WQP (τ) ≤ χ2

1;1−α}, where χ2
1;1−α

is the (1 − α)−quantile of the χ2
1 distribution.

In practice, the scale adjustment is necessary to obtain quasi-profile likelihood
ratio tests based on (8) with the χ2

1 asymptotic distribution, as in the classical
framework. In fact, if this term is neglected, (8) does not present the standard
asymptotic behavior unlike its classical counterpart (Heritier and Ronchetti, 1994;
Hanfelt and Liang, 1995).

To illustrate the use of (8) for robust inference on the shape parameter in compos-
ite transformation models, some applications are provided with regard to some well
known models. The behavior of (8) is compared with that of Wald-type test statis-
tics We(τ) and score-type test statistics Wu(τ), as defined in Heritier and Ronchetti
(1994) and with that of the OBRE.

Example 1: Gamma distribution. Let Yi be n independent Gamma random
variables with density f(yi; τ, λ) = yτ−1

i e−yi/λ/(λτΓ(τ)), i = 1 . . . n. This is a com-
posite scale model. Suppose the shape parameter τ is the parameter of interest and
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Figure 2: Simulated sample of size n = 20 from a Gamma random variable with
shape τ = 2 and scale σ = 1: sensitivity curves of the p-values for WP and WQP for
testing the null hypothesis H0 : τ = 2.

n = 200 n = 100
1− α 1− α

0.990 0.950 0.900 0.990 0.950 0.900

OBRE (4.5) 0.981 0.934 0.882 0.984 0.936 0.884
WQP (τ) 0.991 0.956 0.909 0.991 0.952 0.907

g1 We(τ) 0.979 0.954 0.912 0.996 0.969 0.927
Wu(τ) 0.972 0.923 0.874 0.972 0.927 0.871

OBRE (4.5) 0.930 0.887 0.761 0.929 0.835 0.766
WQP (τ) 0.989 0.947 0.893 0.989 0.948 0.907

g2 We(τ) 0.972 0.913 0.857 0.982 0.935 0.884
Wu(τ) 0.984 0.959 0.926 0.992 0.967 0.930

Table 1: Gamma distribution: empirical coverage probabilities of the confidence
intervals for the shape parameter based on WQP , We, Wu and the OBRE.

that inference is expected to be done by taking into account the possibility of mild
contaminations. To eliminate the scale nuisance parameter λ, we use the MAD-type
estimate λ̃τ = median(yi)/F

−1(0.5; τ), which is Fisher consistent at the Gamma
model for τ considered as fixed. The quasi-profile likelihood ratio test is obtained
from the estimating function Ψ̃τ =

∑n
i=1 hi(τ ; c)˜̀p∗(τ ; yi) defining the RGMLE τ̃RG

for τ , with c = 1.5.

A sample of size n = 200 has been generated from a Gamma random variable
with shape parameter τ = 2 and scale λ = 1. Then a contamination has been
introduced on the right tail by replacing the five largest observations by even larger
values.

Figure 1 shows the behavior of the ordinary profile likelihood ratio test WP (τ) =
2 {`P (τ̂) − `P (τ)} and of the quasi-profile likelihood ratio test WQP (τ) under both
scenarios. The quasi-profile likelihood ratio test has been computed by 400 bootstrap
samples. The likelihood ratio test statistic WP (τ) shifts remarkably, whereas it does
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Figure 3: Left: Quasi-likelihood ratio test for the shape parameter
(the horizontal dashed line gives the 0.95 confidence interval) for
household income data. Right: histogram with estimated Gamma
distribution by RGMLE (solid line), the OBRE (dashed line) and
the MLE (dotted line).

not occur for WQP (τ). Moreover, WQP (τ) is very close to WP (τ) under the true
model. Note that the 0.95-level confidence interval for τ based on WP (τ) under the
contaminated sample does not include the true value of the parameter.

The robustness of WQP (τ) can also be assessed by means of an empirical sensi-
tivity analysis. We use a simulated sample of size n = 20. The value in the sample
corresponding to the vertical dotted line in Figure 2 is perturbed and allowed to vary
in the range [0.05, 25]. At each time WP (τ0) and WQP (τ0) for testing H0 : τ = τ0,
where τ0 is the true parameter value, are recomputed.

Figure 2 displays the behavior of the p-value associated to both test statistics.
It is evident that WP (τ0) appears sensitive to outlying observations, whereas the
p-value associated to WQP (τ0) is more stable, at the cost of less evidence for the
null hypothesis in a small region around the original value.

A simulation experiment, based on 4000 Monte Carlo trials, has also been per-
formed in order to evaluate the empirical coverages of the nominal 1−α confidence
intervals for the shape parameter obtained by WQP (τ). Data have been generated
from a Gamma model with τ = 2 and λ = 1 (g1) and allowing a mild contamina-
tion on the right tail, i.e. data have been generated with probability 0.02 from a
Gamma distribution with scale equals to 5 (g2). The simulation results are given in
Table 1 for nominal levels 0.990, 0.950 and 0.900. The quasi-profile likelihood ratio
test WQP (τ) performs well both under the true model and under the contaminated
model. Indeed, it improves over Wald and score-type tests in terms of empirical
coverage probabilities and highlights a stronger robustness, in the sense that em-
pirical coverages are less affected by the contamination. Table 1 also reports the
empirical coverage probabilities of the Wald-type confidence intervals obtained from
the computation of the OBRE, with the scale parameter not treated as nuisance but
estimated simultaneously with the shape. Setting c = 4.5, the obtained empirical
coverage probabilities are clearly improved by the quasi-likelihood approach.
Example 2: Household incomes data. Consider the empirical distribution of
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Figure 4: Left: Quasi-likelihood ratio test for the shape parameter κ
for Martin Marietta data (the horizontal dotted line gives the 0.95
confidence interval). Right: sensitivity analysis for the p-value of the
classical likelihood test, Wald test from OBRE and quasi-likelihood
test from RGMLE.

household incomes in 1979 in UK. The aim is to fit a Gamma distribution to the
majority of the data, so that inference is not influenced by extreme observations in
the tails (Victoria-Feser and Ronchetti, 1994). Assume the interest concerns infer-
ence on the shape parameter. To this end we use the estimating function defining
the RGMLE. The weighting function used to bound the generalised profile score
function for the parameter of interest is chosen so that more importance is given to
the most frequent observations, located in the centre of the distribution.

In Figure 3, WQP (τ) (left) and the histogram (right) of the empirical distribu-
tion and the estimated Gamma distribution by the solution to the set of equations
defining the RGMLE (solid line), the OBRE (dashed line) and MLE (dotted line)
are plotted. The estimated curve according to the MLE tends to be influenced by
extreme observations in the tails whereas the distributions estimated by RGMLE
and OBRE catch the inequality structure of the majority of the data.

Example 3: Martin-Marietta data. Let us consider a data set concerning
monthly excess return for a given security (x) and excess return on the market port-
folio (y) on the New York Stock Exchange for the company Martin Marietta (Butler
et al., 1990). Here the focus is on a regression-scale and shape model. Actually, it is
assumed that a simple linear model holds, with error distributed as an EP with shape
parameter τ . Suppose the interest is on quasi-likelihood confidence intervals for the
shape parameter τ , based on the estimating function Ψ̃τ =

∑n
i=1 hi(τ ; c)˜̀p∗(τ ; yi),

with c = 2.5. Figure 5 (left) displays the behavior of WQP (τ), WP (τ) and WP (τ)
when observation 8, which is the most influencing observation, is deleted. The
quasi-profile likelihood ratio test has been evaluated by 500 bootstrap samples. At
a significance level of 0.05, WQP (τ) rejects the hypothesis that the shape parameter
assumes values τ ≤ 1 and the value τ = 1 even falls outside the 0.95-level likeli-
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hood based confidence interval obtained after deleting observation 8. The 0.95-level
confidence interval for τ obtained after having computed the OBRE with c = 2 is
[0.95–1.57]. A sensitivity analysis has also been performed to asses the stability of
the p-values associated to WQP (τ) when the null hypothesis is H0 : τ = 1.5. Ob-
servation 8 is perturbed and allowed to vary in the range [-0.5 – 0.7]. It is evident
from Figure 4 (right) that the p-value from the χ2

1 asymptotic approximation for
WQP (τ) is stable and the evidence for the null hypothesis is always stronger than
that obtained from the Wald-type test computed from the OBRE.
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