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Abstract: Let X and Y be two independent continuous random variables. We discuss
three techniques to obtain confidence intervals for ρ = Pr{Y > X} in a semiparametric
framework. One method relies on the asymptotic normality of an estimator for ρ; the
remaining methods involve empirical likelihood and combine it with maximum likelihood
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confidence intervals is assessed through a simulation study. An illustration is given using a
dataset on the detection of carriers of Duchenne Muscular Dystrophy.
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1 Introduction and motivation

Let X and Y be two independent random variables (rv’s) with continuous cumulative
distribution functions (cdf’s) G and F , respectively. A wide range of problems,
especially in engineering and medical research, involves making inference about the
quantity ρ = Pr{Y > X}.

In reliability contexts, evaluation of, and inference on, ρ is known as the stress-
strength problem (see Kotz et al., 2003, as a general reference). Take X to be the
stress potentially affecting a component, and take Y to be the strength at failure
of the component, i.e. the stress at which the component will fail. In this setting,
ρ represents the probability that the component will not fail, i.e. its reliability.
The stress-strength problem involves tipically two aspects: (i) deriving theoretical
expressions for ρ under distributional assumptions about X and Y ; (ii) making
inference about ρ in light of sample data. In applications, the data for the strength
could be actual data indicative of the strength of the material, i.e. maximum applied
stress to cause failure, and the stress data could be actual stress data of the material
under usual operating conditions.

The quantity ρ also equals the area under the receiver operating characteristic
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(ROC) curve for diagnostic tests or bio-markers with continuous outcome (see Bam-
ber, 1975). The ROC curve is widely used, in biological, medical and health service
research, to evaluate the ability of diagnostic tests or bio-markers to distinguish
between two groups of subjects, usually non-diseased and diseased subjects. Let X
and Y denote the diagnostic variable conditional on non-disease and disease, respec-
tively, and assume that, for a generic subject, the disease is diagnosed, i.e. the test
is positive, if the diagnostic variable is greater than a suitable threshold c. Then,
the ROC curve is a plot of 1− F (c), i.e. the true-positive rate, versus 1−G(c), i.e.
the false-positive rate, across all possible threshold values c. Alternatively, the ROC
curve can be defined as R(u) = 1 − F (G−1(1 − u)), for 0 ≤ u ≤ 1. See, e.g., Lloyd
(1998). The accuracy of a test depends on how well it separates the subjects being
tested into those with and without the disease in question. The area under the ROC
curve represents the most commonly used global index of diagnostic accuracy. In
this context, therefore, ρ measures the inherent capacity of a test or bio-marker for
discriminating a diseased from a non-diseased subject across all possible levels of
positivity. Values of ρ close to 1 indicate that the test has high diagnostic accuracy.

Other interpretations of ρ arise, however, in other situations. In fact, ρ may be
considered as a general measure for the difference between two distributions (see e.g.
Wolfe and Hogg, 1971) and, as such, is related to the classical two-sample problem.

Since the mid 50’s, the problem of making inference on ρ has been extensively
discussed, with emphasis oriented to the specific application at hand. It is practically
impossible to mention all the contributors to the topic; we cite, among others,
the papers by Ury (1972), Hanley and McNeil (1982), Hsieh and Turnbull (1996),
Gupta et al. (1999), Surles and Padgett (2001), Faraggi and Reiser (2002) and
the monograph by Kotz et al. (2003), referring the reader to references therein.
Most contributions addressing inference about ρ take a parametric point of view,
i.e. assuming parametric models for both X and Y , although some work has been
developed also in nonparametric settings.

In this paper, we shall discuss procedures to handle problems in which distribu-
tional assumptions can be reasonably formulated for one of the two rv’s, whereas
no safe probabilistic assertments can be expressed for the second rv. In reliability
studies, this is justified by the fact that the stress variable is usually difficult to
model accurately, due to the lack of sufficient knowledge about the stress in use of
a component, whereas the strength variable might be more easily elicited via expert
opinion. In biomedical research, a diagnostic test, whose accuracy has to be assessed,
often shows marked differences in terms of the distribution of the associate diagnos-
tic variable conditional on non-disease and disease, respectively. In this case, it may
be unsafe to confine these differences to differences in the parameters of some statis-
tical model, or it may be hard to adopt two reasonable different parametric models.
A similar situation arises in comparing new to existing treatments, where the dis-
tribution of the response may be largely known for standard treatments, whereas
little or no information may be available on the response to new treatments. In all
these situations, a semiparametric approach appears to be more desirable than a
parametric one and it is expected to be more efficient than the fully nonparametric
approach.

In the semiparametric framework that we consider, we shall review, in particu-
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lar, three techniques to obtain confidence intervals for ρ. These lead to confidence
intervals with different theoretical properties. The first method basically relies on
the asymptotic normality of an estimator for ρ; the remaining methods involve the
empirical likelihood (see Owen, 2001, as a general reference) and combine it with
maximum likelihood estimation and with full parametric likelihood, respectively.
Finite-sample accuracy of the resulting confidence intervals is assessed through a sim-
ulation study. An application to a dataset on the detection of carriers of Duchenne
Muscular Dystrophy is also presented, which demonstrates usefulness of the semi-
parametric approach and allows to contrast the methods.

The paper is organized as follows. Section 2 describes the methods giving theo-
retical justification. Section 3 presents some simulation results, and the application
is discussed in Section 4. Section 5 contains some final remarks. Some technical
details are given in the Appendix.

2 Methodologies

Consider a general parametric model {F (y; θ); θ ∈ Θ} for the variable Y . Here,
F (y; θ) = Pr{Y ≤ y; θ} denotes the cdf, which depends on an unknown parameter θ
belonging to some set Θ ⊆ IRq, q ≥ 1. Let S(y; θ) = 1− F (y; θ) denote the survival
function corresponding to F (y; θ). We do not make any parametric assumption
about the distribution of the variable X. We only assume that X is independent of
Y . In this setting, ρ = Pr{Y > X; θ}.

Let X1, X2, . . . , Xn be a random sample of size n from X and Y1, Y2, . . . , Ym a
random sample of size m from Y . In the following, we assume that the ratio n/m
converges to some positive and finite constant κ, as n and m increase to +∞. Let
θ0 and ρ0 indicate the true values of θ and ρ, respectively. Since

ρ0 = Pr{Y > X; θ0} = E[Pr{Y > X|X; θ0}] = E{S(X; θ0)},

an obvious estimator for ρ0 is given by

ρ̂ =
1
n

n∑
i=1

S(Xi; θ̂), (1)

where θ̂ denotes the maximum likelihood estimator (mle) of θ0 based on the sample
Y1, Y2, . . . , Ym. Throughout the paper, we assume standard regularity conditions,
which ensure the consistency and the asymptotic normality of the mle θ̂ and legit-
imize some Taylor expansion. Under these conditions, we can write

1
n

n∑
i=1

S(Xi; θ̂) =
1
n

n∑
i=1

S(Xi; θ0) +

{
1
n

n∑
i=1

Ṡ(Xi; θ0)

}>

(θ̂ − θ0) + op(n−1/2),

where Ṡ(·; ·) denotes the derivative of S(y; θ) with respect to θ. Then

√
n(ρ̂− ρ0) =

√
n

{
1
n

n∑
i=1

S(Xi; θ0)− ρ0

}
+
√

κm β>(θ̂ − θ0) + op(1),
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being β = E{Ṡ(X; θ0)}. It follows that
√

n(ρ̂ − ρ0) is asymptotically normal with
mean zero and variance

ω2 = ω2
S + κβ>Ωβ,

where ω2
S is the variance of S(X; θ0) and Ω denotes the asymptotic covariance matrix

of
√

m(θ̂ − θ0). This suggests that confidence intervals for ρ0 may be obtained
by the classical normal approximation approach. Clearly, we need to estimate the
asymptotic variance ω2. Let Ω̂ denote a consistent estimator of Ω. Then, a consistent
estimator of ω2 is

ω̂2 = ω̂2
S + (n/m)β̂>Ω̂β̂,

where ω̂2
S = n−1

∑n
i=1{S(Xi; θ̂) − ρ̂}2 is a consistent estimator of ω2

S (see the Ap-
pendix) and β̂ = n−1

∑n
i=1 Ṡ(Xi; θ̂).

Despite its usefulness, there are some drawbacks associated with the crude nor-
mal approximation approach. Firstly, this method does not always work well for
small samples, yielding confidence intervals with poor accuracy. Secondly, the
method is not range-preserving, so that confidence intervals for ρ0 could contain
values outside its range. Finally, the method artificially imposes a predetermined
symmetry constraint on the shape of the confidence intervals.

To overcome the drawbacks encountered by the crude normal approximation
approach, three routes can be considered, which we describe in what follows.

Reparameterization. Let t(·) be an invertible function with continuous derivative
ṫ(·), mapping the interval (0,1) to the real line, and consider the new parameter
τ = t(ρ). Let τ0 = t(ρ0) and τ̂ = t(ρ̂). Then,

√
n(τ̂ − τ0) is asymptotically normally

distributed with mean zero and variance ṫ2(ρ0)ω2. This asymptotic distribution can
be used to construct confidence intervals on the τ scale, and then to convert them
back to the ρ scale by the inverse transformation t−1. Equivalently, the intervals can
be obtained by approximating the distribution of the pivot

wt(ρ) =
n{t(ρ̂)− t(ρ)}2

ṫ2(ρ̂)ω̂2
(2)

by a chi-square distribution with one degree of freedom (χ2
1). Therefore, an approx-

imate confidence interval for ρ0, with nominal coverage 1−γ, is the set {ρ : wt(ρ) ≤
cγ}, where cγ is such that Pr{χ2

1 ≤ cγ} = 1− γ.
The reason for the transformation is two-fold: it provides range-respecting con-

fidence intervals, and it generally improves their accuracy, since the normal approx-
imation works better in an unrestricted space for a distribution with less skewness.

Suitable transformations, which turn out to be useful in this setting are, for
instance, the logit and the probit transformation. In particular, for the logit trans-
formation, t(ρ) = logit(ρ) = log{ρ/(1− ρ)} and ṫ(ρ) = 1/{ρ(1− ρ)}.

Estimated empirical likelihood. If θ0 were known, one could construct confi-
dence intervals for ρ0, the mean of S(X; θ0), using the empirical likelihood method
(Owen, 1988, 1990). The empirical log likelihood ratio function for the mean of
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S(X; θ0), evaluated at some possible candidate ρ, is defined as

l(ρ) = −2 sup
p1,p2,...,pn

n∑
i=1

log(npi),

where the supremum is taken subject to the constraints

pi ≥ 0 for all i,
n∑

i=1

pi = 1 and
n∑

i=1

S(Xi; θ0)pi = ρ. (3)

It follows from Owen (1988) that, when evaluated at the true value ρ0, the empirical
log likelihood ratio has an asymptotic χ2

1 distribution; that is l(ρ0)
d−→χ2

1.
Of course, l(ρ) cannot be computed since it depends on θ0 which is unknown. A

natural solution is then to replace θ0 in (3) by its mle θ̂. This leads to an estimated
empirical log likelihood ratio defined as

l̂(ρ) = −2 sup

{
n∑

i=1

log(npi) : pi ≥ 0 ∀i,
n∑

i=1

pi = 1,

n∑
i=1

S(Xi; θ̂)pi = ρ

}
.

A Lagrangian argument gives an explicit expression for l̂(ρ). Let X(1) and X(n) be
the minimum and the maximum of the X values. When S(X(n); θ̂) < ρ < S(X(1); θ̂),
we have

l̂(ρ) = 2
n∑

i=1

log[1 + λ{S(Xi; θ̂)− ρ}], (4)

where λ = λ(ρ) is the solution of the equation

1
n

n∑
i=1

S(Xi; θ̂)− ρ

1 + λ{S(Xi; θ̂)− ρ}
= 0. (5)

Outside the interval bounded by S(X(n); θ̂) and S(X(1); θ̂), it is necessary to set
l̂(ρ) = +∞. The function l̂(ρ) attains its minimum value at ρ = ρ̂.

Due to the substitution of θ0 with θ̂ in (3), l̂(ρ0) no longer has the usual asymp-
totic chi-square distribution. However, it can be shown (see the Appendix) that

l̂(ρ0) = n
(ρ̂− ρ0)2

ω̂2
S

+ op(1) as n, m → +∞. (6)

It follows that

l̃(ρ0) =
ω̂2

S

ω̂2
l̂(ρ0)

d−→χ2
1.

The function l̃(ρ) = (ω̂2
S/ω̂2) l̂(ρ) represents an adjusted empirical log likelihood ratio

function, with a standard asymptotic behaviour. Then, the set {ρ : l̃(ρ) ≤ cγ} is
an approximate confidence interval for ρ0, with nominal coverage 1− γ. Confidence
intervals obtained by l̃(ρ) are indeed intervals, are range-respecting and are not
subject to symmetry constraints, having shape which is determined automatically
by the data. Moreover, they are equivariant under one-to-one transformations of
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the parameter ρ. Given a transformation, confidence intervals for the transformed
parameter can be obtained by applying such transformation to each point of the
original confidence intervals for ρ0.

Combined likelihood. The approach based on l̃(ρ) combines mle and empirical
likelihood. A more sophisticated approach, which fully combines parametric and
empirical likelihoods, is also possible. This approach is developed in Qin (1997).

Let f(y; θ) denote the density function corresponding to F (y; θ). The combined
log likelihood function for (θ, ρ) can be defined as

`(θ, ρ) =
m∑

j=1

log{f(Yj ; θ)} + sup
p1,p2,...,pn

n∑
i=1

log(pi),

where the supremum is taken subject to the constraints

pi ≥ 0,
n∑

i=1

pi = 1 and
n∑

i=1

S(Xi; θ)pi = ρ.

This function attains its maximum value at (θ̂, ρ̂). Using Lagrange multipliers leads
to

`(θ, ρ) =
m∑

j=1

log{f(Yj ; θ)} −
n∑

i=1

log[1 + λ{S(Xi; θ)− ρ}] − n log(n), (7)

where λ = λ(θ, ρ) is the solution of

1
n

n∑
i=1

S(Xi; θ)− ρ

1 + λ{S(Xi; θ)− ρ}
= 0.

Expression (7) for `(θ, ρ) is correct if the couple (θ, ρ) is such that S(X(n); θ) < ρ <
S(X(1); θ). Otherwise, it is necessary to set `(θ, ρ) = −∞. A profile combined log
likelihood for ρ is then obtained as

`P (ρ) = sup
θ

`(θ, ρ),

so that the profile combined log likelihood ratio function for ρ is

lP (ρ) = 2{`P (ρ̂)− `P (ρ)}.

Of course, `P (ρ̂) = `(θ̂, ρ̂).
By results in Qin (1997) (see also Theorem 2 of Qin, 2000), it follows that, under

standard regularity conditions,

lP (ρ0)
d−→χ2

1, as n, m → +∞.

Therefore, the set {ρ : lP (ρ) ≤ cγ} constitutes an approximate confidence interval
for ρ0, with nominal coverage 1−γ. Confidence intervals obtained by lP (ρ) have the
same good properties of those obtained by l̃(ρ). Moreover, they are also invariant
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with respect to invertible transformations of the nuisance parameter θ, so that the
family of distributions for Y can be reparameterized without affecting confidence
intervals for ρ0. Finally, it is worth noting that the combined likelihood approach
does not require the estimation of the asymptotic variance of any statistic.

The described techniques give rise to confidence intervals with different theoreti-
cal properties. However, the techniques are asymptotically equivalent, in that func-
tions wt(ρ), l̃(ρ) and lP (ρ) are identical to first order of approximation. Therefore,
the resulting confidence intervals tend to be identical as the sample sizes increase.

Estimator ρ̂, from which we started, can be viewed as a semiparametric analogue
of the well known Mann-Whitney statistic. The latter is obtainable by estimating
the survival function S in (1) by its empirical counterpart. Moreover, ρ̂ represents
also the maximum adjusted empirical likelihood estimator and the maximum com-
bined likelihood estimator of ρ. Another semiparametric estimator of ρ, obtained by
integrating an estimator of the ROC curve, is derived in Li et al (1999). Asymptotic
normality of such an estimator could be used to obtain confidence intervals for ρ,
although the variance of the asymptotic distribution appears to be more involved to
estimate.

We conclude this section with two remarks.
Remark 1. Suppose that interest lies in ρ∗ = Pr{Y ≤ X; θ} = 1 − ρ. Then the
adjusted empirical log likelihood ratio for ρ∗, say l̃(·), is immediately derived by l̃(·),
being l̃(ρ∗) = l̃(1−ρ∗). The same holds for the combined likelihood approach, where
lP (ρ∗) = lP (1− ρ∗).
Remark 2. The techniques based on the normal approximaton with reparameteri-
zation and on the adjusted empirical log likelihood ratio use the mle θ̂. However, any√

m-consistent estimator of θ could be employed. For instance, one may want to use
robust estimators to protect inference from effects of outliers or (small) departures
of the data distribution from the specified parametric model.

3 Some simulation results

In this section, we report the results of a simulation study carried out to assess the
finite-sample accuracy of the confidence intervals obtained by using the techniques
discussed in Section 2.

For three levels of nominal coverage 1 − γ, Tables 1, 2, 3 give the estimated
coverage probabilities of the confidence intervals based on the profile combined log
likelihood ratio lP (ρ) (CL), the adjusted empirical log likelihood ratio l̃(ρ) (AEL),
and the asymptotic normality of t(ρ̂), with t(·) being the logit transformation (NAL).
Each table refers to a particular value fixed for the true ρ0, i.e. 0.50, 0.75 and 0.95,
respectively.

In the simulation work, we have considered three different parametric models
for Y : (i) a Gaussian model (N(α, σ)), (ii) a Gamma model (Ga(α, σ)), and (iii) a
scaled Burr type X model (BurrX(α, σ)). The first two are well-known and largely
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used parametric models. We recall that the Ga(α, σ) distribution has cdf

F (y;α, σ) =
1

Γ(α)

∫ y/σ

0
zα−1e−zdz, y > 0, α > 0, σ > 0,

where Γ(·) is the gamma function. The scaled Burr type X model has been recently
introduced for applications in reliability studies. We refer the interested reader to
Surles and Padgett (2001) for results about likelihood-based inference for this model
and inference on ρ when X and Y are independently distributed as scaled Burr type
X rv’s. Here, we recall only that the BurrX(α, σ) distribution has cdf

F (y;α, σ) =
{

1− e−(y/σ)2
}α

, y > 0, α > 0, σ > 0.

Evidently, in this setting θ = (α, σ). To perform the simulation experiments,
random samples for the Y and the X values have been generated, respectively, from
a N(α, σ) and a N(0, σX) in case (i), from a Ga(α, σ) and a Ga(αX , 1) in case (ii)
and from a BurrX(α, σ) and a BurrX(αX , 1) in case (iii), for various combinations
of the parameters α, σ, αX and σX . Of course, the values for α, σ and σX , in case
(i), and α, σ and αX , in cases (ii) and (iii), have been chosen in a way such that the
true ρ0 were always equal to the chosen reference value.

As for the sample sizes, for each value of ρ0 we have chosen two different set-
tings. In detail, for ρ0 = 0.50 we have set m = 10, n = 20 and m = 20, n = 40; for
ρ0 = 0.75 we have set m = 12, n = 25 and m = 25, n = 50; finally, for ρ0 = 0.95
we have set m = 25, n = 50 and m = 50, n = 100. Each simulation experiment is
based on 5000 replications.

[Insert Table 1, 2, 3 around here]

Simulation results show that confidence intervals based on the three techniques
are accurate in almost all considered cases, even for the smallest sample sizes. In
particular, we underline the good performance of the NAL approach, which results
in surprisingly accurate confidence intervals. We have tested other transformations
(such as the probit), obtaining results worse than those given by the logit transfor-
mation.

Although competitive with the CL and NAL approaches, the AEL approach
shows the least satisfactory results. In particular, accuracy tends to slightly diminish
for extreme values of ρ0 and small sample sizes. Moreover, the poor performance
for the Gaussian case with σX = 1 and σ = 4 may be explained by the fact that 1−
Pr{S(X(n); θ̂) < ρ0 < S(X(1); θ̂)} becomes, in small samples, relatively high, so that
l̃(ρ0) attains +∞ too many times. However, accuracy increases with sample size and,
generally, this approach still greatly outperforms the crude normal approximation
approach (results not reported here).

It is worth noting that the smallest sample sizes used in the simulations are
indicative of the effective sizes needed to guarantee sufficiently accurate coverages.
Clearly, the closer the value of ρ0 to the boundary, the larger the sample sizes
necessary.

Some simulations have also been performed for small values of ρ0 (0.05 and 0.25),
leading to similar conclusions.
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4 An example

Duchenne muscular dystrophy is one of the most prevalent types of muscular dys-
trophy and is characterized by rapid progression of muscle degeneration that occurs
early in life. It is a genetically transmitted disease, which is passed from a mother to
her children. Unfortunately, no cure has yet been discovered, so that the screening
of females who could be potential carriers is of great importance.

Andrews and Herzberg (1985) report some data collected during a program run
at the Hospital for Sick Children of Toronto. Knowing that carriers tend to exhibit
elevated levels of some serum enzymes, values of four blood serum markers were
measured in known carriers and in non-carriers, i.e. healthy females, with the aim
of evaluating their performance as diagnostic tests. Complete data are available on
127 healthy females and 67 carriers.

To illustrate usefulness of the semiparametric approach adopted in this paper,
we shall consider one of the four markers, i.e. pyruvate kinase (PK), and calculate
confidence intervals for the probability that PK levels in carriers are greater than in
healthy females.

Inspection of the data reveals non-normality of both samples, i.e. carriers and
healthy females. A standard parametric approach relies on a single transformation
of the data which brings both the samples back to normality (see, for instance,
Faraggi and Reiser, 2002, which analyze for the same subjects blood serum creatine
kinase levels). However, for PK measurements it is not possible to find such a
transformation, although it is possible to find two different transformations, which
separately map the two samples to normality. The semiparametric approach appears
therefore to be useful in this case.

We transform the carriers’ measurements by taking the power of −0.56, as sug-
gested by the Box-Cox method, and assume a N(α, σ) distribution for the trans-
formed values. The same transformation is applied to the healthy females measure-
ments, for which we do not make any parametric assumption. Figure 1 shows the
normal quantile-quantile plots for the transformed data. Note that we assume the
parametric model for the smallest sample.

[Insert Figure 1 around here]

Let X∗ and Y ∗ denote the PK levels for a healthy and a carrier female, re-
spectively, and let X and Y denote the transformed PK levels. Our interest lies in
computing confidence intervals for

ρ∗ = Pr{Y ∗ > X∗} = 1− Pr{Y > X; θ}, θ = (α, σ),

which can be derived by applying the techniques described in Section 2. Figure 2
shows the profile combined log likelihood ratio for ρ∗, lP (ρ∗), the adjusted empirical
log likelihood ratio l̃(ρ∗) (see Remark 1), and the function wt(ρ∗) derived from (2)
on letting t(·) be the logit transformation. The horizontal dotted line is at the
asymptotically justified 95% coverage level.

As may be seen, the three functions are very close. This result might be ex-
pected, in view of the sample sizes with which we deal. In particular, the profile
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combined log likelihood ratio lP (ρ∗) and the adjusted empirical log likelihood ratio
l̃(ρ∗) are practically indistinguishable, leading to the same 0.95-level confidence in-
terval (0.742, 0.868). The point estimate is ρ̂∗ = 1 − ρ̂ = 0.812, which is the value
that minimizes the three curves.

[Insert Figure 2 around here]

5 Conclusions

In this paper, we have considered the problem of making inference on ρ in a semi-
parametric framework. In particular, we have discussed three techniques to obtain
confidence intervals. Simulation results have shown a substantial comparability of
the three procedures, at least so far as accuracy of the corresponding confidence in-
tervals is concerned. Overall, we have observed a good agreement between nominal
and actual coverages.

However, the techniques lead to confidence intervals with different theoretical
properties and present also different degrees of computational complexity. From
a theoretical point of view, the most appealing technique is the one based on the
combined likelihood. Nevertheless, its practical use is, computationally, the most de-
manding. In fact, for each fixed value of ρ, the computation of the profile combined
log likelihood ratio lP (ρ) requires maximization with respect to θ of the function
`(θ, ρ), whose evaluation involves solving a nonlinear equation (see also Qin, 1997).
In contrast, the computation of the adjusted empirical log likelihood ratio l̃(ρ) re-
quires solving only one such equation. Naturally, all techniques rely on the compu-
tation of the mle θ̂, for which a closed expression might not exist. The technique
based on the normal approximation with reparameterization is the least attractive
from a theoretical perspective, but it could be recommended due to its simplicity. In
particular, we strongly advise the use of the logit transformation, which has shown
unexpected good performance in our simulation study.
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Appendix

In this appendix we sketch a proof of (6). Let ξL = inf{x : G(x) > 0} and ξU =
sup{x : G(x) < 1}, where it may be ξL = −∞ and ξU = +∞. Moreover, let
ρL = S(ξU ; θ0), ρU = S(ξL; θ0) and assume that ρL < ρU . Thus, ρL < ρ0 < ρU .

As n and m increase to +∞, X(1), X(n) and θ̂ converge in probability to ξL,
ξU and θ0, respectively. Then, S(X(1); θ̂) and S(X(n); θ̂) converge to ρU and ρL,
respectively, so that Pr{S(X(n); θ̂) < ρ0 < S(X(1); θ̂)} → 1 as n, m → +∞. This
means that l̂(ρ0) exists (finite) with probability tending to 1.
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By Dini’s Theorem, the function λ(ρ) defined by equation (5) is continuous in a
neighbourhood of ρ̂, resulting in

λ̇(ρ̂) =
dλ(ρ)

dρ

∣∣∣∣
ρ=ρ̂

= − 1
ω̂2

S

, with ω̂2
S = n−1

n∑
i=1

{S(Xi; θ̂)− ρ̂}2.

Since

ω̂2
S =

1
n

n∑
i=1

{S(Xi; θ̂)− ρ0}2 + Op(n−1), (8)

and
1
n

n∑
i=1

{S(Xi; θ̂)− ρ0}2 = ω2
S + op(1),

we have ω̂2
S = ω2

S + op(1). Then we consider the Taylor series expansion of λ(ρ)
around ρ̂,

λ(ρ) = λ(ρ̂) + λ̇(ρ̂)(ρ− ρ̂) + o(|ρ− ρ̂|).

Let λ0 = λ(ρ0). Since λ(ρ̂) = 0, at ρ = ρ0 the above expression becomes

λ0 =
ρ̂− ρ0

ω̂2
S

+ op(n−1/2). (9)

Thus λ0 = Op(n−1/2) and |λ0|max1≤i≤n |S(Xi; θ̂)−ρ0| = Op(n−1/2); then, using the
McLaurin series expansion

log(1 + z) = z − 1
2
z2 +

z3

3(1 + z̄)3
, |z̄| ≤ |z|,

in the expression of l̂(ρ0), i.e. in (4) evaluated at ρ = ρ0, we obtain

l̂(ρ0) = 2λ0

n∑
i=1

{S(Xi; θ̂)− ρ0} − λ2
0

n∑
i=1

{S(Xi; θ̂)− ρ0}2 + op(1). (10)

Equation (6) follows from (10), using also (8) and (9).
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Figure 1: Normal quantile-quantile plots of the transformed PK levels.
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Figure 2: Profile combined log likelihood ratio function, lP (·), adjusted empirical log
likelihood ratio function l̃(·) and function wt(·) for the probability ρ∗ that PK levels
in carriers are greater than in healthy females. The function wt(·) is derived from
(2) on considering the logit transformation.
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m = 10, n = 20 m = 20, n = 40
1− γ 1− γ

0.99 0.95 0.90 0.99 0.95 0.90

α σX σ Gaussian
0 1 1 CL 0.985 0.940 0.879 0.990 0.948 0.890

AEL 0.986 0.943 0.884 0.992 0.953 0.894
NAL 0.989 0.947 0.888 0.991 0.950 0.893

0 1 4 CL 0.982 0.932 0.872 0.985 0.939 0.880
AEL 0.819 0.802 0.779 0.957 0.931 0.896
NAL 0.989 0.941 0.879 0.987 0.943 0.883

0 1 2 CL 0.984 0.928 0.876 0.989 0.945 0.889
AEL 0.963 0.922 0.873 0.992 0.963 0.913
NAL 0.987 0.932 0.879 0.990 0.947 0.892

0 2 1 CL 0.988 0.947 0.892 0.988 0.946 0.898
AEL 0.991 0.951 0.895 0.989 0.950 0.900
NAL 0.995 0.960 0.908 0.990 0.954 0.905

0 1 0.5 CL 0.991 0.947 0.889 0.990 0.947 0.896
AEL 0.993 0.949 0.893 0.991 0.949 0.897
NAL 0.996 0.956 0.905 0.993 0.952 0.901

0 1 0.25 CL 0.990 0.949 0.893 0.989 0.946 0.891
AEL 0.991 0.951 0.894 0.990 0.947 0.892
NAL 0.996 0.964 0.910 0.993 0.954 0.898

α αX σ Gamma
1 1 1 CL 0.985 0.940 0.890 0.988 0.941 0.890

AEL 0.983 0.941 0.893 0.990 0.945 0.893
NAL 0.989 0.947 0.899 0.990 0.944 0.894

1.71 1 0.5 CL 0.988 0.944 0.893 0.991 0.951 0.897
AEL 0.989 0.949 0.895 0.993 0.954 0.899
NAL 0.992 0.953 0.908 0.994 0.956 0.901

0.631 1 2 CL 0.985 0.937 0.879 0.989 0.941 0.887
AEL 0.978 0.931 0.882 0.992 0.950 0.894
NAL 0.989 0.942 0.886 0.990 0.944 0.890

3.69 2 0.5 CL 0.989 0.940 0.885 0.984 0.946 0.892
AEL 0.989 0.946 0.890 0.986 0.947 0.894
NAL 0.993 0.952 0.897 0.987 0.949 0.899

2 2 1 CL 0.987 0.937 0.887 0.990 0.950 0.904
AEL 0.989 0.941 0.890 0.993 0.954 0.909
NAL 0.992 0.948 0.895 0.992 0.952 0.907

1.149 2 2 CL 0.986 0.943 0.881 0.987 0.945 0.888
AEL 0.984 0.942 0.885 0.992 0.953 0.897
NAL 0.991 0.948 0.887 0.989 0.948 0.890

α αX σ scaled Burr type X
1 1 1 CL 0.983 0.939 0.885 0.989 0.947 0.902

AEL 0.982 0.941 0.889 0.991 0.949 0.905
NAL 0.988 0.947 0.894 0.989 0.948 0.905

10 10 1 CL 0.986 0.933 0.880 0.988 0.947 0.885
AEL 0.987 0.937 0.886 0.990 0.952 0.892
NAL 0.991 0.944 0.888 0.989 0.951 0.891

10 30 1.187 CL 0.986 0.937 0.885 0.986 0.940 0.899
AEL 0.980 0.937 0.885 0.991 0.951 0.898
NAL 0.989 0.944 0.890 0.988 0.942 0.892

30 10 0.843 CL 0.991 0.947 0.889 0.989 0.947 0.894
AEL 0.992 0.951 0.895 0.992 0.949 0.898
NAL 0.994 0.957 0.903 0.992 0.950 0.899

50 50 1 CL 0.986 0.940 0.890 0.991 0.947 0.892
AEL 0.987 0.948 0.893 0.992 0.952 0.901
NAL 0.992 0.952 0.898 0.993 0.951 0.898

Table 1: Estimated coverage probabilities of the confidence intervals for ρ0 = 0.50.
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m = 12, n = 25 m = 25, n = 50
1− γ 1− γ

0.99 0.95 0.90 0.99 0.95 0.90

α σX σ Gaussian
0.954 1 1 CL 0.987 0.939 0.884 0.988 0.945 0.897

AEL 0.983 0.940 0.888 0.992 0.951 0.901
NAL 0.991 0.947 0.895 0.990 0.948 0.898

2.781 1 4 CL 0.983 0.933 0.878 0.988 0.943 0.895
AEL 0.837 0.823 0.802 0.968 0.949 0.919
NAL 0.992 0.944 0.891 0.991 0.948 0.898

1.509 1 2 CL 0.983 0.938 0.888 0.988 0.937 0.880
AEL 0.963 0.924 0.882 0.992 0.954 0.903
NAL 0.987 0.944 0.894 0.990 0.941 0.881

1.509 2 1 CL 0.988 0.948 0.894 0.990 0.948 0.900
AEL 0.989 0.950 0.895 0.992 0.953 0.902
NAL 0.995 0.957 0.907 0.992 0.955 0.906

0.754 1 0.5 CL 0.989 0.948 0.894 0.990 0.950 0.899
AEL 0.989 0.952 0.900 0.990 0.951 0.902
NAL 0.994 0.958 0.910 0.990 0.953 0.908

0.695 1 0.25 CL 0.992 0.947 0.900 0.992 0.954 0.905
AEL 0.993 0.949 0.901 0.992 0.955 0.906
NAL 0.995 0.960 0.917 0.993 0.962 0.917

α αX σ Gamma
1 1 3 CL 0.985 0.939 0.884 0.987 0.940 0.886

AEL 0.979 0.937 0.886 0.990 0.948 0.894
NAL 0.991 0.947 0.896 0.988 0.943 0.889

3.42 1 0.5 CL 0.990 0.948 0.895 0.989 0.944 0.892
AEL 0.990 0.949 0.897 0.992 0.949 0.894
NAL 0.993 0.959 0.906 0.991 0.950 0.898

2 1 1 CL 0.986 0.941 0.890 0.991 0.949 0.898
AEL 0.984 0.942 0.892 0.993 0.953 0.902
NAL 0.990 0.953 0.899 0.993 0.953 0.903

1.262 1 2 CL 0.985 0.938 0.884 0.988 0.939 0.887
AEL 0.981 0.940 0.889 0.989 0.947 0.892
NAL 0.990 0.946 0.896 0.989 0.944 0.891

6.177 2 0.5 CL 0.990 0.950 0.892 0.989 0.948 0.899
AEL 0.988 0.950 0.896 0.991 0.952 0.901
NAL 0.992 0.957 0.907 0.991 0.952 0.902

3.445 2 1 CL 0.989 0.944 0.891 0.989 0.945 0.897
AEL 0.985 0.943 0.892 0.991 0.951 0.902
NAL 0.994 0.953 0.901 0.990 0.950 0.902

2.045 2 2 CL 0.986 0.935 0.881 0.989 0.937 0.891
AEL 0.979 0.933 0.881 0.992 0.947 0.896
NAL 0.989 0.943 0.888 0.991 0.941 0.891

α αX σ scaled Burr type X
1 1 1.733 CL 0.983 0.942 0.889 0.988 0.947 0.896

AEL 0.988 0.936 0.888 0.990 0.955 0.904
NAL 0.989 0.947 0.894 0.990 0.948 0.901

10 10 1.218 CL 0.988 0.937 0.882 0.989 0.946 0.898
AEL 0.984 0.933 0.882 0.990 0.949 0.902
NAL 0.993 0.945 0.891 0.990 0.950 0.902

10 30 1.412 CL 0.987 0.937 0.888 0.984 0.940 0.889
AEL 0.978 0.931 0.885 0.986 0.945 0.893
NAL 0.990 0.943 0.895 0.985 0.942 0.891

30 10 1 CL 0.989 0.944 0.895 0.988 0.945 0.894
AEL 0.987 0.944 0.897 0.990 0.947 0.898
NAL 0.993 0.951 0.904 0.989 0.951 0.900

50 50 1.136 CL 0.988 0.939 0.884 0.989 0.938 0.892
AEL 0.984 0.937 0.882 0.990 0.946 0.896
NAL 0.991 0.946 0.893 0.991 0.943 0.895

Table 2: Estimated coverage probabilities of the confidence intervals for ρ0 = 0.75.
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m = 25, n = 50 m = 50, n = 100
1− γ 1− γ

0.99 0.95 0.90 0.99 0.95 0.90

α σX σ Gaussian
2.327 1 1 CL 0.986 0.937 0.891 0.989 0.948 0.897

AEL 0.978 0.926 0.881 0.987 0.950 0.902
NAL 0.990 0.946 0.894 0.989 0.950 0.902

6.782 1 4 CL 0.987 0.938 0.878 0.990 0.945 0.895
AEL 0.884 0.868 0.844 0.983 0.963 0.932
NAL 0.991 0.949 0.890 0.989 0.951 0.898

3.68 1 2 CL 0.988 0.946 0.894 0.988 0.943 0.891
AEL 0.974 0.935 0.892 0.990 0.954 0.904
NAL 0.990 0.950 0.901 0.990 0.947 0.894

3.68 2 1 CL 0.974 0.923 0.872 0.982 0.940 0.886
AEL 0.969 0.920 0.868 0.984 0.941 0.888
NAL 0.986 0.938 0.883 0.985 0.942 0.890

1.839 1 0.5 CL 0.974 0.918 0.868 0.986 0.947 0.894
AEL 0.967 0.913 0.864 0.987 0.948 0.896
NAL 0.985 0.930 0.879 0.988 0.950 0.898

1.696 1 0.25 CL 0.948 0.898 0.851 0.980 0.941 0.888
AEL 0.943 0.896 0.851 0.979 0.941 0.890
NAL 0.965 0.909 0.862 0.982 0.946 0.893

α αX σ Gamma
1 1 19 CL 0.987 0.940 0.886 0.986 0.942 0.884

AEL 0.971 0.935 0.893 0.992 0.957 0.906
NAL 0.992 0.952 0.899 0.989 0.946 0.888

7.39 1 0.5 CL 0.981 0.931 0.884 0.984 0.946 0.897
AEL 0.973 0.925 0.877 0.984 0.947 0.896
NAL 0.987 0.940 0.890 0.985 0.950 0.898

4.322 1 1 CL 0.984 0.953 0.881 0.989 0.947 0.896
AEL 0.976 0.929 0.877 0.988 0.949 0.897
NAL 0.990 0.944 0.893 0.991 0.952 0.899

2.727 1 2 CL 0.983 0.941 0.888 0.991 0.946 0.894
AEL 0.975 0.933 0.882 0.992 0.950 0.901
NAL 0.989 0.949 0.900 0.993 0.951 0.897

11.228 2 0.5 CL 0.979 0.933 0.884 0.986 0.941 0.889
AEL 0.969 0.923 0.870 0.985 0.939 0.886
NAL 0.979 0.935 0.885 0.987 0.940 0.889

6.391 2 1 CL 0.985 0.939 0.884 0.987 0.948 0.896
AEL 0.975 0.928 0.878 0.988 0.951 0.901
NAL 0.986 0.946 0.891 0.989 0.952 0.902

3.892 2 2 CL 0.987 0.944 0.888 0.989 0.949 0.893
AEL 0.979 0.936 0.880 0.988 0.955 0.898
NAL 0.991 0.953 0.898 0.990 0.954 0.898

α αX σ scaled Burr type X
1 1 4.36 CL 0.987 0.943 0.890 0.987 0.947 0.894

AEL 0.972 0.937 0.897 0.991 0.960 0.917
NAL 0.991 0.955 0.901 0.989 0.955 0.901

10 10 1.62 CL 0.988 0.945 0.888 0.992 0.953 0.899
AEL 0.978 0.929 0.873 0.990 0.953 0.904
NAL 0.992 0.951 0.896 0.993 0.955 0.906

10 30 1.825 CL 0.990 0.944 0.890 0.986 0.944 0.893
AEL 0.972 0.929 0.878 0.984 0.944 0.894
NAL 0.993 0.953 0.899 0.988 0.947 0.898

30 10 1.275 CL 0.983 0.930 0.878 0.988 0.943 0.892
AEL 0.973 0.922 0.870 0.986 0.944 0.896
NAL 0.987 0.943 0.889 0.988 0.947 0.896

50 50 1.368 CL 0.989 0.946 0.897 0.988 0.947 0.899
AEL 0.980 0.937 0.885 0.988 0.948 0.901
NAL 0.989 0.953 0.904 0.991 0.950 0.903

Table 3: Estimated coverage probabilities of the confidence intervals for ρ0 = 0.95.
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