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Section 1 Introduction 1

Modern likelihood inference for the parameter of skew-
ness: An application to mono-zygotic twin studies

Mameli Valentina

Department of Mathematics and Computer Science
University of Cagliari

Italy

Brazzale Alessandra R.

Department of Statistical Sciences
University of Padua

Italy

Abstract: We consider the use of modern likelihood asymptotics in thestruction of confi-
dence intervals for the parameter which determines the rséssvof the distribution of the max-
imum/minimum of an exchangeable bivariate normal randontore This distribution represents
the reference model for assessing the degree of concorddaantinuos mono-zygotic twin trait
when interest focuses on the pairwise maximum or minimurmugition studies were conducted
to investigate the accuracy of the proposed method and t@amanit to available alternatives. Ac-
curacy is evaluated in terms of both coverage probability expected length of the interval. We,
furthermore, illustrate the suitability of our method byaealyzing the data from a study which
compares different measurements taken on the brains of tnygmtic twins.

Keywords: Bivariate normal distribution; Higher order likelihoodférence; Modified likelihood
ratio; Skew-normal distribution; Twin study.

1 Introduction

Since Sir Francis Galton’s (1876) seminal paper, twin ssidiave extensively been used
for the quantitative ascertainment of genetic and enviemtal influences. Twin registries
worldwide represent nowadays a valuable resource for tesiigation of the similari-
ties and dissimilarities between twins. The very large tatimdies carried out during the
past two decades led to much novel work, especially in gemesiearch van Dongest
al. (2012). Classical twin designs remain, nonetheless, aak#dutool in fields such as
biomedicine, psychiatry and behavioral sciences, whezenttmber of available observa-
tions is far smaller than those typical in modern twin stadie

Small sample sizes are rather common to researchers ingigitisas biology, genetics,
medical sciences and psychology. Inference based on tbsicafirst order normal angf
approximations may then be unreliable. The last four deshdge seen the development
of so-called higher order likelihood approximations, whiequire little more effort than
is needed for their first order counterparts while providimghly accurate inferences in
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small samples. We refer the reader to Brazzalal. (2007) for a rich collection of realistic
examples and case studies, which show how to use the new.thHwe aim of this paper
is to encourage the use of modern likelihood-based sokifimnthe analysis of continuous
data on mono-zygotic twins.

There are several views of how the degree of concordancesbattwins should be as-
sessed Kraemer (1997); Lyoesal. (1997). Here, we promote the use of Azzalini’s (1985)
skew-normal distribution, which generalizes the standamdnal distribution by allowing
for asymmetry. In particular, we will use Loperfido’s (200®8kults, according to which
the maximum, or minimum, of two random variables, whosetjdiistribution is bivari-
ate exchangeable normal with correlation coefficignis skew-normally distributed with
skewness parametet or —v, wherey = /(1 — p)/(1 4 p). This distribution becomes
the reference model when we have censoring on the maximumif@mum) value for each
twin pair.

Estimation of the shape parameter of the skew-normal bigian can be, at times,
tricky. In particular, it is not easy to compute confidenceeivals. Recently, Mamelt
al. (2012), borrowing from Loperfido’s result and Fishet'sransform forp, obtained an
asymptotic confidence interval for the skewness paramétireadistribution of the max-
imum/minimum under this framework. Their simulation résulevealed that actual and
nominal coverage of the asymptotic confidence interval lsecthough its expected length
increases for decreasing sample size and correlation deefficlose to—1. In this paper
we explore the performance of confidence intervalsyfabtained from the small-sample
solutions recently proposed in Frasgial. (1999), and this in terms of both actual coverage
and expected length.

The paper organizes as follows. Section 2 reviews modeefiiixod-based inference.
The skew-normal distribution and Loperfido’s results wélintroduced in Section 3. Infer-
ence ony will be discussed in Section 4. Section 5 re-analyzes the tlata collected by
Tramoet al. (1998) using the large- and small-sample solutions of 8eeti Their finite-
sample properties will be investigated in Section 6 throsighulation. Some concluding
remarks are given in Section 7.

2 Likelihood-based inference

2.1 First order theory

Lety = (y1,...,yn) be a sample of size with joint log-likelihood functionl(0) = 1(0;y),
wheref = (i, \) is ak-dimensional paramete; is the scalar parameter of interest, and
A a vector of nuisance parameters of dimengion 1. Under broad regularity conditions,
the maximum likelihood estimate 6f denoted by, may be obtained by solving the score
equationly(6; ) = 0, with [y (0;y) = dl(0;y)/06. Letj(0) = 921(0;y)/0090 " represent
the observed information function far and j() the observed Fisher information. The
decomposition of the parametginto 1) and leads to an analogous decomposition of the
score vectoly(0;y) and of the observed information functig(?).

The recommended likelihood pivot for making inferenceyors the signed likelihood
root

r(w) = sign(ih — ¥)y/20,() — (). 1)
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Herel,(v) = 1(0,), with 8, = (1, \y), is the profile log-likelihood, while\,, represents
the constrained maximum likelihood estimate obtained byimaing the log-likelihood
l1(x, \) with respect to\ holding ¢ fixed. The signed likelihood root (1) is asymptotically
standard normal up to the order'/2, which leads to the first ordét —a)100% confidence
interval fory

{:Ir@)| < 21202} )

wherez,, with p € (0, 1), is thepth quantile of the standard normal distribution. The stan-
dard normal approximation provides a satisfactory appnexion for large sample sizes,
but can be highly unreliable for small valuesraf The value ofyy which satisfies equation
(2) can be found numerically by calculating the functign) on a grid of points), which

are then interpolated using a suitable smoothing funciidr numerical issues, which may
arise in the interpolation step, can be avoided by exclutlisgalues of) close to the max-
imum likelihood estimate>. The details are given in (Brazzad¢al, 2007, Section 9.3).

2.2 Higher order theory

A nowadays broadly known improvement to the signed likedghooot (1), which was orig-
inally introduced by Barndorff-Nielsen (1983), is the niieti likelihood ratio

r*:r—i—llog <g>, 3
T T

whose finite-sample distribution may be approximated bystlamdard normal up to the
ordern—3. Several expressions for the correction termave been proposed, both from
the frequentist and the Bayesian perspective. Here, wefaeills on the developments by
Fraser and Reid (1995).

To derive their formula for, Fraser and co-author used the notion of ‘tangent exponen-
tial model’ which, at a fixed value af, denotedy,, approximates the true model by a local
exponential model with canonical parameget (), defined as

oTO) =ty ) = 3 T v 4)

i=1 Y=¥o

Here, .,y indicates differentiation of the log-likelihood function the directions given by
then columnsVi, ..., V, of then x k matrix V', while T denotes matrix transposition. The
matrix V' can be constructed using a vector of pivotal quantities{z; (y1,0), . .., zn(yn,0)},
where each componeni(y;, #) has a fixed distribution under the model. The matrixs

defined fromz by
v (92 (0=
oy’ 00T

whered, is the maximum likelihood estimate . The expression of the correction term
q is then

)

(o.00)

: (5)

q:

00) — 0lB)  e(0y) { 5(6) }%
|0 (0)] l7ax(By)]
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wherepy (0) = 0p(0) /00 represents the matrix of partial derivativesgf) with respect
to 0, while ) (0) = 0p(0)/0NT identifies thek — 1 columns of this matrix which corre-
spond to the nuisance paramelerAnalogously, the matri¥y(6) is the(k — 1) x (k — 1)
sub-matrix of the observed information functipf®) with respect to the nuisance parameter
A.

The higher ordef1 — «)100% confidence interval fop is given by

{1 @) < 21202} (6)

Again, pivot profiling (Brazzaleet al,, 2007, Section 9.3) can be used to identify the up-
per and lower bounds of the confidence interval. Furthermtier* pivot—Ilike its first
order counterpart—is invariant under interest-respecting re-paramefdrat that is re-
parametrizations of the form(0) = (¢, \) = ({,n) with ¢ = {(v) andn = n(y, A).

The expression of for the case in which the nuisance parametrization is nargiv
explicitly can be found in Fraset al. (1999).

2.3 Approximations for Bayesian inference

In the Bayesian setting with a prior densityf) for ¢, the analogue of the first order re-
sults of Section 2.1 is the asymptotic normality of the pastedensityr(0|y) for . The
Bayesian counterpart of the correction tegrim (3), which we will denote by;z, was ob-
tained by DiCiccio and Martin (1991) under the assumptiat the nuisance parametriza-
tion is given explicitly, and results to

o w@)F )
=1 P ? 2 AN\ !
a5 = L), (D) {we)\} e @)

wherel! (v) = dl,(y)/di is the profile score function ang,(v) = d?1,(¢)/dy? the
profile observed information function. Posterior quastiler the parametep can be found
exploiting the fact that the posterior distribution fuicti

(o [ y) =Pr(y <o |y) =1 - 2(rp)

may be approximated to the order?/2 by the standard normal distribution functidrry;),
evaluated at

* 1 4B
TB—r—i—;log<7). (8)
Again, pivot profiling provides the upper and lower boundshef (1 — «)100% credible
interval forvy given by
{0 Ir5(W)] < 21-ap2) - 9)
Like for ¢, Fraseret al. (1999) provide the expression of the correction tepgrfor the
case in which the nuisance parametrization is not giveriattyl

2.3.1 Matching priors

Given the priorr(6) for 6, let67_, denote th€1 — «)th approximate posterior quantile of
0 of ordern~", that is, the value of for which

Pr@\y (6 < 0?—04 ‘ y) =l-a+ Op(n_r)7 (10)
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with r > 0 and0 < a < 1. If we also have that
Pryjp (07 o >010) =1—a+O0,(n""), (11)

with 67__, the upper bound of a frequentist one-sidéd- «)100% confidence interval, the
prior 7 is called a probability matching prior to theh order of approximation. For such
priors, Bayesian and frequentist inference for the parandeare in perfect agreement up
to the orden-.

If » = 1, n(0) is called a first order probability matching prior, while for= 3/2
we have a second order probability matching prior. Welch Redrs (1963) showed that
the unique first order probability matching prior, when ndsance parameter is present, is
Jeffrey’s prior.

The same result does not necessarily hold whieicludes a nuisance componentror
an orthogonal parametrization, Staicu and Reid (2008)gseg to use the following prior
for 6 in (7),

(1, ) o<yl (1, A), (12)

whereiy, (1, A) represents the value of the expected Fisher informationtifam corre-
sponding toy. The authors call this prior the “unique prior”, as it leadsan approxi-
mation of the marginal posterior distribution ¢faccurate to the order—3/2. When the
parametrizatiord = (i, ) is not orthogonal, their suggestion is to find an orthogonal
parametrizatior(¢, n) of the original model for which the prior can be expressedl&s, (
and then to re-express the prior in the original parametoizd), \), leading to

19}
m(,N) o< i\ (.0 57 (13)

WIth Gy ) (P, A) = Gy (0, A) — (8, Ay (¥, N)irg (0, A), where the indices) and A
indicate which sub-blocks of the expected Fisher infororatunction to take. Furthermore,
|On/0)| represents the Jacobian of the transformation ftem) to (v, A).

3 The skew-normal model

The skew-normal distribution was introduced by Azzalird&h) to define a class of asym-
metric parametric models which includes the standard nloasa special case. We say that
a continuous random variablé ~ SN(v), distributes as a skew-normal indexed by the
real parametey, if it has density function

p(z;77) = 26(2)®(yz) with 2z € R.

Here ¢(-) and ®(-) denote, respectively, the density and the distributiorctions of the
standard normal distribution. The class of skew-normafkifligtions can be widened by
including a location parameter € R and a scale parameter> 0. Thus, if X ~ SN(v),
thenY = u + oX is a skew normal random variable with parametess,~, or, Y ~
SN(u,o,~) for short. Making inference on the skewness parameter ie ghiallenging,
as the expected Fisher information becomes singular-as0. Functions for manipulating
the skew-normal probability distribution and for fittingtét data are given in thR package
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sn Azzalini (2013). We refer the reader to Genton (2004) for aegal treatment of the
skew-normal distribution and its extensions.

In this paper we focus on the distribution of the maximum (animum) of an ex-
changeable bivariate normal random vector. Loperfido (2802wed that a linear combi-
nation of the maximum and the minimum of a bivariate exchabtgenormal random vector
is skew-normally distributed with parameters specifiedhgyfollowing theorem.

Theorem 3.1 Let X; and X5 be two random variables whose joint distribution is bi-
variate normal with common mean € R, common variancer> > 0 and correlation
coefficientp € (—1,1). Then for any two real constantsand k # —h, the distribution of
hmin(Xl,Xg) + kmaX(Xl,Xg) is

k—h [T—
SN (u(thk), o/h2+ k2 + 2phk, v = p).

lk+h|V14+p

Theorem 3.1 was subsequently generalized by Loperfido j2008e case wher&'; and
X, are exchangeable, elliptical and continuous random MasaHt follows that the dis-
tribution of max (X, Xs) is SN (u,0,7v) with v = /(1 — p)/(1 + p) > 0, whereas the
distribution ofmin(X;, X2) is SN (u,0,7v) withy = —/(1 — p)/(1 4+ p) < 0. The spe-
cial case ofp = 0 translates intoy = 1 andy = —1, respectively. Figure 1 shows how the
shape of the distributions efiax(X;, X2) (bold) andmin(X;, X2) (solid) changes when
varies from—0.9 to +0.9.

Theorem 3.1 provides the reference models for mono-zydwiic studies for which
information on the paif X, X5) is missing, and only their maximum (or minimum) value
is recorded. This may, for instance, happen because ofgahitasons; see Roberts (1966)
for a rather early treatment. As pointed out there, becaeakty mono-zygotic twins share
an identical genetic mark-up, time of onset for a particelent in the first twin—such as
getting a cold or developing leukaemia—is likely to clostditow in the second twin, so
that only the smaller or larger record may be kept. Furtheemeorking with the maximum
(or minimum) of two correlated measurements can be, at fimese reliable than the study
of the original values, especially if the measurements efgimaller (or larger) values are
less accurate.

4 Inference on the skewness parameter ~ = h;z

4.1 Background results
4.1.1 Exact confidence interval

LetY = (X3, X2) be a bivariate normal vector with common meéarcommon varianceé
and correlation coefficient € (—1,1). Given an i.i.d. samplé(xi1,z21), ..., (T1n, T2n)}
of sizen from Y, Haddad and Provost (2011) proposed a range-based exdirterme
interval for p. The construction of the confidence interval makes use ofwioerandom
variablesD; = Y [ (Xy; + Xo;)? andD_ = Y | (Xy; — X2;)%. Taking advantage
of the independence ofy; + X5; and X7; — Xy; along with the fact thafXy; + Xo; ~
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00 04
LIl
00 04
LUl
J >
|

(d)y p=-0.5 (e) p=-09

Figure 1: Contour plots of the bivariate standard normal distritngiovith correlation co-
efficientp, and corresponding distribution of the maximum (bold) andimum (solid), for
p € {-0.9,-0.500.50.9}.
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N(0,2(1 4+ p)) and X1; — Xo; ~ N(0,2(1 — p)), the authors derive the following pivotal
quantity

Dy (1-0p)

whereF;, ,, is Fisher's F distribution with{n, n) degrees of freedom. This gives an exact
(1 — «)100% confidence interval for the parameteof the form

{’y € [0,00) : \/g—;an(l —a/2) <y < g—;ann(aﬁ)} , (15)

whereF,, ,(p), with p € (0, 1), represents thgth quantile of Fisher’s F distribution with
(n,n) degrees of freedom.

4.1.2 Large-sample confidence intervals

Haddad and Provost (2011) considered also the construatiarconfidence interval fos
when the means and variances of the bivariate random ve&arm&nown. In this case,
the solution is no longer exact. LéK;, X,) be a bivariate normal random vector with
parameterg iy, ji2, 01,02, p) Where (u1,01) € R x Ry and (u2,02) € R x R, are,
respectively, the means and variancesXaf and X», andp € (—1,1) their correlation.
The first step is to standardize the two componeXits and X;; let X, and X3, be the
standardized variables. An approximate confidence intéswvéhe parametep is obtained,
likewise above, by using the fact that), — X3, and X7, + X3, are nearly independent,
Xi+ X5, ~N(0,2(1 + p)) and X7, — X3, ~ N(0,2(1 — p)). The pivot

Di(l-p) (1+R\(1-p)
(1—R> (1+p) 4o

where D% = >0 (X7, + X3)? andD* = Y (X}, — X3;)? and R is the sample
correlation coefficient defined as

_ o (X1 — X)) (X2i — Xo)
VI (K- X0 S0 (K — X)?

follows approximately ar¥,_; ,,—; distribution. The correspondingl — «))100% confi-
dence interval fory is

{7 € [0,50) : \/G;—@ Fotni(l—a/2) < < \/G;—g) Fnl,nl(a/z)} .

(17)

A second approximate solution to the inferential problemane interested in can be
found in Mameliet al. (2012). Because of the difficulties of obtaining the finitensa
ple distribution of R, inference forp is commonly based on the monotonic transformation
1In((1+ R)/(1 — R)), called Fisher's-transform. In particular, the distribution of

1 1+R 1 14p
i (18) - 1)

2 1-R 2 1—
7 = P

1
n—3

D* (14 p)

R

(18)
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for n > 50 is approximately standard normal.This turns into(an- a)100% confidence
interval for~ of the form

e (1 (58] < <o i ()
(19)

Note that the upper and lower bounds of both, the confiderieevad (19) proposed by
Mameli et al. (2012) and solution (17) derived by Haddad and Provost (R0ddlude the
multiplying factor\/(1 — R)/(1 + R).

4.2 Small-sample confidence intervals
4.2.1 No nuisance parameter

Reid (2003) provides the expression of the higher-ordeotpi when interest relies on
6 = p, the correlation coefficient of a bivariate normal vedtar; , X) with common means
0 and variances 1. The reference model in this casg2s19 curved exponential family.
A key quantity for the determination of the canonical pareené4) of the approximating
tangent full exponential model is the vectgr = (1 — 6)~!(t — s, s — 6t)", obtained
from the two independent pivots; = (T'+ S)/(1 + 0) andZy = (T' — S)/(1 — ), with
S=n"1Y" X1, Xe andT = (2n)"1 30 (X3 + X32,), whose distribution is /n .
The canonical parameter takes the fastd) = n{(1—62)(1—02)} ~1{0(t—0s)— (s—0t)}.
Later, Reid and Fraser (2010) proposed an alternative flation, ¢(0) = nd/(1 — 62),
of the canonical parameter. As shown there, both formulatiead to almost the same
numerical results as far as the approximation of tail areasmcerned.

Turning to the Bayesian world, we may adopt Jeffreys’ prard, given by

(1+p?)
(1—p%) "~

which, as stated in Section 2.3.1, provides a first order gisitibly matching prior for a
scalar parameter in the absence of nuisance parameters.

Confidence intervals for the parametecan be derived from the(p), r*(p) andrj(p)
pivots due to their invariance under interest-respect@parametrizations.

m(p) x (20)

4.2.2 Nuisance parameters

Let {(x11,221),. .., (21n,x2,)} be a sample from a bivariate normal distribution with real
meansus, 2, variancesr; > 0, o3 > 0 and correlatiorp € (—1,1). The log-likelihood
function

1 /i 13 f11f12p
1(0) = —n (1 5 log (1 — 2 L 2 —
@)=-n <Og (0102) + 5 loa (1 =p") + 2(1 —pot  2(1- p2)0§ (1—p*)oi09

_ 2 Z a3 — 2 Z ,U102 - M2010 th

H201 — H102p0 P
+ (1 — )0’10‘ Z To; + (1 — ) )0102 251711517217
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Table 1: Measurements of theorpus callosunsurface area for ten mono-zygotic twins

Tramoet al. (1998). Bivariate Shapiro-Wilk test for normalityt’ = 0.97, p-value = 0.86.
Isttwin 6.08 6.22 799 744 6.48 876 6.32 7.62 6.03 7.67
2ndtwin 5.73 580 8.42 6.84 6.43 799 6.32 7.60 6.59 752

with 6 = (p, p1, pe, 01, 02), characterizes an exponential family with canonical patem

o(0) = (_ 1 1 U102 — U201p 1201 — [1102p p >
(1=p2)ot’ (1=pHo3" (1—pYoioy’ (1—p?)oros’ (1 —p?)oros)

Settingy) = p and\ = (u1, p2,01,02), ¢ andr* can readily be obtained from equations
(5) and (3), respectively.
The computation of the Bayesian credible interval of Sec#@ requires that we spec-

ify a prior for the parameteff. The “unique prior” defined by Staicu and Reid (2008) may
be calculate by referring to the orthogonal re-parametona

1 1 (1'1 77]1)2
T1,T ,m) x —e —
p(z1, w2 [ 9,n) ™ xp{ 2(1 — ¢2)1/2 s

+ m3(w2 — n2)” — 2(x1 —m) (w2 — 772)} },
(21)

with ¢ = p andn; = p1, 2 = pe2, n3 = o1 /o andny = o109(1 — ,02)1/2. Note that Gosh
et al. (2009, 2010) used the same parametrization but with= o = 0, so that Fisher’s
expected information function only includes the paransetems andn,.

Confidence and credible intervals for the parameteran be readily derived from
the 7(p), r*(p) andry(p) pivots thanks to their invariance under interest-respgcte-
parametrizations.

5 Areal-data example

We consider the data collected by Tramioal. (1998), as available oStatLib . The
data set submitted by the authors includes different measemts on the brains of ten
pairs of mono-zygotic twins. Five twin pairs are male and temaining five are fe-
male. Here we focus on the variabterpus callosunsurface area; see Table 1. To as-
sure that all conditions of Theorem 3.1 hold, we first stadidarthe pairs of observations
{(z11,221),- .., (z1n,z2,)} @s in paragraph 4.1.2. The bivariate Shapiro-Wilk normalit
test (W = 0.97, p-value = 0.86) supports the hypothesis of bivariate normality of the
standardized data. The maximum likelihood estimate @ 4 = 0.324. The five95%
confidence intervals foy, computed using the methods outlined in Section 4, are diven
Table 2. The interval based on the third order Bayesianisalut; is wider than the con-
fidence intervals obtained from the first order pivothe higher order frequentist pivet,
the large sampleH P) confidence interval by Haddad and Provost (2011) and At@r{
confidence interval by Mamedit al. (2012).

Figure 2 shows how to compute the lower and upper bounds ricatier The intervals
based onr (1st), r* (3rd), 5 (Bayes) and AC'I can be read off from the intersections of
the corresponding pivots with the horizontal black linekjck represent the.5% and the
97.5% quantiles of the standard normal distribution. The lowedt apper bounds of the
H P confidence interval are computed similarly, but this timeadderring to the horizontal
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10

Pivot

Figure 2: Tramoet al. (1998) corpus callosunsurface area data. Pivot functions for the
parametery obtained from: likelihood root: (solid), modified likelihood root* (bold);
Bayesian modified likelihood roet; (long-dashes); expression (16) by Haddad and Provost
(2011) (dotted); approximate pivot used in (18) by Manetlal. (2012) (dashed). Black
horizontal lines: 2.5% and 97.5% normal quantiles; greyzoottal lines: 2.5% and 97.5%
quantiles of the’(9, 9) distribution.

grey lines, which represent 5%, and thed7.5% quantiles of theF' distribution with
(9,9) degrees of freedom.

6 Numerical assessment

We designed two simulations studies to assess and compafi@ite-sample properties of
the methods discussed in this paper. The summary statistex$ are: empirical coverage
(C'P), upper error probability [ E)), that is, the percentage of the true parameter values
falling above the upper bound, lower error probabilityH), that is, the percentage of the
true parameter values falling below the lower bound, andameslength A1) of the five
confidence intervals considered in Section 4. All simutaiavere run using the numerical
computing environmeriR R Core Team (2013).
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Table 2: Tramoet al. (1998) corpus callosunsurface area data. Lower (LB) and upper
(UB) bounds 0f95% confidence intervals for the parameter Pivots used, with corre-
sponding confidence interval$st — likelihood rootr (2); 3rd — modified likelihood root
r* (6); Bayes — Bayesian modified likelihood rooty; (9); HP — Haddad and Provost
(2011) (17);ACI —Mameliet al.(2012) (19)

Method LB UB Length

1st 0.121 0.435 0.314

3rd 0.119 0.493 0.374

Bayes 0.114 0.518 0.404

HP 0.114 0.460 0.346

ACI 0.109 0.481 0.372

6.1 Considered scenarios

Simulation 1 considers a bivariate normal model with zer@amse unit variances and un-
known correlatiorp, which takes values from0.9 to +0.9, with step sizé).1. The purpose

is to compare the behavior of the higher order pivowith its first order counterpatrt, the
Bayesian small-sample solutiotj, and the exact method (14), which apply when no nui-
sance parameter is present, and this for small sample sizes.

Simulation 2 wants to investigate the finite-sample perforoge of the confidence in-
tervals obtained when nuisance parameters are presetim, \&jiee emphasizing small
sample sizes. The pivots used are the higher order solutipits first order counterpart
r, the Bayesian competitar;, and the large-sample solutions (17) and (19). We used
p1 = o = 7,01 = oo = 0.9, while againp € {-0.9,0.8,...,0.8,0.9}. Note that the
simulation set-up borrows from the twin data example of ®ad, for which the maximum
likelihood estimate i = (0.900, 7.061, 6.924,0.905, 0.872).

In both simulations,10,000 replicates are generated for the four sample sizes
5,10, 15, 20. The simulation error amounts #0.004.

6.2 Discussion

Figure 3 shows the actual coverage of the nominal 95% cordidanervals fory derived
from equation (15)dzact), and by using the pivots (1st), r* (3rd), andry (Bayes) for
the no-nuisance parameter case. The higher order likalipomts»* and, to a somewhat
lesser extent;}; outperform their first order counterparteven for the very limited sample
sizes considered in the four scenarios of Simulation 1. Tifierednces among the four
pivots fade out as the sample size increases.

Tables 3 - 6 summarize the performance of the nominal 95%d=nde intervals fot
derived from the four pivots considered in Simulation 1.r8gthere no nuisance parameter
present, the corresponding true coverage probabilities/ay close to the nominal level,
as we may have expected. Inspection of the upper and lowarmobabilities reveals that
ther* andr7; pivots also improve in terms of symmetry overThe exact method produces
confidence intervals foy which are, on average, wider than the confidence intervals ob
tained from the first order solutionand the higher order pivots® andr};. The average
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Figure 3: Simulation 1: bivariate normal with means 0 and variance&hpirical cov-
erage of nominal two-sided 95% confidence intervals~fdor varying values ofp and
sample sizess = 5,10, 15,20. Pivots used: likelihood roat (1st), modified likelihood
rootr* (3rd); Bayesian modified likelihood root}; (Bayes); expression (14) by Haddad
and Provost (2011kfact). Based on 10,000 replicates.

length of all four confidence intervals is larger for negat#alues ofp, and increases when
the correlation tends te 1.

Figure 4 reports the actual coverage of the nomiyigh confidence intervals foty
obtained from expressions (16 () and (18) AC), and by using the pivots (1st), r*
(3rd) andr}; (Bayes), as in Simulation 2. In terms of real coveragé again outperforms
its first order counterpart. It also outperforms the large-samplé P) proposal by Haddad
and Provost (2011) and, surprisingly, the Bayesian salutjo The most accurate method
is the large-sample confidence interval developed by Magtedil. (2012), although the
differences fade out for increasing sample size.

Tables 7 — 10 summarize the performance of the nominal 95%derte intervals
for v derived from the five methods considered in Simulation 2. fEselts reveal that*
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Figure 4: Simulation 2: bivariate normal with meafisand variance$.9. Empirical cov-
erage of nominal equi-taled 95% confidence intervals~fdor varying values ofp and
sample sizesr = 5,10, 15,20. Pivots used: likelihood roat (1st), modified likelihood
rootr* (3rd); Bayesian modified likelihood root;; (Bayes); expression (16) by Haddad
and Provost (2011)H P) and expression (18) by Mamaedt al. (2012) (ACT). Based on
10,000 replicates.

is more accurate than especially when the sample size is small, because of botbhran
average, larger width and its capability of correctly ceintpthe confidence intervals. The
r7 pivot consistently over-estimates the real coverage enniranteeing symmetry on the
tails, because of the, on average, longer confidence itgéatyaoduces. ThelCT andH P
methods lead to confidence intervals fowhich are remarkably asymmetric. Their better
performance with respect to, respectively,andr may be explained by the, on average,
larger widths of the corresponding confidence intervalst dfofive methods considered,
the expected length becomes larger for negative valugs @pecially when is close to
—1. This is in agreement with Mamedit al. (2012), who noted the same behavior for their
ACI confidence interval.
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7 Concluding remarks

In this paper we investigate the behavior of likelihooddzhsmall-sample procedures to
compute confidence intervals for the parameter of skewnbgshweharacterizes the distri-
bution of the maximum/minimum of a bivariate normal excheatige random vector. This
distribution represents the reference model for assedbmglegree of concordance of a
continuos mono-zygotic twin trait when interest focuseshmpairwise maximum or min-
imum, as in Section 5. Extensive numerical investigatioreaéed that the higher order fre-
quentist pivot-* is highly accurate, especially for the rather small samjaiesswhich may
be encountered, and for the challenging situation wihéseclose to—1. This is in agree-
ment with the findings by Sun and Wong (2007), though theitrdaution focuses om and
does not consider the custom-tailored statistics of Sedti?’Vhen no nuisance parameter is
presenty* yields confidence intervals which, for practical purposeay be considered ex-
act. Among the four alternatives available in the presefficeiidance parameters, the only
real competitor to-*, in terms of both real coverage and required computaticifiaite, is
the AC'I confidence intervals, though it leads to, on average, longefidence intervals
which counterbalance the lack of symmetry on the tails. Tdtential applicability of the
ACT method to studies on twins was already put forward in Mameigdil. (2012).

References

Azzalini, A. (1985). A class of distributions which inclusléhe normal onesScandinavian
Journal of Statistic42 171-178.

Azzalini, A. (2013).R packagesn: The skew-normal and skewvelistributions (version
0.4-18). Universita di Padova, Italibttp://azzalini.stat.unipd.it/SN

Barndorff-Nielsen, O. (1983). On a formula for the disttibn of the maximum likelihood
estimatorBiometrika70 343—365.

Brazzale, A. R., Davison, A. C. and Reid, N. (200&Kpplied Asymtpotics: Case Studies in
Small-Sample Statistic€ambridge University Press.

DiCiccio, T. J. and Martin, A. (1991). Approximations of ltarobabilities for a class of
smooth functions with applications to Bayesian and coodél inferenceBiometrika78
891-902.

van Dongen, J., Slagboom, P. E., Draisam, H. H. M., MartinGN Boomsma, D. . (2012).
The continuing value of twin studies in the omics éMature Reviews Genetick3 640—
653.

Fraser, D. A. S. and Reid, N. (1995). Ancillary and third arslignificance Utilitas Math-
ematica 47 33-53.

Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple genenahfila for tail probabilities
for frequentist and Bayesian inferen@ometrika86 249—-264.



16 REFERENCES

Galton, F. (1876). The history of twins, as a criterion of thkative powers of nature and
nurture.The Journal of the Anthropological Institute of Great Bhitand Ireland5 391—
406.

Genton, M. G. (2004)Skew-Elliptical Distributions and Their Applications: Aurney
Beyond NormalityChapman & Hall / CRC, Boca Raton, FL.

Gosh, M., Mukherjee, B. and Santra, U. (2009). Objectivergri an introduction for fre-
guentistsinternational Journal of Statistical Scienc@255-271.

Gosh, M., Mukherjee, B., Santra, U. and Kim, D. (2010). Bamesnd likelihood-based
inference for the bivariate normal correlation coefficielaurnal of Statistical Planning
and Inferencel40 1410-1416.

Haddad, J. H. and Provost, S. B. (2011). Approximations ¢odistribution of the sample
correlation coefficientWorld Academy of Science, Engineering and Techndb@d10—
915.

Kraemer, H. C. (1997). What is the ‘right’ statistical measaf twin concordance (or diag-
nostic reliability and validity)?Archives of Genetic Psychiatb4 1121-1124.

Loperfido, N. (2002). Statistical implications of seleetiv reported inferential results.
Statistics & Probability Letter§6 13—-22.

Loperfido, N. (2008). A note on skew-elliptical distribut® and linear functions of order
statistics.Statistics and Probability Letters8 3184—-3186.

Lyons, M. J., Faraone, S.V., Tsuang, M. T., Goldberg, J.eBak. J., Meyer, J. M., True,
W. R., Eisen, S.A. (1997). Another view on the ‘right’ stétial measure of twin concor-
dance Archives of Genetic Psychiatf4 1126—-1128.

Mameli, V., Musio, M., Saleau, E. and Biggeri, A. (2012). garsample confidence in-
tervals for the skewness parameter of the skew-normalilitsn based on Fisher’s
transformationJournal of Applied Statistic39 1693—1702.

R Core Team (2013). R: A Language and Environment for SiisComputing. R Foun-
dation for Statistical Computing, Vienna, Austrietp://www.R-project.org

Reid, N. (2003). Asymptotics and the theory of inferen&anals of Statistic81, 1695—
1731.

Reid, N. and Fraser, D. A. S. (2010). Mean log-likelihood aigher-order approximations.
Biometrika97 159-170.

Roberts, C. (1966). A correlation model useful in the stufimns. Journal of the Ameri-
can Statistical Associatiorbl 1184-1190.

Staicu, A.-M and Reid, N. (2008). On probability matchingops. The Canadian Journal
of Statistics36 613—622.

Sun, Y. and Wong, A.C.M. (2007). Interval estimation for tteemal correlation coefficient.
Statistics & Probability Letter§7 16521661.



REFERENCES 17

Tramo, M. J., Loftus, W. C., Green, R. L., Stukel, T. A., Weanke B. and Gazzaniga, M.
S. (1998). Brain size, head size, and 1Q in monozygotic tvhiesirology50 1246—-1252.

Welch, B. L. and Peers, B. L. (1963). On formulae for configepoints based on integrals
of weighted likelihoodsJournal of the Royal Statistical Society Serie23318-329.



18 REFERENCES

Table 3: Summary statistics for Simulation 1: bivariate normal withans 0 and variances
1. Empirical coverage({P), upper (/E) and lower {E) error probability and average
length (AL) of nominal two-sided 95% confidence intervals fgrfor varying values of
p and sample size = 5. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood root;; (Bayes); expression (15) by Haddad and

Provost (2011)dzact). Based on 10,000 replicates; simulation erra6.004.
() (b)

p Method CP UE LE AL p Method CP UE LE AL
—0.9 1st 0.924 0.039 0.037 6.714 Bayes 0.937 0.031 0.032 1.758
3rd 0.954 0.024 0.022 6.556 exact 0.952  0.023 0.025 2.579
Bayes 0.953 0.024 0.022 6.604 0.1 1st 0.927 0.038 0.035 1.806
exact 0.950 0.024 0.026 11.329 3rd 0.951 0.025 0.024 1.732
—0.8 1st 0.938 0.038 0.024 4.753 Bayes 0.941 0.031 0.029 1.647
3rd 0.952 0.023 0.026 4.600 exact 0.953 0.024 0.022 2.346
Bayes 0.947 0.024 0.029 4.587 0.2 1st 0.925 0.033 0.042 1.695
exact 0.951 0.023 0.026 7.803 3rd 0.948 0.025 0.026 1.636
—0.7  1st 0.939 0.038 0.023 3.861 Bayes 0.936 0.030 0.034 1.550
3rd 0.948 0.024 0.029 3.702 exact 0.949 0.024 0.028 2.110
Bayes 0.940 0.024 0.036 3.648 0.3 1st 0.925 0.036 0.040 1.577
exact 0.949 0.025 0.026 6.144 3rd 0.948 0.027 0.024 1.526
—0.6 1st 0.934 0.040 0.026 3.345 Bayes 0.938 0.031 0.030 1.439
3rd 0.948 0.024 0.028 3.198 exact 0.950 0.026 0.024 1.903
Bayes 0.943 0.023 0.034 3.130 0.4 1st 0.929 0.032 0.039 1.460
exact 0.952  0.025 0.024 5.244 3rd 0.948 0.028 0.024 1.421
—0.5 1st 0.930 0.038 0.033 2.946 Bayes 0.942  0.032 0.026 1.347
3rd 0.945 0.024 0.031 2.807 exact 0.952  0.025 0.024 1.701
Bayes 0.942 0.025 0.033 2.727 0.5 1st 0.927 0.032 0.040 1.350
exact 0.947 0.025 0.028 4.483 3rd 0.943 0.031 0.026 1.324
—0.4 1st 0.932 0.037 0.031 2.659 Bayes 0.940 0.033 0.027 1.257
3rd 0.950 0.022 0.027 2.531 exact 0.947 0.026 0.026 1.499
Bayes 0.945 0.024 0.030 2.441 0.6 1st 0.928 0.031 0.041 1.236
exact 0.953 0.024 0.023 3.948 3rd 0.940 0.035 0.025 1.209
—-0.3 1st 0.922 0.042 0.035 2.426 Bayes 0.937 0.037 0.025 1.157
3rd 0.942 0.027 0.031 2.314 exact 0.948 0.027 0.025 1.313
Bayes 0.934 0.032 0.033 2.234 0.7 1st 0.935 0.023 0.042 1.061
exact 0.948 0.026 0.027 3.552 3rd 0.945 0.029 0.026 1.054
—0.2 1st 0.926 0.039 0.034 2.241 Bayes 0.935 0.038 0.026 1.039
3rd 0.949 0.026 0.025 2.141 exact 0.950 0.026 0.024 1.097
Bayes 0.940 0.030 0.030 2.055 0.8 1st 0.936  0.025 0.038 0.865
exact 0.952 0.025 0.023 3.189 3rd 0.948 0.027 0.024 0.864
—0.1 1st 0.927 0.037 0.036 2.087 Bayes 0.946 0.029 0.024 0.905
3rd 0.951 0.023 0.026 1.995 exact 0.951 0.026 0.023 0.874
Bayes 0.937 0.031 0.032 1.911 0.9 1st 0.925 0.035 0.040 0.554
exact 0.953 0.023 0.024 2.854 3rd 0.954 0.022 0.024 0.563
0 1st 0.925 0.037 0.038 1.927 Bayes 0.953 0.023 0.024 0.652

3rd 0.949 0.024 0.027 1.842 exact 0.952  0.026 0.023 0.598
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Table 4: Summary statistics for Simulation 1: bivariate normal witkans 0 and variances
1. Empirical coverage({P), upper (/ E) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals farfor varying values of
p and sample size = 10. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood rootj; (Bayes); expression (15) by Haddad and

Provost (2011)dzact). Based on 10,000 replicates; simulation erta6.004.
(@) (b)

p Method CP UE LE AL p Method CP UE LE AL
—-0.9 1st 0.942 0.037 0.021 4.907 0 Bayes 0.945 0.029 0.026 1.227
3rd 0.951 0.024 0.025 4.826 exact 0.951 0.025 0.024 1.485
Bayes 0.951 0.024 0.025 4.834 0.1 1st 0.936 0.031 0.034 1.192
exact 0.952  0.022 0.025 6.496 3rd 0.949 0.026 0.025 1.177
—-0.8 1st 0.945 0.034 0.020 3.174 Bayes 0.945 0.027 0.028 1.138
3rd 0.950 0.025 0.025 3.144 exact 0.951 0.024 0.025 1.345
Bayes 0.949 0.025 0.026 3.154 0.2 1st 0.935 0.033 0.032 1.106
exact 0.949 0.024 0.027 4.484 3rd 0.948 0.029 0.023 1.098
—0.7 1st 0.946 0.035 0.019 2.588 Bayes 0.946 0.030 0.024 1.060
3rd 0.953 0.025 0.023 2.556 exact 0.952 0.027 0.021 1.223
Bayes  0.949 0.025 0.026 2.551 0.3 1st 0.937 0.028 0.036 1.011
exact 0.953 0.025 0.022 3.545 3rd 0.947 0.026 0.027 1.008
—0.6 1st 0.943 0.033 0.024 2.242 Bayes 0.945 0.026 0.029 0.974
3rd 0.948 0.023 0.029 2.205 exact 0.949 0.024 0.027 1.091
Bayes  0.944 0.023 0.034 2.185 04 1st 0.938 0.027 0.035 0.920
exact 0.952  0.024 0.024 2.968 3rd 0.948 0.028 0.025 0.922
—0.5 1st 0.944 0.034 0.022 1.999 Bayes 0.948 0.027 0.025 0.896
3rd 0.951 0.023 0.026 1.961 exact 0.951 0.024 0.025 0.974
Bayes  0.947 0.025 0.028 1.931 0.5 1st 0.941 0.023 0.035 0.817
exact 0.954 0.025 0.021 2.583 3rd 0.947 0.026 0.027 0.827
—0.4 1st 0.937 0.036 0.027 1.801 Bayes 0.945 0.027 0.027 0.807
3rd 0.946 0.026 0.028 1.766 exact 0.950 0.024 0.026 0.860
Bayes  0.943 0.028 0.030 1.730 0.6 1st 0.942 0.022 0.036 0.704
exact 0.949 0.025 0.026 2.275 3rd 0.948 0.027 0.025 0.719
—0.3 1st 0.937 0.034 0.029 1.649 Bayes 0.943 0.031 0.026 0.716
3rd 0.947 0.025 0.028 1.615 exact 0.954 0.023 0.023 0.743
Bayes  0.944 0.027 0.029 1.577 0.7 1st 0.945 0.020 0.036 0.574
exact 0.952  0.023 0.024 2.034 3rd 0.950 0.023 0.026 0.594
—0.2 1st 0.933 0.036 0.031 1.503 Bayes 0.946 0.028 0.026 0.606
3rd 0.945 0.027 0.028 1.472 exact 0.949 0.025 0.026 0.627
Bayes  0.940 0.029 0.031 1.433 0.8 1st 0.943 0.020 0.037 0.415
exact 0.947 0.027 0.026 1.825 3rd 0.954 0.022 0.024 0.438
—0.1 1st 0.936 0.034 0.030 1.395 Bayes 0.952 0.023 0.025 0.459
3rd 0.948 0.027 0.025 1.368 exact 0.952 0.023 0.026 0.496
Bayes  0.947 0.028 0.025 1.328 0.9 1st 0.943 0.022 0.034 0.259
exact 0.951 0.026 0.024 1.648 3rd 0.949 0.029 0.023 0.275
0 1st 0.937 0.032 0.031 1.290 Bayes 0.949 0.028 0.023 0.283

3rd 0.949 0.026 0.025 1.268 exact 0.949 0.026 0.025 0.343
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Table 5: Summary statistics for Simulation 1: bivariate normal witkans 0 and variances
1. Empirical coverage({P), upper E) and lower (E) error probability and average
length (AL) of nominal two-sided 95% confidence intervals fgrfor varying values of
p and sample size = 15. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood root;; (Bayes); expression (15) by Haddad and

Provost (2011)dzact). Based on 10,000 replicates; simulation erra6.004.
(@) (b)

p Method CP UFE LE AL p Method CP UE LE AL
—0.9 st 0.948 0.034 0.018 3.706 0 Bayes 0.945 0.028 0.027 1.000
3rd 0.950 0.026 0.025 3.676 exact 0.950 0.025 0.025 1.139
Bayes 0.950 0.026 0.025 3.676 0.1 1st 0.940 0.030 0.031 0.951
exact 0.952 0.025 0.023 4.980 3rd 0.949 0.025 0.025 0.944
—0.8 1st 0.948 0.034 0.019 2.499 Bayes 0.947 0.028 0.025 0.919
3rd 0.951 0.026 0.023 2.489 exact 0.952 0.025 0.023 1.027
Bayes 0.951 0.026 0.024 2.492 0.2 1st 0.942 0.027 0.031 0.879
exact 0.950 0.027 0.023 3.441 3rd 0.952 0.025 0.023 0.876
—0.7  1st 0.948 0.034 0.018 2.065 Bayes 0.950 0.026 0.024 0.853
3rd 0.953 0.024 0.022 2.053 exact 0.953 0.024 0.023 0.934
Bayes 0.951 0.024 0.025 2.053 0.3 1st 0.940 0.025 0.035 0.798
exact 0.953 0.023 0.023 2.716 3rd 0.947 0.025 0.027 0.798
—0.6 1st 0.947 0.032 0.021 1.805 Bayes 0.946 0.027 0.028 0.779
3rd 0.951 0.024 0.024 1.789 exact 0.948 0.025 0.027 0.836
Bayes 0.947 0.024 0.029 1.780 0.4 1st 0.940 0.027 0.034 0.716
exact 0.950 0.024 0.025 2.286 3rd 0.945 0.028 0.027 0.722
—0.5 1st 0.949 0.030 0.020 1.613 Bayes 0.944 0.029 0.027 0.708
3rd 0.954 0.023 0.023 1.594 exact 0.947 0.027 0.026 0.749
Bayes 0.950 0.024 0.026 1.578 0.5 1st 0.944 0.025 0.032 0.620
exact 0.953 0.025 0.022 1.978 3rd 0.949 0.027 0.024 0.630
—0.4 1st 0.947 0.030 0.023 1.457 Bayes 0.946 0.030 0.024 0.625
3rd 0.954 0.022 0.024 1.438 exact 0.949 0.025 0.026 0.657
Bayes 0.951 0.023 0.026 1.418 0.6 1st 0.949 0.020 0.031 0.524
exact 0.951 0.025 0.024 1.741 3rd 0.955 0.023 0.022 0.537
—0.3 1st 0.939 0.033 0.028 1.331 Bayes 0.951 0.027 0.022 0.539
3rd 0.946 0.026 0.028 1.313 exact 0.951 0.025 0.025 0.569
Bayes 0.945 0.026 0.029 1.289 0.7 1st 0.946 0.019 0.035 0.419
exact 0.950 0.024 0.025 1.553 3rd 0.949 0.023 0.027 0.434
—0.2 1st 0.938 0.032 0.030 1.224 Bayes 0.947 0.025 0.027 0.441
3rd 0.946 0.026 0.028 1.207 exact 0.947 0.029 0.024 0.481
Bayes 0.945 0.027 0.028 1.182 0.8 1st 0.952 0.019 0.029 0.303
exact 0.947 0.026 0.027 1.398 3rd 0.955 0.023 0.021 0.317
—0.1 1st 0.939 0.030 0.030 1.126 Bayes 0.954 0.024 0.021 0.322
3rd 0.949 0.024 0.027 1.112 exact 0.953 0.025 0.022 0.380
Bayes 0.948 0.024 0.027 1.085 0.9 1st 0.947 0.021 0.033 0.193
exact 0.952 0.023 0.025 1.260 3rd 0.949 0.026 0.025 0.203
0 1st 0.939 0.031 0.030 1.037 Bayes 0.949 0.026 0.025 0.203

3rd 0.948 0.027 0.026 1.026 exact 0.948 0.027 0.025 0.263
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Table 6: Summary statistics for Simulation 1: bivariate normal witkans 0 and variances
1. Empirical coverage({P), upper (/ E) and lower (LE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals farfor varying values of
p and sample size = 20. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood rootj; (Bayes); expression (15) by Haddad and

Provost (2011)dzact). Based on 10,000 replicates; simulation erta6.004.
(@) (b)

p Method CP UE LE AL p Method CP UE LE AL
—-0.9 1st 0.947 0.033 0.020 3.088 0 Bayes 0.948 0.027 0.025 0.870
3rd 0.951 0.025 0.025 3.073 exact 0.952  0.025 0.023 0.958
Bayes 0.950 0.025 0.025 3.073 0.1 1st 0.940 0.029 0.030 0.818
exact 0.948 0.026 0.026 4.194 3rd 0.948 0.026 0.026 0.814
—0.8 1st 0.949 0.032 0.019 2.126 Bayes 0.946 0.027 0.027 0.797
3rd 0.950 0.027 0.023 2.121 exact 0.949 0.026 0.025 0.866
Bayes 0.950 0.027 0.023 2.121 0.2 1st 0.944 0.028 0.028 0.745
exact 0.950 0.027 0.023 2.876 3rd 0.951 0.027 0.022 0.744
—0.7 1st 0.951 0.030 0.019 1.761 Bayes 0.949 0.028 0.023 0.729
3rd 0.953 0.024 0.023 1.754 exact 0.950 0.026 0.023 0.781
Bayes  0.951 0.024 0.024 1.755 0.3 1st 0.944 0.025 0.031 0.673
exact 0.952  0.024 0.024 2.276 3rd 0.949 0.025 0.026 0.675
—0.6 1st 0.947 0.032 0.022 1.550 Bayes 0.948 0.026 0.026 0.663
3rd 0.951 0.024 0.024 1.540 exact 0.951 0.024 0.025 0.702
Bayes  0.947 0.024 0.029 1.537 04 1st 0.941 0.027 0.032 0.598
exact 0.948 0.026 0.027 1.916 3rd 0.946 0.028 0.025 0.603
—0.5 1st 0.943 0.032 0.025 1.387 Bayes 0.945 0.030 0.026 0.596
3rd 0.947 0.025 0.028 1.375 exact 0.948 0.026 0.026 0.628
Bayes  0.944 0.025 0.032 1.366 0.5 1st 0.946 0.023 0.031 0.520
exact 0.948 0.024 0.027 1.656 3rd 0.951 0.026 0.023 0.528
—0.4 1st 0.947 0.029 0.024 1.259 Bayes 0.948 0.028 0.023 0.526
3rd 0.951 0.022 0.027 1.246 exact 0.951 0.026 0.024 0.554
Bayes  0.947 0.023 0.030 1.232 0.6 1st 0.946 0.023 0.031 0.433
exact 0.951 0.023 0.026 1.459 3rd 0.949 0.026 0.026 0.443
—0.3 1st 0.944 0.031 0.025 1.149 Bayes 0.946 0.029 0.025 0.445
3rd 0.950 0.025 0.026 1.137 exact 0.948 0.027 0.025 0.479
Bayes  0.949 0.025 0.026 1.119 0.7 1st 0.946 0.020 0.034 0.342
exact 0.950 0.024 0.026 1.302 3rd 0.949 0.024 0.028 0.352
—0.2 1st 0.942 0.033 0.026 1.061 Bayes 0.947 0.025 0.028 0.356
3rd 0.948 0.029 0.024 1.050 exact 0.948 0.025 0.027 0.403
Bayes  0.947 0.028 0.025 1.031 0.8 1st 0.947 0.019 0.035 0.250
exact 0.951 0.027 0.022 1.173 3rd 0.950 0.022 0.028 0.259
—0.1 1st 0.941 0.033 0.026 0.972 Bayes 0.950 0.023 0.027 0.261
3rd 0.948 0.028 0.024 0.963 exact 0.950 0.023 0.028 0.318
Bayes  0.948 0.028 0.024 0.944 0.9 1st 0.949 0.019 0.032 0.162
exact 0.950 0.026 0.023 1.060 3rd 0.950 0.024 0.025 0.167
0 1st 0.944 0.029 0.027 0.896 Bayes 0.950 0.025 0.025 0.167

3rd 0.950 0.026 0.024 0.889 exact 0.952  0.023 0.024 0.219
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Table 7. Summary statistics for Simulation 2: bivariate normal withans7 and variances
0.9. Empirical coverage({ P), upper ( ) and lower (E) error probability and average
length (AL) of nominal two-sided 95% confidence intervals fgrfor varying values of
p and sample size = 5. Pivots used: likelihood roaot (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood root; (Bayes); expression (17) by Haddad and
Provost (2011) K P); expression (19) by Mameét al. (2012) (ACI). Based on 10,000
replicates; simulation erroe:0.004.

(@) (b)

P Method CP UE LE AL p  Method CP UE LE AL
—0.9 1st 0.842 0.118 0.041 11.313 0 HP 0.901 0.049 0.050 3.561
3rd 0.938 0.035 0.026 12.490 ACT 0.953 0.023 0.024 4.808
Bayes  0.970 0.016 0.014 14.316 0.1 1st 0.839 0.081 0.080 2.473

HP 0.904 0.072 0.024 18.031 3rd 0.938 0.034 0.028 3.073
ACIT 0.956 0.034 0.010 24.343 Bayes  0.969 0.016 0.015 3.784
—0.8 1st 0.849 0.107 0.044 8.565 HP 0.905 0.048 0.047 3.197
3rd 0.940 0.035 0.025 9.071 ACI 0.953 0.024 0.023 4.316
Bayes  0.968 0.017 0.015 10.617 0.2 1st 0.843 0.070 0.087 2.149

HP 0.909 0.066 0.025 12.216 3rd 0.941 0.028 0.031 2.721
ACT 0.953 0.034 0.013 16.492 Bayes 0970 0.014 0.016 3.360
—0.7 1st 0.847 0.102 0.051 7.001 HP 0.906 0.041 0.053 2.766
3rd 0.938 0.034 0.028 7.743 ACT 0.954 0.020 0.026 3.735
Bayes  0.968 0.018 0.014 9.189 0.3 1st 0.843 0.068 0.089 1.898

HP 0.906 0.064 0.030 9.559 3rd 0.940 0.029 0.030 2.433
ACT 0.955 0.031 0.014 12.906 Bayes 0.969 0.016 0.016 3.010
—0.6 1st 0.843 0.101 0.056 5.865 HP 0.906 0.041 0.053 2.444
3rd 0.939 0.034 0.027 6.644 ACIT 0.953 0.021 0.026 3.300
Bayes 0.969 0.017 0.014 7.967 0.4 1st 0.845 0.062 0.094 1.657

HP 0.906 0.062 0.031 7.785 3rd 0.944 0.027 0.029 2.156
ACT 0.954 0.031 0.015 10.510 Bayes  0.972 0.014 0.014 2.674
—0.5 1st 0.839 0.100 0.061 5.078 HP 0.908 0.037 0.055 2.133
3rd 0.940 0.033 0.028 5.883 ACT 0.956 0.019 0.026 2.880
Bayes  0.969 0.017 0.014 7.096 0.5 1st 0.838 0.058 0.104 1.412

HP 0.906 0.059 0.035 6.647 3rd 0.936 0.026 0.038 1.879
ACI 0.954 0.029 0.016 8.974 Bayes 0.970 0.012 0.018 2.337
—0.4 1st 0.840 0.096 0.064 4.439 HP 0.905 0.033 0.062 1.813
3rd 0.937 0.034 0.029 5.206 ACT 0.953 0.015 0.033 2.448
Bayes  0.967 0.017 0.015 6.317 0.6 1st 0.841 0.056 0.104 1.217

HP 0.905 0.058 0.038 5.807 3rd 0.942 0.026 0.033 1.652
ACI 0.950 0.031 0.020 7.840 Bayes 0.971 0.013 0.016 2.061
—0.3 1st 0.845 0.089 0.067 3.892 HP 0.909 0.031 0.060 1.559
3rd 0.939 0.032 0.030 4.637 ACIT 0.956 0.014 0.030 2.105
Bayes  0.969 0.016 0.015 5.650 0.7 1st 0.850 0.052 0.098 1.012

HP 0.906 0.053 0.040 5.044 3rd 0.939 0.029 0.032 1.415
ACT 0.954 0.027 0.020 6.810 Bayes  0.968 0.016 0.016 1.772
—0.2  1st 0.835 0.088 0.077 3.426 HP 0.909 0.031 0.060 1.290
3rd 0.938 0.030 0.032 4.143 ACIT 0.955 0.015 0.030 1.741
Bayes  0.969 0.013 0.018 5.066 0.8 1st 0.849 0.045 0.105 0.794

HP 0.903 0.050 0.047 4.417 3rd 0.939 0.027 0.034 1.160
ACI 0.951 0.024 0.025 5.963 Bayes 0968 0.014 0.018 1.459

—0.1 1st 0.842 0.082 0.076 3.055 HP 0.911 0.026 0.063 0.995
3rd 0.937 0.032 0.031 3.726 ACT 0.955 0.012 0.033 1.344
Bayes  0.969 0.014 0.017 4.569 0.9 1st 0.852 0.041 0.106 0.569

HP 0.905 0.048 0.047 3.956 3rd 0.939 0.029 0.032 0.894
ACT 0.951 0.025 0.024 5.341 Bayes  0.968 0.017 0.016 1.125

0 1st 0.833 0.083 0.084 2.762 HP 0.913 0.024 0.064 0.675
3rd 0.937 0.031 0.032 3.405 ACT 0.956 0.012 0.032 0.912

Bayes 0.969 0.015 0.015 4.186
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Table 8: Summary statistics for Simulation 2: bivariate normal withans7 and variances
0.9. Empirical coverage({ P), upper (/ E) and lower {F) error probability and average
length (AL) of nominal two-sided 95% confidence intervals fgrfor varying values of
p and sample size = 10. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood root; (Bayes); expression (17) by Haddad and
Provost (2011) K P); expression (19) by Mameét al. (2012) (ACI). Based on 10,000

replicates; simulation erroe:0.004.
(a) (b)

p Method CP UE LE AL p Method CP UE LE AL
—-0.9 1st 0.914 0.055 0.031 7.005 0 HP 0.935 0.033 0.033 1.615
3rd 0.948 0.026 0.026 7.427 ACT 0.947 0.027 0.026 1.736
Bayes  0.960 0.020 0.020 7.903 0.1 1st 0.909 0.046 0.045 1.330
HP 0.938 0.041 0.021 7.477 3rd 0.949 0.026 0.026 1.463
ACI 0.952 0.032 0.016 8.037 Bayes  0.963 0.018 0.018 1.569
—0.8 1st 0.911 0.059 0.031 4.830 HP 0.934 0.033 0.033 1.465
3rd 0.949 0.027 0.025 5.128 ACT 0.950 0.024 0.026 1.575
Bayes  0.962 0.020 0.018 5.487 0.2 1st 0.912 0.040 0.048 1.178
HP 0.934 0.044 0.022 5.137 3rd 0.950 0.025 0.025 1.304
ACIT 0.951 0.033 0.016 5.521 Bayes  0.960 0.020 0.020 1.398
—0.7 1st 0.917 0.053 0.031 3.749 HP 0.935 0.029 0.036 1.298
3rd 0.948 0.029 0.023 4.015 ACT 0.950 0.023 0.027 1.395
Bayes 0959 0.022 0.019 4.304 0.3 1st 0.913 0.040 0.047 1.060
HP 0.939 0.040 0.021 4.049 3rd 0.951 0.024 0.025 1.180
ACI 0.949 0.033 0.018 4.352 Bayes  0.962 0.019 0.019 1.266
—0.6 1st 0.911 0.053 0.035 3.091 HP 0.936 0.029 0.036 1.168
3rd 0.948 0.026 0.026 3.318 ACIT 0.952  0.021 0.027 1.255
Bayes ~ 0.961 0.020 0.019 3.557 04 1st 0.914 0.042 0.044 0.941
HP 0.936 0.038 0.026 3.371 3rd 0.947 0.030 0.024 1.055
ACIT 0.951 0.030 0.019 3.623 Bayes  0.961 0.022 0.016 1.132
—0.5 1st 0.910 0.051 0.038 2.647 HP 0.936  0.031 0.033 1.037
3rd 0.949 0.026 0.026 2.846 ACIT 0.949 0.025 0.026 1.114
Bayes  0.963 0.018 0.019 3.050 0.5 1st 0.914 0.037 0.050 0.821
HP 0.934 0.039 0.027 2.903 3rd 0.951  0.025 0.024 0.928
ACI 0.951 0.029 0.020 3.121 Bayes  0.961 0.020 0.019 0.997
—0.4 1st 0.910 0.050 0.040 2.305 HP 0.937 0.026 0.037 0.905
3rd 0.948 0.026 0.026 2.487 ACI 0.952  0.021 0.028 0.972
Bayes  0.961 0.019 0.020 2.664 0.6 1st 0.915 0.032 0.053 0.703
HP 0.935 0.036 0.029 2.534 3rd 0.950 0.024 0.026 0.803
ACIT 0.951 0.028 0.021 2.723 Bayes  0.963 0.018 0.020 0.863
1st 0.917 0.049 0.034 2.059 HP 0.938 0.023 0.038 0.774
—-0.3 3rd 0.952  0.026 0.022 2.227 ACI 0.952  0.018 0.031 0.832
Bayes  0.962 0.020 0.018 2.386 0.7 1st 0.912 0.034 0.054 0.590
HP 0.939 0.037 0.024 2.266 3rd 0.948 0.027 0.025 0.682
ACIT 0.951 0.028 0.020 2.435 Bayes  0.962 0.019 0.018 0.734
—0.2  1st 0.910 0.046 0.043 1.816 HP 0.933 0.025 0.042 0.649
3rd 0.947 0.025 0.028 1.972 ACI 0.951 0.018 0.031 0.698
Bayes ~ 0.960 0.019 0.021 2.113 0.8 1st 0.918 0.029 0.054 0.465
HP 0.933 0.034 0.033 2.000 3rd 0.952 0.023 0.025 0.551
ACT 0.948 0.026 0.026 2.150 Bayes  0.962 0.019 0.019 0.593
—-0.1 1st 0.912 0.047 0.041 1.637 HP 0.940 0.021 0.039 0.510
3rd 0.946 0.027 0.026 1.785 ACIT 0.954 0.016 0.030 0.548
Bayes 0958 0.021 0.021 1.913 0.9 1st 0.914 0.027 0.059 0.328
HP 0.934 0.035 0.031 1.804 3rd 0.946 0.024 0.030 0.420
ACI 0.947 0.028 0.025 1.938 Bayes ~ 0.960 0.018 0.021 0.453
0 1st 0.914 0.044 0.042 1.466 HP 0.935 0.019 0.046 0.347
3rd 0.946 0.027 0.026 1.605 ACIT 0.948 0.015 0.037 0.373

Bayes  0.959 0.021 0.020 1.720
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Table 9: Summary statistics for Simulation 2: bivariate normal withans7 and variances
0.9. Empirical coverage({ P), upper (U E) and lower (FE) error probability and average
length (AL) of nominal two-sided 95% confidence intervals fgrfor varying values of
p and sample size = 15. Pivots used: likelihood roat (1st), modified likelihood root
r* (3rd); Bayesian modified likelihood root; (Bayes); expression (17) by Haddad and
Provost (2011) K P); expression (19) by Mameét al. (2012) (ACI). Based on 10,000
replicates; simulation erroe:0.004.

(@ (b)

P Method CP UE LE AL p  Method CP UE LE AL
—09 1st 0.926 0.046 0.028 5.407 HP 0.941 0.030 0.029 1.195
3rd 0.946 0.028 0.026 5.552 ACT 0.949 0.025 0.026 1.244
Bayes  0.954 0.023 0.023 5.771 0.1 Lst 0.929 0.033 0.037 1.015

HP 0.939 0.038 0.023 5.410 3rd 0.950 0.025 0.026 1.078
ACT 0.948 0.033 0.019 5.629 Bayes  0.958 0.019 0.022 1.123
—0.8 1st 0.924 0.047 0.029 3.562 HP 0.942 0.027 0.030 1.077
3rd 0.944 0.030 0.027 3.747 ACT 0.950 0.024 0.026 1.121
Bayes  0.953 0.025 0.022 3.905 0.2 st 0.924 0.035 0.041 0.910

HP 0.937 0.039 0.024 3.696 3rd 0.948 0.024 0.028 0.970
ACT 0.946 0.034 0.019 3.846 Bayes  0.957 0.020 0.023 1.011
—0.7 1st 0.928 0.043 0.029 2.757 HP 0.939 0.027 0.033 0.965
3rd 0.949 0.026 0.026 2.884 ACT 0.949 0.022 0.029 1.004
Bayes  0.955 0.022 0.023 3.005 0.3 1st 0.925 0.032 0.043 0.815

HP 0.941 0.035 0.024 2911 3rd 0.948 0.024 0.028 0.873
ACT 0.950 0.030 0.021 3.029 Bayes  0.956 0.019 0.024 0.910
—0.6 1st 0.925 0.045 0.030 2.314 HP 0.938 0.025 0.037 0.865
3rd 0.948 0.027 0.025 2.417 ACT 0.948 0.021 0.031 0.900
Bayes  0.956 0.022 0.021 2.518 0.4 1st 0.928 0.032 0.040 0.722

HP 0.939 0.036 0.024 2.453 3rd 0.951 0.025 0.024 0.776
ACT 0.949 0.031 0.020 2.553 Bayes  0.961 0.021 0.018 0.809
—0.5 1st 0.928 0.040 0.032 1.988 HP 0.942 0.026 0.031 0.766
3rd 0.949 0.026 0.025 2.079 ACT 0.952 0.022 0.026 0.797
Bayes  0.956 0.022 0.021 2.166 05 1st 0.927 0.033 0.040 0.639

HP 0.942 0.033 0.025 2.110 3rd 0.951 0.025 0.024 0.690
ACT 0.950 0.029 0.021 2.195 Bayes  0.960 0.020 0.020 0.720
—04 1st 0.927 0.042 0.032 1.753 HP 0.944 0.025 0.031 0.677
3rd 0.948 0.027 0.025 1.837 ACT 0.953 0.020 0.027 0.705
Bayes  0.956  0.022 0.022 1.913 0.6 1st 0.929 0.028 0.043 0.548

HP 0.940 0.034 0.026 1.861 3rd 0.949 0.024 0.027 0.596
ACT 0.948 0.029 0.022 1.936 Bayes  0.956 0.021 0.023 0.622
—0.3 1st 0.926 0.041 0.033 1.560 HP 0.941 0.023 0.036 0.582
3rd 0.948 0.025 0.026 1.637 ACT 0.950 0.020 0.031 0.605
Bayes  0.958 0.020 0.022 1.705 0.7 1st 0.930 0.029 0.041 0.461

HP 0.940 0.032 0.028 1.655 3rd 0.950 0.026 0.024 0.505
ACT 0.948 0.027 0.024 1.722 Bayes  0.958 0.023 0.020 0.527
—02 1st 0.925 0.040 0.035 1.393 HP 0.943 0.024 0.033 0.490
3rd 0.951 0.025 0.024 1.466 ACT 0.952 0.021 0.027 0.509
Bayes  0.958 0.022 0.020 1.527 0.8 1st 0.932 0.028 0.040 0.364

HP 0.943 0.031 0.026 1.478 3rd 0.950 0.026 0.024 0.404
ACT 0.952 0.027 0.022 1.538 Bayes  0.957 0.022 0.021 0.422
—0.1 1st 0.928 0.038 0.034 1.250 HP 0.943 0.024 0.033 0.386
3rd 0.950 0.026 0.024 1.319 ACT 0.952 0.019 0.029 0.402
Bayes  0.956 0.023 0.021 1.375 0.9 1st 0.929 0.028 0.043 0.255

HP 0.942 0.031 0.027 1.327 3rd 0.949 0.027 0.024 0.305
ACT 0.949 0.027 0.024 1.381 Bayes  0.956 0.024 0.021 0.319

0 1st 0.926 0.038 0.036 1.127 HP 0.942 0.023 0.035 0.265
3rd 0.949 0.025 0.026 1.192 ACT 0.950 0.020 0.030 0.275

Bayes 0.958 0.021 0.022 1.242
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Table 10: Summary statistics for Simulation 2: bivariate normal witleans? and vari-
ances0.9. Empirical coverage(( P), upper (/ £) and lower {_FE) error probability and
average lengthA L) of nominal two-sided 95% confidence intervals 4gifor varying val-
ues ofp and sample size = 20. Pivots used: likelihood roat (1st), modified likelihood
rootr* (3rd), Bayesian modified likelihood root;; (Bayes); expression (17) by Haddad
and Provost (2011)H P); expression (19) by Mameét al. (2012) (AC'I). Based on

10,000 replicates; simulation errat:0.004.
(a) (b)

) Method CP UE LE AL p  Method CP UE LE AL
—0.9 1st 0.935 0.040 0.025 4.488 0 HP 0.940 0.031 0.029 0.994
3rd 0.949 0.025 0.025 4.718 ACT 0.947 0.027 0.026 1.021
Bayes  0.956 0.023 0.021 4.852 0.1 1st 0.934 0.032 0.034 0.856
HP 0.947 0.033 0.020 4.414 3rd 0.950 0.025 0.025 0.894
ACT 0.952  0.030 0.018 4.536 Bayes  0.955 0.023 0.022 0.920
—0.8 st 0.930 0.043 0.027 2.945 HP 0.944 0.028 0.028 0.893
3rd 0.946  0.028 0.026 3.060 ACT 0.950 0.025 0.025 0.918
Bayes  0.952  0.025 0.023 3.152 0.2 1st 0.936 0.030 0.034 0.769
HP 0.940 0.037 0.022 3.043 3rd 0.953  0.023 0.024 0.805
ACT 0.947 0.034 0.019 3.128 Bayes  0.959 0.019 0.022 0.829
—0.7 1st 0.932  0.040 0.028 2.303 HP 0.947 0.025 0.029 0.802
3rd 0.950 0.024 0.026 2.376 ACT 0.953 0.022 0.025 0.824
Bayes  0.954 0.022 0.024 2.446 0.3 st 0.930 0.032 0.038 0.687
HP 0.942 0.034 0.024 2.404 3rd 0.947 0.024 0.029 0.722
ACT 0.948 0.030 0.022 2.471 Bayes  0.954 0.021 0.025 0.744
—0.6 1st 0.933 0.038 0.029 1.926 HP 0.940 0.026 0.035 0.717
3rd 0.950 0.024 0.025 1.986 ACT 0.946 0.022 0.031 0.737
Bayes  0.956 0.021 0.023 2.045 0.4 1st 0.936 0.020 0.035 0.612
HP 0.944 0.032 0.024 2.010 3rd 0.951 0.025 0.024 0.645
ACT 0.949 0.029 0.022 2.066 Bayes 0957 0.021 0.022 0.664
—0.5 st 0.935 0.036 0.028 1.662 HP 0.945 0.025 0.030 0.638
3rd 0.951 0.025 0.024 1.716 ACT 0.951 0.022 0.027 0.656
Bayes  0.957 0.021 0.021 1.766 0.5 1st 0.932 0.030 0.037 0.539
HP 0.946 0.031 0.023 1.734 3rd 0.946  0.027 0.027 0.571
ACT 0.951 0.028 0.021 1.782 Bayes  0.952  0.025 0.023 0.588
—0.4 st 0.932 0.038 0.030 1.469 HP 0.941 0.026 0.032 0.563
3rd 0.946  0.028 0.026 1.519 ACI 0.946 0.024 0.030 0.578
Bayes  0.953 0.025 0.022 1.564 0.6 1st 0.932 0.032 0.036 0.467
HP 0.941 0.033 0.026 1.533 3rd 0.948 0.028 0.023 0.496
ACT 0.947 0.030 0.023 1.576 Bayes  0.954 0.025 0.021 0.511
—0.3 st 0.929 0.039 0.032 1.305 HpP 0.942 0.027 0.031 0.487
3rd 0.946  0.028 0.026 1.351 ACT 0.950 0.023 0.027 0.501
Bayes 0952 0.025 0.023 1.391 0.7 1st 0.934 0.027 0.039 0.390
HP 0.941 0.033 0.027 1.361 3rd 0.950 0.025 0.026 0.417
ACT 0.946  0.030 0.024 1.399 Bayes  0.955  0.022 0.023 0.430
—0.2 st 0.936 0.032 0.032 1.165 HP 0.943 0.023 0.034 0.408
3rd 0.952 0.022 0.026 1.209 ACT 0.949 0.020 0.031 0.419
Bayes  0.957 0.020 0.023 1.245 0.8 1st 0.933  0.027 0.040 0.309
HP 0.946 0.027 0.027 1.216 3rd 0.948 0.026 0.027 0.332
ACT 0.952  0.024 0.025 1.250 Bayes  0.955 0.022 0.024 0.343
—0.1 1st 0.935 0.033 0.032 1.046 HP 0.944 0.021 0.035 0.322
3rd 0.951 0.025 0.024 1.088 ACT 0.950 0.019 0.031 0.331
Bayes  0.957 0.022 0.022 1.120 0.9 1st 0.938 0.024 0.038 0.215
HP 0.946 0.028 0.026 1.091 3rd 0.953  0.024 0.023 0.248
ACT 0.951 0.026 0.024 1.122 Bayes  0.958 0.021 0.021 0.256
0 1st 0.932 0.035 0.033 0.952 HP 0.948 0.020 0.032 0.221
3rd 0.947 0.027 0.026 0.992 ACT 0.954 0.018 0.028 0.228

Bayes 0.954 0.024 0.023 1.021
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