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Abstract: Plug-in estimation and corresponding refinements involving pe-

nalisation have been considered in various areas of parametric statistical infer-

ence. One major example is adjustment of the profile likelihood for inference in

the presence of nuisance parameters. Another important setting is prediction,

where improved estimative predictive densities have been recently developed.

A third related setting is model selection, where information criteria based on

penalisation of maximised likelihood have been proposed starting from the pi-

oneering contribution of Akaike. The seminal contributions in the last setting

predate those introducing the former two classes of procedures, and pertinent

portions of literature seem to have evolved quite independently. The aim of this

paper is to establish some simple asymptotic connections among these classes

of procedures. In particular, all the three kinds of penalisations involved can

be viewed as bias corrections of plug-in estimates of theoretical target criteria

which are shown to be very closely connected. As a by-product, we obtain

adjusted profile likelihoods from optimal predictive densities. Links between

adjusted procedures in likelihood theory and model selection procedures are

also briefly enquired throuh some simulation studies.
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1 Introduction

In statistical modelling, penalisation is a general idea to pursue a balance between
goodness of fit, as description of the available data, and appropriate behaviour under
repeated sampling. Techniques based on penalisation of a maximized likelihood, or
of the maximum likelihood estimate of a density, have been developed in different
areas of parametric statistical inference. Here we focus on (i) adjustments of the
profile loglikelihood for inference on a parameter of interest in likelihood asymptotics,
(ii) improvements of the estimative density in prediction, and (iii) model selection
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criteria, such as the well-known Akaike’s AIC. The seminal contributions in the last
setting predate those introducing the former two classes of procedures. Our aim is to
show that, under suitable assumptions, these three classes of penalised procedures
are more closely interrelated than is currently suggested within the literature.

A unifying aspect is the need to take properly into account uncertainty introduced
by sampling variability of the maximum likelihood estimates of the nuisance compo-
nents and to accomodate for the ensuing bias. The intended nuisance components
are nuisance parameters in the likelihood setting and the whole model parameter in
prediction as well as in model selection. Each of these settings has of course its own
specific inferential objective. Accordingly, there are various ways, aiming at differ-
ent theoretical target criteria, to adjust for the substitution of nuisance components
with their empirical surrogates. Within a unified formalisation, under the assump-
tion that the overall statistical model is not misspecified, it turns out that there
exist some simple asymptotic connections among classes (i), (ii) and (iii) above.

A unified notation and background material is given in Sections 2 and 3, refer-
ring to purely estimative and adjusted methods, respectively. Section 4 discusses
theoretical target criteria which lead to different penalisations in the three settings
we are considering. Estimative counterparts of the theoretical objectives presented
in Section 4 are discussed in Section 5. Section 6 is devoted to the relation between
adjustments of the profile likelihood and optimal predictive densities.

2 Background: plug-in methods

Let us denote by y = (y1, . . . , yn) the available data, considered for simplicity as a
random sample of size n, i.e. as a realisation of a random variable Y = (Y1, . . . , Yn),
having independent and identically distributed components. While relaxing inde-
pendence usually requires care, non-identically distributed components of Y are
easily coped with in the theory below.

Let us consider first the typical setting of likelihood theory for inference on a
q-dimensional parameter of interest ψ in the presence of an m-dimensional nuisance
parameter λ. Let p(y; θ) = p(y; ψ, λ) =

∏n
i=1 p

Yi
(yi; ψ, λ) denote the density of Y ,

where θ = (ψ, λ) ∈ Θ ⊆ IRd, with d = q + m. Let us denote by ℓ(θ) = ℓ(ψ, λ) =
ℓ(ψ, λ; y) = log p(y; θ) the loglikelihood function based on y and by θ̂ = (ψ̂, λ̂)
the maximum likelihood estimate (MLE) of θ = (ψ, λ). Moreover, let λ̂ψ be the

constrained MLE of λ for a given value of ψ and θ̂ψ = (ψ, λ̂ψ). In the presence
of a nuisance parameter, likelihood inference is often based on a pseudolikelihood.
This is a function of ψ and y ideally having properties similar to those of a genuine
likelihood for ψ, such as a marginal or conditional likelihood for ψ. When no exact
reduction by marginalisation or conditioning is available, the most commonly used
pseudologlikelihood for inference about ψ is the profile loglikelihood

ℓ
P
(ψ) = ℓ

P
(ψ; y) = ℓ(θ̂ψ) = ℓ(ψ, λ̂ψ) . (1)

As is well known, (1) is not a genuine loglikelihood for ψ, but shares most first-order
properties of a genuine loglikelihood for ψ (see Barndorff-Nielsen and Cox, 1994,
Section 3.4).
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Elimination of nuisance parameters through maximum likelihood estimates is
widely considered in prediction as well. In the simplest instance of this setting, the
object of inference is a future or as yet unobserved random vector X = (X1, . . . , Xh),
h ≥ 1, independent of Y = (Y1, . . . , Yn), and having independent and identically
distributed components where X1 has the same distribution as Y1. Let us denote
by p

X
(x; θ) the density of X. Formal links with the previous setting are recovered

by letting θ = (ψ, λ), with θ ∈ Θ ⊆ IRq+m, and treating ψ as known, while λ is
considered as nuisance. The simplest frequentist approach to prediction of X, on
the basis of the observed y from Y , consists in using the estimative predictive density
function

pe(x; ψ) = p
X

(x; ψ, λ̂ψ) , (2)

obtained by substituting, for the given ψ, the unknown λ with its MLE based on y,
λ̂ψ = λ̂ψ(y).

Maximum likelihood estimation of nuisance parameters plays an important role
also in model selection. Here we have to compare several competing models in
order to choose one that most suitably describes the data generation process. A
selection procedure consists of a rule that associates to data y one model among those
available. Suppose that k plausible parametric models Mj , j = 1, . . . , k, may be used
to analyse y, with k ≥ 2. Let us write the probability density functions specified
within model Mj , j = 1, . . . , k, in the form pj(y; λ(j)), with λ(j) ∈ Λj ⊆ IRmj . Such
a notation underlines the fact that parameters pertaining to different models may
belong to different parameter spaces. Model selection may be recast as a problem
of inference about a parameter of interest ψ, which is the index j of the competing
models. The overall model M for y is then M = ∪k

j=1Mj and the probability density
functions specified within M may be written in the form p(y; θ), with θ = (ψ, λ(ψ)),
where ψ ∈ Ψ = {1, . . . , k} and λ(ψ) ∈ Λψ ⊆ IRmψ . The specific value of λ(ψ) is not of
primary interest, so λ(ψ) is a nuisance parameter. One major difference with respect
to the standard setting of likelihood theory is that here Ψ is finite, with k elements.
Moreover, the overall parameter space Θ = {(ψ, λ(ψ)) : ψ ∈ Ψ, λ(ψ) ∈ Λψ} is usually
not of form Ψ×Λ for some Λ. In frequentist model selection, the nuisance parameter
λ(ψ) can be eliminated through a suitable pseudolikelihood which only depends on
the index parameter ψ, such as the marginal loglikelihood (Quesenberry, 1985; Pace
et al., 2005) or the profile loglikelihood ℓ

P
(ψ) = supλ(ψ)∈Λψ

ℓ(ψ, λ(ψ)). Note that only
loglikelihood summands independent of ψ, i.e. that are the same across all k models,
are negligible in ℓ(ψ, λ(ψ)). Selection based on maximisation of ℓ

P
(ψ) amounts to

choosing the model that best fits the data. Such a procedure will always select the
less parsimonious model when the competing models are nested and adjustments
are called for.

The estimative, or plug-in, methods considered in likelihood theory, prediction
and model selection, neglect sampling variability of the estimated nuisance com-
ponents. Particularly serious inaccuracies may occur when the dimension of the
nuisance component, λ or λ(ψ), is large relative to n. See e.g. Sartori (2003) and
Vidoni (1995).
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3 Background: adjusted methods

In likelihood theory, various modifications of the profile loglikelihood (1) have been
proposed, starting from Barndorff-Nielsen (1980, 1983); see Severini (2000, Chapter
9) for a recent account. All the available adjustments to the profile likelihood are
equivalent to second order and share the common feature of reducing the score
bias to the order O(n−1). Reduction of the score bias is one of the motivations
for adjusting the profile likelihood. Other proposals have the aim of approximating
some target likelihood, defined by a suitable marginality or conditionality reduction.
Pace and Salvan (2005) propose a unifying perspective that does not depend on the
continuous or discrete nature of the parameter of interest and looks suitable for
the purposes of the present paper. In short, available modifications of the profile
loglikelihood are shown to be equivalent to first-order bias adjustments of the profile
loglikelihood considered as an estimate of the expectation of the least favourable
target loglikelihood. The latter is defined as the loglikelihood corresponding, for
each ψ, to the model element having minimum Kullback–Leibler divergence with
respect to the true data generating distribution. Although the least favourable
target loglikelihood is a genuine loglikelihood, it is not available in practice because
it depends on the true parameter value.

In prediction, a number of improvements of the estimative predictive density
have been considered. In particular, the proposals in Harris (1989) and Vidoni
(1995) aim to reduce the Kullback-Leibler divergence between the unknown density
of the future observation and the predictive density. Komaki (1996) obtains the
improvement over the estimative predictive density which is asymptotically optimal
in terms of average Kullback–Leibler divergence. In the same vein, Corcuera and
Giummolè (2000) derive improvements asymptotically optimal with reference to
the class of α-divergences, that includes the Kullback–Leibler divergence. All the
resulting predictive densities appear in the form of (2) plus an appropriate correction
term, which involves estimated likelihood quantities. For a broad discussion and a
different approach, see Barndorff-Nielsen and Cox (1996).

Even in the context of model selection, several adjustments to the criterion based
on the profile likelihood have been introduced, starting from Akaike’s information
criterion (AIC, Akaike, 1973) and Takeuchi’s information criterion (TIC, Takeuchi,
1976). See Burnham and Anderson (2002, Chapters 2 and 7) for a recent account;
see also Claeskens and Hjort (2003). Information criteria, such as AIC and TIC, are
based on bias corrections of the profile loglikelihood as an estimate of an expected
Kullback-Leibler divergence, see e.g. Shibata (1997). Using a principle of parsimony,
AIC will select the model with the fewest parameters that fits the data well. TIC
is a generalisation of AIC having a more refined penalisation term, depending on
information matrices for λ(ψ). Also other related model selection criteria, such as the
Bayesian information criterion (BIC) of Schwarz (1978), amount to a penalisation
of the profile loglikelihood.

We briefly recall below the expression of notable instances of penalised loglikeli-
hoods or modified estimative densities. Hereafter, Eθ(·) and Vθ(·) will denote expec-
tation and variance under θ. In possibly misspecified models, symbols like EY

0 (·),
EX

0 (·), and so on, will be used to denote expectation of a function of Y or X under
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the true distribution.
Consider first the setting of likelihood theory. Let us denote by ℓψ = ℓψ(θ) and

ℓλ = ℓλ(θ) blocks of the score vector ℓθ = ∂ℓ(θ)/∂θ. Moreover, let jψψ = jψψ(θ),
jψλ = jψλ(θ) and jλλ = jλλ(θ) be blocks of the observed information j = j(θ) =
−∂2ℓ(θ)/(∂θ∂θ⊤). Similarly, we will denote by iψψ = iψψ(θ), iψλ = iψλ(θ) and
iλλ = iλλ(θ) blocks of the expected information i = i(θ) = Eθ(j(θ)). Assume that
the minimal sufficient statistic for the model is a one-to-one function of (ψ̂, λ̂, a),
where a is an ancillary statistic, either exactly or approximately, so that ℓ(ψ, λ; y) =
ℓ(ψ, λ; ψ̂, λ̂, a). Then, the modified profile loglikelihood of Barndorff-Nielsen (1980,
1983) is

ℓ
M

(ψ) = ℓ
M

(ψ; y) = ℓ
P
(ψ) − 1

2
log | j

λλ
(θ̂ψ) | − log

∣

∣

∣

∣

∣

∂λ̂ψ

∂λ̂

∣

∣

∣

∣

∣

,

where
∣

∣

∣

∣

∣

∂λ̂ψ

∂λ̂

∣

∣

∣

∣

∣

=
| ℓ

λ;λ̂
(θ̂ψ) |

| j
λλ

(θ̂ψ) |
,

involving the sample space derivatives ℓ
λ;λ̂

(ψ, λ) = ∂2ℓ(ψ, λ; ψ̂, λ̂, a)/(∂λ ∂λ̂⊤). Cal-
culation of sample space derivatives is straightforward only in special classes of
models, notably exponential and group families. When ψ and λ are orthogonal, i.e.

when iψλ = 0, such a calculation can be avoided because log
∣

∣

∣
∂λ̂ψ/∂λ̂

∣

∣

∣
= Op(n

−1)

when ψ − ψ̂ = O(n−1/2). This gives the approximate conditional likelihood of Cox
and Reid (1987)

ℓ
A
(ψ) = ℓ

A
(ψ; y) = ℓ

P
(ψ) − 1

2
log | j

λλ
(θ̂ψ) | ,

which approximates ℓ
M

(ψ) with error of order Op(n
−1). Recently, attention has been

devoted to approximate calculation of sample space derivatives. For a review, see
Severini (2000, Section 9.5). In particular, the approximation of ℓ

M
(ψ) developed

in Severini (1998) is

ℓ̄
M

(ψ) = ℓ̄
M

(ψ; y) = ℓ
P
(ψ) +

1

2
log |jλλ(θ̂ψ)| − log |νλ,λ(θ̂ψ, θ̂; θ̂)| , (3)

where
νλ,λ(θ1, θ2; θ0) = Eθ0(ℓλ(θ1)ℓλ(θ2)

⊤) .

An asymptotically equivalent version of (3) is obtained by replacing νλ,λ(θ̂ψ, θ̂; θ̂)

with its empirical analogue ν̂λ,λ(θ̂ψ, θ̂), where

ν̂λ,λ(θ1, θ2) =
n

∑

i=1

ℓ
(i)
λ (θ1)ℓ

(i)
λ (θ2)

⊤ , (4)

with ℓ
(i)
λ (θ) = ∂ log p

Yi
(yi; ψ, λ)/∂λ (cf. Severini, 2000, Section 9.5.5). Note that

ν̂λ,λ(θ1, θ2) is the empirical analogue of

ν0
λ,λ(θ1, θ2) = E0(ℓλ(θ1)ℓλ(θ2)

⊤) , (5)
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useful to cope with possibily misspecified models.
In the setting of prediction, let us consider adjustments of the estimative pre-

dictive density pe(x; ψ) = p
X

(x; θ̂ψ). For curved exponential families and h = 1,
Komaki (1996) obtains the optimal improvement over pe(x; ψ) in terms of average
Kullback–Leibler divergence, up to and including terms of order O(n−1). To give
the expression of the resulting modified estimative density p

K
(x; ψ), index notation

and Einstein summation convention are convenient. Generic components of λ will
be denoted by λr, λs, . . . , with r, s, . . . = 1, . . . , m. Let ℓ(ψ, λ; x) = log p

X
(x; ψ, λ),

ℓr(ψ, λ; x) = ∂ log p
X

(x; ψ, λ)/∂λr and ℓrs(ψ, λ; x) = ∂2 log p
X

(x; ψ, λ)/(∂λr∂λs).
Hence,

p
K

(x; ψ) = pe(x; ψ)

[

1 +
1

2

{

hrs(ψ, λ̂ψ; x) − Γt
rs(ψ, λ̂ψ)ℓt(ψ, λ̂ψ; x)

}

irs(ψ, λ̂ψ)

]

,

(6)
where

hrs(ψ, λ; x) = ℓrs(ψ, λ; x) + ℓr(ψ, λ; x)ℓs(ψ, λ; x) ,

Γt
rs(ψ, λ) = itu(ψ, λ)Eψ,λ{hrs(ψ, λ; X)ℓu(ψ, λ; X)}

and irs(ψ, λ) denotes the generic element of the inverse matrix of iλλ(ψ, λ). Corcuera
and Giummolè (2000) show that (6) holds also for general regular models and extend
Komaki’s result to α-divergences. They consider h ≥ 1 fixed and possibly dependent
observations.

Let us consider a model selection problem where the generic model Mψ has a
parameter λ(ψ) of dimension mψ, ψ ∈ Ψ = {1, . . . , k}. Here, jλλ(θ) denotes the
observed information for λ(ψ) in model Mψ. A general version of Takeuchi’s infor-
mation criterion (see Burnham and Anderson, 2002, formula (7.38)) is

TIC = 2
[

−ℓ
P
(ψ) + tr

{

jλλ(θ̂ψ)−1ν̂λ,λ(θ̂ψ, θ̂ψ)
}]

,

with ν̂λ,λ(θ̂ψ, θ̂ψ) defined according to (4). The above criterion corresponds to the
penalised profile loglikelihood

ℓ
TIC

(ψ) = ℓ
P
(ψ) − tr

{

jλλ(θ̂ψ)−1ν̂λ,λ(θ̂ψ, θ̂ψ)
}

. (7)

In practice, the summand corresponding to trace term in (7) is often conveniently
evaluated as mψ, and this gives rise to the well-known Akaike’s information criterion

AIC = 2(−ℓ
P
(ψ) + mψ) ,

corresponding to the penalised profile loglikelihood

ℓ
AIC

(ψ) = ℓ
P
(ψ) − mψ .

Note that there seem to be some relations between the ingredients in (7) and those
in (3) when the quantity νλ,λ(θ̂ψ, θ̂; θ̂) appearing in (3) is replaced by its empirical

analogue ν̂λ,λ(θ̂ψ, θ̂). Moreover, the same ingredients appearing in the penalisation
term of ℓ

TIC
(ψ) appear in the well-known sandwich estimate of the covariance matrix

of λ̂ψ (Huber, 1967; White, 1982)

V̂ (λ̂ψ) = jλλ(θ̂ψ)−1ν̂λ,λ(θ̂ψ, θ̂ψ)jλλ(θ̂ψ)−1 . (8)
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4 Theoretical target criteria

In this section we present theoretical target criteria for modifications of the profile
loglikelihood or of the estimative predictive density in the three different settings
we are considering. As emerges from the review in Section 3, all such target criteria
are related with Kullback–Leibler divergence. We recall that the Kullback–Leibler
divergence between two possible densities, p0

Z
(z) and p1

Z
(z), for a random vector Z

is given by

D{p0
Z
(z); p1

Z
(z)} =

∫

log

{

p0
Z
(z)

p1
Z
(z)

}

p0
Z
(z) dz . (9)

4.1 Likelihood theory

In Pace and Salvan (2005) a theoretical target criterion is introduced for adjustments
of the profile loglikelihood. It is based on model restriction, amounting to calculating
the original likelihood along a curve in the parameter space, parameterised by ψ.
One must ensure that no unrealistic information regarding ψ is introduced by model
restriction. This leads to the least favourable curve (Stein, 1956), along which the
expected information for ψ is equal to the adjusted (or partial) information for ψ
in the original model; see also Severini and Wong (1992). The least favourable
curve minimises a Kullback–Leibler divergence. Let θ0 = (ψ0, λ0) denote the true
parameter value and let λ̃ψ be a function of ψ such that λ̃ψ0 = λ0. Then, the least
favourable curve is θψ = (ψ, λψ), where λψ minimises D{p(y; θ0); p(y; ψ, λ̃ψ)} among
all curves λ̃ψ. The function λψ is also the maximiser with respect to λ for fixed ψ of

Eθ0(ℓ(ψ, λ)) = −D{p(y; θ0); p(y; ψ, λ)} + c0 ,

where c0 = Eθ0(log p(Y ; θ0)), cf. Severini (2000, Section 4.8). Under regularity
conditions, the constrained MLE of λ for a given value of ψ, i.e. λ̂ψ, is a consistent
estimator of λψ (Huber, 1967).

The least favourable target loglikelihood is defined as

ℓ
T
(ψ) = ℓ(θψ) . (10)

Although ℓ
T
(ψ) is a genuine loglikelihood, it is not available in practice, because

λψ depends on θ0. The profile loglikelihood ℓ
P
(ψ) is an estimative, or plug-in,

counterpart of ℓ
T
(ψ) and has a bias of order O(1) as an estimate of the theoretical

target criterion

T lt(ψ; θ0) = Eθ0(ℓT
(ψ)) = −D{p(y; θ0); p(y; θψ)} + c0 . (11)

Note that ψ in T lt(ψ; θ0) is given while θ0 is unknown.

4.2 Prediction

Consider the problem of prediction from the theoretical point of view of selecting
the member of a given class of densities having minimum Kullback–Leibler diver-
gence with respect to p0

X
(x), the true unknown density of X = (X1, . . . , Xh), where
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X1, . . . , Xh are independent and identically distributed. Such an optimal element
will be called a target predictive density. It will depend on the true distribution of
X and, therefore, it will not be directly available for prediction. An estimation step
is thus required and subsequent bias adjustment is in order. When the given class
of densities is correctly specified, that is when p0

X
(x) belongs to it, this preliminary

definition of a target predictive density is redundant because it gives p0
X

(x) itself.
Here we consider in particular the situation where the class has elements p

X
(x; ψ, λ),

where λ ∈ Λ and ψ is fixed. We suppose in addition that p0
X

(x) = p
X

(x; ψ0, λ0),
where usually ψ0 6= ψ. Then the target predictive density minimises

D(p
X

(x; ψ0, λ0); pX
(x; ψ, λ))

with respect to λ with ψ fixed. The minimum is attained at λψ as defined in
Subsection 4.1 and the target predictive density is

p
X

(x; ψ, λψ) = p
X

(x; θψ) .

Equivalently, p
X

(x; θψ) maximises, with respect to λ, EX
θ0
{log p

X
(X; ψ, λ)} and the

maximum is the theoretical target criterion

T pr(ψ; θ0) = EX
θ0
{log p

X
(X; θψ)} . (12)

Note that T pr(ψ; θ0) is proportional to T lt(ψ; θ0) given by (11) with proportionality
constant h/n.

The estimative predictive density pe(x; ψ) is the plug-in counterpart of p
X

(x; θψ)
and its logarithm has a bias of order O(1) as an estimate of (12).

4.3 Model selection

Using the notation introduced in Section 2, candidate models are indexed by ψ ∈
Ψ = {1, . . . , k}. A candidate model is fitted by maximizing ℓ(ψ, λ(ψ)) with ψ fixed,

giving λ̂ψ = λ̂ψ(y) as the MLE of λ(ψ). Let θ̂ψ = θ̂ψ(y) = (ψ, λ̂ψ). The estimative
predictive density function (2) for a future observation x of X, an independent copy
of Y , based on the model with densities p

X
(x; θ), is p

X
(x; θ̂ψ).

Let p0
X

(x) and p0
Y
(y) denote the true unknown densities of X and Y . Akaike’s and

Takeuchi’s information criteria aim at minimizing with respect to ψ the expected
Kullback–Leibler divergence between p0

X
(x) and p

X
(x; θ̂ψ(Y )), i.e.

ED0(ψ) = EY
0

[

D
{

p0
X

(x); p
X

(x; θ̂ψ(Y ))
}]

=

∫ ∫

log

(

p0
X

(x)

p
X

(x; θ̂ψ(y))

)

p0
X

(x)p0
Y
(y) dx dy ,

see e.g. Burnham and Anderson (2002, formula (7.19)). The rationale underlying
the definition of ED0(ψ) is the same as in cross-validation. The estimate θ̂ψ = θ̂ψ(y)

is used to predict x, through p
X

(x; θ̂ψ). Then, an independent replication is used
to evaluate predictive fit. The asymptotic relationship between model selection by
cross-validation and by Akaike’s criterion is discussed in Stone (1977).
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Minimising ED0(ψ) is equivalent to maximising the theoretical quantity

Tms
0 (ψ) = EY

0

{
∫

log p
X

(x; θ̂ψ(Y ))p0
X

(x) dx

}

= EY
0

[

EX
0

{

log p
X

(X; θ̂ψ(Y ))
}]

= EY
0

[

EX
0

{

log p(X; θ̂ψ(Y ))
}]

.

Indeed,

Tms
0 (ψ) = −ED0(ψ) + c′0 ,

where c′0 = EY
0

(

EX
0 (log p0

X
(X))

)

= EX
0 (log p0

X
(X)).

Assuming that the overall model M is correctly specified, p0
X

(x) and p0
Y
(y) are

given by p
X

(x; θ0) and p(y; θ0), respectively, where θ0 = (ψ0, λ0), with λ0 = λ(ψ0).

The expected Kullback–Leibler divergence between p
X

(x; θ0) and p
X

(x; θ̂ψ(Y )) be-
comes

EDθ0(ψ) = EY
θ0

[

D
{

p
X

(x; θ0); pX
(x; θ̂ψ(Y ))

}]

=

∫ ∫

log

(

p
X

(x; θ0)

p
X

(x; θ̂ψ(y))

)

p
X

(x; θ0)p(y; θ0) dx dy .

Again, minimising EDθ0(ψ) is equivalent to maximising the theoretical target crite-
rion

Tms(ψ; θ0) = EY
θ0

{
∫

log p
X

(x; θ̂ψ(Y ))p
X

(x; θ0) dx

}

= EY
θ0

[

EX
θ0

{

log p
X

(X; θ̂ψ(Y ))
}]

= EY
θ0

[

EX
θ0

{

log p(X; θ̂ψ(Y ))
}]

.(13)

The profile loglikelihood ℓ
P
(ψ) = log p(y; ψ, λ̂ψ) is a biased estimator of Tms

0 (ψ)
with bias of order O(1). Analogously, if the overall model M is correctly specified,
the profile loglikelihood has bias of order O(1) as an estimator of Tms(ψ; θ0).

5 Bias adjustment of plug-in estimates of theoretical target

criteria

In this section we will show that adjusted procedures recalled in Section 3 can
be viewed as bias corrections of plug-in estimates of the corresponding theoretical
target criteria. Moreover, we will discuss some asymptotic relations among adjusted
estimative criteria arising in the three different settings.

5.1 Biases of the profile loglikelihood when estimating theoretical target

criteria

The bias under θ0 of ℓ
P
(ψ) as an estimate of T lt(ψ; θ0) is

blt(ψ; θ0) = Eθ0(ℓP
(ψ)) − T lt(ψ; θ0) . (14)
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Under the assumptions of standard likelihood asymptotics, in Pace and Salvan
(2005) various asymptotically equivalent approximations are obtained for blt(ψ; θ0).
In particular,

blt(ψ; θ0) = blt
I (ψ; θ0) + O(n−1)

= blt
II(ψ; θ0) + O(n−1) ,

where

blt
I (ψ; θ0) =

1

2
tr{iλλ(θψ; θ0)Vθ0(λ̂ψ)} , (15)

blt
II(ψ; θ0) =

1

2
tr{iλλ(θψ; θ0)

−1νλ,λ(θψ, θψ; θ0)} , (16)

with iλλ(θψ; θ0) = Eθ0(jλλ(θψ)). Moreover, for ψ − ψ0 = O(n−1/2),

blt(ψ; θ0) = blt
III(ψ; θ0) + O(n−1) ,

with

blt
III(ψ; θ0) =

1

2
tr{iλλ(θψ; θ0)

−1νλ,λ(θψ, θ0; θ0)iλλ(θ0)
−1νλ,λ(θψ, θ0; θ0)} . (17)

In prediction, the bias of log pe(x; ψ) as an estimate of T pr(ψ; θ0),

bpr(ψ; θ0) = Eθ0(log pe(x; ψ)) − T pr(ψ; θ0) ,

is

bpr(ψ; θ0) =
h

n
blt(ψ; θ0) .

Finally, in model selection, the bias of ℓ
P
(ψ) as an estimate of Tms

0 (ψ) is

bms
0 (ψ) = E0(ℓP

(ψ)) − Tms
0 (ψ) . (18)

Two key relations in the model selection literature (see e.g. Burnham and Anderson,
2002, pages 369-370) are

Tms
0 (ψ) = E0(ℓ(ψ, λ∗

ψ)) − 1

2
tr

[

ν0
λ,λ(θ∗ψ, θ∗ψ){E0(jλλ(θ∗ψ))}−1

]

+ O(n−1) (19)

and

E0(ℓP
(ψ)) = E0(ℓ(ψ, λ∗

ψ)) +
1

2
tr

[

ν0
λ,λ(θ∗ψ, θ∗ψ){E0(jλλ(θ∗ψ))}−1

]

+ O(n−1) , (20)

with ν0
λ,λ(θ1, θ2) defined as in (5) and θ∗ψ given by

θ∗ψ = (ψ, λ∗
ψ) (21)

where λ∗
ψ is the value of λ that minimises the Kullback-Leibler divergence between

the true density of Y and p
Y
(y; ψ, λ).

Using (19) and (20) we get

bms
0 (ψ) = tr

[

ν0
λ,λ(θ∗ψ, θ∗ψ){E0(jλλ(θ∗ψ))}−1

]

+ O(n−1) . (22)
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When the overall model M is correctly specified, the bias under θ0 of ℓ
P
(ψ) as

an estimate of Tms(ψ; θ0) is

bms(ψ; θ0) = Eθ0(ℓP
(ψ)) − Tms(ψ; θ0) . (23)

Relation (19) becomes

Tms(ψ; θ0) = Eθ0(ℓ(ψ, λψ)) − 1

2
tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+ O(n−1)

= T lt(ψ; θ0) − blt
II(ψ; θ0) + O(n−1) (24)

so that

−Tms(ψ; θ0) = −T lt(ψ; θ0) + blt
II(ψ; θ0) + O(n−1)

Eθ0(ℓP
(ψ)) − Tms(ψ; θ0) = Eθ0(ℓP

(ψ)) − T lt(ψ; θ0) + blt
II(ψ; θ0) + O(n−1)

bms(ψ; θ0) = 2blt
II(ψ; θ0) + O(n−1) .

Therefore,

bms(ψ; θ0) = 2blt(ψ; θ0) + O(n−1) . (25)

5.2 Bias adjustments

Adjusted procedures of Section 3 can now be easily recognised as obtained by cor-
recting crude plug-in estimates using a plug-in estimate of the relevant bias term.

In likelihood theory, consistent estimates of bI(ψ; θ0), bII(ψ; θ0) and bIII(ψ; θ0)
are defined by replacing iλλ(θψ; θ0) with jλλ(θψ), θψ with θ̂ψ and θ0 with θ̂. The
following adjustments of the profile loglikelihood are then obtained:

ℓI
AP

(ψ) = ℓ
P
(ψ) − 1

2
tr{jλλ(θ̂ψ)Vθ̂(λ̂ψ)} (26)

ℓII
AP

(ψ) = ℓ
P
(ψ) − 1

2
tr{jλλ(θ̂ψ)−1νλ,λ(θ̂ψ, θ̂ψ; θ̂)} , (27)

ℓIII
AP

(ψ) = ℓ
P
(ψ) − 1

2
tr{jλλ(θ̂ψ)−1νλ,λ(θ̂ψ, θ̂ψ; θ̂)jλλ(θ̂)−1νλ,λ(θ̂ψ, θ̂ψ; θ̂)} . (28)

Relations of the above versions of ℓAE(ψ) to other adjustments of the profile loglike-
lihood are discussed in Pace and Salvan (2005). In particular, under the assumptions
of standard likelihood theory, for ψ − ψ̂ = 0(n−1/2), locally equivalent versions of
ℓI

AE
(ψ), ℓII

AE
(ψ) and ℓIII

AE
(ψ) are, respectively,

ℓI
M

(ψ) = ℓ
P
(ψ) − 1

2
log |jλλ(θ̂ψ)| − 1

2
log |Vθ̂(λ̂ψ)| ,

ℓII
M

(ψ) = ℓ
P
(ψ) +

1

2
log |jλλ(θ̂ψ)| − 1

2
log |νλ,λ(θ̂ψ, θ̂ψ; θ̂)| ,

ℓIII
M

(ψ) = ℓ
P
(ψ) +

1

2
log |jλλ(θ̂ψ)| − log |νλ,λ(θ̂ψ, θ̂; θ̂)| ,

where ℓIII
M

(ψ) coincides with (3).
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In prediction, a bias corrected version of log pe(x; ψ) as an estimate of T pr(ψ; θ0)
is obtained by Komaki (1996) and by Corcuera and Giummolé (2000), see formula
(6).

Finally, in model selection, (7) is obtained by subtracting from ℓ
P
(ψ) the esti-

mated bias given by (22) where θ∗ψ is replaced with θ̂ψ, ν0
λ,λ(θ∗ψ, θ∗ψ) with ν̂λ,λ(θ̂ψ, θ̂ψ)

and E0(jλλ(θ∗ψ)) with jλλ(θ̂ψ).
When the overall model M is correctly specified, in view of (25), we obtain the

following version of ℓ
TIC

(ψ)

ℓcs
TIC

(ψ) = ℓ
P
(ψ) − tr

{

jλλ(θ̂ψ)−1νλ,λ(θ̂ψ, θ̂ψ; θ̂)
}

. (29)

We note that (29) differs from (27) by a factor 1/2 affecting the correction term.

6 Adjusted profile loglikelihood from an optimal predictive

density

In a model with parameter θ, a predictive density calculated at x is proportional
to the estimated probability of observing the future data in a neighbourhood of x
in the light of data y observed from a model with the same unknown θ. On the
other hand, a likelihood function calculated at θ for data y is proportional to the
probability under θ of observing future data, generated as y, in a neighbourhood of
the observed y. Similarly, when a nuisance component is present in θ, we conjecture
that a (pseudo-)likelihood function for an interest parameter ψ should be related to
a predictive density calculated at the observed y in a submodel having parameter λ
with densities p(y; ψ, λ).

Example 1: Random sampling from a normal distribution.
Let us consider y = (y1, . . . , yn) as a random sample from a normal distribution with
unknown mean µ and fixed variance σ2. Let Ȳn be the sample mean. Let X1 be
an independent future observation from the same distribution. Based on the exact
pivot X1 − Ȳn, the predictive density of X1 is

p̂(x1; y, σ2) =
1√

2πσ
√

1 + n−1
exp

{

−1

2

(x1 − ȳn)2

σ2(1 + n−1)

}

,

i.e. normal with mean ȳn and variance σ2(1 + n−1).
We argue that this predictive density can be exploited to obtain an agreed pseudo-

loglikelihood for σ2, such as the modified profile loglikelihood. Note that, both in
prediction and in the likelihood context, elimination of the nuisance parameter µ is
required. We recall that the modified profile loglikelihood for σ2 is

ℓ
M

(σ2; y) = ℓ
P
(σ2; y) +

1

2
log σ2 ,

with

ℓ
P
(σ2; y) = −n

2
log σ2 − n

2

σ̂2
y

σ2
,
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where σ̂2
y is the MLE of σ2 based on y. Let θ0 = (µ0, σ

2
0). Then for σ2 − σ2

0 =

O(n−1/2),

ℓ
M

(σ2; y) = ℓ
P
(σ2; y) − 1

2

σ̂2
y

σ2
+ Op(n

−1/2) .

The predictive density of n independent copies of X1, i.e. of the random sample
X = (X1, . . . , Xn), is

p̂(x; y, σ2) =
n

∏

i=1

p̂(xi; y, σ2)

= (2π)−n/2(σ2)−n/2(1 + n−1)−n/2 exp

{

− 1

2σ2(1 + n−1)

n
∑

i=1

(xi − ȳn)2

}

.

Hence,

log p̂(x; y, σ2) = c−n

2
log σ2− 1

2σ2(1 + n−1)

n
∑

i=1

(xi−x̄n)2− 1

2σ2(1 + n−1)
n(ȳn−x̄n)2 .

Let σ̂2
x = n−1

∑n
i=1(xi − x̄n)2. Then,

log p̂(X; Y, σ2) = c − n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2
− 1

2σ2
n(Ȳn − X̄n)2 + Op(n

−1) .

Under θ0 the quantity n(Ȳn − X̄n)2 has the same distribution as 2σ2
0W , where W is

a chi-square on one degree of freedom. Therefore,

log p̂(X; Y, σ2) = c − n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2
− σ2

0

σ2
W + Op(n

−1) .

Moreover, using Eθ0(σ
2
0W ) = Eθ0(σ̂

2
x) + O(n−1),

Eθ0(log p̂(X; Y, σ2)) = Eθ0

(

c − n

2
log σ2 − n

2

σ̂2
x

σ2
+

1

2

σ̂2
x

σ2

)

− Eθ0(σ̂
2
x)

σ2
+ O(n−1)

= Eθ0

(

c − n

2
log σ2 − n

2

σ̂2
x

σ2
− 1

2

σ̂2
x

σ2

)

+ O(n−1)

= Eθ0(ℓM
(σ2; X)) + O(n−1)

= Eθ0(ℓM
(σ2; Y )) + O(n−1) .

The last identity follows from the fact that Y is a copy of X. This shows that the
pseudo-loglikelihood ℓ

M
(σ2) = ℓ

M
(σ2; y) for σ2 has the desired likelihood interpreta-

tion. In more detail, ℓ
M

(σ2) represents, up to constants, the log-probability, for the
tentative value σ2 of the parameter of interest, of observing future data, generated
as y, in a neighbourhood of the observed y.

Example 2: Random sampling from a gamma distribution.
Let us consider y = (y1, . . . , yn) as a random sample from a gamma distribution with
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unknown scale parameter λ and fixed shape parameter ψ. Let X1 be an independent
future observation from the same distribution, i.e. with density

p(x1; ψ, λ) =
1

Γ(ψ)
λψxψ−1

1 exp{−λx1} , x1 > 0 .

The MLE of λ with ψ fixed is λ̂ψ = λ̂ψ(y) = ψ/ȳn. Based on the exact pivot λ̂ψX1,
the predictive density of X1 may be expanded as (Vidoni, 1995, Example 4.2)

p̂(x1; y, ψ) = p(x1; ψ, λ̂ψ)

[

1 +
1

2nψ

{

λ̂2
ψx2

1 − 2λ̂ψ(ψ + 1)x1 + ψ(ψ + 1)
}

]

.

The modified profile loglikelihood for ψ is

ℓ
M

(ψ; y) = ℓ
P
(ψ; y) − 1

2
log ψ ,

where

ℓ
P
(ψ; y) = (ψ − 1)

∑

log yi − nψ + nψ log ψ − nψ log ȳn − n log Γ(ψ) .

Let θ0 = (ψ0, λ0). Then for ψ − ψ0 = O(n−1/2), and neglecting constants,

ℓ
M

(ψ; y) = ℓ
P
(ψ; y) − 1

2

ψ

ψ̂
+ O(n−1/2) ,

where ψ̂ = ψ̂(y). The predictive density of n independent copies of X1, i.e. of the
random sample X = (X1, . . . , Xn), is

p̂(x; y, ψ) =
n

∏

i=1

p̂(xi; y, ψ) .

Consequently,

log p̂(X; Y, ψ) = (ψ − 1)
∑

log Xi − n log Γ(ψ) − λ̂ψ(Y )
∑

Xi + nψ log λ̂ψ(Y )

+
∑ 1

2nψ

{

λ̂2
ψ(Y )X2

i − 2λ̂ψ(Y )(ψ + 1)Xi + ψ(ψ + 1)
}

+ Op(n
−1)

= ℓ
P
(ψ; X) − nψ(F − 1) + nψ log F

+
∑ 1

2nψ

{

λ̂2
ψ(Y )X2

i − 2λ̂ψ(Y )(ψ + 1)Xi + ψ(ψ + 1)
}

+ Op(n
−1) ,

where F = λ̂ψ(Y )/λ̂ψ(X) under θ0 = (ψ0, λ0) is distributed as the ratio of two
independent gamma variates with common shape parameter nψ0 and common unit
scale. As a consequence, Eθ0(F ) = 1 + (nψ0)

−1 + O(n−2) and Eθ0(log F ) = O(n−2).
Moreover, under θ0, we have λ̂ψ(Y ) = λψ + Op(n

−1/2) = ψλ0/ψ0 + Op(n
−1/2),

∑

Xi/n = ψ0/λ0 + Op(n
−1/2) and

∑

X2
i /n = ψ0(ψ0 + 1)/λ2

0 + Op(n
−1/2).

Hence, under θ0,

log p̂(X; Y, ψ) = ℓ
P
(ψ; X) − nψ(F − 1) + nψ log F +

ψ

2ψ0
− 1

2
+ Op(n

−1/2)
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so that, neglecting additive constants,

Eθ0(log p̂(X; Y, ψ)) = Eθ0(ℓP
(ψ; X)) − ψ

2ψ0
+ O(n−1)

= Eθ0

(

ℓ
P
(ψ; X) − ψ

2ψ̂

)

+ O(n−1)

= Eθ0(ℓM
(ψ; X)) + O(n−1)

= Eθ0(ℓM
(ψ; Y )) + O(n−1) .

The result suggested by the two examples above carries over in wide generality.
Let us consider prediction of X based on a random sample y = (y1, . . . , yn) from
Y = (Y1, . . . , Yn). We suppose that X is independent of Y and has n independent
and identically distributed components with X1 having the same distribution as Y1,
with density p(x1; ψ, λ). As before, we treat ψ as known. In the following the MLE
of λ with ψ fixed is λ̂ψ = λ̂ψ(y).

A predictive density of n independent copies of X1, i.e. a joint predictive density
of X, factorises as

p̂(x; y, ψ) =
n

∏

i=1

p̂(xi; y, ψ) ,

where p̂(xi; y, ψ) is a predictive density for Xi.

If expression (6) is used for p̂(xi; y, ψ), we get

log p̂(X; Y, ψ) =

n
∑

i=1

log pe(Xi; ψ)

+
n

∑

i=1

log

[

1 +
1

2

{

hrs(ψ, λ̂ψ(Y ); Xi) − Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

irs(ψ, λ̂ψ(Y ))

=
n

∑

i=1

log p(Xi; ψ, λ̂ψ(Y ))

+
1

2
irs(ψ, λ̂ψ(Y ))

n
∑

i=1

{

hrs(ψ, λ̂ψ(Y ); Xi) − Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

+ Op(n
−

Let us consider first the expansion of
∑n

i=1 log p(Xi; ψ, λ̂ψ(Y )) as a function of λ̂ψ(Y )

around λ̂ψ(X). We obtain

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y )) =
n

∑

i=1

log p(Xi; ψ, λ̂ψ(X))

+
(

λ̂ψ(Y ) − λ̂ψ(X)
)

r

n
∑

i=1

ℓr(ψ, λ̂ψ(X); Xi)

+
1

2

(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs

n
∑

i=1

ℓrs(ψ, λ̂ψ(X); Xi) + Op(n
−1/2) ,
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where
(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
=

(

λ̂ψ(Y ) − λ̂ψ(X)
)

r

(

λ̂ψ(Y ) − λ̂ψ(X)
)

s
. Above, the

first summand on the right-hand side is the profile loglikelihood for ψ based on X.
The second summand vanishes because it involves the likelihood equation for λ with
ψ fixed. Hence,

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y )) = ℓ
P
(ψ; X)−1

2

(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
jrs(ψ, λ̂ψ(X); X)+Op(n

−1/2) ,

where jrs(ψ, λ; x) = −∑n
i=1 ℓrs(ψ, λ; xi). Consider now that, using results in the

Appendix of Pace and Salvan (2005),
(

λ̂ψ(Y ) − λ̂ψ(X)
)

r
=

(

λ̂ψ(Y ) − λψ − λ̂ψ(X) + λψ

)

r

= irt(θψ; θ0)ℓt(θψ; Y ) − irt(θψ; θ0)ℓt(θψ; X) + Op(n
−1)

= irt(θψ; θ0) {ℓt(θψ; Y ) − ℓt(θψ; X)} + Op(n
−1) ,

while
(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs
= irt(θψ; θ0) {ℓt(θψ; Y ) − ℓt(θψ; X)} isu(θψ; θ0) {ℓu(θψ; Y ) − ℓu(θψ; X)}

+Op(n
−3/2)

= irt(θψ; θ0)i
su(θψ; θ0)

{ℓt(θψ; Y )ℓu(θψ; Y ) − ℓt(θψ; Y )ℓu(θψ; X)

−ℓt(θψ; X)ℓu(θψ; Y ) + ℓt(θψ; X)ℓu(θψ; X)} + Op(n
−3/2) .

Therefore, with θ0 = (ψ0, λ0),

Eθ0

[(

λ̂ψ(Y ) − λ̂ψ(X)
)

rs

]

= 2irt(θψ; θ0)i
su(θψ; θ0)νt,u(θψ, θψ; θ0) + O(n−2) ,

so that

Eθ0

[

(

λ̂ψ(Y ) − λ̂ψ(X)
) (

λ̂ψ(Y ) − λ̂ψ(X)
)⊤

]

= 2iλλ(θψ; θ0)νλ,λ(θψ, θψ; θ0)i
λλ(θψ; θ0)+O(n−2) ,

where the leading term is estimated by twice the sandwich estimate.
Moreover,

jrs(ψ, λ̂ψ(X); X) = irs(θψ; θ0) + Op(n
1/2) .

Hence,

Eθ0

{

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y ))

}

= Eθ0(ℓP
(ψ; X))

−irs(θψ; θ0)i
rt(θψ; θ0)i

su(θψ; θ0)νt,u(θψ, θψ; θ0) + O(n−1)

= Eθ0(ℓP
(ψ; X)) − irs(θψ; θ0)νr,s(θψ, θψ; θ0) + O(n−1)

= Eθ0(ℓP
(ψ; X)) − tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+ O(n−1) .

Note that

Eθ0

{

n
∑

i=1

log p(Xi; ψ, λ̂ψ(Y ))

}

= Eθ0(ℓ
cs
TIC

(ψ; X)) + O(n−1) .
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On the other hand,

irs(ψ, λ̂ψ(Y ))
n

∑

i=1

{

hrs(ψ, λ̂ψ(Y ); Xi) − Γt
rs(ψ, λ̂ψ(Y ))ℓt(ψ, λ̂ψ(Y ); Xi)

}

= irs(ψ, λ̂ψ(X))
n

∑

i=1

{

hrs(ψ, λ̂ψ(X); Xi) − Γt
rs(ψ, λ̂ψ(X))ℓt(ψ, λ̂ψ(X); Xi)

}

+ Op(n
−1/2)

= irs(ψ, λ̂ψ(X))

{

n
∑

i=1

lrs(ψ, λ̂ψ(X); Xi) +
n

∑

i=1

lr(ψ, λ̂ψ(X); Xi)ls(ψ, λ̂ψ(X); Xi)

−Γt
rs(ψ, λ̂ψ(X))

n
∑

i=1

ℓt(ψ, λ̂ψ(X); Xi)

}

+ Op(n
−1/2)

= irs(ψ, λ̂ψ(X))
{

−jrs(ψ, λ̂ψ(X); X) + ν̂r,s(θ̂ψ(X), θ̂ψ(X))
}

+ Op(n
−1/2)

= {irs(θψ; θ0) + O(1)}
{

−irs(θψ; θ0) + O(n1/2) + νr,s(θψ, θψ; θ0) + O(n1/2)
}

so that, neglecting additive constants,

Eθ0 {log p̂(X; Y, ψ)} = Eθ0(ℓP
(ψ; X)) − tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+
1

2
tr

[

νλ,λ(θψ, θψ; θ0)iλλ(θψ; θ0)
−1

]

+ O(n−1

= Eθ0 {ℓM
(ψ; X)} + O(n−1)

= Eθ0 {ℓM
(ψ; Y )} + O(n−1) .

7 Simulation results

7.1 Adjstments of profile likelihood based on model selection criteria

For model with nuisance parameters, inference about a scalar parameter of interest
ψ is often based on a pseudolikelihood function. In particular, the profile and the
modified profile loglikelihood can be used. There seems to be another route for
obtaining likelihood inference about an interest parameter, motivated in the model
selection approach. In particular, as pointed out in the previuos sections, a modified
profile likelihood can be defined through Akaike’s information criterion. Akaike’s
information criterion states that we adopt as final estimate the one which will give
the maximum expected loglikelihood, or the maximum of a suitable modification of
the profile loglikelihood function. In a similar manner, a modified profile likelihood
can be defined starting from model selection procedures based on simple cross-
validation techniques and on suitable predictive densities.

In this Section we discuss two examples. In particular, we perform Monte Carlo
experiments (based on 10,000 trials) with the aim of evaluating the finite-sample
properties of the estimators based on ℓcs

TIC(ψ), in comparison with MLE and the
estimators based on the modified profile likelihood. The estimators are compared
in terms of the usual centering and dispersion measures, i.e. bias (BI) and mean
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ψ̂P ψ̂AP ψ̂∗ ψ̂∗
A ψ̂TIC

bias 1.340 0.875 0.617 0.563 0.407
n = 5 sd 3.407 2.652 2.246 2.161 1.921

PU 0.292 0.405 0.467 0.494 0.559

bias 0.428 0.285 0.198 0.189 0.142
n = 10 sd 1.003 0.865 0.786 0.779 0.739

PU 0.368 0.452 0.502 0.507 0.534

bias 0.180 0.121 0.083 0.081 0.062
n = 20 sd 0.447 0.407 0.384 0.383 0.373

PU 0.376 0.440 0.482 0.483 0.509

bias 0.069 0.048 0.034 0.034 0.027
n = 50 sd 0.023 0.221 0.215 0.215 0.213

PU 0.426 0.462 0.493 0.493 0.504

bias 0.029 0.019 0.012 0.012 0.010
n = 100 sd 0.154 0.151 0.149 0.149 0.148

PU 0.472 0.501 0.501 0.501 0.502

Table 1: Comparison for the parameter ψ of the inverse Gaussian distribution.

square error (MSE), which depend on the parameterisation of the model, and also
in terms of the probability of underestimation (PU), that gives median bias. The
first example refers to a simple situation, where only one nuisance parameter is
present. The second example refers to situations where the dimension of the nuisance
parameter is large.

Example 1. Consider independent observations yi, i = 1, . . . , n, having an inverse
Gaussian distribution. The loglikelihood function is

ℓ(ψ, λ) =
n

2
log ψ − ψ

2λ2

n
∑

i=1

(yi − λ)2

yi
,

where λ > 0, ψ > 0. Let ψ be the parameter of interest. In this case, all the
quantities involved in the modified profile likelihoods for ψ (see e.g. Severini, 2000,
p. 335) are easy to compute.

Table 1 presents the results of a simulation study including in the comparison the
MLE, the estimator based on the modified profile likelihood, i.e. ψ̂AP , the estimator
based on the modified directed likelihood r∗(ψ) = 0 and its approximate closed form
expression (see Giummolè and Ventura, 2002), and the estimator based on ℓcs

TIC(ψ),

i.e. ψ̂TIC . It can be noted that, in this situation with a scalar nuisance parameter,
the estimator ψ̂TIC behaves surprisingly well, compared to the estimator based on
the modified profile likelihood and to ψ̂∗ and ψ̂∗

A. Also different reparameterisations
where considered in the simulation studies, and similar results to those given in
Table 1 where found.

Referring to the construction of confidence regions, we perform a Monte Carlo
experiment whose objective is to evaluate the accuracy of the confidence regions.
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1 − α W
P

WAP r∗ WTIC

0.90 0.819 0.886 0.897 0.907
n = 5 0.95 0.891 0.938 0.949 0.959

0.99 0.968 0.989 0.991 0.991

0.90 0.869 0.895 0.903 0.904
n = 10 0.95 0.926 0.949 0.952 0.955

0.99 0.981 0.989 0.990 0.991

0.90 0.875 0.896 0.899 0.903
n = 20 0.95 0.941 0.948 0.949 0.948

0.99 0.986 0.988 0.990 0.991

0.90 0.892 0.900 0.900 0.900
n = 50 0.95 0.947 0.951 0.949 0.948

0.99 0.987 0.989 0.990 0.989

Table 2: Comparison for the parameter ψ of the inverse Gaussian distribution.

Table 2 shows the results of a Monte Carlo experiment (based on 10,000 trials)
that compares confidence intervals for ψ based on the loglikelihood ratio statistics
derived from the profile loglikelihood, W

P
(ψ), from the modified profile loglikelihood,

WAP (ψ), from the Akaike modified loglikelihood, WTIC(ψ), and on the modified
directed likelihood, r∗(ψ). ¿From Table 2 we can see that inference based on r∗(ψ)
is accurate for very small sample sizes, and that WAP (ψ) and WTIC(ψ) give quite
similar results.

Example 2. Let yij , for i = 1, . . . , q and j = 1, . . . , m, be independent independent
gamma random variables with Yij having density

p(y; ψ, λi) =
λψ

i

Γ(ψ)
exp{−λiy}yψ−1 .

Let ψ be the parameter of interest and λ1, . . . , λq be nuisance parameters. Also in
this case, all the quantities involved in the modified profile likelihoods for ψ are easy
to compute.

Table 3 summarize the results of a simulation study based on 10,000 replications.
The estimator ψ̂, the estimator based on the modified profile likelihood ψ̂AM and
the estimator based on ℓcs

TIC(ψ), i.e. ψ̂TIC are compared both in terms of bias and
MSE. Various values of m and q are considered.

It can be noted that, in this situation with many nuisance parameters, the esti-
mator ψ̂TIC behaves well when q is small. However, when q increases, the estimator
based on the modified profile likelihood becomes preferable according to the MSE.

7.2 Model selection based on adjusted profile likelihoods

Paralleling the previous section, the aim of this section is to assess the behaviour of
the modified profile loglikelihood in order to the select the best model. To this end,
in this Section we discuss an example concerning two simple exponential models (as
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ψ̂P ψ̂AP ψ̂TIC

m = 5 bias 1.22 0.83 0.45
q = 1 MSE 37.58 23.82 13.26

m = 10 bias 0.37 0.25 0.14
q = 1 MSE 0.77 0.58 0.43

m = 3 bias 1.985 1.421 0.895
q = 3 MSE 3.987 1.545 0.400

m = 3 bias 1.514 1.104 0.727
q = 10 MSE 0.503 0.123 0.111

m = 3 bias 1.467 1.072 0.710
q = 15 MSE 0.343 0.064 0.103

m = 5 bias 1.220 1.027 0.841
q = 20 MSE 0.079 0.021 0.037

m = 5 bias 1.203 1.013 0.831
q = 50 MSE 0.053 0.0081 0.0333

Table 3: Comparison for the parameter ψ of the gamma distribution.

in Clayton, et al., 1986). A Monte Carlo experiment was performed to compare
model selection rates of the following procedures: the modified profile loglikelihood,
the AIC and the optimal predictive density of Vidoni (2000).

Let us suppose that there are two plausible statistical models, based on the
simple exponential distribution, for describing a dichotomously labelled set of data
y = (y1, y2) = (y1,1, . . . , y1,n1 , y2,1, . . . , y2,n2), where n1 + n2 = n. Under the first
model (M1) the sample y is distributed with density p(y; λ) = λ exp(−λy), y ≥ 0,
λ > 0. Thus, the sampling distribution does not depend on the label. Under the
second model (M2) the label is assumed to be relevant so that yi, i = 1, 2, is a random
sample from an exponential distribution with density p(y; λi) = λi exp(−λiy), with
λ1 6= λ2. Moreover, y1 and y2 are independent.

The estimates of the probabilities of correct selection are obtained by considering
10,000 samples for each sample size n = 4, 8, 12, 20, with n1 = n2. Different param-
eter configurations are considered, by fixing λ1 = 1 and setting λ2 = 1, 1.5, 2, 2.5.
The configuration λ1 = λ2 = 1, clearly means that the model M1 is true, while
the situation λ1 = 1 and λ2 6= 1 refers to the model M2. The estimates are given
in Table 4. Our choices of λ2 and n were suggested by the simulation studies of
Clayton et al. (1986) and Vidoni (2000).

Inspection of the table gives an idea on the behaviour of the three alternative
criteria in this particular selection problem. The classical TIC procedure for model
selection performs better than the two other proposals under M1, i.e. when λ1 =
λ2 = 1. The TIC makes more correct selections under M1, but this is not true under
M2. In fact, under model M2 the criterion based on the modified profile loglikelihood
has a better behaviour.

Although a number of other simulation studies are needed for a deeper analysis,
these preliminary results amphasise that the modified profile loglikelihood gives rise
to a model selection procedure which is competitive with the existing criteria.
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n ℓAP ℓV ID ℓTIC

4 0.602 0.743 0.832
λ2 = 1 8 0.635 0.798 0.835

12 0.657 0.816 0.845
20 0.677 0.834 0.886

n ℓAE ℓV ID ℓAIC

4 0.550 0.400 0.231
λ2 = 1.5 8 0.559 0.401 0.296

12 0.594 0.435 0.361
20 0.681 0.530 0.464

n ℓAE ℓV ID ℓAIC

4 0.717 0.590 0.339
λ2 = 2 8 0.786 0.672 0.502

12 0.857 0.762 0.624
20 0.935 0.874 0.800

n ℓAE ℓV ID ℓAIC

4 0.834 0.734 0.441
λ2 = 2.5 8 0.916 0.852 0.668

12 0.961 0.925 0.802
20 0.989 0.977 0.934

Table 4: Estimated probabilities of correct selection between populations specified
by p1 = e−x and p2 = λ2e

−λ2x for three selection criteria.
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