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Abstract: Higher-order adjustments for a quasi-profile likelihood for a scalar parameter of

interest in the presence of nuisance parameters are discussed. Paralleling likelihood asymp-

totics, these adjustments aim to alleviate some of the problems inherent to the presence of

nuisance parameters. Indeed, the estimating equation for the parameter of interest, when

the nuisance parameter is substituted with an appropriate estimate, is not unbiased and such

a bias can lead to poor inference on the parameter of interest. Following the approach of

McCullagh and Tibshirani (1990), here we propose adjustments for the estimating equation

for the parameter of interest. Moreover, we discuss two methods for their computation: a

bootstrap simulation method, and a first-order asymptotic expression, which can be simpli-

fied under an orthogonality assumption. Some examples, in the context of generalized linear

models and of robust inference, are provided.
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1 Introduction

Consider a sample y = (y1, . . . , yn) of n independent observations with distribution
function F (y; θ), θ ∈ Θ ⊆ IRp, p > 1. Let θ be partitioned as θ = (τ, λ), into a scalar
parameter of interest τ and a (p − 1)-dimensional nuisance parameter λ. Inference
about τ only, based on the observation of y, is a widely encountered problem.

The common approach for classical parametric inference about τ is to resort to
the profile loglikelihood for τ , given by

ℓP (τ) = ℓ(τ, λ̂τ ) =
n

∑

i=1

ℓ(τ, λ̂τ ; yi) , (1)

where ℓ(θ) = ℓ(τ, λ) denotes the loglikelihood function for θ and λ̂τ is the maximum
likelihood estimate (MLE) of λ for fixed τ . Function (1) is then treated as an
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ordinary likelihood for inference about τ . However, it is well-known that nuisance
parameters may cause difficulties for inference on τ based on (1), particularly when
the dimension of λ is large relative to the sample size n. Several examples, such as
the estimation of the variance in a normal-theory linear model, suggest that the bias
of the profile score as an estimating function for τ can be substantial. To avoid these
drawbacks, a general approach is to consider modifications of (1), which attempt to
adjust it for nuisance parameters. Various modifications of the profile likelihood
have been proposed over the past twenty years; see, for instance, Barndorff-Nielsen
and Cox (1994, Chap. 8) and Severini (2000, Chap. 9). All these adjustments are
equivalent to second order and share the common feature of reducing the score bias
to O(n−1) (DiCiccio et al., 1996).

Reduction of the score bias is the key basic motivation for adjusting the profile
loglikelihood in McCullagh and Tibshirani (1990). Their goal is to modify (1) so
that the mean of the score function is zero and the variance of the score function
equals its negative expected derivative matrix. The resulting estimating function
has an improved asymptotic behaviour.

Complementary to likelihood-based procedures, in many situations of practical
interest it can be preferable to base inference on estimating equations. This is true,
for example, in the context of robustness theory when stability with respect to small
deviations from the assumed model is required (see Hampel et al., 1986), or in the
context of generalized linear models with overdispersion or random effects (see Mc-
Cullagh and Nelder, 1989). For inference about τ , extending (1) in the estimating
functions setting, a quasi-profile loglikelihood function can be defined, with the stan-
dard limiting behaviour (Barndorff-Nielsen, 1995; Fraser et al., 1997; Adimari and
Ventura, 2002). This approach leads to a profile-type estimating function for τ that
has bias of the same order as the profile score function. Several methods to modify
an estimating function for the parameter of interest and reduce its bias have been
proposed. They include Severini (2002), Wang and Hanfelt (2003) and Jørgensen
and Knudsen (2004). However, all these authors focus only on the reduction of the
bias of the profile estimating function and do not consider likelihood-based proce-
dures associated to them.

The primary goal of this paper is to discuss modifications of the quasi-profile log-
likelihood. The aim is to adjust the estimating function for τ , when λ is substituted
with a suitable estimate, so that it is both unbiased and information unbiased. Two
methods for the calculation of the adjustments, one exact and the other approximate,
are discussed. The first method uses parametric bootstrap to estimate the moments
of the estimating function for τ . The estimated moments are then used to centre and
rescale the estimating function for τ . The approximate adjustment is based on first-
order asymptotic expressions for the moments of the derivatives of the estimating
function for τ . In both these cases, the modified quasi-profile loglikelihood is then
given by the integral of the adjusted estimating function and the result aims at cor-
recting the quasi-profile loglikelihood in a manner similar to the ordinary modified
profile loglikelihood. On the practical side, the use of adjusted quasi-likelihood ratio
statistics may lead to coverage probabilities more accurate than those pertaining to
Wald-type or score-type confidence intervals. This was noted by several authors for
likelihood-based procedures in important classes of models; see Hanfelt and Liang
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(1995, 1998) and references therein.

The outline of the paper is as follows. Section 2 introduces unbiased estimating
equations and quasi-profile loglikelihoods. Section 3 discusses the exact modifica-
tion of the quasi-profile loglikelihood, while the approximate adjustments are given
in Section 4. Section 5 and 6 discuss some examples and some final remarks, respec-
tively.

2 Background theory

Let θ̃ be an estimator for θ defined as a root of the unbiased estimating equation
Ψ(y; θ) =

∑n
i=1 ψ(yi; θ) = 0, where ψ : Y × Θ → IR is a given function, such

that Eθ{Ψ(Y ; θ)} = 0. In the following, we shall write Ψθ and ψθ for Ψ(y; θ) and
ψ(y; θ), respectively. Under broad conditions assumed throughout this paper (e.g.,
Barndorff-Nielsen and Cox, 1994, Sec. 9.2), θ̃ is consistent and asymptotically normal
with mean θ and variance V (θ) = M(θ)−1Ω(θ)M(θ)−T , where M(θ) = −Eθ(Ψθ/θ),
Ω(θ) = V arθ(Ψθ) = Eθ(ΨθΨ

T

θ ), and the symbol / as a subscript indicates differ-
entiation. Large-sample tests and confidence regions for θ can be constructed in a
standard way using a consistent estimate of V (θ).

When θ is partitioned as θ = (τ, λ), the estimating equation Ψθ is similarly
partitioned as (Ψτ ,Ψλ), where Ψτ = Ψτ (y; θ) and Ψλ = Ψλ(y; θ) are the estimating
functions corresponding to τ and λ, respectively. This means that, for instance, if λ
is known, Ψτ may be used as an estimating function for τ . Let λ̃τ be the estimator
derived from Ψλ when τ is considered as known, i.e. the solution of Ψλ(y; τ, λ̃τ ) = 0.

When inference about τ based on a pseudo-likelihood function is desired, a quasi-
profile loglikelihood for τ can be considered (see Adimari and Ventura, 2002), given
by

ℓQP (τ) =

∫ τ

τ0

w(t, λ̃t)Ψτ (y; t, λ̃t) dt , (2)

where τ0 is an arbitrary constant and, using index notation,

w(τ, λ) =
−νττ − κbaντaνbτ

Eθ(Ψ2
τ ) + 2ντaκbaEθ(ΨτΨb) + ντaντbκcaκdbEθ(ΨcΨd)

. (3)

In the former expression, the components of λ and Ψλ are denoted by λa and Ψa,
respectively, and the derivatives of Ψτ and Ψa with respect to the components
of λ are Ψτ/a = (∂/∂λa)Ψτ , Ψτ/ab = (∂2/∂λa∂λb)Ψτ , Ψa/b = (∂/∂λb)Ψa, and

Ψa/bc = (∂2/∂λb∂λc)Ψa, etc, where a, b, c = 1, . . . , p− 1. Moreover, ντa = Eθ(Ψτ/a),

ντab = Eθ(Ψτ/ab), νab = Eθ(Ψa/b) and νabc = Eθ(Ψa/bc), etc, and κab is the inverse
matrix of −νab. The scale adjustment w(τ, λ) is obtained so that the rescaled profile
estimating equation w(τ, λ̃τ )Ψτ (τ, λ̃τ ) has bias and information bias of order O(1),
as for the ordinary profile score function. It must be noted that by multiplying Ψτ

by the factor w(τ, λ), the estimator τ̃ of τ does not change. In practice, the scale
adjustment (3) is necessary to obtain quasi-profile loglikelihood-type tests based on
(2) with the classical asymptotic distribution.
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The quasi-profile loglikelihood (2) has properties similar to the ordinary profile
loglikelihood ℓP (τ). In particular, for setting quasi-likelihood confidence regions or
for testing hypotheses, the quasi-likelihood ratio

WQP (τ) = 2{lQP (τ̃) − lQP (τ)} (4)

may be used. Under the null hypothesis and usual regularity conditions, WQP (τ) is
approximately χ2

1 distributed.
We note here that Hanfelt and Liang (1995) provided a quasi-likelihood ratio

test statistic having the standard χ2
1 asymptotic distribution, of the form

WHL(τ) = 2ξ(τ̃ , λ̃) {Q(τ̃ ) −Q(τ)} , (5)

where Q(τ) =
∫ τ
τ0

Ψτ (y; t, λ̃t) dt and ξ(τ, λ) is a suitable function. The two versions
(4) and (5) are actually asymptotically equivalent. Indeed, note that (2) can be
recast in the asymptotically equivalent form ℓQP (τ) = w(τ̃ , λ̃)

∫ τ
τ0

Ψτ (y; t, λ̃t) dt.
From the latter expression, we obtain a quasi-likelihood ratio test of the form (5),
with w(τ̃ , λ̃) playing the role of ξ(τ̃ , λ̃).

3 A modification of the quasi-profile likelihood

Since λ has to be estimated, similarly to the usual profile loglikelihood function, the
quasi-profile loglikelihood (2) does not behave exactly like an ordinary loglikelihood.
In particular, in small samples, ℓQP (τ) does not take properly into account sampling
variability of λ̃τ . For the usual profile loglikelihood ℓP (τ) various modifications have
been proposed (see, e.g., Barndorff-Nielsen and Cox, 1994, Chap. 8, and Severini,
2000, Chap. 9), leading to modified profile loglikelihoods of the form

ℓMP (τ) = ℓP (τ) +M(τ) , (6)

where M(τ) is a suitable smooth function having derivatives of order Op(1).
Here we discuss modifications of ℓQP (τ), motivated as in McCullagh and Tibshi-

rani (1990). The modified quasi-profile loglikelihood for τ is given by the integral
of the adjusted estimating equation for τ . Both exact and approximate methods for
the calculation of the adjustments are discussed. The exact calculation presented
in this section is achieved through a simulation process in which the moments of
the estimating function for τ are estimated by parametric bootstrap sampling. The
approximate adjustment discussed in the next section uses instead first-order ana-
lytical approximations to the moments of the derivatives of the estimating function
for τ .

A basic property of an ordinary score function is that its mean is zero and its
variance is minus the expected derivative matrix, expectations being computed at the
true parameter value. Our interest is to adjust Ψτ (τ, λ̃τ ) so that these properties
hold when expectations and derivatives are computed at (τ, λ̃τ ), rather than at
the true parameter point. Consider the functions µ(τ, λ̃τ ) and ω(τ, λ̃τ ) and let

Ψ†
τ (τ, λ̃τ ) = Ψ†

τ (y; τ, λ̃τ ) be equal to

Ψ†
τ (τ, λ̃τ ) = ω(τ, λ̃τ ) {Ψτ (y; τ, λ̃τ ) − µ(τ, λ̃τ )} .
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As in McCullagh as Tibshirani (1990), we require that

E(τ,λ̃τ ){Ψ
†
τ (τ, λ̃τ )} = 0 and V ar(τ,λ̃τ ){Ψ

†
τ (τ, λ̃τ )} = −E(τ,λ̃τ )

{

∂Ψ†
τ (τ, λ̃τ )

∂τ

}

, (7)

with E(τ,λ̃τ )(·) denoting Eθ(·)|λ=λ̃τ
. Solving for µ(τ, λ̃τ ) and ω(τ, λ̃τ ), we find

µ(τ, λ̃τ ) = E(τ,λ̃τ ){Ψτ (τ, λ̃τ )} (8)

ω(τ, λ̃τ ) =

[

∂

∂τ
µ(τ, λ̃τ ) − E(τ,λ̃τ ){Ψτ/τ (τ, λ̃τ )}

]

/V ar(τ,λ̃τ ){Ψτ (τ, λ̃τ )} . (9)

Thus a modified quasi-profile loglikelihood for τ is given by

ℓMQP (τ) =

∫ τ

τ0

Ψ†
τ (y; t, λ̃t) dt =

∫ τ

c
ω(τ, λ̃t) {Ψτ (y; t, λ̃t) − µ(τ, λ̃t)}dt . (10)

The required quantities for the exact computation of ℓMQP (τ) involve expectations
evaluated at (τ, λ̃τ ), and can be computed analytically only in very simple spe-
cial cases. This was already noted by McCullagh and Tibshirani (1990) for the
likelihood-based case, and for general estimating functions the problems to be faced
are not likely to be easier. When the required expectations cannot be computed
analytically, we must resort to Monte Carlo simulation. Even if the computation of
the adjustment for many realistic models may seen rather complicated, it can be im-
plemented in modern statistical environments, such as R. The computation requires
an algorithm similar to that used by McCullagh and Tibshirani (1990). In partic-
ular, a suitable grid of Q values for τ is considered, and at each point of the grid
τq, q = 1, . . . , Q, the values of µ(τq, λ̃τq

) and ω(τq, λ̃τq
) are estimated by parametric

boostrap of B samples generated under the model F (y; τq, λ̃τq
).

4 A first-order approximation to the modification

A first-order approximation to ℓMQP (τ) can be obtained using results given in the
Appendix of Adimari and Ventura (2002); see also Severini (2002). Taking termwise
expectation of a Taylor expansion for Ψτ (τ, λ̃τ ) about the true parameter value, an
expansion for the additive adjustment (8) can be obtained from Eθ{Ψτ (τ, λ̃τ )} =
m(τ, λ) +O(n−1), where m(τ, λ) is of order O(1) and is given by

m(τ, λ) = κbaEθ(ΨbΨτa) + ντaκ
caκdbEθ(ΨdΨcb)

+
1

2
ντaνdbcκ

daκebκfcEθ(ΨeΨf ) +
1

2
ντabκ

daκcbEθ(ΨdΨc) . (11)

The first-order bias correction (11) involves only the first two derivatives with re-
spect to λ of (Ψτ ,Ψλ). There is a formal similarity between equation (11) and the
expression for the bias of the ordinary profile score function given in McCullagh and
Tibshirani (1990).

The expansion for the scale adjustment (9) is less straightforward. However,
from Taylor expansions it turns out that it can be approximated with error O(n−1)
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by (3). For a single parameter of interest, we find that the adjusted score function
has the form

w(τ, λ̃τ )
{

Ψτ (y; τ, λ̃τ ) −m(τ, λ̃τ )
}

, (12)

so that an approximate modified quasi-profile loglikelihood, aiming at correcting the
score bias, is given by

ℓAQP (τ) =

∫ τ

τ0

w(t, λ̃t)
{

Ψτ (y; t, λ̃t) −m(t, λ̃t)
}

dt

= ℓQP (τ) −
∫ τ

τ0

w(t, λ̃t)m(t, λ̃t) dt . (13)

The adjusted quasi-profile score function (12) has score bias which vanishes asymp-
totically. There is again a close connection between (13) and the proposal by Mc-
Cullagh and Tibshirani (1990); see the similarities between their ℓAP (τ) and (13).

There are situations where the use of ℓAQP (τ) becomes compelling. In fact, the
scale and additive modifications of (12) can be simplified under the conditions of
nuisance parameter insensitivity of Ψτ or of G-orthogonality (Godambe and Thomp-
son, 1989, Godambe, 1991, and Jørgensen and Knudsen, 2004), which are suitable
extensions for estimating functions of the orthogonality condition, studied by Cox
and Reid (1987) in the likelihood-based framework. In particular, the condition
of λ-insensitivity (Jørgensen and Knudsen, 2004) is Eθ(Ψτ ℓλ) = 0, where ℓλ is the
score function for λ. The condition of λ-insensitivity of Ψτ has several consequences,
and in particular it implies that

ντa = 0 , a = 1, . . . , p− 1 . (14)

Under conditions (14), the expressions for (3), (11) and (13) can be simplified. In
particular, we obtain w(τ, λ) = −νττ {Eθ(Ψ

2
τ )}−1 and m(τ, λ) = κbaEθ(ΨbΨτa) +

1
2ντabκ

daκcbEθ(ΨdΨc). Note that the latter expression m(τ, λ) equals the expression
(27) of Jørgensen and Knudsen (2004).

5 Examples

The theory presented in the previous sections applies to any kind of estimating
functions, provided that some regularity conditions hold. In the computation of
both ℓMQP (τ) and ℓAQP (τ) there is a clear dependence on the model assumptions,
as we need either to specify the distribution of y for the resampling or to be able to
compute moments of the estimating functions and its derivatives. In the following
we will focus on two situations where ℓMQP (τ) and ℓAQP (τ) are useful.

(i) In the context of generalized linear models with overdispersion or random effects
(see McCullagh and Nelder, 1989). In this case, there is a model for the data,
but maximum likelihood is not straightforward, and it may be helpful to resort
to some estimating equations.
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(ii) In the context of robustness theory (e.g. Hampel et al., 1986), when M-
estimators are considered and stability with respect to small deviations from
the assumed model is required. In this case, there is a reasonable model for
the bulk of the data, but we wish to protect the inferential conclusions from
model misspecification or from the presence of few outlying observations. In
this class of situations, it is sensible to use robustified versions of the likeli-
hood score equations as estimating functions, but it makes sense to compute
the higher-order adjustment at the true model.

Example 1: Overdispersion in count data. Let us consider Poisson regression for
count data. The responses yi are realizations of independent Poisson random vari-
ables with mean µi = exp(xT

i β), β ∈ IRk, k ≥ 1, i = 1, . . . , n. In many applications
with discrete data, overdispersion can be encountered. This means that more vari-
ability then would be expected from the Poisson model is observed, and it has to be
taken into account.

We focus on two cases. In the first, the variance is assumed to be a quadratic
function of µi of the form V arθ(Yi) = µi(1+αµi), whereas in the second the variance
is proportional to the mean, V arθ(Yi) = µi (1 + α). In either case, the estimating
function for β is the score function from the Poisson likelihood

Ψβ(y;β) =

n
∑

i=1

(yi − µi)x
T

i , (15)

which still provides an unbiased estimating equation. An estimating function for α
can be obtained from the method of moments, as shown in Lawless (1987). With
quadratic variance function we get

Ψα(y;β, α) =

n
∑

i=1

(yi − µi)
2

µi(1 + αµi)
− (n− k) , (16)

whereas, with linear variance function

Ψα(y;β, α) =

n
∑

i=1

(yi − µi)
2

µi(1 + α)
− (n− k) . (17)

The use of ℓMQP (τ) allows us to quantify the consequences of overdispersion for
inference on a regression coefficient. Since the assumptions on the variance are
typical of a negative binomial model for the response, this distribution can be used
for computing the adjustments. We apply this procedure to the Ames Salmonella
data, already analysed by Lawless (1987). The response is the number of revertant
colonies observed on a plate, and covariates are based on the dose level of quinoline
on the plate (x). We assume the following model for the response

log(µi) = β0 + β1xi + β2 log(xi + 10) , i = 1, . . . , 18 ,

where the interest lies on τ = β2. Figure 1 compares the normed modified quasi
profile loglikelihoods ℓMQP (τ) − ℓMQP (τ̃ ) for the three models considered, namely
Poisson and negative binomial with the two different variance functions. In all cases,
the boostrap computation was applied with B=1,000 repetitions.
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[Figure 1 about here.]

We note that the adjustment for the Negative Binomial case is much larger than
for the Poisson case, while the choice of the variance function has a limited influence.
In this example the modified quasi-likelihood function provides a useful display of
the effect of accounting for overdispersion.

Example 2. Quasi-likelihood estimation in GLMMs

Consider a generalized linear mixed model obtained by adding random effects to
the linear predictors for clustered data. Here we consider a random intercepts model
for independent clusters, with linear predictor ηu

ij = xT

ij β + ui, where i = 1, . . . , n is
the number of clusters, j = 1, . . . ,mi the number of observations in the i-th cluster,
xij a vector of covariates, and the cluster-specific intercepts ui are independent
normally distributed random effects, ui ∼ N(0, σ2). The model is completed by
assuming a link function g, such that g(Eθ[yij |ui, xij ]) = ηu

ij . The estimation of
θ = (β, σ) is usually hampered by the necessity of integrating out the random effects,
hence estimation methods other than maximum likelihood are often considered;
McCulloch and Searle (2001) provide a comprehensive survey of the subject.

Here we consider the estimation approach based on quasi-likelihood, as proposed
by McCullagh and Nelder (1989, Sec. 14.4). The method is based on the uncondi-
tional mean and variance of Y , Eθ(Y ) = µ(θ) and V arθ(Y ) = V (θ). If the random
effect variance σ2 is known, then the quasi-likelihood estimating function for β is
given by

Ψβ(y;β, σ) = D(θ)T V (θ)−1 {y − µ(θ)} , (18)

where D(θ) = ∂µ(θ)/∂β. Sutradhar and Rao (2003) show that, for given values
of σ, the resulting estimator for β is quite efficient. For the estimation of σ it is
necessary to use a supplementary estimating equation. Following McCullagh and
Nelder (1989), we may use a moment approach based on equating a quadratic form
to its expected value, namely

Ψσ(y;β, σ) = {y − µ(θ)}T P {y − µ(θ)} − tr{P V (θ)} , (19)

where P is a suitable matrix. Notice that Sutradhar and Rao (2003) show that
(19) can be quite inefficient, but it is very simple as, like (18), it requires only the
computation of µ(θ) and V (θ). If the interest lies on a scalar component of β, the
method proposed in this paper is an appealing choice, allowing us to recover the
possible inaccuracy of (19).

As an illustrative example we consider data from Beitler and Landis (1985)
on a multicentre trial to compare the efficacy of two topical cream preparations.
Here we fit a probit model with random effects for the different clinics, namely
ηu

ij = β0 + β1 tij + ui, where tij is a binary treatment indicator. The inferential
interest lies on the treatment effect, thus τ = β1. The estimating equations (18)
and (19) represent a convenient choice, as µ(θ) and V (θ) are not difficult to obtain
with probit link, for example by using the same approach of Drum and McCullagh
(1993). In (19) we set P equal to a block-diagonal matrix with blocks corresponding
to the different clinics and Pi = 1i 1T

i , where 1i is a mi-dimensional vector of ones.
The resulting estimate of τ is hardly significant at the 0.05 level, since τ̃=0.428, with
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s.e.(τ̃ )=0.229. There is a clear amount of between-clinic heterogeneity as σ̃=0.752.
For comparison, we obtained the MLEs by integrating out the random effects using
Monte-Carlo integration (see McCulloch and Searle, 2001, Sec. 10.3). MLEs are not
so different, with τ̂=0.439 and σ̂=0.813. However, s.e.(τ̂ )=0.175 and the treatment
effect appears much more significant, with a two-sided P-value decreasing from 0.06
to about 0.01.

The difference between the two results requires further investigation, and ℓMQP (τ)
seems quite helpful. We applied the boostrap method described in Section 3 with
B=500 simulations, obtaining the plot of ℓMQP (τ) of Figure 2. Clearly, the point
τ = 0 is not supported by ℓMQP (τ).

[Figure 2 about here.]

The 95% confidence interval for τ derived from ℓMQP (τ) is (0.039, 0.808), which
is slightly larger of that derived from the profile likelihood, (0.097, 0.787). Note
that the computation of MLE is too burdensome to obtain an approximation to
ℓMP (τ) of Section 3; see (6). However, a simple run of parametric bootstrap of 1,000
repetitions obtained by setting θ = θ̂ gives a studentised bootstrap 95% confidence
interval based on the MLE equal to (0.082, 0.804), even closer to the interval from
ℓMQP (τ). As studentised bootstrap confidence intervals are second order accurate
(Davison and Hinkley, 1997, Chapter 5), this shows that there is little need to adjust
the results from the profile likelihood.

To wind up, in this example ℓMQP (τ) based on simple estimating equations pro-
vides results comparable to more demanding likelihood-based methods, recovering
the inaccuracy of the Wald statistic.
Example 3. Bounded-influence inference in linear regression.

Let yi, i = 1, . . . , n, be independent observations such that yi = xT

i β + εi, where
β is a k-dimensional vector of coefficients and εi has mean 0 and variance σ2.

Let us consider Mallows’s M-estimator for β, with the scale parameter estimated
by weighted Huber’s Proposal 2 (see Marazzi, 1993, Sec. 2.1). Hence, if ri = (yi −
xT

i β)/σ are the standardized residuals, the estimating functions for θ = (β, σ) have
the form

Ψβ(y;β, σ) =
1

σ

n
∑

i=1

ψHF (ri; c1)wi x
T

i ,

Ψσ(y;β, σ) =

n
∑

i=1

ψ2
HF (ri; c2)wi − (n− k) γ , (20)

where ψHF (·; c) is the Huber function, c1, c2 are tuning constants, and γ is a suitable
constant such that the solution σ̃ is asymptotically consistent at the normal model.
The weights wi are chosen to get a bounded influence function for the resulting
estimator.

Suppose we are interested in drawing inference about a regression coefficient. For
illustrative purposes, let us consider the mortality data already analysed by several
authors, including Krasker and Welch (1982). The data consist of n = 60 observa-
tions about age-adjusted mortality in several cities in the U.S., with some available
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covariates. The data present several high-leverage points, hence bounded-influence
estimation seems a sensible choice. Let us focus in particular on the coefficient of the
covariate EDUC. After setting wi =

√
1 − hi, where hi is the i-th diagonal element

of the hat matrix, c1 = 1.345 and c2 = 1.5, the Mallows estimate of τ is τ̃ = −13.17
(5.90), not so different from the least squares estimate (OLS), τ̂ = −13.30 (6.97).
The difference between standard errors is due to the different estimate of the scale,
since σ̃ = 30.50 and σ̂ = 36.39. Now we can perform a simple sensitivity analysis
on the results, as often done in robust statistics. For instance, let us take a single
point (observation 37) and change the values of its response from 1113.16 to 1000.
As shown in Figure 3, the change in the response seems relatively modest. Note
that observation 37 is an influential point, and actually the change causes a large
change in its value of the Cook’s distance.

[Figure 3 about here.]

Hence, the change causes a large variation in the OLS estimates, and actually
now τ̂ = −8.75 (6.20), while the variation is much smaller for the bounded-influence
estimator, as τ̃ = −11.76 (5.62). The same occurs to test statistics. Figure 4 shows
the change occurred to WMQP (τ) and to the loglikelihood ratio test for τ derived
from the profile loglikelihood.

[Figure 4 about here.]

The different degree of sensitivity to a single change in the response is striking,
and totally in favor of bounded-influence estimation. The modified quasi-profile
likelihood allows a more precise and stable inference.
Example 4: Stratified linear model. Let us consider a normal linear regression model
with stratum nuisance parameters, of the form yij = λi+τxij+εij , where i = 1, . . . , q
and j = 1, . . . ,m. We consider Huber estimation of the regression coefficients, with
scale parameter estimated by Huber’s Proposal 2; see (20) with wi = 1. We set
c1 = 1 and c2 = 1.345.

The bias adjustment for the profile estimating function for the parameter of in-
terest τ is null and ℓAQP (τ) = ℓQP (τ). In Table 3.5, the performance of the directed
quasi-profile likelihood, i.e. rMQP (τ) = sgn(τ̃ − τ)

√

WMQP (τ), with w(τ, λ) evalu-
ated by 100 bootstrap samples, is compared with its analytical counterpart, rAQP (τ),
and the Wald statistic. The numerical study was carried out under four error dis-
tributions, chosen to represent different departures from normality (see Ronchetti
et al., 1997). These distributions are: (i) e1: standard normal; (ii) e2: 93% from a
standard normal and 7% from a normal with σ = 5; (iii) e3: slash distribution; (iv)
e4: 90% from a standard normal and 10% from a normal with µ = 30. The table is
based on 5, 000 simulations for each setting.

[Table 1 about here.]

The results indicate that there rMQP (τ) has a reasonably accurate behavior and
tends to improve slightly on rAQP (τ). The Wald statistic works well too, but it
seems generally less accurate than the other two.
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6 Final remarks

This paper discusses adjustments for a quasi-profile likelihood for a parameter of
interest, paralleling the classical likelihood-based approach. The adjustments alle-
viate some of the problems inherent to the presence of nuisance parameters. Other
modifications of the estimating function for the parameter of interest have been pro-
posed in the literature (see Severini, 2002, and Wang and Hanfelt, 2003). However,
their aim is only to reduce the bias of the profile estimating function and do not
consider quasi-likelihood procedures associated to them. The use of quasi-profile
likelihood ratio statistics may lead to improved coverage probabilities with respect
to Wald-type or score-type confidence intervals in many cases.

Moreover, the possibility of representing graphically the quasi-profile likelihood
is a good point of the method, reducing the gap between maximum likelihood esti-
mation and the estimating equation approach. In fact, the method presented in this
paper allows us to supplement the plot of the quasi-profile likelihood with its ad-
justed counterparts, thus visualizing the effect of the nuisance parameter estimation
and the correction for the small-sample bias of the profile estimating equations.

If τ has r > 1 components, then the modified quasi-profile loglikelihood (10)
can be generalized in a straightforward manner, but its computation will be more
burdensome. Aside from computational aspects, the main difficulty is that when
r > 1 a modified quasi-profile loglikelihood for τ of the form (10) does not exist in
general. A necessary and sufficient condition for the existence of ℓMQP (τ) is that

the matrix Ψ̃†

τ/τ be symmetric. Alternatively, a possible solution is to operate in a
componentwise fashion, considering each component of τ separately.

Finally, we note that he theory developed in this paper may be useful with sparse
data structures, like the stratified settings considered in Wang and Hanfelt (2003).
Sartori (2003) studied thoroughly the behavior of the modified profile likelihood
for stratified data. It would be interesting to extend the study to the modified
quasi-profile likelihood.
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