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Abstract: We consider the use of modern likelihood asymptotics in the construction of confi-
dence intervals for the parameter which determines the skewness of the distribution of the max-
imum/minimum of an exchangeable bivariate normal random vector. This distribution represents
the reference model for assessing the degree of concordanceof a continuos mono-zygotic twin trait
when interest focuses on the pairwise maximum or minimum. Simulation studies were conducted
to investigate the accuracy of the proposed method and to compare it to available alternatives. Ac-
curacy is evaluated in terms of both coverage probability and expected length of the interval. We,
furthermore, illustrate the suitability of our method by re-analyzing the data from a study which
compares different measurements taken on the brains of mono-zygotic twins.

Keywords: Bivariate normal distribution; Higher order likelihood inference; Modified likelihood
ratio; Skew-normal distribution; Twin study.

1 Introduction

Since Sir Francis Galton’s (1876) seminal paper, twin studies have extensively been used
for the quantitative ascertainment of genetic and environmental influences. Twin registries
worldwide represent nowadays a valuable resource for the investigation of the similari-
ties and dissimilarities between twins. The very large twinstudies carried out during the
past two decades led to much novel work, especially in genetic research van Dongenet
al. (2012). Classical twin designs remain, nonetheless, a valuable tool in fields such as
biomedicine, psychiatry and behavioral sciences, where the number of available observa-
tions is far smaller than those typical in modern twin studies.

Small sample sizes are rather common to researchers in fieldssuch as biology, genetics,
medical sciences and psychology. Inference based on the classical first order normal andχ2

approximations may then be unreliable. The last four decades have seen the development
of so-called higher order likelihood approximations, which require little more effort than
is needed for their first order counterparts while providinghighly accurate inferences in
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small samples. We refer the reader to Brazzaleet al. (2007) for a rich collection of realistic
examples and case studies, which show how to use the new theory. The aim of this paper
is to encourage the use of modern likelihood-based solutions for the analysis of continuous
data on mono-zygotic twins.

There are several views of how the degree of concordance between twins should be as-
sessed Kraemer (1997); Lyonset al. (1997). Here, we promote the use of Azzalini’s (1985)
skew-normal distribution, which generalizes the standardnormal distribution by allowing
for asymmetry. In particular, we will use Loperfido’s (2002)results, according to which
the maximum, or minimum, of two random variables, whose joint distribution is bivari-
ate exchangeable normal with correlation coefficientρ, is skew-normally distributed with
skewness parameterγ, or −γ, whereγ =

√

(1 − ρ)/(1 + ρ). This distribution becomes
the reference model when we have censoring on the maximum (orminimum) value for each
twin pair.

Estimation of the shape parameter of the skew-normal distribution can be, at times,
tricky. In particular, it is not easy to compute confidence intervals. Recently, Mameliet
al. (2012), borrowing from Loperfido’s result and Fisher’sz transform forρ, obtained an
asymptotic confidence interval for the skewness parameter of the distribution of the max-
imum/minimum under this framework. Their simulation results revealed that actual and
nominal coverage of the asymptotic confidence interval are close, though its expected length
increases for decreasing sample size and correlation coefficient close to−1. In this paper
we explore the performance of confidence intervals forγ obtained from the small-sample
solutions recently proposed in Fraseret al.(1999), and this in terms of both actual coverage
and expected length.

The paper organizes as follows. Section 2 reviews modern likelihood-based inference.
The skew-normal distribution and Loperfido’s results will be introduced in Section 3. Infer-
ence onγ will be discussed in Section 4. Section 5 re-analyzes the twin data collected by
Tramoet al. (1998) using the large- and small-sample solutions of Section 4. Their finite-
sample properties will be investigated in Section 6 throughsimulation. Some concluding
remarks are given in Section 7.

2 Likelihood-based inference

2.1 First order theory

Let y = (y1, . . . , yn) be a sample of sizen with joint log-likelihood functionl(θ) = l(θ; y),
whereθ = (ψ, λ) is a k-dimensional parameter,ψ is the scalar parameter of interest, and
λ a vector of nuisance parameters of dimensionk − 1. Under broad regularity conditions,
the maximum likelihood estimate ofθ, denoted bŷθ, may be obtained by solving the score
equationlθ(θ̂; y) = 0, with lθ(θ; y) = ∂l(θ; y)/∂θ. Let j(θ) = ∂2l(θ; y)/∂θ∂θ⊤ represent
the observed information function forθ and j(θ̂) the observed Fisher information. The
decomposition of the parameterθ into ψ andλ leads to an analogous decomposition of the
score vectorlθ(θ; y) and of the observed information functionj(θ).

The recommended likelihood pivot for making inference onψ is the signed likelihood
root

r(ψ) = sign(ψ̂ − ψ)

√

2(lp(ψ̂) − lp(ψ)). (1)
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Herelp(ψ) = l(θ̂ψ), with θ̂ψ = (ψ, λ̂ψ), is the profile log-likelihood, whilêλψ represents
the constrained maximum likelihood estimate obtained by maximizing the log-likelihood
l(ψ, λ) with respect toλ holdingψ fixed. The signed likelihood root (1) is asymptotically
standard normal up to the ordern−1/2, which leads to the first order(1−α)100% confidence
interval forψ

{

ψ : |r(ψ)| ≤ z1−α/2
}

, (2)

wherezp, with p ∈ (0, 1), is thepth quantile of the standard normal distribution. The stan-
dard normal approximation provides a satisfactory approximation for large sample sizes,
but can be highly unreliable for small values ofn. The value ofψ which satisfies equation
(2) can be found numerically by calculating the functionr(ψ) on a grid of pointsψ, which
are then interpolated using a suitable smoothing function.The numerical issues, which may
arise in the interpolation step, can be avoided by excludingthe values ofψ close to the max-
imum likelihood estimatêψ. The details are given in (Brazzaleet al., 2007, Section 9.3).

2.2 Higher order theory

A nowadays broadly known improvement to the signed likelihood root (1), which was orig-
inally introduced by Barndorff-Nielsen (1983), is the modified likelihood ratio

r∗ = r +
1

r
log

(q

r

)

, (3)

whose finite-sample distribution may be approximated by thestandard normal up to the
ordern−

3

2 . Several expressions for the correction termq have been proposed, both from
the frequentist and the Bayesian perspective. Here, we willfocus on the developments by
Fraser and Reid (1995).

To derive their formula forq, Fraser and co-author used the notion of ‘tangent exponen-
tial model’ which, at a fixed value ofy, denotedy0, approximates the true model by a local
exponential model with canonical parameterϕ = ϕ(θ), defined as

ϕ⊤(θ) = l;V (θ; y0) =

n
∑

i=1

∂l(θ; y)

∂yi

∣

∣

∣

∣

∣

y=y0

Vi. (4)

Here,l;V indicates differentiation of the log-likelihood functionin the directions given by
then columnsV1, . . . , Vn of then×k matrixV , while⊤ denotes matrix transposition. The
matrixV can be constructed using a vector of pivotal quantitiesz = {z1(y1, θ), . . . , zn(yn, θ)},
where each componentzi(yi, θ) has a fixed distribution under the model. The matrixV is
defined fromz by

V = −
(

∂z

∂y⊤

)−1 (

∂z

∂θ⊤

)

∣

∣

∣

∣

∣

(y0,θ̂0)

,

whereθ̂0 is the maximum likelihood estimate aty0. The expression of the correction term
q is then

q =
|ϕ(θ̂) − ϕ(θ̂ψ) ϕλ(θ̂ψ)|

|ϕθ(θ̂)|

{

|j(θ̂)|
|jλλ(θ̂ψ)|

}
1

2

, (5)
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whereϕθ(θ) = ∂ϕ(θ)/∂θ⊤ represents the matrix of partial derivatives ofϕ(θ) with respect
to θ, while ϕλ(θ) = ∂ϕ(θ)/∂λ⊤ identifies thek − 1 columns of this matrix which corre-
spond to the nuisance parameterλ. Analogously, the matrixjλλ(θ) is the(k− 1)× (k− 1)
sub-matrix of the observed information functionj(θ) with respect to the nuisance parameter
λ.

The higher order(1 − α)100% confidence interval forψ is given by
{

ψ : |r∗(ψ)| ≤ z1−α/2
}

. (6)

Again, pivot profiling (Brazzaleet al., 2007, Section 9.3) can be used to identify the up-
per and lower bounds of the confidence interval. Furthermore, ther∗ pivot—like its first
order counterpartr—is invariant under interest-respecting re-parametrizations, that is re-
parametrizations of the formτ(θ) = τ(ψ, λ) = (ζ, η) with ζ = ζ(ψ) andη = η(ψ, λ).

The expression ofq for the case in which the nuisance parametrization is not given
explicitly can be found in Fraseret al. (1999).

2.3 Approximations for Bayesian inference

In the Bayesian setting with a prior densityπ(θ) for θ, the analogue of the first order re-
sults of Section 2.1 is the asymptotic normality of the posterior densityπ(θ|y) for θ. The
Bayesian counterpart of the correction termq in (3), which we will denote byqB, was ob-
tained by DiCiccio and Martin (1991) under the assumption that the nuisance parametriza-
tion is given explicitly, and results to

qB = l′p(ψ)jp(ψ̂)−
1

2

{

|jλλ(θ̂ψ)|
|jλλ(θ̂)|

}
1

2 π(θ̂)

π(θ̂ψ)
, (7)

where l′p(ψ) = dlp(ψ)/dψ is the profile score function andjp(ψ) = d2lp(ψ)/dψ2 the
profile observed information function. Posterior quantiles for the parameterψ can be found
exploiting the fact that the posterior distribution function

Π(ψ0 | y) = Pr(ψ ≤ ψ0 | y) .
= 1 − Φ(r∗B)

may be approximated to the ordern−3/2 by the standard normal distribution functionΦ(r∗B),
evaluated at

r∗B = r +
1

r
log

(qB
r

)

. (8)

Again, pivot profiling provides the upper and lower bounds ofthe (1 − α)100% credible
interval forψ given by

{

ψ : |r∗B(ψ)| ≤ z1−α/2
}

. (9)

Like for q, Fraseret al. (1999) provide the expression of the correction termqB for the
case in which the nuisance parametrization is not given explicitly.

2.3.1 Matching priors

Given the priorπ(θ) for θ, let θπ1−α denote the(1 − α)th approximate posterior quantile of
θ of ordern−r, that is, the value ofθ for which

Prθ|y
(

θ ≤ θπ1−α | y
)

= 1 − α+Op(n
−r), (10)
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with r > 0 and0 < α < 1. If we also have that

PrY |θ
(

θπ1−α ≥ θ | θ
)

= 1 − α+Op(n
−r), (11)

with θπ1−α the upper bound of a frequentist one-sided(1−α)100% confidence interval, the
prior π is called a probability matching prior to therth order of approximation. For such
priors, Bayesian and frequentist inference for the parameter θ are in perfect agreement up
to the orderr.

If r = 1, π(θ) is called a first order probability matching prior, while forr = 3/2
we have a second order probability matching prior. Welch andPeers (1963) showed that
the unique first order probability matching prior, when no nuisance parameter is present, is
Jeffrey’s prior.

The same result does not necessarily hold whenθ includes a nuisance componentλ. For
an orthogonal parametrization, Staicu and Reid (2008) proposed to use the following prior
for θ in (7),

π(ψ, λ) ∝ i
1/2
ψψ (ψ, λ), (12)

whereiψψ(ψ, λ) represents the value of the expected Fisher information function corre-
sponding toψ. The authors call this prior the “unique prior”, as it leads to an approxi-
mation of the marginal posterior distribution ofψ accurate to the ordern−3/2. When the
parametrizationθ = (ψ, λ) is not orthogonal, their suggestion is to find an orthogonal
parametrization(ψ, η) of the original model for which the prior can be expressed as (12),
and then to re-express the prior in the original parametrization (ψ, λ), leading to

π(ψ, λ) ∝ i
1/2
ψψ.λ(ψ, λ)

∣

∣

∣

∣

∣

∂η

∂λ

∣

∣

∣

∣

∣

, (13)

with iψψ.λ(ψ, λ) = iψψ(ψ, λ) − iψλ(ψ, λ)i−1
λλ (ψ, λ)iλψ(ψ, λ), where the indicesψ andλ

indicate which sub-blocks of the expected Fisher information function to take. Furthermore,
∣

∣∂η/∂λ
∣

∣ represents the Jacobian of the transformation from(ψ, η) to (ψ, λ).

3 The skew-normal model

The skew-normal distribution was introduced by Azzalini (1985) to define a class of asym-
metric parametric models which includes the standard normal as a special case. We say that
a continuous random variableZ ∼ SN(γ), distributes as a skew-normal indexed by the
real parameterγ, if it has density function

p(z; γ) = 2φ(z)Φ(γz) with z ∈ R.

Hereφ(·) andΦ(·) denote, respectively, the density and the distribution functions of the
standard normal distribution. The class of skew-normal distributions can be widened by
including a location parameterµ ∈ R and a scale parameterσ > 0. Thus, ifX ∼ SN(γ),
thenY = µ + σX is a skew normal random variable with parametersµ, σ, γ, or, Y ∼
SN(µ, σ, γ) for short. Making inference on the skewness parameter is quite challenging,
as the expected Fisher information becomes singular asγ → 0. Functions for manipulating
the skew-normal probability distribution and for fitting itto data are given in theR package
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sn Azzalini (2013). We refer the reader to Genton (2004) for a general treatment of the
skew-normal distribution and its extensions.

In this paper we focus on the distribution of the maximum (or minimum) of an ex-
changeable bivariate normal random vector. Loperfido (2002) showed that a linear combi-
nation of the maximum and the minimum of a bivariate exchangeable normal random vector
is skew-normally distributed with parameters specified by the following theorem.

Theorem 3.1 LetX1 andX2 be two random variables whose joint distribution is bi-
variate normal with common meanµ ∈ R, common varianceσ2 > 0 and correlation
coefficientρ ∈ (−1, 1). Then for any two real constantsh andk 6= −h, the distribution of
hmin(X1,X2) + kmax(X1,X2) is

SN

(

µ(h+ k), σ
√

h2 + k2 + 2ρhk, γ =
k − h

|k + h|

√

1 − ρ

1 + ρ

)

.

Theorem 3.1 was subsequently generalized by Loperfido (2008) to the case whereX1 and
X2 are exchangeable, elliptical and continuous random variables. It follows that the dis-
tribution of max(X1,X2) is SN(µ, σ, γ) with γ =

√

(1 − ρ)/(1 + ρ) ≥ 0, whereas the
distribution ofmin(X1,X2) is SN(µ, σ, γ) with γ = −

√

(1 − ρ)/(1 + ρ) ≤ 0. The spe-
cial case ofρ = 0 translates intoγ = 1 andγ = −1, respectively. Figure 1 shows how the
shape of the distributions ofmax(X1,X2) (bold) andmin(X1,X2) (solid) changes whenρ
varies from−0.9 to +0.9.

Theorem 3.1 provides the reference models for mono-zygotictwin studies for which
information on the pair(X1,X2) is missing, and only their maximum (or minimum) value
is recorded. This may, for instance, happen because of practical reasons; see Roberts (1966)
for a rather early treatment. As pointed out there, because healthy mono-zygotic twins share
an identical genetic mark-up, time of onset for a particularevent in the first twin—such as
getting a cold or developing leukaemia—is likely to closelyfollow in the second twin, so
that only the smaller or larger record may be kept. Furthermore, working with the maximum
(or minimum) of two correlated measurements can be, at times, more reliable than the study
of the original values, especially if the measurements of the smaller (or larger) values are
less accurate.

4 Inference on the skewness parameter γ =

√

1−ρ
1+ρ

4.1 Background results

4.1.1 Exact confidence interval

Let Y = (X1,X2) be a bivariate normal vector with common mean0, common variance1
and correlation coefficientρ ∈ (−1, 1). Given an i.i.d. sample{(x11, x21), . . . , (x1n, x2n)}
of sizen from Y , Haddad and Provost (2011) proposed a range-based exact confidence
interval for ρ. The construction of the confidence interval makes use of thetwo random
variablesD+ =

∑n
i=1(X1i + X2i)

2 andD− =
∑n

i=1(X1i − X2i)
2. Taking advantage

of the independence ofX1i + X2i andX1i − X2i along with the fact thatX1i + X2i ∼
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(d) ρ = −0.5
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(e) ρ = −0.9

Figure 1: Contour plots of the bivariate standard normal distributions with correlation co-
efficientρ, and corresponding distribution of the maximum (bold) and minimum (solid), for
ρ ∈ {−0.9,−0.5, 0, 0.5, 0.9}.
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N(0, 2(1 + ρ)) andX1i −X2i ∼ N(0, 2(1 − ρ)), the authors derive the following pivotal
quantity

D+

D−

(1 − ρ)

(1 + ρ)
∼ Fn,n, (14)

whereFn,n is Fisher’s F distribution with(n, n) degrees of freedom. This gives an exact
(1 − α)100% confidence interval for the parameterγ of the form

{

γ ∈ [0,∞) :

√

D−
D+

Fn,n(1 − α/2) < γ <

√

D−
D+

Fn,n(α/2)

}

, (15)

whereFn,n(p), with p ∈ (0, 1), represents thepth quantile of Fisher’s F distribution with
(n, n) degrees of freedom.

4.1.2 Large-sample confidence intervals

Haddad and Provost (2011) considered also the constructionof a confidence interval forρ
when the means and variances of the bivariate random vector are unknown. In this case,
the solution is no longer exact. Let(X1,X2) be a bivariate normal random vector with
parameters(µ1, µ2, σ1, σ2, ρ) where (µ1, σ1) ∈ R × R+ and (µ2, σ2) ∈ R × R+ are,
respectively, the means and variances ofX1 andX2, andρ ∈ (−1, 1) their correlation.
The first step is to standardize the two componentsX1i andX2i; let X∗

1i andX∗
2i be the

standardized variables. An approximate confidence interval for the parameterρ is obtained,
likewise above, by using the fact thatX∗

1i − X∗
2i andX∗

1i + X∗
2i are nearly independent,

X∗
1i +X∗

2i ∼ N(0, 2(1 + ρ)) andX∗
1i −X∗

2i ∼ N(0, 2(1 − ρ)). The pivot

D∗
+

D∗
−

(1 − ρ)

(1 + ρ)
=

(

1 +R

1 −R

)

(1 − ρ)

(1 + ρ)
, (16)

whereD∗
+ =

∑n
i=1(X

∗
1i + X∗

2i)
2 andD∗

− =
∑n

i=1(X
∗
1i − X∗

2i)
2 andR is the sample

correlation coefficient defined as

R =

∑n
i=1

(

X1i − X̄1

) (

X2i − X̄2

)

√

∑n
i=1

(

X1i − X̄1

)2
√

∑n
i=1

(

X2i − X̄2

)2
,

follows approximately anFn−1,n−1 distribution. The corresponding(1 − α)100% confi-
dence interval forγ is
{

γ ∈ [0,∞) :

√

(

1 −R

1 +R

)

Fn−1,n−1(1 − α/2) < γ <

√

(

1 −R

1 +R

)

Fn−1,n−1(α/2)

}

.

(17)
A second approximate solution to the inferential problem weare interested in can be

found in Mameliet al. (2012). Because of the difficulties of obtaining the finite sam-
ple distribution ofR, inference forρ is commonly based on the monotonic transformation
1
2
ln ((1 +R)/(1 −R)), called Fisher’sz-transform. In particular, the distribution of

Z =

1
2
ln

(

1+R
1−R

)

− 1
2

ln
(

1+ρ
1−ρ

)

1√
n−3

(18)
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for n > 50 is approximately standard normal.This turns into an(1 − α)100% confidence
interval forγ of the form

{

γ ∈ [0,∞) : exp

( −zα
2√

n− 3

)

√

(

1 −R

1 +R

)

< γ < exp

(

zα
2√

n− 3

)

√

(

1 −R

1 +R

)

}

.

(19)
Note that the upper and lower bounds of both, the confidence interval (19) proposed by

Mameli et al. (2012) and solution (17) derived by Haddad and Provost (2011), include the
multiplying factor

√

(1 −R)/(1 +R).

4.2 Small-sample confidence intervals

4.2.1 No nuisance parameter

Reid (2003) provides the expression of the higher-order pivot r∗ when interest relies on
θ = ρ, the correlation coefficient of a bivariate normal vector(X1,X2) with common means
0 and variances 1. The reference model in this case is a(2, 1) curved exponential family.
A key quantity for the determination of the canonical parameter (4) of the approximating
tangent full exponential model is the vectorV = (1 − θ̂)−1(t − θ̂s, s − θ̂t)⊤, obtained
from the two independent pivotsZ1 = (T + S)/(1 + θ) andZ2 = (T − S)/(1 − θ), with
S = n−1

∑n
i=1X1iX2i andT = (2n)−1

∑n
i=1(X

2
1i + X2

2i), whose distribution isχ2
n/n .

The canonical parameter takes the formϕ(θ) = n{(1−θ2)(1−θ̂2)}−1{θ(t−θ̂s)−(s−θ̂t)}.
Later, Reid and Fraser (2010) proposed an alternative formulation, ϕ̄(θ) = nθ/(1 − θ2),
of the canonical parameter. As shown there, both formulations lead to almost the same
numerical results as far as the approximation of tail areas is concerned.

Turning to the Bayesian world, we may adopt Jeffreys’ prior for ρ, given by

π(ρ) ∝
√

(1 + ρ2)

(1 − ρ2)
, (20)

which, as stated in Section 2.3.1, provides a first order probability matching prior for a
scalar parameter in the absence of nuisance parameters.

Confidence intervals for the parameterγ can be derived from ther(ρ), r∗(ρ) andr∗B(ρ)
pivots due to their invariance under interest-respecting re-parametrizations.

4.2.2 Nuisance parameters

Let {(x11, x21), . . . , (x1n, x2n)} be a sample from a bivariate normal distribution with real
meansµ1, µ2, variancesσ2

1 > 0, σ2
2 > 0 and correlationρ ∈ (−1, 1). The log-likelihood

function

l(θ) = −n
(

log (σ1σ2) +
1

2
log (1 − ρ2) +

µ2

1

2(1 − ρ2)σ2

1

+
µ2

2

2(1 − ρ2)σ2

2

− µ1µ2ρ

(1 − ρ2)σ1σ2

)

+

− 1

2(1 − ρ2)σ2

1

n
∑

i=1

x2

1i
− 1

2(1 − ρ2)σ2

2

n
∑

i=1

x2

2i
+
µ1σ2 − µ2σ1ρ

(1 − ρ2)σ2

1
σ2

n
∑

i=1

x1i+

+
µ2σ1 − µ1σ2ρ

(1 − ρ2)σ1σ2

2

n
∑

i=1

x2i +
ρ

(1 − ρ2)σ1σ2

n
∑

i=1

x1ix2i,
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Table 1: Measurements of thecorpus callosumsurface area for ten mono-zygotic twins
Tramoet al. (1998). Bivariate Shapiro-Wilk test for normality:W = 0.97, p-value = 0.86.

1st twin 6.08 6.22 7.99 7.44 6.48 8.76 6.32 7.62 6.03 7.67
2nd twin 5.73 5.80 8.42 6.84 6.43 7.99 6.32 7.60 6.59 7.52

with θ = (ρ, µ1, µ2, σ1, σ2), characterizes an exponential family with canonical parameter

ϕ(θ) =

(

− 1

(1 − ρ2)σ2
1

,− 1

(1 − ρ2)σ2
2

,
µ1σ2 − µ2σ1ρ

(1 − ρ2)σ2
1σ2

,
µ2σ1 − µ1σ2ρ

(1 − ρ2)σ1σ2
2

,
ρ

(1 − ρ2)σ1σ2

)

.

Settingψ = ρ andλ = (µ1, µ2, σ1, σ2), q andr∗ can readily be obtained from equations
(5) and (3), respectively.

The computation of the Bayesian credible interval of Section 2.3 requires that we spec-
ify a prior for the parameterθ. The “unique prior” defined by Staicu and Reid (2008) may
be calculate by referring to the orthogonal re-parametrization

p(x1, x2 | ψ, η) ∝
1

η4
exp



−
1

2(1 − ψ2)1/2

»

(x1 − η1)
2

η3
+ η3(x2 − η2)

2 − 2ψ(x1 − η1)(x2 − η2)

– ff

,

(21)

with ψ = ρ andη1 = µ1, η2 = µ2, η3 = σ1/σ2 andη4 = σ1σ2(1 − ρ2)1/2. Note that Gosh
et al. (2009, 2010) used the same parametrization but withµ1 = µ2 = 0, so that Fisher’s
expected information function only includes the parametersψ, η3 andη4.

Confidence and credible intervals for the parameterγ can be readily derived from
the r(ρ), r∗(ρ) and r∗B(ρ) pivots thanks to their invariance under interest-respecting re-
parametrizations.

5 A real-data example

We consider the data collected by Tramoet al. (1998), as available onStatLib . The
data set submitted by the authors includes different measurements on the brains of ten
pairs of mono-zygotic twins. Five twin pairs are male and theremaining five are fe-
male. Here we focus on the variablecorpus callosumsurface area; see Table 1. To as-
sure that all conditions of Theorem 3.1 hold, we first standardize the pairs of observations
{(x11, x21), . . . , (x1n, x2n)} as in paragraph 4.1.2. The bivariate Shapiro-Wilk normality
test (W = 0.97, p-value = 0.86) supports the hypothesis of bivariate normality of the
standardized data. The maximum likelihood estimate ofγ is γ̂ = 0.324. The five95%
confidence intervals forγ, computed using the methods outlined in Section 4, are givenin
Table 2. The interval based on the third order Bayesian solution r∗B is wider than the con-
fidence intervals obtained from the first order pivotr, the higher order frequentist pivotr∗,
the large sample (HP ) confidence interval by Haddad and Provost (2011) and the (ACI)
confidence interval by Mameliet al. (2012).

Figure 2 shows how to compute the lower and upper bounds numerically. The intervals
based onr (1st), r∗ (3rd), r∗B (Bayes) andACI can be read off from the intersections of
the corresponding pivots with the horizontal black lines, which represent the2.5% and the
97.5% quantiles of the standard normal distribution. The lower and upper bounds of the
HP confidence interval are computed similarly, but this time byreferring to the horizontal
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Figure 2: Tramoet al. (1998)corpus callosumsurface area data. Pivot functions for the
parameterγ obtained from: likelihood rootr (solid), modified likelihood rootr∗ (bold);
Bayesian modified likelihood rootr∗B (long-dashes); expression (16) by Haddad and Provost
(2011) (dotted); approximate pivot used in (18) by Mameliet al. (2012) (dashed). Black
horizontal lines: 2.5% and 97.5% normal quantiles; grey horizontal lines: 2.5% and 97.5%
quantiles of theF (9, 9) distribution.

grey lines, which represent the2.5%, and the97.5% quantiles of theF distribution with
(9, 9) degrees of freedom.

6 Numerical assessment

We designed two simulations studies to assess and compare the finite-sample properties of
the methods discussed in this paper. The summary statisticsused are: empirical coverage
(CP ), upper error probability (UE), that is, the percentage of the true parameter values
falling above the upper bound, lower error probability (LE), that is, the percentage of the
true parameter values falling below the lower bound, and average length (AL) of the five
confidence intervals considered in Section 4. All simulations were run using the numerical
computing environmentRR Core Team (2013).
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Table 2: Tramoet al. (1998)corpus callosumsurface area data. Lower (LB) and upper
(UB) bounds of95% confidence intervals for the parameterγ. Pivots used, with corre-
sponding confidence intervals:1st – likelihood rootr (2); 3rd – modified likelihood root
r∗ (6); Bayes – Bayesian modified likelihood rootr∗B (9); HP – Haddad and Provost
(2011) (17);ACI – Mameliet al. (2012) (19)

.

Method LB UB Length
1st 0.121 0.435 0.314
3rd 0.119 0.493 0.374
Bayes 0.114 0.518 0.404
HP 0.114 0.460 0.346
ACI 0.109 0.481 0.372

6.1 Considered scenarios

Simulation 1 considers a bivariate normal model with zero means, unit variances and un-
known correlationρ, which takes values from−0.9 to +0.9, with step size0.1. The purpose
is to compare the behavior of the higher order pivotr∗ with its first order counterpartr, the
Bayesian small-sample solutionr∗B and the exact method (14), which apply when no nui-
sance parameter is present, and this for small sample sizes.

Simulation 2 wants to investigate the finite-sample performance of the confidence in-
tervals obtained when nuisance parameters are present, again while emphasizing small
sample sizes. The pivots used are the higher order solutionr∗, its first order counterpart
r, the Bayesian competitorr∗B , and the large-sample solutions (17) and (19). We used
µ1 = µ2 = 7, σ1 = σ2 = 0.9, while againρ ∈ {−0.9, 0.8, . . . , 0.8, 0.9}. Note that the
simulation set-up borrows from the twin data example of Section 5, for which the maximum
likelihood estimate iŝθ = (0.900, 7.061, 6.924, 0.905, 0.872).

In both simulations,10, 000 replicates are generated for the four sample sizesn =
5, 10, 15, 20. The simulation error amounts to±0.004.

6.2 Discussion

Figure 3 shows the actual coverage of the nominal 95% confidence intervals forγ derived
from equation (15) (exact), and by using the pivotsr (1st), r∗ (3rd), andr∗B (Bayes) for
the no-nuisance parameter case. The higher order likelihood pivotsr∗ and, to a somewhat
lesser extent,r∗B outperform their first order counterpartr, even for the very limited sample
sizes considered in the four scenarios of Simulation 1. The differences among the four
pivots fade out as the sample size increases.

Tables 3 – 6 summarize the performance of the nominal 95% confidence intervals forγ
derived from the four pivots considered in Simulation 1. Being there no nuisance parameter
present, the corresponding true coverage probabilities are very close to the nominal level,
as we may have expected. Inspection of the upper and lower error probabilities reveals that
ther∗ andr∗B pivots also improve in terms of symmetry overr. The exact method produces
confidence intervals forγ which are, on average, wider than the confidence intervals ob-
tained from the first order solutionr and the higher order pivotsr∗ andr∗B . The average
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Figure 3: Simulation 1: bivariate normal with means 0 and variances 1.Empirical cov-
erage of nominal two-sided 95% confidence intervals forγ for varying values ofρ and
sample sizesn = 5, 10, 15, 20. Pivots used: likelihood rootr (1st), modified likelihood
root r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (14) by Haddad
and Provost (2011) (exact). Based on 10,000 replicates.

length of all four confidence intervals is larger for negative values ofρ, and increases when
the correlation tends to−1.

Figure 4 reports the actual coverage of the nominal95% confidence intervals forγ
obtained from expressions (16) (HP ) and (18) (ACI), and by using the pivotsr (1st), r∗

(3rd) andr∗B (Bayes), as in Simulation 2. In terms of real coverage,r∗ again outperforms
its first order counterpartr. It also outperforms the large-sample (HP ) proposal by Haddad
and Provost (2011) and, surprisingly, the Bayesian solution r∗B . The most accurate method
is the large-sample confidence interval developed by Mameliet al. (2012), although the
differences fade out for increasing sample size.

Tables 7 – 10 summarize the performance of the nominal 95% confidence intervals
for γ derived from the five methods considered in Simulation 2. Theresults reveal thatr∗



14 Brazzale Alessandra R.

−0.5 0.0 0.5

0.
85

0.
90

0.
95

ρ

1st
3rd
Bayes
HP
ACI
nominal

(a) n = 5

−0.5 0.0 0.5

0.
85

0.
90

0.
95

ρ

1st
3rd
Bayes
HP
ACI
nominal

(b) n = 10

−0.5 0.0 0.5

0.
85

0.
90

0.
95

ρ

1st
3rd
Bayes
HP
ACI
nominal

(c) n = 15

−0.5 0.0 0.5

0.
85

0.
90

0.
95

ρ

1st
3rd
Bayes
HP
ACI
nominal

(d) n = 20

Figure 4: Simulation 2: bivariate normal with means7 and variances0.9. Empirical cov-
erage of nominal equi-taled 95% confidence intervals forγ for varying values ofρ and
sample sizesn = 5, 10, 15, 20. Pivots used: likelihood rootr (1st), modified likelihood
root r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (16) by Haddad
and Provost (2011) (HP ) and expression (18) by Mameliet al. (2012) (ACI). Based on
10,000 replicates.

is more accurate thanr, especially when the sample size is small, because of both an, on
average, larger width and its capability of correctly centering the confidence intervals. The
r∗B pivot consistently over-estimates the real coverage, while guaranteeing symmetry on the
tails, because of the, on average, longer confidence intervals it produces. TheACI andHP
methods lead to confidence intervals forγ which are remarkably asymmetric. Their better
performance with respect to, respectively,r∗ andr may be explained by the, on average,
larger widths of the corresponding confidence intervals. For all five methods considered,
the expected length becomes larger for negative values ofρ, especially whenρ is close to
−1. This is in agreement with Mameliet al. (2012), who noted the same behavior for their
ACI confidence interval.
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7 Concluding remarks

In this paper we investigate the behavior of likelihood-based small-sample procedures to
compute confidence intervals for the parameter of skewness which characterizes the distri-
bution of the maximum/minimum of a bivariate normal exchangeable random vector. This
distribution represents the reference model for assessingthe degree of concordance of a
continuos mono-zygotic twin trait when interest focuses onthe pairwise maximum or min-
imum, as in Section 5. Extensive numerical investigation revealed that the higher order fre-
quentist pivotr∗ is highly accurate, especially for the rather small sample sizes which may
be encountered, and for the challenging situation whereρ is close to−1. This is in agree-
ment with the findings by Sun and Wong (2007), though their contribution focuses onρ and
does not consider the custom-tailored statistics of Section 4. When no nuisance parameter is
present,r∗ yields confidence intervals which, for practical purposes,may be considered ex-
act. Among the four alternatives available in the presence of nuisance parameters, the only
real competitor tor∗, in terms of both real coverage and required computational efforts, is
theACI confidence intervals, though it leads to, on average, longerconfidence intervals
which counterbalance the lack of symmetry on the tails. The potential applicability of the
ACI method to studies on twins was already put forward in Mameliet al. (2012).
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Table 3: Summary statistics for Simulation 1: bivariate normal withmeans 0 and variances
1. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 5. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (15) by Haddad and
Provost (2011) (exact). Based on 10,000 replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.924 0.039 0.037 6.714
3rd 0.954 0.024 0.022 6.556
Bayes 0.953 0.024 0.022 6.604
exact 0.950 0.024 0.026 11.329

−0.8 1st 0.938 0.038 0.024 4.753
3rd 0.952 0.023 0.026 4.600
Bayes 0.947 0.024 0.029 4.587
exact 0.951 0.023 0.026 7.803

−0.7 1st 0.939 0.038 0.023 3.861
3rd 0.948 0.024 0.029 3.702
Bayes 0.940 0.024 0.036 3.648
exact 0.949 0.025 0.026 6.144

−0.6 1st 0.934 0.040 0.026 3.345
3rd 0.948 0.024 0.028 3.198
Bayes 0.943 0.023 0.034 3.130
exact 0.952 0.025 0.024 5.244

−0.5 1st 0.930 0.038 0.033 2.946
3rd 0.945 0.024 0.031 2.807
Bayes 0.942 0.025 0.033 2.727
exact 0.947 0.025 0.028 4.483

−0.4 1st 0.932 0.037 0.031 2.659
3rd 0.950 0.022 0.027 2.531
Bayes 0.945 0.024 0.030 2.441
exact 0.953 0.024 0.023 3.948

−0.3 1st 0.922 0.042 0.035 2.426
3rd 0.942 0.027 0.031 2.314
Bayes 0.934 0.032 0.033 2.234
exact 0.948 0.026 0.027 3.552

−0.2 1st 0.926 0.039 0.034 2.241
3rd 0.949 0.026 0.025 2.141
Bayes 0.940 0.030 0.030 2.055
exact 0.952 0.025 0.023 3.189

−0.1 1st 0.927 0.037 0.036 2.087
3rd 0.951 0.023 0.026 1.995
Bayes 0.937 0.031 0.032 1.911
exact 0.953 0.023 0.024 2.854

0 1st 0.925 0.037 0.038 1.927
3rd 0.949 0.024 0.027 1.842

(b)

ρ Method CP UE LE AL

Bayes 0.937 0.031 0.032 1.758
exact 0.952 0.023 0.025 2.579

0.1 1st 0.927 0.038 0.035 1.806
3rd 0.951 0.025 0.024 1.732
Bayes 0.941 0.031 0.029 1.647
exact 0.953 0.024 0.022 2.346

0.2 1st 0.925 0.033 0.042 1.695
3rd 0.948 0.025 0.026 1.636
Bayes 0.936 0.030 0.034 1.550
exact 0.949 0.024 0.028 2.110

0.3 1st 0.925 0.036 0.040 1.577
3rd 0.948 0.027 0.024 1.526
Bayes 0.938 0.031 0.030 1.439
exact 0.950 0.026 0.024 1.903

0.4 1st 0.929 0.032 0.039 1.460
3rd 0.948 0.028 0.024 1.421
Bayes 0.942 0.032 0.026 1.347
exact 0.952 0.025 0.024 1.701

0.5 1st 0.927 0.032 0.040 1.350
3rd 0.943 0.031 0.026 1.324
Bayes 0.940 0.033 0.027 1.257
exact 0.947 0.026 0.026 1.499

0.6 1st 0.928 0.031 0.041 1.236
3rd 0.940 0.035 0.025 1.209
Bayes 0.937 0.037 0.025 1.157
exact 0.948 0.027 0.025 1.313

0.7 1st 0.935 0.023 0.042 1.061
3rd 0.945 0.029 0.026 1.054
Bayes 0.935 0.038 0.026 1.039
exact 0.950 0.026 0.024 1.097

0.8 1st 0.936 0.025 0.038 0.865
3rd 0.948 0.027 0.024 0.864
Bayes 0.946 0.029 0.024 0.905
exact 0.951 0.026 0.023 0.874

0.9 1st 0.925 0.035 0.040 0.554
3rd 0.954 0.022 0.024 0.563
Bayes 0.953 0.023 0.024 0.652
exact 0.952 0.026 0.023 0.598
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Table 4: Summary statistics for Simulation 1: bivariate normal withmeans 0 and variances
1. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 10. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (15) by Haddad and
Provost (2011) (exact). Based on 10,000 replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.942 0.037 0.021 4.907
3rd 0.951 0.024 0.025 4.826
Bayes 0.951 0.024 0.025 4.834
exact 0.952 0.022 0.025 6.496

−0.8 1st 0.945 0.034 0.020 3.174
3rd 0.950 0.025 0.025 3.144
Bayes 0.949 0.025 0.026 3.154
exact 0.949 0.024 0.027 4.484

−0.7 1st 0.946 0.035 0.019 2.588
3rd 0.953 0.025 0.023 2.556
Bayes 0.949 0.025 0.026 2.551
exact 0.953 0.025 0.022 3.545

−0.6 1st 0.943 0.033 0.024 2.242
3rd 0.948 0.023 0.029 2.205
Bayes 0.944 0.023 0.034 2.185
exact 0.952 0.024 0.024 2.968

−0.5 1st 0.944 0.034 0.022 1.999
3rd 0.951 0.023 0.026 1.961
Bayes 0.947 0.025 0.028 1.931
exact 0.954 0.025 0.021 2.583

−0.4 1st 0.937 0.036 0.027 1.801
3rd 0.946 0.026 0.028 1.766
Bayes 0.943 0.028 0.030 1.730
exact 0.949 0.025 0.026 2.275

−0.3 1st 0.937 0.034 0.029 1.649
3rd 0.947 0.025 0.028 1.615
Bayes 0.944 0.027 0.029 1.577
exact 0.952 0.023 0.024 2.034

−0.2 1st 0.933 0.036 0.031 1.503
3rd 0.945 0.027 0.028 1.472
Bayes 0.940 0.029 0.031 1.433
exact 0.947 0.027 0.026 1.825

−0.1 1st 0.936 0.034 0.030 1.395
3rd 0.948 0.027 0.025 1.368
Bayes 0.947 0.028 0.025 1.328
exact 0.951 0.026 0.024 1.648

0 1st 0.937 0.032 0.031 1.290
3rd 0.949 0.026 0.025 1.268

(b)

ρ Method CP UE LE AL

0 Bayes 0.945 0.029 0.026 1.227
exact 0.951 0.025 0.024 1.485

0.1 1st 0.936 0.031 0.034 1.192
3rd 0.949 0.026 0.025 1.177
Bayes 0.945 0.027 0.028 1.138
exact 0.951 0.024 0.025 1.345

0.2 1st 0.935 0.033 0.032 1.106
3rd 0.948 0.029 0.023 1.098
Bayes 0.946 0.030 0.024 1.060
exact 0.952 0.027 0.021 1.223

0.3 1st 0.937 0.028 0.036 1.011
3rd 0.947 0.026 0.027 1.008
Bayes 0.945 0.026 0.029 0.974
exact 0.949 0.024 0.027 1.091

0.4 1st 0.938 0.027 0.035 0.920
3rd 0.948 0.028 0.025 0.922
Bayes 0.948 0.027 0.025 0.896
exact 0.951 0.024 0.025 0.974

0.5 1st 0.941 0.023 0.035 0.817
3rd 0.947 0.026 0.027 0.827
Bayes 0.945 0.027 0.027 0.807
exact 0.950 0.024 0.026 0.860

0.6 1st 0.942 0.022 0.036 0.704
3rd 0.948 0.027 0.025 0.719
Bayes 0.943 0.031 0.026 0.716
exact 0.954 0.023 0.023 0.743

0.7 1st 0.945 0.020 0.036 0.574
3rd 0.950 0.023 0.026 0.594
Bayes 0.946 0.028 0.026 0.606
exact 0.949 0.025 0.026 0.627

0.8 1st 0.943 0.020 0.037 0.415
3rd 0.954 0.022 0.024 0.438
Bayes 0.952 0.023 0.025 0.459
exact 0.952 0.023 0.026 0.496

0.9 1st 0.943 0.022 0.034 0.259
3rd 0.949 0.029 0.023 0.275
Bayes 0.949 0.028 0.023 0.283
exact 0.949 0.026 0.025 0.343
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Table 5: Summary statistics for Simulation 1: bivariate normal withmeans 0 and variances
1. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 15. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (15) by Haddad and
Provost (2011) (exact). Based on 10,000 replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.948 0.034 0.018 3.706
3rd 0.950 0.026 0.025 3.676
Bayes 0.950 0.026 0.025 3.676
exact 0.952 0.025 0.023 4.980

−0.8 1st 0.948 0.034 0.019 2.499
3rd 0.951 0.026 0.023 2.489
Bayes 0.951 0.026 0.024 2.492
exact 0.950 0.027 0.023 3.441

−0.7 1st 0.948 0.034 0.018 2.065
3rd 0.953 0.024 0.022 2.053
Bayes 0.951 0.024 0.025 2.053
exact 0.953 0.023 0.023 2.716

−0.6 1st 0.947 0.032 0.021 1.805
3rd 0.951 0.024 0.024 1.789
Bayes 0.947 0.024 0.029 1.780
exact 0.950 0.024 0.025 2.286

−0.5 1st 0.949 0.030 0.020 1.613
3rd 0.954 0.023 0.023 1.594
Bayes 0.950 0.024 0.026 1.578
exact 0.953 0.025 0.022 1.978

−0.4 1st 0.947 0.030 0.023 1.457
3rd 0.954 0.022 0.024 1.438
Bayes 0.951 0.023 0.026 1.418
exact 0.951 0.025 0.024 1.741

−0.3 1st 0.939 0.033 0.028 1.331
3rd 0.946 0.026 0.028 1.313
Bayes 0.945 0.026 0.029 1.289
exact 0.950 0.024 0.025 1.553

−0.2 1st 0.938 0.032 0.030 1.224
3rd 0.946 0.026 0.028 1.207
Bayes 0.945 0.027 0.028 1.182
exact 0.947 0.026 0.027 1.398

−0.1 1st 0.939 0.030 0.030 1.126
3rd 0.949 0.024 0.027 1.112
Bayes 0.948 0.024 0.027 1.085
exact 0.952 0.023 0.025 1.260

0 1st 0.939 0.031 0.030 1.037
3rd 0.948 0.027 0.026 1.026

(b)

ρ Method CP UE LE AL

0 Bayes 0.945 0.028 0.027 1.000
exact 0.950 0.025 0.025 1.139

0.1 1st 0.940 0.030 0.031 0.951
3rd 0.949 0.025 0.025 0.944
Bayes 0.947 0.028 0.025 0.919
exact 0.952 0.025 0.023 1.027

0.2 1st 0.942 0.027 0.031 0.879
3rd 0.952 0.025 0.023 0.876
Bayes 0.950 0.026 0.024 0.853
exact 0.953 0.024 0.023 0.934

0.3 1st 0.940 0.025 0.035 0.798
3rd 0.947 0.025 0.027 0.798
Bayes 0.946 0.027 0.028 0.779
exact 0.948 0.025 0.027 0.836

0.4 1st 0.940 0.027 0.034 0.716
3rd 0.945 0.028 0.027 0.722
Bayes 0.944 0.029 0.027 0.708
exact 0.947 0.027 0.026 0.749

0.5 1st 0.944 0.025 0.032 0.620
3rd 0.949 0.027 0.024 0.630
Bayes 0.946 0.030 0.024 0.625
exact 0.949 0.025 0.026 0.657

0.6 1st 0.949 0.020 0.031 0.524
3rd 0.955 0.023 0.022 0.537
Bayes 0.951 0.027 0.022 0.539
exact 0.951 0.025 0.025 0.569

0.7 1st 0.946 0.019 0.035 0.419
3rd 0.949 0.023 0.027 0.434
Bayes 0.947 0.025 0.027 0.441
exact 0.947 0.029 0.024 0.481

0.8 1st 0.952 0.019 0.029 0.303
3rd 0.955 0.023 0.021 0.317
Bayes 0.954 0.024 0.021 0.322
exact 0.953 0.025 0.022 0.380

0.9 1st 0.947 0.021 0.033 0.193
3rd 0.949 0.026 0.025 0.203
Bayes 0.949 0.026 0.025 0.203
exact 0.948 0.027 0.025 0.263
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Table 6: Summary statistics for Simulation 1: bivariate normal withmeans 0 and variances
1. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 20. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (15) by Haddad and
Provost (2011) (exact). Based on 10,000 replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.947 0.033 0.020 3.088
3rd 0.951 0.025 0.025 3.073
Bayes 0.950 0.025 0.025 3.073
exact 0.948 0.026 0.026 4.194

−0.8 1st 0.949 0.032 0.019 2.126
3rd 0.950 0.027 0.023 2.121
Bayes 0.950 0.027 0.023 2.121
exact 0.950 0.027 0.023 2.876

−0.7 1st 0.951 0.030 0.019 1.761
3rd 0.953 0.024 0.023 1.754
Bayes 0.951 0.024 0.024 1.755
exact 0.952 0.024 0.024 2.276

−0.6 1st 0.947 0.032 0.022 1.550
3rd 0.951 0.024 0.024 1.540
Bayes 0.947 0.024 0.029 1.537
exact 0.948 0.026 0.027 1.916

−0.5 1st 0.943 0.032 0.025 1.387
3rd 0.947 0.025 0.028 1.375
Bayes 0.944 0.025 0.032 1.366
exact 0.948 0.024 0.027 1.656

−0.4 1st 0.947 0.029 0.024 1.259
3rd 0.951 0.022 0.027 1.246
Bayes 0.947 0.023 0.030 1.232
exact 0.951 0.023 0.026 1.459

−0.3 1st 0.944 0.031 0.025 1.149
3rd 0.950 0.025 0.026 1.137
Bayes 0.949 0.025 0.026 1.119
exact 0.950 0.024 0.026 1.302

−0.2 1st 0.942 0.033 0.026 1.061
3rd 0.948 0.029 0.024 1.050
Bayes 0.947 0.028 0.025 1.031
exact 0.951 0.027 0.022 1.173

−0.1 1st 0.941 0.033 0.026 0.972
3rd 0.948 0.028 0.024 0.963
Bayes 0.948 0.028 0.024 0.944
exact 0.950 0.026 0.023 1.060

0 1st 0.944 0.029 0.027 0.896
3rd 0.950 0.026 0.024 0.889

(b)

ρ Method CP UE LE AL

0 Bayes 0.948 0.027 0.025 0.870
exact 0.952 0.025 0.023 0.958

0.1 1st 0.940 0.029 0.030 0.818
3rd 0.948 0.026 0.026 0.814
Bayes 0.946 0.027 0.027 0.797
exact 0.949 0.026 0.025 0.866

0.2 1st 0.944 0.028 0.028 0.745
3rd 0.951 0.027 0.022 0.744
Bayes 0.949 0.028 0.023 0.729
exact 0.950 0.026 0.023 0.781

0.3 1st 0.944 0.025 0.031 0.673
3rd 0.949 0.025 0.026 0.675
Bayes 0.948 0.026 0.026 0.663
exact 0.951 0.024 0.025 0.702

0.4 1st 0.941 0.027 0.032 0.598
3rd 0.946 0.028 0.025 0.603
Bayes 0.945 0.030 0.026 0.596
exact 0.948 0.026 0.026 0.628

0.5 1st 0.946 0.023 0.031 0.520
3rd 0.951 0.026 0.023 0.528
Bayes 0.948 0.028 0.023 0.526
exact 0.951 0.026 0.024 0.554

0.6 1st 0.946 0.023 0.031 0.433
3rd 0.949 0.026 0.026 0.443
Bayes 0.946 0.029 0.025 0.445
exact 0.948 0.027 0.025 0.479

0.7 1st 0.946 0.020 0.034 0.342
3rd 0.949 0.024 0.028 0.352
Bayes 0.947 0.025 0.028 0.356
exact 0.948 0.025 0.027 0.403

0.8 1st 0.947 0.019 0.035 0.250
3rd 0.950 0.022 0.028 0.259
Bayes 0.950 0.023 0.027 0.261
exact 0.950 0.023 0.028 0.318

0.9 1st 0.949 0.019 0.032 0.162
3rd 0.950 0.024 0.025 0.167
Bayes 0.950 0.025 0.025 0.167
exact 0.952 0.023 0.024 0.219
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Table 7: Summary statistics for Simulation 2: bivariate normal withmeans7 and variances
0.9. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 5. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (17) by Haddad and
Provost (2011) (HP ); expression (19) by Mameliet al. (2012) (ACI). Based on 10,000
replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.842 0.118 0.041 11.313
3rd 0.938 0.035 0.026 12.490
Bayes 0.970 0.016 0.014 14.316
HP 0.904 0.072 0.024 18.031
ACI 0.956 0.034 0.010 24.343

−0.8 1st 0.849 0.107 0.044 8.565
3rd 0.940 0.035 0.025 9.071
Bayes 0.968 0.017 0.015 10.617
HP 0.909 0.066 0.025 12.216
ACI 0.953 0.034 0.013 16.492

−0.7 1st 0.847 0.102 0.051 7.001
3rd 0.938 0.034 0.028 7.743
Bayes 0.968 0.018 0.014 9.189
HP 0.906 0.064 0.030 9.559
ACI 0.955 0.031 0.014 12.906

−0.6 1st 0.843 0.101 0.056 5.865
3rd 0.939 0.034 0.027 6.644
Bayes 0.969 0.017 0.014 7.967
HP 0.906 0.062 0.031 7.785
ACI 0.954 0.031 0.015 10.510

−0.5 1st 0.839 0.100 0.061 5.078
3rd 0.940 0.033 0.028 5.883
Bayes 0.969 0.017 0.014 7.096
HP 0.906 0.059 0.035 6.647
ACI 0.954 0.029 0.016 8.974

−0.4 1st 0.840 0.096 0.064 4.439
3rd 0.937 0.034 0.029 5.206
Bayes 0.967 0.017 0.015 6.317
HP 0.905 0.058 0.038 5.807
ACI 0.950 0.031 0.020 7.840

−0.3 1st 0.845 0.089 0.067 3.892
3rd 0.939 0.032 0.030 4.637
Bayes 0.969 0.016 0.015 5.650
HP 0.906 0.053 0.040 5.044
ACI 0.954 0.027 0.020 6.810

−0.2 1st 0.835 0.088 0.077 3.426
3rd 0.938 0.030 0.032 4.143
Bayes 0.969 0.013 0.018 5.066
HP 0.903 0.050 0.047 4.417
ACI 0.951 0.024 0.025 5.963

−0.1 1st 0.842 0.082 0.076 3.055
3rd 0.937 0.032 0.031 3.726
Bayes 0.969 0.014 0.017 4.569
HP 0.905 0.048 0.047 3.956
ACI 0.951 0.025 0.024 5.341

0 1st 0.833 0.083 0.084 2.762
3rd 0.937 0.031 0.032 3.405
Bayes 0.969 0.015 0.015 4.186

(b)

ρ Method CP UE LE AL

0 HP 0.901 0.049 0.050 3.561
ACI 0.953 0.023 0.024 4.808

0.1 1st 0.839 0.081 0.080 2.473
3rd 0.938 0.034 0.028 3.073
Bayes 0.969 0.016 0.015 3.784
HP 0.905 0.048 0.047 3.197
ACI 0.953 0.024 0.023 4.316

0.2 1st 0.843 0.070 0.087 2.149
3rd 0.941 0.028 0.031 2.721
Bayes 0.970 0.014 0.016 3.360
HP 0.906 0.041 0.053 2.766
ACI 0.954 0.020 0.026 3.735

0.3 1st 0.843 0.068 0.089 1.898
3rd 0.940 0.029 0.030 2.433
Bayes 0.969 0.016 0.016 3.010
HP 0.906 0.041 0.053 2.444
ACI 0.953 0.021 0.026 3.300

0.4 1st 0.845 0.062 0.094 1.657
3rd 0.944 0.027 0.029 2.156
Bayes 0.972 0.014 0.014 2.674
HP 0.908 0.037 0.055 2.133
ACI 0.956 0.019 0.026 2.880

0.5 1st 0.838 0.058 0.104 1.412
3rd 0.936 0.026 0.038 1.879
Bayes 0.970 0.012 0.018 2.337
HP 0.905 0.033 0.062 1.813
ACI 0.953 0.015 0.033 2.448

0.6 1st 0.841 0.056 0.104 1.217
3rd 0.942 0.026 0.033 1.652
Bayes 0.971 0.013 0.016 2.061
HP 0.909 0.031 0.060 1.559
ACI 0.956 0.014 0.030 2.105

0.7 1st 0.850 0.052 0.098 1.012
3rd 0.939 0.029 0.032 1.415
Bayes 0.968 0.016 0.016 1.772
HP 0.909 0.031 0.060 1.290
ACI 0.955 0.015 0.030 1.741

0.8 1st 0.849 0.045 0.105 0.794
3rd 0.939 0.027 0.034 1.160
Bayes 0.968 0.014 0.018 1.459
HP 0.911 0.026 0.063 0.995
ACI 0.955 0.012 0.033 1.344

0.9 1st 0.852 0.041 0.106 0.569
3rd 0.939 0.029 0.032 0.894
Bayes 0.968 0.017 0.016 1.125
HP 0.913 0.024 0.064 0.675
ACI 0.956 0.012 0.032 0.912
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Table 8: Summary statistics for Simulation 2: bivariate normal withmeans7 and variances
0.9. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 10. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (17) by Haddad and
Provost (2011) (HP ); expression (19) by Mameliet al. (2012) (ACI). Based on 10,000
replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.914 0.055 0.031 7.005
3rd 0.948 0.026 0.026 7.427
Bayes 0.960 0.020 0.020 7.903
HP 0.938 0.041 0.021 7.477
ACI 0.952 0.032 0.016 8.037

−0.8 1st 0.911 0.059 0.031 4.830
3rd 0.949 0.027 0.025 5.128
Bayes 0.962 0.020 0.018 5.487
HP 0.934 0.044 0.022 5.137
ACI 0.951 0.033 0.016 5.521

−0.7 1st 0.917 0.053 0.031 3.749
3rd 0.948 0.029 0.023 4.015
Bayes 0.959 0.022 0.019 4.304
HP 0.939 0.040 0.021 4.049
ACI 0.949 0.033 0.018 4.352

−0.6 1st 0.911 0.053 0.035 3.091
3rd 0.948 0.026 0.026 3.318
Bayes 0.961 0.020 0.019 3.557
HP 0.936 0.038 0.026 3.371
ACI 0.951 0.030 0.019 3.623

−0.5 1st 0.910 0.051 0.038 2.647
3rd 0.949 0.026 0.026 2.846
Bayes 0.963 0.018 0.019 3.050
HP 0.934 0.039 0.027 2.903
ACI 0.951 0.029 0.020 3.121

−0.4 1st 0.910 0.050 0.040 2.305
3rd 0.948 0.026 0.026 2.487
Bayes 0.961 0.019 0.020 2.664
HP 0.935 0.036 0.029 2.534
ACI 0.951 0.028 0.021 2.723

1st 0.917 0.049 0.034 2.059
−0.3 3rd 0.952 0.026 0.022 2.227

Bayes 0.962 0.020 0.018 2.386
HP 0.939 0.037 0.024 2.266
ACI 0.951 0.028 0.020 2.435

−0.2 1st 0.910 0.046 0.043 1.816
3rd 0.947 0.025 0.028 1.972
Bayes 0.960 0.019 0.021 2.113
HP 0.933 0.034 0.033 2.000
ACI 0.948 0.026 0.026 2.150

−0.1 1st 0.912 0.047 0.041 1.637
3rd 0.946 0.027 0.026 1.785
Bayes 0.958 0.021 0.021 1.913
HP 0.934 0.035 0.031 1.804
ACI 0.947 0.028 0.025 1.938

0 1st 0.914 0.044 0.042 1.466
3rd 0.946 0.027 0.026 1.605
Bayes 0.959 0.021 0.020 1.720

(b)

ρ Method CP UE LE AL

0 HP 0.935 0.033 0.033 1.615
ACI 0.947 0.027 0.026 1.736

0.1 1st 0.909 0.046 0.045 1.330
3rd 0.949 0.026 0.026 1.463
Bayes 0.963 0.018 0.018 1.569
HP 0.934 0.033 0.033 1.465
ACI 0.950 0.024 0.026 1.575

0.2 1st 0.912 0.040 0.048 1.178
3rd 0.950 0.025 0.025 1.304
Bayes 0.960 0.020 0.020 1.398
HP 0.935 0.029 0.036 1.298
ACI 0.950 0.023 0.027 1.395

0.3 1st 0.913 0.040 0.047 1.060
3rd 0.951 0.024 0.025 1.180
Bayes 0.962 0.019 0.019 1.266
HP 0.936 0.029 0.036 1.168
ACI 0.952 0.021 0.027 1.255

0.4 1st 0.914 0.042 0.044 0.941
3rd 0.947 0.030 0.024 1.055
Bayes 0.961 0.022 0.016 1.132
HP 0.936 0.031 0.033 1.037
ACI 0.949 0.025 0.026 1.114

0.5 1st 0.914 0.037 0.050 0.821
3rd 0.951 0.025 0.024 0.928
Bayes 0.961 0.020 0.019 0.997
HP 0.937 0.026 0.037 0.905
ACI 0.952 0.021 0.028 0.972

0.6 1st 0.915 0.032 0.053 0.703
3rd 0.950 0.024 0.026 0.803
Bayes 0.963 0.018 0.020 0.863
HP 0.938 0.023 0.038 0.774
ACI 0.952 0.018 0.031 0.832

0.7 1st 0.912 0.034 0.054 0.590
3rd 0.948 0.027 0.025 0.682
Bayes 0.962 0.019 0.018 0.734
HP 0.933 0.025 0.042 0.649
ACI 0.951 0.018 0.031 0.698

0.8 1st 0.918 0.029 0.054 0.465
3rd 0.952 0.023 0.025 0.551
Bayes 0.962 0.019 0.019 0.593
HP 0.940 0.021 0.039 0.510
ACI 0.954 0.016 0.030 0.548

0.9 1st 0.914 0.027 0.059 0.328
3rd 0.946 0.024 0.030 0.420
Bayes 0.960 0.018 0.021 0.453
HP 0.935 0.019 0.046 0.347
ACI 0.948 0.015 0.037 0.373
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Table 9: Summary statistics for Simulation 2: bivariate normal withmeans7 and variances
0.9. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals forγ, for varying values of
ρ and sample sizen = 15. Pivots used: likelihood rootr (1st), modified likelihood root
r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (17) by Haddad and
Provost (2011) (HP ); expression (19) by Mameliet al. (2012) (ACI). Based on 10,000
replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.926 0.046 0.028 5.407
3rd 0.946 0.028 0.026 5.552
Bayes 0.954 0.023 0.023 5.771
HP 0.939 0.038 0.023 5.410
ACI 0.948 0.033 0.019 5.629

−0.8 1st 0.924 0.047 0.029 3.562
3rd 0.944 0.030 0.027 3.747
Bayes 0.953 0.025 0.022 3.905
HP 0.937 0.039 0.024 3.696
ACI 0.946 0.034 0.019 3.846

−0.7 1st 0.928 0.043 0.029 2.757
3rd 0.949 0.026 0.026 2.884
Bayes 0.955 0.022 0.023 3.005
HP 0.941 0.035 0.024 2.911
ACI 0.950 0.030 0.021 3.029

−0.6 1st 0.925 0.045 0.030 2.314
3rd 0.948 0.027 0.025 2.417
Bayes 0.956 0.022 0.021 2.518
HP 0.939 0.036 0.024 2.453
ACI 0.949 0.031 0.020 2.553

−0.5 1st 0.928 0.040 0.032 1.988
3rd 0.949 0.026 0.025 2.079
Bayes 0.956 0.022 0.021 2.166
HP 0.942 0.033 0.025 2.110
ACI 0.950 0.029 0.021 2.195

−0.4 1st 0.927 0.042 0.032 1.753
3rd 0.948 0.027 0.025 1.837
Bayes 0.956 0.022 0.022 1.913
HP 0.940 0.034 0.026 1.861
ACI 0.948 0.029 0.022 1.936

−0.3 1st 0.926 0.041 0.033 1.560
3rd 0.948 0.025 0.026 1.637
Bayes 0.958 0.020 0.022 1.705
HP 0.940 0.032 0.028 1.655
ACI 0.948 0.027 0.024 1.722

−0.2 1st 0.925 0.040 0.035 1.393
3rd 0.951 0.025 0.024 1.466
Bayes 0.958 0.022 0.020 1.527
HP 0.943 0.031 0.026 1.478
ACI 0.952 0.027 0.022 1.538

−0.1 1st 0.928 0.038 0.034 1.250
3rd 0.950 0.026 0.024 1.319
Bayes 0.956 0.023 0.021 1.375
HP 0.942 0.031 0.027 1.327
ACI 0.949 0.027 0.024 1.381

0 1st 0.926 0.038 0.036 1.127
3rd 0.949 0.025 0.026 1.192
Bayes 0.958 0.021 0.022 1.242

(b)

ρ Method CP UE LE AL

HP 0.941 0.030 0.029 1.195
ACI 0.949 0.025 0.026 1.244

0.1 1st 0.929 0.033 0.037 1.015
3rd 0.950 0.025 0.026 1.078
Bayes 0.958 0.019 0.022 1.123
HP 0.942 0.027 0.030 1.077
ACI 0.950 0.024 0.026 1.121

0.2 1st 0.924 0.035 0.041 0.910
3rd 0.948 0.024 0.028 0.970
Bayes 0.957 0.020 0.023 1.011
HP 0.939 0.027 0.033 0.965
ACI 0.949 0.022 0.029 1.004

0.3 1st 0.925 0.032 0.043 0.815
3rd 0.948 0.024 0.028 0.873
Bayes 0.956 0.019 0.024 0.910
HP 0.938 0.025 0.037 0.865
ACI 0.948 0.021 0.031 0.900

0.4 1st 0.928 0.032 0.040 0.722
3rd 0.951 0.025 0.024 0.776
Bayes 0.961 0.021 0.018 0.809
HP 0.942 0.026 0.031 0.766
ACI 0.952 0.022 0.026 0.797

0.5 1st 0.927 0.033 0.040 0.639
3rd 0.951 0.025 0.024 0.690
Bayes 0.960 0.020 0.020 0.720
HP 0.944 0.025 0.031 0.677
ACI 0.953 0.020 0.027 0.705

0.6 1st 0.929 0.028 0.043 0.548
3rd 0.949 0.024 0.027 0.596
Bayes 0.956 0.021 0.023 0.622
HP 0.941 0.023 0.036 0.582
ACI 0.950 0.020 0.031 0.605

0.7 1st 0.930 0.029 0.041 0.461
3rd 0.950 0.026 0.024 0.505
Bayes 0.958 0.023 0.020 0.527
HP 0.943 0.024 0.033 0.490
ACI 0.952 0.021 0.027 0.509

0.8 1st 0.932 0.028 0.040 0.364
3rd 0.950 0.026 0.024 0.404
Bayes 0.957 0.022 0.021 0.422
HP 0.943 0.024 0.033 0.386
ACI 0.952 0.019 0.029 0.402

0.9 1st 0.929 0.028 0.043 0.255
3rd 0.949 0.027 0.024 0.305
Bayes 0.956 0.024 0.021 0.319
HP 0.942 0.023 0.035 0.265
ACI 0.950 0.020 0.030 0.275
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Table 10: Summary statistics for Simulation 2: bivariate normal withmeans7 and vari-
ances0.9. Empirical coverage (CP ), upper (UE) and lower (LE) error probability and
average length (AL) of nominal two-sided 95% confidence intervals forγ, for varying val-
ues ofρ and sample sizen = 20. Pivots used: likelihood rootr (1st), modified likelihood
root r∗ (3rd); Bayesian modified likelihood rootr∗B (Bayes); expression (17) by Haddad
and Provost (2011) (HP ); expression (19) by Mameliet al. (2012) (ACI). Based on
10,000 replicates; simulation error:±0.004.

(a)

ρ Method CP UE LE AL

−0.9 1st 0.935 0.040 0.025 4.488
3rd 0.949 0.025 0.025 4.718
Bayes 0.956 0.023 0.021 4.852
HP 0.947 0.033 0.020 4.414
ACI 0.952 0.030 0.018 4.536

−0.8 1st 0.930 0.043 0.027 2.945
3rd 0.946 0.028 0.026 3.060
Bayes 0.952 0.025 0.023 3.152
HP 0.940 0.037 0.022 3.043
ACI 0.947 0.034 0.019 3.128

−0.7 1st 0.932 0.040 0.028 2.303
3rd 0.950 0.024 0.026 2.376
Bayes 0.954 0.022 0.024 2.446
HP 0.942 0.034 0.024 2.404
ACI 0.948 0.030 0.022 2.471

−0.6 1st 0.933 0.038 0.029 1.926
3rd 0.950 0.024 0.025 1.986
Bayes 0.956 0.021 0.023 2.045
HP 0.944 0.032 0.024 2.010
ACI 0.949 0.029 0.022 2.066

−0.5 1st 0.935 0.036 0.028 1.662
3rd 0.951 0.025 0.024 1.716
Bayes 0.957 0.021 0.021 1.766
HP 0.946 0.031 0.023 1.734
ACI 0.951 0.028 0.021 1.782

−0.4 1st 0.932 0.038 0.030 1.469
3rd 0.946 0.028 0.026 1.519
Bayes 0.953 0.025 0.022 1.564
HP 0.941 0.033 0.026 1.533
ACI 0.947 0.030 0.023 1.576

−0.3 1st 0.929 0.039 0.032 1.305
3rd 0.946 0.028 0.026 1.351
Bayes 0.952 0.025 0.023 1.391
HP 0.941 0.033 0.027 1.361
ACI 0.946 0.030 0.024 1.399

−0.2 1st 0.936 0.032 0.032 1.165
3rd 0.952 0.022 0.026 1.209
Bayes 0.957 0.020 0.023 1.245
HP 0.946 0.027 0.027 1.216
ACI 0.952 0.024 0.025 1.250

−0.1 1st 0.935 0.033 0.032 1.046
3rd 0.951 0.025 0.024 1.088
Bayes 0.957 0.022 0.022 1.120
HP 0.946 0.028 0.026 1.091
ACI 0.951 0.026 0.024 1.122

0 1st 0.932 0.035 0.033 0.952
3rd 0.947 0.027 0.026 0.992
Bayes 0.954 0.024 0.023 1.021

(b)

ρ Method CP UE LE AL

0 HP 0.940 0.031 0.029 0.994
ACI 0.947 0.027 0.026 1.021

0.1 1st 0.934 0.032 0.034 0.856
3rd 0.950 0.025 0.025 0.894
Bayes 0.955 0.023 0.022 0.920
HP 0.944 0.028 0.028 0.893
ACI 0.950 0.025 0.025 0.918

0.2 1st 0.936 0.030 0.034 0.769
3rd 0.953 0.023 0.024 0.805
Bayes 0.959 0.019 0.022 0.829
HP 0.947 0.025 0.029 0.802
ACI 0.953 0.022 0.025 0.824

0.3 1st 0.930 0.032 0.038 0.687
3rd 0.947 0.024 0.029 0.722
Bayes 0.954 0.021 0.025 0.744
HP 0.940 0.026 0.035 0.717
ACI 0.946 0.022 0.031 0.737

0.4 1st 0.936 0.029 0.035 0.612
3rd 0.951 0.025 0.024 0.645
Bayes 0.957 0.021 0.022 0.664
HP 0.945 0.025 0.030 0.638
ACI 0.951 0.022 0.027 0.656

0.5 1st 0.932 0.030 0.037 0.539
3rd 0.946 0.027 0.027 0.571
Bayes 0.952 0.025 0.023 0.588
HP 0.941 0.026 0.032 0.563
ACI 0.946 0.024 0.030 0.578

0.6 1st 0.932 0.032 0.036 0.467
3rd 0.948 0.028 0.023 0.496
Bayes 0.954 0.025 0.021 0.511
HP 0.942 0.027 0.031 0.487
ACI 0.950 0.023 0.027 0.501

0.7 1st 0.934 0.027 0.039 0.390
3rd 0.950 0.025 0.026 0.417
Bayes 0.955 0.022 0.023 0.430
HP 0.943 0.023 0.034 0.408
ACI 0.949 0.020 0.031 0.419

0.8 1st 0.933 0.027 0.040 0.309
3rd 0.948 0.026 0.027 0.332
Bayes 0.955 0.022 0.024 0.343
HP 0.944 0.021 0.035 0.322
ACI 0.950 0.019 0.031 0.331

0.9 1st 0.938 0.024 0.038 0.215
3rd 0.953 0.024 0.023 0.248
Bayes 0.958 0.021 0.021 0.256
HP 0.948 0.020 0.032 0.221
ACI 0.954 0.018 0.028 0.228
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