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Abstract: In the presence of nuisance parameters, we discuss a one-parameter Bayesian
analysis based on a pseudo-likelihood assuming a default prior distribution for the parameter
of interest only. Although this way to proceed cannot always be considered as orthodox in
the Bayesian perspective, it is of interest to evaluate whether the use of suitable pseudo-
likelihoods may be proposed for Bayesian inference. Attention is focused in the context of
regression models, in particular on inference about a scalar regression coefficient in various
multiple regression models, i.e. scale and regression models with non-normal errors, non-
linear normal heteroscedastic regression models, and log-linear models for count data with

overdispersion. Some interesting conclusions emerge.
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1 Introduction

Consider a statistical model indexed by a parameter 8 which may be written as
0 = (v, \), where v is the parameter of interest and A is a nuisance parameter. In
general, both ¢ and A\ may be vectors, although often 1 is a scalar. In the absence
of nuisance parameters, inference about v is easy to perform both in the likelihood
and in the Bayesian approaches. However, the presence of A often makes inference
about v difficult and elimination of nuisance parameters is of central interest. In
this case, Bayesian inference requires to assume a prior distribution 7(AJy)) for A
given v, and to determine the integrated likelihood (see e.g. Berger et al., 1999)

L) = /A L Nr(A)dA | (1)

where L(1, ) denotes the complete likelihood function based on data y. Function
L(%)) is then combined with the marginal prior for ¢ to obtain its posterior distribu-
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tion. This procedure for eliminating A has some well-known optimality properties.
However, the elicitation of 7(A1)) may be difficult to state precisely both in the
subjective and objective Bayesian contexts and computation of the integral in (1)
can be heavy when the parameter spaces are high-dimensional. Examples, where
both drawbacks can arise, are regression problems when variable selection is of in-
terest. In this case, the parameter of interest is a regression coefficient and the
nuisance parameter is given by the remaining regression coefficients and by variance
parameters.

In the frequentist likelihood approach, elimination of nuisance parameters may
be carried out using appropriate pseudo-likelihoods. A pseudo-likelihood L,s(v))
is a function of the parameter of interest only, and of the data, with properties
similar to those of a genuine likelihood function. Examples of pseudo-likelihoods
for a parameter of interest are the marginal, the conditional, the profile, the quasi-
likelihoods, and modifications thereof. See Severini (2000, Chapters 8 and 9) for a
review.

The aim of this contribution is to discuss, from a pratical point of view, in the
context of regression models, a one-parameter Bayesian analysis based on a pseudo-
likelihood Lps(7)) assuming a default prior distribution for ¢ only. This approach
avoids the need for the detailed attention to the nuisance parameter as would be
required in a global Bayesian approach based on the integrated likelihood (1). Al-
though this way to proceed cannot always be considered as orthodox in the Bayesian
perspective, it is of interest to evaluate whether the use of suitable pseudo-likelihoods
may be proposed for Bayesian inference. However, it is natural to ask when a likeli-
hood function other than the density which the data are assumed to be generated can
be used as the likelihood portion in a Bayesian analysis. It may be noted that since
the pseudo-likelihood functions considered here have first-order properties similar to
a proper likelihood function, the resulting pseudo-posterior distribution is approxi-
mately normal with mean given by the maximum of L,s(-) and variance related to
minus the second derivative of the pseudo loglikelihood. Moreover, Monahan and
Boss (1992) and Severini (1999) provide two criteria for evaluating whether or not
an alternative likelihood is proper for Bayesian inference. Related work in this area
is in Efron (1993), Bertolino and Racugno (1994), Fraser and Reid (1996), Fraser
et al. (2003), Lazar (2003), Pace et al. (2005). We focus attention on inference
about a scalar regression coefficient %, in various multiple regression models. In
particular, we consider three classes of models: (i) scale and regression models with
non-normal errors; (i7) non-linear normal heteroscedastic regression models; (ii7)
log-linear models for count data with overdispersion. While the first two situations
focus on parametric statistical models, where the full likelihood function is available,
the last one concerns a semi-parameteric model.

2 Pseudo-likelihoods for a parameter of interest

In frequentist likelihood inference, a pseudo-likelihood Lys(7)) is a function of the
data and 1 only, which shares some of the properties of a genuine likelihood function.
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A notable instance is the profile likelihood
Ly(W) = L(w, Ay) | (2)

where ;\w denotes the maximum likelihood estimate of A for fixed ¥. However, it is
well-known that this solution may be unsatisfactory, particularly when the dimension
of the nuisance parameter is large relative to the sample size n.

In the following, we briefly present three pseudo-likelihoods that are preferable to
Ly(v) in models (), (i¢) and (i4i), respectively. All these pseudo-likelihood functions
have the standard limiting behaviour and the corresponding pseudo-likelihood-type
ratio statistics have the classical asymptotic distribution.

Even if the computation of these pseudo-likelihoods may seem rather compli-
cated, it can be implemented in modern statistical environments, such as R. More-
over, a recently developed library for higher-order asymptotics (HOA, 2000) imple-
ments higher-order solutions, including some pseudo-likelihoods.

2.1 The marginal likelihood

An approach to constructing a pseudo-likelihood function for %) is to base a likelihood
function on the distribution of a statistic a with marginal distribution depending on
1 only. Clearly, the resulting marginal likelihood function is a genuine likelihood
function for . More precisely, suppose there exists a statistic a such that the density
of the data y may be written as

p(y; ¥, N) = pla;¥)plyla; ¥, A) .

Inference about ¥ may be based on the marginal likelihood function given by

Lin(¢) = Lim(¢;a) = pa; ) ,

provided that p(y|a; ¥, \) does not contain useful information about ).

A marginal likelihood always exists when the parameter of interest is the index
parameter of a composite transformation model, with A having the role of the group
parameter. In this case the maximal invariant statistic plays the role of a. Then,
the marginal likelihood is (see e.g. Barndorff-Nielsen and Cox, 1994, Section 2.8)

Lon() = Ly () = /A L, Ndu(N), (3)

where p(\) is the right-invariant Haar measure on the group of transformations,
whose action on the parameter space leaves ) unchanged. Note that L,,(¢)) may be
interpreted as the integrated likelihood with respect to the prior p(\).

Composite transformation models include scale and regression models (i) as a
special case. The use of a marginal likelihood of form (3) for model selection between
separate scale and regression models has been discussed in Pace et al. (2005).
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2.2 The modified profile likelihood

Function L, (1) can only be applied in special circumstances. For instance, it cannot
be computed for non-linear heteroscedastic regression models (ii). There exist other
pseudo-likelihood functions that are generally applicable and which lead to accurate
inferences on 1 when the dimension of the nuisance parameter is large with respect
to the sample size. Given the profile likelihood function (2), a modified profile
likelihood Ly, (1) for 1) has the general form

Linp(9) = Lp($)M(¢) (4)

where M (1)) is a suitable correction factor; see, for instance, Barndorff-Nielsen and
Cox (1994, Chapter 8), Severini (2000, Chapter 9) and Fraser (2003). All the pro-
posed adjustments are equivalent to second order and share the common feature of
reducing the score bias to O(n~1). It can be shown that the modified profile like-
lihood (4) is a higher-order approximation to a conditional likelihood or marginal
likelihood, when either exists. For more general justifications, see Severini (1998)
and Pace and Salvan (2005).

Severini (1999) discusses the interpretation of a version of Ly, (1)) as an inte-
grated likelihood. Moreover, if 7(6) is a prior density for 6, the use of analytical
approximations for integrals gives the following expansion for the posterior distri-
bution

T(15y) o Ly () (40, Ay ) {1+ O(n 1)} ()

see for instance Reid (1995, 2003).

2.3 The quasi-profile likelihood

In many situations inference based on estimating equations is preferable to a fully
parametric specification. This is the case for example in the context of generalized
linear models with overdispersion or with random effects. For inference about a
scalar parameter of interest, extending (4) in the estimating functions setting, a
modified quasi-profile likelihood can be defined, with the standard limit behaviour.

Let Gy = Gy(y;0) and Gy = G(y;0) be unbiased estimating functions corre-
sponding to ¥ and A, respectively, and let 5\¢ be the estimator derived from G
when 9 is considered as known, i.e. the solution of G (y;, 5\1/,) = 0. In this setting,
for inference about ¥ a modified quasi-profile loglikelihood can be considered (see
Bellio et al., 2005),

ban) = [t 20) (Gt 2 = it 30) ©)

where 1 is an arbitrary constant. The scale adjustement is necessary to obtain
modified quasi-profile likelihood-type tests based on (6) with the classical asymptotic
distribution, while the additive adjustment is a first-order bias correction of the
profile estimating equation for ¢. Indeed, Gy (y;, S\w) is not unbiased and such a
bias can lead to poor inference on the parameter of interest.
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3 Examples

With an objective prior (%) for the interest regression coefficient 3* only, a one-
parameter Bayesian inference based on a pseudo-likelihood Ly,(-) may be carried
out with

Wps(ﬂ*;y) X ﬂ-(ﬂ*)Lps(ﬂ*) > (7)

without any integration of form (1).

There are three main interesting cases in which (7) may be useful: (a) we are
able to assign a prior distribution for the parameter of interest, but not for some
or all the nuisance parameters; (b) it is difficult to explicit the full likelihood; (c)
the parameter space of the nuisance parameter is high dimensional. In this section
we present three examples indicanting how the pseudo-posterior distribution (7)
proceeds for variable selection.

Ezxzamplel: Non-normal linear regression models
Let us consider a scale and regression model

y=XpB+o¢, (8)

where X is a n x p matrix of rank p, 8 € IRP is a vector of regression coefficients,
o > 0 is a scale parameter, and ¢ is a vector of errors, with components (e1,...,&,)
independent and identically distributed according to a density p,(-) not necessarily
normal. Popular assumptions for p(-) include the normal, Student’s ¢, extreme
value, logistic, skew-normal and Cauchy distributions.

Let 8* be a scalar component of 8. If ) = 3* /o is considered as the parameter
of interest, the model is a composite transformation family with index parameter
®. The maximal invariant statistic a can be written as a = (aq,...,a,), where
a; = (y; —x;(_*)ﬁ(**))/&, B=*) is the vector 8 without its 4* component, (B(**)ﬁ)
is the maximum likelihood estimate of (6(~*) ¢) and x;(,*) is the ith row of X

without the component associated to 6*, ¢ = 1,...,n. Then, the marginal likelihood
for 1) based on a (see Fraser, 1979, Section 6.2) is

L) = [ [ o LE.0) a8 dr 0

where (* is expressed as tpo. The marginal likelihood (9) has a Bayesian inter-
pretation: it is an integrated likelihood for ¢ using the Jeffreys prior density is
w(B,0) « 1/o. Moreover, some calculations show that the posterior distribution
derived from (9), i.e. Ty (¢;a) o< (1)) L (¢)), corresponds exactly to the posterior
distribution 7(¢;y) derived from the integrated likelihood (1) based on the com-
plete distribution of the data y and on the conditional prior 1/0. Indeed, with
A= (3%, 5) and data y represented by (B(**), d,a), we have

/mm@mAwMWMAz&l,
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so that
) o m() / p(y: 6, N (Al)dA

= n()pla;p) / p(yla; b, Nm(Alb)dA
o w(P)pla; ) o< (s a) .

In view of this, for non-normal regression models there is no loss of information about
Y in using a posterior distribution 7,,(1;a) derived from the marginal likelihood
instead of the proper posterior distribution m(;y). This seems to be a general
property in composite transformation models (see also Reid, 1995, Section 5).

Both the marginal and the integrated likelihoods do not have an explicit analytic
solution because the integrals involved must be solved numerically. Note that the
marginal likelihood (9) can be computed in a closed form only for normal linear
models (Fraser, 1979). However, higher-order likelihood theory applies rather natu-
rally to this context and allows us to by-pass higher-order numerical integration. In
particular, an approximation to the marginal likelihood function (and similarly to
an integrated likelihood) is of the form

Lin($) = Lnp()(L + O(n ™)) (10)

where the correction term M () of the modified profile likelihood Ly, (1) is very
simple to compute (see, e.g., Pace et al., 2005). This function is available through
the marg library section of the S-Plus and R library HOA (HOA, 2000).

Ezxzample 2: Nonlinear heteroscedastic regression models.
We consider the general nonlinear heteroscedastic model (see e.g. Seber and Wild,
1989)

where ¢ is the number of design points, m; is the number of replicates at design
point x;, the variable y;; represents the response of the jth experimental unit in the
ith group, and the errors ¢;; are independent N (0, 1) random variables. The mean
response is given by the nonlinear function u(z;; 3), called the mean function, that
depends on an unknown p-dimensional regression coefficient #. The definition of
the model is completed by specifying the variance function V(z;; 3, p), where p is a
vector of variance parameters.

Inference focuses on a scalar component of the unknown regression parameter.
As outlined in Bellio and Brazzale (1999), first-order likelihood methods can be
highly inaccurate, especially when the variance function V() depends on 3. On the
contrary, in such a situation, the modified profile likelihood of form (4) can give
accurate inferences. For nonlinear heteroscedastic models this function is imple-
mented in the nlreg library section of the S-Plus and R library HOA (HOA, 2000).
The expression for the correction factor M (1) of the modified profile likelihood in
(4) is in this case simple to compute.
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Figure 1: Posterior distributions for the Weed data: (81;y) (dashed), mmp(B1;y) (solid), mp(B1;v)
(dotted).

To show a first application of (7) based on (4) we consider a real data set.
In bioassays, a typical experiment is devoted to establish a dose-response relation
by measuring the growth of a plant corresponding to different levels of doses of
herbicide. The Weed Data (Seiden et al., 1998) concern the callus area of a tis-
sue culture of Brassica napus corresponding to different doses of a sulfonylurea
herbicide. The experiment consists of ¢ = 8 doses of and 5 replications at each
level. The mean function is the four parameter log-logistic function u(z;3) =
log (81 + (B2 — B1)/(1 + (x/B1)P*)), and the variance function is V(z;7,0) = o(1 +
27)2. Figure 1 shows the posterior distributions for 4; combining independent non-
informative priors with L;(41) (Laplace approximation), Ly(41) and Ly,,(61), as
discussed in Bellio and Brazzale (1999). All the posteriors give approximately the
same posterior mode for (1: 137.83 from m,,,(51;y), 138.92 from m,(51;y) and 136.83
from 7 (f51;y).

Let us consider a second example based on a real data set given in Belanger
et al. (1996). The data concern a run of a radioimmunoassay to estimate the
concentrations of a drug in samples of procine serum. The experiment consists of
16 observations made at 8 different drug levels with 2 replications at each level.
The mean function is the four parameter logistic function u(x;3) = (1 + (B2 —
B1)/(1+(x/34)P?), and the variance function is V (z; 8, v, o) = exp(o)u(x; 3)7, where
p = (0,7), with o,y € IR. Figure 2 shows the posterior distributions for 54 combining
independent non-informative priors with L;(84) (Laplace approximation), Ly(84)
and Ly,,(B4). All the posteriors give approximately the same posterior mode for §;:
334.95 from 7y, (Ba;y), 335.46 from mpy(f4;y) and 3332.93 from 7(54;y).

Finally, we consider a simpler non-linear model with mean function u(z;3) =
Bo(1 — exp(—pF1x)) and variance function is V(z;0) = 0. Data have been generated
with n = 10, 20,50 and with Gy = 4.3, #; = 0.2 and ¢ = 0.27. Figure 3 shows the
posterior distributions for By combining independent non-informative priors with
L1(Bo) (Laplace approximation), Ly,(6o) and Ly,(8p). Note that all the posterior
distributions give approximately the same posterior mode for 3y, for all the values
of n considered.
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posterior

325 330 335 340 345
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Figure 2: Posterior distributions for the Ria data: m(84;y) (dashed), mmp(Bs;y) (solid), mp(Ba; y)
(dotted).

(a) (b) ()

Figure 3: Posterior distributions for simulated data with n = 10 (a), n = 20 (b), n = 50 (c):
7(Bo;y) (dashed), mmp(Bo;y) (solid) and mp(Fo;y) (dotted).

Ezxample 3: Models for count data with overdispersion.

Let us consider a log-linear model for count data. The responses y; are realizations
of independent random variables with mean u; = exp(x]3), 8 € RP,p > 1, i =
1,...,n. In many applications with discrete data, overdispersion can be encountered.
Let us focus on the situation where the variance is assumed to be a quadratic function
of p; of the form V(z;; 6,a) = wi(1 + ap;), @ > 0. In this case, the estimating
function for /3 is the score function from the Poisson likelihood G(y; 8) = > i (yi—
i)z}, which still provides an unbiased estimating equation. An estimating function

for avis Go(y; B, 0) = > 01, % — (n —p), as shown in Lawless (1987).

The use of Lyqp(1) allows us to quantify the consequences of overdispersion for
inference on a regression coefficient (see Bellio et al., 2005). We apply this procedure
to the Ames Salmonella data, already analysed by Lawless (1987). The response is
the number of revertant colonies observed on a plate, and covariates are based on
the dose level of quinoline on the plate (z). We assume the following model for the
response log(u;) = Bo+ Brx;+ B2 log(x; +10), 4 = 1,...,18, where the interest lies on
1) = (5. Figure 4 gives the posterior distribution for J obtained, with independent
non-informative prior distributions, using the modified quasi-profile likelihood. In
such a situation, a comparison with an integrated likelihood of form (1) is not easy
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Figure 4: Posterior distribution for the Ames Salmonella Data using the modified quasi-profile
likelihood.

to perform, since the complete likelihood for (3, «) is not available.

4 Discussion

From the examples discussed in the previous section, some interesting features
emerge.

(1) For non-normal regression models, there is no loss of information about v in
using a posterior distribution derived from the marginal posterior m,,(1;a)
instead of the proper posterior distribution 7(¢; y) based on a noninformative
prior.

(2) In the context of nonlinear heteroscedastic models, it emerges that all the
posterior distributions give approximately the same posterior mode. On the
other hand, the posterior based on Ly,,(1) appears to have lighter tails. This
point needs further investigation. For example, more accurate computation of
the integrated likelihood should be considered.

(3) Suitable pseudo-likelihoods may be very useful to deal with semi-parametric
models, i.e. when the full likelihood is not available..

From the Bayesian point of view, the examples presented in this contribution indi-
cate that non-Bayesian methods for eliminating nuisance parameters can be usefully
incorporated into a one-parameter Bayesian analysis.
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