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Robust prediction limits based on M-estimators
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Italy

Abstract: In this paper we discuss a robust solution to the problem of prediction. Follow-

ing Barndorff-Nielsen and Cox (1996) and Vidoni (1998), we propose improved prediction

limits based on M-estimators instead of maximum likelihood estimators. To compute these

robust prediction limits, the expressions of the bias and variance of an M-estimator are re-

quired. Here a general asymptotic approximation for the bias of an M-estimator is derived.

Moreover, by means of comparative studies in the context of affine transformation models,

we show that the proposed robust procedure for prediction behaves in a similar manner to

the classical one when the model is correctly specified, but it is designed to be stable in a

neighborhood of the model.

Keywords: Asymptotic expansion, Bias, Influence function, Prediction, Robustness, Scale

and regression model.

1 Introduction

The purpose of this paper is to define robust prediction limits for an unobserved ab-
solutely continuous random variable. In particular, we consider the situation where
the data y = (y1, . . . , yn) are a realization of a random vector Y , with probability
density function f(y; θ) and cumulative distribution function F (y; θ), known except
for the d-dimensional parameter θ ∈ Θ ⊆ IRd, d ≥ 1. The future random variable
Z is assumed independent of Y and with probability density function f(z; θ) which
depends on the same unknown parameter θ.

A prediction statement about Z is often given through prediction limits, i.e.
functions of the data, c(y) ∈ IR, such that

Pθ{Z < c(Y )} = α , (1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is usually
called coverage probability and is calculated with respect to the joint density of
Z and Y . In practice, prediction limits that satisfy (1) can only be obtained in
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very special cases, namely when a pivotal quantity, that is a function of Z and Y
which distribution is free of θ, exists. Thus, in practice, the aim becomes that of
satisfying (1) to a high order of approximation. An easy way of making predictions
about Z is by means of the so-called estimative predictive density f(z; θ̂), where
θ̂ is a suitable estimator for θ, usually the maximum likelihood estimator (MLE).
However, prediction limits based on the estimative density are usually imprecise,
having coverage error of order O(n−1). Indeed, Barndorff-Nielsen and Cox (1996)
and Vidoni (1998) suggest a way to correct the quantiles of the estimative density,
thus obtaining prediction limits with a coverage error of order o(n−1). Also Corcuera
and Giummolè (2002) propose a solution for the case when Z is a m-dimensional
random vector. They find prediction regions with coverage error of asymptotic order
o(n−1).

The aim here is to study robust prediction limits, that is prediction limits which
present a good behaviour both when the model is correctly specified and also in the
presence of small deviations from the assumed model. In fact, in many situations
of practical interest, there is no certainty that the observed data y come from the
specified model F (y; θ). They may instead come from some neighborhood of the
model. It is well known that several standard likelihood procedures are not robust
with respect to model misspecifications or presence of outliers, and the need for
robust statistical procedures has been stressed by many authors in the statistical
literature; see for instance, Huber (1981), Hampel et al. (1986) and Markatou and
Ronchetti (1997). However, while robust literature offers many solutions for infer-
ence on the parameter θ of the model, the prediction problem has been somehow
neglected. Exceptions are given by Fisher and Horn (1994), Basu and Harris (1994)
and Ronchetti and Vidoni (1998). Anyway, the above results do not improve on the
estimative density in terms of coverage error of related prediction limits.

The robust solution proposed in this paper is the analogous of the prediction
limits discussed by Barndorff-Nielsen and Cox (1996) and Vidoni (1998), when the
MLEs are substituted by suitable M-estimators. Such estimators define a general
class, defined through unbiased estimating equations, which includes the MLE as
a particular case and plays an important role in the context of robust theory. In
order to apply the proposed predictive procedures, the required ingredients are the
asymptotic bias and asymptotic variance of the M-estimator used. To this end, in
this paper an asymptotic expansion for the bias of an M-estimator is derived, its
expression being quite similar to the expansion for the bias of the MLE (see e.g.
Pace and Salvan, 1997). Attention is focused on scale and regression models.

The paper is organized as follows. Section 2 presents a brief review on classical
prediction limits and their application in the context of scale and regression models.
These results are the starting point to obtain the robust prediction limits developed
in Section 3. Applications and simulation studies are illustrated in Section 4. In the
Appendix the expansion for the bias of an M-estimator is derived.
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2 A review of prediction limits

Let us assume that there exists a sufficient reduction of the data of the form
y ↔ (θ̂, a), where θ̂ is the MLE and a an ancillary statistic. According to the
conditionality principle, we keep the value of a fixed when evaluating the goodness
of a statistical procedure. Thus, a prediction limit can be written as a function of
θ̂, avoiding writing the dependence on a explicitely. The problem becomes that of
finding functions c(θ̂) ∈ IR such that

Pθ{Z < c(θ̂)} = α , ∀θ , (2)

to a high order of approximation. The above probability is taken with respect to
the joint density of Z and θ̂ conditioned on the observed value of a. Notice that a
conditional solution to (2) satisfies (1) too.

In this paper we focus on the case of Y1, . . . , Yn and Z being independent random
variables with distribution belonging to a parametric scale and regression model of
the form

f(z; θ) =
1

σ
p0

(

z − xTβ

σ

)

,

where θ = (β, σ), with β ∈ IRp a regression coefficient and σ > 0 a scale parameter,
xT is a fixed vector of regressors and p0(·) is a known density on IR. Applications
of scale and regression models are found in many areas of statistics as, for example,
survival analysis or industrial applications.

An easy way to obtain prediction limit satisfying (2), consists of considering the
quantiles of the estimative density f(z; θ̂), so that

c(β̂, σ̂) = xT β̂ + σ̂qα , (3)

where qα is the α-quantile of p0(z) and θ̂ = (β̂, σ̂) is the MLE of θ = (β, σ). In spite
of its intuitiveness, the estimative density f(z; θ̂) may not be entirely adequate for
prediction. The estimative prediction limit satisfies (2) up to an error term of order
O(n−1). Indeed, especially when the dimension of θ is large in comparison with n,
it may provide inaccurate results for prediction.

In order to improve the estimative solution Barndorff-Nielsen and Cox (1996)
and Vidoni (1998) discuss corrections to the estimative quantiles. In particular,
denote by b(θ) = Eθ{θ̂− θ} and i(θ)−1 = Eθ{(θ̂ − θ)T (θ̂− θ)} the bias and variance
of θ̂, respectively. To present the corrected prediction limit it is convenient to use
index notation and Einstein summation convention, so that summation is intended
over indices that appear twice in an expression. The components of β are denoted
by βj , the corresponding components of b(β) are bj, while the bias of σ̂ is bσ. The
blocks of i(θ)−1 corresponding to (β, β), (β, σ) and (σ, σ) are denoted, respectively,
by iij , iσj and iσσ . A corrected prediction limit is then

cC(θ̂) = cC(β̂, σ̂) = (β̂j − b̂j)xn+1

j + (σ̂ − b̂σ)qα

+
g0(qα)

2σ̂

(

îσσq2α + 2̂iσjqαx
n+1

j + îijxn+1

i xn+1

j

)

, (4)
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where a hat over a quantity means evaluation at θ = θ̂, xn+1 is the future value
of the regressors and g0(z) = −d log p0(z)/dz. Prediction limits (4) give coverage
error of asymptotic order o(n−1), thus improving the estimative solution. Moreover
it is important to notice that prediction limits (4) are equivariant with respect to
regression and scale transformations in the observations. General expressions for
the computation of asymptotic bias and variance of the MLE can be found in Pace
and Salvan (1997).

3 Prediction limits based on M-estimators

The approach to robustness followed here is the one based on the influence function
(IF) (see Hampel et al., 1986).

It is easy to verify that prediction limits of the form (4) are sensitive with re-
spect to model misspecifications or presence of outliers, since they depend on the
MLE. It is well-known that the IF of the MLE is proportional to its score function
(∂/∂θ) log f(y; θ). Thus, if the score function is unbounded, also is the IF. This is
tipically the case for scale and regression models. Prediction limits of the form (4)
are not B-robust (bias-robust) since they depend on the MLE of θ, which is not in
general B-robust.

The aim of this section is to introduce a robust version of prediction limits (4).
More precisely, we define robust prediction limits based on suitable M-estimators
for θ. An M-estimator for θ is a generalization of the MLE and in general is defined
as the solution θ̃ of the system of unbiased estimating equations

Ψr =
n

∑

i=1

ψr(yi; θ) = 0 , r = 1, . . . , d , (5)

where ψr(·) is the r-th component of a suitable function ψ(·) : Y × IRd → IRd.
By setting Ψr equal to the components of the score function, θ̃ coincides with the
MLE for θ. Under broad conditions which we will assume throughout this paper
(cfr. Hampel et al., 1986), it can be shown that θ̃ is consistent and asymptotically
normal, with mean θ and asymptotic variance

V (θ) = M(θ)−1Ω(θ)(M(θ)−1)T , (6)

where M(θ) = −
∫

∂ψ(y; θ)/∂θTdFθ and Ω(θ) =
∫

ψ(y; θ)ψ(y; θ)TdFθ. Since the
influence function of θ̃ at a point x is given by

IFθ̃(x) = M(θ)−1ψ(x; θ) ,

the M-estimator is B-robust at the assumed model Fθ if and only if ψ(x; θ) is
bounded. By bounding the IF, we are able to ensure that small deviations from
the model distribution do not cause large changes in the estimates.

When θ̃ is an M-estimator for θ, approximate expressions for the calculation of
the bias and variance can be made available. These approximations hold up to terms
of order n−1 and do not change the order of the coverage error associated to limits
(4). To give the expression of these approximations it is again convenient to use index
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notation. The components of θ are denoted by θr and the derivatives of Ψr with re-
spect to the components of θ are denoted by Ψrs = (∂/∂θs)Ψr, Ψrst = (∂/∂θsθt)Ψr,
etc, where the indices r, s, t, . . . range over 1, . . . , d. For the expected values of these
derivatives, we use the notation νrs = E(Ψrs), νrst = E(Ψrst) , etc, and we assume
that these quantities are of order O(n). Further, the zero–mean variables Ψr and
Ψrs − νrs are assumed to be of order Op(n

1/2). These assumptions are satisfied in
practice, since Ψθ asymptotically behaves like the sum of n independent random
variables. In addition, κrs denotes the inverse matrix of −νrs.

By using the expansions in the Appendix, we find that

brM = Eθ(θ̃ − θ)r =
1

2
κijκhkκlmE(ΨkΨm) + κilκhjE(ΨhlΨj) +O(n−2) . (7)

The expression for the asymptotic variance is simply given by îrs
M = v̂rs + o(n−1),

where vrs is the (r, s) element of the matrix (6).

Now all we need is to calculate the above quantities for scale and regression
models. We find that

cM (θ̃) = cM (β̃, σ̃) = (β̃j − b̃jM )xn+1

j + (σ̃ − b̃σM )qα

+
g0(qα)

2σ̃

(

ṽσσq2α + 2ṽσjqαx
n+1

j + ṽijxn+1

i xn+1

j

)

, (8)

where a tilde over a quantity indicates evaluation at θ̃ = (β̃, σ̃). The robust predic-
tion limit (8) is a modification of the ordinary prediction limit based on the MLE
when robustness is required.

Observe also that (8) is valid in general for any estimator θ̃ which is defined
as the solution of an unbiased estimating equation that behaves as the sum of n
independent random variables.

4 Examples and Monte Carlo studies

In this section we consider two examples in order to compare the finite-sample
behaviour of the predictive limits based on robust M-estimators with those based
on classical MLEs. Interest is focused on scale and regression models, which include
location and scale models. Referring to the construction of prediction limits in the
robust setting, we perform Monte Carlo experiments whose objective is both to
evaluate the accuracy of the prediction limits when the model is correctly specified
and to assess the stability of the coverage levels under small, arbitrary departures
from the assumed model. We consider a contamination model of the form Fε = (1−
ε)Fθ+εG, where G(·) denotes the contaminating distribution and the contamination
percentage ε is set at 5%.

Example 1: Exponential model. Let θ > 0 be a scale parameter and let (y1, . . . , yn)
be a random sample from a scale model F (y; θ). For a scale model with stan-
dard distribution F0(·), we have F (y; θ) = F0(yθ) and ψ(y; θ) = ψ(yθ). More-
over, Ω(θ) = n

∫

ψ(x)2 dF0(x) = Ω, B(θ) = −(n/θ)
∫

xψ̇(x) dF0(x) = −B/θ, where
ψ̇(x) = ∂ψ(x)/∂x. In this example we focus on the optimal Hampel estimator
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(see Hampel et al. (1986), Chap. 2) for the parameter of the exponential model
F (y; θ) = 1 − exp(−yθ), with ψ(x) = max{−b,min{b, a − x}}, for appropriate con-
stants a and b. Quantities involved in (4) and (8) are easy to obtain.

Table 1 shows the results of a Monte Carlo experiment (based on 10000 tri-
als) that compares prediction limits, when data are generated from the exponen-
tial with mean 1 (Exp(1)) and the Exp(1) contaminated by the Weibull G(x) =
1− exp{−(10x)1.5} (contamination on the left). The Hampel estimator is used with
a = 0.8636 and b = 1.129. From Table 1 we can see that prediction limits based on
this robust M-estimator are accurate for every sample size and under contamination
are always preferable to those based on MLE.

(Table 1 about here)

Example 2: Linear model. A wide class of M -estimators for scale and regression
parameters is defined by estimating functions of the form

Ψβ,σ =

n
∑

i=1

ψ(yi;β, σ) =

( ∑

s(xi)ψβ{riv(xi)}xi
∑

ψσ(ri)

)

, (9)

where ri = (yi − xT

i β)/σ and s(·), v(·), ψβ(·), ψσ(·) are appropriate functions (see
Hampel et al., 1986, chap. 6). When s(x) = v(x) = 1 and ψβ(·) = ψHF (·; k1) =
max{−k1,min{k1, k1−x}} we obtain the Huber estimator. Alternatively, the choice
s(x) = 1/v(x), v(x) = ||x|| and ψβ(·) = ψHF (·; k1) defines the Hampel-Krasker es-
timator. A popular choice for ψσ is ψσ(·) = ψ2

HF (·; k2) − γ(k2), for appropriate
k2 and γ(k2). However, for a general M-estimator defined by (9) with ψβ and ψσ

odd and even functions respectively, we have V ar{Ψβ,σ} = Ω = diag(Ωβ,β,Ωσ,σ)
and −E{∂Ψβ,σ/∂(β, σ)T } = (1/σ)B, with B = diag(Bβ,β, Bσ,σ), where Ωβ,β =
∑

s2(xi)g1(xi)xix
T

i , Ωσ,σ = n
∫

ψ2
σ(r)rdF0(r), Bβ,β =

∑

s(xi)v(xi)g2(xi)xix
T

i and
Bσ,σ = n

∫

ψ̇σ(r)rdF0(r), with g1(x) =
∫

ψ2
β{rv(x)}dF0(r) and g2(x) =

∫

ψ̇β{rv(x)}dF0(r).
Consider a normal regression model with p = 2. The Huber estimator is used

with k1 = 1.345. Table 2 gives the results of a Monte Carlo experiment (based on
10000 trials) performed to assess the coverage error of the prediction limits based
on (4) and (8). The central model is the N(0, 1), while the contaminated scenario
considers the N(0, 1) contaminated by a N(0, 25). From Table 2 we can see that,
in the case of a moderate sample size, both (4) and (8) can be used succesfully
to construct predictive regions when the model is correct, while (8) seems slightly
preferable under a small departure from the central model.

(Table 2 about here)

ACKNOWLEDGMENTS. This work was partially supported by grants from Ministero dell’Università

e della Ricerca Scientifica e Tecnologica, Italy.

Appendix

The first step in deriving expansions for estimating equations is, most commonly, to
make a Taylor expansion in θ̃ around θ. Thus, we begin by expanding the estimating
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function Ψ̃θ about the true parameter value θ to give

Ψ̃r = Ψr + (θ̃ − θ)sΨrs +
1

2
(θ̃ − θ)stΨrst +

1

6
(θ̃ − θ)stuΨrstu +Op(n

−1) , (10)

where (θ̃− θ)r = θ̃r − θr, (θ̃− θ)rs = (θ̃− θ)r(θ̃− θ)s, etc. Under the usual regularity
conditions, which assure that the global estimator θ̃ is consistent and asymptotically
normal, the summands on the right-hand side of (10) are Op(n

1/2), Op(n
1/2), Op(1)

and Op(n
−1/2) respectively. The sample size does not appear explicitly in (10) but

is incorporated into the random variables.

Let us introduce the general notation HRm = ΨRm − νRm, for any set Rm =
r1 . . . rm of coordinate indices, so that νRm is of order O(n) and HRm of order
Op(n

1/2). Now, inserting HRm in (10) and collecting terms of the same asymptotic
order, we obtain

(θ̃ − θ)s(−νrs) = Ψr + (θ̃ − θ)sHrs +
1

2
(θ̃ − θ)stνrst +

1

2
(θ̃ − θ)stHrst

+
1

6
(θ̃ − θ)stuνrstu +Op(n

−1) .

Multiplying both sides by (−νrr′), we obtain the implicit version of the expansion
for (θ̃ − θ)r, that is

(θ̃ − θ)r = Ψr + (θ̃ − θ)sκrtHr
s +

1

2
(θ̃ − θ)stνr

st +
1

2
(θ̃ − θ)stHr

st

+
1

6
(θ̃ − θ)stuνr

stu +Op(n
−2) ,

where Ψr = κrsΨs, H
r
s = κrtHst, ν

r
st = κruνstu, Hr

st = κruHstu and νr
stu = κrvνstuv.

Applying the method of recursive substitutions we obtain

(θ̃ − θ)r = Ψr +
1

2
νr

stΨ
sΨt +Hr

sΨs +
1

6
νr

stuΨsΨtΨu +
1

2
νr

stν
t
wuΨsΨwΨu

+
1

2
Hr

stΨ
sΨt + νr

stH
t
wΨsΨw +

1

2
Hr

sν
s
utΨ

uΨt +Hr
sH

s
t Ψt +Op(n

−2) .(11)

There is a formal similarity between equation (11) and the same expression for the
MLE given e.g. in Pace and Salvan (1997, chap. 9). The first term of (11) gives

(θ̃ − θ)r = κrsΨs +Op(n
−1) ,

that coincides with the usual first order expansion for an M-estimator.

An expansion for the bias of θ̃ is readily obtained by taking termwise expectations
in (11). We find

E(θ̃ − θ)r =
1

2
κijκhkκlmE(ΨkΨm) + κilκhjE(ΨhlΨj) +O(n−2) . (12)

Also in this case there is a formal similarity between equation (12) and the expression
of the bias of the ordinary MLE given e.g. in Pace and Salvan (1997, chap. 9).
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true model cont. model
α n MLE HAMPEL MLE HAMPEL

0.1 10 0.089 0.097 0.087 0.094
(0.027) (0.030) (0.027) (0.030)

20 0.095 0.099 0.092 0.096
(0.021) (0.022) (0.020) (0.021)

50 0.098 0.101 0.093 0.096
(0.013) (0.013) (0.013) (0.013)

100 0.099 0.099 0.094 0.096
(0.009) (0.009) (0.010) (0.009)

0.2 10 0.178 0.192 0.176 0.188
(0.051) (0.055) (0.052) (0.056)

20 0.192 0.199 0.185 0.192
(0.039) (0.040) (0.038) (0.039)

50 0.197 0.199 0.188 0.192
(0.024) (0.025) (0.025) (0.025)

100 0.198 0.199 0.189 0.192
(0.017) (0.017) (0.018) (0.018)

0.3 10 0.275 0.282 0.266 0.281
(0.072) (0.076) (0.074) (0.078)

20 0.287 0.295 0.279 0.287
(0.052) (0.053) (0.053) (0.056)

50 0.295 0.298 0.283 0.288
(0.034) (0.035) (0.035) (0.035)

100 0.298 0.300 0.285 0.290
(0.025) (0.025) (0.026) (0.026)

0.4 10 0.367 0.385 0.359 0.378
(0.087) (0.091) (0.092) (0.0970)

20 0.384 0.393 0.375 0.387
(0.065) (0.067) (0.066) (0.069)

50 0.396 0.399 0.379 0.388
(0.042) (0.043) (0.043) (0.044)

100 0.397 0.399 0.381 0.390
(0.029) (0.029) (0.032) (0.032)

0.5 10 0.463 0.480 0.453 0.469
(0.100) (0.104) (0.107) (0.110)

20 0.482 0.491 0.471 0.484
(0.074) (0.076) (0.076) (0.078)

50 0.495 0.499 0.476 0.488
(0.048) (0.049) (0.049) (0.049)

100 0.496 0.499 0.479 0.492
(0.033) (0.033) (0.037) (0.037)

true model cont. model
α n MLE HAMPEL MLE HAMPEL

0.6 10 0.561 0.575 0.550 0.563
(0.108) (0.110) (0.115) (0.118)

20 0.581 0.589 0.569 0.579
(0.079) (0.081) (0.082) (0.084)

50 0.595 0.598 0.574 0.583
(0.051) (0.051) (0.052) (0.053)

100 0.596 0.598 0.578 0.589
(0.035) (0.035) (0.039) (0.039)

0.7 10 0.662 0.671 0.650 0.659
(0.110) (0.111) (0.118) (0.120)

20 0.681 0.686 0.670 0.679
(0.080) (0.081) (0.082) (0.084)

50 0.695 0.697 0.674 0.677
(0.050) (0.051) (0.053) (0.053)

100 0.696 0.697 0.678 0.684
(0.035) (0.035) (0.039) (0.040)

0.8 10 0.766 0.768 0.755 0.764
(0.102) (0.103) (0.111) (0.113)

20 0.783 0.785 0.773 0.783
(0.073) (0.074) (0.075) (0.078)

50 0.795 0.796 0.777 0.789
(0.045) (0.045) (0.048) (0.048)

100 0.797 0.797 0.780 0.790
(0.031) (0.031) (0.036) (0.036)

0.9 10 0.876 0.869 0.866 0.871
(0.080) (0.083) (0.087) (0.093)

20 0.888 0.885 0.880 0.885
(0.054) (0.056) (0.057) (0.060)

50 0.897 0.896 0.883 0.889
(0.032) (0.033) (0.036) (0.036)

100 0.898 0.897 0.884 0.890
(0.022) (0.023) (0.027) (0.027)

Table 1: Simulation results for the scale model.
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true model cont. model
α n MLE HUBER MLE HUBER

0.5 20 0.500 0.500 0.506 0.500
(0.094) (0.096) (0.200) (0.107)

50 0.495 0.494 0.502 0.500
(0.084) (0.086) (0.138) (0.071)

100 0.499 0.498 0.497 0.499
(0.053) (0.054) (0.084) (0.058)

0.6 20 0.592 0.624 0.694 0.631
(0.116) (0.118) (0.139) (0.105)

50 0.592 0.608 0.689 0.613
(0.083) (0.085) (0.122) (0.068)

100 0.597 0.603 0.664 0.604
(0.053) (0.053) (0.083) (0.057)

0.7 20 0.686 0.741 0.831 0.754
(0.109) (0.108) (0.082) (0.097)

50 0.689 0.714 0.836 0.724
(0.078) (0.079) (0.097) (0.067)

100 0.696 0.707 0.774 0.710
(0.049) (0.049) (0.080) (0.052)

0.8 20 0.782 0.848 0.880 0.861
(0.095) (0.084) (0.035) (0.079)

50 0.788 0.817 0.900 0.829
(0.067) (0.065) (0.058) (0.052)

100 0.795 0.810 0.874 0.813
(0.042) (0.042) (0.068) (0.043)

0.9 20 0.882 0.936 0.997 0.945
(0.071) (0.047) (0.099) (0.050)

50 0.889 0.915 0.981 0.925
(0.047) (0.042) (0.021) (0.034)

100 0.895 0.909 0.956 0.912
(0.029) (0.028) (0.043) (0.029)

Table 2: Simulation results for the regression model.
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