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Statistical Anisotropy and non-Gaussianity
from the Early Universe

Short abstract:
The main objective of this thesis is to study primordial anisotropic models of
universe that can account for the recent CMB anomalies observed by WMAP
and (some of them) confirmed by Planck and construct consistency relations
to constrain these models of the early universe where an anisotropic phase of
expansion can be sustained. Basically, the thread of the thesis is the violation
of symmetries in the early universe that reflects its effects on the cosmological
observables giving statistical anisotropy, non-trivial angular dependence and
parity violation in the correlation functions. These observational signatures
put stringent limits on the physics and on the fields that have played an active
role in the early universe and can help to discriminate among all the possible
scenarios.

Keywords: Cosmology, Inflation, Statistical Anisotropy, non-Gaussianity, Par-
ity Violation, Cosmic Microwave Background (CMB).
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Abstract

Cosmological observations suggest that the universe is homogeneous and isotropic on
large scales and that the temperature fluctuations are Gaussian. This has been confirmed
by Planck, that measured a level of non-Gaussianity compatible with zero at 68% CL
for the primordial local, equilateral and orthogonal bispectrum amplitude [1]. All these
observational evidences seem to be in accordance with a scalar-driven inflation epoch in
which a scalar field, the inflaton, drives a quasi de Sitter exponential phase of expansion.
Nevertheless, Planck measures a nearly scale-invariant spectrum of fluctuations [2]. This
nearly scale-invariance suggests that the time-traslational symmetry is slightly broken
during inflation. So it becomes natural to ask if other symmetries are also broken and
what are the observational consequences.
Furthermore, the evidence of some “anomalies”, previously observed in the WMAP
data [3], and now confirmed (at similar level of significance) by Planck [4], suggests a
possible violation of some symmetries at some point in the evolution of the universe,
possibly at very early times. Different anomalies have been observed: a quadrupole-
octupole alignment, a dipolar power asymmetry and also an hemispherical asymmetry
in power between the northern and southern hemisphere [4]. These features suggest a
possible violation of statistical isotropy and/or of parity invariance. Invariance under
spatial rotations and parity transformations remains unbroken in the usual inflation
models based on scalar fields, so it is necessary to modify the matter content of
primordial universe introducing new field(s) or assuming new configuration pattern for
the background field that differs from the usual time-dependent background scalar field
one.

Motivated by these observations, theoretical models that can sustain anisotropic phase
of expansion can have an active role and generate statistical anisotropy in primordial
fluctuations. This can be realized by introducing gauge field coupled with scalar
[5] and/or pseudoscalar fields [6] or by considering three scalar fields in anisotropic
background with an unusual breaking pattern of spacetime symmetries that does not
involve breaking of time translations [7]. Breaking of rotational symmetry implies
that the correlation functions exhibit a direction dependence and, in particular, the
two-point correlation function in Fourier space (power spectrum) of primordial curvature
perturbations defined by 〈ζk1ζk2〉 = (2π)3 δ(3) (k1 + k2)Pζ (k1) is modified as

Pζ (k) = Piso (k)
[
1 + g∗ (k) (k̂ · n̂)

]
(1)

where Piso (k) is the isotropic power spectrum, n̂ is a space preferred direction and g∗ is
a parameter characterizing the amplitude of violation of rotational symmetry [8].

Within the context of primordial anisotropic models we have developed this Ph.D thesis
and in particular we have analyzed a model in which a suitable coupling of the inflaton
φ to a vector kinetic term F 2 generates an anisotropic power spectrum and a bispectrum
with a non-trivial angular dependence in the squeezed limit. In particular we have
found that an anisotropy amplitude g∗ of order 1% (10%) is possible if inflation lasted



∼ 5(∼ 50) e-folds more than the usual 60 required to produce the CMB modes. One of
the most important results found in this analysis concerns the presence of infrared modes
of the perturbations of the gauge field. These infrared modes determine a classical
vector field that tends to raise the level of statistical anisotropy to levels very close
to the observational limits. Peculiar predictions of this model are TB and EB mixing
between temperature and polarizations modes in the CMB due to the anisotropy [9, 10]
and a correlation between the anisotropy in power spectrum g∗ and the amplitude of
the bispectrum fNL that can be considered a consistency relation for all these kind of
models that break the rotational invariance.

Always in the aim of isotropy violation, but with a completely different approach that
involves a scalar fields model, later we have shown, for the first time, how with standard
gravity and scalar fields only, is possible to evades the conditions of the cosmic no-hair
conjecture [11]. In this model, dubbed solid / elastic model, inflation is driven by a solid.
A prolonged slow-roll period of acceleration is guaranteed by the extreme insensibility of
the solid to the spatial expansion. We point out that, because of this property, the solid
is also rather inefficient in erasing anisotropic deformations of the geometry. This allows
for a prolonged inflationary anisotropic solution and for a generation of a non-negligible
amount of anisotropy g∗ in the power spectrum.

Finally we have investigated parity-violating signatures of temperature and polarization
bispectra of the cosmic microwave background (CMB) in an inflationary model where
a rolling pseudoscalar, coupled with a vector field, produces large equilateral tensor
non-Gaussianity. We have shown that the possibility to use polarization information
and the parity-even and parity-odd `-space improves of many order of magnitude the
detectability of such bispectra with respect to an analysis with only temperature.
Considering the progressive improvements in accuracy of the next cosmological surveys
it is useful to introduce and analyze particular tools, like statistical anisotropy, parity
violation, new shapes of non-Gaussianity, that can help to discriminate between the
plethora of primordial inflationary models.
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Riassunto

Le osservazioni cosmologiche suggeriscono che l’universo è omogeneo e isotropo su grandi
scale e che le fluttuazioni di temperatura sono Gaussiane. Questo è stato confermato
da Planck, che ha misurato un livello di non-Gaussianità compatibile con zero con un
livello di significatività del 68% per l’ampiezza del bispettro primordiale nelle config-
urazioni locale, equilatera e ortogonale. Tutte queste evidenze osservative sembrano
essere in accordo con un’epoca inflazionaria guidata da un campo scalare dove questo
campo, l’inflatone, guida una fase di espansione esponenziale quasi de Sitter. Tuttavia
Planck misura uno spettro di potenza quasi invariante di scala. Questa quasi invarianza
suggerisce che la simmetria per traslazioni temporali sia leggermente rotta durante
l’inflazione. Quindi viene naturale chiedersi se altre simmetrie siano rotte e quali siano
le conseguenze osservative.
Inoltre, l’evidenza di alcune anomalie, precedentemente osservate nei dati di WMAP, e
ora confermate (con un simile livello di significatività) da Planck, suggerisce una possibile
violazione di alcune simmetrie ad un certo punto durante l’evoluzione dell’universo, pos-
sibilmente a tempi molto primordiali. Diverse anomalie sono state osservate: un allinea-
mento tra il quadrupolo e l’ottupolo, un’asimetria dipolare in potenza e un’asimetria
emisferica in potenza tra l’emisfero galattico nord e l’emisfero galattico sud. Queste pe-
culiarità suggeriscono una possibile violazione dell’isotropia statistica e/o dell’invarianza
per parità. L’invarianza per rotazioni spaziali e trasformazioni di parità rimane conser-
vata nei tipici modelli inflazionari basati su campi scalari, quindi è necessario modificare
il contenuto della materia dell’universo primordiale introducendo nuovi campi o as-
sumendo nuove configurazioni per il campo di background che differiscano dal background
dipendente dal tempo che si ha nel caso dei tipici modelli scalari.

Motivati da queste osservazioni, modelli teorici che possono sostenere una fase di
espansione anisotropa possono avere un ruolo attivo e generare anisotropia statistica
nelle fluttuazioni primordiali. Questo può essere realizzato introducendo campi di
gauge accoppiati con campi scalari e/o pseudoscalari o considerando tre campi scalari
in un background anisotropo con una configurazione non-standard per le simmetrie
spazio-temporali di background, che non sfrutta la rottura per traslazioni temporali.
La rottura di simmetria per rotazione implica che le funzioni di correlazione esibiscono
una dipendenza dalla direzione e, in particolare, la funzione di correlazione a due punti
nello spazio di Fourier (spettro di potenza) delle perturbazioni primordiali di curvatura
definita da 〈ζk1ζk2〉 = (2π)3 δ(3) (k1 + k2)Pζ (k1) si modifichi in

Pζ (k) = Piso (k)
[
1 + g∗ (k) (k̂ · n̂)

]
(2)

dove Piso (k) rappresenta lo spettro di potenza isotropo, n̂ è una direzione spaziale
privilegiata e g∗ un parametro che caratterizza l’ampiezza della violazione di simmetria
per rotazione.



Nel contesto di modelli primordiali anisotropi abbiamo sviluppato questo lavoro di
tesi di dottorato e in particolare abbiamo analizzato un modello in cui un opportuno
accoppiamento tra l’inflatone φ e il termine cinetico vettoriale F 2 genera uno spettro di
potenza anisotropo e un bispettro con una dipendenza angolare non banale nella config-
urazione “squeezed”. In particolare abbiamo trovato che un’ampiezza dell’anisotropia g∗
dell’ordine del 1% (10%) è possibile se l’inflazione dura ∼ 5 (∼ 50) e-folds in più dei soliti
60 richiesti per generare i modi della radiazione di fondo cosmico di microonde. Uno dei
risultati più importanti trovati in questa analisi riguarda la presenza di modi infrarossi
delle perturbazioni del campo di gauge. Tali modi infrarossi determinano un campo
vettoriale classico che in genere tende ad innalzare il livello di anisotropia statistica a
livelli molto vicini ai limiti osservativi. Predizioni caratterizzanti per questo modello è il
mixing tra i modi TB e EB, tra polarizzazione e temperatura, causati dall’anisotropia,
e una correlazione tra l’anisotropia nello spettro di potenza g∗ e l’ampiezza del bispettro
fNL che può essere considerata una relazione di consistenza per tutti i tipi di modelli
che rompono l’invarianza per rotazione.

Sempre nell’ottica della violazione di isotropia, ma con un approccio completamente
differente che coinvolge campi scalari, abbiamo poi mostrato, per la prima volta, come
con gravità standard e campi scalari, è possibile violare le condizioni del teorema di
Wald. In questo modello, chiamato modello solido/elastico, l’inflazione è guidata da
un solido. Un prolungato periodo di accelerazione con lento rotolamento è garantito
dall’estrema insensibilità del solido all’espansione spaziale. Noi abbiamo dimostrato
che, a causa di questa proprietà, il solido è anche piuttosto inefficiente nel diluire
deformazioni anisotrope della geometria. Questo permette una soluzione inflazionaria
anisotropa prolungata e la generazione di un contributo anisotropo non trascurabile g∗
allo spettro di potenza.

Infine abbiamo investigato i segnali di violazione di parità nel bispettro del fondo
cosmico di microonde per temperatura e polarizzazione in un modello dove un campo
pseudoscalare che rotola lentamente, accoppiato ad un campo vettoriale, produce elevata
non-Gaussianità nella configurazione equilatera. Abbiamo mostrato che la possibilità di
usare la polarizzazione con segnale non nullo sia nello spazio delle configurazioni delle `
pari che dispari accresce di diversi ordini di grandezza la rilevabilità di tali bispettri
rispetto ad un’analisi con solo temperatura.
Considerando i progressivi miglioramenti in accuratezza delle prossime missioni spaziali è
utile introdurre e analizzare mezzi particolari, come l’anisotropia statistica, la violazione
di parità e nuove configurazioni per la non-Gaussianità, che possano essere utili per
discriminare tra la pletora di modelli inflazionari primordiali.
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Thesis outline

The outline of the thesis is the following: Chapter 1 is devoted to an overview of
the standard Big Bang model and of the problems that led to the inflationary
paradigm. In this Chapter we give also all the observational constraints given by
the Planck satellite about statistical anisotropy, non-Gaussianity and anomalies;
Chapter 2 is a review of anisotropic models, their problems about instability and
possible wayout. We briefly introduce homogeneous but anisotropic spacetime
(e.g. Bianchi I) that are usually considered in presence of anisotropic sources; in
Chapter 4 we describe the scalar-vector model in which the inflaton is coupled
to a U(1) gauge field and we compute the two and three-point correlation
functions showing how the anisotropic source modifies the power spectrum and
the bispectrum; Chapter 5 focuses on the Solid Inflation model in a Bianchi
I space-time; we show, for the first time, how to obtain anisotropic features
with scalar fields and standard gravity; In Chapter 6 we analyze a model where
parity-violating features appear in the tensor bispectrum due to a coupling
between a pseudoscalar field and a vector field; finally, in the last chapter we
conclude the thesis and we give hints about possible future improvements.
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The six parameters standard cosmological model seems to describe with high accuracy
our current universe. This model predicts that the universe is statistically isotropic
(i.e. looks the same in all the directions) and homogeneous (i.e. the statistical properties
are the same everywhere) on large scales. In this picture, the inflationary phase has
become a corner-stone: at very early times a quasi de Sitter exponential expansion,
driven by a scalar field, solves the open problems left by the Big Bang model and gives
a natural explanations of the origin of both the Large Scale Structures (LSS) and the
Cosmic Microwave Background (CMB).

Recently, also in cosmology, it has become clear that the role of symmetries is crucial to
characterize the physics of the early universe and the observational signatures in the
CMB [12, 13]. The de Sitter spacetime, that characterizes the inflation period, described
by the metric ds2 = −dt2 +e2Htd~x2, where the Hubble parameter H is constant, respects
ten symmetries: three spatial translations, three spatial rotations, one time translation
accompanied by spatial dilation (t→ t− λ

H and ~x→ eλ~x) and three special conformal
transformations. These symmetries give strong constraints on the nature of primordial
fluctuations. For example, as the shift symmetry in field space suppress the level of
interaction and so the amount of non-Gaussianity, the invariance under translations
and rotations strongly constraint the form of the power spectrum and higher order
correlation functions. In fact, in the two point correlation function in Fourier space,
defined as 〈ζk1ζk2〉 = (2π)3 δ(3) (k1 + k2)Pζ (k1), where P (k) is the power spectrum,
the translational invariance gives the delta function, while the rotational invariance
would give P (k)→ P (k). The necessary time-dependence of the expansion rate H in
order to stop inflation, which is the natural consequence that inflation happens in a
quasi de Sitter space, breaks slightly the time dilation invariance. Hence also the spatial
dilation symmetry is broken giving a two point correlation function that is nearly, but
non exactly scale invarianti, as confirmed by the CMB analysis where k3P (k) ∝ k−0.04

with more than 5σ significance [2]. So it becomes natural to ask whether there are other
broken symmetries during the early universe.

Beside theoretical motivations there are observational evidences that point in the
direction of violation of symmetry at some point in the evolution of the universe:
the so-called “anomalies”, previously observed in the WMAP data [3, 14], and now
confirmed (at similar level of significance) by Planck [4]. Different anomalies have
been observed, indication of a possible violation of statistical isotropy and/or of parity
invariance: a quadrupole-octupole alignment, a dipolar power asymmetry and also an
hemispherical asymmetry in power between the northern and southern hemispheres
[4]. Of course, possible explanations for these anomalies have been suggested such as
improper foreground substraction, statistical flukes, systematics, but the most exciting
is the possibility of a non-negligible contribution of an anisotropic source in the (early

iThe deviation from de Sitter is quantified by the slow roll parameter ε, and this is of the same order
of the tilt of the power spectrum



stage of the) universe. If this is the case, the correlation functions assume a direction
dependence and in particular the power spectrum becomes:

Pζ (k) = Piso (k)
[
1 + g∗ (k) (k̂ · n̂)2

]
wherePiso (k) is the isotropic power spectrum, n̂ is a space preferred direction and g∗ is
a parameter characterizing the amplitude of violation of rotational symmetry [8].
In [15], after removing the effects of Planck’s asymmetric beams and the Galactic
foreground emission, it is found g∗ = 0.002± 0.016 (68% CL) from the temperature data
of Planck. The 95% CL limit is −0.030 < g∗ < 0.034. Meanwhile in [16], using the last
WMAP and Planck data, the alignment of the largest structures observed in the CMB,
the quadrupole and the octupole, is still confirmed in good agreement with results from
the previous WMAP data release. Moreover, in the Planck paper [4] the deficit in power
shown by one of the hemisphere with respect to the opposite, that contains oscillations
between odd and even mode,s may be related to a parity violation.
Although these anomalies are under debate and more informations will come from
the Planck full mission and polarization data, a cosmological origin would be more
intriguing; but up to today physically motivated models that can give a satisfactory
explanation are still lacking.
Still, the recent release of Planck data has provided also crucial new informations on
the non-Gaussian statistics of primordial perturbations [1]. Non-Gaussianity, measured
by the bispectrum, provides a powerful tool to discriminate among different inflationary
models and may provide a valuable window into the detailed physics of the very early
universe. In the Planck analysis the common shapes (local, equilateral and orthogonal)
and other non-standard shapes have been analyzed. But these are not the only possible:
new shapes of non-Gaussianity can existii.

Invariance under spatial rotations and/or parity transformations remains unbroken in the
usual inflationary models based on scalar fields, so it is necessary to modify the matter
content of primordial universe introducing new field(s) or assuming new configuration
patterns for the background field that differs from the usual time-dependent background
scalar field approach.
Motivated by all these theoretical and observational reasons, models that sustain an
anisotropic expansion of the universe can have an active role and can be candidate
to generate interesting imprints related to both the anomalies and primordial non-
Gaussianity. It is however non trivial to realize this, since anisotropic space typically
rapidly isotropizes if there is no source that sustain it. Vector fields may, in principle,
support this anisotropic evolution. However massless vector fields, with a minimal
LA = −F 2/4, are conformally invariant, which inhibits their particle production and
consequently generation of perturbations. So it is necessary to break the conformal
invariance in order to generate perturbations and in addition, a mechanism must be
found to avoid excessively anisotropic expansion of the universe due to vector fields (it
is necessary to ensure the energy density of the vector field to be subdominant in order
to be consistent with the CMB observations). To our knowledge, four distinct classes of
models have been constructed to achieve this; the first three of them are characterized
by (i) a vector potential V

(
A2) [17], (ii) a fixed vector vev due to a lagrange multiplier

iiAn open window for the non-Gaussianity in non-Bunch-Davies vacua from trans-Planckian effects or
in features models is still open with a 2.2σ significance
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[8], and (iii) a vector coupling A2R to the scalar curvature R [18, 19]. These three
proposals break the U(1) symmetry of the minimal action, and lead to an additional
degree of freedom, the longitudinal vector polarization, that in all of these models turns
out to be a ghost. [20, 21, 22, 23]. Also non-Abelian vector fields models have been
taken into account [24, 25] but in [26] it is shown that [25] is not favoured by the CMB
data.

In this thesis, and in particular in chapter 3, we study the fourth class: it is a U(1)
invariant and free of ghost instabilities model, characterized by a function of a scalar
inflaton ϕ coupled with the vector kinetic term, L = − I2(ϕ)

4 FµνF
µν . We compute the

two and three point correlations functions of the curvature perturbation ζ showing
that the vector field imprints a strong anisotropy, in particular a g∗ associated to these
modes is ∼ 0.1 (respectively, ∼ 0.01), if inflation lasted about 50 e-folds (respectively,
about 5 e-folds) more than the final ∼ 60 e-folds necessary to generate the CMB modes.
We show that the infrared modes of the perturbations of the gauge field determine a
classical vector field that tend to raise the level of statistical anisotropy to levels very
close to the observational limits. An observable g∗, from this model, is associated to
an observable bispectrum which is enhanced in the squeezed limit and which has a
characteristic shape and anisotropy, and this provides a consistency relation for this
kind of models.

Scalar fields, instead, are ubiquitous in cosmology since they are in accordance with the
isotropy and homogeneity of the Cosmic Microwave Background. In Chapter 4, starting
from a model proposed by [7], dubbed Solid Inflation, we show how for this model the
FRW solution is not at attractor solution so it can allow for an anisotropic solution.
This has been realized studying a triplet of spin zero fields with a spatially-dependent
vev of the form 〈φi〉 = xi with i = 1, 2, 3 in a Bianchi type I metric. They show that
the slight sensibility of the “solid” to the spatial expansion allows for an inflation phase.
We poit out that this same property is responsible for the slow dilution of anisotropies.
Specifically, we obtain that the anisotropy is erased on timescale ∆t = O

(
1
εH

)
where

H is the Hubble parameter and ε the slow roll parameter ε ≡ −Ḣ/H2. So this provides
the first example with standard gravity and scalar field of violation of the conditions of
the cosmic no-hair conjecture. We compute the anisotropic contribution to the power
spectrum and we show the similarities between Solid Inflation and the model analyzed
in Chapter 3.

In Chapter 5 we have analyzed a model where a rolling pesudoscalar, gravitationally
coupled to the inflaton, amplifies the vacuum fluctuations of a U(1) gauge field and
generates tensor chiral modes producing TB and EB correlations and parity-violating
non-Gaussianity. In particular we show that the tensor non-Gaussianity breaks the parity
invariance asymmetrically and creates signals in both parity-even (`1 + `2 + `3 = even)
and parity-odd (`1 + `2 + `3 = odd) spaces enlarging the space of detectability of
this signature. We show how the use of E-mode polarization improves of 400% the
detectability and the B-modes increase of three order of magnitude the signal to noise
ratio with respect to analysis with only temperature.

Departures from statistical isotropy, parity symmetry and Gaussianity involve a rich set
of observable quantities, with different signatures that can be measured in the CMB or
in the Large-Scale Structures. These signatures, which carry information about physical
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processes on cosmological scales, have the power to reveal detailed properties of the
physics responsible for generating the primordial fluctuations. This kind of observational
features can give crucial informations about the fields involved (for example, how many
fields and which couplings were most relevant), or alternatively, shed light on the
systematic errors in the data.
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1
Big Bang and Inflation: an

overview
In this chapter we give a general overview of the standard cosmological model
and we discuss the motivations to introduce inflation and how inflation connects
the microscopic physics of the quantum fluctuations to the macroscopic physics
of CMB and Large Scale Structures. Finally we give all the last observational
limits that suggest a more intriguing universe.
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1.1 Our Universe

The cosmological observations today seem to be in favor of the (Hot) Big
Bang model that explains with high accuracy the Cosmic Microwave Background
(CMB), the abundances of the light nuclei and the thermal history of the universe
after the Big Bang Nucleosynthesis. But this model is not sufficient to explain
some questions particularly related to the early universe like, why the universe
is so homogeneous? Why is it so flat? Where the structures come from? The
first two questions, that are the basis of the Cosmological Principle, seem to be
incompatible with a finite age for the universe. But the estimation, coming from
cosmological and astrophysical observations, gives t0 = 13.813± 0.058 Gyr [2].
At same time the Hot Big Bang model does not include any explanation on the
formation of structures that we observe today.
Inflation offers an elegant solution to the problems left unsolved by the standard
cosmological model and explains how the Universe became so large, so old, and so
flat providing an elegant mechanism for generating the primordial perturbations
which gave rise to the structure that we see in the universe today. The general
picture is that the universe underwent under a period of exponential expansion
during which quantum fluctuations were inflated in scale to become the classical
fluctuations that we see today. In the simplest inflationary models, the primordial
fluctuations are predicted to be adiabatic, nearly scale-invariant and Gaussian.
In this chapter we will briefly describe the Standard Cosmological Model, its
shortcomings and the inflationary solution. Finally we will give a collection of
the observational results by Planck, that suggest possible violation of isotropy
and require the introduction of new fields in the early universe.

1.2 Friedmann-Robertson-Walker Universe

The cosmological model currently employed is based on two essential ingredients:
General Relativity on one side and Standard Model of particle physics on the
other. The first, with the symmetry assumptions of the metric and of the matter
content of the Universe, is the fundamental tool to give the mathematical pillars
to Cosmology. On this assumption of symmetry the Cosmological Principle is
based and states that our Universe is homogeneous and isotropic on cosmological
scales, i.e. on scales greater than 100Mpc [27]. One can easily demonstrate
that, with this only ansatz, the spacetime element line to be considered is the
Friedmann-Robertson-Walker (FRW)

ds2 = dt2 − a2(t)
[ dr2

1− kr2 + r2(dθ2 + sin2 θdϕ2)
]

(1.1)
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where a(t) is the cosmic-scale factor, t is the cosmic time, k is the curvature
parameter that determines the topology of the spatial geometry; it can assume
the values +1, 0, -1 corresponding to closed, flat and open Universe respec-
tively. The curvature parameter and the scale factor define the curvature radius
Rcurv ≡ a(t)|k|−1/2. All the three models are without boundary: the positively
curved model is finite and “curves" back on itself; the negatively curved and flat
models are infinite in extent. The coordinates r, θ, ϕ are the comoving spherical
coordinates: a particle at rest in these coordinates remains at rest, i.e., constant r,
θ, ϕ. As a consequence a freely moving particle eventually comes to rest in these
coordinates, as its momentum is red-shifted by the expansion, p ∝ a−1. The
scale factor defines the distance between particles; in fact the physical separation
between two points is simply a(t) times the coordinate separation.
The data from high redshift supernova, Large Scale Structure (LSS) and mea-
surements of the CMB anisotropies strongly suggest a spatially flat model of
Universe [28] and then will almost always assume such a constraint.
An important quantity characterizing the FRW spacetime is the expansion rate
H

H ≡ ȧ

a
(1.2)

The Hubble parameter H has unit of inverse time and is positive for an expanding
Universe (negative for a collapsing Universe). It sets the fundamental scales
of the FRW spacetime, i.e. the characteristic time-scale of the homogeneous
Universe is the Hubble time, t ∼ H−1, and the characteristic length-scale is the
Hubble length, d ∼ H−1 (in natural unit). It is useful to define the conformal
FRW metric introducing the concept of conformal time which will be useful
in the next sections. The conformal time τ is defined through the following
relation

dτ = dt

a
(1.3)

The metric (1.1) then becomes

ds2 = a2(τ)
[
dτ2 − dr2

1− kr2 − r
2(dθ2 + sin2 θdϕ2)

]
(1.4)

The reason why τ is called conformal is manifest from Eq. (1.4): the correspond-
ing FRW line element is conformal to the Minkowski line element describing a
static four dimensional hypersurface. Consequently the functions of the cosmic
time transform as

ḟ(t) = f ′(τ)
a(τ) (1.5)

f̈(t) = f ′′(τ)
a2(τ) −H

f ′(τ)
a2(τ) (1.6)

where
H = a′

a
(1.7)
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and we can set the following rules that will be very useful

H = ȧ

a
= a′

a2 = H
a

(1.8)

ä = a′′

a2 −
H2

a
(1.9)

Ḣ = H′

a2 −
H2

a2 (1.10)

It is easy to see that, if the scale factor a(t) scales like a(t) ∼ tn, then a(τ) ∼ τ
n

1−n .

The Cosmological Principle imposes that the energy-momentum tensor
accounting for each matter/energy component, Tµν is precisely like the one of a
perfect fluid

Tµν = (ρ+ p)uµuν − pgµν (1.11)

where uµ is the four-velocity of the observer (corresponding to a fluid element), gµν
is the metric tensor, p is the pressure that is necessarily isotropic for consistence
with the FRW metric, and ρ is the energy density. Within a perfect fluid
approximation, defining an equation of state parameter ω which relates the
pressure p to the energy density ρ by p = ωρ, the ordinary energy contributions
of our Universe such as dust and radiation are distinguished by respectively
ω = 0 and ω = 1/3. On the contrary, a cosmological constant is characterized
by ω = −1.
The dynamics of the expanding Universe is determined by the Einstein equations,
which relate the expansion rate to the matter content, specifically to the energy
density and the pressure

Rµν −
1
2gµνR = 8πGTµν (1.12)

where G is the Newton constant, Rµν is the Ricci tensor and R is the Ricci
scalari. The solutions of Einstein equations with the FRW metric (1.1) give the
Friedmann equations

H2 ≡
(
ȧ

a

)2
= 8πG

3 ρ− k

a2 (1.13)

ä

a
= −4πG

3 (ρ+ 3p) (1.14)

where overdots denote derivative with respect to cosmic time t. A third useful
equation - not independent of the last two - is the continuity equation ∇µTµν = 0
that leads to:

ρ̇ = −3H(ρ+ p) (1.15)

which implies that the expansion of the Universe (specified by H) can lead to
local changes in the energy density. Considering the equation of state (p = ωρ)

iWe have not considered the cosmological constant Λ term that can be interpreted as particle
physics process yielding an effective stress-energy tensor for the vacuum of Λgµν/8πG and
that nowadays is considered for the actual acceleration of the Universe.
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the integration of the last equation yields:

ρ ∝ a−3(1+ω) (1.16)

Then Eq. (1.13) in a flat Universe and with ω 6= −1 is solved by:

a(t) ∝ t2/[3(1+ω)] (1.17)

General qualitative features of the future evolution of FRW Universe can now
be seen. If k = 0,−1, Friedmann equation (1.13) shows that ȧ can never become
zero (apart for t = 0); thus, if the Universe is presently expanding, it must
continue to expand forever. Indeed, for any energy content with p ≥ 0, ρ must
decrease as a increases at least as rapidly as a−3, the value for dust. Thus
ρa2 → 0 as a → ∞. Hence for k = 0 the expansion velocity ȧ asymptotically
approaches zero as t→∞, while if k = −1 we have ȧ→ 1 as t→∞. Otherwise,
if k = +1, the Universe cannot expand forever but there is a critical value ac
such that a ≤ ac: at a finite time after t = 0 the Universe achieves a maximum
size ac and then it begins to recontract. The presence of a possible cosmological
constant alters the fate of the Universe [29].
The Friedmann equations allow to relate the curvature of the Universe to the
energy density and to the expansion rate; in fact if we define a critical density
ρc and a cosmological density parameter Ω:

ρc = 3H2

8πG Ω = ρ

ρc
(1.18)

Eq. (1.13) can be rewritten as

Ω− 1 = k

a2H2 (1.19)

There is a one to one correspondence between Ω and the spatial curvature of the
Universe: positively curved, Ω > 1; negatively curved, Ω < 1; and flat Ω = 1; so
the “fate of the Universe" is determined by the energy densityii.
The FRW spacetimes have two characteristics that it is important to discuss:
the existence of an initial singularity, the Big Bang, and the existence of particle
horizon that we encounter a lot of times when we consider the evolution of
the perturbations generated by inflation. For the first we know that under
the assumption of homogeneity and isotropy, General Relativity predicts that
at a time t =

∫ 1
0

da
aH(a) = 2

3(1+ω)H0
∼ H−1

0 ago the Universe was in a singular
state where the density, the temperature and the curvature of the Universe
were infinite. It is important to know that the nature of this singularity is the
result of a homogeneous contraction of space down to zero size and that the Big
Bang does not represent an explosion of matter at a preexisting point because
the spacetime structure itself is created a t = 0. This singularity does not
depend on the assumption of homogeneity and isotropy: in fact the Singularity

iiThe critical density today is ρc = 1.88 · 10−29h2 g cm−3 where h = 0.72± 0.07 is the present
Hubble rate in unit of 100 Km s−1 Mpc−1 [27].
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Theorem of General Relativity [30] shows that singularities are generic features
of cosmological solutions. We must remember that at the time of the Big
Bang quantum effects were important and the General Relativity does not give
exhaustive predictions.
The second and more important characteristic is the existence of particle horizon
for FRW cosmological models. As we will see in the next section, the existence
of this “boundary" is in conflict with the evidence of the isotropy of the Universe
and has brought to the introduction of the inflationary paradigm.

So far it seems that the standard cosmological model is perfect in order to
describe the Universe but there are some problems that it cannot solve; the
most famous ones are the horizon problem, the flatness or oldness problem, the
unwanted relics problem and entropy problem. We will briefly review them here.
For a more concise description [27].

1.3 Shortcomings of Standard Cosmology

The standard cosmology has brought a lot of confirmations with the observational
data and the most notable achievements of the Hot Big Bang FRW standard
model are:

• The prediction of the cosmological expansion of the Universe;

• The explanation of the cosmic abundance of light elements (D, Li, He)
deriving from the Nucleosynthesis;

• The prediction and explanation of the presence of a relic background
radiation with temperature of few K, the CMB;

But several puzzles remain unsolved and it is necessary to go beyond the standard
cosmological model introducing the inflationary paradigm.

1.3.1 The horizon problem

Under the term “horizon problem” a wide range of facts is included, all related
to the existence of a particle horizon in FRW cosmological models. The particle
horizon defines the boundary of the observable region at a generic time t. Physi-
cally the distance that a photon could have travelled since the Big Bang until
time t, the distance to the particle horizon, is

RH(t) = a(t)
∫ t

0

dt′

a(t′) (1.20)

12



The convergence of this integral defines the regions that are causally connected
and it is not difficult to see that the integral converges in all FRW models with
equation of state parameter ω ∈ (0, 1)

RH =
{

2t = H−1(t) ∝ a2 (radiation)
3t = 2H−1(t) ∝ a3/2 (dust)

(1.21)

As H−1(t) is the age of the Universe, H−1(t) is called the Hubble radius and it
is the distance that the light can travel in a Hubble timeiii.
According to standard cosmology, photon decoupled from the rest of the com-
ponents (electrons and baryons) at a temperature of the order of 0.3eV. This
happened when the rate of interaction of photons Γ became of the order of the
Hubble size (that is, of the horizon size), and the expansion made not possi-
ble the reverse reaction of p + e+ → H + γ. This phase defines the so-called
“surface of last scattering” at a redshift of about 1100 and an age of about
180,000(Ω0h

2)−1/2yrs [31]. From the epoch of last-scattering onwards, photons
free-stream and reach us basically untouched. So now, they are measurable in the
CMB, whose spectrum is consistent with that of a black-body at a temperature
of 2.726± 0.01K . Detecting primordial photons is therefore equivalent to take a
picture of the Universe when the latter was about 300,000 yrs old. The length
corresponding to our present Hubble radius (which is approximately the radius
of our observable Universe) at the time of last-scattering was

λH(tLS) = RH(t0)
(
aLS
a0

)
= RH(t0)

(
T0
TLS

)
(1.22)

During the matter-dominated period the Hubble length has decreased with a
different law

H2 ∝ ρM ∝ a−3 ∝ T 3 (1.23)

At last scattering

H−1
LS = RH(t0)

(TLS
T0

)−3/2
� RH(t0) (1.24)

The length corresponding to our present Hubble radius was much larger than
the horizon at that time. This can be shown comparing the volumes built with
these two scales

λ3
H(TLS)
H−3
LS

=
(
T0
TLS

)−3/2

≈ 106 (1.25)

So there were about 106 causally disconnected regions within the volume that
now corresponds to our horizon. Because CMB experiments like COBE and
WMAP tell us that our two photons have nearly the same temperature with a
precision of 10−5 [32], we are forced to say that those two photons were very
similar even if they could not talk to each other, and that the Universe at
iiiIn standard cosmology the distance to the horizon is finite, and up to numerical factors,

equal to the age of the Universe or the Hubble radius, H−1. For this reason, we will use
horizon and Hubble radius interchangeably
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last-scattering was homogeneous and isotropic in a physical region to a certain
extent greater than the causally connected one.
Another feature of the horizon problem is related to the problem of initial condi-
tions for the cosmological perturbations. In fact photons which were causally
disconnected at the last-scattering surface have the same small anisotropies. The
existence of particle horizons in the standard cosmology precludes the explanation
of the smoothness as a result of microphysical events: the horizon at decoupling,
the last time one could imagine temperature fluctuations being smoothed by
particle interactions, corresponds to an angular scale on the sky of about 1◦,
which precludes temperature variations on larger scales from being erased [31].
To account for the small-scale lumpiness of the Universe today, density perturba-
tions with horizon-crossing amplitudes of 10−5 on scales of 1 Mpc to 104 Mpc
or so are required. However, in the standard cosmology the physical size of a
perturbation, which grows as the scale factor, begins larger than the horizon rel-
atively late in the history of the Universe. This precludes a causal microphysical
explanation for the origin of the required density perturbations.

1.3.2 The flatness problem

To understand where the problem comes from, it is necessary to extrapolate the
validity of Einstein equations back to the Planck era, when the temperature of
the Universe was TPl ∼ mPl ∼ 1019 GeV. From Eq. (1.19) we note that if the
Universe is perfectly spatially flat (k=0), then Ω = 1 at all times. During the
radiation-dominated period, the expansion rate H2 ∝ ρR ∝ a−4 and Ω− 1 ∝ a2,
while during the matter-dominated era, ρM ∝ a−3 and Ω− 1 ∝ a. In both cases
(Ω− 1) decreases going backwards in time. Since we know that (Ω0 − 1) is of
order unity at present [33], we can deduce its value at tPl

|Ω− 1|T=TPl
|Ω− 1|T=T0

∼
(
a2
Pl

a2
0

)
∼
(
T 2

0
T 2
Pl

)
∼ O(10−64) (1.26)

where “0” stands for the present epoch, and T0 ' 10−13GeV is the present day
temperature of the CMB radiation. In order to get the correct value of (Ω0 − 1)
at present, the value of (Ω − 1) at early times has to be fine-tuned to values
amazingly close to zero, but without being exactly zero.
If this value had been initially less than 1 the Universe would have expanded
and collapsed during its earliest stages; if it had been a little greater than
1 the Universe would have expanded extremely rapidly (10−43s) cooling to a
temperature above the absolute zero. So the flatness problem is also known as a
problem of fine-tuning.
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1.3.3 The unwanted relics problem

The Hot Big Bang occurs at very high temperatures. Physics at these high
energies has not yet been probed by particle accelerators, so we can only proceed
through particle physics theories such as supersymmetry and string theory. The
breaking of gauge symmetries during the evolution leads to the production of
many unwanted relics such as monopoles, cosmic strings, and other topological
defects [34]. The string theories also predict supersymmetric particles such as
gravitinos, Kaluza-Klein particles, and moduli fields. The densities of these
unwanted particles would decrease at the same rate as matter (a−3), which
means they should have a density of the same order of the matter content
today (Ωm ' 0.3 [27]). None of these have been observed in the Universe today,
either directly or through their effects on structure formation. There is also the
possibility that the unwanted relics decayed into radiation some time after they
were created.

1.3.4 The entropy problem

This problem is connected with the flatness problem. In fact starting from the
Friedmann equation (1.13) we can see that in radiation dominated period [31]

H2 ' ρR ∼
T 4

m2
Pl

(1.27)

from which we can deduce

Ω− 1 = km2
Pl

a2T 4 = km2
Pl

S2/3T 2 (1.28)

where we have introduced the entropy S ∼ a3T 3. Since an adiabatic expansion
implies conservation of S over the evolution of the Universe we have

|Ω− 1|t=tPl = m2
Pl

T 2
Pl

1
S2/3 = 1

S2/3 ∼ 10−60 (1.29)

from which we deduce that Ω is so close to 1 because the total entropy of
our Universe is so incredibly large. So it is possible that the problem would
be solved if the cosmic expansion was non adiabatic for some finite time steps [27].
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1.4 The Inflationary Paradigm

From what we have just explained, it appears that solving the shortcomings of
the standard Big Bang theory requires two basic modifications of the assumptions
made so far:

• The Universe has to go through a non-adiabatic period. This is necessary
to solve the entropy and the flatness problem. A non-adiabatic phase may
give rise to the large entropy S that we observe today.

• The Universe has to go through a primordial period during which the
physical scales λ evolve faster than the horizon scale H−1.

Cosmological inflation is such a mechanism. The fundamental idea of inflation
is that the Universe undergoes a period of accelerated expansion, defined as a
period when ä > 0, at early times. From Eq. (1.14) we learn that:

ä > 0⇐⇒ (ρ+ 3p) < 0 (1.30)

so for an accelerated expansion it is necessary that the pressure of the Universe is
negative p < −ρ

3 . Neither a radiation-dominated phase nor a matter-dominated
phase (for which p = ρ

3 and p = 0) satisfies such a condition. In order to study
the properties of the period of inflation, usually the extreme condition p = −ρ
is assumed, which considerably simplifies the analysis. A period with these
characteristics is called a de Sitter stage. From Eqs. (1.13) and (1.15) derive
that in a de Sitter phase:

ρ = const HI = const (1.31)

and from the Friedmann equation (1.13)

a = aie
HI(t−ti) (1.32)

where ti denotes the time at which inflation starts and HI the value of the
Hubble rate during inflation.
It is possible to demonstrate that a period of accelerated expansion can solve
the shortcomings of the standard Big Bang model. As we will see from the
dynamics of the vacuum-dominated case, the scale factor will grow very quickly
in this period while the Hubble value will remain roughly constant. This means
that (aH)−1, the comoving Hubble radius, will decrease with proper time during
inflation. Effectively this means that, in coordinates fixed with the expansion, the
horizon is actually shrinking. This solves the flatness problem since the k/a2H2

term in Eq. (1.13) will rapidly shrink during inflation, pushing Ω back towards
unity. The unwanted relics problem is solved as the density of such relics will be
greatly diluted, providing that the relics are produced before inflation. Since the
comoving Hubble length (aH)−1 decreases with time during inflation, the length
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over which regions are casually connected becomes larger than the comoving
Hubble length. The observable Universe today originates from a smooth patch
that was much smaller than the particle horizon size before inflation began.
However, for the resolution of these problems it is necessary to know “how much”
inflation is required and this is quantified by the number of e-fold, defined by:

N(t) = ln
(
a(tf )
a(ti)

)
(1.33)

To solve the previous problems it is enough that N & 60 [29].

1.5 Inflation as driven by a slowly-rolling scalar field

Knowing the various advantages of having a period of accelerated expansion,
the next task consists in finding a model that satisfies the conditions mentioned
above. There are many models of inflation [29] but the most accredited and
stable is based on a scalar field φ, the inflaton.
The dynamics of these fields, if it dominates on the other matter/energy compo-
nents, is given by the action

S =
∫
d4x
√
−gL (1.34)

where L is the Lagrangian density of the inflaton

L = 1
2∂µφ∂

µφ+ V (φ) (1.35)

g is the metric determinant and V (φ) specifies the scalar field potential. By
varying the action with respect to φ we obtain

∂µ
δ(
√
−gL)

δ∂µφ
− δ(
√
−gL)
δφ

= 0 (1.36)

that in a FRW metric (1.1) gives

φ̈+ 3Hφ̇− ∇
2φ

a2 + V ′(φ) = 0 (1.37)

where V ′(φ) = dV (φ)/dφ and H = ȧ/a is the Hubble parameter. The second
term in the previous equation is fundamental; it is a friction term: a scalar field
rolling down its potential suffers a friction due to the expansion of the Universe.
The second important quantity for the description of the inflaton field is the
energy-momentum tensor Tµν that is obtained from the variation of the action
with respect to the metric gµν

Tµν = 2√
−g

δL
δgµν

(1.38)
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The (0,0) and (i,i) components of the energy-momentum tensor give the energy
density ρφ and pressure density pφ respectively

T00 = ρφ = φ̇2

2 + V (φ) + (∇φ)2

2a2 (1.39)

Tii = pφ = φ̇2

2 − V (φ)− (∇φ)2

6a2 (1.40)

It is easy to notice that if the gradient term dominates we have pφ = −ρφ
3 that

is not enough to drive inflation. We can split the inflaton field as φ(t,x) =
φ0(t) + δφ(t,x) where φ0 is the “classical” (infinite wavelength) field, that is the
expectation value of the inflaton field on the initial isotropic and homogeneous
state, while δφ(t,x) represents the quantum fluctuations around φ0. Considering
only the homogeneous part, which behaves like a perfect fluid, we have

T00 = ρφ = φ̇2

2 + V (φ) (1.41)

Tii = pφ = φ̇2

2 − V (φ) (1.42)

And, if
V (φ) >> φ̇2 (1.43)

we obtain:
pφ ' −ρφ (1.44)

It is simple to notice that a scalar field whose energy is dominant in the Universe
and whose potential energy dominates over the kinetic term gives rise to acceler-
ated expansion. Inflation is thus driven by the vacuum energy of the inflaton
field. Ordinary matter fields and spatial curvature k are usually neglected during
inflation because their contribution to the energy density is redshifted away
during the accelerated phase. For the same reason we have neglected the small
inhomogeneities justifying the use of the background FRW metric.

1.5.1 Slow-roll conditions

A period of inflation requires that the scalar field must satisfy some conditions.
A homogeneous scalar field has the following equation of motion

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.45)

If we require that φ̇2 << V (φ), the scalar field is slowly rolling down its potential.
Such a slow roll period can be achieved if the inflaton field φ is in a region where
the potential is sufficiently flat so φ̈ is negligible. The Friedmann equation (1.13)
becomes

H2 ' 8πG
3 V (φ) (1.46)
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where it is assumed that the inflaton field dominates the energy density of the
Universe. With this assumption the equation of motion becomes

3Hφ̇ ≈ −V ′(φ) (1.47)

Then slow-roll conditions require

φ̇2 � V (φ)⇒ (V ′)2

V
� H2 (1.48)

and
φ̈� 3Hφ̇⇒ V ′′ � H2 (1.49)

It is possible to define the slow-roll parameters

ε ≡ − Ḣ

H2 = 4πG φ̇2

H2 = 1
16πG

(
V ′

V

)2

(1.50)

η = 1
8πG

(
V ′′

V

)
= 1

3
V ′′

H2 (1.51)

and the fate of inflation is described by the parameter ε: in fact inflation can
occur if ε� 1 and it ends when this condition is not satisfied.
Within this approximation, the total number of e-folds between the beginning
and the end of inflation is

Ntot ≡ ln
(
a(tf )
a(ti)

)
=
∫ tf

ti

Hdt ' −8πG
∫ φf

φi

V

V ′
dφ (1.52)

In conclusion, inflation is cosmologically attractive but serious problems are left
unsolved: on the one hand, we cannot know if the Universe in its earliest stages
satisfied the conditions for inflation to light up; on the other hand, there are no
experimental evidences even for the existence of a neutral spin zero boson and
even less for the existence of the inflaton in particular.

1.6 Inflation and cosmological perturbations

As shown, inflationary cosmology provides the mechanism for solving the initial
condition problems of the Big Bang model. In addition inflation generates the
spectra of both density perturbations and gravitational waves that explain the
temperature anisotropies in the CMB [32] and also the structure formation in the
Universe. In the inflationary Universe, these primordial density perturbations
are generated from vacuum fluctuations of the scalar field.
Our current understanding of the origin of structures in the Universe is that once
the Universe became matter dominated (z ∼ 3200), primeval density inhomo-
geneities (δρ/ρ ∼ 10−5) were amplified by gravity and grew into the structures
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we see today [29]. In order to make structure formation occur via gravitational in-
stability, there must have been small preexisting fluctuations on relevant physical
scales which left the Hubble radius in the radiation-dominated and matter-
dominated eras. In the standard Big-Bang model these small perturbations have
to be put “by hand”, because it is impossible to produce fluctuations on any
length scale when it is larger than the horizon size. Inflation elegantly solves this
issue; in fact during inflation the Hubble radius H−1 remains almost constant
with time while the scale factor grows quasi-exponentially. Consequently the
wavelength of a quantum fluctuation in the scalar field whose potential energy
drives inflation soon exceeds the Hubble radius. The quantum fluctuations
arise on scales which are much smaller than the Hubble radius, which is the
scale beyond which causal process cannot operate. On such small scales one
can use the usual flat space-time quantum field theory to describe the scalar
field vacuum fluctuations. The inflationary expansions stretch the wavelength
of quantum fluctuations outside the horizon; thus, gravitational effects become
more important and amplify the quantum fluctuations. When the wavelength of
any particular fluctuation becomes greater than H−1, microscopic physics does
not affect the evolution and then the amplitude of fluctuations is “frozen-in” and
fixed at some non-zero value δφ at the horizon crossing, because of a large friction
term 3Hφ̇ in the equation of motion of the field φ (1.45). The amplitude of the
fluctuations on super-horizon scales then remains almost unchanged for a very
long time, whereas its wavelength grows exponentially. Therefore the appearance
of such frozen fluctuations is equivalent to the appearance of a classical field δφ
that does not vanish after averaging over some macroscopic intervals of time.

The fluctuations of the scalar field generate primordial perturbations in the
energy density ρφ, which are then inherited by the radiation and matter to
which the inflaton decays during reheating after inflation [29]. Once inflation
has ended, however, the Hubble radius increases faster than the scale-factor, so
the fluctuations eventually re-enter the Hubble radius during the radiation or
matter-dominated eras. The fluctuations that exit around 60 e-foldings or so
before reheating reenter with physical wavelengths in the range accessible to
cosmological observations. These spectra are therefore distinctive signatures of
inflation and give us a direct observational connection to the physics of inflation.
The data of the WMAP satellite confirm the presence of adiabatic super-horizon
fluctuations in the CMB and this is a distinctive signature of an early stage
of acceleration. To understand the behaviour of the fluctuations consider that,
since gravity acts on any component of the Universe, small fluctuations of the
inflaton field are intimately related to the fluctuation of the space-time metric,
giving rise to perturbations of the curvature ζ, which may loosely considered as
a gravitational potential [35]. The physical wavelengths λ of these perturbations
grow exponentially and leave the horizon when λ > H−1. On super-horizon
scales, curvature perturbations are frozen in and considered as classical. Finally,
when the wavelength of these fluctuations reenters the horizon, at some radiation
or matter-dominated epoch, the curvature (gravitational potential) perturbations
of the space-time give rise to matter (and temperature) perturbations δρ via the
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Poisson equation [35]. These fluctuations will then start growing, thus giving
rise to the structures we observe today.
The mechanism for the generation of perturbations during inflation is not peculiar
only for the inflaton field but since it dominates the energy density of the Universe
it can possibly produce also metric perturbations.
We now see how the quantum fluctuations of a generic scalar field evolve during
an inflationary stage [31].

1.6.1 Quantum fluctuations of a generic scalar field during inflation

We now consider the case of a generic scalar field χ with an effective potential
V (χ) in a pure de Sitter stage, during which H is constant. The field χ is not
necessarily the inflaton that drives the accelerated expansion.
We split the scalar field χ(τ,x) as

χ(τ,x) = χ0(τ) + δχ(τ,x) (1.53)

where χ0(τ) is the homogeneous classical value of the scalar field and δχ are
its fluctuations; τ is the conformal time. The scalar field χ is quantized by
implementing the standard technique of second quantization.
The equation of motion for the background field is

χ̈+ 3Hχ̇− 1
a2 5

2 χ+ V ′(χ) = 0 (1.54)

Perturbing Eq. (1.54) we obtain the following equation for the fluctuations

δ̈χ+ 3H ˙δχ− 1
a2 5

2 δχ+ V ′′(χ)δχ = 0 (1.55)

Let us give a heuristic explanation of why we expect that such fluctuations are
generated.
If we differentiate the equation for the classical field with respect to time, we
obtain

...
χ0 + 3Hχ̈0 + V ′′χ̇0 = 0 (1.56)

In the limit k2 � a2 we have neglected the gradient term and we see that δχ
and χ̇0 solve the same equation. They have indeed the same solution, because
the Wronskian of the equation is W (t) = W0exp[−3

∫ tHdt̃] and goes to zero for
large t. Therefore δχ and χ̇0 have to be related to each other by a constant of
proportionality depending only on x:

δχ = −χ̇0δt(x) (1.57)

so the field χ(t,x) will be of the form

χ(t,x) = χ0(t− δt(x),x) (1.58)
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This equation says that the scalar field at given time t does not acquire the same
value in all the space. Rather, when the field is rolling down its potential, it
acquires different values at different spatial points x, so it is not homogeneous
and fluctuations are present.
Using the conformal time the Eq. (1.55) becomes

δχ′′ + 2Hδχ′ −52δχ+ a2m2
χδχ = 0 (1.59)

where m2
χ(τ) ≡ d2V (χ)

dχ2 is an effective time-dependent mass for the field.
Expanding the scalar field χ in Fourier modes

δχ(τ,x) =
∫

d3k

(2π)3/2 δχke
ik ·x (1.60)

and performing the following redefinition

δχk = δσk
a

(1.61)

we obtain the equation

δσ′′k +
(
k2 + a2m2

χ −
a′′

a

)
δσk = 0 (1.62)

which is the Klein-Gordon equation with a time-dependent mass term, and can
be derived from the effective action

δSk =
∫
dτ

[1
2(δσ′k)2 − 1

2

(
k2 + a2m2

χ −
a′′

a

)
δσ2

k

]
(1.63)

which is the canonical action for a simple harmonic oscillator.
Using the well-known techniques of quantum field theory, we can quantize the
field writing it as

δσk = uk(τ)ak + u∗k(τ)a†k (1.64)

where we have introduced the creation and annihilation operators, which satisfy
the commutation relations

[ak, aq] = 0 [ak, a
†
q] = δ(3)(k− q) (1.65)

and the modes uk(τ) are normalized as

u∗ku
′
k − uku∗

′
k = −i (1.66)

to satisfy the usual canonical commutation relations between δσ and its conjugate
momentum Π = δσ′.
The modes uk(τ) obey the equation of motion

u′′k +
(
k2 + a2m2

χ −
a′′

a

)
uk = 0 (1.67)
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which has an exact solution in the case of a de Sitter stage; however, before
recovering it, it is instructive to study its behaviour in the sub-horizon and
super-horizon limits.
The conformal scale factor in a de Sitter stage is a = − 1

Hτ (τ < 0), so a′ = 1
Hτ2

and a′′ = − 2
Hτ3 = 2

τ2a; on subhorizon scales we have k2 >> a2H2 ' a′′

a , so Eq.
(1.67) reduces to

u′′k + k2uk = 0 (1.68)

whose solution is a plane wave

uk(τ) = 1√
2k
e−ikτ (1.69)

Thus we find that fluctuations with wavelength within the horizon oscillate as in
flat space-time. This is what we expect, because in this limit the space-time can
be approximated as flat.
On superhorizon scales k2 � a′′

a , Eq. (1.67) becomes

u′′k +
(
a2m2

χ −
a′′

a

)
uk = 0 (1.70)

which is easy to be solved for a massless field (m2
χ = 0); there are two solutions,

a growing and a decaying mode

uk(τ) = B+(k)a+B−(k) 1
a2 (1.71)

We can fix the amplitude of the growing mode by matching this solution to the
plane wave solution when the fluctuation with wavenumber k leaves the horizon
(k = aH), finding

|B+(k)| = 1
a
√

2k
= H√

2k3
(1.72)

so the quantum fluctuations of the original field χ are constant on superhorizon
scales

|δχk| =
|uk|
a
' H√

2k3
(1.73)

Now we derive the exact solution of Eq. (1.67), which in the case of a massless
field is

uk(τ) = 1√
2k
e−ikτ

(
1 + i

kτ

)
; (m2

χ = 0) (1.74)

with the initial condition uk(τ) ' 1√
2ke
−ikτ for k � aH. In a de Sitter phase we

have
a′′

a
−m2

χa
2 = 2

τ2

(
1− 1

2
m2
χ

H2

)
(1.75)

so we can rewrite Eq. (1.67) as

u′′k(τ) +
(
k2 −

ν2
χ − 1

4
τ2

)
uk(τ) = 0 (1.76)
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where
ν2
χ = 9

4 −
m2
χ

H2 (1.77)

When the mass is constant in time, Eq. (1.76) is a Bessel equation whose general
solution for real νχ, that is, for light fields such that mχ <

3
2H, reads

uk(τ) =
√
−τ
[
c1(k)H(1)

νχ (−kτ) + c2(k)H(2)
νχ (−kτ)

]
(1.78)

where H(1)
νχ , H(2)

νχ are the Hankel functions of first and second kind, respectively.
If we impose, as boundary condition, that in the ultraviolet regime k �
aH (−kτ � 1) the solution matches the plane-wave solution 1√

2ke
−ikτ that

we expect in flat space-time and knowing that

H(1)
νχ (x� 1) '

√
2
πx
ei(x−

π
2 νχ−

π
4 ); H(2)

νχ (x� 1) '
√

2
πx
e−i(x−

π
2 νχ−

π
4 ) (1.79)

we then set c2(k) = 0 and c1(k) =
√
π

2 e
i(νχ+ 1

2 )π2 which also satisfy the normaliza-
tion condition (1.66).
So the exact solution becomes

uk(τ) =
√
π

2 ei(νχ+ 1
2 )π2
√
−τH(1)

νχ (−kτ) (1.80)

On superhorizon scales, since

H(1)
νχ (x� 1) '

√
2
π
e−i

π
2 2νχ−

3
2

Γ(νχ)
Γ(3

2)
x−νχ (1.81)

the solution (1.80) has the limiting behaviour

uk(τ) ' ei(νχ−
1
2 )π2 2νχ−

3
2

Γ(νχ)
Γ(3

2)
1√
2k

(−kτ)
1
2−νχ (1.82)

Thus we find that on superhorizon scales the fluctuations of the scalar field
δχk = uk

a are not exactly constant, but acquire a tiny dependence upon time

|δχk| = 2νχ−
3
2

Γ(νχ)
Γ(3

2)
H√
2k3

(
k

aH

) 3
2−νχ

(k � aH) (1.83)

We introduce the parameter ηχ = m2
χ

3H2 ; if the field is very light 3
2 − νχ ' ηχ, and

to the lowest order in ηχ we have

|δχk| '
H√
2k3

(
k

aH

)ηχ
(k � aH) (1.84)

This equation shows that, when a scalar field is light, its quantum fluctuations
generated on subhorizon scales are gravitationally amplified and stretched to
superhorizon scales because of the accelerated expansion.
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1.6.2 Power spectrum

A useful quantity to characterize the properties of the perturbations is the power
spectrum that measures the amplitude of quantum fluctuations at a given scale k.
If we have a random field f(t,x) in a flat space-time we can expand it in Fourier
space

f(t,x) =
∫

d3k

(2π)3/2 e
ik ·xfk(t) (1.85)

The (dimensionless) power spectrum Pf (k) is defined by

〈fk1f
∗
k2〉 ≡

2π2

k3 Pf (k)δ(3)(k1 − k2) (1.86)

where the angle brackets denote ensemble average.
The two-point correlation function is given by

〈f(t,x1)f(t,x2)〉 =
∫

d3k

4πk3Pf (k)eik · (x1−x2) =
∫
dk

k

sin(kx)
kx

Pf (k) (1.87)

where x = |x1−x2|. One may notice then that the power-spectrum, Pf (k) is the
contribution to the variance per unit logarithmic interval in the wave-number k.
It is standard practice to define the spectral index nf (k) through

nf (k)− 1 ≡ dlnPf (k)
dlnk

(1.88)

since in many models of inflation the spectrum can well be approximated by a
power law.
In the case of a scalar field χ the power-spectrum Pδχ(k) can be evaluated by
combining equations (1.61), (1.64) and (1.65)

〈δχkδχ
∗
q〉 = 1

a2 〈δσkδσ
∗
q〉 = 1

a2 〈(ukak + u∗kak†)(u
∗
qa
†
q + uqaq)〉 = (1.89)

= 1
a2 〈(ukak)(u∗qa†q)〉 = 1

a2uku
∗
q〈
[
ak, a

†
q
]
〉 = |uk|

2

a2 δ(3)(k− q)

so, using the definition (1.86), we find

Pδχ(k) = k3

2π2 |δχk|
2 (1.90)

In the case of a scalar field in a de Sitter stage, considering mχ � 3
2H, from

Eq.(1.84) we compute the spectrum on superhorizon scales

Pδχ(k) =
(
H

2π

)2( k

aH

)3−2νχ
(1.91)
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Therefore we have a nearly scale-invariant (or Harrison Zel’dovich) spectrum;
the spectral index is

nδχ − 1 = 3− 2νχ = 2ηχ � 1 (1.92)

and so for a massless field we have exactly scale-invariance on superhorizon
scales.
The power spectrum of fluctuations of the scalar field χ is therefore nearly flat,
that is nearly independent from the wavelength λ = π/k; the amplitude of the
fluctuations in superhorizon scales does not (almost) depend upon the time at
which the fluctuations crosses the horizon and becomes frozen in. The small
tilt of the power spectrum arises from the fact that the scalar field χ is massive
and because during inflation the Hubble rate is not exactly constant, but nearly
constant.
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2
Anisotropic Universe

This chapter is devoted to a collection of all the vector models proposed so far,
their problems about instability and their possible solutions in order to have
agreement with observational data.
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2.1 Primordial Anisotropic Models: an overview

As seen in the Introduction the idea to introduce anisotropic models comes
from both theoretical and observational motivations. From the observational
part there is another reason to consider anisotropic sources and in particular
vector fields; it comes from the inference of intergalactic magnetic fields. In
fact, magnetic fields have been inferred by an apparent lack of GeV scale γ-
rays coming from blazars that produce TeV scale γ-rays. The interaction with
the intergalactic medium should convert the higher energy γ-rays (E∼ TeV) in
lower energy but the non-observation of γ-rays with energies scale ∼ GeV has
been associated to the presence of intergalactic magnetic fields that deflect the
secondary rays [36]. Even if it is not so easy to generate primordial magnetic
fields taking into account the strong coupling problem and the backreaction
problem the vector fields are potential candidates to explain their formation
[37, 38, 39, 40].

The conformal invariance of the basic gauge invariant Maxwell Lagrangian
L = −(

√
−g/4)FµνFµν makes the use of the vector field tricky in order to drive

an exponential phase of expansion and to generate curvature fluctuations on
superhorizon scales. In order to do that it is necessary to modify the Lagrangian
finding some mechanism to break the conformal invariance. The first attempt
was made by Ford [17] who considered a single self-coupled field Aµ with a
Lagrangian

LA = −1
4FµνF

µν + V (ξ) (2.1)

where Fµν ≡ ∂µAν − ∂νAµ is the field strenght and V is the potential of the
vector field, ξ ≡ AµA

µ. The author analyzes different scenarios with different
form of the potential and he founds that the universe expands anisotropically at
the end of the inflationary period and this anisotropy survives until late times or
is damped out depending on the shape and the location of the minima of the
potential[17].

A similar model, but with the vector field used like a curvaton, was proposed by
[35]; the form of the Lagrangian was the same

LC = −1
4FµνF

µν + 1
2m

2AµA
µ (2.2)

and he found that for m2 ' −2H2 the transverse mode of the vector field is
governed by the same equation of motion of a light scalar field in a de Sitter
phase so a suitable power spectrum of curvature perturbations could be obtained.
In this model the inflaton drives inflation and the anisotropy is bounded because
the vector field acts like a curvaton.

A more concise and instructive model was proposed by Golovnev et al. [18]
where inflation is driven by a non-minimally coupled (to gravity) massive vector
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field. The lagrangian was

Lvec = − R

16π −
1
4FµνF

µν + 1
2
(
m2 + R

6
)
AµA

µ (2.3)

where R is the Ricci scalar. The non-minimal coupling (ξ = 1/6) of this vector
field is very similar to conformal coupling for a scalar field [41]. In the case of a
scalar field this coupling converts massless scalar field into a conformal invariant
field while for the vector field the non-minimal coupling has an opposite effect:
precisely, it violates the conformal invariance of a massless vector field and forces
it to behave in the same way as a minimally coupled scalar field. This model
can provide for an inflationary phase and the problem of excessive anisotropy is
avoided considering either a triplet of mutually orthogonal or a large number N
of randomly oriented vector fields. The degree of anisotropy left at the end of
inflation is proportional to 1√

N
. this last mechanism as originally employed for

magnetogenesis [42].
Another model proposed by [8] where a fixed norm vector has been studied was
described by a Lagrangian like

LFN ⊃ λ(AµAµ −m2) (2.4)

where λ is a Langrange multiplier used to fix the norm of the vector. The
expansion is anisotropic and two different expansion rates have been founded.

Most of the above models successfully solve the problem of attaining a slow-roll
regime for the vector-fields without too much fine tuning on the parameters
of the theory and of avoiding excessive production of anisotropy at late times.
But all the three break the U(1) gauge symmetry and this lead to an additional
degree of freedom, the longitudinal vector polarization that in all of these models
turns out to be a ghost; in particular The instabilities emerge from the linearized
study of the perturbation around the anisotropic inflationary solution. As in all
slow-roll inflationary backgrounds, each mode of the perturbations is initially
in the small wavelength regime (the wavelength is exponentially small at early
times); as the background inflates, the wavelength becomes larger than the
Hubble horizon H−1 and the mode enters into the large wavelength regime. This
transition is called horizon crossing. In the self-coupled model [17] the system of
perturbations contains a ghost in the small wavelength regime while in the case
of the non-minimally coupled model[18] and in the fixed-norm case[8] the ghost
appears at some intervals of time close to horizon crossing [20, 43, 22].

The problem of the instabilities seems to be overcome by introducing models
with varying gauge coupling. In a first work by Yokoyama and Soda [44] a vector
field with a non-minimal kinetic term couples with a “waterfall” field χ in a
hybrid inflation model. In such a system, the vector field gives fluctuations at the
end of inflation and hence induces a subcomponent of curvature perturbations.
Since the vector has a preferred direction, the statistical anisotropy could appear
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in the fluctuations. The Lagrangian of this model is:

L = 1
2R−

1
2g

µν(∂µφ∂νφ+ ∂µχ∂νχ) +V (φ, χ,Aµ)− 1
4g

µνgρσf2(φ)FµρFνσ (2.5)

where Fµν = ∂µAν − ∂νAµ is the field strength of the vector field, V (φ, χ,Aµ) is
the potential of fields and f(φ) is the coupling function of the inflaton field to
the vector one. The potential is not specified but it does not violate the gauge
invariance. In this model the inflaton field is responsible for the inflation; in fact
the vector field is sub-dominant and has a small expectation value compared
with the inflaton. It is treated perturbatively and considered massless. With
these choices the longitudinal mode of the vector field disappears and instabilities
are avoided. The “waterfall” acts as the medium through which the anisotropy
in Aµ is transmitted to the inflaton. However, as we will see in chapter 3 the
communication already occurs without the waterfall field but directly by coupling
the inflaton with the gauge field.

The most intriguing model that we deeply analyze in Section 2.3 and in Chapter
3 is the one proposed by Watanabe, Kanno and Soda [5], an inflationary scenario
where the inflaton field is coupled with the kinetic term of a massless vector field;
they show that the inflationary Universe is endowed with anisotropy for a wide
range of coupling functions. The following Lagrangian has been used:

L = 1
2R−

1
2(∂µφ)(∂µφ)− V (φ)− 1

4f
2(φ)FµνFµν (2.6)

They note that the fate of the anisotropic expansion depends on the behaviour
of the coupling function. This is the first minimal model free of instabilities.
Another interesting class of models is the one in which inflation is driven by a
scalar field in the presence of a non-abelian SU(2) vector multiplet [24, 45, 46,
47].

LNA = M2
PR

2 − f2(φ)
4 gµαgνβ

∑
a=1,2,3

F aµνF
a
αβ −

M2

2 gµν
∑

a=1,2,3
AaµA

a
ν + Lφ, (2.7)

where Lφ is the Lagrangian of the scalar field and F aµν ≡ ∂µA
a
ν − ∂νA

a
µ +

gcε
abcAbµA

c
ν (gc is the SU(2) gauge coupling). Both f and the effective mass M

can be viewed as generic functions of time. For this kind of model cosmological
correlation functions have been computed in [24, 45, 46, 47] without considering
the inflationary dynamics. It is shown that a richer amount of predictions is
offered compared to the Abelian case. This is due to the self interaction terms
that give new contributions to the bispectrum and the trispectrum that are non
negligible wrt the others present in the Abelian case.

An interesting model, based only on non-abelian vector field was proposed by
[25]. Gauge-flation is a non-Abelian gauge theory minimally coupled to gravity
in which inflation is driven thanks to an higher order derivative operator

LGF = M2
PR

2 − 1
4F

a
µνF

a,µν + κ

96
(
F aµνF̃

a,µν
)2
, (2.8)
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where R is the Ricci scalar, F aµν ≡ ∂µAaν−∂νAaµ−gcεabcAbµAcν is the field-strength
tensor of a SU(2) gauge field with coupling constant g, and F̃ a,µν ≡ εµναβ

2
√
−gF

a
αβ is

its dual (εµναβ is the totally anti-symmetric tensor). In this model the gauge
symmetry is not broken and there are no problems of instabilities. Moreover
this model admits an isotropic solution coming from the residual global gauge
symmetry present in every non-Abelian group. With this trick is possible to
maintain homogeneity and isotropy even in presence of vector fields. Even if
Gauge-flation model seems to be a good theoretical (non-Abelian) vector model
it is rueld out by the CMB data; in fact considering the only parameter of the
theory γ ≡ g2Q2

H2 (where g is the gauge coupling constant, Q the vector vev and
H the Hubble parameter) in [26] it is found that the scalar spectral index ns is
too low at small γ, while the tensor-to-scalar ratio r is too high at large γ.
In particular regime the Gauge-flation model shares some trajectories with
the Chromo-natural inflation model that is a model where the non-Abelian
gauge field is coupled with a pseudoscalar axion field solving the problem of the
trans-Planckian axion decay constant.[48, 49]

Finally, extensions of the previous models have been considered in [50, 51] where
a system of multi-vector fields with uniform coupling between the inflaton and
gauge fields has been studied. The Lagrangian of the model is the following

L = M2
PR

2 − 1
2∂µφ∂

µφ− V0e
λφ − 1

4

N∑
m=1

egmφF (m)
µν F (m)µν (2.9)

where N is the number of copies of Abelian vector field considered. The result
shows that the system tends to isotropize when the number of vector fields is
greater than two.

2.1.1 Pseudoscalar-Vector Model and Parity Violation

Another class of models that involves vector field is chatacterized by coupling this
with pseudoscalar fields like axions. Axions are ubiquitous in particle physics:
they arise whenever an approximate global symmetry is spontaneously broken
and are plentiful in string theory compactifications. In cosmology they have been
introduced to solve the problem of the UV completion of inflationary theories
and, at same time, they also give characteristic signatures for both gravitational
waves and non-Gaussianity as we will see. In model of axion-vector inflation the
Lagrangian is of the form

LA = M2
PR

2 − 1
2∂µϕ∂

µϕ− V (ϕ)− 1
4FµνF

µν − α

f
ϕFµνF̃

µν (2.10)

where ϕ is the inflaton that, in this case, is a pseudoscalar field, Fµν is the
field strenght of the gauge field, F̃µν ≡ 1

2ε
µναβFαβ its dual, f the axion decay

constant and α a dimensionless parameter. This kind of model, protected by

31



the shift symmetry (ϕ→ ϕ+ const.), solves the problem that characterizes the
natural inflation model: the trans-Planckian value of the axion decay constant
f . Other possibilities to solve this problem are: consider two [52] or more axions
[53, 54], extra-dimensions [55] but the axion-vector coupling seems to be more
natural. The interaction present in 2.10 has a particular phenomenology: the
motion of the inflaton amplifies the fluctuations of the gauge field δA, that in
turn produces inflaton fluctuations through inverse decay: δA+ δA → δϕ. In
[56] it was shown that for sub-Planckian value of f the signal coming from the
inverse decay process dominates over the usual vacuum fluctuations giving some
interesting observational signatures; in fact it is found that the amplitude of
the perturbations generated by the inverse decay is an exponentially growing
function of α

f . These modes dominate over the vacuum ones for α
f>10−2M−1

Pl

(the precise value depending on the inflaton potential). For small values of α
f

this new effect is completely negligible, and the standard results are recovered.
For large values, drastically new pre- dictions are obtained. In particular, the
main characteristic of is that the new contribution is highly non-Gaussian: this
is due to the fact that two gauge quanta that participate in the inverse decay
are gaussian (loosely speaking, the inverse contribution is proportional to the
square of a Gaussian field, which is obviously not gaussian). It is also found
a tachyonic instability of one of the two helicity modes of the gauge field that
generates a parity violating signal (one chirality produced with much greater
abundance than the other one). It is also found that the spectrum of gravity
waves produced by the inverse decay is much smaller than that from vacuum.
A slight modification of the previous model by introducing a new “hidden” sector
consisting of a light pseudoscalar field χ gravitationally coupled to the inflaton φ
introduces interesting features, providing new source of inflationary gravitational
waves, complementary to the usual quantum vacuum fluctuations of the tensor
part of the metric. This model was introduced by [6] and then studied by [57]
with particular approximation for the CMB analysis. The Lagrangian is given
by

L = −1
2(∂φ)2 − V (φ)− 1

2(∂χ)2 − U(χ)− 1
4FµνF

µν − χ

4f FµνF̃
µν , (2.11)

where f is a coupling constant like an axion decay constant and Fµν ≡ ∂µAν −
∂νAµ is the field strength and F̃µν its dual. In this model inflation is driven by the
inflaton potential V (φ), while χ contributes to the generation of curvature and
tensor perturbations through gravitational interaction with the gauge field. Such
a scenario is different from the descibed before in which a direct coupling between
the inflaton and the gauge field is present [56]. In that case the coupling is much
stronger than the gravitational one and scalar curvature fluctuations are sourced
with much more efficiency than gravitational waves [6]. Observed power spectra
of curvature and tensor perturbations will consist of both these gauge-field modes
and considerable normal modes generated in the slow-roll regime, which are
expressed as P ≡ H2

8π2εM2
P
and Ph = 16εP with H, ε and MP ≡ 1/

√
8πG being

the Hubble parameter, the slow-roll parameter for the inflaton and the reduced
Planck mass, respectively. As we will see in Chapter 5 this model show very
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interesting features like large tensor equilateral non-Gaussianity and in particular
parity violating signal.

2.2 Dynamical Analysis of f(F 2) Models

Although a careful perturbative analysis on the instabilities of vector models
has been conducted in [20, 22, 43] a more powerful analysis has been done in
[21]. It is known that Hamiltonian stability and hyperbolicity analysis are more
powerful tools, because the perturbative one can only demonstrates the local
stability or instability around a particular background. A fundamental theory to
be well posed must satisfy two necessary conditions: the boundedness by below
of its Hamiltoniani (otherwise the theory is unstable), and the hyperbolicity
of the field equations (so that the Cauchy problem is well posed [58]). In this
section we briefly review the results found in [21] where a non-linear function
of the Maxwell Lagrangian plus a potential term for the vector field have been
analyzed

L = −f(F 2)− V (A2), (2.12)

The Hamiltonian density, defined as H = πµȦµ − L, is given by

H = π2
i

4f ′ + (∂iπi)2

2V ′ + f(F 2) + V (A2). (2.13)

where πµ ≡ ∂L/∂Ȧµ and π0 = 0, so the A0 component of the vector field
is non-dynamical, while πi = 4f ′F0i. The analysis of the Hamiltonian
boundendness must be done case by case but in [21] they shown that some
conditions can be found. First of all, f ′ must be positive for H to be bounded
by below. In fact if f ′ is negative can be found some initial conditions where
π2
i →∞ and F 2

ij →∞ while keeping F̄ 2 = F 2
ij − 2π2

i /(4f ′)2 constant so the first
term diverges towards −∞.
Similarly V’ must also be positive for H to be bounded by below. If it is not the
case, the second term in 2.13 would diverge towards −∞. This condition is not
sufficient because in the case of monomial potential, like V (A2) = k(A2)n, if
k < 0 and n is odd and negative, then V ′ is positive but H diverges towards
−∞ for initial conditions such that ∂iπi = 0 and A2

i →∞.
This analysis shows that there are no necessary and sufficiend condition that
guarantee the Hamiltonian stability but the models has to be analyzed explicitly
case by case.

For the hyperbolicity more general statements can be found. The equation of

iMore precisely, the spatial integral of the Hamiltonian density over any localized state should
be bounded by below.
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motion related to the Lagrangian 2.12 is

∇µ(f ′Fµν) = 1
2V
′Aν (2.14)

The second derivative can be recasted using the principle part of the differential
operator

[f ′ × (δνµ�− ∂µ∂ν) + 4f ′′FανFβµ∂α∂β]Aµ (2.15)

where the term in the square bracket can be identified with the operator D.
Hyperbolicity means that the field equations have the second derivatives of the
form Gµν∂µ∂ν , with Gµν an effective metric of signature −+++ (or +−−−)(its
timelike direction, corresponding to the negative (or positive ) eigenvalue, should
be consistent with the standard time direction of gµν). The spectral properties
of the operator

Dν
µ(p) ≡ (Mν

µ )αβpαpβ ≡
[
f ′ × (δνµgαβ − δαµgνβ) + 4f ′′FανF βµ

]
pαpβ (2.16)

One needs to diagonalize (Mν
µ)αβ with respect to µ and ν indices, (Mν

µ)αβ →
Gαβ(µ=ν)δ

ν
µ and then to study the sign of the eigenvalues of the Gαβ-matrices. The

details of the calculation can be found in [21]. Here we report only the relevant
results: diagonalization gives three times Gαβ = f ′ × gαβ which correspond to
an hyperbolic operator f ′� if and onfly if

f ′ > 0 (2.17)

The fourth operator Gαβ = f ′× gαβ + 4f ′′×FαµF βµ gives the following eigenval-
ues

f ′ + f ′′F 2
µν ± f ′′

√
(F 2

µν)2 +
(
FµνF̃µν

)2 (2.18)

where F̃µν = 1
2εµνρσF

ρσ, εµνρσ being the totally antisymmetric Levi-Civita tensor
such that ε0123 = +1. To have the simultaneous positivity of the eigenvalues it
is necessary that

f ′ + f ′′F 2
µν > |f ′′|

√
(F 2

µν)2 +
(
FµνF̃µν

)2 (2.19)

When FµνF̃µν = 0, i.e., when electric and magnetic fields are orthogonal, this
inequality imposes both f ′ > 0 and f ′ + f ′′F 2

µν > 0. So this means that these
eigenvalues can be made negative by an appropriate choice of the relativistic
invariants F 2

µν and Fµν ˜Fµν .
So, it is not so easy to find functions of the Maxwell Lagrangian that simulta-
neously have an Hamiltonian bounded by below and hyperbolic field equations.
It seems that the only safe case is the standard Maxwell Langrangian that
unfortunately is conformal invariant. ii

iiA function like f(F 2) = kF 2 + 2Λ (where k and Λ are constants) where Λ is a cosmological
constant could satisfy inequality 2.17 but no interesting anisotropic signatures can survive
due to the cosmic no-hair theorem.
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2.3 Possible Solutions: f(φ)F 2 Model

As seen in Section 2.1 many vector inflationary models suffer from instability
except for the models in which the inflaton is coupled with the gauge field and
in the gauge flation model but this is disfavoured by CMB observations. In this
section we want to describe one of the most interesting anisotropic model. This
is a supergravity-inspired model, proposed by [5], where the Lagrangian recalls
the bosonic one in supergravity

L = 1
2R−

1
2(∂φ)2 − V (φ)− 1

4I (φ)2 FµνF
µν , (2.20)

I(φ) is the coupling function of the inflaton field to the U(1) gauge field and, as
we will see, its form depends on the kind of potential choosen for the inflaton.
Its functional is determined as

I(φ) = e
2
∫

V
Vφ
dφ

(2.21)

The effect of the backreaction of the vector field is not to destroy inflation and
in [5] it is shown that the model admits an anisotropic inflationary attractor
solution and this contrasts the dilution of the anisotropies due to the cosmic
no-hair theorem. The coupling of the vector field to the inflaton produces an
effective potential for the inflaton. In [5] the model has been studied in a Bianchi
type I metric

ds2 = −dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

]
(2.22)

where eα represents an isotropic scale factor while σ the deviation from isotropy.
The evolution equation for σ is the following

σ̈ + 3α̇σ̇ − k2

3 I(φ)−2e−4α−4σ (2.23)

where k is a constant of integration. It is shown that in order to drive inflation
the potential of the inflaton must be dominant and the anisotropy should be
subdominant. Although the anisotropy is small it persist during inflation and an
anistropic attractor is founded as show in Figure 2.1

In particular they also found a general result, true for a broad class of potentials,
that put an upper limit on the amplitude of the anisotropy Σ ≡ σ̇

Σ
H
. ε (2.24)

and this is confirmed, in the case of a chaotic potential, by the Figure 2.2. This
result is easily explained taking into account that the cosmic no hair theorem
holds in the presence of the cosmological constant and that the deviation from
the exact de Sitter expansion is characterized by the slow roll parameter. So the
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Figure 2.1: Phase space evolution that shows the convergence of the trajectories
to the anisotropic fixed point [5].

	  
Figure 2.2: Anisotropy evolution with respect to the e-folding number [5].
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deviation from the isotropic expansion must be proportional always to the same
parameter.

From the point of view of connection with observations in [59] the model has
been perturbed in an anisotropic space-time finding two sources of statistical
anisotropy of fluctuations: the first coming from the anisotropic expansion itself
and the second coming from the scalar-vector coupling. They have computed the
power spectrum of the curvature perturbation and of the tensor mode finding
an anisotropic contribution in both case. It is important to stress that the
computation in an anisotropic space-time is very involved and as we will show
in Chapter 3 not so necessary. An important feature for this kind of model is
that the tensor perturbations can be induced from the curvature perturbations
through the anisotropy of the background and, as a consequence, there is a
mixing between curvature and tensor fluctuations that can give TB and EB
mixing in the CMB data. Of course this is a very distinctive signature for this
model that can be observed in the Planck analysis.

2.4 The Bianchi Universe

The direct consequence of having an anisotropic source that gives non-negligible
contribution to the evolution of the universe is the choice of a background metric
with the three spatial directions with different expansion rates. In this section
we briefly describe this class of metrics that can account for homogeneous but
anisotropic spacetimes: the Bianchi metrics. The Bianchi family are geometries
with spatially homogeneous (constant t) surfaces which are invariant under the
action of a three dimensional Lie group and can be foliated into the spatial
homogeneous hypersurfaces Σt

M = R× Σt (2.25)

where R is the time variable. The Lie algebra is composed by the basis vector ei
(Killing vectors) that satisfy

[ei, ej ] = Ckijek (2.26)

where Ckij are the structure constants. A Bianchi metric can be written as

ds2 = −dt2 + hij(t)ei ⊗ ej , (2.27)

where i, j = 1, 2, 3 label the coordinates in homogeneous space-like hypersurfaces,
hij represent the homogeneous spatial metric and ei are one-forms dual to the
basis ei. The structure constants enter in the definition of the scalar curvature
(3)R

(3)R = −CiijC
k j
k + 1

2C
i
jkC

k j
i −

1
4CijkC

ijk, (2.28)
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indicating that the structure constants of the algebra, define automatically the
spatially homogeneous cosmological model.

So different algebras define different Bianchi models; in particular there are nine
Bianchi models: Bianchi type I, that is a generalization of the flat FRW metric
has an algebra where C k

ij = 0, corresponding to a flat hypersurface. Meanwhile,
Bianchi type IX corresponds to the so(3) algebra with (3)R > 0. It is important
to underline that all the Bianchi metrics, except type IX, have a non-positive
spatial scalar curvature [11]. This is important because is strictly related to the
cosmic no-hair conjecture for which in any initial background, in presence of a
positive cosmological constant, all the initial existing anisotropies are rapidly
washed out. This conjecture was proven to be true for all of the Bianchi models
except for the Bianchi-IX by Wald in [11]. For the Bianchi-IX this result is also
true under the assumption that the cosmological constant overcomes the spatial
curvature terms.
Tipically, in the study of anistropic models, Bianchi type I metric are assumed
with the following form:

ds2 = −dt2 + a2(t)dx2 + b2(t)(dy2 + dz2) (2.29)

where a(t) and b(t) are the two scale factors related to the two different direction
(or rate) of expansion. This metric has been used in Chapter 4 for the analysis
of the Solid Inflation model. A detailed study of perturbations in anisotropic
space-time, like 2.29, has been conducted in [60, 10, 61].
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3
The anisotropic power

spectrum and bispectrum in
the I (ϕ)F 2 mechanism

In this chapter I have mainly reported the results of our paper [62] in which we
have analyzed a model where a suitable coupling between the inflaton and a gauge
field can produce interesting features, like statistical anisotropy in the correlation
functions and non-trivial angular dependence in the shape of the bispectrum
providing distinctive signatures for this kind of models.
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3.1 Introduction

As introduced in Chapter 2 the first model free of instabilities is the one in which
the inflaton is coupled to a U(1) gauge field. In this Chapter we compute the
power spectrum and the bispectrum of the cosmological curvature perturbations
ζ for this model under the assumptions that

1. The dominant contribution to ζ is provided by a slowly rolling inflaton
field

2. The inflaton is coupled to the kinetic term of a vector field so to produce a
nearly scale invariant and frozen spectrum of vector perturbations at large
scales.

These assumptions are realized in models of magnetogenesis and of statistical
anisotropy of the cosmological perturbations. Despite the phenomenology of
these models has been heavily studied in the literature, we obtain novel and
general results, since, for the first time to our knowledge, we simultaneously take
into account both the facts that (i) a strong contribution to the anisotropy (both
in the power spectrum and in the bispectrum of ζ) results from the same coupling
characterized in 2., and (ii) the inflationary expansion that took place before
the Cosmic Microwave Background (CMB) modes left the horizon unavoidably
results in a classical background vector field that is homogeneous from the point
of view of the CMB modes, but breaks isotropy. Interest for models that can
produce vector fields during inflation has been generated by the inference of
intergalactic magnetic fields and by claims of broken statistical invariance of the
CMB modes. Intergalactic magnetic fields have been inferred by an apparent
lack of GeV scale γ−rays coming from blazars that produce TeV scale γ−rays;
in standard models, part of the higher energy γ−rays should be converted in
lower energy secondaries (which then generate the lower energy γ−rays) by their
interaction with the inter galactic medium. The non-observation of the GeV
scale γ−rays has been explained as intergalactic magnetic fields that deflect the
secondaries [36].

Broken statistical isotropy of the CMB perturbations has instead been found in
the studies [63, 64, 65] of the WMAP data. While the overall WMAP results
[33] strongly support the inflationary paradigm, the above studies have shown
that the statistics of the WMAP anisotropies does not possess full rotational
invariance. Specifically, under the parametrization [8]

Pζ
(
~k
)

= P (k)
[
1 + g∗ cos2 θk̂, V̂

]
(3.1)

(which can be thought of as an expansion series of the power spectrum in the
limit of small anisotropy, truncated at the quadruple term) the WMAP data
give g∗ = 0.29± 0.031 [65]. The “privileged” direction V̂ lies very close to the
ecliptic poles. This strongly suggests a systematical origin of the effect, and it
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has been shown in [64, 66] that the instrument beam asymmetry can account
for it. Fortunately, the Planck satellite will soon provide an independent test
of this with an expected sensitivity to a quadrupolar anisotropy in the power
spectrum as small as 0.5% at 1σ [67, 68]. On different scales (and marginalizing
over the preferred direction V̂ ) Large-Scale Structure data analysis constrain
−0.41 < g∗ < 0.38 at 95% C.L. [69] (the amplitude of the anisotropy may in
general be scale dependent [8]).

Broken rotational invariance could be the result of anisotropic inflation [70]. It
is however nontrivial to realize this, since anisotropic spaces typically rapidly
isotropize in presence of a cosmological constant [11]. i Vector fields may in
principle support the anisotropy. ii In this case, the problem of preserving the
anisotropy translates into contrasting the quick decrease of the vector energy
that takes place for a minimal LA = −F 2/4. To our knowledge, four distinct
classes of models have been constructed to achieve this; the first three of them are
characterized by (i) a vector potential V

(
A2) [17], (ii) a fixed vector vev due to

a lagrange multiplier [8], and (iii) a vector coupling A2R to the scalar curvature
R [18, 19]. This last mechanism was originally employed for magnetogenesis in
[42]. These three proposals break the U(1) symmetry of the minimal action, and
lead to an additional degree of freedom, the longitudinal vector polarization,
that in all of these models turns out to be a ghost [20, 22, 43]. iii

The fourth class is instead U(1) invariant and free of ghost instabilities. It is
characterized by a function of a scalar inflaton ϕ multiplying the vector kinetic
term,

L = −I
2 (ϕ)
4 FµνF

µν (3.2)

A suitably chosen evolution for 〈I〉 during inflation results in a (nearly) con-
stant vector energy density, and therefore in a prolonged anisotropic expansion
[5]. iv Also this mechanism was originally suggested for magnetogenesis [83] (this
application is however problematic [38], as we discuss below). For anisotropic

iSee [71] for the extension of the study of [11] to slow roll inflation
iiVector fields can play a nontrivial role for the inflationary dynamics also in the isotropic case

[72, 25, 73, 48].
iiiRef. [23] claims that some versions of the A2R model may be healthy, arguing that the

standard quantization may not apply for such models in the sub-horizon regime. We do
not believe that this argument is correct; in writing the dispersion relation of a mode one
customarily “accepts” the background evolution also in the sub-horizon regime; for instance,
one writes that the physical momentum scales as p = k/a, where a is the scale factor coming
from the metric. If we include a ∝ eHt in the dispersion relation also in the sub-horizon
regime, there is no reason why we should not include a term proportional to the curvature
in this regime. We also point out that, even if the argument of [23] was correct, it would
simply lead to the conclusion that we do not know how to quantize these models, and that
all the phenomenological predictions that have been derived for them (which are based on
the standard quantization in the sub-horizon regime) are invalid; there are essentially the
conclusions of [20, 22, 43].

ivSee [74, 75, 76, 50, 77] for models of anisotropic inflation that employ the idea of [5]. Also, an
interesting model of vector curvaton [35] employing a varying mass m and kinetic function
I has been proposed in [78] and studied in [79, 80, 81, 82]. This model also admits an
attractor solution where I scales as in the model studied here. In particular, ref. [82]
demonstrated that treating I and m as functions of a quantum inflaton field results in a
different phenomenology than just treating them as classical external functions.
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expansion, a homogeneous vector field pointing along a given direction corre-
sponds to an “electric” component, and (3.2) enjoys an “electric” ↔ “magnetic”
duality under I2 ↔ 1

I2 [84]. A constant “electric” component is also produced
through (3.2) in the mechanism of [44], in which the vector field is coupled to
the waterfall field χ of hybrid inflation through a χ2A2 interaction. Due to this,
the gauge field provides a contribution to the mass of χ, concurring to determine
the moment at which inflation ends, and - thanks to this - contributing to the
curvature perturbation. The waterfall field acts as the medium through which
the anisotropy in Aµ is communicated to the inflation; however, as we shall see,
the communication already occurs through the very same interaction (3.2) that
supports the vector field. This unavoidable effect has not been accounted for
neither in [44], nor in the related works [85, 86, 87, 88, 89].

The linearized theory of cosmological perturbations in the anisotropic inflationary
model of [5] was worked out in [60, 90, 61, 91]. The classical equations of motion
of the model admit an attractor solution, [5, 92] characterized by a non-vanishing
“electric” component ~E(0). A 10% level anisotropy (|g∗| = O (0.1)) is found
for an energy | ~E(0)|2/2 which is about eight orders of magnitude smaller than
the inflaton potential [90, 61, 91]. Therefore, the vector energy needs to be
highly subdominant not too produce a too strong anisotropy. The work [93]
computed instead the cosmological perturbations in the case in which (3.2)
provides scale invariant “magnetic” components of the vector field, as in the
magnetogenesis application [83, 94]. Cosmological applications in this context
have also been studied in [95, 96, 39, 97, 51, 98, 99, 100]. Studies of the
cosmological perturbations in [83, 94] start from the point of view that the
statistics of the generated “magnetic” field is isotropic, and therefore obtain
statistical isotropic results. In shorts, in the magnetogenesis context [83, 94]
one does not have the analogous of the attractor solution ~E(0) of the classical
equations of motion of the anisotropic inflationary model [5] (the corresponding
~B(0) vanishes in [83, 94]) and therefore it is simply assumed that g∗ = 0 in this
case.
However, in [5, 44] (respectively, in [83, 94]), the CMB perturbations are affected
by a classical “electric” field ~Eclassical (respectively, classical “magnetic” field
~Bclassical) which is in general different from the value given by the classical
equations of motion. Indeed, such mechanisms are designed to result in a
nearly scale invariant spectrum for the “electric” (respectively, “magnetic”)
perturbations. Let us denote by Ntot the number of e-folds of inflation. The
modes that left the horizon in the first Ntot −N e-folds of inflation add up as a
classical background from the point of view of the modes that leave the horizon
in the final N e-folds. This is well appreciated for scalar fields during inflation
[101]. The modes that leave the horizon add up in a “random walk” manner
to form a classical background that is experienced as homogeneous by modes
of smaller size. A homogeneous classical vector is a field that points in a given
direction (that, in a given realization of the model, is determined by the random
addition of the super-horizon modes) that breaks isotropy. In the magnetogenesis
application, the effects of this energy 〈 ~B2〉/2 on the background evolution have
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been well appreciated (see, among others, [38, 102, 103]). We point out that this
energy is associated with a classical vector field, and in this work we show that
this vector imprints a strong anisotropy to the power spectrum and bispectrum
of ζ in all the applications of (3.2).
Specifically, we show that the natural value of g∗ associated to these modes is
∼ 0.1 (respectively, ∼ 0.01), if inflation lasted about 50 e-folds (respectively,
about 5 e-folds) more than the final ∼ 60 e-folds necessary to generate the
CMB modes. Generic models of slow roll inflation are characterized by a much
longer duration of inflation, and, therefore, embedding the mechanism (3.2) in
one of these models generically results in too anisotropic perturbations. For a
tuned duration of inflation the mechanism becomes extremely predictive since,
there is essentially no free parameter in (3.2). The only relevant quantity is the
magnitude of the classical vector field present when the CMB modes left the
horizon, and that can be “traded” for g∗. Therefore, any given value of g∗ should
be associated with firm predictions for other observables.

There are two such predictions that immediately come to mind: the first is a TB
and an EB mixing in the CMB data [9], resulting from the coupling between
scalar and tensor modes that, due to the anisotropy, takes place already in the
linearized theory [70, 104, 10, 105]. The second is a directionality dependence
in the bispectrum (and, in principle, in the higher point correlation functions),
with a clear correlation with the one in the power spectrum. The bispectrum
resulting from (3.2) is computed for the first time in the present work. v We
show that the isotropic power spectrum and bispectrum of [93] are in fact the
theoretical expectation (i.e., the theoretical average over several realizations) for
the anisotropic signals that we obtain here, and which are the real quantities
that are produced by any single realization of (3.2). Quite interestingly, an
observable g∗ produced from (3.2) is associated to an observable bispectrum
which is enhanced like the local one in the squeezed limit, and which has a
characteristic shape and anisotropy (immediately correlated with the one in the
power spectrum).

The chapter is organized as follows. In Section 3.2 we study the spectrum of the
vector field perturbations obtained from (3.2), with a particular attention for the
functions I that result in scale invariant vector modes. In this section we also
further discuss the role of the large-wavelength modes in determining the classical
background anisotropy that affects modes of CMB wavelengths. In Section 3.3
we study how these modes δA are coupled to the modes of ζ through (3.2). The
power spectrum and bispectrum of ζ are computed respectively in Sections 3.4
and 3.5. There, we show explicitly how the sum of the long-wavelength modes
adds up with the solution of the classical equations of motion to determine
the physical value of ~Eclassical (or ~Bclassical) observed by the CMB modes. The
resulting phenomenology is reviewed in Section 3.6. In Section 3.7 we discuss our
results, that generally apply to all the realizations of (3.2) that give a nearly scale
invariant vector field, in the context of anisotropic inflation [5], of the waterfall

v For previous works on anisotropic non-gaussianity, see [44, 106, 85, 107, 108, 109, 86, 110,
111, 88, 112, 89].
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mechanism [44], and of magnetogenesis [83, 94]. A concluding discussion is given
in Section 4.6.

3.2 A scale invariant vector field

Let us consider a locally U(1) invariant vector field with lagrangian (3.2). Ref.
[83] identified this field with the electromagnetic one, assuming that I sets to a
constant after inflation (in this case, we can simply normalize Iend = 1). The
function I enters in the definition of the electric and magnetic components

Ei = −〈I〉
a2 A′i , Bi = 〈I〉

a2 εijk∂jAk (3.3)

(we denote by 〈. . . 〉 the vacuum expectation value of a field, or of a function),
where prime denotes derivative with respect to conformal time τ , and a is the
scale factor of the universe, ds2 = a2 (τ)

(
−dτ2 + d~x2). With the notation (3.3),

the physical energy density in the vector field assumes the conventional expression
ρ = | ~E|2+| ~B|2

2 at all times. In this work, apart from where we explicitly refer to
the magnetogenesis application [83] , we do not necessarily identify the vector
field with our photon, but we keep the “electromagnetic” notation (3.3) for
convenience. The classical equations of motion obtained from (3.2) are solved by
a homogeneous “electric” field ~E(0) ∝ 1

a2 〈I〉 . While the standard case, I = const,
corresponds to ρE ∝ a−4, a constant “electric” energy is obtained if 〈I〉 ∝ a−2.

A desired time evolution for 〈I〉 can be obtained for several functions I (ϕ),
provided they are suitably arranged with the inflaton potential [94]. Indeed,

a ∝ exp
[
−
∫

dϕ√
2ε (ϕ)Mp

]
(3.4)

where we have introduced the slow roll parameter

ε ≡
M2
p

2

(
V ′

V

)2
(3.5)

(prime on a function here denotes derivative with respect to its argument) and
where a monotonic slow roll inflaton evolution with ϕ̇ < 0 is assumed. Therefore,
a desired behavior 〈I〉 = f (a) can be obtained by choosing the functional form
of I to coincide with that function f of the right hand side of (3.4):

I = I0 exp
[
−
∫

ndϕ√
2ε (ϕ)Mp

]
⇒ 〈I〉 ∝ an (3.6)

where I0 can be chosen so that I = 1 after inflation. As a concrete example, the
choice

V = 1
2 m

2ϕ2 , I = e
c ϕ2

2M2
p (3.7)
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results in 〈I〉 ∝ a−2c. We thus see that a constant ~E(0) is achieved for c = 1. Many
other choices of V and I are clearly possible, provided that their functional forms
are related to each other to produce through (3.4) the desired time dependence
for 〈I〉 [94].

3.2.1 Production of vector fluctuations from the I2F 2 term

It is well known that, for I = 1, the vector field is conformally coupled to a
FRW background, and so its fluctuations are not excited by the expansion of the
universe. On the contrary, as we now review, the choice 〈I〉 ∝ a−2 that allows
for a constant ~E(0) solution, also excites the vector fluctuations to produce a
classical and scale invariant spectrum of “electric” fluctuations at large scales.

We quantize the vector field in the Coulomb gauge A0 = 0

~A = ~A(0) +
∑
λ=±

∫
d3k

(2π)3/2 ei~k~x ~ελ
(
~k
) V̂λ
〈I〉

V̂ ≡ aλ
(
~k
)
Vλ (k) + a†λ

(
−~k
)
V ∗λ (k) (3.8)

where ~ελ are circular polarization vectors satisfying the relations ~k · ~ε±
(
~k
)

= 0,
~k × ~ε±

(
~k
)

= ∓ik~ε±
(
~k
)
, ~ε±

(
~−k
)

= ~ε±
(
~k
)∗
, and normalized according

to ~ελ
(
~k
)∗
· ~ελ′

(
~k
)

= δλλ′ . The annihilation / creation operators satisfy[
aλ
(
~k
)
, a†λ′

(
~k′
)]

= δλλ′ δ
(3)
(
~k − ~k′

)
.

The mode functions satisfy the evolution equation

V ′′λ +
(
k2 − 〈I〉

′′

〈I〉

)
Vλ = 0 (3.9)

where prime denotes derivative with respect to conformal time τ . For 〈I〉 ∝
a−2 ∝ τ2 (we disregard slow roll corrections, so that a = − 1

Hτ ), the properly
normalized vector modes are

Vλ '
1 + ikτ√
2k3/2 τ

e−ikτ (3.10)

We Fourier transform the “electric” and “magnetic” fields (3.3)

~E = ~E(0) +
∫

d3k

(2π)3/2 ei~k~x δ ~E
(
~k
)

~B =
∫

d3k

(2π)3/2 ei~k~x δ ~B
(
~k
)

(3.11)

Inserting the solutions (3.10) in (3.3) we see that the “electric” and “magnetic”
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fields become classical (commuting) fields at super-horizon scales

δ ~E
(
~k
)

=
∑
λ

Ek ~ελ
(
~k
) [
aλ
(
~k
)

+ a†λ

(
−~k
)]

δ ~B
(
~k
)

=
∑
λ

Bk λ~ελ
(
~k
) [
aλ
(
~k
)

+ a†λ

(
−~k
)]

Ek ' 3H2
√

2k3/2 , Bk '
H2 τ√
2k1/2 , −kτ � 1 (3.12)

Namely, the “electric” field fluctuations are nearly constant outside the horizon,
while the “magnetic” field fluctuations rapidly decrease. As we mentioned, the
electric field fluctuations are scale invariant (slow roll corrections will slightly tilt
their spectrum; however, we disregard slow roll corrections in this work whenever
compared with a non-vanishing expression at 0−th order in slow roll).
Finally, we note that this mechanism enjoys a duality symmetry 〈I〉 ↔ 1

〈I〉 .
Under this exchange, the “electric” and “magnetic” modes interchange their
role,

∣∣∣δ ~E∣∣∣2 ↔ ∣∣∣δ ~B∣∣∣2. The original mechanism [83] aims to produce fluctuations
with scale invariant magnetic energy, and therefore has 〈I〉 ∝ a2 during inflation.
This corresponds to choosing c = −1 in the example (3.7). For definiteness,
our explicit computations are done for 〈I〉 ∝ a−2. However, our results can be
readily extended to the context of [83] by exploiting this duality.

3.2.2 Classical anisotropy when the CMB modes leave the horizon

We denote by ~E(0) the “electric” field obtained from solving the classical equa-
tions of motion of a given model. For instance, as we discuss in Subsection
3.7.1, the classical equations of motion of the anisotropic inflationary model
[5], characterized by c ' 1 in (3.7), admit an attractor solution with a nearly
constant ~E(0).
We denote by ~Eclassical the classical and homogeneous electric field measured by a
local observer at some time τ during inflation. We can assume that at the initial
time of inflation τin no classical fluctuations are present, so that ~Eclassical = ~E(0)

at τin. However, this identification is no longer exactly true at any later time.
Indeed, at the time τ > τin during inflation

~Eclassical = ~E(0) + ~EIR (3.13)

where the second quantity (IR = “infra-red”) denotes the sum of all the modes
δ ~Ek that left the horizon between the times τin and τ . These modes have become
classical and are homogeneous from the point of view of a local observer present
at τ . The same considerations apply to the “magnetic” component of the vector
field. For any single realization of the mechanism (3.2) with 〈I〉 ∝ a−2, the
quantities ~EIR and ~BIR are drawn by, respectively, a gaussian (to very good
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approximation) statistics, with vanishing mean and with variance

σ2
~EIR,N

= 〈δ ~E (~x)2〉 = 1
π2

∫
IR
dk k2|Ek|2 '

9H4

2π2

∫
IR

dk

k

= 9H4

2π2 N

σ2
~BIR = · · · = 3H4

8π2 (3.14)

where the IR modes are those characterized by momentum k in the interval
1
−τin

< k < 1
−τ , and where N is the number of e-folds of inflation from τin and

τ .

These quantities are the natural expectation for the energy that gets progressively
stored in the “electromagnetic” field during inflation

ρδE,N = 〈δ
~E (~x)2〉

2 ' 9H4

4π2 N , ρB � ρδE (3.15)

This has been well appreciated in the magnetogenesis applications of this mech-
anism (we remark that the role of the “electric” and “magnetic” energy is
interchanged for 〈I〉 ↔ 1

〈I〉). For example, ref. [38] computed the energy density
accumulated in these super-horizon modes for all possible values of n in the
〈I〉 ∝ an dependence. For |n| > 2, this energy density grows as a4(|n/2|−1) (while
n = ±2 results in ρ ∝ ln a = N , as we have seen), until the backreaction of
this energy is no longer negligible. Ref. [102] studied the regime of strong
backreaction that takes place for n > 2. Ref. [103] studied magnetogenesis for a
more general time dependence of I, imposing as one of the conditions that the
energy density in the classical super-horizon modes remains less than that of the
inflaton.
We obtain a first limit on the total duration of inflation Ntot by imposing that
~EIR has a negligible effect on the background evolution. The strongest backre-
action constraint does not actually come from ρδE � V , but rather from the
evolution equation of the inflaton (loosely speaking, it is “easier” for the vector
field to affect the motion of the inflaton, that is slowly rolling on a flat potential,
than the expansion rate). The corresponding condition is ρδE � 2 εH2M2

p , and
it is satisfied for Ntot � O

(
107) [93].

The variances of the three components of ~EIR are equal to each other, vi and
equal to 1/3 of the value given in (3.14). This, however, does not mean that in a
given realization the super-horizon modes add up to equal amounts in all three
directions. Indeed, the difference between different directions is drawn from the

vi Actually, one can obtain a small difference proportional to the small difference ∆H in the
expansion rates of the different directions. As we well see, ∆H/H needs to be <∼ 10−8, and
therefore this difference is completely negligible for the present discussion.
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statistics 〈
δE2

x − δE2
y

〉
= 0√〈(

δE2
x − δE2

y

)2
〉

= 2
〈
δE2

x

〉
= 4

3 ρδE,N (3.16)

Therefore, ρδE is also the typical amount of the classical anisotropy provided
by the IR modes. This is not surprising since, in any given realization, ~EIR is a
classical vector that points in some given direction.

Only for | ~E(0)| � | ~EIR|, or, equivalently, for ρE(0) � ρδE , the classical electric
field measured by the observer is (deterministically) given by the solution of
the classical equations of motion. If this is not the case, one should conclude
that the solution of the classical equations of motion is unstable under quantum
corrections, and one should expect large corrections to the predictions made if
only | ~E(0)| is considered.vii In our computations below, both the contributions
to ~Eclassical will be accounted for (as we will see, this amounts in considering
loop contributions to the power spectrum and the anisotropic spectrum of the
cosmological perturbations).

3.3 Anisotropic source of the Cosmological Perturbations

As we have discussed in length in the previous Section, for the mechanism we are
studing the cosmological perturbations that we observed experienced a classical
homogeneous vector field (3.13) when they left the horizon. This breaks the
background isotropy, and, strictly speaking, the local patch where these modes
live has a Bianchi-I geometry with residual 2d isotropy

ds2 = −dt2 + a2 (t) dx2 + b2 (t)
[
dy2 + dz2

]
(3.17)

where for the definiteness the x−axis has been oriented along ~Eclassical.
To characterize the anisotropy, we define

∆H
H
≡ 3 (Hy −Hx)
Hx +Hy +Hz

(3.18)

This nearly corresponds to the mechanism of anisotropic inflation of [5], where
the model (3.7) has been employed, and where it is shown that the classical
equations of the model admit an anisotropic solution with ∆H

H ' (c− 1) ε. In [5],
and in the successive works [60, 90, 61, 91] that study the linearized perturbations
of this model, it is assumed that ~Eclassical = ~E(0), while, as we have discussed,
these two quantities are in general different. Therefore, this model leads to
viiBefore eq. (3.13), we set ~Eclassical = ~E(0) at the start of inflation. We note that if this is

not the case the departure of the classical electric field from the solution of the classical
equation of motion will in general be even greater.
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anisotropic inflation even for c = 1. Given this strong correspondence, our study
has several relations with [5], and for example we will show that our results for
the power spectrum coincides with that of [90, 61, 91], once the value of ~E(0)

used there is replaced by the full ~Eclassical (for the bispectrum instead, our result
is completely new, since the perturbations of [5] have been so far studied only at
the linearized level).

In the studies [60, 90, 61, 91], the perturbations are separated according to how
they transform under an SO(2) rotation in the symmetry plane orthogonal to
the vector vev, as originally done in [70, 10]. This simplifies the problem, as
modes that transform differently are not coupled to each other at the linearized
level. Still, the non-FRW background results in a very involved computation,
once the perturbations of all the fields (metric included) are taken into account.
In particular, the anisotropy does not increase the number of physical modes,
but results in couplings between these modes that would be absent in the FRW
case [70, 10]. The main result of [90, 61, 91], which is somewhat surprising
a-priori, is that an anisotropic parameter g∗ = O (0.1) is obtained for a ∆H

H =
O
(
10−8) background anisotropy. Motivated by this result, one can instead use

a different approach, and perform the standard quantization of the cosmological
perturbations on a FRW background, ignoring at zeroth order the couplings
between the different modes. Such couplings can be taken into account as
perturbative mass insertions in the in-in formalism. This is effectively the
procedure adopted in [90, 91] when they solve analytically the linearized theory.
Moreover ref. [91] showed that the dominant operator that determines g∗ in this
perturbative evaluation is the δϕ− δAµ coupling obtained from expanding the
vector kinetic term, and with no contribution from the metric perturbations.
This analytic approximated result is in excellent agreement [91] with the one
obtained from an exact numerical evolution of g∗ (in which the full quadratic
action of all the 2d scalar modes is retained). Moreover, the analytical and
numerical results of [91] agree with those of [90] and [61], respectively.

We use the same computational scheme for the bispectrum computation. Specifi-
cally, we disregard metric perturbations, and we use in the in-in formalism the
0th order eigenmodes obtained from the approximate FRW quantization. The
bispectrum is produced by interactions, and we know that for slow roll FRW
inflation the interactions of the metric perturbations produce an unobservable
bispectrum. We will see instead that the interaction between the vector and
the scalar field, which is encoded in the vector kinetic term, results in a larger,
and potentially observable, signal. Ref. [93] proved this explicitly for the case of
~Eclassical = 0, by solving the second order equation for the curvature perturbation
in spatially flat gauge ζ = −Hϕ′ δϕ (we recall that prime denotes derivative with
respect to conformal time τ , while H = a′

a ). It was shown in [93] that the
contribution from the direct vector-scalar interaction is slow-roll enhanced with
respect to that coming from the interactions of the metric. There is no reason
to expect that the relative strength of the effects should change for a O

(
10−8)
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background anisotropy. viii

Therefore we retain the FRW quantization of the vector field performed in the
previous Section. The remaining perturbations (of the scalar field and of the
metric) are also quantized as in the standard FRW case. We then expand
the vector kinetic term into δA and δϕ. We use the resulting interactions to
determine the dominant anisotropic contribution to the power spectrum of ζ
and the dominant contribution to the bispectrum.

Therefore, all the dominant effects arise from expanding the only interaction
term between the inflaton and the vector field,

∆L = −a
4

4

(
〈δI

2

δϕ
〉δϕ+ 1

2〈
δ2I2

δϕ2 〉δϕ
2 + . . .

)
(〈Fµν〉+ δFµν)2

(3.19)

In spatially flat gauge, δϕ = −ϕ′

H ζ =
√

2εMp ζ. We note that, in principle, ζ
has additional contributions proportional to the perturbations of the vector field.
Ref. [93] showed that these contributions are completely subdominant in the
case of ~Eclassical = 0. We believe that it is very natural to assume that this
continues to be the case also in the current context. Indeed, as we shall see, ρEρϕ
needs to be <∼ O

(
10−8) during inflation or otherwise the power spectrum is too

anisotropic. This ratio further decreases between the end of inflation and the
inflaton decay, when the inflation field performs coherent oscillations, so that
ρϕ ∝ a−3, while the vector kinetic term becomes standard, and ρE ∝ a−4. If
this is the case,

aend infl
areh

' 10−10
(

Treh
109 GeV

)4/3
(

1015 GeV
Hend infl

)2/3

(3.20)

where Treh and areh are, respectively, the temperature of the inflation decay
products and the scale factor at the inflaton decay. We see that it is therefore
natural to disregard ρE and δρE at reheating. In this way, the only relevant
contribution of δA to the final curvature perturbation is the modification of δϕ
induced by the vector-inflaton coupling (which is precisely the effect that we
are computing). We note that this assumption is also made in [90, 61, 91] when
they give the power spectrum of ζ in the model [5].

Using the expression (3.6), we have, for the first two terms in the expansion of

viiiWe note that metric perturbations are also disregarded in the computations [44, 85, 86, 87,
88, 89] of the anisotropic bispectrum through the waterfall mechanism.
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I2, 〈
∂I2

∂ϕ

〉
δϕ = −2n

〈
I2

√
2εMp

〉
δϕ = −2n

〈
I2
〉
ζ

1
2

〈
∂2I2

∂ϕ2

〉
δϕ2 =

〈[
n2

εM2
p

− n

M2
p

(
1− η

2ε

)]
I2
〉
δϕ2

' 2n2
〈
I2
〉
ζ2 (3.21)

where η = M2
p
V ′′

V is a slow roll parameter, and where in the final approximation
we retained only the dominant term in slow roll approximation.

We inserted these expressions in (3.19), taking n = −2 (which corresponds
to a constant “electric” field). We expanded also the vector part as in (3.8),
and we computed the contributions to the power spectrum and the bispectrum
combining the resulting vertices. We verified that the leading diagrams do not
contain interactions coming from the second order term δ2I2

δϕ2 (if this was not
the case, we should worry about the convergence of the I [〈ϕ〉+ δϕ] expansion).
Therefore we have the two dominant ∝ δϕA(0) δA and ∝ δϕδA2 interactions ix

Lint ⊃ a4
[
4E(0)

x δExζ + 2 δ ~E · δ ~E ζ
]

≡ Lint,1 + Lint,2 (3.22)

We note that the vector field enters in the quadratic term Lint,1 only in the
combination ∝ 2〈Ex〉 δEx ⊂ ~E2 − ~B2 ∝ FµνF

µν . We also note that the cubic
term Lint,2 should also have the term −2a4δ ~B · δ ~B ζ; this term however gives a
subdominant contribution to ζ with respect to contribution from the “electric”
components, since the “electric” modes are much greater than the “magnetic”
ones at super-horizon scales - see eq. (3.12) - which is where they provide the
greatest contribution to ζ (as discussed in [93] and below).

We stress that, although in this Section we have often mentioned the anisotropic
inflationary model [5], this interaction lagrangian applies to all models that verify
the two assumptions spelled out at the beginning of the introduction. We actually
see that the precise functional forms of I and V do not enter in (3.22), apart from
the fact that the relation (3.6) has been imposed, with n = −2. Identical results
would be obtained for n = 2, exploiting the “electric” – “magnetic” duality of
the mechanism. We recall that n = ±2 precisely correspond to enforcing the
assumption 2. made at the beginning of the Introduction. For the choice (3.7),
one has n = −2c. However, we stress that (3.22) is valid independently of this
choice.

The interaction lagrangian (3.22) enters in the n−point correlation functions

ixWhen we perform the expansion, linear terms in the perturbations are removed by the
background equations of motion; we commit a mistake by disregarding the effect of the
gauge field vev in the background evolution, but, as we remarked, we work in a regime
where this effect is negligible.
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k1 k2

+
k1 k2

(1) (1)
+

k1 k2

(2) (2)

Figure 3.1: Leading diagrams for 〈ζ2〉, with the vertices labelled as in (3.26).

through the in-in formalism relation

〈
ζ̂~k1

ζ̂~k2
. . . ζ̂~kn (τ)

〉
=
∞∑
N=0

(−i)N
∫ τ

dτ1 . . .

∫ τN−1
dτN〈[[

. . .
[
ζ̂

(0)
~k1

ζ̂
(0)
~k2

. . . ζ̂
(0)
~kn

(τ) , Hint (τ1)
]
, . . .

]
, Hint (τN )

]〉
(3.23)

where in our computational schemes the quantity ζ̂(0)
~k

is the Fourier transform
of the (unperturbed) FRW quantized field

ζ(0) =
∫

d3k

(2π)3/2 ei~k · ~x ζ̂(0)
~k

, ζ̂
(0)
~k
≡ ζ(0)

~k
a~k + ζ

(0) ∗
~k

a†
−~k

(3.24)

At leading order in slow roll, we have

ζ
(0)
k (τ) ' H (1 + i k τ)

2
√
εMp k3/2 e−ikτ (3.25)

The unperturbed fields are also employed in the interaction hamiltonian
Hint (τ) = −

∫
d3xLint (τ, ~x). The two terms in (3.22) give, respectively, rise to

the two terms

Hint,1 (τ) = −4E(0)
x

H4τ4

∫
d3k δEx

(
τ, ~k

)
ζ̂

(0)
−~k

(τ)

Hint,2 (τ) = − 2
H4τ4

∫
d3kd3p

(2π)3/2 δ
~E
(
τ, ~k

)
·δ ~E (τ, ~p) ζ̂(0)

−~k−~p
(τ)

(3.26)

Once inserted into (4.45), the two interaction terms give rise to the leading
contributions to the power spectrum and bispectrum described by the diagrams
shown, respectively, in Figures (4.2) and (3.2). These quantities are computed
in the following Section.
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3.4 Anisotropic power spectrum

The total power spectrum Pζ
(
~k
)
is related to the full two-point correlation

function (4.45) by

〈
ζ̂~k1

ζ̂~k2

〉
= 2π2

δ(3)
(
~k1 + ~k2

)
k3

1
Pζ
(
~k1
)

(3.27)

We denote the contributions of the first and of the last two diagrams in Figure
4.2 as, respectively, 〈

ζ̂~k1
ζ̂~k2

〉
=
〈
ζ̂

(0)
~k1

ζ̂
(0)
~k2

〉
+ δ

〈
ζ̂~k1

ζ̂~k2

〉
(3.28)

and, correspondingly,
Pζ = P(0) + δP (3.29)

These quantities are computed in the following Subsections.

3.4.1 Tree level contributions

The first diagram in Figure 4.2 gives the (unperturbed) FRW power spectrum

P(0) = H2

8π2εM2
p

= H4

4π2ϕ̇2 (3.30)

at super-horizon scales, where the slow roll expression (3.25) has been used.

The second diagram in Figure 4.2 gives the anisotropic contribution

δ〈ζ̂~k1
ζ̂~k2

(τ)〉|1 = −
∫ τ

τmin
dτ1

∫ τ1

τmin
dτ2〈[[

ζ̂
(0)
~k1
ζ̂

(0)
~k2

(τ) ,Hint,1 (τ1)
]
, Hint,1 (τ2)

]〉
(3.31)

We are interested in the power spectrum at super horizon scales, k|τ | � 1. The
time integral (3.31) is dominated by the times for which the modes in Hint (τi)
are also outside the horizon (mathematically, the contribution in the sub-horizon
phase is suppressed by the oscillatory phases in the mode functions). This
condition will be relevant for setting τmin (see below). As remarked before eq.
(3.12), in this regime the vector field is classical, and does not contribute to the
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commutators. The only nontrivial elements in the commutators are therefore[
ζ̂

(0)
~k

(τ) , ζ̂(0)
~k′

(
τ ′
)]

=
(
ζ

(0)
k (τ) ζ(0)∗

k

(
τ ′
)
− c.c.

)
δ(3)

(
~k + ~k′

)
'
−iH2

[
τ3 − τ ′3

]
6εM2

p

δ(3)
(
~k + ~k′

)
(3.32)

where the last result is true in the super-horizon regime. We insert (3.26) into
(3.31) and perform the commutators between the ζ̂(0) fields. The two resulting
δ−functions are employed to perform the two integrals over momenta, leading
to

δ〈ζ̂~k1
ζ̂~k2

(τ)〉|1 ' 4E(0)2
x

9ε2M4
pH

4

2∏
i=1

∫ τ

τmin

dτi
τ4
i

[
τ3 − τ3

i

]
〈
δEx

(
τ1, ~k1

)
δEx

(
τ2, ~k2

)〉
(3.33)

Requiring that the vector field in this expression is in the super-horizon regime
limits each time integral to τi > − 1

ki
. This sets the value of τmin in the two

integrals. Using the expressions (3.12), and the identity∑
λ

ελ,i
(
~k
)
ε∗λ,j

(
~k
)

= δij − k̂i k̂j (3.34)

we obtain

δ〈ζ̂~k1
ζ̂~k2

(τ)〉|1 ' 2E(0)2
x

ε2M4
p

δ(3)
(
~k1 + ~k2

)
k3

1
sin2 θk̂1,Ê(0) ×

×
{∫ τ

− 1
k1

dτ ′

τ ′4

[
τ3 − τ ′3

]}2

(3.35)

Changing variable y′ ≡ τ ′

τ , and recalling that −k1τ � 1, the time integral in the
second line becomes ∫ − 1

k1 τ

1
dy′

y′3 − 1
y′4

' ln 1
−k1 τ

(3.36)

At the end of inflation this quantity becomes Nk1 , namely the number of e-folds
before the end of inflation at which the modes with wavenumber k1 left the
horizon. Using this result,

δP1
(
τend, ~k

)
' 24

ε

E
(0)2
x

V (ϕ) N
2
kP(0) sin2 θk̂,Ê(0) (3.37)

where τend denotes the end of inflation (we assume that I rapidly approaches
1 at the end of inflation, so that the vector field is rapidly diluted away by
the expansion, and the power spectrum of ζ freezes out). For the anisotropic
inflationary model of [5], eq. (3.37) coincides with the analytic result of [90,
91], which, as we remarked, is in excellent agreement with the full numerical
computation of [61, 91]. This confirms the validity of all the approximations
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that we have performed.

3.4.2 Including the Loop contribution

The expression for the loop diagram in Figure 4.2 is analogous to eq. (3.31), with
Hint,2 replacing Hint,1. We perform the commutators, again keeping in mind
that the time integrals are dominated by fields in the super-horizon regime. We
obtain

δ〈ζ̂~k1
ζ̂~k2

(τ)〉|2 '
1

9ε2H4M4
p

∫
d3pd3q

(2π)3

2∏
i=1

∫ τ

τmin

dτi
τ4
i

[
τ3 − τ3

i

]
〈
δEi (τ1, ~p) δEi

(
τ1, ~k1 − ~p

)
δEj (τ2, ~q) δEj

(
τ2, ~k2 − ~q

)〉
(3.38)

Evaluating the full correlator (disregarding the disconnected contraction) gives

(
δ〈ζ̂~k1

ζ̂~k2
(τ)〉|2

)
theory

'
9H4δ(3)

(
~k1 + ~k2

)
2ε2M4

p∫
d3p

(2π)3

1 + cos2 θ
p̂,k̂1−p

p3 |~k1 − ~p|3

2∏
i=1

∫ τ

τmin

dτi
τ4
i

[
τ3 − τ3

i

]
(3.39)

where also in this case we recall that the main contribution comes from the
times when all the fields are in the superhorizon regime (for the same reasons
mentioned after eq. (3.31)). This corresponds to τmin = Max

[
−1
p , −

1
|~k1−~p|

]
.

Performing the time integrals, and keeping only the logarithmically enhanced
term, leads to

(
δ〈ζ̂~k1

ζ̂~k2
(τ)〉|2

)
theory

'
9H4δ(3)

(
~k1 + ~k2

)
2ε2M4

p∫
d3p

(2π)3

1 + cos2 θ
p̂,k̂1−p

p3 |~k1 − ~p|3
ln2
(

Min
[

1
−τ p

,
1

−τ |~k1 − ~p|

])
(3.40)

The final momentum integral naively diverges logarithmically at the two poles
~p → ~0, ~k1. We need however to impose that the the fields δ ~E in (3.38) were
inside the horizon at the start of inflation (or they would not be excited by the
mechanism described in the previous Section). Therefore p, |~k1 − ~p| > − 1

τin
,

where τin denotes the conformal time at the start of inflation. With this cut-off

δP2
(
τend, ~k

)
|theory ' 192P(0)2N2

k (Ntot −Nk) (3.41)
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This result accounts only for the contribution of the two poles and therefore is
accurate only as long as the logarithmic enhancement encoded in the last term
is � 1. For Ntot ' Nk this last factor should be replaced by a O (1) factor. The
result (3.41) was first derived in [93] using the Green function method.

We note that the modes contributing to the logarithmic enhancement are precisely
the modes that left the horizon during the first Ntot −NCMB e-folds of inflation,
and that contribute to the classical field ~EIR. As we discussed after eq. (3.13),
this quantity adds up with the solution ~E(0) of the classical equations of motion
to give ~Eclassical, which is the homogeneous and classical “electric” field observed
by the CMB modes. The quantity (3.41) is the theoretical expectation value
associated with the loop diagram; it is the result that one would obtain if one
could average over several realizations of the mechanism (see also [113]). However
(assuming that this mechanism describes our universe) the CMB modes exit the
horizon after a single realization of the first Ntot − NCMB e-folds of inflation.
They therefore are not affected by the theoretical average 〈| ~EIR| 2〉 (which is
statistically isotropic), but by the value that ~EIR happened to assume in that
single realization.
Therefore, if we want to compute the contribution of δP2 to the power spectrum
that is observed in a single realization, we need to replace the quantum operator
of the IR modes entering in (3.38) with the classical Fourier transform of ~EIR.
If we do so, the expression (3.38) becomes formally identical to (3.33), with
the quantity E(0)2

x ≡ | ~E(0)|2 replaced by | ~EIR|2 and with δEx
(
τi, ~ki

)
(namely,

the component of the fluctuations along the direction of ~E(0)) replaced by the
component of δ ~E

(
τi, ~ki

)
in the direction of | ~EIR|2. As a consequence, the value

of δP2
(
τend, ~k

)
for a single realization coincides with (3.37), with ~E(0) replaced

by ~EIR,

δP2
(
τend, ~k

)
|1 realization '

24
ε

| ~EIR|2

V (ϕ) N
2
kP(0) sin2 θk̂,ÊIR (3.42)

Computing the theoretical expectation for this contribution amounts in replacing
sin2 θk̂,ÊIR E

IR2 with 2
3 σ

2
~EIR,N

. The resulting expression coincides with (3.41).
We note that taking the classical IR value for one propagator is equivalent to
taking the classical IR value for one of the two vector fields in the interaction
hamiltonian Hint,2 given in eq. (3.26). This interaction term then becomes
identical to Hint,1 apart from the fact that ~E(0) is replaced by ~EIR. The two
expressions than become a unique vertex in terms of the vector ~Eclassical =
~E(0) + ~EIR. This is the expected physical result, since the CMB modes “measure”
the sum ~Eclassical and cannot distinguish the two components. Even at the
diagrammatic level, taking the IR limit in the third diagram of Figure 4.2
amounts in shrinking to zero one of the propagators, and one thus recovers the
second diagram with a different external vector in the vertex (clearly, all this
discussion applies also to the bispectrum computation). Therefore, from the last
two diagrams of Figure 4.2 we obtain

δP
(
τend, ~k

)
' 24

ε

E2
classical
V (ϕ) N2

kP(0) sin2 θk̂,Êclassical
(3.43)
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Figure 3.2: Leading diagrams for 〈ζ3〉, with the vertices labelled as in (3.26).

3.5 Anisotropic Bispectrum

The bispectrum of ζ is defined as

Bζ
(
τ, ~k1, ~k2, ~k3

)
δ(3)

(∑
i

~ki

)
=
〈
ζ̂~k1

ζ̂~k2
ζ̂~k3

(τ)
〉

(3.44)

The diagrams shown in Figure 3.2 give the dominant contributions to the
bispectrum. The computation is presented in the following Subsections.

3.5.1 Tree level contributions

We evaluate the contribution of the first diagram B1 as we did for δP1 in the
previous Subsection. We start from〈

ζ̂~k1
ζ̂~k2

ζ̂~k3
(τ)
〉

1
= i

∫
dτ1dτ2dτ3

〈 [[[
ζ̂

(0)
~k1

ζ̂
(0)
~k2

ζ̂
(0)
~k3

(τ) ,

Hint,2 (τ1)
]
, Hint,1 (τ2)

]
, Hint,1 (τ3)

]〉
+ . . . (3.45)

where the dots denote two additional terms obtained by permuting the position
of Hint,2. Performing the commutators between the ζ̂(0) fields results into

〈
ζ̂~k1

ζ̂~k2
ζ̂~k3

(τ)
〉

1
' 4E(0)2

x

27ε3H6M6
p

3∏
i=1

∫ τ

τmin
dτi

τ3 − τ3
i

τ4
i∫

d3p

(2π)3/2

〈
δEx

(
τ1, ~k1

)
δEx

(
τ2, ~k2

)
δ ~E (τ3, ~p) · δ ~E

(
τ3, ~k3 − ~p

)
+ . . .

〉
(3.46)

where dots denote two additional terms obtained by permuting ~k3 with the other
two momenta. As for the diagrams evaluated in the previous Subsection, the
time integrals are dominated by the times for which the mode functions are
classical and do not oscillate. For the term that is explicitly written in (3.46)
this gives the three lower limits τ1 > − 1

k1
, τ2 > − 1

k2
, and τ3 > Max

[
− 1
k1
, − 1

k2

]
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(the limit on τ3 is most easily seen after taking the expectation value). Taking
the expectation value and performing the time integral, we obtain

B1
(
τend, ~ki

)
' 288

√
2π5/2

ε

E
(0)2
x

V (ϕ) P
(0)2

×
{
Nk1 Nk2 Min [Nk1 , Nk2 ]

k3
1 k

3
2

Ck̂1, k̂2,Ê(0) + 2 permutations
}

(3.47)

where we have defined

Ck̂1, k̂2,V̂
≡ 1− cos2 θk̂1, V̂

− cos2 θk̂2, V̂

+ cos θk̂1, V̂
cos θk̂2, V̂

cos θk̂1, k̂2
(3.48)

3.5.2 Including the loop contribution

For the second diagram in Figure 3.2 we obtain〈
ζ̂~k1

ζ̂~k2
ζ̂~k3

(τend)
〉

2
' 1

27ε3H6M6
p〈 3∏

i=1

∫
d3pi

(2π)3/2

∫
dτi

τ3 − τ3
i

τ4
i

δ ~E (τi, ~pi) · δ ~E
(
τi,~ki − ~pi

)〉
(3.49)

where again we restrict the time integrals to when the modes are outside the
horizon. The full correlator gives

〈
ζ̂~k1

ζ̂~k2
ζ̂~k3

(τend)
〉

2
|theory '

27H6δ(3)
(∑

i
~ki
)

ε3M6
p

∫
d3p

(2π)9/2

3∏
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∫
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τ3 − τ3
i

τ4
i

Qki [p̂] Qij
[
p̂− k1

]
Qjk

[
p̂+ k3

]
p3 |~p− ~k1|3 |~p+ ~k3|3

(3.50)

where we have defined Qij [p̂] ≡ δij − p̂i p̂j and where the time integrals are

restricted to τ1 > Max
[
−1
p ,−

1
|~p−~k1|

]
, τ2 > Max

[
− 1
|~p−~k1|

,− 1
|~p+~k3|

]
, and τ3 >

Max
[
−1
p ,−

1
|~p+~k3|

]
.

The final momentum integral has three poles where it naively diverges logarith-
mically. The integral is regulated by the same argument used after (3.40), which
in the present case enforces p, |p− ~k1|, |~p+ ~k3| > − 1

τin
. Performing the integrals

58



gives

B2
(
τend, ~ki

)
|theory ' 1152

√
2π5/2P(0)3

{
Nk1Nk2

×Min [Nk1 (Ntot −Nk1) , Nk2 (Ntot −Nk2)]
1 + cos2 θk̂1k̂2

k3
1k

3
2

+2 permutations
}

(3.51)

As for (3.41), this result is accurate for Ntot � Nki ; if this is not the case, the
factor Ntot − Nki should be replaced by a O (1) factor. The result (3.51) was
first derived in [93] using the Green function method.
As for δP2, the result is dominated by the regime in which one propagator has
an IR mode. Also in this case, the value for a single realization is obtained by
replacing the quantum operator of the IR field entering in (3.49) by a classical
Fourier transform. We recover an expression formally identical to (3.46), with
~E(0) replaced by ~EIR. Therefore, precisely as for the power spectrum, the total
contribution of the two diagrams to the bispectrum is given by

B
(
τend, ~ki

)
' 288

√
2π5/2

ε

| ~Eclassical|2

V (ϕ) P(0)2

×
{
Nk1 Nk2 Min [Nk1 , Nk2 ]

k3
1 k

3
2

Ck̂1, k̂2,Êclassical + 2 permut.
}

(3.52)

where we recall that C is given in (3.48).

3.6 Phenomenology

The total power spectrum is given by

Pζ = P(0)
[
1 + 24

ε

E2
classical
V (ϕ) N2

k

(
1− cos2 θk̂,Êclassical

)]
(3.53)

corresponding to a negative g∗ parameter in (4.64)

g∗ = −24
ε

E2
classical
V (ϕ) N2

k

/[
1 + 24

ε

E2
classical
V (ϕ) N2

k

]

' −24
ε

E2
classical
V (ϕ) N2

k (3.54)

where the approximation is due to the fact that |g∗| is phenomenologically
constrained to be < 1.
Inverting this relation for the CMB modes, and denoting by ρEcl ≡

E2
classical

2 the
energy of the classical “electric” field present when the CMB modes left the

59



horizon
ρEcl

V (ϕ) ' 5.8 · 10−9 ε

0.01
|g∗|CMB

0.1

( 60
NCMB

)2
(3.55)

and therefore we see that even a very subdominant vector field can produce
an appreciably anisotropic power spectrum. Conversely, this indicates that the
classical “electric” field must be extremely subdominant not to conflict with the
phenomenological limits on the isotropy of the power spectrum.

We recall that, in any given realization, ~Eclassical = ~E(0) + ~EIR, where ~E(0) is the
solution of the classical equations of motion of the model, and ~EIR is drawn by
a gaussian statistics of zero mean, and variance (3.14)

〈
~EIR 2

〉
N

= 9H4

2π2 N (3.56)

The variance grows with the number of e-folds of inflation.
It is instructive to evaluate the ratio

RN ≡
ρEcl

ρδE,N
=

∣∣∣ ~E(0) + ~EIR
∣∣∣2〈

~EIR 2
〉
N

(3.57)

at the moment that the CMB fluctuations left the horizon. Combining (3.55)
and (3.56), and using the observed value [33] for the dominant term P(0) ' Pζ '
2.5 · 10−9 , we obtain

RNtot−NCMB '
|g∗|CMB

0.1

( 60
NCMB

)2 37
Ntot −NCMB

(3.58)

The numerator of (3.57) is the observed value, while the denominator the
theoretical variance. Therefore, a value RNtot−NCMB ≥ 1 should be naturally
expected for this ratio. Indeed, RNtot−NCMB � 1 indicates either that the sum
of the IR modes is unnaturally small in that realization (i.e. | ~E(0)|2, | ~EIR|2 �〈
~EIR 2

〉
Ntot−NCMB

), or that it unnaturally cancels against ~E(0). Assuming a
natural RNtot−NCMB >∼ 1 realization, x

|g∗|CMB >∼ Min
[
0.1

(
NCMB

60

)2 Ntot −NCMB
37 , 1

]
(3.59)

In generic slow roll inflationary potentials , the total duration of inflation
exceeds (by much) the minimal NCMB amount. One naturally finds an order one
anisotropy in these models.
Another important conclusion can be drawn from (3.58). As it is exponentially
unlikely to have | ~EIR|2 much greater than its variance, a value RNtot−NCMB � 1
implies that | ~E(0)| is much greater than the sum of the IR modes. Only in this
case the solution of the classical equations of motion provides an accurate value

xStrictly speaking, eq. (3.55), and those derived from it, are only valid for |g∗| < 1. A value
of Ntot −NCMB that results in a |g∗| > 1 in (3.58) should be associated to a |g∗| = O (1) in
the natural RNtot−NCMB >∼ 1 regime.
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for the classical vector field that affects the observables curvature perturbations
(as it is typically assumed in many works). A value RNtot−NCMB ' 1 indicates
instead that the contribution of the IR modes is no longer negligible, and that
the solution of the classical equations of motion is unstable under quantum
fluctuations (more appropriately, under the sum of the quantum fluctuations
that have become classical). We see from (3.58) that RNtot−NCMB � 1 can be
obtained only for Ntot −NCMB � 37.
Therefore, this mechanism can result in a |g∗|CMB ' 0.1 anisotropy for either a
tuned short duration of zinflation or an unnaturally small ~Eclassical. Assuming
that this is the case, we can obtain a firm prediction from the anisotropy, the
shape, and the magnitude of the non-gaussianity in the model. The bispectrum
from this mechanism is given in eq. (3.52). To quantify whether this bispectrum
is of observable magnitude, we notice that it is enhanced in the squeezed limit
precisely as the local template. We therefore insert (3.52) into the relation

Bζ
(
τend, ~ki

)
≡ 3

10 (2π)5/2 fNLPζ (k)2
∑
i k

3∏
i k

3
i

(3.60)

which, for the local bispectrum template, results in a constant f local
NL with the

correct normalization (the non conventional factor of “2π-dependence” is due to
our choice (3.24) for the Fourier transform). In the squeezed limit, we obtain

fNL '
480
ε

P(0)2

P 2
ζ

ρEcl

V (ϕ) Nk1N
2
k2 Ck̂1, k̂2,V̂

, k1 � k2 ' k3 (3.61)

where C is given in (3.48). Recalling that P(0) dominates the power spectrum,
using (3.55), and simply denoting Nk1 ' Nk2 ≡ NCMB (assuming that the
momenta are not too hierarchical; this is certainly the case in the CMB analysis),
we arrive to the final estimate

fNL ' 26 |g∗|CMB
0.1

NCMB
60

Ck̂1, k̂2,V̂

4/9 , k1 � k2 ' k3 (3.62)

where the value 4/9 has been inserted in the last factor so that this factor averages
to one if we average over all directions of ~k1 and ~k2 ' ~k3. This result holds
independently of the type of inflationary potential considered. In the estimate
(3.62) we have averaged over all directions, with the assumption that this is what
is done when extracting the value of fNL from the full-sky data. The estimate
(3.62) indicates that a |g∗| in the 0.01− 0.1 range from this mechanism can likely
be associated to a detectable bispectrum. A detection of a non- vanishing fNL of
the local shape will motivate a more detailed analysis, where the full shape and
the anisotropy of (3.52) are retained.
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3.7 Applications

In the following subsections we discuss how our findings apply to three well
studied models in which vector fields are employed to either break statistical
isotropy or to generate primordial magnetic fields.

3.7.1 Anisotropic inflation

Ref. [5] studied anisotropic inflation from the model (3.7). It was shown that
the classical equation of the system admit an attractor solution characterized by
the geometry (4.29) and by

E(0)
x '

√
3 ε (c− 1)HMp (3.63)

This values corresponds to [5]

∆H
H
' 2 ρE(0)

V (ϕ) '
(c− 1) ε

c2 (3.64)

The power spectrum in this model was computed in [90, 61, 91] that however
disregarded the contribution of ~EIR. Our computation reproduces their result
(which confirms the validity of our computational scheme and the accuracy of
our approximations) in this limit. Moreover, we have computed for the first time
the bispectrum of this model, using the same computational scheme used to
compute the power spectrum. The contribution of ~E(0) to the anisotropy of the
power spectrum forces c− 1 <∼ 10−6 [90, 61, 91]. The implicit assumption in this
result is that choosing a c− 1→ 0 in the lagrangian would result in a g∗ → 0
parameter. However, taking also ~EIR into consideration, leads to the general
conclusions on the natural amount of g∗ and on the instability of (3.63) that we
have presented in the previous section.

3.7.2 Waterfall mechanism

Ref. [44] embedded the mechanism (3.2) in hybrid inflation, through the la-
grangian

L = −I
2 (ϕ)F 2

4 − 1
2 (∂ϕ)2 − 1

2 (∂χ)2 − V

V = λ

4
(
χ2 − v2

)2
+ 1

2g
2ϕ2χ2 + 1

2m
2ϕ2 + 1

2h
2AµAµχ

2

(3.65)
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The additional coupling of the vector Aµ to the waterfall field χ provides a
contribution to ζ through the mechanism of modulated perturbations [114, 115,
116]. Specifically, the value of the vector field contributes to determine the end
of inflation, that happens when

m2
χ = −λv2 + g2ϕ2 + h2AµA

µ = 0 (3.66)

so that perturbations δAµ get converted into ζ at the end of inflation. This
results in the additional contributions [44]

∆g∗ ∼ −
h4|A|2

g4ϕ2
e

, ∆fNL ∼ ηe

(
h2

g2 ∆g∗ −∆g2
∗

)
(3.67)

where ϕe and ηe are, respectively, the value of the inflaton and of the slow roll
parameter η at the end of inflation, and where we have normalized the coupling
in (3.2) to 〈I〉 ≡ 1 at the end of inflation.xi

These additional contributions to the anisotropy obviously vanish in the limit
in which the vector field is not coupled to the waterfall field (h → 0). On
the contrary, (4.65) and (3.62) are general results unavoidably present when
the function I in (3.65) is arranged to provide a constant vector field (which
is also necessary to have non-negligible values in (3.67)). These unavoidable
contributions have not been included in the many works that studied [44]. Given
that (4.65) nearly saturates the phenomenological limit, the contribution (3.67)
to g∗ is at most comparable to (4.65). On the contrary, the additional coupling
h present in (3.65) can allow for a greater non-gaussianity than (3.62). Indeed,
in the minimal model (3.2), the parameter fNL is uniquely related to g∗ through
(3.62), and this strict relation increases the predictivity of the mechanism. For
the model (3.65), non-gaussianity can be enhanced for h� g. The shape of the
contribution to the bispectrum resulting from the waterfall coupling [44] is in
general different from the shape of (3.52); the two shapes coincide for h� g.

3.7.3 Magnetogenesis

Using the “electric” ↔ “magnetic” duality that we have mentioned [84], the
results for the perturbations that we have obtained are also valid in the case of
〈I〉 ∝ a2, which results in a scale invariant “magnetic” field [83]. In fact, the two
results (3.41) and (3.51) have been first obtained in [93] for 〈I〉 ∝ a2. Although
the mechanism (3.2) was first introduced with this motivation, the magnetogene-
sis application suffers a strong coupling problem [38]. Indeed, with (3.2) the fine
structure constant scales as α ∝ 〈I〉−2. The choice 〈I〉 ∝ a2 corresponds to a fast
decreasing α ∝ a−4 during inflation. Assuming that α reaches the present value
xiRef. [89] studied the additional contributions to ζ from the waterfall coupling in the case

in which the vev of the vector field varies with time. For a discussion of the effects from a
time varying inflaton coupling in modulated reheating see [117].
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at the end of inflation implies α� 1 during inflation, and a quantum field theory
of electromagnetism that is (at the very least) out of computational control [38].
Alternatively, for α <∼ 1 at the start of inflation, one obtains α ∼ e−4Ntot at the
end of inflation, and requiring that α grows back to its present value before
big-bang nucleosynthesis does not appear feasible [93]. xii

Clearly, the strong coupling problem is a problem of the magnetogenesis applica-
tion and not of the mechanism (3.2), as one can always assume that a generic
U(1) field is sufficiently weakly coupled to other fields. For a growing 〈I〉 the
coupling decreases during inflation, and one can assume that the vector field has
couplings <∼ 1 at the beginning of inflation. For a decreasing 〈I〉 the coupling
grows during inflation, and one can require a coupling <∼ 1 when inflation ends.
In principle one may hope that a field with such properties is produced during
inflation by this mechanism, and it is then (partially) converted to the magnetic
one through some coupling. Some attempts so far in this direction have been
unsuccessful [93], but a general study remains to be done. If this, or some other
idea [95, 96, 39, 97, 51, 98, 99, 100], can circumvent the strong coupling problem,
our findings provide a signature that may be correlated with the magnetic field.

3.8 Conclusions

There are two questions associated to the attempt of reconciling a non vanishing
anisotropy g∗ with a model of inflation. The first one is “what are the other
signatures that would accompany the measured value of g∗ ?"; the second one
is “what is the natural value of g∗ in the model? ”. A first difficulty that is
encountered in answering these questions is that anisotropic hairs are typically
erased by inflation [11, 71], so that one has to design specific models that
preserve the anisotropy. Vector fields appear as the simplest possibility, as their
vev breaks isotropy. Several mechanisms have been designed to prevent the
rapidly erosion of the vector vev by the inflationary expansion. As shown in
[20, 22, 43], however, many of them (for instance, the use of a potential as in
[17], of a lagrange multiplier as in [8], or of a coupling to the curvature as in [18]
and as in analogous models of vector curvaton) have ghosts. The use of (3.2) for
preserving the vector vev [5, 44] has resulted in a rather exceptional mechanism
where the above two questions can be formulated.
With the mechanism (3.2), the answer to the first question appears to be very
positive. The anisotropy in the power spectrum is correlated with a characteristic
and very likely detectable bispectrum. The bispectrum, whose full shape is given
in (3.52), is enhanced as the local one in the squeezed limit, where it has an

xiiA scale invariant magnetic field is also obtained at the start of inflation for 〈I〉 ∝ a−3.
However, too much energy gets stored in the electric field in this case [38], and the system
enters in a strong backreaction regime in which a too small magnetic field is produced [102].
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effective local parameter (see (3.62) for more details)

fNL ' 26 |g∗|CMB
0.1 (3.68)

A larger bispectrum can be obtained if the vector field has additional interactions
with the inflationary sector, as in the waterfall mechanism of [44]. However
these additional interactions are not needed, and the result (6.1) is the direct
contribution that comes from the interaction (3.2). Therefore, this is the result
in the most minimal and predictive implementation of (3.2). We see that an
anisotropy in the power spectrum at the 1% − 10% level, could be associated
with a detectable bispectrum.

For the second question, one needs to take into account that, for a mechanism
that results in a scale invariant field (as in the implementations [5, 44]), a
classical background value of this field is unavoidably generated by the sum
of the modes that have left the horizon during inflation [101]. The crucial
point for our discussion is that a background vector field breaks isotropy. It
is unnatural to require that the anisotropy experienced by the CMB modes
when they leave the horizon is smaller than the theoretical expectation value〈
δ ~E2

〉
∼ H4 (Ntot −NCMB), where H is the Hubble rate during inflation, and

Ntot − NCMB is the number of e-folds of inflation that took place before the
CMB modes are generated, and during which the classical background of long-
wavelength modes experienced by the CMB modes has accumulated. Taking
this into account, we find that the natural value for the anisotropy is (see (4.65)
for more details)

|g∗|CMB >∼ Min
[
0.1 Ntot −NCMB

37 , 1
]

(3.69)

which can easily overcome the phenomenological bounds (particularly with the
improvement expected from Planck [67, 68]). We note that this saturation takes
place for a very subdominant vector field, with very negligible backreaction on
the background inflaton evolution. This ensures that the result (3.69) is robust.
However, as already obtained in [90, 61, 91], even a very subdominant vector
field can result in a substantial anisotropy parameter.
Remarkably, these considerations apply also to the magnetogenesis applications
of (3.2). The role of the background magnetic field has been so far disregarded in
the study of the cosmological perturbations obtained in that context. However,
the result (3.69) applies also to this case. We stress that the magnetogenesis
application suffers from a serious strong coupling problem [38]. If this problem
can be solved, a magnetic field through this mechanism would be naturally
correlated with an observable anisotropy of the perturbations.
Analogously, an anisotropic signal should also be expected in models where a triad
of vectors is arranged to produce isotropic expansion or isotropic perturbations
[118], since the long-wavelength background values of the different vectors fields
will in general be different.
Although our study has been limited to the mechanism (3.2), one may expect
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that an anisotropic background field and a large anisotropy of the perturbations
may be a general outcome of all models that sustain higher than 0 spin fields
during inflation. For instance, it would be interesting to study the natural level
of anisotropy to be expected in the mechanism of [78] (for which statistical
isotropy has been obtained for very specific choices of the kinetic and the
mass function [82]) or in the case of inflation or magnetic fields from p-forms
[119, 120, 121, 122, 123, 124, 125, 126].
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4
Anisotropy in Solid Inflation
In this chapter, based on [127], we have computed the curvature perturbations on
an anisotropic solution of the “solid inflation” model defined as a system of three
derivatively coupled scalar fields obeying certain symmetries that differ drastically
from that of standard inflationary models: time translations are unbroken. We
show that FRW is not an attractor of this model and anisotropic features can be
generated with standard gravity and scalar fields.
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4.1 Introduction

The CMB data strongly support the inflationary framework and allow to rule out
several specific inflationary models [128]. Still, a large number of models remains
compatible with the data. It proves useful to classify and study them in terms
of an effective field theory description of inflation [129, 130], where the behavior
of the perturbations and the possible signatures can be understood in terms of
symmetries and symmetry breaking. For instance, several models of inflation
are characterized by a shift symmetry φ→ φ+ C (where φ is the inflaton, and
C a constant), which protects the required flatness of the inflaton potential
against radiative corrections (for a recent review see [131]). In the limit of exact
shift symmetry the potential coincides with a cosmological constant, and the
spacetime geometry is the de Sitter one. A small and controlled breaking of the
symmetry ensures a slow roll inflaton evolution, which breaks time translational
invariance. This set-up has one scalar perturbation, which can be identified as
the Goldstone boson of this broken symmetry.
While the requirement that inflation ends demands that time translation in-
variance is broken, and, more in general, cosmology studies time-evolving back-
grounds, the vast majority of the models assumes invariance under spatial
translations, in agreement with the observed homogeneity and isotropy of the
universe at large scales. In fact, one of the many features of inflation is that it
can dynamically lead to the observed homogeneity and isotropy [34], which are
otherwise hard to achieve starting from more general initial conditions [132].

The simplest way to enforce isotropy and homogeneity is to assume that only
spin zero fields are dynamically relevant during inflation, and that their vacuum
expectation value (vev) is independent of the spatial coordinates. These as-
sumptions characterize the vast majority of the models of inflation. However, in
principle, one could imagine that different sources are present, which individually
break the invariance under spatial transformations, but that their combined effect
- due to some underlying symmetry - preserves the background isotropy and
homogeneity. Due to this different symmetry breaking pattern, such a possibility
could result in specific phenomenological signatures that are not obtained in the
more conventional inflationary models.

Isotropy with spin one sources can be achieved through (i) a triplet of orthogonal
vectors with equal vev [?], (ii) a large number N � 1 of randomly oriented
vectors [18] - resulting in a O

(
1/
√
N
)
� 1 anisotropy - or massive vectors

oscillating about the minimum of the potential [?] - resulting in an effective
isotropic equation of state once averaged over the oscillations.

Homogeneity and isotropy with spin zero fields with a spatially-dependent vev
can be achieved with a triplet of scalars with [133, 7]

〈φi〉 = xi , (4.1)
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where i = 1, 2, 3. In particular, ref. [7] dubbed this model Solid Inflation. It is
assumed in [7] that the medium driving inflation can be coarse-grained at the
level of fundamental cells, and that only the position of these cells is relevant
for inflationary cosmology. The three scalars φi (t, ~x) can be viewed as the three
coordinates that provide the position at the time t of the cell element that at the
time t = 0 was at position ~x. Therefore, the vevs (4.1) characterize a medium at
rest in comoving coordinates. The properties of the solid are defined through a
lagrangian, which is a functional of φi. As we describe below, (i) only derivatives
of the scalars enter in the lagrangian, so that the vev (4.1) can be compatible
with homogeneity of the background solution, and (ii) only SO(3) invariant
combination of the derivatives enter in the lagrangian, so that the vev (4.1)
can be compatible with isotropy. As discussed in [7], this description provides
a complementary formulation of [134], which also suggested a coarse-grained
description of the inflationary medium dubbed Elastic Inflation.
By construction, the background evolution of solid inflation is isotropic, and
the power spectrum of the scalar perturbations is statistically isotropic [134, 7].
However, the bispectrum presents a characteristic shape not encountered in
previous models of scalar field inflation [7]. Specifically, it is enhanced in the
squeezed limit as the local template, but it manifests a nontrivial dependence
on the angle between the small and large momentum in the correlator. It turns
useful to adopt the parametrization [135]

Bζ (k1, k2, k3) =
∑
L

cLPL
(
k̂1 · k̂2

)
Pζ (k1)Pζ (k2) + 2 perm. , (4.2)

where Pζ and Bζ are, respectively, the power spectrum and bispectrum of the
curvature perturbation in the uniform density gauge and PL are the Legendre
polynomials. The local template is characterized by ci = 6

5fNLδi0. More in
general, typical models of scalar field inflation are characterized by ci = 0, for
i 6= 0 in the squeezed limit. The reason for this is the following [136, 137]: in
the squeezed limit k3 � k1,2, the long wavelength mode modulates the two short
wavelength modes when they leave the horizon. From the point of view of the
short wavelength modes, the long wavelength mode can be accurately described
by a mean and a gradient. The gradient defines a local basis for a quadrupolar
dependence of the small-scale power, thus in principle contributing to the c2
coefficient above. However, the gradient vanishes in the long wavelength limit
k3 → 0.
On the contrary, the nonvanishing scalar vevs (4.1) provide a directionality
modulation of the bispectrum that does not vanish in the squeezed limit, and the
bispectrum of solid inflation is dominated by the c2 term in the squeezed limit [7].
Quite interestingly, a nontrivial angular dependence in that limit had previously
been obtained in [93] and further studied in [62, 138, 135, 139, 12, 140] i in

iRef. [141] rederived the results of [62], claiming that their rederivation uses only the classical
mode functions, and it is therefore “simpler and more complete” than the computation of [62].
The rederivation is not more complete, since, by admission, it disregards the contribution
from the modes in the quantum regime. We argue that it is also not simpler, since also the
results of [93, 62] are due to the classical super-horizon contribution, as repeatedly stressed
in [62].
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the model f (φ)F 2, where φ is the inflaton and F 2 the square of a vector field
strength Fµν , in the case in which f (φ) is chosen so to produce a scale invariant
spectrum for the vector field. In this case, the nontrivial angular dependence
of the bispectrum is due to the fact that a homogeneous vector breaks isotropy
locally, and so the anisotropic modulation survives also in the k3 → 0 limit. ii

This has further nontrivial consequences, as we discuss in the Conclusions. For
the f (φ)F 2 model, c2 = c0/2, while all other ci coefficients vanish.
Motivated by the above models, the Planck collaboration [1] has constrained
the first coefficients of the series (4.2), as c0 = 3.24± 6.96, c1 = 11.0± 113, and
c2 = 3.8± 27.8 (all at 68% CL), with error bars in agreement with the forecasts
of [135].
The f (φ)F 2 mechanism is constructed to generate and sustain a nontrivial
vector field in cosmology (see [142] for a recent review and for a more extended
list of relevant works). A vector field with standard L = −1

4F
2 lagrangian is

conformally coupled to a FRW background, and so its fluctuations are not excited
by the expansion of the universe. Moreover, if a vector vev is present as an initial
condition, it is rapidly diluted away by the expansion of the universe. Therefore,
any signature associated to the vector - including the angular dependence in
(4.2) - would be negligible in this case. Several models have been proposed for
which a classical vector vev is not diluted by the expansion. Several of them
break the gauge invariance associated with the vector field. Such models are
characterized by (i) a suitable vector potential V

(
A2) [17], (ii) a specific coupling

to the scalar curvature L ⊃ 1
12RA

2 [42, 18, 106], or (iii) a lagrange multiplier
λ that enforces a fixed norm for the vector, L ⊃ λ

(
A2 − v2)2 [8]. Due to the

broken gauge invariance, the vector field has also a longitudinal mode. This
mode turns out to be a ghost [?] in all the above models. On the contrary, the
f (φ)F 2 mechanism preserves gauge invariance, and it is therefore stable [60].
A suitable choice of f (φ) can result in frozen and scale invariant super-horizon
perturbations, and in a constant vev, for the magnetic or electric component of
the vector field. The first possibility has been suggested as a model for inflation-
ary magnetogenesis [83, 94, 84] (although this application is highly nontrivial
to realize [38, 93, 103, 143]), while the second one has been used to obtain a
prolonged stage of anisotropic inflationary expansion [5]. iii

The f (φ)F 2 mechanism and solid inflation constitute the two only examples
known so far of a primordial bispectrum with a nontrivial angular dependence
in the squeezed limit. It is natural to ask whether the two models have other
common aspects, and in fact the present investigation originated by an argument
that convinced us that the analogy between the models already starts at the
background level: a remarkable property of the medium of solid inflation is that
it is very weakly affected by the huge inflationary expansion. This property,
which is completely at odds with that of the solids that we ordinarily deal

iiNotice that in the f (φ)F 2 model with a non-vanishing vev of the vector field, a bispectrum
that breaks statistical isotropy is generated, and its angle-average does assume the form (4.2).
A statistically isotropic bispectrum is obtained from a triplet of orthogonal vectors of equal
magnitude.

iiiSee [?] for models of anisotropic inflation that employ the idea of [5].
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with, is encoded by an extremely weak dependence of the energy of the solid
on its volume. Cosmological perturbations in solid inflation are supported by
deformation of this solid - the “phonons”. iv Stability of these perturbations,
and the existence of a weak coupling regime, require that the medium is not
only very weakly sensitive to the overall volume expansion, but to all spatial
deformations [7]. This naturally led us to conjecture that the solid should be
extremely inefficient to respond to anisotropic background deformations, and
that, consequently, it should also admit prolonged anisotropic solutions. The
computations of the present work show that this is indeed the case.
Specifically, we obtain that the anisotropy is erased on a timescale ∆t = O

(
1
εH

)
,

whereH is the Hubble rate, and ε the slow roll parameter ε ≡ −Ḣ/H2 (dot denot-
ing a time derivative). This corresponds to the isotropization rate ∆t−1 = O (εH).
This rate is suppressed with respect to the isotropization rate ∆t−1 = O (H)
that is typically encountered in inflationary models [11, 71]. Ref. [11] showed
that a O (H) isotropization rate is the norm for practically all homogeneous
and anisotropic backgrounds (with the possible exception of a Bianchi type-IX
geometry) in the presence of a cosmological constant and a fluid that satisfies the
dominant and strong energy conditions. This result is often denoted in the liter-
ature as the “cosmological no-hair conjecture” (or “theorem”), as it implies that
no information on the anisotropy survives, analogously to what would happen
for a black-hole solution. The above cited vector field models are attempts to
evade the results of [11], and, as we discussed, only those based on the f (φ)F 2

represent viable solutions. Besides using vector fields, other works that have
attempted to evade the result of [11] involve either higher order curvature terms
[?] or higher forms [?, 147, 148]. Ref. [148] supports the higher form through the
same mechanism as [5], and it is therefore stable. To our knowledge, a full study
of the perturbations for the proposals [?, 147] remains to be done. The one we
present here is the first counter example of [11] with standard gravity and only
scalar fields. This counter example has no pathologies: as we show below, the
slow isotropization in solid inflation precisely originates by the demand that the
phonons have a well behaved propagation in this unconventional medium.

The work is organized as follows. In Section 4.2 we present the model of
solid / elastic inflation, and its FRW solution, as formulated in [7]. In Section
4.3 we review the curvature perturbation on the FRW solution, again mostly
summarizing the original study of [7]. In Section 4.4 we study the simplest
anisotropic solution in this model and we discuss why the result of [11] is
evaded. In Section 4.5 we study the scalar curvature perturbation on this
anisotropic solution and we obtain the corresponding phenomenological limit
on the anisotropy. In the concluding Section 4.6 we further discuss the analogy
between solid inflation and the f (φ)F 2 model, and we review some interesting
open questions.

ivSee [144] for an early lagrangian formulation of the cosmological medium as a fluid, and for
the description of its perturbations in terms of phonons. A different lagrangian formulation
of a fluid driving inflation has also been recently studied in [145, 146].
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4.2 The model and the FRW background solution

The action of solid inflation is [7]

S =
∫
d4x
√
−g

{
M2
p

2 R+ F [X,Y, Z]
}
, (4.3)

where R is the scalar curvature, Mp the (reduced) Planck mass, and F a
function that characterizes the solid, as we now discuss. The solid is divided in
several infinitesimal cells. The three scalars φi (t, ~x) can be viewed as the three
coordinates that provide the position at the time t of the cell element that at the
time t = 0 was at position ~x. Therefore, the vevs (4.1) characterize a medium at
rest in comoving coordinates. To reconcile a homogeneous and isotropic solution
with background fields that are x−dependent, ref. [7] imposes that the function
F is invariant under translations φi → φi +Ci, and SO(3) rotations, φi → Oijφ

j ,
with Ci, Oij constant. Specifically, it is assumed that F is a function of SO(3)
invariants of

Bij ≡ gµν∂µφi∂νφj . (4.4)

Only three independent such invariants, exist, that in [7] are chosen as v

X ≡ TrB = Bii , Y ≡ Tr
(
B2)

(TrB)2 , Z ≡ Tr
(
B3)

(TrB)3 . (4.5)

As we shall see, the SO(3) invariance in the “internal
{
φi
}
space”, together with

the “diagonal” vevs (4.1), allows for an isotropic background solution for the
model. However, it is important to stress that this is not the only admissible
solution. In fact, in Section 4.4 we will see that the vev (4.1) is compatible with
anisotropic solutions, for which the anisotropy is encoded in different scale factors
for the different spatial directions (a Bianchi-I background). In the reminder of
this Section we concentrate on the isotropic background solution

ds2 = −dt2 + a2 (t) dxidxi , (4.6)

and we also state the conditions for the validity of the theory obtained in [7]
(which apply to generic backgrounds).

The energy momentum tensor obtained from (4.3) is

Tµν = gµνF − 2∂µφi∂νφj
∂F

∂Bij
, (4.7)

vThe determinant of Bji can be written as the combination det B = X3

6 (1− 3Y + 2Z). Since
the energy of a perfect fluid is only sensitive to volume deformations, we can regard the
special case in which F only depends on this combination as the field theoretical description
of a fluid. Such a case was also discussed in [7] and studied in [149].

72



where,

∂F

∂Bij
=

(
FX −

2Y
X
FY − 3Z

X
FZ

)
δij

+2FY
X2 B

ij + 3FZ
X3 B

ikBkj . (4.8)

On the background (4.6), the three above invariants have the vevs 〈X〉 =
3
a2 , 〈Y 〉 = 1

3 , 〈Z〉 = 1
9 , and we obtain 〈Tµν 〉 = diag (−ρ, p, p, p), with

ρ = −F , p = F − 2
a2 FX (4.9)

where the subscript denotes partial derivative. The background Einstein equa-
tions are the standard ones in terms of the above energy density and pressure

3H2 = ρ

M2
p

, −2Ḣ − 3H2 = p

M2
p

(4.10)

In addition, one has the equations obtained by extremizing the action with
respect to the scalar fields:

∂µ

[
√
−g ∂F

∂∂µφi

]
= ∂µ

[
√
−g ∂F

∂Bab

∂Bab

∂∂µφi

]
= 0 . (4.11)

For the above background configuration (4.1),

∂Bab

∂∂µφi

∣∣∣
φi=xi

= δai g
µb + δbi g

µa . (4.12)

As the indices a and b only range from 1 to 3, as long as the metric is diagonal
the expression (4.11) automatically vanishes when µ = 0. Moreover, as long
as the metric is ~x-independent, the expression in square parenthesis is also
~x-independent. Therefore, the equations (4.11) are automatically (that is, for
any functional form of F [X,Y, Z]) satisfied by (4.1), both on a FRW and on a
Bianchi-I background.

Following [7], we define the slow roll parameters,

ε ≡ −Ḣ
H2 = X FX

F
, η ≡ ε̇

εH
= 2

(
ε− XFXX + FX

FX

)
, (4.13)

and we impose that ε, |η| � 1, as required for successful inflation. From eq.
(4.9), we see that F < 0. We then impose that Ḣ < 0 during inflation, which
forces FX < 0.

Let us now discuss the validity of the effective field theory that describes the
solid [7]. To do this, it is sufficient to study the perturbations of a solid with
|XFX | � |F | on a Minkowski background (as always, this study reproduces the
study of cosmological perturbations in the sub-horizon regime [7]). We decompose
an arbitrary deformation of the solid (namely, a “phonon”), φi = xi + πi (x) into
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longitudinal plus transverse one, ~π = ~πL + ~πT , with, respectively, the properties
~∇× ~πL = 0 and ~∇ ·~πT . The sound speed of such perturbations is vi [7]

c2
T = 1 + 2

3
FY + FZ
FXX

, c2
L '

4
3c

2
T − 1 . (4.14)

It is then immediate to verify that the requirements of subluminal propagation
of the perturbations (c2

L,T < 1) and of the absence of tachyonic modes (c2
L,T > 0)

are obtained for [7]
0 < FY + FZ <

3
8ε |F | . (4.15)

As the “phonons” enter derivatively in F , their nonlinear interactions necessarily
become strong at energies E greater than some scale Λ. We need to require that
Λ � H, so that there exist a finite window of sub-horizon scales in which the
theory (4.3) is weakly coupled. A detailed study performed in [7] shows that
this is the case for εc3

L �
(
H
Mp

)2/3
. This condition can be satisfied at sufficiently

small H. This condition, together with (4.15) ensures that the field theoretical
description (4.3) of the solid is under perturbative control.

To conclude this Section, we note that FX is the only derivative of the function
F that enters in the expression for the pressure, since, by construction, Y and
Z are insensitive to the overall spatial volume [7]. Therefore, FX is the only
quantity that characterizes the sensitivity of the solid to the volume expansion.
We need to impose that ε� 1, or, equivalently, that this sensitivity is extremely
small. This is not a surprising condition: the source of inflation needs to have an
equation of state sufficiently close to that of a cosmological constant, which is,
by definition, insensitive to the volume expansion. This property is in complete
contrast with that of solids that we ordinary deal with, but nonetheless it is
logically conceivable, and it has a perfectly valid field theoretical description
[7]. From the study of the perturbations of such an unusual medium, we learn
that also the combination FY + FZ needs to be small. As we shall see in Section
4.4, this combination, obtained from the sound speed of the phonons, controls
the response of the solid to anisotropic deformations. We therefore learn that
the solid not only needs to be extremely insensitive to the volume expansion,
but also to an anisotropy of the geometry. This property is the basis for the
prolonged anisotropic inflationary solution that we obtain in Section 4.4.

4.3 Scalar curvature perturbations on the FRW solution

In this section we summarize the linearized study [7] of the perturbations on
the FRW background of solid inflation discussed in the previous Section. We
viThe approximation made in the second equation in (4.14) is |XFXX + FX | � |FX |, as it is

required to have |η| � 1 in eq. (4.13). The full expression for the longitudinal sound speed
that we use in the following computations is c2

L = 4
3c

2
T − 1 + 2

3ε−
1
3η.
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decompose the fields in background plus perturbations

φi = xi + πi (t, ~x) , πi (t, ~x) = ∂i√
−∂2

πL + πiT ,

g00 = −1− 2Φ (t, ~x) ,

g0i = Bi (t, ~x) , Bi (t, ~x) = ∂i√
−∂2

BL +Bi
T ,

gij = a2 (t) (δij + hij (t, ~x)) , (4.16)

where πiT and Bi
T are transverse, and hij is transverse and traceless. The per-

turbations of the metric are classified according to how they transform under
spatial rotations. The perturbations Φ and BL transform as two scalar modes,
the perturbations Bi

T form a vector multiplet (of two degrees of freedom, given
the transversality condition), and the perturbations hij form a tensor multiplet
(again of two degrees of freedom). Modes with different transformation properties
are decoupled from one another at the linearized level. We note that we have set
to zero two scalar modes and one vector mode in δgij , leading to the so called
spatially flat gauge. This can always be done using infinitesimal coordinate
transformations, and actually this fixes completely this gauge freedom (equiva-
lently, one may choose to use gauge invariant combinations of the perturbations
[150, 151]).

In addition, also the perturbations of the scalar field are separated into a
“longitudinal” and a “transverse” part. The πiT multiplet is not a vector multiplet
under spatial rotations, given that all fields φi are scalar fields, and the index
i is in this case just a label for the three fields. However, due to the fact that
at the background level 〈φi〉 = xi, one can verify that, at the linearized level,
πL only couples to the scalar modes of the metric, while πiT only couples to
the vector multiplet of the metric. Therefore, with an abuse of notation, in the
following we refer to πL as a scalar perturbation, and to πiT as a vector multiplet.
Therefore, after fixing the freedom of infinitesimal coordinate transformation, the
system of perturbations has a scalar sector of 3 degrees of freedom (πL,Φ, BL),
a vector sector of 4 degrees of freedom (πiT , Bi

T ) and a tensor sector of 2 degrees
of freedom. However, not all these degrees of freedom represent physically
propagating independent degrees of freedom. The modes Φ, BL, Bi

T , that form
the δg0µ elements enter in the quadratic action of the perturbations without time
derivatives, and are not independent degrees of freedom [152]. In Fourier space,
the equations of motion for these non-dynamical fields are algebraic in them, and
can be solved to give the non-dynamical fields as a function of the dynamical
fields, without introducing any additional degree of freedom. Therefore the
system of physically propagating perturbations of the model consists of one
scalar degree of freedom, πL, two “vector” degrees of freedom, πiT , and two tensor
degrees of freedom, hij (the latter are the two polarizations of the gravitational
waves). For our purposes we are interested only in the scalar sector at the
linearized level and we refer the interested reader to [7] for a detailed analysis
of the vector and tensor modes at the linearized level, and for the calculation
of the three point function of the scalar mode at the non-linear level in a FRW
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background.

The scalar / vector decomposition appearing in (4.16) is better understood in
Fourier space. We Fourier transform each perturbation δ (t, ~x) as

δ (t, ~x) =
∫

d3k

(2π)3/2 ei~x ·~k δ
(
t,~k
)
, (4.17)

(we use the same symbol for the mode in real and in Fourier space, as the context
always makes manifest which of the two our following equations refer to). Then,
if k̂i denotes the unit vector in the direction of the momentum of the mode, we
have πL = −ik̂i ·πi, and πiT = πi + ik̂iπL (and identically for Bi).

To study the scalar sector at the linearized level, we expand the action (4.3) at
quadratic order in the Fourier modes of πL,Φ, BL. The algebraic equations for
Φ and BL obtained by extremizing this action are, respectively, solved by

Φ = kεa2H
π̇L + εHπL
k2 + 3εa2H2 ,

BL = εa2H
−3a2Hπ̇L + k2πL
k2 + 3εa2H2 . (4.18)

Inserting these solutions back into the quadratic action we obtain the free action
for the scalar physical degree of freedom

S =
∫
dtd3ka3M2

p

(
εa2H2k2

k2 + 3εa2H2 |π̇L + εHπL|2

−εH2c2
Lk

2|πL|2
)
, (4.19)

in agreement with [7]. From this expression we recognize that the speed of the
scalar perturbations is indeed cL in the flat space-time / sub-horizon regime.
We are interested in the gauge invariant variable ζ, that represents the curvature
perturbation on uniform-density hypersurfaces. In our gauge

ζ
∣∣∣
δgij,scalar=0

≡ −Hδρ

ρ̇
= −k3πL ,

(4.20)

As shown in [7], the variable ζ is continuous if the end of inflation and reheating
occur due to a sharp phase transition that modifies F . Therefore, we are
interested in the value that ζ assumes on super-horizon scales during inflation.
The initial condition for ζ is obtained by computing the canonically normalized
variable, in terms of which the action (4.19) acquires the form

S = 1
2

∫
dτd3k

[
|V ′|2 − ω2|V |2

]
⇒ Vin = e−i

∫ τ
ωdτ ′+iφ0

√
2ω

. (4.21)

(the relation between ζ and V is immediately obtained by comparing the kinetic
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term of (4.19) and of (4.21)). In this expression, prime denotes derivative with
respect to conformal time τ , and φ0 is an arbitrary unphysical phase. The initial
condition is the so called adiabatic vacuum solution, set in the deep sub-horizon
regime, where the frequency is adiabatically evolving, ω′ � ω2.
As shown in [7], it is actually convenient to consider the curvature perturbations
R, that in spatially flat gauge, is related to ζ by

R = 1
εH

ζ̇ + εHζ

1 + k2/ (3a2εH2) , (4.22)

since the equation of motion for R,

R′′ + (2 + η − 2sL) aHR′ + k2c2
LR+

[
3ε− 6sL + 3c2

Lε

−ε (2ε+ η) + 2sL (2ε− η) + sηη

]
a2H2R = 0 , (4.23)

is significantly simpler than the one for ζ. In this expression, sL ≡ ˙cL
cLH

[7], and
sη ≡ η̇

ηH are slow roll-suppressed quantities. Eq. (4.23) is exact, but the second
line (not explicitly given in [7]) is second order in slow roll and negligible for all
the following considerations. Up to first order in slow roll, the solution is

R = C

(
τ

τc

)−α
H(1)
ν (−cLkτ (1 + sL,c)) ,

α ≡ −1
2 (3 + 2εc + ηc − 2sL,c) ,

ν ≡ 1
2
(
3 + 5sL,c − 2c2

L,cεc + ηc
)
, (4.24)

where τc is some time during inflation, and the suffix c indicates that the
corresponding quantity is evaluated at τc. We have already eliminated the solution
∝ H

(2)
ν which approximates to a negative frequency mode in the asymptotic

past. We take the time derivative of eq. (4.22) and we combine it with the
equation of motion for ζ following from (4.19), vii so to eliminate ζ̈. We obtain
an equation relating Ṙ, ζ, and ζ̇. The system formed by this equation and by eq.
(4.22) con be formally solved to express ζ and its derivative in terms of R and
its derivative. We then insert the explicit solution (4.24) and its time derivative
into these formal expressions, and obtain

ζ = C

(
τ

τc

)3/2 [
1 +

(
εc + ηc

2 − sL,c
)

ln τ
τc

]
×
[
−εc3 H

(1)
ν (Q) + kτ

3cL
(1− εc) H(1)

1+ν (Q)
]
,

(4.25)

where, for brevity, Q ≡ −kτcL (1 + sL,c). This expression is valid up to first

viiWe also need to use the explicit solutions for the background quantities given in Appendix A
of [7].
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order in slow roll. viii The coefficient C can be now set from evaluating the
solution (4.25) at the asymptotic past τin → −∞, and from the consideration
made right after eq. (4.21):

C = −i
√
π

2
(−τc)3/2 cL,cHc

2Mp
√
εc

(4.26)

(up to subdominant slow roll corrections), where the arbitrary phase has been
chosen so that ζ is real and positive in the asymptotic past during inflation. In
fact, using (4.25) and (4.26), we can finally write the expression for ζ in the late
time / super-horizon regime (−kcLτ � 1):

ζlate ' Hc

2k3/2c
5/2
L Mp

√
εc

{
1 + εc

[(
1 + c2

L,c

)
log τ

τc
+ O (1)

]}
,

(4.27)

in agreement with [7]. It is worth pointing out that the variable ζ presents a
(slow roll suppressed) growth outside the horizon [7]. One of the conditions
for the conservation of ζ on super-horizon scales is that the anisotropic part
of the stress-energy tensor vanishes in that regime [150]. This is the case for
minimally coupled scalar fields with ~x−independent vev [153]. In the present
model, however,

δTij,scalar = a2M2
p Ḣζ

[
2 (3− 2ε+ η) δij

−
(
3 + 3c2

L − 2ε+ η
) (

3k̂ik̂j − δij
) ]

, (4.28)

where we recall that k̂i is the unit-vector in the direction of the momentum of
the mode. In the standard case, the anisotropic part can be at best proportional
to spatial gradients, and therefore vanishes in the large scale limit. This is not
the case in the present model, due to the ~x−dependent scalar field vevs. We
note that δTij,scalar is slow roll suppressed, which explain why the evolution of ζ
on super-horizon scales is also slow-roll suppressed.

viiiThe explicit expression (4.25) has not been given in [7], and we reported its derivation since
some of the subdominant terms in ζ and ζ′ are needed for the power spectrum computation
that we perform in Section 4.5. We have written this expression in the most compact way;
doing so, however, it contains also terms which are second or higher order in slow roll, and
which should be disregarded. Such terms do not enter in any of our computations.
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4.4 Prolonged anisotropic background solution

Let us now consider a Bianchi-I background

ds2 = −dt2 + a2 (t) dx2 + b2 (t)
[
dy2 + dz2

]
,

a ≡ eα−2σ , b ≡ eα+σ , (4.29)

where, for simplicity, we have assumed a residual 2d isotropy in the y − z plane
(we expect that dropping this assumption would complicate the algebra, without
affecting the main physical conclusions of this and of the next Section). We
follow the notation of [5] of parametrizing by eα the “average” scale factor (the
volume scales as

√
−g = e3α) and by eσ the anisotropy. In principle, one could

also consider anisotropic vevs for the scalar fields, 〈φi〉 = cixi, with ci being
three different constants. However, starting from such configuration, one can
always rescale coordinates so that the relation (4.1) is maintained, and the line
element is still of the form (4.29).

As we discussed after eq. (4.11), the scalar fields equations of motion are solved
by the ansatz (4.1) and (4.29). Let us therefore turn our attention to the Einstein
equations Eqµν ≡ Gµν − Tµν

M2
p
, and, using (4.7) and (4.8), we obtain

α̇2 − σ̇2 + F

3M2
p

= 0 ,

α̈+ 3σ̇2 − e4σ + 2e−2σ

3M2
p

e−2αFX = 0 ,

σ̈ + 3α̇σ̇ − 2
3

e4σ − e−2σ

M2
p

e−2αFX

−4e6σ (e6σ − 1
)
FY

(e6σ + 2)3M2
p

− 6e6σ (e12σ − 1
)
FZ

(e6σ + 2)4M2
p

= 0 ,

(4.30)

which correspond, respectively, to the Eq0
0

3 , Eq1
1+2Eq2

2−3Eq0
0

6 , and Eq1
1−Eq2

2
3 combina-

tions of the Einstein equations. Due to the background symmetries, Eq3
3 = Eq2

2,
while Eqµν identically vanish for µ 6= ν. Moreover, the three equations (4.30) are
actually not independent, since they are related by a nontrivial Bianchi identity(
d
dt + 3α̇

)
Eq0

0 − (α̇− 2σ̇)Eq1
1 − 2 (α̇+ σ̇)Eq2

2 = 0. Therefore, a closed set of
sufficient equations for the two scale factors is obtained by taking for instance
the first two, or the first and the third one among (4.30).

The observed statistical isotropy of the CMB constrains the background
anisotropy to be small (we quantify this statement in the next Section). There-
fore, we restrict the study of the Einstein equations to the σ � 1 regime. Up to
O
(
σ2) corrections, the first two equations in (4.30) reduce to the FRW equations
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(4.10), where H = α̇. The third equation gives instead

σ̈ + 3α̇σ̇ −
4e−2αFX + 8

9 (FY + FZ)
M2
p

σ + O
(
σ2
)

= 0 . (4.31)

Using (4.14), this equation rewrites

σ̈ + 3Hσ̇ + 4εH2c2
Tσ + O

(
σ2
)

= 0 ,

H ≡ α̇ , ε ≡ − Ḣ

H2 . (4.32)

where we have recalled the definitions of the “average” Hubble rate H, and of
the slow roll parameter ε. As O

(
σ2) are disregarded in (4.32), such quantities

can be evaluated from the FRW equations (4.10), disregarding the anisotropy.

In the case of standard scalar field inflation, the normalization of the scale
factors is unphysical (for a flat geometry), and the anisotropy is encoded in the
“anisotropic Hubble rate” h ≡ σ̇. This quantity obeys the equation ḣ+ 3Hh = 0
(see for instance [10]), which corresponds to the first two terms in (4.32). This
equation is solved either by the FRW geometry, h = 0, or by an exponentially
decreasing anisotropy, h ∝ e−3Ht (we disregard the slow roll decrease of H). This
is at the basis of the cosmic no-hair conjecture, according to which inflation is
expected to rapidly erase any background anisotropy.
In the present model, with the scale factors appearing in Bij (see eq. (4.4)), also
σ, and not only its derivative, is physical. To solve eq. (4.32), we perform the
ansatz

σ (t) ∝ e
∫ t

dt′λ(t′)H(t′) ⇒ λ̇

H
+ λ2 + (3− ε)λ+ 4εc2

T = 0 . (4.33)

where we recall that ε,H, cT in this equation are evaluated on the FRW geometry.
We solve this equation to leading order in the slow roll parameters. We obtain

λ1 = −3 + c1 (t) ε+ O
(
ε2
)
, λ2 = c2 (t) ε+ O

(
ε2
)
, (4.34)

where, in turns,

ċ1
H

+ 6− 3c1 + 3c2
L = 0 ,

ċ2
H

+ 3c2 + 4c2
T = 0 . (4.35)

Given eqs. (4.13) and (4.14), and given that Y and Z are constant on a FRW
background, it is very reasonable to assume that ċL,T = O (εH) or less. In this
case, ix

c1 = 2 + c2
L , c2 = −4

3c
2
T . (4.36)

Therefore, to leading order, the anisotropy evolves as

σ (t) ' σ1e−
∫

[3−(2+c2
L)ε]Hdt + σ2e−

∫
4
3 c

2
T εHdt , σ, ε� 1 , (4.37)

ixWe stress that the prolonged anisotropy is not consequence of ċT = O (εH). Even if
ċT = O (H), the exponent λ2 = O (ε), which guarantees a slow isotropization.

80



 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0  10  20  30  40  50  60

σ

N

Exact

Analytical

e-3 N

Figure 4.1: Evolution of the anisotropy σ (defined in eq. (4.29)) as a function of
the number of e-folds (of the average scale factor α) for the model (4.38), and for
an initial approximately equal admixture of the two modes in (4.37). The analytical
solution (4.37) shows a perfect agreement with the exact one. The line ∝ e−3N

shows the decrease of the fast decreasing mode. We note that this is also the rate
at which the anisotropy σ̇ decreases in standard inflationary models

where σ1 and σ2 are integration constant. The first term is (up to the subleading
slow-roll correction) the fast decreasing solution found in standard slow roll
inflation. The second term is a new, slowly decreasing solution, that is peculiar
of this model. We note that, as we anticipated, the coefficient λ2 is proportional
to the sound speed of the transverse modes; this testifies that the evolution of
the phonons and of the anisotropy are determined by how the medium reacts
to deformations. As we already showed, the solid that drives inflation needs
to be extremely inefficient in responding to changes in the volume, and to the
anisotropy.

In Figure 4.1 we compare the approximate solution (4.37) for the anisotropy
against the exact solution obtained by numerically evolving the system (4.30).
We choose the simplest possibility

F = F0X
ε . (4.38)

It is immediate to verify that, at O
(
σ0), the parameter ε introduced in this

function coincides with the slow roll parameter ε = − Ḣ
H2 . With this choice, we

obtain the sound speeds c2
T = 1, and c2

L = 1
3 .

In the evolution shown in the Figure, we choose ε = 0.01 and σin = 0.001.
We want to verify the validity of the approximate analytical solution (4.37).
Therefore, we assume that it is valid, and we choose an initial condition that
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is an approximately equal admixture of both modes in (4.37). We do so by
taking the initial value σ̇in = σin

2 H
[
−3 +

(
2 + c2

L

)
ε− 4

3c
2
T ε
]
. We then use the

first equation in (4.30) to set the initial condition α̇in, and evolve numerically
the last two equations in (4.30) (for the choice (4.38), the initial value αin can be
reabsorbed in F0, which can then be rescaled away from the system of equations).
If eq. (4.37) is a good approximation of the exact solution, we must obtain
that the anisotropy drops to about half its initial value within the first few
e-folds x - corresponding to the fast decreasing component in (4.37) - followed
by a much smaller decrease - corresponding to the second term in (4.37). This
is precisely what the evolution in the figure shows. More precisely, we show
both the exact numerical solution, and the analytic solution (4.37), and we see
that the analytic solution is in excellent agreement with the exact one. In the
figure, we also show the curve σ = σine−3N . This curve has the same decrease of
the fast decreasing mode. As we discussed, this reproduces the decrease of the
anisotropy in standard models of scalar field inflation.

Finally, we note that, strictly speaking, inflation never terminates for the choice
(4.38). As in ref. [7], we are assuming that (4.38) describes the function only
for a finite range of X, and then inflation terminates due to a change of F (for
example, due to a phase transition that transforms the solid into a fluid [7]). In
the evolution shown, we are simply following the evolution of the anisotropy for
60 e-folds of inflation. For a longer duration of inflation, one finds that the fast
decreasing mode of (4.37) has already decreased to negligible values during the
entire last ∼ 60 e-folds of inflation.

4.4.1 Comparison with Wald’s isotropization theorem

Ref. [11] showed that a Bianchi geometry (with the possible exception of the type-
IX case) undergoes a rapid isotropization under the influence of a cosmological
constant plus a source that satisfies the dominant and strong energy conditions.
It is instructive to understand how the theorem precisely works and why it does
not apply to the present context. To do this, we first summarize the computation
of [11], and we then discuss the specific case of anisotropic solid inflation.
In the case analyzed by [11], the energy momentum tensor acquires the form

Tµν = −ΛMpgµν + T 2nd source
µν , (4.39)

where the first term is the cosmological constant contribution, and the second
term satisfies the dominant and strong energy conditions D ≥ 0 and S ≥ 0,

xThe number of e-folds shown in the figure is N = eα−αin . It is accurate to use the “average”
expansion rate as a measure of the expansion, since the anisotropy is extremely small,
σ̇ � α̇.
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where

D ≡ tµ tνT 2nd source
µν ,

S ≡ tµtν
(
T 2nd source
µν − T 2nd source

2 gµν

)
, (4.40)

and where tµ is any time-like future-directed vector.

Ref. [11] contracted the Einstein equations with a normal vector nµ, to obtain
their equations (9) and (10). In the Bianchi-I geometry (4.29) and in our notation,
these equations read, respectively,

K2 − 3Λ− 3
2σ

µνσµν −
3D
M2
p

= 0 ,

d

dt
K − Λ + K2

3 + σµνσµν + S
M2
P

= 0 , (4.41)

where we have set nµ = tµ = {1, 0, 0, 0}. In this expression, K and σµν are,
respectively, the trace and the trace-free part of the extrinsic curvature on
surfaces orthogonal to nµ. For us , K = 3α̇, and σµνσµν = 6σ̇2, which are,
respectively, the isotropic and anisotropic Hubble rates in (4.29). As long as the
dominant and strong energy condition hold, D,S ≥ 0, the two equations (4.41)
imply [11]

D,S ≥ 0 ⇒ K >
√

3Λ ,
1

K2 − 3Λ
dK

dt
≤ −1

3 . (4.42)

The second relation can be then integrated and combined with the first one
to show that K →

√
3Λ with exponential accuracy on a timescale

√
3/Λ [11].

Inserting this result into the first of (4.41), we then see that σµνσµν → 0 on the
same timescale. We thus recover an (isotropic) de Sitter expansion driven by Λ
[11]. The inequalities (4.42) play a crucial role for this result. We stress that
they are a consequence of the dominant and strong energy conditions.
Let us now discuss solid inflation, for which the energy momentum is given in eq.
(4.7). Strictly speaking, this is not the energy momentum tensor of a cosmological
constant plus a second source; however, given that the model supports inflation,
it still proves useful for the comparison with [11] to use this two component
decomposition as an effective description. The form of (4.7) would suggest to
identify the first term as the cosmological constant contribution. However, the
function F is not constant (but rather slow roll evolving), and the proof in [11]
would not apply. We therefore decompose eq. (4.7) as

Tµν = gµνF (t0) +
{
gµν [F (t)− F (t0)]− 2∂µφi∂νφj

∂F

∂Bij

}
≡ −ΛM2

p gµν + T 2nd source
µν , (4.43)

where Λ ≡ −F (t0) /M2
p > 0, and where t0 is a fixed time during inflation, say

the starting time, at which the geometry is of the Bianchi-I type, and one is
interested in whether the rapid isotropization takes place.
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Inserting (4.43) into (4.40) we obtain

D = −F (t) + F (t0) ,

S = F (t)− F (t0)− FX
( 1
a2 + 2

b2

)
, (4.44)

and, using these expressions, we can readily verify the system (4.41) is equivalent
to the three background equations (4.30) (we recall that only two of these
equations are independent). We have already solved these equations in the first
part of this Section, and we have obtained that the anisotropy is not erased on
the timescale

√
3/Λ. The technical reason for this is that D < 0 in this model

(while instead S > 0). This is due to the fact that F is negative and it decreases
in magnitude during inflation. As a consequence, the two conditions (4.42) do
not hold.

We have therefore shown that the total energy momentum tensor of solid inflation
cannot be rewritten as the sum of a cosmological constant plus a second term
that satisfies the dominant and strong energy conditions, which explains why
Wald’s theorem does not apply. One may worry that the failure of the dominant
energy condition might be a signal of instability. This is not the case, since the
split in (4.43) is only an effective description to be able to compare with the
premise of Wald’s theorem, but there is no instability associated with the full
energy momentum tensor.

4.5 Scalar curvature perturbations on the anisotropic solution

We now compute the primordial perturbation ζ̂ on the anisotropic background
obtained in the previous Section. As we shall see, the observed statistical isotropy
of the CMB perturbations forces the background anisotropy to be small, σ � 1.
Therefore, we can compute ζ̂ in a perturbative expansion around the FRW
solution studied in Section 4.3. xi We perform the computation through the
in-in formalism:

〈
ζ̂~k1

ζ̂~k2
(τ)
〉

=
∞∑
N=0

(−i)N
∫ τ

dτ1 . . .

∫ τN−1
dτN〈[[

. . .
[
ζ̂

(0)
~k1

ζ̂
(0)
~k2

(τ) , Hint (τ1)
]
, . . .

]
, Hint (τN )

]〉
(4.45)

where Hint = −
∫
d3xLint, and Lint is the quadratic lagrangian for the pertur-

bations on the Bianchi background minus the quadratic lagrangian on a FRW
xiIn this Section, ζ̂ (respectively ζ̂(0)) denotes the curvature perturbation of the anisotropic

background (resp. on the FRW background). The hat denotes the quantum operator for the
curvature, expanded in terms of annihilation / creation operators and of the mode function
ζ (resp. ζ(0)), see eq. (4.57). The FRW mode function ζ(0) is given in (4.25), where it was
denoted without the (0) suffix.
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Figure 4.2: Leading diagrams for 〈ζ̂2〉 on an anisotropic background. The first
diagram is the FRW result, while the second diagram is the linear correction in
the anisotropy. Only these two diagrams are computed in the main text. We
disregard quadratic (the last two diagrams shown) and higher order corrections in
the anisotropy.

background (we disregard terms that are higher order than quadratic in the
perturbations inside Lint). We note that each term in Lint can be written as an
expansion series in the anisotropy σ, that, in general, starts at O (σ).

In the in-in formalism, perturbations are quantized in the interaction picture: this
means that, in our computation, the FRW quantization of [7] applies. However,
due to the anisotropy, the scalar/vector/tensor perturbations are no longer
decoupled from each other in the full quadratic action, and this gives rise to
additional terms in Lint. Due to the residual SO(2) background isotropy of (4.29),
one mode of πiT and one mode of hij remain decoupled from πL at the quadratic
level [10]. Therefore, Lint couples ζ(0) with one mode of πiT and one mode of hij .
Since Lint is quadratic in the fields, its terms can be diagrammatically visualized
as the “mass insertions” LLL (terms involving two scalar modes), LLT (terms
involving one scalar and one vector mode), LLH (terms involving one scalar and
one tensor mode), LTT , LTH , and LHH . Figure (4.2) shows some of the leading
order contributions to 〈ζ̂2〉 arising when these mass insertions are used in (4.45)
(the variable N in (4.45) coincides with the number of mass insertions present in
the diagram). In the Figure, dashed lines denote the scalar mode; curved line
denotes the vector mode, and the crosses denote mass insertions.

It is clear from the Figure that the interactions between the scalar mode (L)
and one of the other two modes (T or H) contribute to 〈ζ̂2〉 only at O

(
σ2)

or higher. Therefore, if LLL provides the only O (σ) contribution to 〈ζ̂2〉, it is
the dominant correction to the power spectrum of ζ̂ due to the anisotropy. We
now compute this contribution. We do so in two Subsections. In Subsection
4.5.1 we compute the interaction hamiltonian. In Subsection 4.5.2 we insert
the interaction hamiltonian in (4.45) and evaluate the correction of the power
spectrum due to the anisotropy.

4.5.1 Computation of Hint

To obtain LLL, we set to zero all the perturbations apart from the scalar one.
For the three scalar fields, this means

φi = xi − 3i
∫

d3k

(2π)3/2 ei~k · ~x k
i

k2 ζ̂
(
t,~k
)
, (4.46)

where the relation (4.20) has been used.
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We recall that we are working in the spatially flat gauge, so that the spatial
part gij of the metric is given by (4.29). We instead introduce perturbations
in g00 = −1 − 2Φ, and g0i = δg0i, which need to be retained as they are
nondynamical and are algebraically given in terms of ζ̂ and ˙̂

ζ (from the linearized
Einstein equation, which is equivalent to extremizing the quadratic action of
the perturbations with respect to them). We then evaluate the action up to
second order in the perturbations, and integrate out the nondynamical modes in
δg0µ. The solutions for Φ and δg0i in terms of ζ̂ and ˙̂

ζ are rather lengthy and
not illuminating, and so we do not explicitly report them here. We insert the
solutions back in the quadratic action, which then becomes the action for the
dynamical mode ζ̂ only. This is the standard procedure to obtain the quadratic
action for the perturbations of any system. The resulting expression is formally
of the type

S
[
ζ̂
]

=
∫
dtd3k

{
fkin [α, α̇, σ, σ̇] | ˙̂ζ|2 + fmas [α, α̇, σ, σ̇] |ζ̂|2

+
(
fmix [α, α̇, σ, σ̇] ˙̂

ζ∗ζ̂ + h.c.
)}

, (4.47)

where the three functions are functions of the background (we eliminate α̈ and
σ̈ from these expressions by the use of the background equations of motion
(4.30); specifically, we enforce the background equations by expressing α̈, σ̈ and
F as a function of the other quantities. Thanks to this, we are sure that our
expressions cannot be further simplified by the use of the background equations).
The explicit expressions for these three functions (that we obtained by the use of
Mathematica), are extremely lengthy, and not illuminating, and for this reason
we do not report them here. We expand these expressions in the anisotropy
parameter σ, and obtain an expansion of the action S

[
ζ̂
]
in the anisotropy. We

formally write the resulting expression as

S
[
ζ̂
]

=
∞∑
n=0

S(n)
[
ζ̂
]
, (4.48)

where S(n) is of order n in the anisotropy. Namely, it is obtained by the
O
(
σn, σn−1σ̇, σn−2σ̇2, . . . , σ̇n

)
expressions for fkin, fmix, and fmas. We verified

that, as it must be, the zeroth-order action S(0) coincides with (4.19). According
to the above discussion, we are only interested in the explicit expression for S(1),
as this is the term that gives LLL at first order in the anisotropy. Inside S(0)+S(1),
the following functional derivatives of F appear: FX , FY , FZ , FXX , FXY , FXZ .
These functions can be evaluated in the FRW background, as the three invariants
X,Y, Z in the Bianchi geometry coincides with that in the FRW geometry up
to O

(
σ2). We eliminate the mix term ∝ fmix from this expression through an

integration by parts. This introduces the three derivatives d
dtFX ,

d
dtFY , and

d
dtFZ ,

which we evaluate through d
dtFi = Ẋ FiX ∼= −6e−2αα̇ FiX (where ∼= indicates

that the two expression coincide up to second order corrections in the anisotropy).
Therefore, proceeding as just indicated, we obtain an expression for S(1) where
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F only explicitly enters through its FX , FY , FZ , FXX , FXY , FXZ derivatives,
evaluated on the FRW background. It is useful to rewrite these derivatives in
terms of more immediate physical parameters, as the slow roll parameters and
the sound speed. Using (4.13) and (4.14), we can write

FX = −e2αM2
p εα̇

2 ,

FXX = 1
6e4αM2

p ε (2− 2ε+ η) α̇2 ,

FY + FZ = 9
2M

2
p

(
1− c2

T

)
εα̇2 . (4.49)

The combination FY − FZ is not related to any background quantity defined
above. In analogy with the last of (4.49) we define

FY − FZ ≡ 9
2M

2
pµεα̇

2 . (4.50)

where it is reasonable to assume that also µ is of order one, and slowly varying.
Differentiating the last of (4.49) we obtain

FXY + FXZ = 3
4e2αM2

P ε
[
2ε− η + c2

T (2sT − 2ε+ η)
]
α̇2 , (4.51)

where, in analogy to [7], we have defined the slow roll quantity sT ≡ ċT
α̇cT

. Finally,
we find that FXY − FXZ does not enter in S(1). Using these expressions, the
O (σ) action for ζ̂ acquires the form (4.47), with

f
(1)
kin = 18e3αM2

p εα̇
2P2 (cos θ) 2p2 (c2

T − 1
)
σ + 3εα̇σ̇

(p2 + 3εα̇2)2 ,

f (1)
mas =

3e3αM2
p εα̇

2

(p2 + 3εα̇2)3P2 (cos θ)
[
c6p

6 + c4p
4 + c2p

2 + c0
]
,

(4.52)

with

c6 = 4
[
5− 2c2

T (2− 2sT + 2ε− η)− µ
]
σ ,

c4 = 12ε
[
20− 4ε+ 2η − 2c2

T (11− 4sT + 2ε− η)− 3µ
]
α̇2σ

+6ε
[
3− 4c2

T − 2ε+ η
]
α̇σ̇ ,

c2 = 36ε2
[
16− c2

T (21− 6sT + 4ε− 3η)− 3µ
]
α̇4σ

−9ε2
(
2 + 12c2

T − 4ε+ 3η
)
α̇3σ̇ ,

c0 = 108ε3
[
5− c2

T (7− 2sT − η)− µ
]
α̇6σ

−27ε3
(
4c2
T + η

)
α̇5σ̇ . (4.53)

In (4.52), p ≡ ke−α is the physical momentum of the mode, θ the angle between
the direction of the momentum and the anisotropic direction x̂, and P2 is the
Legendre polynomial of order two. Moreover, we recall that fmix = 0 thanks to
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the integration by parts.
As we are interested in the perturbations around the slowly decreasing anisotropic
solution obtained in the previous Section, we set σ̇ ∼= −4

3c
2
T εHσ (we recall that

H = α̇). The expressions (4.52) then become

f
(1)
kin

∼= −36e3αM2
p εH

2P2 (cos θ)σ
(
1− c2

T

)
p2 + 2c2

T ε
2H2

(p2 + 3εH2)2 ,

f (1)
mas

∼=
12e3αM2

p εH
2σ

(p2 + 3εH2)3 P2 (cos θ)
[
p6
(
5− 4c2

T − µ
)

+3εH2p4
(
20− 22c2

T − 3µ
)

+ 9ε2H4p2
(
16− 21c2

T − 3µ
)

+27ε3H6
(
5− 7c2

T − µ
) ]

, (4.54)

where we have disregarded terms of O (ε, η, sT ) or higher when compared with
O (1) terms. Finally, switching to conformal time, from the expression (4.47) we
obtain the interaction hamiltonian

H
(1)
int (τ) = −

∫
d3k

[
e−αf (1)

kin ζ̂
(0)′

−~k
(τ) ζ̂(0)′

~k
(τ)

+eαf (1)
masζ̂

(0)
−~k

(τ) ζ̂(0)
~k

(τ)
]

+ O
(
σ2
)
. (4.55)

4.5.2 Evaluation of the power spectrum

We now insert (4.55) into (4.45) , to obtain〈
ζ̂~k1

ζ̂~k2
(τ)
〉

=
〈
ζ̂

(0)
~k1

ζ̂
(0)
~k2

(τ)
〉

−i
∫ τ

dτ1
〈[
ζ̂

(0)
~k1

ζ̂
(0)
~k2

(τ) , H(1)
int (τ1)

]〉
+ O

(
σ2
)
.

(4.56)

To evaluate this expression, we decompose the quantum field ζ̂~k into

ζ̂~k (τ) = ζ~k (τ) a~k + ζ∗−~k (τ) a†
−~k

,
[
a~k, a~k′

]
= δ(3)

(
~k + ~k′

)
, (4.57)

and identically for ζ̂(0).

The two point correlation function is related to the power spectrum by

〈ζ̂~k1
(τ) ζ̂~k2

(τ)〉 ≡ 2π2
δ(3)

(
~k1 + ~k2

)
k3

1
Pζ
(
~k1
)
, (4.58)
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and we finally define

Pζ
(
~k
)

= P
(0)
ζ (k) + P

(1)
ζ

(
~k
)

+ O
(
σ2
)
, (4.59)

corresponding, respectively, to the unperturbed FRW correlator and to the first
order correction in σ. To leading order in slow roll, the FRW expression (4.27)
gives

P
(0)
ζ

(
~k
)

= k3

2π2

∣∣∣ζ(0)
k

∣∣∣2 ' 1
8π2c5

L

H2

M2
p ε

, −cLkτ � 1 . (4.60)

For the first order correction, evaluating the commutator and the expectation
value in (4.56) we obtain

P
(1)
ζ

(
~k
)

= 2k3

π2 ×

Im
[
ζ

(0)∗2
k (τ)

∫ τ

dτ1
(
e−α f (1)

kinζ
(0)′2 + eαf (1)

masζ
(0)2
)
τ1,~k

]
.

(4.61)

We inserted the solution (4.25)-(4.26) into this expression. We could not perform
the time integration in an exact closed form, and we therefore divided the integral
into the two regimes −∞ < τ1 < −O

(
1
cL k

)
, and −O

(
1
cLk

)
< τ1 < τ . In the first

regime, we used the sub-horizon limit of (4.25) for ζ (τ1) and its derivative, while
in the second regime we used the super-horizon limit. For ζ (τ) we instead use
the super horizon limit of (4.25), given that we are interested in the super-horizon
value for P (1)

ζ . Proceeding in this way, we obtain the estimate

P
(1)
ζ

(
~k
)

P
(0)
ζ (k)

= P2 (cos θ)σ
[(

1 + 24c2
L + 4µ2

)
εNcmb + O (1)

]
(4.62)

where the first term in the square parenthesis is the contribution from the late
time integration limit τ1 <∼ τ , while the second term is the contribution from τ1
in the sub-horizon regime and at horizon crossing. The second contribution may
be the dominant one, so we regard (4.62) as an estimate of P (1)

ζ , which we will
use to set an order of magnitude upper bound on the anisotropy parameter σ.
We recall that P2 is the Legendre polynomial of order two, while θ is the angle
between ~k and the anisotropic direction. The quantity σ, as well as the other
quantities on the right hand side of (4.62) are the values assumed at horizon
crossing.
Therefore our estimate for the power spectrum of ζ on super-horizon scales is

Pζ
(
~k
)

= 1
8π2c5

L

H2

M2
p ε

[1 + O (1)σP2 (cos θ)] . (4.63)

Let us conclude this section with a few comments. First, from Eq. (4.63) we can
read the anisotropic amplitude of the power-spectrum g∗ in the parameteriza-
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tion [8]
Pζ
(
~k
)

= P (k)
[
1 + g∗ cos2 θ

]
. (4.64)

We find, in the phenomenologically allowed region |g∗| � 1, that g∗ = O(1)σ.
Different limits have been obtained on such a parameter, starting from the
analysis of the WMAP7 data [33] that gives g∗ = 0.29 ± 0.031 [65]. Such a
large effect has been clearly demonstrated to be due to beam asymmetries in
WMAP9 data [64, 66, 14] and is not present in the Planck data [4]. On different
scales (and marginalizing over the preferred direction) Large-Scale Structure
data analysis constrain −0.41 < g∗ < 0.38 at 95% C.L. [69] (the amplitude of
the anisotropy may in general be scale dependent [8]). Therefore a 10% level
anisotropy, |g∗| = 0.1 ((1%) level, |g|∗ = 0.01) would correspond to an anisotropy
parameter σ ' 0.1 (0.01).
As a second comment, notice that g∗, being determined by σ, is not simply
proportional to the “anisotropic Hubble rate” ∆H/H = σ̇/H, as one might
naively expect. Rather, since σ̇ ∝ c2

T εHσ (see eq. (4.37)), g∗ turns out to be

g∗ = O
(∆H
εH

)
� O

(∆H
H

)
(4.65)

This is analogous to what happens in the f (φ)F 2 models [90, 61, 91].

As a third comment, we note that the final background anisotropy still present
at the end of inflation may give rise to corrections to the variable ζ which are
of O

(
∆H
H |end

)
= O

(
σ̇
H |end

)
= O (εendσend), where the suffix “end” refers to the

value assumed at the end of inflation. This, and - more in general - the dynamics
of reheating after inflation, may generate corrections to the observed value of
Pζ . As discussed in [7], it is reasonable to assume that in this model inflation is
terminated by a phase transition, during which the solid decays into conventional
matter. Ref. [7] computed the perturbations of solid inflation on an isotropic
background, showing that ζ is continuous at this transition. Therefore, any
correction to g∗ that emerges from these effects can be at most of O (σend) which
is parametrically much smaller than the O

(
σ
ε

)
value that we have studied and

given in (4.65).

Finally, we note that, while the f (φ)F 2 results in a negative g∗ [90, 61, 91], in
our case both signs of g∗ are possible.

4.6 Conclusions

We showed that solid inflation supports prolonged anisotropic inflationary solu-
tions. This constitutes a stable example based on standard gravity and scalar
fields only that violates the conditions of the so called cosmic no-hair conjecture
[11]. This result strengthens the analogy between solid inflation and the f (φ)F 2

mechanism. It was already shown that both models exhibits a bispectrum with
a nontrivial angular dependence in the squeezed limit. We have now shown that
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this analogy also holds at the background level, since the f (φ)F 2 mechanism
also supports anisotropic inflation without instabilities. In this Section we discuss
a few open questions on solid inflation. First of all, given the strong analogy
between solid inflation and the f (φ)F 2 mechanism, both at the background level
and at the level of the bispectrum, it would be interesting to explore whether the
models have other similarities, and, in particular, whether they can be formulated
within a unique effective description. For instance, ref. [12] showed how the
previously obtained results for the f (φ)F 2 models can be understood in terms
of symmetries of the vector field. It may be possible that their computations
can be further extended to include solid inflation as well, perhaps developing
an effective field theory of broken spatial translational and rotational symme-
tries during inflation (analogously to the effective field theory that identifies
the cosmological perturbations with the goldstone bosons of the broken time
translational invariance in the standard cases [129, 130]).

Possibly, the similarities between the two models will also include the infra-red
sensitivity to anisotropic super-horizon modes that characterizes the f (φ)F 2

model [62]. Assume that inflation starts from an isotropic configuration, for
instance with a triad of orthogonal vectors of equal magnitude, and choose the
function f (φ) to produce a frozen scale invariant spectrum of vector perturbations
outside the horizon. Assume also that the total number of e-folds of inflation
Ntot is greater than the number of e-folds NCMB ' 60 at which the CMB modes
left the horizon. The modes of the vector fields that left the horizon in the first
∼ Ntot−NCMB e-folds of inflation become classical at horizon exit and randomly
add up with each other. This sum is not constant across the universe, but the
nontrivial spatial-dependence takes place only on scales much greater than our
current horizon, and therefore this nontrivial spatial dependence is unobservable.
However, it is crucial to realize that the sum itself is not unobservable. The
modes that leave the horizon in the final 60 e-folds see this sum as a classical
homogeneous background quantity. This last statement is commonly accepted in
the case of scalar fields (this is the origin of the coherent vev in the Affleck-Dine
[154] and in the curvaton [155] mechanisms), but - as remarked in [62] - its
validity has nothing to do with the spin of the field, but only with the property
of the super-horizon modes. Any field (of any spin) that has a frozen spectrum
of perturbations outside the horizon develops a coherent vev, that is locally
observed as a homogeneous quantity. The only role played by the higher spin
is that, differently from a scalar field, a homogeneous vector breaks isotropy
locally.

The theory only provides a statistical prediction for this classical vector field
~VIR: if we could observe many independent realizations of the first Ntot −NCMB
e-folds of inflation, we would find a (nearly) gaussian distribution for ~VIR with
zero mean and variance 〈V 2

IR〉 ∝ Ntot − NCMB [62]. However, we can observe
only one realization, so we naturally expect to observe a vector with magnitude
|~Vobs| '

√
〈~V 2

IR〉. Even if classically one starts from an isotropic triad, there
is no reason why the three infra-red sums of the different vectors should be
equal to each other (each sums is the random addiction of quantum vectors,
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and no gauge symmetry can enforce that the quantum fluctuation of each mode
of one vector is identical to the quantum fluctuation of each mode of another
vector), and the natural statistical expectation for the difference is also given
by
√
〈~V 2

IR〉. This unavoidably generates an anisotropy for the classical vector
background, which in turns imprints a strong anisotropy to the power spectrum
of the inflation through its direct f (φ)F 2 coupling to the vector. This results in
a natural expectation for the duration of inflation in all models that support a
scale invariant vector field outside the horizon, and, in particular, for all models
of anisotropic inflation, anisotropic curvaton, and inflationary magnetogenesis
[62]. In the f (φ)F 2 mechanism, the anisotropy exceeds the 1% level (10% level)
if inflation lasted ∼ 5 e-folds (∼ 50 e-folds) more than the minimal amount
required to produce the CMB modes [62].

It is possible that a similar problem also holds for solid inflation. This is not
the anisotropy that we have studied in this work, as here we have assumed that
the background is initially anisotropic, and we have followed the background
evolution dictated by the classical equations of motion. However, there is no
reason to expect that, even starting from an isotropic background, the three
scalars of solid inflation will develop three identical power spectra. The difference
will be encoded both in the longitudinal and in the vector modes of the three
scalars’ primordial perturbations. Such modes were studied in [7], where it was
shown that their amplitudes is nearly frozen outside the horizon. It remains to be
studied whether these modes can result in a sizable anisotropic IR background,
and then imprint an anisotropic contribution to Pζ , analogously to what happens
in the f (φ)F 2 model.

The discussion we have just presented is on whether an isotropic classical back-
ground can be destabilized by the random anisotropic addition of the super-
horizon modes of the different fields. A different problem, strongly motivated
by our results, is on whether solid inflation can lead to a isotropic and homo-
geneous background starting from generic initial conditions. We have shown
here that solid inflation erases an initial anisotropy on a rather long timescale,
∆t = O

(
1
Hε

)
. We understood this in terms of the fact that the medium of solid

inflation must be extremely insensitive to spatial deformations. It is natural
to wonder whether an analogous inefficiency will also take place for an initially
inhomogeneous background. This would question the validity of solid inflation
as a solution of the homogeneity and isotropy problem, in contrast to more
standard models of inflation [34].

Finally, an open question already pointed out in [7] is related to the physics of
reheating. It was shown in [7] that the primordial perturbation ζ is constant if
reheating occurs instantaneously. It is possible that this is no longer the case for
a more prolonged duration (we would not expect that the qualitative features
of the perturbations will be changed in this case). This would require entering
in the details of the field theory described by solid inflation, and of how it is
coupled to ordinary matter, which by itself would also be an interesting direction
to explore.
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5
Parity violation in the CMB

bispectrum by a rolling
pseudoscalar

This chapter, based on [156], focuses on a pseudoscalar-vector model with dis-
tinctive signatures in the CMB bispectrum. In particular the vector sources both
scalar and tensor metric perturbations but the latter, due to helicity conservation,
have a larger amplitude and, moreover, exhibit parity violating signal that can
open a window on the detection of such kind of tensor non-Gaussianity.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Gauge field amplification by a rolling pseudoscalar . . . 95
5.3 Parity-violating tensor non-Gaussianity . . . . . . . . . . 97

5.3.1 Primordial tensor bispectrum . . . . . . . . . . . . . . . . 97
5.3.2 Reconstruction for CMB bispectrum . . . . . . . . . . . . 99

5.4 CMB temperature and polarization bispectra . . . . . . 100
5.5 Detectability analysis . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Temperature and E-mode bispectra . . . . . . . . . . . . 103
5.5.2 B-mode bispectra . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Summary and discussion . . . . . . . . . . . . . . . . . . . 106

93



5.1 Introduction

Cosmological parity violation may be a key indicator of UV theories of gravity
and early Universe models, and has been well-studied from both theoretical and
observational sides (e.g., refs. [157, 158, 159, 160, 161, 162, 163, 164, 165, 166,
167, 168, 56, 81, 169, 6, 170, 171, 135, 4]). Nowadays the investigation of the con-
nections between the parity violation and tensor non-Gaussianity has attracted
attention [172, 173, 174, 175, 176, 57]. Such non-Gaussianity imprints new types
of distinguishable signatures in temperature and polarization bispectra of the
cosmic microwave background (CMB), e.g., temperature auto-bispectrum in
`1+`2+`3 = odd or B-mode auto-bispectrum in `1+`2+`3 = even [177, 174, 175].
Recently, ref. [6] has proposed an inflationary model where a rolling pseudoscalar,
gravitationally coupled to the inflaton, amplifies the vacuum fluctuations of a
U(1) gauge field. This gauge field can add extra signals in power spectrum
and bispectrum of curvature perturbations and of gravitational waves in addi-
tion to normal signals generated by the inflaton. The introduction of a second
(pseudoscalar) field minimizes the amount of scalar perturbations and an inter-
esting gravitational wave signal can be obtained without conflicting with the
bounds on non-Gaussianity from the scalar perturbations. Resulting gravita-
tional waves are chiral, can produce TB and EB correlations and parity-violating
non-Gaussianities. Investigating these characteristic observables is a meaningful
way to judge the validity of this model. More recently, ref. [57] has found that in
this model the non-Gaussianity of gravitational waves is O(103) times than the
curvature non-Gaussianity. This implies the existence of sizable CMB bispectrum
unlike usual scalar-mode one. The authors have evaluated the magnitude of resul-
tant temperature auto-bispectrum through an approximation based on flat-sky
formalism, and have translated a current bound on the equilateral nonlinearity
parameter into a rough bound on the pseudoscalar coupling. Their analysis
is a reasonable way to evaluate the signals roughly. However, their flat-sky
analysis may be no longer appropriate on large scales where the tensor mode
is effective. As we will show, the tensor non-Gaussianity in this model breaks
parity invariance asymmetrically and creates separate signals in both parity-even
(`1 + `2 + `3 = even) and parity-odd (`1 + `2 + `3 = odd) spaces. It may be hard
to evaluate such signatures precisely in the flat-sky formalism which is based on
non-discrete ` space. Furthermore, we expect that inclusion of the polarization
bispectra can improve detectability drastically since, in this case, the tensor
mode is a major source of non-Gaussianity [178].
In this chapter, we present a concrete study of the temperature and polarization
bispectra generated from a rolling pseudoscalar. Firstly, on the basis of a full-sky
formalism with full radiation transfer dependence [179], we construct a general
form for the CMB bispectra. The primordial tensor bispectrum is given by a non-
separable form between three wave numbers and it makes the computation of the
CMB bispectra quite difficult. We solve this by replacing it with a reconstructed
separable one. Through technical treatments of ` dependence in the full-sky
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formulation, we confirm that resulting CMB bispectra do not vanish both in the
parity-even and parity-odd ` spaces. Next, we estimate the detectability of the
tensor non-Gaussianity for cases with the auto- and cross-bispectra between the
temperature and E-mode anisotropies, and with the B-mode auto-bispectrum
alone. In the analysis with the temperature and E-mode bispectra, we assume
the existence of a contamination by the standard equilateral non-Gaussianity,
while we show that it is a negligible effect. For both cases, we assume the
Planck and the proposed PRISM experiments. Then, we show that considering
the polarization information and both the parity-even and parity-odd signals
improves the detectability. We also summarize the expected 1σ errors of a model
parameter determined by a coupling constant and a rolling condition of the
pseudoscalar field.

This chapter is organized as follow. In the next section, we review an inflationary
model with a rolling pseudoscalar by following ref. [6]. In sec. 5.3, we compute
the primordial tensor bispectrum and find its reconstructed form which is useful
in CMB computation. In sec. 5.4, we produce a full-sky form for the CMB
temperature and polarization bispectra and analyze their behaviors. section 5.5
presents Fisher matrix analysis for estimating the detectability of the tensor
non-Gaussianity, and the final section is devoted to summary and discussion of
our results.

5.2 Gauge field amplification by a rolling pseudoscalar

We consider a model where in addition to a standard inflationary sector, we have
a (hidden) sector with a rolling pseudoscalar χ coupled to a U(1) gauge field Aµ,
whose Lagrangian is given by

L = −1
2(∂φ)2 − V (φ)− 1

2(∂χ)2 − U(χ)− 1
4FµνF

µν − χ

4f FµνF̃
µν , (5.1)

where f is a coupling constant like an axion decay constant and Fµν ≡ ∂µAν −
∂νAµ is the field strength and F̃µν its dual [6, 57]. In this model, a successful
slow-roll inflation occurs owing to an inflaton potential V (φ), and χ contributes
to the generation of curvature and tensor perturbations through gravitational
interaction with the gauge field. Such a scenario is different from the case in
which a direct coupling between the inflaton and the gauge field is present [56].
In that case the coupling is much stronger than the gravitational one and scalar
curvature fluctuations are sourced with much more efficiency than gravitational
waves [6]. Observed power spectra of curvature and tensor perturbations will
consist of both these gauge-field modes and considerable normal modes generated
in the slow-roll regime, which are expressed as P ≡ H2

8π2εM2
P

and Ph = 16εP with
H, ε and MP ≡ 1/

√
8πG being the Hubble parameter, the slow-roll parameter

for the inflaton and the reduced Planck mass, respectively. On the other hand,
the gauge-field contributions can dominate over the bispectrum signals owing
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to the slow-roll suppression of the normal-mode non-Gaussianities [6, 57]. This
implies that we can obtain tight constraints on this model from CMB bispectrum
analysis.

We shall analyze the dynamics of the gauge field in the Coulomb gauge A0 = 0
and ∇ ·A = 0. Then, equation of motion of the gauge field reads

A′′ −∇2A− χ′

f
∇×A = 0 , (5.2)

where ′ ≡ ∂/∂τ denotes conformal time derivative. To solve this, we move to a
quantization process in Fourier space, reading

Ai(τ,x) =
∫

d3k
(2π)3/2

∑
λ=±1

vλ(τ,k)ε(λ)
i (k)eik ·x , (5.3)

vλ(τ,k) = aλ(k)Aλ(τ,k) + a†λ(−k)A∗λ(τ,−k) , (5.4)

where creation and annihilation operators satisfy[
aλ(k), a†λ′(k

′)
]

= δλλ′δ
(3)(k− k′) , (5.5)

and ε(±1)
i is a divergenceless polarization vector (for details see appendix A.1).i

Then assuming rolling condition like χ̇ ' const. leads to an explicit form of
A+:

A+(τ, k) ' 1√
2k

(
−kτ2ξ

)1/4
eπξ−2

√
−2ξkτ , (5.7)

where ξ ≡ χ̇
2fH with ˙ ≡ d/dt being physical time derivative, and ξ > 0 is

assumed without loss of generality. We are interested in the situation where the
gauge field may give observable effects on cosmological perturbations, namely
ξ & O(1). Then, this solution will perform well for all interesting scales. Note
that A+ is exponentially amplified as ξ becomes large, due to tachionic instability,
while A− has no amplification mechanism and is negligible in comparison to A+
[56]. Owing to this chiral property, the tensor non-Gaussianity and resultant
CMB bispectra break parity invariance and the signal can be distinguishable
from the vacuum one since one gravity wave helicity is produced in a much
stronger way than the other.

i We use the Fourier transform convention as

f(x) =
∫

d3k
(2π)3/2 f(k)eik ·x . (5.6)

The polarization vector ε(±1)
i (k̂) is equivalent to εi±(k) in refs. [56, 168, 6, 57].
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5.3 Parity-violating tensor non-Gaussianity

The produced gauge field quanta give rise to scalar and tensor modes, giving rise
to non-standard power spectra and bispectra. Very interestingly, due to helicity
conservation, the tensor non-Gaussianity has a larger amplitude in comparison
with the scalar one that can be considered negligible [57]. In this section, we
shall formulate such tensor non-Gaussianity to estimate its CMB signals in our
convention. Then, we will confirm the consistency of our results with ref. [57].

5.3.1 Primordial tensor bispectrum

The tensor metric perturbation, which is defined in δg(T )
ij = a2hij with a being

the scale factor, obeys the Einstein equation:

h′′ij + 2a
′

a
h′ij −∇2hij = − 2a2

MP
(EiEj +BiBj)TT , (5.8)

where E = −A′/a2 and B = ∇ × A/a2 are electric and magnetic parts of
the gauge field, and TT denotes transverse and traceless elements. Here, the
source term arises not from the FF̃ term but from the FF term in eq. (5.1).
Parity-violating information of the gauge field is transmitted to the tensor metric
perturbation through this source term. In Fourier space, a solution is given by
the Green function Gk as [57]

hij(τ,x) =
∫

d3k
(2π)3/2

∑
λ=±2

h
(λ)
k (τ)e(λ)

ij (k̂)eik ·x , (5.9)

h
(λ)
k (τ) = −2H2

M2
P

∫
dτ ′Gk(τ, τ ′)τ ′2

∫
d3k′

(2π)3/2d
3k′′ 12e

(−λ)
ij (k̂)

×
[
Ei(τ ′,k′)Ej(τ ′,k′′) + Bi(τ ′,k′)Bj(τ ′,k′′)

]
δ(k′ + k′′ − k) ,(5.10)

where e(±2)
ij is the transverse and traceless polarization tensor defined in ap-

pendix A.1ii and

Gk(τ, τ ′) = 1
k3τ ′2

[
(1 + k2ττ ′) sin k(τ − τ ′) + k(τ ′ − τ) cos k(τ − τ ′)

]
Θ(τ − τ ′) .(5.11)

Ei and Bi represent the dependence on Ei and Bi in Fourier space, namely

Ei(τ,k) ≡ v′+(τ,k)ε(+)
i (k) , (5.12)

Bi(τ,k) ≡ kv+(τ,k)ε(+)
i (k) , (5.13)

iiOur polarization tensor e(±2)
ij (k̂) is equal to 2Πij

∓(k) in refs. [168, 57].
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where we ignore A− for its smallness. Then, the tensor bispectrum is formed by
6-point functions of Ei and Bi. Computing it on superhorizon scales (−kτ → 0)
using the Wick’s theorem and conventions of the polarization vector and tensor
(appendix A.1), yields〈 3∏

n=1
h

(λn)
kn

〉
=

[ 3∏
n=1

∫
d3k′n

(2π)3/2

]
δ(k1 − k′1 + k′3)δ(k2 − k′2 + k′1)δ(k3 − k′3 + k′2)

×ε(+)
a (k̂′1)ε(−)

d (k̂′1)ε(+)
e (k̂′3)ε(−)

b (k̂′3)ε(+)
c (k̂′2)ε(−)

f (k̂′2)

×1
2e

(−λ1)
ab (k̂1)1

2e
(−λ2)
cd (k̂2)1

2e
(−λ3)
ef (k̂3)F(k′1, k′2, k′3)

≡ (2π)−3/2Bλ1λ2λ3
k1k2k3

δ(3)
( 3∑
n=1

kn

)
, (5.14)

where

F(k′1, k′2, k′3) ≡
(
−2H2

M2
P

)3 [ 3∏
n=1

lim
−knτ→0

∫ 0

−∞
dτnτ

2
nGkn(τ, τn)

]
×Ah(τ1, k

′
1, k
′
3)Ah(τ2, k

′
2, k
′
1)Ah(τ3, k

′
3, k
′
2) , (5.15)

and A is given by

Ah(τ, k, q) ≡ 2
[
A′+(τ, k)A′+(τ, q) + kqA+(τ, k)A+(τ, q)

]
. (5.16)

We are interested in the bispectrum signatures for ξ & O(1). In this condition,
eq. (5.16) becomes

Ah(τ, k, q) '

√−kqτ2ξ −

√
−2ξ
τ

 [kq]1/4e2πξe−2
√
−2ξτ(

√
k+√q) , (5.17)

and hence F is analytically evaluated as [56]

F(k′1, k′2, k′3) ' Γ(7)3

33224
H6

M6
P

e6πξ

ξ9
(k′1k′2k′3)1/2

[(
√
k′1 +

√
k′2)(

√
k′2 +

√
k′3)(

√
k′3 +

√
k′1)]7

.(5.18)

This form is equivalent to that found in [57]. From numerical evaluation, we
confirm that this tensor bispectrum resembles closely the usual equilateral shape,
and the bispectrum amplitude in the equilateral configuration (k1 = k2 = k3)
can be expressed as〈 3∏

n=1
h

(+2)
kn

〉
kn→k

' 6× 10−10 H
6

M6
P

e6πξ

ξ9
δ(k1 + k2 + k3)

k6 . (5.19)

This is in agreement with the result in ref. [57]. We also confirm the smallness
of the other spin modes, reading B+2+2+2 ∼ 102B+2+2−2 ∼ 105B+2−2−2 ∼
105B−2−2−2, and hence we shall ignore these contributions in the rest of the
chapter.
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5.3.2 Reconstruction for CMB bispectrum

An exact form of the tensor bispectrum (5.14) has three convolutions with respect
to k′n due to the 6-point functions of Ei and Bi. This implies that resultant
CMB bispectrum has also three convolutions in ` space, which corresponds
to the 1-loop computation [180, 175]. The numerical computation of such
CMB bispectrum is quite hard due to the non-separability of the k integrals.
Accordingly, we introduce an approximate separable form without convolutions,
which is reconstructed from the exact bispectrum.

The radial function F has three poles, i.e., k′1 = k′2 = 0, k′2 = k′3 = 0 and
k′3 = k′1 = 0, and contributions around these poles may dominate over total
signals. Evaluating these contributions in the similar way as refs. [180, 175]
yields

B+2+2+2
k1k2k3

≈ (2π)−3 Γ(7)3

33227
H6

M6
P

e6πξ

ξ9 δ(3)
( 3∑
n=1

kn

)
4π
3 e

(−2)
ab (k̂1)e(−2)

bc (k̂2)e(−2)
ca (k̂3)

×
ln
(
kmax
kmin

)
27

[ √
k1k2

(
√
k1 +

√
k2)14 +

√
k2k3

(
√
k2 +

√
k3)14 +

√
k3k1

(
√
k3 +

√
k1)14

]
.(5.20)

where we have used relationships between the polarization vector and tensor
(appendix A.1) and

∫
k′21 dk

′
1

(2π)9/2F(k′1 ∼ k′2 � k′3) = (2π)−9/2 Γ(7)3

33224
H6

M6
P

e6πξ

ξ9

ln
(
kmax
kmin

)
27

√
k′2k
′
3

(
√
k′2 +

√
k′3)14

,(5.21)

∫
d2k̂′ε(1)

a (k̂′)ε(−1)
b (k̂′) = 4π

3 δab . (5.22)

This form produces an almost exact spin and angle dependence. However, since
it is not separable with respect to kn, we have to alter it to a separable form.
Then, we shall replace the non-separable part with the usual equilateral template
as

B+2+2+2
k1k2k3

≈ NP3X3Beq
k1k2k3

e
(−2)
ab (k̂1)e(−2)

bc (k̂2)e(−2)
ca (k̂3) , (5.23)

Beq
k1k2k3

= − 1
k3

1k
3
2
− 1
k3

2k
3
3
− 1
k3

3k
3
1
− 2
k2

1k
2
2k

2
3

+ 1
k1k2

2k
3
3

+ 1
k1k2

3k
3
2

+ 1
k2k2

3k
3
1

+ 1
k2k2

1k
3
3

+ 1
k3k2

1k
3
2

+ 1
k3k2

2k
3
1
.(5.24)

where P = H2

8π2εM2
p
and

X ≡ εe
2πξ

ξ3 . (5.25)

To check the shape resemblance between exact (5.14) and reconstructed (5.23)
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bispectra, we introduce the shape correlator defined as

r = Bex ·Brec√
(Bex ·Bex)(Brec ·Brec)

, (5.26)

where a scalar product is defined as

B ·B′ ≡
∫ 1

0
dx2

∫ 1

1−x2
dx3(x2x3)4B1,x2,x3B

′
1,x2,x3 . (5.27)

A numerical evaluation yields r = 0.98, which guarantees a consistency between
the bispectra. Then, the normalization factor can be estimated as

N = Bex ·Brec(N = 1)
Brec(N = 1) ·Brec(N = 1) = 4.3174× 10−3 . (5.28)

In the next section, we adopt this reconstructed bispectrum in the computation
of the CMB bispectra.

5.4 CMB temperature and polarization bispectra

In this section, let us analyze CMB signatures of the parity-violating tensor
non-Gaussianity discussed in the previous section.

Tensor metric perturbations, which are generated during inflation and stretched
beyond horizon, re-enter horizon around recombination and create both temper-
ature and polarization anisotropies. Major signals in the temperature anisotropy
appear on large scales (` . 100) due to the Integrated Sachs Wolfe (ISW) effect
after recombination. On the other hand, the polarization anisotropies are gener-
ated through Thomson scattering at both recombination and reionization, and
have peaks at corresponding scales, namely ` ∼ 100 and 10, respectively [181].

In general, the CMB anisotropies are quantified through a multipole expansion,
i.e., ∆X (n̂)

X =
∑
`m a

X
`mY`m(n̂). Here the superscript X denotes the temperature

(I), E-mode (E) and B-mode (B) fields. Then, each multipole coefficient can be
expressed as [179, 182]

aX`m = 4π(−i)`
∫ ∞

0

k2dk

(2π)3/2T
X
` (k)

∑
λ=±2

(
λ

2

)x ∫
d2k̂h(λ)

k −λY
∗
`m(k̂) ,(5.29)

where x discriminates parities of three modes: x = 0 for X = I, E and x = 1 for
X = B, and T X` is a radiation transfer function yielding the ` dependence as
mentioned above. Accordingly, a formula for the CMB bispectra induced by the

100



tensor non-Gaussianity reads〈 3∏
n=1

aXn`nmn

〉
=

[ 3∏
n=1

4π(−i)`n
∫ ∞

0

k2
ndkn

(2π)3/2T
Xn
`n

(kn)
]

×(2π)−3/2
[ 3∏
n=1

∫
d2k̂n−2Y

∗
`nmn(k̂n)

]
B+2+2+2

k1k2k3
δ(3)

( 3∑
n=1

kn

)
.(5.30)

Here we note that dependence on x disappears due to the λn = +2 polarizing
nature of the tensor bispectrum. This equation involves integrals of angle-
dependent parts in the tensor bispectrum (5.23) and the delta function as shown
in appendix A.1. Dealing with these angular integrals by using Wigner symbols
as in ref. [179], yields a reduced form〈 3∏

n=1
aXn`nmn

〉
= BX1X2X3

`1`2`3

(
`1 `2 `3
m1 m2 m3

)
, (5.31)

BX1X2X3
`1`2`3

= −(8π)3/2

10

√
7
3NP

3X3

 3∏
n=1

∑
Ln

(−1)
Ln
2 (−i)`nI2 0−2

`nLn2

×
I0 0 0
L1L2L3


`1 `2 `3
L1 L2 L3
2 2 2


∫ ∞

0
r2dr

[ 3∏
n=1

2
π

∫ ∞
0

k2
ndknT Xn`n

(kn)jLn(knr)
]
Beq
k1k2k3

,(5.32)

where

Is1s2s3
l1l2l3

≡

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
s1 s2 s3

)
. (5.33)

Here, selection rules of the Wigner symbols allow Ln to run over |`n− 2| ≤ Ln ≤
`n + 2 under the restrictions: L1 +L2 +L3 = even and |L1−L2| ≤ L3 ≤ L1 +L2.
On the other hand, concerning `n, we stress that there is no restriction except a
triangle inequality |`1 − `2| ≤ `3 ≤ `1 + `2. This implies that the CMB bispectra
have nonzero values for both `1 +`2 +`3 = even and `1 +`2 +`3 = odd. Physically,
this is a consequence of an asymmetric spin dependence of the tensor bispectrum,
i.e., |Bλ1λ2λ3 | 6= |B−λ1−λ2−λ3 |, and directly connected to the absence of x in
eq. (5.30).

Figure 5.1 depicts reduced bispectra given by eq. (5.32) of the temperature,
E-mode and B-mode anisotropies for `1 ≈ `2 ≈ `3, which is defined as

bX1X2X3
`1`2`3

= G−1
`1`2`3

BX1X2X3
`1`2`3

, (5.34)

G`1`2`3 ≡ 1
6

 2
√
`3(`3 + 1)`2(`2 + 1)

`1(`1 + 1)− `2(`2 + 1)− `3(`3 + 1)

√∏3
n=1(2`n + 1)

4π

(
`1 `2 `3
0 −1 1

)
+5 perms.] . (5.35)

Note that G`1`2`3 = I0 0 0
`1`2`3

holds if `1 + `2 + `3 = even. In figure 5.1, the
usual equilateral bispectra with fNL = 150 are also plotted, and it seems to be
comparable in magnitude to the tensor bispectra with X = 2.1× 105 for ` . 100.
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Figure 5.1: All possible CMB bispectra, i.e., 〈III〉, 〈IIE〉, 〈IEE〉 and 〈EEE〉 (top two
panels), and 〈IIB〉, 〈IEB〉, 〈IBB〉, 〈EEB〉, 〈EBB〉 and 〈BBB〉 (bottom two panels),
induced by the tensor non-Gaussianity with X = 2.1 × 105 and P = 2.5 × 10−9 for
`1+2 = `2+1 = `3. Left and right two panels describe the parity-even (`1+`2+`3 = even)
and parity-odd (`1 + `2 + `3 = odd) components, respectively. For comparison, we also
plot 〈III〉 and 〈EEE〉 from the equilateral non-Gaussianity with fNL = 150. Other
cosmological parameters are fixed using the Planck results [2]. The parity-odd bispectra
seem to oscillate rapidly since they hate symmetric signals as `1 ∼ `2 ∼ `3.

This relation has also been confirmed in the flat-sky analysis [57]. In the tensor
bispectra, we can see the characteristic signatures associated with the tensor-
mode CMB fields as mentioned above, i.e., the ISW enhancement in temperature
for ` . 100 and a peak due to Thomson scattering in the polarization at ` ∼ 100.
Generally, in the tensor mode, the temperature fluctuations are larger than the
polarization ones, and E and B modes have almost same amplitudes [181]. Such
a magnitude relationship seems to hold in this figure too. With a confirmation
of both parity-even (`1 + `2 + `3 = even) and parity-odd (`1 + `2 + `3 = odd)
signals in all types of the CMB bispectra, These support the validity of our
computations.

While in the cross-bispectra the parity-odd signals are comparable in magnitude
to the parity-even ones, the parity-odd auto-bispectra, i.e., 〈III〉, 〈EEE〉 and
〈BBB〉, are slightly smaller than the parity-even counterparts. This is because
of antisymmetry of the parity-odd CMB bispectrum, which means that three
fields forming the bispectrum cannot take the identical states each other, e.g.,
BIII
``` = BEEE

```′ = 0 [174, 175]. This suppression may slightly decrease the total
signals from the parity-odd bispectra in comparison with the parity-even case,
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as seen in the next section.

5.5 Detectability analysis

To discuss detectability of the above bispectrum signals due to the tensor non-
Gaussianity, in this section we evaluate error bars of X (5.25) using the Fisher
matrix. We are then interested in X . O(105). In this region, gauge-field-
induced curvature perturbations are negligible and therefore P will coincide
with observed power spectrum of curvature perturbations [57]. Accordingly, we
here adopt P = 2.5 × 10−9. As instrumental noise information, we adopt the
data expected from the Planck and the proposed PRISM experiments [183, 184].
Computational methodology for the Fisher forecast is based on ref. [178].

5.5.1 Temperature and E-mode bispectra

Let us start from an estimation for the temperature and E-mode bispectra.
In this case, we shall analyze under a contamination of the usual equilateral
non-Gaussianity since its CMB bispectra are also amplified at `1 ∼ `2 ∼ `3. The
contamination by the equilateral non-Gaussianity appears only in the parity-even
space (`1 + `2 + `3 = even). Then, each element of the Fisher matrix can be
defined as

Fij =
∑
X1X2X3
X ′1X

′
2X
′
3

∑
`1≤`2≤`3≤`max

1
∆`1`2`3

B̃
X ′1X

′
2X
′
3

i,`1`2`3

[ 3∏
n=1

(C−1)XnX
′
n

`n

]
B̃X1X2X3
j,`1`2`3

, (5.36)

where

∆`1`2`3 = (−1)`1+`2+`3(1 + 2δ`1,`2δ`2,`3) + δ`1,`2 + δ`2,`3 + δ`3,`1 , (5.37)

and X1X2X3 or X ′1X ′2X ′3 runs over 8 combinations: III, IIE, IEI, EII, IEE,
EIE, EEI and EEE. Note that this formula is applicable to not only the
parity-even space but also the parity-odd one (`1 + `2 + `3 = odd). The inverse
matrix of the power spectrum reads

(C−1)XX ′` ≡
(
CII` CIE`
CEI` CEE`

)−1

, (5.38)

where CXX ′` is the sum of the cosmic variance spectrum and the noise spectrum
[178]. B̃i and B̃j consist of normalized CMB bispectra generated from the tensor
non-Gaussianity (B̃p ≡ Bp/X3) and the equilateral curvature non-Gaussianity
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Figure 5.2: Expected 1σ errors of X3 (5.40) obtained by using the parity-even (left
panel) and parity-odd (right panel) signals in all types of the temperature and E-
mode bispectra (red lines), the E-mode auto-bispectrum alone (green lines) and the
temperature auto-bispectrum alone (blue lines). Here we assume the Planck, PRISM,
and cosmic-variance-limited ideal experiments.

(B̃e ≡ Be/fNL). If we set a 2-dimensional Fisher matrix as

(2)F =
(
Fpp Fpe
Fep Fee

)
, (5.39)

the 1σ error bars are expressed as(
δ(X3), δfNL

)
=
(√

(2)F−1
11 ,

√
(2)F−1

22

)
. (5.40)

Figure 5.2 depicts δ(X3) as functions of `max estimated from all combinations of
the temperature and E-mode bispectra, the E-mode auto-bispectrum alone and
the temperature auto-bispectrum alone, respectively. Here, we display results
from the parity-even and parity-odd spaces separately. From this figure, we can
notice that δ(X3) saturates for `max & 100 in every case. This is due to rapid
decays of the tensor temperature and polarization bispectra for ` & 100 (see
figure 5.1). Concerning features associated with parity, one can find that the error
bars from the parity-odd signals are larger than those from the parity-even signals
in the 〈III〉 and 〈EEE〉 cases. This is a consequence of the suppression of the
auto-bispectra as mentioned in sec. 5.4. Regardless of it, owing to contributions
of the 6 cross-bispectra, the errors estimated from all possible 8 bispectra are
comparable to or slightly smaller than the parity-even counterparts.

Practical values of δ(X3) at `max = 1000 are summarized in table 5.1. Inter-
estingly, if using full set of the temperature and E-mode bispectra in both the
parity-even and parity-odd spaces, δ(X3) can be 80% reduced in comparison
with the 〈III〉 analysis under the cosmic-variance-limited ideal experiment. This
seems to be a common feature of the tensor non-Gaussianity [178]. Such a level
of improvement cannot be attained in the scalar non-Gaussianity case, where
δfNL is only 50% reduction (see appendix A.2). This result shows the powerful
of the polarization bispectra. In this table, we can notice that the parity-odd
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III EEE all I + E BBB (r = 0.05) BBB (r = 5× 10−4)
Planck 127 (129) 232 (233) 56 (65) 17 (19) 2.1 (2.1)
PRISM 127 (129) 83 (84) 25 (30) 0.87 (1.0) 0.015 (0.017)
ideal 127 (129) 82 (83) 25 (29) 0.12 (0.20) 1.2 (2.0)× 10−4

Table 5.1: Expected 1σ errors of X3 normalized by 1015 in the III, EEE, all I + E
cases (`max = 1000) and the BBB case (`max = 500) for each experiment. The tensor-to-
scalar ratio r determines the amplitude of the B-mode cosmic variance spectrum. Here
we summarize the results estimated from both the parity-even and parity-odd signals.
In addition, for comparison, the errors from the parity-even signals alone are written in
parentheses.

information also improves the errors if we use all types of the temperature and
E-mode bispectra. These improvements yield δ(X3) = 5.6× 1016 (Planck) and
2.5× 1016 (PRISM or ideal).

Finally, we shall mention the contamination of the usual equilateral non-
Gaussianity. The correlation coefficient between the tensor temperature and
E-mode bispectra in both the parity-even and parity-odd spaces and the parity-
even equilateral ones reads

Fpe√
FppFee

= 0.036 , (5.41)

which shows the lack of correlation, and hence they do not bias each other’s
error estimation. This is a consequence of the shape difference of the CMB fields
between the scalar and tensor modes.

5.5.2 B-mode bispectra

Here, let us consider error estimations including the B-mode information. Such
bispectra correspond to 6 additional contributions: 〈IIB〉, 〈IEB〉, 〈IBB〉,
〈EEB〉, 〈EBB〉 and 〈BBB〉 and considering all these information will improve
δ(X3) drastically. However, this is a very complicated procedure and hence here
we focus only on the 〈BBB〉 analysis. In this case, there is no contamination
from the usual equilateral non-Gaussianity because of the absence of B-mode
creation by the scalar mode. Therefore, we can estimate the error through
1-dimensional Fisher matrix as

F ≡
∑

`1≤`2≤`3≤`max

(
B̃BBB
`1`2`3

)2

∆`1`2`3

∏3
n=1C

BB
`n

, (5.42)

δ(X3) = F−1/2 , (5.43)

where B̃ ≡ Bp/X3. Here we take `max ≤ 500 since lensing B-mode contribution
may behave as a bias on small scales [185, 186].
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Figure 5.3: Expected 1σ errors of X3 (5.43) estimated by using the parity-even (left
panel) and parity-odd (right panel) signals in the B-mode auto-bispectrum. As the
cosmic variance spectra, we adopt the B-mode power spectra with r = 0.05 (red lines) and
5× 10−4 (green lines). Here we assume the Planck, PRISM, and cosmic-variance-limited
ideal experiments.

Numerical results of δ(X3) are described in figure 5.3. We also summarize the
values at `max = 500 in table 5.1. As the cosmic variance spectra, we adopt
the standard B-mode power spectra where corresponding tensor-to-scalar ratios
are r = 0.05 and 5 × 10−4. In the cosmic-variance-limited ideal experiment,
the variance of the bispectrum is determined by r alone and hence we can find
a simple relationship δ(X3) = 1.1 × 1016r3/2 at `max = 500 using both the
parity-even and parity-odd signals. 〈BBB〉 can improve the error more than
〈EEE〉 despite the same noise spectrum (see appendix in ref. [178]) because of
smallness of the B-mode cosmic variance spectrum. While the improvements
of the parity-odd signals are slightly weaker than the parity-even signals for
low `max, interestingly, this situation seems to be reversed for high `max if the
instrumental noise is negligible. Owing to these signatures, δ(X3) can reach the
values comparable to or less than 1015 in the Planck or the proposed PRISM
experiment.

5.6 Summary and discussion

A rolling pseudoscalar can induce large equilateral-type non-Gaussianity in
the tensor perturbations via the dynamics of a chiral gauge field. Such non-
Gaussianity violates parity invariance and imprints characteristic signatures in
the CMB temperature and polarization bispectra.
In general, the parity-violating signatures in the non-Gaussianity appear in
the complicated spin and angle dependence of resulting CMB bispectra. We
dealt with these in the full-sky formalism and confirmed that all types of CMB
temperature, E-mode and B-mode bispectra have nonzero signals for both
`1 + `2 + `3 = even and `1 + `2 + `3 = odd. This property cannot be seen in the
flat-sky analysis because of lack of the discreteness in ` space. Physically, this
reflects the asymmetric spin dependence of the tensor non-Gaussianity, namely
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|Bλ1λ2λ3 | 6= |B−λ1−λ2−λ3 |. Numerical evaluations show that such CMB bispectra
are amplified on large scales and take quite different shapes from the usual scalar
equilateral bispectra due to the tensor-mode transfer functions. These mean that
the existence of the usual equilateral bispectra does not bias the estimation of
pseudoscalar signals.
We evaluated the detectability of these signals through the Fisher matrix analysis.
Then, it was clarified that considering both the parity-even and parity-odd
contributions improve the detectability more. The analysis of the temperature
auto-bispectrum alone will detect a model parameter, defined in eq. (5.25),
X = 5.0 × 105 at 68% CL under the Planck or proposed PRISM experiment.
Inclusion of the E-mode contributions and whole `-space analysis potentially
improve of 400% the detectability of the primordial tensor bispectrum (∝ X3)
with respect to the above temperature alone case. The corresponding 1σ values
of X read 3.8× 105 and 2.9× 105 under the Planck and PRISM experiments,
respectively. Moreover, we presented the power of the B-mode bispectra to reduce
the error drastically. If the instrumental noise is negligible and the B-mode
cosmic variance can be expressed by the tensor-to-scalar ratio r, we can write
the 1σ error of X as δX = 2.2× 105√r. In this sense, we will be able to observe
X less than 104 if r < 0.002. In practice, the instrumental noises prevent δX
from becoming smaller, and under r = 0.05 (5 × 10−4), X = 2.6 (1.3) × 105

and 9.5 (2.5) × 104 will be possible to be detected in the Planck and PRISM
experiments, respectively. The CMB bispectra seem to have the detectability
of X comparable to or greater than the TB and EB correlations as shown in
appendix A.3.
In this chapter, we focused on the CMB signatures originating from a rolling
pseudoscalar. However, there also exist other sources which create the parity-
violating tensor non-Gaussianities and imprint similar signatures in the CMB
bispectra [174, 175]. To differentiate between these sources, a more comprehensive
analysis considering each contamination will be required. Then, the correlations
〈IIB〉, 〈IEB〉, 〈IBB〉, 〈EEB〉, 〈EBB〉 and 〈BBB〉 may also be informative.
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6
Conclusions and Outlook

This chapter concludes and discuss future developments of the thesis

Contents
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Estimator for Anisotropic Bispectrum . . . . . . . . . . . 112
6.2.2 Effective Description for Anisotropic Model . . . . . . . . 112

109



6.1 Summary

The work presented in this thesis aimed at opening new window on the primordial
universe in order to understand the content of this. The current era of precision
cosmology is opening a window on the physics of the early universe and the results
of the Planck mission [1, 2, 4, 128] have put stringent limits on the models that can
describe the early universe. It seems that a single-field slow roll model of inflation
is favoured, with the consequent isotropy and homogeneity of the distribution of
the fluctuations and absence of non-Gaussianity. This seems to be confirmed by
the analysis made in [15], where the effects of Planck’s asymmetric beams and
Galactic foreground emission are removed, and a g∗ = 0.002± 0.016 (68%CL)
has been found. Up to now this provides the most stringent test of rotational
symmetry. At same time Planck gives results that seems to confirm the presence of
anomalies in the CMB as previously seen by WMAP. A cosmological explanation
of these anomalies would suggest a possible (early) phase of anisotropic expansion
sustained by an anisotropic source.

In chapter 1 we reviewed the standard Big Bang model and its success in
explaining the evolution of the universe. At same time we showed that an
inflationary phase has now become a cornerstone of the modern cosmology. In
addition to solving the horizon and the flatness problems, inflation gives an
elegant solution to the problem of primordial density perturbations that are the
seeds for the temperature fluctuations in the CMB sky and for the growth of
large scale structures.

In chapter 2 we firstly review all the primordial models that involve vector
fields and then we give all the observational constraints related to the violation
of symmetries in the early universe. We show that different models of vector
inflation, even if can generate accelerated expansion and anisotropy in agreement
with observations, they show problems of instability. The problem of stability
and the difficulty in building models, starting from the conformal Maxwell
Lagrangian, are also confirmed by an Hamiltonian analysis and by the study of
the hyperbolicity of their equations of motion. However these problems, which
today are still debated, can be overcomed by the introduction of models with
varying gauge coupling. And this is the main topic of chapter 3, where, in addition
to studying the first stable and free of ghost instabilities scalar-vector model
I(φ)F 2, we give answers related to consistency relations between observables in
anisotropic inflationary models. This result gives rise to a model independent
test of anisotropic inflation. We show that the anisotropy in the power spectrum
is correlated with a characteristic and very likely detectable bispectrum

fNL ' 26 |g∗|CMB
0.1 (6.1)

We also find for the first time a non-trivial angular dependence in the shape of
the bispectrum; presently there are no observational constraints on the angular
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modulation of fNL. With such increase in sensitivity of measurements reached
by Planck, one expects that anisotropy in the spectrum and bispectrum will
be discovered or constrained very tightly. In case of the discovery, with the
magnitude and anisotropy of fNL proposed above, it will be a smoking gun for a
anisotropic field contribution to the primordial curvature perturbation.

In chapter 4 we have shown that a “solid” supports prolonged anisotropic
inflationary solutions and this represents the first stable example based on
standard gravity and scalar fields that violates the conditions of the cosmic
no-hair conjecture. The symmetry pattern of this model is completely different
from the standard ones that characterize all the models of inflation: in this case
the time translations are unbroken and this has crucial consequences on the
background dynamics and on the correlation functions. In particular we pointed
out that the solid to drive inflation must be extremely insensitive to spatial
deformations and this implies that the initial anisotropies, setted in the initial
Bianchi I metric, are erased on a rather long timescale ∆t = O

(
1
Hε

)
. Of course,

this gives a contribution to the amplitude of the power spectrum g∗ ' O (1)σ
where σ encodes the anisotropy, but put also problems on whether solid inflation
can lead to isotropic and homogeneous background starting from generic initial
conditions, so if it is a good inflationary model.

We have seen that anisotropic evolution (driven by anisotropic source) leaves
observable effects on the correlation functions and in particular anisotropic
contribution to the power spectrum and non-trivial angular dependence in the
bispectrum (and in principle in all higher order correlation functions). Another
usefull signature to distinguish type of fields and interactions populating the
specific primordial inflationary phase is the parity violation. In chapter 5 we
have shown that the coupling between a vector and a pseudoscalar field gives
parity violating signatures in the tensor bispectrum. In particular the vector
sources both scalar and tensor metric perturbations. Both kinds of perturbations
are nongaussian, but, due to helicity conservation, the tensors have a larger
amplitude and the pesudoscalar signal is not biased by the usual equilateral
bispectra. We also evaluate the detectability of these signals through a Fisher
matrix analysis and we show that considering both parity-even and parity-odd
contributions improves the detectability of such signal, in particularthe use
of E-mode improves of 400% the detectability with respect to an analysis in
temperature and the B modes are even more powerful since it increase the
signal-to-noise ratio by 3 orders of magnitude.
Statistical anisotropy, parity violation and non-Gaussianity can be mentioned
among the best distinctive features for the early universe and certainly deserve
further investigations, looking forward for a comparison with new and promising
experimental data.
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6.2 Outlook

Based on the findings of this thesis and my experience working in the covered
areas these are my thoughts on the future development within the field of
statistical anisotropy, parity violation and primordial non-Gaussianity.

6.2.1 Estimator for Anisotropic Bispectrum

The observational hint of statistical isotropy breaking, provided by different
data analysis at level of the power spectrum and in higher-order correlation
functions, suggests that, maybe, is promising to develop a novel formalism
to construct an estimator for the bispectrum which can be used to constrain
the parameters of many CMB anisotropic models. Many technical issues
must be overcome in the construction and implementation of such estimators:
the possibility to write the anisotropic bispectrum in a separable form
in order to reduce the computational costs, a deep understanding of the
anisotropic distribution of the noise in pixel space and the galactic masks
that can cover the anisotropic signal and the detectability of that. A joint
analysis power spectrum-bispectrum for this kind of models would be very
promising since both must exhibit anisotropic signatures. Eventually such es-
timator could be also helpful as model independent test for the CMB “anomalies”.

6.2.2 Effective Description for Anisotropic Model

It is known that symmetries play a fundamental role in costraining the properties
of cosmological models [12]. Motivated by this, a good idea would be to develop
in the future an “effective field theory” of broken spatial translational and
rotational symmetries during inflation analogously to the effective field theory
that identifies the cosmological perturbations with the goldstone boson of the
broken time translational invariance in the standard case. As seen in [127]
different models that sustain an anisotropic phase of expansion share many
features at the background and correlation functions level. So the idea is to find
a general framework to investigate these kind of models and to characterize the
statistics only on the basis of symmetries.
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A.1 Polarization vector and tensor

In this paper, we utilize a divergenceless polarization vector ε(±1)
a and a transverse

and traceless polarization tensor e(±2)
ab satisfying [179]

k̂aε(λ)
a (k̂) = 0 ,

ηabck̂aε
(λ)
b (k̂) = −λiε(λ)

c (k̂) ,

ε(λ)∗
a (k̂) = ε(−λ)

a (k̂) = ε(λ)
a (−k̂) ,

ε(λ)
a (k̂)ε(λ′)

a (k̂) = δλ,−λ′ ,

(A.1)

and

e
(λ)
ab (k̂) ≡

√
2ε(λ2 )
a (k̂)ε(λ2 )

b (k̂) ,

e(λ)
aa (k̂) = k̂ae

(λ)
ab (k̂) = 0 ,

e
(λ)∗
ab (k̂) = e

(−λ)
ab (k̂) = e

(λ)
ab (−k̂) ,

e
(λ)
ab (k̂)e(λ′)

ab (k̂) = 2δλ,−λ′ ,

(A.2)

where ηabc is a 3-dimensional antisymmetric tensor normalized by η123 = 1. An
expression in ` space is convenient, reading

e
(λ)
ab (k̂) = 3√

2π
∑

Mmamb

−λY
∗

2M (k̂)αmaa αmbb

(
2 1 1
M ma mb

)
, (A.3)

with

αma α
m′
a = 4π

3 (−1)mδm,−m′ , αma α
m′∗
a = 4π

3 δm,m′ . (A.4)

Then, dealing with the Wigner symbols yields

e
(−λ1)
ab (k̂1)e(−λ2)

bc (k̂2)e(−λ3)
ca (k̂3) = −(8π)3/2

10

√
7
3

[ 3∏
n=1

∑
µn

λnY
∗

2µn(k̂n)
](

2 2 2
µ1 µ2 µ3

)
.(A.5)

With a multipole expansion of the delta function:

δ(3)
( 3∑
n=1

kn

)
= 8

∫ ∞
0

r2dr

 3∏
n=1

∑
LnMn

(−1)
Ln
2 jLn(knr)Y ∗LnMn

(k̂n)


×I0 0 0

L1L2L3

(
L1 L2 L3
M1 M2 M3

)
, (A.6)

this representation is applied to formulation of the CMB bispectrum in sec. 5.4.
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Figure A.1: Expected 1σ errors of fNL (5.40) estimated from all information of the
temperature and E-mode bispectra (red lines), 〈EEE〉 (green lines) and 〈III〉 (blue
lines) in the Planck, PRISM and ideal experiments.

A.2 Errors of the equilateral non-Gaussianity

In figure A.1, we plot 1σ errors of the equilateral nonlinearity parameter in
the 2-dimensional Fisher matrix analysis with the parity-violating tensor non-
Gaussianity. It is observed that the analysis with all types of the temperature and
E-mode bispectra leads to 50% reduction of δfNL in comparison with the analysis
of 〈III〉 alone under the PRISM or ideal experiment. Thanks to uncorrelation
with the tensor non-Gaussianity, δfNL is in good agreement with F

−1/2
ee of

eq. (5.39).



A.3 TB and EB correlations

Here, we shall discuss the detectability of the parameter X from TB and EB
power spectra (hereinafter noted as CIB` and CEB` , respectively). The TB or EB
correlation is sourced by the difference between λ = +2 and −2 tensor power
spectra, given as

〈
h

(+2)
k1

h
(+2)
k2

〉
−
〈
h

(−2)
k1

h
(−2)
k2

〉
≡ ∆h(k1)δ(2)(k1 + k2), reading

C
IB/EB
` = 2

π

∫ ∞
0

k2dkT I/E` (k)T B` (k)∆h(k) . (A.7)

In our case, gravitational waves are positively-polarized and hence ∆h is domi-
nated by the +2 power spectrum: [168]

∆h(k) ≈ 8.6× 10−7 H
4

M4
P

e4πξ

ξ6 k−3 ∝ X2 . (A.8)

Concrete shapes of CIB` and CEB` can be seen in ref. [163].

Let us define a Fisher matrix for an error estimation of X2 as [163]

F =
`max∑
`=2

∑
ij

∂Ci`
∂(X2)(Cov−1)ij`

∂Cj`
∂(X2) , (A.9)

where i or j runs over IB and EB, and a 2-dimensional covariance matrix is
given by

Covij` = 1
2`+ 1

(
CII` C

BB
` CIE` CBB`

CIE` CBB` CEE` CBB`

)
. (A.10)

Here, we have obeyed a null hypothesis of the cosmic variance and instrumental
noise from the TB and EB correlations. Figure A.2 describes expected 1σ
errors of X2, which is calculated by δ(X2) = F−1/2, under the presence of the
B-mode cosmic variance spectrum with r = 0.05 and 5 × 10−4. These results
are compatible with the previous works [163]. We can also observe the rapid
reduction of δ(X2) for ` < 10 thanks to large-scale information of the TB power
spectrum, as discussed in ref. [163].

This figure indicates that X = 1.8 (1.4)× 105 or 1.2 (0.54)× 105 will be detected
at 68% CL in the Planck or PRISM experiment when r = 0.05 (5 × 10−4).
These values are comparable to or somewhat smaller than the results from
the temperature and E-mode bispectra, and slightly larger than those from
the B-mode bispectrum analysis (see sec. 5.6). In the cosmic-variance-limited
experiment, the 1σ error bar of X is determined by r1/4, reading δX ≈ 2.1 ×
105r1/4. Because of the difference of r dependence, the detectability of X may
be weaker than the B-mode bispectrum case for smaller r as favored by current
or future observations.
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Figure A.2: Expected 1σ errors of X2 estimated from the TB and EB correlations.
Here we adopt the cosmic variance spectra and the noise spectra used in fig. 5.3.
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