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Section 1 Introduction 1

Adaptive MCMC Methods for Inference on Discretely Ob-
served Affine Jump Diffusion Models

Davide Raggi

Department of Statistical Sciences
University of Padua
Italy

1 Introduction

In the last 20 years the work of Black & Scholes (1973) led to a growing interest in
the studying of continuous time stochastic processes for financial applications. More
precisely, the relevance of stochastic calculus for the pricing of financial derivatives
has fully emerged. The model proposed in Black & Scholes (1973) describes the
behaviour of the underlying asset as

dSt = µStdt + σStdWt (1)

The main advantage of this framework is that it allows to easily handle the derivative
pricing task. The main drawback is that the volatility of the model is described
using a single parameter constant over time. Empirical studies show that the latter
assumption is not realistic and that volatilities tend to change over time (see Ghysels,
Harvey & Renault 1996 or Taylor (1994) for a comprehensive study). Thus, more
flexible models have been proposed in literature such as Hull & White (1987) where
asset price changes are expressed as:

dSt = µStdt +
√

VtStdW1,t (2)

dVt = aVtdt + btVtdW2,t (3)

and Heston (1993) where dSt is modeled as:

dSt = µStdt +
√

VtStdW1,t (4)

dVt = κ(ϑ− Vt)dt + σ
√

VtdW2,t. (5)

where W1,t,W2,t are possibly correlated Brownian motions in R2. Both of the above
models allow the pricing of some derivative assets such as European options. The
solution proposed in Hull & White (1987) for pricing is based on simulation tech-
niques whereas in Heston (1993) an analytical representation of the characteristic
function for the marginal St is derived, exploiting the affine1 structure of its coeffi-
cients. Furthermore in the latter model semi-closed forms for the option prices are

1The coefficients of the model are linear plus the constant with respect the variable. See Björk
(1998)[chap. 17] for an introduction on affine term structure concepts.
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obtained as opposed to Hull & White (1987).
A further generalization of stochastic volatility models involves the presence of
jumps. It seems natural indeed to add a jump component in the return equation in
order to describe rare events like crashes in the market. But it is not intuitive to
understand whether the volatility process jumps or not. Empirical evidence anyway
show that taking into account jumps, together with stochastic volatility leads to an
improved fit of the data as stressed in Bakshi, Cao & Chen (1997). It is possible
to note that the volatility process hardly follows a diffusive behaviour and tend to
sharply increase when a jump is observed in the return series.
A survey on some recent mathematical results in that field can be found in Rung-
galdier (2003).
Following this direction, Duffie, Pan & Singleton (2000) propose an affine diffusion
model with jumps that leads to a semi-closed derivative price form, thus generalizing
the results obtained by Heston (1993).
The reminder of this paper is then organized as follows. In Section 2 the Duffie et al.
(2000) framework is described. The inferential solution proposed here is outlined in
Section 3. Finally in section 4 empirical results both with real and simulated data
are illustrated.

2 Affine Jump Diffusion models

An affine process {Xt : t ≥ 0} is a Markov process such that, for every time t,
its characteristic function of Xt is an exponential-affine function of the initial state
X0. These models are widely used in financial applications, due to their analytical
tractability (see Duffie, Filipović & Schachermayer 2003 for general results). In
general the model is written in state space form for the n-dimensional vector of
equations X as:

dXt = µ (Xt−) dt + σ (Xt−) dWt + dZt (6)

where Wt is a multi-dimensional Brownian motion and Zt is a marked point process.
The drift µ(x), the elements of the covariance matrix σ(x)σ(x)′ij , i, j = 1, . . . , n, the
intensity of the jump processes λ(x) and the interest rate R(x) are assumed to be
affine in X. It is possible to show that (Duffie et al. 2000)

ψ(u, Xt, t, T ) = E

[
exp

(
−

∫ T

t
R(Xs)ds

)
euXT

∣∣∣Ft

]
= eα(t)+β(t)xt (7)

where α(t) and β(t) are solution of suitable ordinary complex valued differential
equations and u ∈ Cn. In general it is possible to calculate α(t) and β(t) using
numerical techniques such as the Runge-Kutta method. Sometimes the functions
α(t) and β(t) can be derived analytically. The knowledge of (7) allows to evaluate
the price of an European option (Scott 1997). Suppose in fact that we are dealing
with European call option with strike price K and payoff (St −K)+. It is possible
to guess a solution for its price of the form

Ct = St

(
P1 − K

St
P2

)
(8)
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as suggested in Heston (1993) where

P1 =
ψ(1, Xt, t, T )

2
− 1

π

∫ ∞

0

Im(ψ(1− iu,Xt, t, T ))eiu(ln k)

u
du (9)

and

P2 =
ψ(0, Xt, t, T )

2
− 1

π

∫ ∞

0

Im(ψ(−iu,Xt, t, T ))eiu(ln k)

u
du (10)

with k = K/St, are obtained by inverting the characteristic function through the
Lévy inversion formula2. It is important to stress that the affine jump structure al-
lows pricing several types of derivatives. Results in (7) can be applied to more general
payoffs function of the form v0 + v1XT euXT making more flexible the pricing of dif-
ferent financial instruments such like bond derivatives, quantos and asian options for
example. Efficient numerical procedures to invert the characteristic function have
been proposed in Pan (2002) and Carr & Madan (1999). In practical applications
the use of quadrature methods appear reliable as well.

2.1 The Stochastic Volatility Model

An interesting application of the affine jump diffusion theory is the following stochas-
tic volatility model in which it is assumed that Yt = ln (St) is described by

dYt = (µ− 1
2
Vt−)dt +

√
Vt−dW1,t + Hy

t dNy
t (11)

dVt = κ(θ − Vt−)dt +
√

Vt−
(
ρσvdW1,t + σv

√
1− ρ2dW2,t

)
+ HvdNv

t (12)

where (W1,t,W2,t) is a Brownian motion in R2 with independent components. Xt−
indicates the left limit. The jump components H i

tdN i
t , i = y, v are marked point

processes. In a more formal way, such a processes can be described as a random sum
Zt =

∑N(t)
j=1 H i

j in which N(t) represent the number of arrival of a Poisson process
in (0, t]. In this paper we assume that the intensities for both processes are constant
which can be relaxed into an affine scheme. The measure of the jumps are described
by the random variables H i, i = y, v. It is immediate to note that Heston’s model
can be obtained simply equating to zero the intensities.
The model of (11) and (12) can incorporate various types of jumps. As an example
in models with independent jumps both of the equations are allowed to jump but the
two jump processes and their sizes are independent. The process Nv has intensity
λv and jump size Hv ∼ Exp(µv) while Ny with intensity λy has jump size given by
Hy ∼ N (µy, σ

2
y). Constraining λv = 0 leads to the model proposed in Bates (1996).

Alternatively the model can exhibit contemporaneous jumps, i.e. there exists one
jump component in the model and one intensity parameter, but the sizes are different
and correlated. In this version Hv ∼ Exp(µv) and Hy|Hv ∼ N (µy + ρjH

v, σ2
y). It

is easy to show (Eraker et al. 2003) that for the contemporaneous jump model the
conditional instantaneous moments are expressed by

lim
∆→0

E
[
(log(St+∆/St))2|Vt, St

]
= Vt + λE

[
(Hy)2

]
(13)

2See for example Williams (1991) for a treatment of this problem.
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lim
∆→0

E
[
(Vt+∆ − Vt))2|Vt, St

]
= σ2

vvt + µvλ (14)

lim
∆→0

E
[
(Vt+∆ − Vt) log(St+∆/St)|Vt, St

]
= ρσvVt + ρjµ

2
v (15)

E
[
(Hy)2

]
= µ2

y + 2µyµvρj + ρ2
jµ

2
v + σ2

y . (16)

It is also easy to prove that the expected volatility is E[Vt] = θ + λµv/κ. The
expressions in eq. (13) and in eq. (14) stated above represent respectively the
conditional variance of the returns and the conditional variance of the volatility
while (15) is the conditional correlation among the processes composing the model.
It is important to stress that, for all the models described are available analytical
forms for the characteristic function and then the option price is obtainable, up to
a numerical integration. In the reminder of this paper we analyze the latter model.

3 Inference

From a statistical point of view inference is a challenging problem for mainly two
reasons. The first one is that the trajectories of the processes are continuous. The
second one is that not all the processes involved are observable.
Many techniques have been proposed to solve the inferential problem. Some meth-
ods rely on the efficient method of moments (Gallant & Tauchen 1996), others are
based on the indirect inference principle (Gourieroux, Monfort & Ranault 1993),
others on filtering techniques (Johannes, Polson & Stroud 2002, Durham & Gallant
2002). We adopt a Markov chain Monte Carlo approach that gives good results
for discretely specified stochastic volatility models (Jacquier, Polson & Rossi 1994,
Kim, Shephard & Chib 1998). Eraker (2001) and Elerian, Chib & Shephard (2001)
propose a strategy to infer the parameters of continuous time stochastic processes
using MCMC algorithms.
The main difficulty in deriving inferences for continuous time stochastic processes
discretely sampled is to evaluate the transition probability p(Xτi+1 | Xτi). In fact,
the sampling distance between τi and τi+1 sometimes cannot give a good approxima-
tion of the real process. Furthermore, as pointed out in Aı̈t-Sahalia (2002) among
others, for many processes proposed in the economic literature, it is not even possible
to obtain a closed form for the density of the transition probability. A possible solu-
tion is approximating p(Xτi+1 | Xτi) by numerical techniques. An overview for these
methods is presented in Durham & Gallant (2002). Once evaluated the transition
density p̂(τi+1|Xτi) it is possible to estimate the log-likelihood function

`n(θ) =
n∑

i=0

ln p̂(Xτi+1 | Xτi ;θ) (17)

It is reasonable to expect that if the sampling times are close to each other, then
the approximated transition probability should be closed to the real one. In order
to reduce the bias due to the length of the interval a promising idea is to augment
the state space with high frequencies data, filling the interval (τi, τi+1) with missing
data points. The first step of this inference procedure is to represent the continuous
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model with a discrete time approximation. Then it is possible to approximate the
true transition probability integrating out the non-observed variables. Calculating
this integral using standard numerical integration techniques can be cumbersome,
therefore we recur to Monte Carlo strategies.

The starting point for the inferential procedure involves a discretization that,
in this paper is based on the scheme of Euler-Maruyama. See at this proposal
Kloeden & Platen (1995)[chap. 9] for standard diffusion processes and Glasserman
& Merener (2001) for an application to jump diffusions. The model is evaluated on
a set of discrete times {τi : i = 1, . . . , n}. That leads to

Yτi+1 − Yτi = (µ− 1
2
Vτi)∆ +

√
Vτiε

y
τi+1

+ Hy
τi+1

Jy
τi+1

(18)

Vτi+1 − Vτi = κ(ϑ− Vτi)∆ + σv

√
Vτiε

v
τi+1

+ Hv
τi+1

Jv
τi+1

(19)

in which τi+1 − τi = ∆, Yτi+1 = log(Sτi+1) and Jτi+1 is described by a Binomial distri-
bution Bi(1, λ∆). The error terms are such that (εy

τi+1 , ε
v
τi+1

) are correlated standard
normal. To fix the notation Y = {Yτ1 , . . . , Yτn}, whereas Y τi = {Y1, . . . , Yτi} in-
dicate past observations up to time τi. It is important to note that this scheme
is appropriate in this case because both sizes and intensities are independent from
the states of the model, that is, returns and volatilities. In case there exists such a
dependence, a more general scheme should be adopted (see at this proposal Glasser-
man & Merener 2001 or Cyganowski & Kloeden 2000). An example of the more
general scheme will be given in Section 3.2.1 when a particle filter procedure is im-
plemented for estimating the likelihood of the model.
In practice the use of daily intervals seems to produce small biases with respect to
the continuous model as stated in Eraker et al. (2003).

To perform inference for these models we consider a Bayesian approach. More
precisely we introduce in the context of stochastic volatility the use of a methodology
known as Delayed Rejection Metropolis-Hastings proposed in Tierney & Mira (1999).
In general a Metropolis-Hastings algorithm works in the following way:

Metropolis-Hastings algorithm

1. Sample y from a proposal q(x, y).

2. Define α(x, y) =

{
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
if π(x)q(x, y) > 0

1 otherwise

3. Sample u from U(0, 1).

4. If u ≤ α(x, y)

then Xt+1 = y

otherwise Xt+1 = x.
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The algorithm produces a Markov chain that converges, under suitable conditions
to a given stationary distribution function π(x) (see Robert & Casella 1999, chapter
6-7). In empirical studies, a challenging point is to find a good proposal distribution
q(x, y) since it heavily influences the convergence properties of the entire Markov
chain. If the proposal does not depend on the present state of the chain, that is
q(x, y) = f(y), then it generates a so called Independence Chain. On the other hand,
if Y = x + Z with Z ∼ f(z) implying q(x, y) = f(y − x) we deal with a Random
Walk Chain. If X = (X1, . . . , Xk), it is possible to update the chain one component
at a time, using for each component a one-dimensional Metropolis-Hastings scheme.
The Gibbs sampler is an algorithm of this type where the proposal for every sub-
component of X is the full conditional distribution π(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xk) =
π(Xi|X−i). It is immediate to check that using the full conditional as proposal the
acceptance probability is α(x, y) = 1.
The key idea for the application of MCMC techniques to volatility models is basi-
cally due to Tanner & Wong (1987) in a context of missing data. This framework
is also known as data augmentation. Since volatilities and jumps are not observed,
they are treated as missing data in an MCMC algorithm where the objective distri-
bution is π(θ,V , J |Y ). The vector V represents the stochastic volatilities, J is the
jump process and θ is the set of the parameters. The technique aims at estimating
the distribution p(θ|Y ).
Unfortunately direct inference is not possible since the processes V and J are la-
tent and an high dimensional integration scheme should be applied in order to
evaluate the above density. However, by generating the process V and J from
p(V |Y ) and p(J |Y ) respectively, we can evaluate p(θ|Y ) as the sample expecta-
tion of π(θ|V ,J , Y ). Obviously there exists a mutual dependence among p(V |Y ),
p(J |Y ) and p(θ|Y ). One possible way to take this dependence into account is to
use a “one component at a time Metropolis-Hastings” scheme, simulating recur-
sively from the distribution p(Vτi |θ,V −τi , J , Y ), p(Jτi |θ,V , J−τi , Y ), i = 1, . . . , n,
and the distribution p(θ|V ,J ,Y ).
This approach was introduced by Carlin, Polson & Stoffer (1992) in state space mod-
eling and applied to stochastic volatility models by Jacquier et al. (1994), Jacquier,
Polson & Rossi (1999) and Kim et al. (1998). The main inconvenient of the method
is the high dimensionality of the latent process. It is then necessary to design an
efficient and fast scheme in order to update it effectively.

3.1 Adaptive strategies and Delayed Rejection

Goal of MCMC is to generate a Markov Chain with given invariant distribution π(x)
and then estimate Eπ[g(X)] averaging along the trajectories obtained. A possible
criterion used to evaluate the goodness of an estimator is based on the asymptotic
variance

V (g, P ) = lim
n→∞nVarπ[gn] = Varπ[g(X0)] + 2

∞∑

n=1

Covπ[g(X0, Xn)] (20)

It is evident that dependencies due to the Markov structure of the process can cause
troubles on evaluating the expected value stated above. To give a simple example,
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suppose that the realization of the chain can be approximated by an AR(1) process
with autocorrelation ρ. Then the asymptotic variance of the sample average is
σ2

N

1 + ρ

1− ρ
, where σ2 is the variance of g(X) under π(x). It is evident that reducing

the autocorrelation of {Xt : t = 1, . . . , N} leads to an improvement on the efficiency
of the estimates. A challenging task consists on defining an appropriate scheme in
order to do it. It is not easy to decide what strategy to adopt. This is because it is
not always easy to define in a unique way an optimality criterion that can help in
the choice. In fact different rules can lead to different decisions. For example there
are situations in which the algorithm quickly converge to the limit distribution and
at the same time the estimate has high asymptotic variance (and vice versa). To be
more precise, suppose for example a discrete state space with transition probability
described by a matrix P . Small eigenvalues of P indicate small asymptotic variance.
On the other side, small eigenvalues in absolute value are associated to high speed
of convergence. It is evident that eigenvalues close to −1 indicate that the chain
produce estimate with low asymptotic variance, but contemporaneously converge
badly to the target distribution.
In literature there are different criteria used to order different Markov chains with
common invariant law. The asymptotic variance of the estimator defined in eq. (20)
is one option.
Suppose there are two Markov chains with transition probabilities P and Q but with
the same invariant law π. A strong ordering claims that P is preferred to Q if

V (g, P ) ≤ V (g, Q) ∀g ∈ L2(π). (21)

A weaker condition is
V (g, P ) ≤ V (g, Q) (22)

for a given function g. A different notion of optimality has been introduced in
Peskun (1973) for chains with discrete states and extended to general state spaces
in Tierney (1998). It is the so called Peskun optimality that says that P dominate
Q if

P (x, A) ≥ Q(x,A), x /∈ A, ∀A ∈ F (23)

This condition basically states that the kernel generated by P dominates the transi-
tion defined by Q off the diagonal, i.e., the probability to stay at the same position
at the next iteration is lower with P . In the Metropolis-Hastings framework, this
can be intuitively intended that P allows less rejections than Q for every set A and
given the present state x. Lemma 3 and Theorem 4 in Tierney (1998) prove that
Peskun optimality imply the ordering defined in eq. (21).
Following the intuition, a good idea for checking the Peskun optimality is to consider
the number of time the chain get stuck at the same position. It is in fact intuitive
to think that if a chain rejects just few proposals, then it should converge rapidly to
π. Unfortunately, taking into account the number of rejection as benchmark can be
misleading. If an independence proposal is used, then an high number of acceptances
is appreciated, due to the close relation between independence chain and importance
sampler. On the other side, if a random walk proposal is suggested, then an optimal
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rate of acceptance should fall between 20− 40% (Roberts, Gelman & Gilks 1997)3.
In practice, for many empirical applications, it is not possible to identify a practical
test that orders different algorithms. For this reason an ex-post comparison among
them has to be done.

In order to improve the efficiency of the simple Metropolis-Hastings procedure,
a number of techniques have been proposed in literature. They are in general called
adaptive methods. One possible way to do adaptation is exploiting the entire history
of the chain. Gilks, Roberts & Shau (1998) propose to update the shape of the
proposal at every regeneration time of the process. Following a similar philosophy,
G̊asemir (2003) use the burn in period to find a proposal that minimize the distance
to the target distribution. In both cases the chain is no more Markov, since in gen-
eral the new parameterization for the proposal depends on the entire past history.
These approaches suffer for some problems. It is in fact hard to verify the sufficient
conditions that guarantee the convergence. The other drawback is that it is not easy
to extend the methodology to multivariate problems.
A different way to do adaptation is to use the information given by previous re-
jections during the run of the algorithm. Examples are the Adaptive Rejection
Sampling (Gilks & Wild 1992, ARS) and the Adaptive Rejection Metropolis Sam-
pling (Gilks, Best & Tan 1995, ARMS) where the rejected candidates are used to
build a more accurate envelope function for the conditional distribution. The main
drawback in ARS and ARMS is that they are cumbersome from a computational
point of view, mainly because they need to evaluate the conditional distribution at
many points on the domain. This can lead to very slow codes if the procedure has to
be replicated thousand of time at each sweep of the algorithm. This is what happens
for stochastic volatility models.

From a computational point of view the Delayed Rejection method seems very
promising. Goal of the Delayed Rejection is to increase the rate of acceptance at
each sweep of the algorithm in order to reach the Peskun optimality.
The basic idea is, in case of a rejection, to resample the new state of the chain from
a different proposal, taking into account the information contained at the previous
stage. In practice, if during the run of the chain a candidate y for Xt is rejected,
a further Metropolis-Hastings step according to a new proposal is appended. To
be more precise, the proposal at the i-th step depends on the former rejections
y1, . . . , yi−1, i.e. qi(x, y1, y2, . . . , yi). It is interesting to note that the method allows
a lot of flexibility, since there are not constraints for the choice of the proposal.
Furthermore this way of operating maintains the Markov property of the chain. In
the general case Tierney & Mira (1999) and Mira (2002) prove that for each sub-step
of the MH algorithm the acceptance probability αi(x, y1, . . . , yi) that maintain the

3In that paper the concept of optimal signify that minimize the asymptotic variance.
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reversibility of the Markov chain is

αi(x, y1, . . . , yi) =

{
π(yi)q1(yi, yi−1)q2(yi, yi−1, yi−2) . . . qi(yi, yi−1, . . . , x)

π(x)q1(x, y1)q2(x, y1, y2) . . . qi(x, y1, yi)

[1− α1(yi, yi−1)][1− α2(yi, yi−1, yi−2)] . . . [1− αi−1(yi, . . . , y1)]
[1− α1(x, y1)][1− α2(x, y1, y2)] . . . [1− αi−1(x, y1, yi−1)]

}
∧ 1. (24)

Unfortunately, there is no way to prove that the sequence of the αi is increasing in
i. For this reason a maximal number of trial has to be set. It can be deterministic
or stochastic. The Delayed Rejection algorithm can be synthesized in the following
way

Delayed Rejection algorithm

1. y ∼ p1(x, y) is rejected in MH

2. For i = 2, . . . , k

2a. Withdraw a new candidate yi from qi(x, y, y1, . . . yk).

2b. Accept yi with probability αi(x, y1, . . . , yi) given by (24).

2c. If rejection and i < k, then i = i + 1 otherwise Xt+1 = yi.

3. Xt+1 = yi or Xt+1 = Xt.

In this paper we generate the volatility path with a procedure based on 3 stages.
In our empirical analysis it seems that the algorithm mix properly. At the same
time the choice guarantees a good computational speed.
At the first step the proposal distribution is based on an Independence Chain. We
exploited the idea suggested in Eraker (2001) that use the concept of Brownian
bridge through Vτi−1 and Vτi+1 . It is easy to prove that shrinking the length of the
discretization interval make possible to well approximate the conditional posterior,
or at least the diffusive part of it. This allows to write q(x, y) as

q(Vτi |Vτi−1 , Vτi+1 , θ) ∼ N (µτi , σ
2
τi

) (25)

where µτi = (Vτi+1 + Vτi−1)/2 and σ2
τi

= σ2
v(1 − ρ2)Vτi−1/2. At the second step we

decide to consider a random walk proposal with the same variance used at the pre-
vious step. Finally at the third step we use another random walk step. We would
like to stress that the acceptance probabilities among the second and the third step
are different due to the adaptive nature of the algorithm.
Combining the strategies allows to exploit the advantages of both. In fact, if the in-
dependence proposal is a good approximation of π(x) then the number of rejections
will be small. But in case of rejection, that means a poor approximation of the right
distribution, a random walk proposal gives a control on this bad behavior.
To guarantee the convergence of the chain it is sufficient to check sufficient condi-
tions for each stage. Some of that conditions are stated in Tierney (1994) and in
Mengersen & Tweedie (1996) for example. The procedure adopted can be synthe-
sized as follows
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Data Augmentation through Metropolis-Hastings

1. Update Vτi , i = 1, . . . , n from p(Vτi |J , θ, V −τi , H
v, Hy) via DR.

2. Update the jump times Jτi , i = 1, . . . , n from p(Jτi |V ,θ, Hv, Hy).

3. Update the sizes Hv
τi

, i = 1, . . . , n from p(Hv
τi
|V , θ, J t,H

y).

3. Update the sizes Hy
τi , i = 1, . . . , n from p(Hy

τi |V , θ, J , Hv).

4. Update θ from p(θk|θ−k, V ,J ,Hy, Hv).

In particular for the complete model θ = (µ, κ, θ, σv, ρ, λ, µy, µv, ρJ , σy). Details
for the full conditional distributions are showed in Appendix A.

It is natural to evaluate the latent processes as a by-product of the algorithm.
An estimate of the volatility path is given by

V̂τi = E[Vτi |Y ] ≈ 1
N

N∑

j=1

V j
τi

.

The same arguing is applicable to the jump times process

P̂ r(Jτi = 1) = E[Jτi |Y ] ≈ 1
N

N∑

j=1

J j
τi

where V i
τi

and J i
τi

are realization of the Markov chain excluding the burn-in-period.

3.2 Model ranking and Bayes factor calculations

Duffie, Pan and Singleton’s model, say (M1, θ1), generalize Bates’s, (M2, θ2), and
Heston’s, (M3, θ3). A natural criterion to select a model in Bayesian statistics is
through the use of the Bayes factor, defined as the ratio of the posterior to prior
odds

Bij =
m(Y |Mi)
m(Y |Mj)

=
p(Mi|Y )/p(Mj |Y )

p(Mi)/p(Mj)
(26)

where the distribution

m(Y |Mi) =
∫

p(Y |Mi, θi)π(θi|Mi)dθi. (27)

is the marginal likelihood. The functions p(Y |Mi, θi) and π(θi|Mi) are respectively
the likelihood and the prior for the i -th model and θi is the model-specific parameter
vector. It is often difficult to evaluate the integral in eq. (27) and many estimation
techniques have been proposed in literature. A review of the various alternatives
proposed is showed in Kass & Raftery (1995) whereas a survey on Monte Carlo
simulations methods is given in Han & Carlin (2001). Since this paper is focused
on simulation methods, it seems more coherent to adopt the latter alternative. Fur-
thermore, the use of asymptotic approximations is difficult to apply for models with
latent factors.
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An extremely flexible and powerful tool is the reversible jump proposed by Green
(1995), that allows to move from a model to another through a general Metropolis-
Hastings algorithm. The probability m(Mi|Y ) can be estimated as the ratio be-
tween the number of times the algorithm hit the i -th model and the total number
of iteration.
Another appealing strategy is to evaluate the marginal likelihood exploiting the same
strategy adopted for the inference. We decided to use the latter approach, because
it is computationally efficient. The marginal likelihood can be written as

m(Y |Mi) =
p(Y |Mi,θi)π(θi|Mi)

π(θi|Y ,Mi)
, ∀ θi ∈ supp(θi). (28)

In order to evaluate this ratio, it is necessary to find an estimate of π(θi|Y ,Mi)
and of p(Y |Mi, θi). It is possible to compute π(θi|Y ,Mi) by using the method
proposed by Chib & Jeliazkov (2001). As stressed in Nicholls & Mira (2003), this
is a particular case of the bridge sampling framework (Meng & Wong 1996, Meng
& Shilling 2002). The method consists in dividing the parameters vector θi =
(θ1, . . . , θK) in blocks and at each step of the algorithm associate to the i -th block,
a given value θ∗i . In this way it is possible to divide the parameter vector into
two parts, say ψ∗

i = (θ∗1, . . . , θ
∗
i−1) and ψi = (θi+1, . . . , θK). At this point Chib &

Jeliazkov (2001) estimate

π̂(θi|Y ,Mi) =
K∏

i=1

π̂(θ∗i |Y , θ∗1, . . . , θ
∗
i−1) (29)

where

π̂(θ∗i |Y , θ∗1, . . . , θ
∗
i−1) =

Ê1

[
α(θi, θ

∗
i |Y , ψ∗

i ,ψ
i)q(θi, θ

∗
i |Y ,ψ∗

i ,ψ
i)

]

Ê2

[
α(θ∗i , θi|Y , ψ∗

i , ψ
i)

] (30)

Here the numerator is the expected value with respect to π(θi, ψ
i|Y , ψ∗

i ) and the de-
nominator with respect to π(ψi|Y , ψ∗

i )q(θ
∗
i , θi|Y , ψ∗

i , ψ
i). The quantities q(θ, θ

′ |Y , ψi,ψ
i)

and α(θ, θ
′ |ψi,ψ

i) are respectively the proposal and the acceptance probability used
in a standard Metropolis-Hastings scheme. The expected values can be estimated
exploiting the output of a run of the MH, using the reduced full conditional distri-
butions described on the right hand side of eq. (29).

3.2.1 Particle filter and likelihood evaluation.

In many problems the likelihood function p(Y |Mi, θi) is known in closed form and
then the Bayes factor can be easily evaluated once the posterior is estimated. Un-
fortunately, in models with latent factors X, the non observable variables have to
be integrated out. In fact the likelihood is

p(Y T |θi,Mi) =
T∏

t=1

p(Yt|Y t−1,Mi) (31)
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where p(Yt|Y t−1,Mi) =
∫
X p(Yt|Xt, θi,Mi)p(Xt|Y t−1,Mi)dXt.

Chib, Nardari & Shephard (2002) propose the use of an auxiliary particle filtering
procedure (Pitt & Shephard 1997) for a stochastic volatility model with jumps.
A good introduction to sequential Monte Carlo methods can be found in Doucet,
de Freitas & Gordon (2001). See also Maskell & Gordon (2001) for a tutorial style
explanation. Aim of a filter is to perform an on-line inference for a latent process,
also called state or signal.

In general, to apply the procedure, the model has to be described by the initial
state distribution p(Xτ0), by the transition equation p(Xτi+1 |Xτi), i ≥ 0 and by the
measurement equation p(Yτi |Xτi), t ≥ 1.

The key idea is to approximate the filtering density p(Xτi+1 |Y τi+1) by a discrete
cloud of points, {Xj

τi+1 : j = 1, . . .M}, called particles. This allows to estimate
p(Xτi+1 |Y τi+1) by

p̂(Xτi+1 |Y τi+1) =
M∑

j=1

ωj
τi+1

δ(Xτi+1 −Xj
τi+1

) (32)

where ωj
τi+1 are suitable weights and δ(·) is a kernel function. All the necessary to

do at this point is to draw a sample from (32).
The simpler way is to recur to an importance sampling procedure where the

proposal q(Xτi+1 |Y τi+1) can be set equal to q(Xτi+1 |Xt, Yτi+1) for example. Given
a sample Xj

τi , j = 1, . . . , M from p̂(Xτi |Y τi) it is easy to prove (see for example
Maskell & Gordon 2001) that the weights are

ωj
τi+1

∝ ωj
τi

p(Yτi+1 |Xj
τi+1)p(Xj

τi+1 |Xj
τi)

q(Xj
τi+1 |Xj

τi , Yτi+1)
, j = 1, . . . , M (33)

It is often convenient to choose q(Xτi+1 |Xt, Yτi+1) = p(Xτi+1 |Xτi) that simplify equa-
tion (33) in ωj

τi+1 ∝ ωj
τi p(Yτi+1 |Xj

τi+1).
Sometime the simple particle filter is not flexible enough in practical applications

and the introduction of auxiliary variables seems to improve the performance of the
algorithm.
In the Auxiliary Particle Filter (Pitt & Shephard 1997) a new filtering density is
introduced. In practice, the goal of the auxiliary filter is to estimate the augmented
state (Xt+1, i) in which i indexes the particle at time τi. Since the index vari-
able is just instrumental, it is discarded after its use. The new filtering density is
p(Xt+1, i|Y τi+1). The augmented distribution can be expressed, up to proportion-
ality, as

p(Xτi+1 , i|Y τi+1) ∝ p(Yτi+1 |Xτi+1)p(Xτi+1 |Xi
τi

)ωi
τi

. (34)

The proposal associated to (34) is assumed to be q(Xτi+1 , i|Y τi+1) and in general
can be decomposed as

q(Xτi+1 , i|Yτi+1) ∝ p(Yτi+1 |X̄i
τi+1

)p(Xτi+1 |Xi
τi

)ωi
τi

(35)

where X̄i
τi+1

is some characterization of p(Xτi+1 |Xi
τi

) and can be a likely value
for the distribution, the expectation or a draw for example. It is possible to
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prove that the weights associated to (Xj
τi+1 , j

i), j = 1, . . . , M are proportional to
p(Yτi+1 |Xj

τi+1)/p(Yτi+1 |X̄ij
τi+1

). An i.i.d. sample is obtained by adding a resampling
step (see Smith & Gelfand 1992 for an introduction). This imply that ωj

τi+1 = 1/M .
We now apply this methodology to the affine jump diffusion model described by

the system (11)-(12) in its version with contemporaneous jumps.

In order to avoid negativity troubles, the logarithmic transform of the volatility
is considered, i.e. log(Vt) = Zt. A general version of Itô’s formula for multivariate
semimartingales (see Protter 1990, Theorem 33, Ch.2) gives

dZt =
[
κ(θe−Zt− − 1)− 1

2
σ2

ve
−Zt−

]
dt + σve

− 1
2
ZtdW2,t + log

(
1 + HV

t eZt−
)
dNt.

With this precaution, the jump size of the marked point process becomes dependent
on the state Zt−. For this reason a more general Euler scheme has to be adopted
to approximate the continuous trajectories. To be more precise, a particular case
of the scheme proposed in Glasserman & Merener (2001) has been applied. The
discretely sampled volatility process is

Zτ−i+1
= Zτi + f0 (Zτi) (τi+1 − τi) + f1 (Zτi) (W2,τi+1 −W2,τi) (36)

Zτi+1 = Zτ−i+1
+ log

(
1 + Hv

τi+1
e
Z

τ−
i+1

)
(Nτi+1 −Nτi) (37)

where f0(Zτi) = κ(θe−Zτi −1)− 1
2σ2

ve
−Zτi and f1(Zτi) = σve

− 1
2
Zτi . The discrete time

return process remain unchanged, apart for the reparameterization of the volatility,
that is

Yτi+1 = µ− 1
2
eZτi + e

1
2
Zτi (W1,τi+1 −W1,τi) + Hy

τi+1
(Nτi+1 −Nτi) (38)

The Brownian increments are correlated and (Nτi+1 −Nτi) is approximately a Bino-
mial random variable Jτi+1 with intensity λ. In practice, a daily approximation has
been adopted, that is ∆ = τt+1 − τt = (t + 1)− t = 1.

Exploiting the notation introduced in Johannes et al. (2002), the vector of the
states is Xt = (Zt−1, Jt,H

y
t ,Hv

t ). For the purposes of this application, in order to
simplify the structure of the state vector, it is convenient to integrate out the jump
process. This is not difficult, since a jump at time t is a random variable that assume
value 0−1. One of the differences between the model used in Johannes et al. (2002)
and the one analyzed in here, is that the Brownian motions in this paper are taken
to be correlated.
The introduction of the correlation parameter induce a dependence between the
state vector Xt+1 and the observations Yt. In the particle filtering literature this
cause the so called feedback effect that is identified by the transition p(Xt+1|Xt,Y t)
instead of the usual p(Xt+1|Xt). This is a small complication, and in practice it is
possible to prove that it does not affect the filtering procedure. In this application
the feedback effect is caused by the single observation Yt and not by the whole
history, that is, p(Xt+1|Xt, Yt).
The auxiliary particle filter becomes
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Auxiliary Particle filter

For t = 1 to T :

1. Given a sample {(Zt−1,H
y
t ,Hv

t )i : i = 1, . . . , M} from p(Xt|Y t)

2. Calculate X
i
t+1

Z
i
t = E[Zt|Zi

t−1,H
y i
t , Hv i

t ].

H
y i
t+1 = H

v i
t+1 = 0.

3. Calculate ωi = p(Yt+1|Xi
t+1)∑M

i=1 ωi

4. Resample R times the indexes 1, . . . ,M with weights ωi, obtaining {mj : j = 1, . . . R}.
5. Draw X∗j

t+1 from p(Xt+1|Xmj

t ).

6. Calculate ω̂i =
p(Yt+1|X∗j

t+1)/p(Yt+1|X
mj
t+1)∑M

i=1 ω̂i
.

7. Resample M times the indexes 1, . . . , R with weights ω̂i

8. Store {Xi
t+1 : i = 1, . . . , M} from p(Xt+1|Y t+1)

9. Back to 2.

Once the states are filtered, it is immediate to evaluate the likelihood function
by

p(Y T |θ) =
T∏

t=1

p̂(Yt|Y t−1) (39)

where p(Yt|Y t−1) =
∫

p(Yt|Xt, θ)p(Xt|Y t−1)dXt can be estimated through a Monte
Carlo procedure, simulating the state Xt from p(Xt|Xi

t−1), i = 1, . . . ,M and in
which Xi

t−1 is the outcome of the filtering procedure at time t− 1.
The estimated likelihood is needed to compute the Bayes factor.

4 An Application to Financial Indexes

The empirical application is based on financial indexes, observed on a daily basis
during the last 15 years. The datasets have been downloaded from Datastream.
The series are the FTSE 100 index, the Standard & Poor’s 500 composite and the
Dow Jones 65 composite (see Table 1). As before, letting St the observed price,
the returns are defined as 100 × [log St − log St−1]. The descriptive statistics in
Table 2 report the per cent annualized means and volatilities. They are obtained
by multiplying the sample mean and the sample standard error by 252 and

√
252

respectively. The annualized volatility for all the indexes lie between the 15 and
the 17 percent. Furthermore, it is evident that all the series sensibly reject the
hypothesis of normality. Daily returns are displayed in Figures 1-3.
All the calculations made in this paper are based on software written by using the
Ox c©3.0 language of Doornik (2001).
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4.1 Posterior Analysis

Inference has been performed for the general model described by eq. (18)-(19). Of
course, the important particular cases such as the model proposed by Bates (Bates
1996) and the model introduced by Heston (Heston 1993) have been estimated.
In order to check the fairness of the algorithm proposed, a simulated data set has
been estimated. It is a time series of 2, 000 observations generated by the contem-
poraneous jumps stochastic volatility model. Results are reported in Table 3. In
general the posterior means are close to the true values. Anyway it seems that the
parameters related to the jump sizes are not accurately estimated. This is probably
due to the fact that a jump is a rare event and then the number of observations
affected by this happening are not many in the entire time series.
In order to control an eventual bad behaviour of the algorithm in some area of the
support of the parameters, the chain generated has been perturbed by random and
deterministic shocks. Some graphical analysis showed that after the shock, the chain
return to its regular paths in few iterations.
Figure 4 evidences the decreasing number of rejections observed when using differ-
ent proposals and the delayed rejection method. It is evident that the number of
rejections for the random walk chain and the independence chain are sensibly higher
with respect to the delayed rejection. The estimate of the latent processes fit fairly
well the ones generated. This is showed in Figures 5-6.

The analysis on real data is implemented through MCMC. The chain has been run
for 50, 000 iterations with a burn-in of 10, 000. This seems an appropriate choice
for the models considered. The Monte Carlo standard error (MCSE) has been com-
puted through the use of a kernel estimator to take into account the dependencies
due to the Markov nature of the algorithm. Since draws from the posterior distri-
butions are not independent, the reported MCSEs are an estimate of 2π times the
spectral density matrix at frequency zero computed by standard time series method.
In particular, the estimator is based on a VAR(1) prewhitening, than 2π times the
spectral density matrix at frequency zero of VAR residuals is estimated by smoothing
methods using the Parzen kernel and automatic bandwidth selection. Recolouring
provides an estimate of 2π times the spectral density matrix at frequency zero of
interest. Tables 4-6 report the posterior means, together with the Monte Carlo stan-
dard error and and the 95% confidence intervals evaluated using the percentiles of
the empirical posterior distribution.
From a computational point of view it is interesting to note how the Delayed Rejec-
tion algorithm performs. The introduction of the random walk steps sensibly reduce
the autocorrelation induced by the Markov structure of the algorithm. The number
of rejections is similar to the one observed for the simulated data and basically re-
duce to the 5% using a Delayed Rejection based on 3 steps. Figures 7 and 9 show
the improvement between the two methods analyzed. The effect is impressive and
some empirical studies evidence that it is possible to obtain similar autocorrelations
recording just one draw every four or five.

Table 4 evidences the results for the FTSE series. The second column shows the re-
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sults obtained for the stochastic volatility model, while the third and the fifth show
the results for the models with jumps. For comparative purposes, results based
on the random walk algorithm are showed in the fourth column. For the simple
stochastic volatility model, the average annualized volatility is

√
252× θ. The es-

timate of the quantity is 16.9, that is really close to the sample volatility 16.66,
as evidenced in Table 2. The parameter κ is the mean reversion of the volatility
equation and is 0.024 and basically represents the time the process come back to its
expected value level. The leverage effect between processes is mild: this finding is
slightly different with previous results stylized in literature (see for example Eraker
et al. 2003), but on the other side the period of reference considered here is differ-
ent. The variance of the volatility process is σ2

vVt and then the parameter σv, that
is 0.131, is important to asses the volatility of the volatility behaviour. If the first
jump component is taken into account, the volatility decreases, and the same thing
happens to the parameter σv. This is because the introduction of a jump compo-
nent explains part of the volatility that in the previous model has been described
just by a diffusive process. The parameter λ is 0.02. This means that the model
expects 5.3 jumps per year. The annualized spot volatility, i.e.

√
252(θ + µvλ)/κ

reduces to 16.1 percent and the annualized total volatility, i.e. the mean square
error of the returns that take into account the jump component is 16.94 percent.
This latter statistic is computed according to eq. (13) and eq. (16) of Section 2. In
percentage terms, the average effect of the jump component on the total volatility
is approximately the 8.8 percent. Finally the more general model is analyzed. The
introduction of the second jump component sensibly increase the parameter κ and
then the mean reversion phenomenon sensibly speeds up. The parameter λ halves.
The general model expects just 2.8 jumps per year. The annualized spot volatility
sensibly decreases with respect to the other models and is the 15.6 percent. On the
other side the total volatility is the 16.2 percent and then the return jump increases
it of about 7.4 percent. It is evident that there exists a reduction with respect to the
SVJ model. This is due to the extra jump component that itself explains part of the
volatility behavior of the complete model. In fact, the contribution of the jump on
volatilities shift

√
Vt− to

√
Vt− + Hv. The effect is mild with respect to the findings

showed in Eraker et al. (2003) and in this work is approximately the 3.3 percent.
These differences can be explained by the different time interval considered for the
empirical analysis. Eraker et al. (2003) in fact include October, the 19-th 1987 in
which a huge crash in the markets has been observed. It is really likely that the
single observation heavily influence all the estimates. Figures 10 and 11 show the
estimates of the latent processes for the various models. At a first sight they seem
equal, but a more detailed analysis evidence the findings stressed by the statistics
on the volatilities described before.

Results for S&P 500 are reported in Table 5. For this series, the mean reversion
parameter κ increases sensibly by moving from the basic stochastic volatility model
to the model with contemporaneous jumps. For the SV and the SVJ it is 0.011
while for the SVCJ is 0.026. At the same time θ, that represents the average of the
volatility process, decrease from 1.19 for the SV to 1.4 for SVJ and drop to 0.70 in
the SVCJ. The spot annualized volatility for the Heston’s model is close to the 22
percent. In the Bates’ model this quantity diminish to the 19 percent. The total
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volatility for the returns is about the 20.5 percent. This means that the jump effect
explains about the 14 percent of the whole volatility. In the complete model the
diffusive volatility drops to the 16 percent. The total volatility increases of just 1
point. Even in this case the average volatility jump’s size is negligible and is equal
to 1.6 percent. It is interesting to note that for this data set the sensible change for
λ. It moves from 0.06 to 0.02. The estimated volatilities are showed in Figure 12
while the probabilities of jump are showed in Figure 13.

Finally results for the Dow Jones index are reported in Table 6. The findings for
this time series are similar to the results obtained for the others. The introduction
of the jump process reduce the diffusive volatility component. As usual this is
evidenced by the parameters θ and σv. As before the introduction of the jumps
slightly increases the mean reversion κ. This series anyway seems more regular than
the others. The parameter λ does not change much when the two models with jumps
are chosen and the estimate is 0.003 for the Bates’ model and is 0.004. In general, for
all the three models the volatility is low (6.5 percent) and it seems it is not affected
by the jumps. The estimates of the latent processes are showed in Figures 14-15.

4.2 Model ranking

The contemporaneous jumps stochastic volatility model proposed in Duffie et al.
(2000), say (M3, θ3) encompasses the model proposed in Bates (1996), i.e. (M2, θ2)
and the model proposed in Heston (1993), that is (M1, θ1). A standard practice
is to compute the Bayes factor in order to rank the various competing models. As
stressed in Section 3.2 the ratio is defined as

Bij =
p(Y |Mi)
p(Y |Mj)

i = 1, 2, 3 (40)

where
m(Y |Mi) =

p(Y |Mi,θi)π(θi|Mi)
π(θi|Y ,Mi)

, ∀ θi ∈ supp(θi). (41)

The prior among models is uniform, i.e. p(Mi) = p(Mj) = 1/3,∀i, j. The details of
the procedure adopted here for the models considered has been showed in Section
3.2.1.

The estimates of the Bayes factors are reported in Tables 7-8. According to
the thresholds defined in Kass & Raftery (1995), in general the complete model is
strongly preferred to the others.
For the FTSE series, the ordering among the three models is remarkable. The
model (M3, θ3) is strongly preferred to the others. Again, (M2,θ2) is better than
the simple stochastic volatility (M1,θ1). The logarithm of the Bayes factors are
always superior to 4 and then there is no uncertainty about the ranking.

For the S&P500, SVCJ is preferred to the SVJ, but the evidence is not so strong.
In fact the log-Bayes factor is 1.56. Furthermore, the stochastic volatility with jump
on the returns is systematically preferred to the plain stochastic volatility.
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A Conditional Posterior Distributions.

We will give the expression of the conditional distribution obtained for the model.
In general, to make the notation simpler, I write at = yt−µ−Hy

t Jt, bt = Vt−Vt−1−
κ(θ − Vt−1) −Hv

t Jt and ωt = σ2
v(1 − ρ2)Vt−1. yt is the log-return at time t derived

as log(St)− log(St−1). For details on conjugate families see Robert (2001).
The main problem, as widely stressed in previous sections is to simulate the volatil-
ity process for which doesn’t exist a closed form for the conditional posterior. Its
expression is

p(Vt|rest) ∝
1
Vt

exp

{
− σ2

va
2
t + b2

t − 2ρσvatbt

2ωt
− σ2

va
2
t+1 + b2

t+1 − 2ρσvat+1bt+1

2ωt+1

}
(42)

The jump time Jt is a sequence of Bernoulli random variables. In order to calculate
the conditional posterior it is sufficient to evaluate P (Jt = 1|rest) and P (Jt = 0|rest)
in the following way,

Pc(1) = P (Jt = 1|rest) ∝ λ exp
{σ2

va
2
t,1 + b2

t,1 − 2ρσvat,1bt,1

ω

}
(43)

Pc(0) = P (Jt = 0|rest) ∝ (1− λ) exp
{σ2

va
2
t,0 + b2

t,0 − 2ρσvat,0bt,0

ω

}
(44)

with at,i = at, Jt = i and bt,i = bt, Jt = i, i = 0, 1. The conditional posterior is a
Bernoulli with P (0) = Pc(0)/(Pc(0) + Pc(1)).
It is very easy to sample from the ξY sequence. After some calculation it is possible
to obtain

p(Hy
t |Jt = 1, rest) ∝

N

(
σ2

v(yt − µ)2 − ρσvbt + (µy + ρjH
v
t )ωt/σ2

y)σ
2
y

σ2
vσ

2
y + ωt

,
σ2

yωt

σ2
vσ

2
y + ωt

)
(45)

Analogous algebra leads to

p(HV
t |Jt = 1, rest) ∝

N

(
ft − ρσv(yt − µ−Hy

t )− ωt/µv + ρj(HY
t − µy)ωt/σ2

y

σ2
vσ

2
y + ωt

,
σ2

yωt

σ2
y + ρ2

jωt

)
(46)

where ft = Vt−Vt−1− k(θ−Vt−1). If Jt = 0 then the posterior conditional simplify
to the law of H i

t , i = y, v.
Parameters involved in the diffusion’s drifts are easy to sample too. It is trivial to
check that µ, k and kθ are proportional to Normal distributions. The prior used are
respectively N(0, 25), N(0, 1) and N(0, 1). θ is obtained as a ratio of the previous
two extraction.
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Correlation among Brownian errors is explained by the parameter ρ. We assume a
prior Uniform in (−1, 1). The conditional posterior is then

p(ρ | rest) ∝
1

(
√

1− ρ2)n
exp

{
− 1

2

n∑

t=1

(σ2
va

2
t + b2

t − 2ρσvatbt

ωt

)}
I[−1,1](ρ) (47)

The variance of the error term of the volatility process is σ2
v . The prior we chose is

U(0, 1).

p(σ2
v | rest) ∝

1
σn

v

exp
{
− 1

2

(
σ2

v

n∑

t=1

a2
t

ωt
+

n∑

t=1

b2
t

ωt
− 2ρσv

n∑

t=1

btat

ωt

)}
I[0,1](σv) (48)

The conditional posterior both for ρ and σ2
v seems too complicate to handle directly.

For this reason I decided to use ARMS to simulate from them.
The intensity λ is sampled from

p(λ | rest) ∼ Beta

(
2 +

n∑

t=1

Jt, 40 + n−
n∑

t=1

Jt

)
(49)

For µv, given that the prior is an IG(α0, β0), α0 = 20, β0 = 10, after some calculation
it is possible to show that p(µv|rest) ∝ IG(n + α0, z + β0) with z =

∑
Hv.

The parameter ρj represent the correlation between jump sizes. The prior imposed
is N(0, 4). It is easy to show that its conditional distribution is proportional to a
Normal distribution p(ρj |rest) ∝ N(c/(b + 1/4), 1/(4b + 1)) in which et = Hy

t − µy,
b = (

∑n
t=1 Hv 2

t )/σ2
y and c = (

∑n
t=1 etH

v
t )/σ2

y .
The variance of the conditional distribution of the return jump size is σ2

y . Imposing
an Inverse Gamma prior IG(α0 = 5, β0 = 20) leads to a conjugate posterior. The
conditional posterior is then an Inverse Gamma IG(α + n/2, β + z/2), and where
z =

∑n
t=1

(
Hy

t − µy − ρjH
v
t

)2.
Finally µy is Normal with mean

∑
mt(n/σ2

y +0.01)−1 and variance (n/σ2
y +0.01)−1

with mt = Hy
t − ρjH

v
t , provided that the prior is N(0, 100)
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B Results

Table 1: Indexes, daily series
Price Index Symbol Period
Financial Times Stock Exchange 100 FTSE 4/7/1988- 4/7/2003
Standard & Poor’s 500 Composite S&P500 4/7/1988- 4/7/2003
Dow Jones Composite 65 Stock Ave. DJC 4/7/1988- 4/7/2003

Table 2: Descriptive statistics for annualized Index returns
FTSE S&P 500 DJC

Mean 5.0856 8.4266 7.5844
Volatility 16.6671 16.3609 15.0988
Maximum 5.9025 5.5732 5.3455
Minimum -5.8853 -7.1127 -8.1497
Skewness -0.1069 -0.1577 -0.3319
Kurtosis 3.0248 4.1393 5.2012
Jarque-Bera 1494.345 2801.362 4469.79
P-value (0.0000) (0.0000) (0.0000)
Observations 3914 3914 3914
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Figure 1: FTSE Returns - July 5,1988 - July 4,2003
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Figure 2: S&P 500 Returns - July 5,1988 - July 4,2003
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Figure 3: Dow Jones Composite 65 Average Stock Returns - July 5,1988 - July 4,2003
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Table 3: Simulated Data - The first column show results obtained with delayed re-
jection on 3 stages. The second one the results based on a Random Walk chain

True D.R. R.W.Chain
µ 0.05 0.0504 0.0524

(0.00105) (0.00264)
[0.016,0.085] [0.014,0.089]

κ 0.03 0.0340 0.0385
(0.00065) (0.00164)

[0.023,0.046] [0.024,0.052]
θ 0.5 0.4742 0.4940

( 0.01013) (0.00940)
[0.309,0.682] [0.340,0.706]

σv 0.1 0.1160 0.1183
(0.00088) (0.00131)

[0.103,0.133] [0.106,0.132]
ρ -0.5 -0.4208 -0.4491

(0.0194) (0.02633)
[-0.57,-0.22] [-0.61,-0.28]

λ 0.008 0.0148 0.0159
(0.00038) (0.00094)

[0.008,0.023] [0.008,0.026]
ρj -0.4 -0.5925 0.9228

(0.24078) (0.19715)
[-1.97,0.870] [-0.56,2.814]

µv 1.0 0.7112 0.6006
(0.02424) (0.02439)

[0.489,1.007] [0.417,0.901]
µy -2.0 -1.2891 -2.5695

(0.29979) (0.2637)
[-3.02,0.776] [-4.79,-0.68]

σy 3.5 2.9313 2.8996
(0.09519) (0.05200)

[2.199,3.866] [2.171,3.793]
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Figure 4: Simulated data - Estimated rejection rate for the algorithm used to infer
the model. Dotted line: Independence chain (medium line); Dashed line: Random
walk chain (upper line); Solid line: Delayed Rejection (lower line)
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Figure 5: Simulated data - True (a) and estimated volatility processes (b).
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Figure 6: Simulated data - True (a) and estimated probability jump processes (b).
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Table 4: FTSE - First column show results for the Heston’s model. The second one
the results for the Bates’s model and on the third and fourth the Contemporaneous
Jump Stochastic Volatility estimated with a random walk chain and with a delayed
Rejection method respectively.

SV SV J SV CJRW SV CJ

µ 0.37804 0.34913 0.35424 0.35776
(0.00075) (0.00126) (0.00124) (0.00085)

[0.345,0.410] [0.311,0.385] [0.322,0.386] [0.323,0.390]
κ 0.02470 0.02334 0.02357 0.03360

(0.00099) (0.00062) (0.00084) (0.00135)
[0.003,0.060] [0.004,0.051] [0.005,0.038] [0.009,0.063]

θ 1.13738 1.03846 0.85647 0.78465
(0.02047) (0.01515) (0.02280) (0.01182)

[0.671,2.564] [0.620,0.176] [0.497,1.716] [0.516,1.296]
σv 0.13123 0.12432 0.11115 0.12175

(0.00185) (0.00111) (0.000802) (0.00137)
[0.102,0.196] [0.102,0.176] [0.103,0.131] [0.103,0.161]

ρ -0.07195 -0.07927 -0.14487 -0.10701
(0.00580) (0.00643) (0.01076) (0.00785)

[-0.251,0.093] [-0.259,0.087] [-0.318,0.025] [-0.299,0.076]
λ 0.02124 0.01041 0.01141

(0.00084) (0.00045) (0.00044)
[0.006,0.044] [0.003,0.025] [0.004,0.021]

ρj -0.92304 -0.96041
(0.19650) (0.14603)

[-3.964,1.592] [-3.248,0.830]
µv 0.47698 0.55692

(0.00887) (0.01292)
[0.328,0.698] [0.379,0.815]

µy 1.20930 2.27814 2.27270
(0.05283) (0.12626) (0.10749)

[0.403,2.369] [0.722,4.132] [0.667,3.931]
σy 1.81939 1.95446 1.95544

(0.02700) (0.03273) (0.03721)
[1.369,2.494] [1.353,2.679] [1.351,2.657]
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Table 5: S&P 500 - First column show results for the Heston’s model. The second
one the results for the Bates’s model and on the third and fourth the Contempora-
neous Jump Stochastic Volatility estimated with a random walk chain and with a
delayed Rejection method respectively.

SV SV J SV CJRW SV CJ

µ 0.33817 0.27325 0.30755 0.30580
(0.00066) (0.00149) (0.00123) (0.00099)

[0.308,0.369] [0.235,0.308] [0.274,0.338] [0.273,0.338]
κ 0.01158 0.01193 0.01833 0.02603

(0.00055) (0.00053) (0.00098) (0.00127)
[0.001,0.036] [0.001,0.032] [0.002,0.035] [0.003,0.052]

θ 1.91813 1.43636 0.75231 0.70708
(0.05952) (0.05879) (0.02342) (0.03275)

[0.743,6.136] [0.594,4.876] [0.354,1.876] [0.383,1.690]
σv 0.12726 0.11381 0.11609 0.12408

(0.00129) (0.00091) (0.00083) (0.00139)
[0.104,0.176] [0.101,0.151] [0.106,0.133] [0.106,0.154]

ρ -0.24906 -0.29625 -0.35679 -0.30640
(0.00511) (0.00849) (0.01179) (0.00959)

[-0.392,-0.080] [-0.478,-0.098] [-0.501,-0.155] [-0.497,-0.106]
λ 0.06230 0.02256 0.02467

(0.00191) (0.00064) (0.00077)
[0.033,0.102] [0.012,0.036] [0.011,0.041]

ρj -1.73113 -2.33007
(0.25020) (0.31992)

[-5.300,2.126] [-6.914,1.852]
µv 0.37591 0.37536

(0.00712) (0.00649)
[0.263,0.520] [0.258,0.517]

µy 0.62210 1.26642 1.48429
(0.01181) (0.08863) (0.11648)

[0.256,1.039] [-0.161,2.598] [-0.046,3.361]
σy 1.84464 2.39534 2.26498

(0.01996) (0.03295) (0.04678)
[1.473,2.305] [1.808,3.070] [1.464,3.046]



32 Davide Raggi

Table 6: DOW JONES - First column show results for the Heston’s model. The
second one the results for the Bates’s model and on the third and fourth the Con-
temporaneous Jump Stochastic Volatility estimated with a random walk chain and
with a delayed Rejection method respectively.

SV SV J SV CJRW SV CJ

µ 0.32813 0.30037 0.30865 0.30971
(0.00055) (0.00086) (0.00116) (0.00063)

[0.299,0.357] [0.268,0.330] [0.277,0.339] [0.279,0.339]
κ 0.03149 0.02630 0.03458 0.04248

(0.00089) (0.00073) (0.00124) (0.00134)
[0.009,0.063] [0.006,0.058] [0.014,0.056] [0.018,0.069]

θ 0.88656 0.83137 0.61888 0.60933
(0.00829) (0.01027) (0.00797) (0.00702)

[0.530,1.504] [0.516,1.599] [0.412,0.962] [379,0.885]
σv 0.14216 0.12136 0.11647 0.12578

(0.00153) (0.00114) (0.00119) (0.00114)
[0.111,0.192] [0.102,0.159] [0.104,0.138] [0.105,0.154]

ρ -0.15691 -0.19619 -0.25083 -0.20458
(0.00474) (0.00781) (0.00915) (0.00658)

[-0.303,-0.015] [-0.389,-0.018] [-0.400,-0.084] [-0.371,-0.043]
λ 0.02512 0.01414 0.01437

(0.00068) (0.00048) (0.00054)
[0.011,0.045] [0.006,0.024] [0.006,0.026]

ρj -2.27543 -2.64816
(0.22512) (0.28933)

[-5.356,0.714] [-6.365,1.429]
µv 0.46714 0.49273

(0.00986) (0.00959)
[0.313,0.673] [0.330,0.711]

µy 0.42276 1.27282 1.52653
(0.02168) (0.12008) (0.16268)

[-0.219,1.023] [-0.387,3.012] [-0.769,3.701]
σy 2.26954 2.46479 2.36237

(0.02554) (0.05279) (0.06451)
[1.732,2.928] [1.637,3.333] [1.337,3.574]
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Figure 7: FTSE - Autocorrelation functions for the averaged volatility according to
different sampling schemes.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
ACF− Random Walk ACF− Delayed Rejection 

Figure 8: S&P 500 - Autocorrelation functions for the averaged volatility according
to different sampling schemes.
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Figure 9: DOW JONES - Autocorrelation functions for the averaged volatility ac-
cording to different sampling schemes.
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Figure 10: FTSE - Estimated volatility processes: (a) SV model; (b) SVJ model;
(c) SVCJ model.
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Figure 11: FTSE - Estimated probability of jump: (a) SVJ model; (b) SVCJ model.
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Figure 12: S&P 500 - Estimated volatility processes: (a) SV model; (b) SVJ model;
(c) SVCJ model.
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Figure 13: S&P 500 - Estimated probability of jump: (a) SVJ model; (b) SVCJ
model.
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Figure 14: Dow Jones - Estimated volatility processes: (a) SV model; (b) SVJ model;
(c) SVCJ model.
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Figure 15: Dow Jones - Estimated probability of jump: (a) SVJ model; (b) SVCJ
model.
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Table 7: FTSE - log-Bayes Factor. Entry (i, j) indicates the Bayes factor in favour
of model j versus model i.

SVCJ SVJ SV
SVCJ 1
SVJ 4.8912 1
SV 17.0307 12.1359 1

log-lik. -5293.6 -5299.9 -5318.8
Marg. lik. -5316.7 -5321.6 -5333.7

Table 8: S&P500 - log-Bayes Factor. Entry (i, j) indicates the Bayes factor in favour
of model j versus model i.

SVCJ SVJ SV
SVCJ 1
SVJ 1.5665 1
SV 54.3685 52.80192 1

log-lik. -5124.8 -5127.2 -5186.0
Marg.lik. -5149.0 -5150.5 -5203.3

Table 9: DJC - log-Bayes Factor. Entry (i, j) indicates the Bayes factor in favor of
model j versus model i.

SVCJ SVJ SV
SVCJ 1
SVJ 33.3291 1
SV 36.8007 3.4716 1

log-lik -5472.4 -5509.6 -5516.3
Marg. lik. -5497.1 -5530.4 -5533.9
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C Conclusion

The use of simulation techniques seems to provide a reliable and accurate toolbox to
handle even continuous time stochastic processes. The use of Markov Chain Monte
Carlo techniques together with sequential Monte Carlo methods allows to infer many
stochastic volatility models and to provide a battery of diagnostic tools. The big
advantage of the MCMC algorithms is that they allow to simplify the solution of
many unfeasible models with standard methods, by dividing the problem into many
simpler ones. This is the case of the models analyzed in this thesis, where the likeli-
hood function is not known in closed form because of the presence of non observable
components.
The use of an adaptive method sensibly increases the efficiency of the estimates for
the latent processes, at least in the affine jump diffusion specification. An impor-
tant advantage of the Delayed Rejection method is that it maintains the properties
and the tractability of the plain Metropolis-Hastings method, and at the same time
preserves the algorithm from a bad behaviour due to an imprecise choice of the
proposal distributions. On the other side the introduction of further Metropolis-
Hastings steps slow down the run of the software. For this reasons some care has to
be taken when the algorithm is planned.
Anyway, the use of simulation techniques seems to me very useful in financial econo-
metrics. A possible extension of the results obtained in this thesis can include the
study of models for option pricing based on more general stochastic dynamics. Many
different alternatives based on Lévy processes are growing in importance. At this
purpose, the use of Monte Carlo simulations seems to be appropriate to do inference
for derivatives and to efficiently estimate the risk-premium parameters.
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