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Introduction

The physicist Andreevich Artsimovich in the 1970 wrote that "thermonuclear
[fusion| energy will be ready when mankind needs it". Considering the actual
world energy situation and the effect on the environment due to the present
harnessing of the different sources of energy, the hope is that time for fusion
is finally arrived.

Background and Motivation

The activities carried out in the framework of this thesis regarded the devel-
opment, implementation and application of algorithms for classification and
prediction of disruptions in Tokamaks.

The balance of plasmas in a magnetic field can be described by the theory
of magneto-hydro-dynamic (MHD). MHD instabilities are among the most
serious factors that limit fusion devices operation in magnetic confinement
configurations. When they occur on a large scale can degrade the perfor-
mance of the plasma and lead to loss of confinement and control.

A disruption is a sudden loss of stability or confinement of tokamak
plasma; it is a critical event in which the plasma energy is lost within a
time span of few milliseconds exposing the plasma facing components to se-
vere thermo-mechanical stresses and conductors surrounding the vessel to
huge electromagnetic forces. Therefore, it becomes of primary importance
to avoid or mitigate disruptions in order to preserve the integrity of the ma-
chine. This aspect and the understanding of disruptive phenomena play a
key role in design and running of new experimental devices as ITER, cur-
rently under construction in Cadarache (France), which will have the task
of demonstrating the feasibility of fusion energy production from a technical
and engineering point of view.

These considerations motivate a strong interest in developing methods
and techniques aimed to minimize both number and severity of disruptions.
Furthermore when a disruption occurs it would be particularly important to
be able to distinguish among its different types in order to improve avoidance
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and mitigation strategies. Since physical models able to reliably recognize
and predict the occurrence of disruptions are currently not available, the re-
search carried out fits in the broad framework of machine learning techniques
that have been exploited as an alternative approach to disruption prediction
and automatic classification.

Promising approaches to prediction and classification are represented by
the so-called "data-based" methods: to this purpose, existing systems have
been applied and further developed and new approaches have been investi-
gated.

The mentioned activity has been carried out in collaboration with the
University of Cagliari and European Research Centers for nuclear fusion,
taking as case study some of the most important experimental machines
such as JET and ASDEX Upgrade (AUG), with several months of research
spent at the Culham Science Centre.
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-
trol. Fusion - "Physics-based optimization of plasma diagnostic information"
Cluster.
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One of the most demanding activities, especially in terms of required time,
has been the building of representative and reliable databases which results
to be fundamental for successfully apply data-driven methods. For AUG a
database was already available and it is constantly updated by the researchers
of University of Cagliari.

Regarding JET, in order to analyze and investigate its high-dimensional
operational space, a reliable database has been built up on the base of 10
real time signals, which are representative of the disruptive behavior of the
plasma. For the Carbon Wall (CW) data comes from plasma discharges
selected from JET campaigns from 2005 to 2009, whereas ITER-like Wall
(ILW) database is based on the same set of signals belonging to the cam-
paigns from 2011 to 2013.

Several criteria and statistical analysis have been considered in order to
properly select a reduced representative number of discharges. Different data
reduction algorithm have been developed in order to obtain a reasonable
amount of data, keeping at the same time the diversity and the representa-
tiveness of data in statistical terms. Only non-intentional disruptions have
been considered with plasma current above 1IMA. The resulting CW database
is composed of 243 disruptions, whereas ILW database consists of 149 dis-
ruptions, where each signal has been sampled at a frequency of 1 kHz.

The high dimensional operational space of JET has been analyzed and
visualized using different linear projection methods such as Grand Tour (GT)
and Principal Component Analysis (PCA), and mapped through non-linear
manifold learning techniques as Self-Organizing Map (SOM) and Genera-
tive Topographic Map (GTM). The use of the "Manifold Learning" finds its
motivation in the fact that high-dimensional data can lie on an embedded,
eventually non-linear, low-dimensional manifold, which can be easily visual-
ized and understood if we consider a 2 or 3 dimensional space. Hence, in this
PhD Thesis, Manifold Learning methods have been successfully applied both
for classification and prediction of disruptions, showing their potentiality in
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the analysis and the visualization of the operational space.

The SOM and/or GTM maps can be exploited to identify characteristic
regions of the plasma scenario and for discriminating between regions with
high risk of disruption and those with low risk of disruption. This part of the
work has been supported with the implementation of tools for data analysis
and data visualization with which it is also possible to quantify and eval-
uate the effectiveness of the mapping itself. The results show quite clearly
that nonlinear manifold learning techniques are more suitable for mapping
the JET high dimensional operational space; in particular GTM exhibits a
higher capability of discriminating between safe and disruptive regions [1].
An important result of this analysis is represented by the fact that the two
nonlinear methods seem to converge on the same manifold, which means that
we are actually looking at the intrinsic properties hidden in the high dimen-
sional data.

The tools developed for data analysis and visualization, in particular for
GTMs, could be particularly useful in the study of the operational space
where the relevant physics takes place, allowing the perception of eventual
similarities among the different variables. The identification of dependencies
and complex relations among the variables is made possible by analysis and
comparison of similar patterns in the relative component distributions of the
input variables onto the 2-D maps.

By applying such techniques, another relevant part of the Ph.D. activities
has been spent in the analysis of the different types of disruption that can
occur in JET, making reference to the manual classification that has been
done in |P.C. de Vries, et al., Nucl. Fusion 51 (2011) 053018|, where specific
chains of events have been detected and used to classify disruptions, grouping
those that follow specific paths. The classification is part of a particularly
complex scenario whose analysis has required a considerable amount of time.
The characterization of the operational space in terms of the different dis-
ruption classes may lead to better overall understanding and more focussed
prevention and mitigation methods. A preliminary analysis carried out both
with SOMs and GTMs has shown that the maps seem to self-organize in such
a way that the disruptions which belong to the same class tend to aggregate,
defining in this way regions where a certain class results to be predominant
with respect to the others.

As described in [2], the potentiality of the GTM mapping of the JET
operational space has been exploited to develop an automatic disruption clas-
sification of seven disruption classes occurred with the Carbon Wall. Each
disruption is projected on the map and the probabilities of belonging to the
different disruption classes are monitored during the time evolution, return-
ing the class that the disrupted pulse more likely belongs to. Using the GTM
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trained on the CW dataset with ILW discharges selected from the JET ILW
campaigns C28-C30 significantly deteriorates the classification performance,
particularly on certain disruption classes. Hence, a new GTM has been built
to represent the new operational space of JET. Using this map with all the
disruptions occurred in these last campaigns the very high classification per-
formance is confirmed and therefore, the prospects for the deployment of this
tool in real time are very promising [3].

GTMs potentiality has also been exploited for the prediction of disrup-
tions at ASDEX Upgrade [4]: a 2-D-GTM has been built to represent the
7D AUG operational space on the base of discharges performed between May
2007 and April 2011. As it has been obtained in the case of JET, the GTM
clearly proves to be able to separate non-disruptive and disruptive states of
plasma. Therefore, likewise the SOM, the GTM can be used as a disrup-
tion predictor by tracking the temporal sequence of the samples on the map,
depicting the movement of the operating point during a discharge. Various
criteria have been studied to associate the risk of disruption of each map
region with a disruption alarm threshold. The prediction performance of the
proposed predictive system has been evaluated on a set of discharges coming
from experimental campaigns carried out at AUG from May 2011 to Novem-
ber 2012.

Some measures have been used to evaluate the performance of the pro-
posed methodologies. To calculate the precision of the clustering over the
entire dataset, the average quantization error, a common index of the map
resolution, has been applied. Moreover, to control the conservation of topol-
ogy two different aspects have been analyzed, i.e., the trustworthiness of the
projected neighborhood and the preservation of the resulting neighborhood.
Moreover, an outlier analysis has been performed on the available data in
order to quantify goodness and effectiveness of the projection [5].

In the last years, significant efforts have been devoted to the development
of advanced data analysis tools to both predict the occurrence of disruptions
and to investigate the operational spaces of devices, with the long term goal
of advancing the understanding of the physics of these events and to pre-
pare for ITER. Manifold learning tools are also producing very interesting
results in the comparative analysis of JET and AUG operational spaces, on
the route of developing predictors capable of extrapolating from one device
to another, as foreseen in the framework of cross-machine approach [6].
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Outline of the Thesis

In chapter 1 the perspectives of fusion in the world energy context as an
almost unlimited source of energy for the future are discussed, with particu-
lar reference to the role of magnetic confinement. Furthermore, the bases of
fusion reactions have been introduced.

In chapter 2 the main aspects of plasma stability in tokamaks configu-
rations are described with the aim to provide an adequate reference for all
the discussions of the following chapters. In particular, the main parameters
related to plasma stability, which have been used for the construction of the
databases, have been introduced.

The chapter 3 is focused on the description of the operational limits
with reference to the main quantities which should be maximized to im-
prove plasma performance. Everything, also in the previous chapters, has
been framed to introduce the key problems which this thesis has addressed:
analysis, prediction and classification of disruptions. After the main consid-
erations about the operational limits, the main phases, the causes and the
consequences of disruptions have been discussed, trying to integrate the sta-
bility concepts introduced in the previous chapter.

The chapter 4 is finalized to provide an insight of the Machine Learn-
ing methods which represent the starting point of all the analysis and algo-
rithms implemented for disruption prediction and classification. Today the
large amount of data available from fusion experiments and their character
of high-dimensionality make particularly difficult handling, processing, un-
derstanding and extracting properly what is really important among all the
available information. Machine Learning allows to deal with the problem in
efficient way. Therefore, a framework of all the techniques exploited for the
analysis has been provided, with particular reference to the Manifold Learn-
ing algorithms as Self Organizing Maps (SOMs) and Generative Topographic
Mappings (GTMs). Also reference methods such as k-Nearest Neighbor (k-
NN) or more recent methods such as Conformal Predictors, exploited for
validation and reliability assessment purposes, have been described.

In chapter 5 the state of the art of machine learning techniques ap-
plied to disruption prediction and classification is presented, describing in
particular the main applications with the widely employed Neural Networks,
such Multi Layer Perceptrons (MLPs), Support Vector Machines (SVMs)
and Self Organizing Maps (SOMs), and statistical methods such as Discrim-
inant Analysis or Multiple Threshold technique. Strengths and weaknesses
have also been discussed with reference to a possible solution to overcome
the drawbacks of these methods: the multi-machine approach.

Chapter 6 is dedicated to the description of the databases used for all
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the analysis presented in the following chapters. In particular, the statistical
analysis and the data-reduction algorithms that have been needed to build
a reliable and statistically representative database have been discussed in
detail.

The last three chapters contain all the analysis and all the algorithms im-
plemented for the mapping of the operational space, disruption classification
and prediction. In chapter 7 the mapping of the JET operational space
is presented. The first sections deal with projections and data-visualization
with linear projection methods such as Grand Tour (GT) and Principal Com-
ponent Analysis (PCA). In the central part, the same aspects have been taken
into account by exploiting nonlinear Manifold Learning techniques, SOM and
G'TM, on the base of which a detailed analysis of the operational space has
been performed. Such analysis, showing the potentiality of the methods, has
been performed, regarding GTM model, through the implementation of a
dedicated tool. Finally, an outliers’ analysis and performance indexes appo-
sitely proposed have been considered for evaluating the overall performance
of the mapping.

In the chapter 8 the developed automatic disruption classification for
JET has been described. The chapter is divided in two parts: the first one
describes the classification of disruptions belonging to the Carbon Wall (CW)
campaigns, whereas in the second part the classification of disruptions with
the ITER-like Wall (ILW) is framed in the assessment of the suitability of the
automatic classifier for real time applications, in conjunction with prediction
systems working online at JET. The reliability of the results has been vali-
dated by comparison with a k-NN based reference classifier and through the
recent conformal predictors, with which is possible to provide, in addition to
the prediction/classification, the related level of confidence.

Chapter 9 is dedicated to the disruption prediction at ASDEX Upgrade.
The first part is related to the description of the database and the data-
reduction technique used to select a representative and balanced dataset.
Self-Organizing Map and the Generative Topographic Mapping have been
exploited to map ASDEX Upgrade operational space and to build a disrup-
tion predictor, introducing at the same time their potentiality for disruptions
classification. Furthermore, the use of this two methods combined with a Lo-
gistic model has been proposed to realize a predictive system able to exploit
the complementary behaviors of the two approaches, improving the overall
performance in prediction.
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Prefazione

Il fisico Andreevich Artsimovich nel 1970 scrisse che "l’energia da fusione
nucleare sara disponibile quando 'umanita ne avra bisogno". Considerando
I’attuale scenario energetico mondiale e 'impatto sull’ambiente dovuto allo
sfruttamento delle diverse risorse energetiche, la speranza é che quel momento
sia finalmente arrivato.

Background e Motivazione

Le attivita svolte nell’ambito di questa tesi hanno riguardato lo sviluppo,
I'implementazione e ’applicazione di algoritmi per la classificazione e la predi-
zione di disruzioni nei Tokamak.

L’equilibrio dei plasmi nei campi magnetici puo essere descritto dalla teo-
ria magneto-idro-dinamica (MHD). Le instabilita MHD sono tra i fattori che
limitano piu seriamente le operazioni nelle macchine a fusione a confinamento
magnetico.

Una disruzione é un’improvvisa perdita di stabilita e di confinamento nei
tokamak; ¢ un evento critico durante il quale ’energia immagazzinata nel
plasma viene persa nell’arco di pochi millisecondi, esponendo i componenti
della parete interna della camera da vuoto a severi stress termo-meccanici,
e i conduttori circostanti a enormi forze elettromagnetiche. Quindi diventa
di primaria importanza ’avoidance e la mitigazione delle disruzioni al fine di
preservare l'integrita della macchina. Questo aspetto e la comprensione dei
fenomeni disruttivi giocano un ruolo chiave nel progetto e nel funzionamento
delle nuove macchine sperimentali come ITER, attualmente in costruzione
a Cadarache (Francia), la quale avra la finalita di dimostrare la fattibilita
tecnica ed ingegneristica della produzione di energia da fusione.

Queste considerazioni motivano un forte interesse nello sviluppo di metodi
e tecniche atti a minimizzare sia il numero che ’entita delle disruzioni. In-
oltre, quando si verifica una disruzione, sarebbe veramente importante rius-
cire a distinguere tra i diversi tipi di disruzione, al fine di migliorare le strate-
gie di avoidance e mitigazione. Dal momento che ad oggi non esistono mod-
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elli fisici in grado di riconoscere e predire in maniera affidabile ’arrivo di una
disruzione, la ricerca portata avanti in questi anni si integra nel pit ampio
contesto delle tecniche di Machine Learning, le quali sono state utilizzate
come approccio alternativo alla predizione ed alla classificazione automatica
delle disruzioni.

Approcci promettenti alla predizione ed alla classificazione sono rapp-
resentati dai cosidetti approcci "data-based": a questo proposito sono state
applicate e ulteriormente sviluppate diverse tecniche, e si é indagato su nuovi
approcci.

Le attivita citate sono state svolte in collaborazione con I’Universita di
Cagliari e importanti centri di ricerca europei sulla fusione, prendendo in
esame alcune delle pit importanti macchine sperimentali, quali il JET (Regno
Unito) e ASDEX Upgrade (Germania), con diversi mesi trascorsi al Culham
Science Centre (Abingdon, Regno Unito).

Elenco delle pubblicazioni e dei contributi legati
alla tesi

[1] B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-
tributors, "Manifold learning to interpret JET high-dimensional operational
space', Plasma Phys. Control. Fusion 55 045006, 2013.

[2] B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-
tributors, " Automatic disruption classification based on manifold learning for
real-time applications on JET", Nuclear Fusion 53 093023, 2013.

[3] A. Pau, B. Cannas, A. Fanni, A. Murari, G. Sias, and JET-EFDA Con-
tributors, "Advances in disruption classification at JET", 8th Workshop on
Fusion Data Processing, Validation and Analysis, November 4-6, 2013, Ghent
(Belgium).

[4] G. Sias, R. Aledda, B. Cannas, A. Fanni, A. Pau, G. Pautasso, and
ASDEX Upgrade Team, "Data visualization and dimensionality reduction
methods for disruption prediction at ASDEX Upgrade", 8th Workshop on Fu-
sion Data Processing, Validation and Analysis, November 4-6, 2013, Ghent
(Belgium).

[5] B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-
tributors, " Qverview of manifold learning techniques for the investigation of
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-
trol. Fusion - "Physics-based optimization of plasma diagnostic information"
Cluster.

[6] A. Murari, J. Vega, P. Boutot, B. Cannas, S. Dormido-Canto, A. Fanni,
J. M. Lopez, R. Moreno, A. Pau, G. Sias, J. M.Ramirez, G. Verdoolaege,
ASDEX Upgrade Team and JET EFDA contributors, " Latest Developments
in Data Analysis Tools for Disruption Prediction and for the Fxploration of
Multimachine Operational Spaces", Proc. of 24th TAEA Fusion Energy Con-
ference Abstracts, San Diego, USA, 8-13 October 2012.

Una delle attivita piti onerese, specie in termini di tempo, ¢ stata la costruzione
di un database affidabile e rappresentativo, che risulta essere fondamentale
per un’applicazione coerente dei metodi "data-driven". Nel caso di ASDEX
Upgrade un database era gia disponibile e costantemente aggiornato da ricer-
catori dell’Universita di Cagliari.

Per quanto riguarda il JET invece, al fine di analizzare il suo spazio op-
erativo ad alta dimensionalita, & stato costruito un database affidabile sulla
base di dieci segnali disponibili in tempo reale, che sono rappresentativi del
comportamento disruttivo del plasma. Per la parete in carbone (CW), i dati
provengono dalle campagne sperimentali che vanno dal 2005 al 2009, mentre
per quanto riguarda la parete metallica (ILW), il database & basato sugli
stessi segnali relativi agli esperimenti delle campagne dal 2011 al 2013.

Sono inoltre stati valutati diversi criteri e analisi statistiche al fine di se-
lezionare in maniera appropriata un numero ridotto di scariche. Sono inoltre
sono stati sviluppati diversi algoritmi di data-reduction al fine di ottenere
una quantita di dati ragionevole, preservando al tempo stesso la diversita e
la rappresentativita del database in termini statistici. Sono state considerate
unicamente le disruzioni non intenzionali con una corrente di plasma non
inferiore ad 1MA. Il risultante database per la parete in carbone é composto
da 243 disruzioni, mentre quello relativo alla parete metallica é costituito da
149 impulsi disrotti, per i quali ciascun segnale é campionato alla frequenza
di 1kHz.

[’analisi e la visualizzazione dello spazio ad alta dimensionalita di JET é
stata ottenuta sia con metodi di proiezione lineari, quali il Grand Tour (GT)
e la Principal Component Analysis (PCA), che con metodi di proiezione non
lineari, detti di "Manifold Learning", quali la Self Organizing Maps (SOM) e
le Generative Topographics Mappping (GTM). L’uso del Manifold Learning
trova la sua ragion d’essere nel fatto che dati ad alta dimensionalita possono
giacere in una struttura o spazio eventualmente non lineare a minore dimen-
sionalita che puo essere facilmente visualizzato e "compreso" se si considera
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uno spazio 2-D o 3-D. Dunque, in questa tesi, le tecniche di Manifold Learn-
ing sono state applicate con successo per la predizione e la classificazione di
disruzioni, evidenziando in particolare le loro potenzialita nell’analisi e nella
visualizzazione degli spazi operativi.

Le mappe SOM e GTM possono essere utilizzate per identificare regioni
caratteristiche e per discriminare tra quelle con alto e quelle con basso rischio
di disruzione. Questa parte del lavoro é stato supportata con I'implementazione
di strumenti per ’analisi e la visualizzazione dei dati, con cui ¢ anche possi-
bile quantificare e valutare ’efficacia del mapping stesso. I risultati mostrano
chiaramente che le tecniche di Manifold Learning non lineari si dimostrano
piu adeguate nel mapping dello spazio operativo di JET ad alta dimensional-
ita; in particolare, la GTM presenta una maggiore capacita di discriminazione
tra regioni "safe" e regioni disrotte [1]. Un importante risultato di questa
analisi € rappresentato dal fatto che i due metodi non lineari sembrano con-
vergere nell’identificazione dello stesso manifold, il che significa che stiamo
realmente osservando le proprieta intrinseche nascoste nei dati ad alta di-
mensionalita.

Il tool sviluppato per la data-analysis e la visualizzazione, in particolare
per le GTM, potrebbe essere particolarmente utile nello studio dello spazio
operativo dove la fisica di rilievo, relativamente ai fenomeni considerati, ha
luogo, consentendo l'individuazione di eventuali similarita tra le diverse vari-
abili. L’identificazione di particolari dipendenze é resa possibile dall’analisi
di pattern simili nella distribuzione relativa delle variabili in ingresso al sis-
tema nelle mappe 2-D.

Una parte rilevante delle attivita di dottorato € stata spesa applicando
queste tecniche all’analisi dei diversi tipi di disruzioni che possono verificarsi
al JET, facendo riferimento alla classificazione manuale che ¢ descritta in
|P.C. de Vries, et al., Nucl. Fusion 51 (2011) 053018], dove specifiche catene
di eventi sono state individuate e utilizzate per classificare le disruzioni. La
classificazione ¢ parte di uno scenario particolarmente complesso per la cui
analisi é stata molto onerosa in termini di tempo. La caratterizzazione dello
spazio operativo in termini di diverse classi di disruzione pud portare ad una
migliore comprensione globale del fenomeno, nonché a metodi di prevenzione
e mitigazione pitt mirati. Un’analisi preliminare condotta sia con SOM che
con GTM ha dimostrato che le mappe sembrano auto-organizzarsi in modo
tale che le disruzioni che appartengono alla stessa classe tendono ad aggre-
garsi, definendo in questo modo delle regioni in cui una determinata classe
risulta essere predominante rispetto alle altre.

Come descritto in [2], le potenzialita del mapping dello spazio operativo
di JET con le GTM, possono essere sfruttate per sviluppare una classifi-
cazione automatica relativamente alle sette classi di disruzione considerate
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per la parete in carbone. Ogni disruzione viene proiettata sulla mappa e le
probabilita di appartenenza alle diverse classi vengono monitorate durante
I’evoluzione nel tempo, restituendo la classe piu probabile per I'impulso con-
siderato. Utilizzando la stessa mappa GTM per scariche con la parete metal-
lica (ILW), selezionate dalle campagne sperimentali C28-C30, si & trovato
che le prestazioni in classificazione si deteriorano in modo significativo, specie
per quanto riguarda alcune classi di disruzione. Quindi, ¢ stata costruita una
nuova mappa GTM per rappresentare il nuovo spazio operativo del JET. Uti-
lizzando questa mappa sulla totalita delle disruzioni verificatesi nelle ultime
campagne, si ritrovano prestazioni molto elevate in classificazione, e quindi
le prospettive per l'utilizzo di questo strumento in tempo reale, sono molto
promettenti [3].

Le potenzialita delle GTM sono state utilizzate anche per la predizione
delle disruzioni ad ASDEX Upgrade [4]: é stata realizzata una mappa GTM
2-D per rappresentare lo spazio operativo 7D di ASDEX relativamente alle
scariche effettuate tra maggio 2007 e aprile 2011. Come si é ottenuto nel
caso del JET, la GTM dimostra chiaramente di essere in grado di discrim-
inare tra gli stati disruttivi e quelli non disruttivi del plasma. Pertanto,
analogamente alla SOM, la GTM puo essere usata come predittore di dis-
ruzioni monitorando la sequenza temporale dei campioni sulla mappa, che
raffigura ’evoluzione del punto di lavoro durante una scarica. Diversi criteri
sono stati studiati per associare il rischio di disruzione di ogni regione della
mappa con una specifica soglia di allarme. Le performance del sistema pred-
ittivo proposto sono state valutate su una serie di scariche provenienti dalle
campagne sperimentali effettuate ad ASDEX da maggio 2011 al novembre
2012.

Per valutare le prestazioni delle metodologie di mapping proposte sono
stati utilizzati alcuni indicatori. Per calcolare la precisione del clustering é
stato valutato ’errore medio di quantizzazione sull’intero insieme di dati,
un indice comunemente utilizzato per la valutazione della risoluzione delle
mappe. Inoltre, per verificare la conservazione della topologia, sono stati
analizzati due aspetti differenti, ossia l’affidabilita del vicinato mappato e
la conservazione del vicinato originale. Inoltre, ¢ stata eseguita sui dati
disponibili I’analisi degli outlier, al fine di quantificare la bonta e Uefficacia
della proiezione [5].

Negli ultimi anni sono stati dedicati notevoli sforzi allo sviluppo di stru-
menti di analisi avanzata dei dati, sia per predire il verificarsi di una dis-
ruzione, sia per studiare gli spazi operativi delle macchine, con ’obiettivo a
lungo termine di far progredire la comprensione della fisica che sta dietro a
questi eventi in vista di ITER. Gli strumenti di Manifold Learning stanno
producendo risultati molto interessanti anche per quanto concerne 1’analisi
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comparativa degli spazi operativi di JET e ASDEX, in relazione alla sviluppo
di predittori in grado di estrapolare da un macchina ad un altra, come pre-
visto nell’ambito della strategia cross-machine [6].

Outline della Tesi

Nel capitolo 1 vengono discusse le prospettive della fusione nel contesto
energetico mondiale come fonte quasi illimitata di energia per il futuro, con
particolare riferimento al ruolo del confinamento magnetico. Inoltre, sono
state introdotte le basi sulle reazioni di fusione.

Nel capitolo 2 vengono descritti gli aspetti principali della stabilita del
plasma nelle configurazioni tokamak, con ’obiettivo di fornire un riferimento
adeguato per tutte le discussioni dei capitoli successivi. In particolare ven-
gono introdotti i principali parametri relativi alla stabilita del plasma, che
sono stati utilizzati per la costruzione dei database.

Il capitolo 3 ¢ incentrato sulla descrizione dei limiti operativi con riferi-
mento ai principali parametri che dovrebbero essere ottimizzati per migliorare
le performance del plasma. Tutto, anche nei capitoli precedenti, é contestuale
all’introduzione dei principali problemi che questa tesi si pone ’obiettivo di
affrontare: analisi, predizione e classificazione delle disruzioni. Dopo le con-
siderazioni sui limiti operativi, vengono discusse le fasi principali, le cause e
le conseguenze dei processi disruttivi, cercando di integrarvi i concetti sulla
stabilita introdotti nel capitolo precedente.

Il capitolo 4 ¢ invece finalizzato a fornire una panoramica sui metodi di

Machine Learning che rappresentano il punto di partenza per tutte le analisi
e gli algoritmi implementati per la predizione e la classificazione delle dis-
ruzioni. Oggi la grande quantita di dati disponibili dagli esperimenti sulla
fusione e il loro carattere di alta dimensionalita, rendono particolarmente
difficile la gestione, ’elaborazione, la comprensione e 'estrazione di quelle
informazioni che sono veramente importanti tra tutte quelle disponibili.
I1 Machine Learning consente di affrontare il problema in modo efficiente.
Viene quindi fornito un quadro generale di tutte le tecniche utilizzate per
I’analisi, con particolare riferimento agli algoritmi di Manifold Learning come
la Self Organizing Map (SOM) e la Generative Topographic Mapping (GTM).
Vengono inoltre descritti metodi di riferimento come il k-Nearest Neighbor
(k-NN) o metodi piu recenti come i predittori conformali, utilizzati per scopi
di validazione e valutazione dell’affidabilita.

Nel capitolo 5 viene presentato lo stato dell’arte relativamente alle tec-
niche di Machine Learning applicate alla predizione e alla classificazione di
disruzioni, descrivendo in particolare le principali applicazioni con le ampia-
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mente utilizzate Reti Neurali, quali Multi Layer Perceptrons (MLP), Support
Vector Machines (SVM) e Self Organizing Maps (SOM), e i metodi statistici
come la Discriminant Analysis o la tecnica Multiple Threshold. Vantaggi e
svantaggi vengono discussi anche con riferimento ad una possibile soluzione
per superare gli svantaggi di questi metodi: "approccio multi-machine.

Il capitolo 6 ¢ dedicato alla descrizione dei database utilizzati per tutte le
analisi che verranno presentate nei capitoli seguenti. In particolare vengono
discussi in dettaglio ’analisi statistica e gli algoritmi di data-reduction che
si sono resi necessari per costruire un database affidabile e statisticamente
rappresentativo.

Gli ultimi tre capitoli contengono le analisi e gli algoritmi implementati
per il mapping degli spazi operativi, la classificazione e la predizione delle
disruzioni. Nel capitolo 7 viene descritto il mapping dello spazio opera-
tivo di JET. Le prime sezioni si occupano di proiezione e visualizzazione
dei dati con metodi di proiezione lineari come Grand Tour (GT) e Principal
Component Analysis (PCA). Nella parte centrale sono stati trattati gli stessi
aspetti sfruttando tecniche non lineari di Manifold Learning, SOM e GTM,
sulla base delle quali ¢ stata effettuata una dettagliata analisi dello spazio op-
erativo. Tale analisi, mostrando la potenzialita dei metodi, € stata eseguita,
per quanto riguarda il modello GTM, mediante la realizzazione di un tool
dedicato. Infine, le performance nel mapping sono state valutate attraverso
I’analisi degli outlier e di indici di performance appositamente proposti.

Nel capitolo 8 viene descritta la classificazione automatica implementata
per le disruzioni al JET. Il capitolo ¢ diviso in due parti: la prima descrive
la classificazione delle disruzioni appartenenti alle campagne con la parete
in carbonio, mentre nella seconda parte é descritta la classificazione con la
parete metallica (ILW) contestualmente alla valutazione della idoneita del
classificatore automatico per applicazioni in tempo reale, unitamente ai sis-
temi di predizione on-line al JET. L’affidabilita dei risultati é stata validata
attraverso il confronto con un classificatore di riferimento basato sulla tec-
nica k-NN, e attraverso i pit recenti predittori conformali, con cui é possibile
fornire in aggiunta alla predizione/classificazione il relativo livello di confi-
denza.

Il capitolo 9 invece é dedicato alla predizione delle disruzioni ad AS-
DEX Upgrade. La prima parte € relativa alla descrizione del database e
della tecnica di data-reduction utilizzata per selezionare un insieme di dati
rappresentativo ed bilanciato. SOM e GTM sono stati utilizzate per map-
pare lo spazio operativo di ASDEX Upgrade e per costruire un predittore
di disruzioni, introducendo al stesso tempo le loro potenzialita in termini di
classificazione. Inoltre é stato proposto I’'uso combinato di questi due metodi
con un regressore logistico al fine di realizzare un sistema predittivo in grado



Xvi PREFAZIONE

di sfruttare i comportamenti complementari dei due approcci, migliorando le
prestazioni complessive in predizione.
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Chapter 1

Fusion and magnetic confinement

1.1 Fusion energy

Fusion is a form of nuclear energy that powers the Sun and the stars and has
the potential to provide an almost unlimited source of energy for the Earth.

The physicist Andreevich Artsimovich in the 1970 wrote that "thermonu-
clear fusion |energy| will be ready when mankind needs it". Considering the
actual world energy situation and the effect on the environment due to the
present harnessing of the different sources of energy, the hope is that time
for fusion is finally arrived.

Fusion represents a source of energy really attractive first of all because
the fuels which have to be used in a typical fusion power plant, water
and lithium, are clean and environmentally sustainable not producing at-
mospheric pollution as the greenhouse gases. Another important point on
the side of fusion is that such fuels are particularly abundant in the Earth,
such that their supply will not represent a problem in the future. Unlike
fission, low atomic number elements can react in such a way to convert mass
to energy through fusion processes, as it happens for example in the Sun,
where massive gravitational forces gives rise to the adequate conditions for
fusion.

In the picture 1.1 we can see a graph representing the nuclear binding
energy per nucleon plotted against the total number of protons and neutrons
in the nucleus, i.e. the atomic mass. Nuclear binding energy is the energy
required to separate a nucleus of an atom into its individual protons and
neutrons. The mass defect is related to the energy released when the nucleus
is formed according to the well known Einstein law £ = Am - ¢*. The most
important feature of figure 1.1 is the maximum around mass number 56 cor-
responding to Fe element. This means that energy can be released if two
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Figure 1.1: Nucleon binding energy. [from: www.schoolphysics.co.uk|

lighter atoms join to form a heavier one (moving from the left side toward
the maximum of the curve) giving rise to a fusion reaction. On the other
hand, according to the graph, energy can also be released if, moving from
the right side toward the maximum of the curve, very heavy atom splits to
form lighter fragments in a fission process.

On Earth conditions for fusion unfortunately are much harder to achieve.
Low atomic number elements, as hydrogen and its isotopes, have to be heated
to very high temperatures for reaching the right conditions for fusion. When
these conditions are met gas mixture evolves into another state of the matter
named plasma, where the negatively charged electrons are separated from
the positively charged atomic nuclei (ions). One of the reasons that makes
fusion not possible normally is that the strongly repulsive electrostatic forces
which arises between the positively charged nuclei prevent them from get-
ting close enough for fusion to occur. But when the temperature increases
to a certain extent, the positively charged nuclei gain energy up to the point
where attractive nuclear forces exceed electrostatic repulsive forces allowing
fusion between the nuclei and the resulting release of energy.

If we consider on Earth a fuel of isotopes of hydrogen, we have not only
to heat such a mixture of gas at temperatures of the order of 100 million
degrees Celsius, but we have also to confine and keep it sufficiently dense in
order to make fusion between nuclei possible. The fusion of hydrogen is the
main reaction that powers the sun too, but in this case the strong gravita-
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tional forces provides a fundamental contribution to achievement of fusion
conditions.

Beyond the very important advantages of fusion energy connected with

environmental impact, one has to consider also the aspect of fuel reserves.
As it will be described in the following, the most convenient reaction through
which fusion can be achieved is the one between an equal mix of Deuterium
and Tritium. Deuterium can be found naturally in ocean water, can be ex-
tracted at relatively low cost and in particular, assuming the present rate of
total world energy consumption, its supply can be guaranteed for something
like 2 billion years!
The actual limit in terms of fuel reserve is represented by the Tritium: it is
a radioactive isotope with a half-life of roughly 12 years, thus, in practical
terms, it is not available naturally and has to be produced in situ in the
power plant. But it is possible to obtain Tritium by breeding with the iso-
tope Li® of lithium which the blanket of the future fusion devices will consist
of. Always assuming the present rate of total world energy consumption,
estimates indicate that Li® will be available on Earth for something like 20
millennia, before which, very likely, efficient technological solutions to em-
ploy D-D reactions will be ready, even if they produce less energy than D-T
reactions.

Fusion energy has the potential to provide large amounts of base load
electricity, changing deeply and in large scale the way in which the world
consumes energy. The scientific feasibility of thermonuclear fusion via mag-
netic confinement has already been demonstrated, and presently also inertial
confinement experiments are very promising. But in order to make fusion fea-
sible also from the technological and engineering point of view, several critical
issues have to be addressed, many of which will be dealt with in the frame-
work of next generation of fusion reactors such as ITER and DEMO, which
represent one of the most challenging scientific experiments of the upcom-
ing future. Developing proper technologies and transposing all the scientific
achievement to demonstrate not only the technical but also the economical
feasibility of a fusion power plant which provides energy to electric grid, will
require a considerable effort and further improvements of present technolo-
gies.

In the picture 1.2 a schematic representation of a future fusion power plant
is reported. Deuterium and tritium fuel burns at a very high temperature
in the central reaction chamber. The energy is released as charged particles,
neutrons, and radiation and it is absorbed in a lithium blanket surrounding
the reaction chamber. The neutrons convert the lithium into tritium fuel. A
conventional steam-generating plant is used to convert the nuclear energy to
electricity. The waste product from the nuclear reaction is helium.
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Figure 1.2: Schematic diagram of a proposed nuclear fusion power plant. [Fusion:
The Energy of the Universe|
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1.2 Basis of Fusion reaction

As it has been discussed in the previous section fusion can represent an
almost unlimited source of energy for the future. The strong interest in
fusion reactions has been motivated not only by considerations about fuel
reserve and environmental impact, but also by the enormous potential in
terms of produced energy with respect to other fuels and sources of energy.
If we take into account the energy equivalence of different types of fuels, it
is very easy to understand the reason of such a strong interest: the energy
produced with 0.14 tons of Deuterium by fusion reactions is equivalent to
the one produced by burning 10° tons of fossil oil or 0.8 tons of Uranium by
nuclear fission. Among the relevant nuclear fusion reactions, as anticipated
in the previous section, we have those ones among hydrogen isotopes such
as D-D reactions (1.1, 1.2), which produce energy by the nuclear interaction
between two deuterium nuclei according to the two equally likely reactions:

D+D — He®+n+3.27 MeV (1.1)
D+D — T+p+4.03 MeV (1.2)

D-D are the most desirable reactions, since theoretically their supply is eco-
nomical and practically unlimited. Instead the D-T reaction (1.3) is based
on the nuclear interaction between a deuterium nucleus and a tritium nu-
cleus (figure 1.3). Among the possible fusion reactions it is the one with the
highest likelihood of occurrence and it is usually written in the following way:

D+T — a+n+17.6 MeV (1.3)

The 17.6 MeV of energy released through the D-T reaction is in the form of
kinetic energy in part associated with the neutron (14.1 MeV) and in part
with the alpha particle (3.5 MeV). Alpha particle should be confined within
the plasma and transfer its energy by collisions to plasma ions and electrons.
In this case the reaction releases 3.52 MeV per nucleon, whereas for the D-D
(1.2) we have roughly 1.01 MeV released per nucleon. One of the problems in
this case is associated to high energetic neutrons which pose serious problems
of material activation and radiation damages, but the main drawbacks are
related to tritium, Tritium is radioactive, it undergoes beta decay with a
half-life (approximately 12.5 years), and is not naturally present on Earth.
Nevertheless the high likelihood of occurrence with respect to the others,
makes this reaction the main option of worldwide fusion research. In the
figure 1.4 the probability that a fusion reaction will take place is represented
in terms of cross sections for a wide range of energies. In particular at lower
energies the probability for the D-T reaction is much higher than for the
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other reactions.

As anticipated in the previous section tritium has to be supplied directly
in situ, in the fusion power plant, by neutron capture in lithium, that is the
most favorable chemical element for breeding tritium. In this context, the
primary reactions through which tritium can be produced are the following
(1.4, 1.5):

Li® + n(slow) — a+ T +4.8 MeV (1.4)
Li" + n(fast) — T +a+n —2.5 MeV (1.5)

Both reactions give rise to the production of tritium, even if the first one
releases energy whereas the second one consumes it. On the other hand, the
reaction with Li” is particularly important as well, because it doesn’t consume
a neutron allowing the possibility for self-sufficient tritium production in a
fusion reactor, that is each neutron gives rise to the production of at least
one new tritium nucleus. Naturally there is much more Li7, but the reaction
related to Li® has an higher likelihood of occurrence, therefore, it is the
reaction which dominates in the breeding of tritium.

1.3 Magnetic confinement in fusion

Presently, two main experimental approaches are being studied: magnetic
confinement and inertial confinement. The first approach in order to keep
confined the hot plasma uses strong magnetic fields, whereas in the second
approach small pellets containing fusion fuel are compressed to extremely
high densities through strong lasers or particle beams.

Regarding magnetic confinement the widely investigated concepts are
tokamaks (and spherical tokamaks), stellarators, reversed field pinches, sphero-
maks, field reversed configurations and levitated dipoles. All the machines
are basically 2-D axisymmetric toroidal configurations, except the stellara-
tor, that is an inherently 3-D configuration. Among all the configurations
tokamaks have achieved the best overall performance, followed by stellara-
tors. These configurations (figure 1.5) are all characterized by strong mag-
netic fields, reasonable transport losses and can operate in stable conditions
with acceptable performance. Unlike tokamaks, stellarators do not require
toroidal current drive in a reactor but the complexity and the costs related
to the achievement of the 3-D magnetic configuration are a not negligible
disadvantage.

In general, the presence of large toroidal magnetic fields implies reactors
of certain size, and this means higher costs, whereas in the case of other
configurations as the reverse field pinch, the toroidal magnetic field is much
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smaller, as well as the costs, but unfortunately it corresponds to poor plasma
performance with higher transport losses. Furthermore, tokamaks and stel-
larators configurations can be MHD stable even without the presence of a
conducting wall near the plasma, whereas devices as reverse field pinches
would require ideally a perfectly conducting wall with control feedback sys-
tem for steady state operations. There are advantages and drawbacks for all
the configurations, but so far tokamaks remain the most attractive configura-
tion for a reactor, in fact ITER, which should demonstrate technological and
engineering feasibility of a burning plasma experiment, will be a tokamak.
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Chapter 2

Plasma stability in tokamak
configurations

2.1 Introduction

The equilibrium of plasmas embedded in a magnetic field can be described
by the magneto-hydro-dynamic (MHD) theory. MHD instabilities have the
effect to strongly restrict fusion performance in magnetic confined plasmas,
mainly because of the operational limits they impose. Such instabilities do
not only limit the device operational domain reducing the achievable per-
formance, but when they occur on a large scale often they can degrade the
confinement leading to a sudden loss of plasma current and energy, that is
a disruption. Plasma energy is lost within a time span of few milliseconds
exposing the plasma facing components to severe thermo-mechanical stresses
and conductors surrounding the vessel to huge electromagnetic forces. The
deposition of the plasma energy on the vessel walls can cause deformations,
structural damages, and eventually melting or evaporating of the in-vessel
components. All these aspects not only drive structural and mechanical de-
sign of the machine, but also make necessary to avoid or mitigate disruptions
in order to preserve the integrity of the machine.

2.2 Magnetic confinement with Tokamak con-
figuration
A thermonuclear fusion plasma, due to its high temperature, is not allowed

to come directly in contact with the wall, because the materials eroded by
the plasma itself would quickly cool this latter. One solution to overcome this

13
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problem is to confine and thermally insulate the fuels in a chamber by mag-
netic fields. A charged particle ¢ moving in a magnetic field will undergo a
Lorentz force F = ¢(E+v x B) perpendicular to both the direction of particle
motion (with velocity v) and magnetic field B, where E is the electric field.
This force is responsible of producing a circular particle motion in the plane
perpendicular to the magnetic field line. In other words a charge particle in
a magnetic field will move along the field line with a spiral trajectory (figure
2.1), whose radius is called gyro-radius (or Larmor radius) and is inversely
proportional to the strength of the magnetic field. As we have discussed in

a

[Zl MAGNET

TOROIDAL
CHAMBER

Figure 2.1: Charged particle motion along a magnetic field line in a toroidal
configuration

the previous sections, tokamaks represent one of the possible approaches to
magnetic confinement of plasmas. As it is well known, tokamak configuration
allows to overcome the inherent end losses that we have in cylindrical geom-
etry. In a pure toroidal system with only a toroidal field, intrinsic factors as
magnetic field curvature and gradient gives rise to a vertical drift in opposite
direction for ions and electrons (with velocities vq; and vqe respectively),
as it is shown in the sketch in Figure 2.2. The electric field resulting by the
charge separation, determines an outward E x B drift of plasma particles
(with velocity vgxg). In other words, a toroidal configuration with purely
a toroidal magnetic field is intrinsically unstable: to avoid radially outward
drift motions and thus that particles hit the wall, it is necessary to twist
magnetic field lines through some additional component. A poloidal mag-
netic field must be superimposed upon the toroidal magnetic field in order
to compensate these drifts. The result is to have helical magnetic field lines
entirely contained within the toroidal chamber. Such a poloidal field, in the
case of the tokamak is produced by a toroidal current flowing in the plasma,
whereas in a stellarator is produced by external coils.
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Figure 2.2: Particles drift in a toroidal configuration

2.2.1 Tokamak coordinate system

Given suitable operative conditions, it has been proved that tokamaks are
stable. Nevertheless in order to increase plasma performance and confine-
ment it is necessary to push relevant plasma parameters close to their limits,
as for example pressure, current and density. This can determine the onset
of different instabilities that affect significantly the confinement leading in
certain circumstances to the abrupt termination of the discharge. Consider-
ing a torus, it is usual to work in a cylindrical coordinate system (R, ¢, z),
where R is the radial coordinate, ¢ is the toroidal angle and z is vertical axis
of the torus (figure 2.3a). When all quantities results to be independent with
respect to the toroidal angle ¢ we are in a condition of axisymmetric. In
figure 2.3b we can see the quantities of interest in the poloidal cross section,
the coordinate along the minor radius  and the poloidal angle 6.

2.2.2 Shafranov shift and equilibrium in a toroidal mag-
netic configuration

Unfortunately, when we connect the ends of a cylinder obtaining a torus, the
condition of MHD equilibrium is no longer satisfied. In fact plasma has the
tendency to expand outward in the direction of the major radius basically for
two reasons. The first one is related to the fact that the pressure forces inside
the cylinder are in first approximation equally distributed on the boundary
of the poloidal cross section, but in a toroidal geometry, the outer surface
has a larger area than the inner one, so that the net force is outwards. The
second one is due to circuit theory considerations, in fact since we are consid-
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Figure 2.3: (a) axisymmetric coordinate system in a toroidal geometry; (b)
poloidal cross section coordinates.

ering a ring where a current is flowing through along the toroidal direction,
we have that current elements shifted by an angle ¢ = 7 repel each other
because the current is in opposite direction. Also in this case the net force
is outwards, or in other words, it tends to expand the plasma ring along the
radial direction. Therefore, a toroidal plasma column is not in equilibrium
because of the magnetic effect given by the current inside and because of the
kinetic effect associated to the pressure of the plasma.

As we have seen in the introductory chapter dedicated to different de-
vices in relation to the magnetic confinement, magnetic surfaces in tokamak
toroidal geometry are essentially circular tubes around the main axis of the
machine (z axis), and the current field lines lie on these magnetic surfaces
that are isobaric surfaces too.

The magnetic field in a geometry as the toroidal one has three com-
ponents: the radial one along the R axis (major radius), the vertical one
along the z axis and the toroidal one along the coordinate corresponding to
the toroidal direction, i.e. along the angle ¢ (along which all the physical
parameters should be equal in every point since we are assuming an axisym-
metric configuration). The basic condition for plasma equilibrium requires
that forces in every point are zero [2|, as reported by the following relation
(eq 2.1):

jxB-Vp=0 (2.1)

where j is the current density, B the magnetic field and Vp is the pressure
gradient.

Flux surfaces in a tokamak configuration look like nested toroidal flux tubes
and are the solution of the Grad-Shafranov equation, which is a differential
equation in terms of a poloidal flux function . Grad Shafranov equation
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can be numerically solved under simple geometrical assumptions (circular
plasma and large aspect ratio, that is the ratio between major and minor
radius), as most of the codes for the equilibrium reconstruction do, as EFIT
for example. Being the plasma enclosed in an electrically conductive shell,
the most important effect associated with the fact that plasma tends to ex-
pand outwards, is that field lines are compressed in the outboard side. This
compression gives rise to an increase of the magnetic pressure that has the
effect to counteract the tendency of the plasma to expand. The resulting
equilibrium state is then characterized by a shift of the fluid outwards with
respect to the geometric center of the circumference related to the poloidal
cross section, which does not correspond anymore to the axis of the mag-
netic configuration in the new equilibrium state. This deviation, defined as
Shafranov shift (A), is shown in Figure 2.4.

Shafranov
Z z shift

Increased
| magnetic
pressure

Figure 2.4: Shafranov shift.

2.2.3 Stabilization with external vertical field and beta
parameter

As introduced in the previous paragraph, in the outboard side the poloidal
field lines are closer each other than the inboard side: this means that the
poloidal field is stronger in the outer region, and, being the magnetic pressure
proportional to the square of the magnetic induction, the resulting force is
inwards and opposes the expansion of the plasma. To counteract the forces
which tends to expand the plasma, the practical solution is represented by
the addition of a vertical magnetic field along the zeta axis, whose interaction
with the toroidal plasma current gives rise to a j x B force in the opposite
direction, i.e. inwards. The fact that a plasma ring is not in equilibrium
alone but we need a magnetic field produced by external sources to keep the
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equilibrium is not a particular property of the toroidal configuration, but
it is a general property of the plasma independently on its configuration.
This general principle is expressed by the Virial’s theorem, which says that
it is impossible to sustain any MHD equilibrium without currents external
to the plasma. At the equilibrium, under certain hypothesis (single fluid
under stationary conditions, circular cross section and large aspect ratio),
the poloidal field on plasma surface at minor radius a and angle 6 is given
by the following formula (2.2):
_ ol l;

By(a,0) = 9o (1+ RioA -cosf)  where A= [+ 5 1 (2.2)

In the expression of A, they appear two quantities of fundamental importance
in relation to plasma stability and equilibrium: the poloidal beta 3y and the
internal inductance [;. The parameter (3 is defined as the ratio between kinetic
plasma pressure, averaged over the plasma volume, and the corresponding
magnetic pressure:

(p)

s=2 (23)

2p0

The poloidal beta simply refers to the poloidal magnetic field By. This
parameter represents a measure of the quality and economic efficiency of the
confinement, and plays a key role in stability. If we consider a plasma ring
with a current flowing inside, the current density inside is fixed, but usually
is not uniform in the cross section. The temperature in the core region
of the plasma is higher than the one in the edge region, and it’s known
that the plasma resistivity, differently by the conductor material like copper,
decreases as the temperature increases. The current tends to flow where the
resistivity is lower, so it tends to concentrate in the center of the plasma
column. Regarding the inductance we can say that in general is defined as
the ratio of the linked flux divided by the corresponding current. Anyway it
turns out quite difficult to define the internal inductance of a plasma column
because normally it’s defined for current filaments. In these cases, when the
current is not filamentary, we can define the internal inductance [; in terms
of magnetic energy, as the following ratio (2.4):

(Bj)

li ==
Bj(a)

(2.4)

where a is the minor radius. In other words the internal inductance is a nor-
malized parameter that gives an indication about radial profile and peaking
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of plasma current, since the poloidal field depends on the plasma current in
the toroidal direction (,). Returning to the considerations about the need of
external sources according to the Virial theorem, the vertical field necessary
to maintain the plasma in equilibrium is expressed by the following equation
(2.5):

,u()]p SRO 1

Its effect is to provide an inward force able to counteract the outward hoop
force that acts on the plasma because of the aforementioned reasons.

2.2.4 The safety factor ¢

Another very important parameter for the analysis of the equilibrium and the
confinement properties of the plasma is the safety factor ¢, which is defined
as: Ad

4= 5 (2.6)
Such a parameter is indicative of the helicity of the field lines, determining
how many toroidal rotations (indicated by the variation of the toroidal angle
A®) are necessary for a single rotation of a magnetic field line in the poloidal
direction (27). If ¢ = m/n and m and n are the integer values corresponding
respectively to the toroidal and the poloidal turns after which a field line
rejoins up on itself, we say that the field line lies on a rational surface,
otherwise we speak about ergodic surfaces. As we will deal with in the next
section, rational surfaces of ¢ and its radial profile play a key role in the
stability of the plasma. The figure 2.5 shows typical profiles of the main
quantities in a large aspect-ratio tokamak. In general, making reference to
the equation of the field lines we have that for tokamaks with large aspect
ratio (£ > 1) safety factor can be approximated as follow (2.7)

o) = =2

- 5B (2.7)

Taking into account the elongation k£ of the plasma shape, on the base of
which 7 = aVk, and the Ampere Law, according to which the poloidal
magnetic field By is defined as

:U’O[p

By =
o 2rr

(2.8)
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Figure 2.5: Typical profiles in a tokamak in the large-aspect-ratio limit R/a —
00, where Bg is the toroidal component of the magnetic field, By is the poloidal
component, p is the pressure, Jg is the toroidal current density and g is the safety
factor [3].

the safety factor at the edge, can be written as (2.9):

B¢ . CL2]€

2RI, - 107 (2.9)

Gedge =

Rational values and radial profile of the safety factor are essential in MHD

stability considerations, as well as the so called magnetic shear, defined as
follow (2.10):

s(r) = — (2.10)

The magnetic shear is strictly related to the resonance concept and has im-
portant implications in MHD stability: it describes basically the variation of
the magnetic field winding angle moving radially through subsequent mag-
netic surfaces. In this context therefore, a strong magnetic shear is generally
good for stability; conversely it results really dangerous conversely when
close surfaces has the same safety factor, because these surfaces can couple
with each other giving rise to resonance phenomena and instabilities. There-
fore,the g-radial profile plays a key role in governing several MHD instabili-
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ties. Furthermore it has also several implications in the characterization of
confinement modes: particularly important examples to this purpose are the
reverse, the optimized and the negative central shear which are associated to
enhanced confinement regimes.

2.3 MHD stability

2.3.1 Basic classifications of MHD instabilities

The macroscopic equilibrium of a fusion plasma can be described by MHD
theory. As it has been described in the previous sections, the equilibrium in
a toroidal configuration is characterized by a set of nested flux surfaces on
which magnetic and current field lines lie. MHD considers the plasma as a
single, globally quasi-neutral fluid, composed of charged particles which can
conduct electrical currents and react to magnetic fields.

MHD equations can be seen as the union of fluid dynamics equations and
Maxwell’s equations of electromagnetism, and can be properly elaborated in
order to describe in stationary conditions MHD equilibria. The equilibria
configurations are linked to a specific device and are defined for a certain
set of boundary conditions. In particular, for the toroidal pinch devices,
the configurations characterizing the equilibria can be found by solving the
Grad-Shafranov equation, which is expressed in terms of the poloidal flux
function ¢ (2.11):

e+ S ey T oy

ORROR 922

Moreover,we have seen moreover that a vertical field produced by an ex-
ternal source is needed to balance the intrinsic tendency of a plasma in a
toroidal configuration to expand outwards along the major radius R. In a
confined plasma, an instability is driven by the free energy contained in the
equilibrium configuration. In a tokamak, there are two main sources of free
energy: the kinetic energy of the plasma and the energy of the magnetic field
generated by the plasma. Instabilities can therefore, be driven by the radial
gradient of either the pressure or the current profile. At low 3, the magnetic
energy is much higher than the kinetic energy and the instabilities will mainly
be current-driven; at high £, we expect the pressure driven instabilities to
become significant.
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Current driven and pressure driven instabilities

MHD instabilities influence the achievable § of a configuration, therefore,
they have to be avoided or kept under control ideally. An example is the
external kink driven by current gradients near the edge imposing restric-
tions on the possible current profiles. Restrictions on the pressure profile
can come from the so-called interchange instabilities or from the ballooning
instabilities. Pressure driven instabilities basically depend on the entity of
the pressure gradient and on the field line curvature.

Figure 2.6: Bad and good curvature for pressure driven instabilities

In figure 2.6 we can see that in relation to the interchange of free energies
between the field lines we may have bad curvatures to which is associated an
unstable situation as the central one, or good curvatures (as the side ones),
where the interchange of magnetic field and plasma works very well to re-
lease free energies providing in this way a stabilizing effect. In other words
when the radius of curvature is parallel to the pressure gradient (so-called
bad curvature)we have a destabilizing effect, while if the radius of curvature
is anti-parallel to the pressure gradient, an interchange of plasma and mag-
netic field will increase the magnetic energy and thus be stabilizing (good
curvature).

Pressure driven instabilities are often associated to internal modes, that
is they occur within the plasma without affecting macroscopically the en-
tire surface region of the plasma column. Ballooning modes are generally
the most unstable pressure driven instabilities and in a tokamak usually are
characterized by a larger amplitude on the low field side of a flux surface,
whereas kink modes, on the contrary, have more or less the same amplitude
along the flux surface. Their stability depends especially by the curvature of
the magnetic field lines. In general pressure driven instabilities are particu-
larly important because they set a limit to the maximum achievable 3 in a
fusion plasma.

Current driven instabilities are connected to the parallel current, and are
typically the so called kink modes, because of the shape associated to the
deformation of the plasma column. In the figure 2.7 for example we can see
a kink instability in presence of a conductive wall, which through the eddy
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currents that flow in its surface gives rise to a restoring force which has the
effect to stabilize the kink. In particular if there were no vacuum region be-
tween the plasma and the conducting wall we could’t have any displacement,
of the plasma surface and only internal kink modes would be possible.
Obviously, to have a perfectly conducting wall surrounding plasma sur-
face is not a viable option with fusion plasmas. We have to consider a wall
with finite resistivity which has the effect to slow down the growth rate of
instabilities as the external kink modes for example. Therefore, a perfectly
conducting wall could greatly improve stability beyond the limit of the ideal
no-wall case, whereas a resistive wall in practice does not change the limit
with respect to the no-wall case but it changes the time scale slowing down
the growth rate. Current driven instabilities in general can be associated to

Conducting Wall

Figure 2.7: kink stability in presence of a conducting wall

internal or external modes, and, as it will deal with in the chapter dedicated
to the operational limits, especially external kink modes are very important
because they limit the maximum toroidal plasma current in stable conditions.

Ideal and resistive MHD

The previous distinction was based on the source of the instabilities. Another
basic distinction is made on the basis of the time scale of the characteristics
phenomena and is between ideal MHD and resistive MHD instabilities. In
the ideal case, we consider the plasma perfectly conductive and, therefore, we
refer to the Alfvén time scale, where the evolution of the instability is limited
only by the inertia of the plasma, which is very small because the mass of the
plasma itself is very small (order of microseconds or tens of microseconds).
If instead we consider resistive MHD instabilities, the time scale is of order
of milliseconds because even if the plasma is not perfectly conductive the
resistivity is low.
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This distinction is particularly relevant since even if the plasma in certain
conditions should be stable in ideal MHD approximation, it could be unstable
because of resistive effects. Furthermore, the flux conservation law, which is
valid in ideal MHD, dictates that magnetic field lines move with the plasma
flow, and therefore magnetic topology is conserved ("frozen"), which in other
words means that magnetic field lines cannot tear or reconnect, as instead
happens in resistive MHD.

2.4 General concepts of linear MHD stability

2.4.1 Mode numbers

Another basic classification is related to the mode numbers and the resonance
position. In the simple case of a circular tokamak with large aspect-ratio,
the modes, or in other words the helicity of the perturbations, are in the
form e(™?="%) where m and n are respectively the poloidal and the toroidal
mode numbers. A mode m,n is resonant in the plasma if inside it or close
to its surface there are magnetic surfaces satisfying the condition m/n = g,
where ¢ is the safety factor describing the helicity of such a surface. Avoiding
resonant modes in the plasma is fundamental for stability in tokamaks.

In the figure 2.8(A) a sketch of the set of Mirnov coils installed on the
STOR-M tokamak for the investigation of MHD instabilities is reported. In
particular two sets of poloidal arrays of 12 Mirnov coils regularly spaced with
a step of 30° at two opposite toroidal sections, allow the measure of poloidal
mode numbers up to m = 6. Toroidal mode numbers can instead be analyzed
by four sets of toroidal arrays, each one composed by 4 discrete Mirnov coils
toroidally separated each one from the others by 90°. This distribution allows
the determination of toroidal mode numbers up to n = 2. In the figure 2.8(B)
some schematic pictures of toroidal (n = 1) and poloidal (m = 1,2,4) modes
numbers have been reported.

2.4.2 Main formulations of linear stability

Also in the MHD framework the most reliable definition of stability is the
one of exponential stability, on the base of which a system is unstable if
any of the modes eigenfrequencies correspond to exponential growth, that is
when the related imaginary part is greater than zero [1] [5]. Beyond eigen-
functions and corresponding eigenfrequencies calculation, another theoretical
procedure for stability analysis is the energy principle, based on the poten-
tial energy variation for a certain plasma displacement £(x). In particular,
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(A) (B)

Figure 2.8: (A) Distribution of toroidal and poloidal Mirnov coils; (B) represen-
tation of toroidal (n = 1) and poloidal (m = 1,2,4) modes numbers from [4]

linear stability can be evaluated by linearization of the equations governing
the system and by analyzing the response to sufficiently small perturbations
around equilibrium conditions. The amplitude of such perturbations satu-
rates above a certain level because of nonlinear processes. Possible sources
of perturbations are typically the onset of an instability or the presence of a
magnetic field error. Let’s consider for example the simple case of a tokamak
with helical field lines where on a poloidal section the magnetic topology is
described by concentric circles and the magnetic field has the following form
(2.12):

B = By¢ + By (2.12)

If we add now to an equilibrium condition (subscript "0") a small radial
perturbation of small amplitude b,, such as b,/ By < 1, the resulting magnetic
field will be given by (2.13):

B = Bo(r) + b.(r)sin(mf — no)r (2.13)

Being the wave vector of the perturbation (2.14)

k = %é - %& where  kj =0 (2.14)

if 2.15 is satisfied, which is analog to consider ¢ = m/n for the considered
field line, then the mode is resonant in the plasma, and a small magnetic
perturbation can give rise to a large field line excursion.

m n
k-B=—By— —B, =0 2.15
—Bo — 5 Bo (2.15)
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Considering the resistive effect, we have a broader range of accessible states
and magnetic field lines can tear giving rise to significant changes of topology
such as reconnection phenomena and the formation of magnetic islands as
shown for example in figure 2.9.

| — -
e ——
.-_.——'—'——_‘—_‘—'—-—\_._._——'—'__'_——‘—\——_

Figure 2.9: (a) Field lines tearing and reconnection; (b) m = 3 magnetic islands
(from [6]).

The energy principle

Energy principle for ideal MHD is based on the fact that if a perturbation of
a given equilibrium condition reduces the potential energy associated to the
configuration, the considered equilibrium is unstable. Given a certain equi-
librium condition, if F' represents the force arising because of a displacement
€, the potential energy will be defined by the following equation (2.16):

SW = —3/ F.-¢dr (2.16)
2 Vol

The linearized force is given by the relation 2.17

F :jl X BO +j0 X B1 — Vpl (217)

where the equilibrium is indicated by the subscript 0, whereas the perturba-
tion by the subscript 1. Regarding the perturbed terms, p; is obtained by
integrating the linearized adiabatic equation, B; is obtained by integrating
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Faraday’s induction law, whereas the perturbed current density j; is calcu-
lated through Ampere’s law. The final formulation for the variation of the
potential energy is the following 2.18:

2

5W=%/ <7po(V-£)2+(£'VPo)V'5+B—1—10'(BIX5)>dT+
plasma Ho

sz)
+ dr
/vacuum ( 2#0

As it has been said above, plasma equilibrium is considered unstable if for
any physically allowable displacement & the corresponding variation of po-
tential energy is negative. In particular we can distinguish in the previous
equation the pressure driven term (£-Vpg) V- £ and the current driven term
jo - B1 X & : depending on the term which results to be prevalent between
the two, the mode will be considered pressure driven or current driven. The
integral in the second row of the equation (2.18) represents instead the trans-
fer of energy to the vacuum region (B, is the magnetic field in the vacuum).

Stability problem is usually addressed by considering the behavior and
the time evolution in response to perturbation of small amplitudes. Conse-
quently it is possible to linearize the considered systems of partial differential
equations for which there exist several numerical techniques that make com-
plex problems of stability analysis tractable. Obviously, the theory of linear
stability cannot predict or extrapolate the behavior of the system interested
by a non-linear evolution of stability, but experiments have proved that a
plasma unstable according to linear MHD stability, often evolve unavoidably
to a state of dramatic deterioration of confinement. In this sense therefore
linear stability provides a strong base for such an analysis.

(2.18)
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Chapter 3

Operational limits and
disruptions on Tokamaks

The goal of fusion research is to achieve the conditions for a magnetically con-
fined burning plasma. In particular when adequate conditions are provided,
in a D-T plasma, a particles heating alone is sufficient to sustain plasma
temperature against energy losses, without the further need of additional
heating. This operational point is called ignition, and basically identifies the
condition at which a nuclear fusion reaction becomes self-sustaining, as it can
be expressed through the figure of merit represented by the triple product of
density, temperature and confinement time (3.1). For a D-T plasma the value
has to be of a certain order, as it is expressed by the following condition:

nTrg > 10%m™> keV s (3.1)

The value can change depending mainly on the considered profile for density
and temperature. Such a condition is derived on the base of the well known
Lawson criterion. The aim is to give rise to the conditions needed to self-
sustain a plasma with a temperature of 10keV, a confinement time of several
seconds and a fuel density of the order of 10%° particles/m3. The fusion en-
ergy gain factor @, is defined as the ratio of fusion power produced by nuclear
fusion reactions to the power needed to sustain the plasma. The condition
of Q = 1 is referred to as break-even (figure 3.1). Commercial power plants
would require a QQ value between 20 and 30, whereas the technical objective
for ITER will be a minimum gain of ) = 10 for at least 300 seconds and to
demonstrate steady-state operation with a () = 5 for several thousands of
seconds [1|. The fusion power in a tokamak device has different constraints,
some of them are technical and economical constraints as the machine size
or the applied magnetic field, others are related to physical limits connected
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Figure 3.1: Figure of merit of fusion performance (Triple Product nT'7g)
[www.efda.org].

with the stability concept, as for example § which should be maximized for
the reasons already discussed in the previous chapter.

In order to achieve the target of nuclear fusion, the experiment have to
maximize three basic quantities: fuel density n, energy confinement time 7z,
and the normalized pressure beta. The optimization of this parameters is
often limited by the onset of MHD instabilities that can be driven basically
by the gradients of the plasma current or the pressure profiles. MHD insta-
bilities on macroscopic scales can lead to the degradation of the confinement
(soft limit) or in the worst case to the abrupt termination of the discharge
with a disruption (hard limit). Maximizing f requires to increase as more as
possible plasma pressure and stored energy and to do this we have only the
possibility to act on the available external control parameters. To increase
the temperature for example we have to apply more auxiliary heating, if we
want to set the density (feedback controlled) to a certain level, we have to
act on the gas fuelling rate, whereas the control of the plasma current has to
be done through the induced loop voltage and therefore through flux regula-
tion.

Furthermore, depending on the regimes or foreseen operational scenar-
ios, the optimization of plasma performance comes up against different con-
straints. There are scenarios where such a optimization requires a proper
shaping and control of pressure and current density profiles, as well as we
have for example in the case of optimized or reversed shear scenarios |[2].
An extensive discussion about operational limits is beyond the scope of this
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thesis, nevertheless they will briefly discussed and summarized all the main
constraints with particular reference to their connection with disruptions.

3.1 Operational limits

Disruption-free operations in a tokamak are limited by well known opera-
tional limits not necessarily related directly to a violation of an MHD stability
boundary: the current and the pressure limit, which are a direct consequence
of development of an ideal MHD instability, and the density limit which is
more directly a consequence of an excessive radiation from the plasma, ac-
companied by a progressive deterioration of plasma energy and confinement.
This does not mean that during the chain of events that leads eventually to
disruptions there is no an intermediate MHD instability which contributes
to the final loss of confinement.

The violation of these operational boundaries in tokamaks leads to the

onset of MHD instabilities, often characterized by helical perturbations, as
those ones described in the previous chapter. These MHD instabilities grow
non-linearly in the final phase until a major disruption occurs. In the present
generation of medium-size tokamaks the loss of thermal energy has a typi-
cal time scale of ~ 100us. The rapid cooling due to the thermal quench
and the consequent increase of plasma resistivity gives rise to the fast decay
of the current, known as current quench. Coming back to the description
of the three basic operational boundaries, the current limit and the density
limit can be described making reference to the well known Hugill diagram,
where the inverse of the safety factor at the edge 1/¢q, is plotted against the
so-called Murakami parameter nR/B;, that is basically a normalized line
averaged density (figure 3.2).
Since the temperature has an optimum value at ~ 20keV, n, that here in-
dicates the line averaged density, should be as high as possible. But density
is limited by disruptions due too excessive edge cooling: for a given plasma
current there is a maximum achievable line averaged density.

The density limit, also known as Greenwald limit [3], is expressed by
the condition ngw (102°m=3) ~ I,(MA)/[ra*(m?)]. This is an empirical
boundary, and especially in the last years has increased due to application of
additional heating and advanced wall conditioning methods that reduce the
strong radiated power related to impurities. In fact, as it will be discussed in
the section dedicated to the analysis of the causes and the chain of events of
disruption, there is a strong connection with the radiation instabilities such
as the radiative collapse and MARFE limit.

Regarding the current limit instead, as we can see in the Hugill diagram
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Figure 3.2: Hugill diagram: density limit (top); current limit (bottom) [4].
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[5], the condition 1/g, > 0.5 or analogously ¢, > 2 represents an hard limit
because in the region where this condition is not satisfied, the external kink
mode m = 2,n = 1 becomes unstable and the discharge will unavoidably
disrupt. Considering the dependence between the safety factor at the edge
and the plasma current, this is actually a limit on the maximum current
for a given magnetic field. This mode could in theory be stabilized with a
highly conductive wall surrounding closely the plasma, which is not possible
because of the need to reduce the interaction of the plasma with the wall.

As the latter limit, also the pressure limit has an MHD origin. In partic-
ular, it is related to the Troyon ideal MHD limit [6] on the volume averaged
toroidal beta (;, which is, in other words, a limit on the maximum plasma
pressure that can be confined by a given magnetic field. The calculation had
been done taking into account ideal MHD instabilities as ballooning modes
and Mercier criterion |7]| for optimized plasma current and pressure profiles,
and what had been found was that n=1 free boundary kink modes set a limit
on the maximum achievable 3.
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Figure 3.3: Beta limit in different tokamaks

As it is reported in Figure 3.3, the normalized volume average beta
By = Buw)/Lp(MA)/a(m)B(T)] should not exceed the value of approxi-
mately 3.5%MA/(m - T) [8]. It is important to highlight that these bound-
aries must not be considered rigidly, in fact there exist conditions in which
the described limits can be exceeded, and, on the other hand, there are con-
ditions far from these boundaries where the plasma however disrupts. This is
due basically to the high complexity of the underlying physics and MHD sta-
bility on the base of the processes which drive disruption phenomenon, and
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this is the reason whereby it is so important to develop different approaches
as data-driven methods for disruption prediction.

3.2 Disruptions

3.2.1 Introduction

A disruption is a sudden loss of stability or confinement of a tokamak plasma:
plasma energy is lost within a time span of few milliseconds exposing the
plasma facing components to severe thermo-mechanical stresses and con-
ductors surrounding the vessel to huge electromagnetic forces. As it has
been introduced in the previous section, the operational space accessible to a
tokamak is highly restricted by disruptive events. Moreover, disruptions, in
addition to affecting the execution of the research program, can constitute a
risk for the structural integrity of the machine, especially in large devices.
Therefore, it is particularly important, especially in view of ITER, to im-
prove the understanding of the processes which lead to disruption. Deeply
investigations have been carried out on precursors, causes and consequences
of disruptive events. The main phases preceding a disruption are represented

in figure 3.4.
|
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Figure 3.4: Main phases of a disruptions |[5]

The pre-precursor and the precursor phase, which are often considered a
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unique phase, refer to a change in the underlying conditions up to a critical
point when there is the onset of an MHD instability.

The fast phase, also referred as thermal quench, is characterized by a
central temperature collapse in few millisecond, followed by a rapid increase
of plasma resistivity with a redistribution of the toroidal current and a flat-
tening of its radial profile. The resulting flattened current profile is also
associated to a consequent decrease of plasma internal inductance that, for
flux conservation, gives usually rise to a characteristic spike of the plasma
current and large transient negative loop voltage.

The final phase, referred as current quench, is characterized by the decay
to zero of the plasma current: it is not uncommon to have current decays
greater than 100[MA /s|, whereas time scales are determined by the particular
conditions in which the process sets up |[5].

3.2.2 Main causes and mechanisms

The main physics instabilities which lead to disruption are directly related to
the overcoming of the operational limits described in the initial section of this
chapter. Moreover it is of primary importance to understand the underlying
mechanisms at the base of the chain of events which characterize disruptions
[9].

Depending on the conditions in which the discharge is evolving, the same
modes which are often observed as precursors can lead to disruption or not.
The complexity of the mechanisms which can get the plasma unstable makes
the prediction very challenging.

The density limit, for example, is strongly connected to the mechanisms of
radiation instability that builds up when the total radiated power exceeds the
heating power. Plasma radiated power has different origins: Bremsstrahlung
radiations, cyclotron radiations and the radiations due to line emissions. Ra-
diated power from impurity ions represent the most important source of radi-
ation in the plasma: besides enhancing Bremsstrahlung losses, the presence
of impurities produces further losses due to line radiation and recombination
with a power density equal to Pr = R(T,)n.n;, where n, is the plasma den-
sity, n; id impurity ion density and R(7,) is the radiation efficiency.
Radiation instabilities can set up with different mechanisms [5] [10]. One of
these is by radiation cooling of the plasma edge where impurity ions are not
fully ionized: as the density increases at the edge, the temperature decreases
and the line radiation from low-Z impurities is strongly enhanced. As we can
see in the picture 3.5, radiation efficiencies have a peak at low temperatures.
This produces a poloidally symmetric radiation at the plasma edge, where as
more the temperature is reduced due to strong radiation losses, the more the
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Figure 3.5: Radiation efficiency of impurities [3]

plasma radiation losses are enhanced, and this gives rise to further decrease
of the temperature self-feeding the instability process.

When the density limit is reached, or, in other words, when radiation
losses exceeds the heating power, the temperature collapse and the contrac-
tion of the plasma current profile by cooling edge makes the plasma unstable
to MHD modes, leading eventually to disruption. This is the basic mecha-
nism at the base of a radiative collapse.

Critical density scales with heating power and low effective charge state
Zegr |11]; therefore, increasing the heating power and reducing the impurity
content in the plasma, it is possible to achieve higher values of density before
to get into the density limit. In this conditions there can be the onset of
another radiation limit, the MARFE (Multifaceted Asymmetric Radiation
From Edge) [12], a poloidally asymmetric radiation instability which devel-
ops usually on the High Field Side (HFS) or near the X-point.

The conditions for the onset of a MARFE depend on plasma-wall inter-
action, flux of recycling neutrals of the working gas and heat flow from the
plasma centre to the edge [13|. In this case the maximum achievable den-
sity does not depend on the input heating power as we have for a poloidally
symmetric radiative collapse, but depends directly on the average current
density, as well as it is clearly expressed by the Greenwald limit. The linear
dependency between density and plasma current density is clearly shown in
the Hugill diagram.
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Another important cause of instability related to radiation is the impurity
accumulation [14| [15|. High-Z impurity accumulation in the plasma centre
gives rise to strong radiation due to the fact that atoms are not fully ionized.
This in turn give rise to flattening or even a hollowing of the temperature
profiles with a consequent decreasing of the current density in the centre due
to raising of plasma resistivity. This picture is also characterized by hollow
q profiles, with values of the safety factor on axis greater than one, and thus
no sawthooth crashes. When this mechanism is amplified beyond a certain
level the central temperature collapses causing internal disruptions due to
the onset of MHD activity.

Regarding the MHD stability, as it has been discussed in the previous
section, two basic restrictions on the accessible operational domain are im-
posed by the limit on the safety factor at the edge,which is a current limit,
and by the £ limit, which is a limit on the maximum plasma pressure which
can be confined for a given magnetic field. The first one is related to the
unstable external kink modes for m=2, n=1, whereas the ideal limit on /3 is
imposed by free-boundary kink modes for n=1.

Assuming a non-zero plasma resistivity, the instabilities which may even-
tually deteriorate plasma confinement leading to a disruption are the tearing
modes. These resistive instabilities are characterized by the development
of magnetic islands due to magnetic flux reconnections, as shown in Figure
3.6. When such modes are destabilized and grow up to a level whereby the
island saturates, the changes in the plasma current profile can determine a
loss of confinement in an always larger region causing eventually a disrup-
tion. Magnetic island stability and evolution is governed by the Rutherford

//’ME

F |

Figure 3.6: Reconnection and magnetic islands
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equation (3.2):

Trdw

where the growth or decay rate of an island of width w can be described
in terms of local resistive time 7z, minor radius s at the rational surface
¢ =m/n and a classical stability index A" (3.3).

s (5)

There exist even situations where double tearing modes occur. Normally q
profile is monotonous and increases from the axis, where it has its minimum,
toward the edge, where it reaches its maximum value. This condition can
also be described in terms of magnetic shear, always positive in these con-
ditions. But in particular regimes or scenarios, as in the case of reversed
shears, or strong impurity accumulation in the centre with hollow current
density profiles, q profiles do not preserve the characteristic of monotonicity.
We can have therefore coupling of the modes related to the same rational
g-values and enhancing of the transport between the corresponding rational
surfaces with the formation of magnetic islands, which, eventually, destroy
the confinement and cause major disruptions.

Often tearing modes and magnetic islands are clear precursors of a dis-
ruption. When they start to stop, or do not rotate anymore together with
the plasma fluid, they lock to the wall and grow with a time scale dependent
on the resistive time constant of the surrounding vacuum vessel wall. The
corresponding radial magnetic field perturbation induces eddy current in the
wall whose magnetic field tends to oppose to magnetic island rotation exert-
ing a force which has the effect to slow down and stop the island.

Besides eddy current forces, MHD instabilities such as locked modes, can
also interact and be excited by error fields (EFs), which are deviations of
the magnetic fields from axi-symmetry. EFs are due mainly to non perfect
alignment of the coils surrounding the plasma; they can excite modes making
them grow until they lock to the wall and the plasma disrupts. Error fields
can be compensated or reduced to a non-critical level through a dedicate
system of external coils, the so-called Error Field Correction Coils (EFCCs).

Regarding the boundary on the maximum plasma pressure, ideal 8 limit
is calculated for optimized current and pressure profiles; therefore, it de-
pends on the particular conditions of operation. Some experiments showed
that such a limit is only reached transiently. On the base of the boundary

re—w/2

(3.3)

rstw/2
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conditions and the considered scenarios, different instabilities limit the max-
imum achievable 5 to a lower value, as Neoclassical Tearing Modes (NTMs)
or Resistive Wall Modes (RWMs) |[2].

NTMs are driven locally by the reduction of the bootstrap current which
depends on the flattening of the pressure profile across a magnetic island
with a consequent enhancing of the local radial transport. The most signifi-
cant NTMs are characterized by mode numbers m=2, n=1, and m=3, n=2.
They can be described by a modified Rutherford equation [16|, where an
additional term takes into account the reduction of bootstrap current. NTMs
pose a serious problem for high performance scenarios, even if presently sev-
eral techniques for their stabilizations have been studied and successfully
applied as shown in the Figure (3.7). The effect on the energy confinement
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Figure 3.7: NTMs stabilization: two DIII-D discharges with (No. 114504, dotted
lines) and without (No. 114494, solid lines) ECCD suppression of an m=3, n=2
NTM. (a) Neutral beam power, (b) S, (c) n = 2, (d) n = 1.(T.C. Hender et al.,
IPB2007, Chapter 3)

due to m=3, n=2 and m=2, n=1 N'TMs can be seen in the evolution of Sy
through the comparison of two discharges in DIII-D. The two pulses are more
or less identical, with the presence of the same sequence of NTMs, but in the
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discharge where stabilization by electron cyclotron current drive (ECCD) is
performed the effect on By is well evident.

In conditions of high plasma pressure, RWMs can cause disruptions as
well. High § plasmas are unstable to external kink modes, and this obvi-
ously represents a limit in the exploitation of high performance advanced
scenarios with high bootstrap current fraction. External kink modes could
be stabilized by a nearby conductive wall, allowing in principle to exceed the
no-wall limit. In Figure 3.8 is reported the calculation of the time evolution
of By for the no-wall limit with the corresponding measures of the MHD ac-
tivity by Mirnov loops and photodiodes. But being a real wall characterized
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Figure 3.8: Time evolution of discharge No. 92544 showing (a) Sy relative to
the computed no-wall limit and the saddle loop amplitude dp,. of the RWM, (b)
measured plasma rotation from CER at ¢ = ¢in and ¢ = 3, and (¢) MHD activity
from Mirnov loops and photodiodes. (A.M. Garofalo et al., PRL. 82, 3811 (1999))

by a finite resistivity, the grow rate of the resulting resistive mode will now
be governed by the resistive time constant of the wall. Also in the case of
RWNMs, different methods for stabilization have been demonstrated by sev-
eral experiments, in particular by using active feedback coils systems and by
plasma rotation.

In advanced scenarios with the presence of Internal Transport Barriers
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(ITBs), Alfvenic growth rate instabilities can build up leading with very fast
time scales to disruption. Being fast, they result to be particularly diffi-
cult to detect and typically give rise to the highest energies and heat loads.
Plasmas characterized by I'TBs exhibit radially localized regions of improved
confinement with steep pressure gradients in the plasma core, which in turn
could drive instabilities leading to disruption. In relation to the achievement
of continuous operation it is well known that a large fraction of bootstrap
current is necessary, and, that discharges exhibiting the formation of ITBs
are favorable to this aim. Experimentally, the presence of such a current
fraction is usually associated with high £ discharges with a weakly positive
or negative magnetic shear in the central region of the plasma column.

3.2.3 VDEs

Another cause of instability is the lost position control of plasma vertically
elongated. It is well known that plasmas are elongated for reasons of stability
and confinement. However, being unstable to vertical displacements, that is
in the direction of elongation, it is necessary a feedback control stabilization
system on plasma vertical position, based on poloidal field coils (see chapter
2). When the vertical control is lost, a Vertical Displacement Event (VDE)
develops, inducing large forces on the surrounding structures. Therefore,
these events are particularly dangerous for the integrity of the machine, even
if the presence of conductive surrounding structures oppose to the displace-
ment thanks to the induced currents, slowing down the vertical motion on
the base of the resistive time. The loss of vertical control can be caused also
by the rapid changes in plasma parameters during a disruption, but in some
cases it occurs before the energy and the current quench, therefore it can be
seen as a cause.

3.2.4 Consequences

As it has been discussed in the introductory section, disruptions represent
a not negligible risk for the structural integrity of the machine. The ther-
mal quench, that is the phase in which a large amount of thermal energy is
lost from the plasma, can cause extremely high thermal loads on the plasma
facing components (PFCs), on the diverter and in general on the first wall.
Presently, no material could withstand all the thermal energy of a large de-
vice as [TER without being heavily damaged or directly melted. Obviously,
there are mechanisms through which a consistent fraction of the thermal en-
ergy is dissipated before to be released on surface materials, as for example
by radiation losses. Furthermore, we have to take into account that the total
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heat flux has to be distributed on the largest possible area. Anyway, the
foreseen heat loads are still too high for PFCs and divertor materials, there-
fore, further mitigation actions must be considered.

Besides heat loads, another serious issue is represented by the conse-
quences of the plasma abrupt current quench: large eddy currents can be
induced in the vacuum vessel and surrounding structures, creating forces
potentially capable of damaging the device. Eddy currents are driven ba-
sically by the movement of the plasma column and by the variation of the
plasma current values. Moreover, during disruptions the plasma can hit the
first wall and a consistent fraction of plasma current can flows directly from
the plasma to the vacuum vessel and the surrounding conductive structures
through the wall-contacting region. The resulting currents flow mostly in the
poloidal direction and are characterized typically by a toroidally symmetric
component due to magnetic flux conservation, and eventually by a toroidally
asymmetric component with mode number n=1, whose origin so far is not
so clear (figure 3.9).

The forces induced by these so called halo currents can be very harmful.

Eddy and halo currents give rise to vertical forces between the plasma column
and the vacuum vessel and forces between the vacuum vessel and the coils.
The problem of equilibrium and vertical stability has already been discussed
in the chapter 3.
Finally, the production of relativistic (runaway) electrons during the current
quench poses another threat to the integrity of the plasma facing components,
especially in the case of high-current tokamaks as ITER. The conversion by
Coloumb avalanche multiplication of plasma current to relativistic electron
current can reach even 70% of the initial plasma current, leading to potential
damages to PFCs.

Observations in present tokamaks have shown that runaway electron can
cause damages due to the deposition of thermal energy on material surfaces.
An additional fraction to this energy is originated from the conversion of the
magnetic energy associated to the relativistic beam [17]. Thus, on the base
of the always improving understanding of the nature of such a phenomenon,
different avoidance or mitigation strategies are currently under study, with
particular reference to their application in ITER.
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Figure 3.9: Example of halo current dynamics in NSTX: (a) vertical motion
leading up to the disruption, (b) contours of halo current as a function of time and
toroidal angle, (c) maximum and minimum current instantaneously measured on
any tile, along with the amplitudes in a simple n = 1 decomposition, and (d) the

plasma current.(from: [18])
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Chapter 4

Machine learning for mapping,
prediction and classification

4.1 Introduction

Today the large amount of data available from fusion experiments and their
character of high-dimensionality make particularly difficult handling, pro-
cessing, understanding and extracting properly what is really important
among all the available information. In fact very often data sets consists
not only in a huge number of examples, but are also characterized by a con-
sistent number of features necessary to exhaustively represent the behavior
of a certain phenomenon for example. Obviously, not all the features have
necessarily the same level of importance, or it can happen that some of them
are redundant or completely useless in relation to a specific objective. This
is a key point for several reasons: first of all, even if it is continuously in-
creasing, there is a computational limit to the amount of data which can be
handled because of the complexity of the algorithm, the required memory,
etc. Furthermore, high-dimensionality makes data very difficult to interpret;
scientists often have to deal with problems involving high-dimensional data.

The most obvious issue is visualization; when the data dimension is
greater than three cannot be visualized and it becomes harder to perceive
similarities and dissimilarities between different variables. Furthermore, the
sampling of the space is harder due to the high number of possible data
samples. Essentially, the amount of data to achieve a given spatial density
of examples increases exponentially with the dimensionality of data space
(empty space phenomenon). Generally speaking, algorithms that operate on
high-dimensional data are faced with the "curse of dimensionality" and the
associated issues, resulting in a very high complexity. For example, organiz-

49
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ing and searching data relies on detecting areas where objects form groups
with similar properties; in high-dimensional data however all objects appear
to be sparse and dissimilar in many ways which prevents common data or-
ganization strategies from being efficient. One approach to simplification is
to assume that the data of interest lies on a low-dimensional manifold, em-
bedded in the high-dimensional space. Thus, data reduced to a small enough
number of dimensions can be visualized in the low-dimensional embedding
space. Attempting to uncover this manifold structure in a data set is re-
ferred to as manifold learning. It is worth mentioning that identifying the
right manifold would also allow to better model the relevant physics. There-
fore,manifold learning has the potential not only to improve the visualization
and the intuitive estimation of problems but also to qualitatively increase the
understanding of the relevant physics.

Moreover, beyond visualization, one has to take into account also the
aspect of the computational burden required by pattern recognition, classi-
fication and prediction algorithms which usually are used immediately after
the initial step of dimensionality reduction. In other words, reducing the
quantity of relevant features in a data set is a fundamental step for the
subsequent application of powerful data-analysis and machine learning tech-
niques |[1].

When we talk about data visualization and mapping, very often we are
intrinsically making reference to the same concept, but sometimes some dis-
tinction are made among methods which provide just visualization and meth-
ods that provide a mapping. In the context of machine learning, mapping
methods are considered mostly able to provide a preliminary feature ex-
traction step, after which pattern recognition algorithms can be efficiently
applied. Instead, data visualization methods can be considered as a subset
of mapping methods based mostly on distance measurements and data prox-
imity. Anyway, in many applications such a distinction becomes in practice
inappreciable.

4.2 Manifold learning algorithms

In the last few years, many manifold learning techniques have been devel-
oped for dimensionality reduction. A number of supervised and unsupervised
linear dimensionality reduction frameworks have been designed [2|, which
define specific procedures to choose interesting linear projections of the data
such as PCA [3| and Grand Tour [4]. These linear methods can be powerful,
especially in terms of data-visualization, but often miss important nonlinear
structures in the data. Recently, several different algorithms have been de-
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veloped to perform dimensionality reduction of nonlinear manifolds. Among
them, there are powerful methods such as Self Organizing Map (SOM), Gen-
erative Topographic Mapping (GTM), Isomap and Locally Linear Embedding
(LLE) [2].

Isomap is a simple method of nonlinear dimensionality reduction that
extends metric multidimensional scaling (MDS) exploiting graph distance
as an approximation of the geodesic distance, instead of the Euclidean dis-
tance. The main idea at the base of the method is to use the distance along a
geodesic path onto the considered manifold as measure of dissimilarity. The
mapping preserve the intrinsic metric of the data, therefore it can be defined
as a distance preservation method.

LLFE instead, similarly to SOM and GTM algorithms, is a topology preser-
vation method. In mathematics, a topological variety or manifold is basi-
cally a topological space that resembles Euclidean space near each point, or
in other words each point of an n-dimensional manifold has a neighborhood
homeomorphic to the Euclidean space in R". LLE defines a eigenvector based
method, and its optimization don’t involve an iterative algorithm, avoiding
in this way the problem of eventual local minima.

The most important feature about manifolds is represented by their topol-
ogy, or, in other words, the neighborhood relationships between subregions of
the considered manifold. Nonlinear dimensionality reduction can be achieved
also with distance preservation, but it turns out to be very constraining. In
certain cases the embedding of a manifold requires that some regions has
to be stretched or shrunk to be properly embedded in a lower dimensional
space. This is the reason whereby generally topology preservation, even if
more complex, seems to be more suitable in this framework.

Therefore, summarizing, dimensionality reduction is the process through
which we can find a suitable representation of our original data, with the aim
of discovering eventually particular structures or patterns which can lead to
more targeted statistical analysis such as clustering, smoothing, probabil-
ity density estimation and classification. In addition to these advantages,
moreover, we have to consider the power of visualization if dimensionality is
reduced to 2-D or 3-D.

LLE, unlike SOM and GTM, for preserving topology proposes a different
approach based on the so-called conformal mapping, which, instead of pre-
serving local distances, preserves local angles. In a certain way local distances
and local angles are linked by scalar products, thus they may be interpreted
as two different ways to preserve local scalar products [2]. Anyway, regard-
ing the different methods, a not negligible point is the computational burden
that has to be evaluated in relation to the specific application. Regarding
Isomap and LLE for example, the spectral decomposition required by the
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two algorithms can represent a heavy computational bottleneck. Going up
with dimensionality and size of databases, their use becomes hard without a
very powerful hardware configuration, and an eventual real-time application
would be particularly challenging.

PCA projeciion
g, T el 18
ARl

LLE projection

Someny

Figure 4.1: Comparison between PCA and Manifold Learning methods (LLE and
Isomap). [from www.astroml.org/book_ figures|

There exist several other algorithms for manifold learning, as well there ex-
ists also different variants of the cited algorithms, but an extensive discussion
about all the methods is beyond the scope of this thesis. Therefore, only the
methods applied for the analysis performed in the framework of this thesis
will be described, in particular Grand Tour and Principal Component Anal-
ysis among the linear techniques, and Self Organizing Maps and Generative
Topographic Mappings among the nonlinear ones. The linear techniques are
simpler and easier to implement than more recent methods considering non-
linear transforms, but often miss important nonlinear structures in the data.
In any case, they turn out to be very useful for an initial analysis about
basic statistical properties and interesting linear structures hidden in data.
Furthermore, some sections will be dedicated to the introduction of reference
classification and prediction algorithms used in the framework of this thesis
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in conjunction with manifold learning algorithms, such as k-Nearest Neigh-
bor (kNN) technique and Conformal Predictors.

Let us consider the problem of reducing the dimensionality of a given
data set consisting of N high-dimensional points in an Euclidean space. The
high-dimensional input points will be referred to as T = {tq, ta,...., tn} with
t; € RP. Let L be the dimensionality of the manifold that the input is
assumed to lie on. The low-dimensional representations that the dimension-
ality reduction algorithms find will be referred to as X = {x1,Xa,...., XN}
with x; € RE.

4.2.1 Grand Tour (GT)

Usually, in order to discover some basic property of a dataset of interest, it
is useful to start looking at data from different points of view, investigating
the highest possible number of lower dimensional representations. This is a
proper method of analysis, especially in those cases for which eventual struc-
tures hidden within data are totally unknown.

The Grand Tour method, introduced by Asimov [4] and Buja and Asi-

mov [5], is a multivariate visualization method that generates a continuous
sequence of low dimensional projections of a high dimensional data set. The
animation obtained provides an overview of the high dimensional space in a
sequence of 2-D plots. Data are looked from all possible viewpoints to get
an idea of the overall distribution.
To create a two dimensional Grand Tour, a sequence of planes is generated.
The set of planes has to be dense in the data space; the sequence of planes
is also required to move continuously from one plane to the next so that the
human visual system can smoothly interpolate the data and track individual
points and structures in the data. Hence, the mathematics of the Asimov-
Buja Grand Tour requires a continuous, space-filling path through the set of
planes in the high-dimensional data space. Then, data has to be projected
onto the planes and observed in a time-sequenced set of 2-2-DD images. Sev-
eral algorithms have been proposed to achieve these two conditions, based
on obtaining a general rotation in the high dimensional space. In this work,
the MATLAB implementation in [6] of the Pseudo Grand Tour algorithm,
firstly described in Wegman and Shen [7], has been used. The main ad-
vantages of the Pseudo Grand Tour, which is an approximate version of the
Grand Tour, are speed, ease of calculation, uniformity of the tour, and ease
of recovering the projection. However, the algorithm is not space filling, thus
only a "pseudo" grand tour is obtained.
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4.2.2 Principal Component Analysis (PCA)

The main purpose of Principal Component Analysis is to reduce dimension-
ality taking into account as much of the variance of our high-dimensional
data as possible.

PCA finds the L directions (vectors) along which the data has maximum
variance and the relative importance of these directions. If data lies perfectly
along an embedding subspace of R, PCA will reveal that subspace; other-
wise, PCA will introduce some errors. Let the first L principal components
of T be P = [py, ..., pr] with p; € R”.

The columns of P are the directions of maximum variation within the
data, and they form an orthonormal basis that spans the principal subspace
so there is no redundant information |3|. The data x; can be approximated
by linear combination of the principal components as x; = P7Tt;, where
PTt; = ¢; are the linear coefficients obtained by projecting the training data
onto the principal subspace; that is, C = [cy, ....,cn| = PTT.

Despite PCA’s popularity it presents a number of limitations. The main
drawback is the requirement that the data lies on a linear subspace. Indeed,
when data lies in a low-dimensional manifold, not in a low dimensional sub-
space, PCA does not correctly extract the low-dimensional structure. Man-
ifold learning algorithms essentially attempt to duplicate the behavior of
PCA, but on nonlinear manifolds instead of linear subspaces.

4.2.3 Self Organizing Map (SOM)

The SOM is a type of artificial neural network developed by Kohonen |[8].
SOMs are widely applied as nonlinear dimensionality-reduction tools in or-
der to convert complex nonlinear relationship between data items into a low-
dimensional space. A SOM can be intuitively interpreted as some kind of
nonlinear PCA. In a SOM the objective is more to preserve the topology,
rather than the distance, in the distribution of the data.

One natural way to put this idea in practice consists of replacing the
hyper-plane with a discrete (and bounded) grid or lattice defined by some
points called prototypes. The prototypes have coordinates in both the em-
bedding and the initial space. They are iteratively fitted inside the data cloud
moving the prototypes together with their neighbors in the lattice toward the
original data points as it is shown in Figure 4.2. Hence, the Self-Organizing
Map is a nonlinear dimensionality reduction technique which performs two
concurrent subtasks:

e Dimensionality reduction: high dimensional inputs are projected on a
low-dimensional regular grid.
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e Data clustering and topology preservation: points close to each other
in the input space are mapped to the same or neighboring clusters in
the output space.

Figure 4.2: Self Organizing Map: prototypes iterative fitting inside the data cloud

Let us consider in more detail the problem of reducing the dimensionality of a
given data set consisting of high-dimensional points in Euclidean space. The
SOM replaces the set of points T = {tq, ta,....,tn} in the D-dimensional in-
put space T onto the smaller set of K prototypes points X = {x1, X2, ...., XK }
with x; € RY . Each prototype point in the low-dimensional regular lattice
corresponds to a point in the original space. Moreover, SOM preserves the
topological properties of the input. This means that points close to each other
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in the input space are mapped on the same or neighboring prototypes in the
embedding space. Preserving neighborhood’s relations in the mapping makes
possible to see more clearly the structure hidden in the high-dimensional
data. The coordinates x are initialized and then updated iteratively during
the SOM training procedure. The SOM runs through the data set T several
times, called epochs. During each epoch, for each t;, the closest prototype
vector x, is determined. Then, the coordinates of all the prototypes are
updated according to the learning rule

x; = nA(i,7)(t; — %) (4.1)

The neighborhood function A(i,7) is equal to 1 for i = r, and falls off ex-
ponentially with the distance d;. between prototypes ¢ and r in the lattice.
Thus, prototypes close to the winner r, as well as the winner itself, have
their coordinates updated, whereas those further away, experience little ef-
fect. Learning generally proceeds in two broad stages: a shorter initial train-
ing phase, in which the map reflects the coarser and more general patterns
in the data, followed by a much longer fine tuning stage, in which the local
details of the organization are refined. We start with a wide range of A(7,r)
and 7 then both the range of A(i,7) and the value of n are gradually reduced
as the learning proceeds. A typical choice forA(7, r) is:

AG,r) = e~/ (4.2)

where ¢ is a width parameter that is gradually decreased. Thus, the SOM si-
multaneously performs the combination of three concurrent subtasks: vector
quantization, dimensionality reduction and topology preservation.

4.2.4 Generative Topographic Mapping (GTM)

Generative Topographic Mapping belongs to the class of the so called "gen-
erative models", which try in a certain way to model the distribution of the
data by defining a density model with low intrinsic dimensionality in the
data space. Through a nonlinear mapping from the latent space to the data
space it generates a mixture of Gaussians, whose centers are constrained to
lie on, a low dimension space embedded in the high-dimensional one and
has to be fitted to the data. This is usually achieved through a form of the
Expectation Maximization algorithm (EM) by maximizing the likelihood or
the log-likelihood function of the model [9].
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In a certain way, GTM has been inspired by the SOM algorithm, at-

tempting to overcome its limitations. In particular, SOM does not define a
density model and the convergence of the prototype vectors are not based on
the optimization of an objective function such as the likelihood function, in
fact the preservation of the neighborhood structure is not guaranteed. Being
a generative latent model, GTM basically tries to find a representation in
terms of a small number of latent variables: in order to be able to visualize
the lower dimensional representation of the data, the latent variable dimen-
sion must be 2 or 3. Since the mapping is defined from the latent space to
the data space, for visualization purposes an inversion of the mapping itself
is required and this is achieved computing the posterior probability in the
latent space through the Bayes’ theorem.
However, we have to take into account that a single data point correspond
to a probability distribution in the latent space, not just to a single point,
reason for which we usually make reference to condensed information such
as the mean or the mode of the posterior distribution.

Let’s describe now in more detail the basic mathematical formulation
upon which GTM is based. GTM defines a mapping from the latent space
(L-dimensional space) into the data space (D-dimensional space). So, given
a dataset in the data space T = {tq, ta,...., tx}, the first step is to map the
latent space, which consists of a regular grid of nodes X = {x1,X2,...., XK },
into the data space through a parameterized nonlinear function y(x; W),
where W is the matrix of parameters representative of the mapping (see fig-
ure 4.3). The objective of the GTM is to define a probability distribution
over the D- dimensional space in terms of latent variables:

p(t) = / p(blx)p(x)dx (4.3)

Since data in reality only approximately lies on a low dimensional mani-
fold embedded in the data space, a certain noise has been included in the
observed data which will be modeled by a radially symmetric Gaussian prob-
ability density function centered on the transformed latent nodes. Thus, the
distribution of t, for a given x and W, is a spherical Gaussian centered on
y(x; W)

BY 7 s ewr—t}
p(t|X,W,ﬁ):<%) el 2l W)=l (4.4)

where the inverse of the § parameter is the noise variance. The distribution
in T-space, for a given value of W, could then be obtained by integration over
the x-distribution. Since the integral is generally not analytically tractable,
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the latent variable distribution is replaced by a prior distribution p(x) con-
sisting of a superposition of delta functions, each one associated with one of
the nodes of the regular grid in the latent space

K
1

P00 = D7 80x — ) (15)
k=1

Substituting 4.4 and 4.5 in 4.3, the distribution function in the data space

becomes:
K

Zp(ﬂxkawaﬁ) (46)

k=1

—_

PtV 5) =

The suggested approach is to use radial basis function (RBF), such as for ex-
ample Gaussians, to perform the nonlinear mapping between the latent space
and the data space. The mapping can be expressed by a linear regression
model, where the mapping function y is expressed as a linear combination of
these basis functions ®:

y(x, W) =®(x) - W (4.7)

where W is a D x M matrix of weight parameters and M is the number of
the basis functions.

Data space

Latent space ]

X2 o \e

Figure 4.3: GTM mapping and manifold: each node located at a regular grid in
the latent space is mapped to a corresponding point y(x; W) in the data space,
and forms the centre of a corresponding Gaussian distribution. In the figure the
correspondences between a data point in the manifold embedded in the data space
and the mean of the posterior distribution in the latent space is also shown.
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The adaptive parameters of the model are W and . Since the GTM repre-
sents a parametric probability density model, it can be fitted to the data set
by maximum likelihood, e.g. maximizing the log likelihood function. This
can be performed, e.g., using the expectation-maximization algorithm.

The likelihood function for a set of i.i.d data points {t1,ts,....,tn} can be
written as:

= [T o0W.9) H( Sp t|xk,w,ﬂ>> (48)

n=1 n=1 k=1

therefore, the log-likelihood function, whose handling is usually more efficient,
has the following form:
K

= ; In (% ;p(tn\xk, W, 5)) (4.9)

Accordingly to the SOM algorithm, GTM can be applied for data clustering
and topology preservation. Being the mapping defined by the nonlinear func-
tion y(x; W) smooth and continuous, the topographic ordering of the latent
space will be preserved in the data space, in the sense that points close in the
latent space will be mapped onto nodes still close in the data space. With re-
spect to the Self Organizing Map algorithm, GTM defines explicitly a density
model (given by the mixture distribution) in the data space, and it allows
overcoming several problems, in particular the ones related to the objective
function (log likelihood) to be maximized during the training process, and
the convergence to a (local) maximum of such an objective function, that is
guaranteed by the Expectation Maximization algorithm.

Visualization

For visualization purposes, the resulting mapping in the high-dimensional
space has to be transposed into the low-dimensional latent space, which is
therefore chosen to be 2-D or three-dimensional (3-D). Extra dimensions
would improve the quality of the results, but data with more than two or
three dimensions can be difficult to interpret. The inversion of the map-
ping is performed by employing Bayes’ theorem, which allows calculating
the posterior probability in the latent space. Once we have found suitable
values W* and S* for respectively the matrix of weight and biases for the
nonlinear mapping and for the inverse of the noise variance, GTM defines a
probability distribution in the data space conditioned on the latent variable,
that is p(t|xy) with & = 1,2, ..., K. But what we are interesting in is the
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corresponding posterior distribution in the latent space for any given data
point t, that is p(xx|t); therefore, in order to compute this latter we can use
the Bayes’ theorem in conjunction with the prior distribution over the latent
variable p(x), as it is calculated in the following expression (4.10):

P(ta|xx, W*, 3%) - p(xx)
Sy Pltalxi, W, %) - pxic)

p(xx|t) = (4.10)

For visualizing all the data points in the latent space, it is then possible to plot
the mean (4.11) or the mode (4.12) of the posterior probability distribution
in the latent space.

K

X = "X, - p(Xie/ta) (4.11)
k=1

X% — argmaz {p(xk|ta)} (4.12)

The mean position x"“**(¢) in the latent space is calculated by averaging

the coordinates of all nodes taking the posterior probabilities as weighting
factors. In figure 4.3, the data point t* is represented in the latent space as
the mean weighted by the posterior probabilities.

Algorithm and implementation [10]

A scheme which summarizes the basic steps for the GTM construction model
is given in the flowchart in figure 4.4.

The Matlab toolbox for the computation of the GTM which has been used
as a base for the implementation of the data analysis and classification al-
gorithms is part of Exploratory Data Analysis (EDA) toolbox described in
[11]. The first step of the computation is the generation of the grids of the
latent points and of the radial basis function centers. Regarding the radial
basis functions in particular, the width o is an important parameter, since in
conjunction with their number and with the number of latent points, deter-
mines smoothness and flexibility of the mapping. Therefore,it is important
to note that even if for computational reasons the algorithm works with a
discrete number of latent points, the mapping is continuous over the latent
space. In fact, it has to correspond to the manifold embedded in the data
space where the centers of Gaussians (corresponding to the latent points) lie
on. The choice of these parameters, as suggested by the main author of the
tool [10], in general is not uniquely defined since it depends on the specific
case, but the important point is that the choice will affect the final mapping.
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Figure 4.4: GTM algorithm flowchart

As general consideration, depending on the RBF width and their num-
ber, we can have larger or smaller overlapping among them, that means we
can have more or less correlation. The more and broader the basis functions
are, the higher the flexibility of the mapping will be, but we don’t have to
lose completely the correlation among RBFSs, otherwise also the smoothness
of the mapping will be lost. A measure of the overlapping among RBFs is
given also by the number of points they have in common; therefore, in order
to preserve the smoothness, we have to guarantee that the number of shared
points is not too low. Regarding the number of latent points, the author
suggests as a good rule to have O(10%) number of latent points as support
of each basis function.

Regarding the nonlinear mapping (4.7), a generalized linear regression
model is usually chosen as parametric nonlinear model, whereas regarding
basis functions, several types could be used, but in the adopted implementa-
tion Gaussian basis functions are used. Once the matrix ® of basis functions
has been computed, the initialization of W can be done randomly or PCA-
based, and [ has to be initialized coherently with respect to W initialization.

The next step is represented by the calculation of the distance A between
any given data point and the Gaussian centers to which latent points are
mapped (A, = [[t, — ®,W]|?). At this point we enter in the iterative pro-



62 CHAPTER 4. MACHINE LEARNING

cedure for the mixture of Gaussians fitting through the EM algorithm. In
the Expectation step the responsibilities 7, that the n-th point t in the data
space is generated from the k-th node of the grid are calculated according to
the following expression:

p(tn|xk7 W7 5)

Tkn = P\X tn’W’ -
kn = P(Xk| f) Zgzlp(tn|xk,W,5)'p(Xk’)

(4.13)

Such responsibilities are the weights in function of which the parameters W
and [ are updated at each iteration until a convergence criterion will not
be satisfied (usually the maximum number of iterations). In other words, in
the Maximization step each component of the mixture of Gaussians is moved
toward dataset points for which it results to have higher responsibility. A
schematic representation of main steps of the Expectation Maximization for
GTM building model is reported in the box of figure 4.5

E-sTEP
« COMPUTE RUSINGAAND B
- COMPUTE GUSING R (g,= >

]rim )

M-sTep 7 A _ps

* CompuTE W= (tD G‘¢>+?J) ®RT
2

* COMPUTE A, WHERIA,, = [|7,~¢,-W||

* UPDATE B ON THE BASE OF R AND A

Figure 4.5: EM main steps.

4.2.5 Extension of the GTM tool for data analysis, pre-
diction and classification

A not negligible part of the work carried out in the framework of this thesis
has regarded the implementation of algorithms for data analysis, classifica-
tion and prediction, which basically are an extension of the basic GTM tool
(and can be applied also to SOMs). The developed tools, which will be
described in conjunction with the results in the following chapters, provide
additional functions related to the mapping of an high-dimensional space, in
particular:
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e evaluation and quantification of the effectiveness of the mapping (Quan-
tization Error measure, Trustworthiness measure, and Topology Preser-
vation measure).

e implementation of different types of representation (basic maps, Pie-
planes and Component-planes).

e tracking of temporal evolution of a new object onto the map (online
and real-time implementation)

e data-reduction algorithm based on the GTM model

G'TM’s tools could be particularly useful in the study of the operational space
where the relevant physics takes place, allowing the perception of eventual
similar patterns and the identification of dependencies or complex relations
in the feature space. Furthermore, these tools have been used not only for
analysis but also as "kernel" for the algorithms of prediction and classifica-
tion, as it will described in the subsequent part of the thesis.

4.2.6 k-Nearest Neighbor (k-NN)

k-Nearest Neighbors algorithm (k-NN) is a reference non-parametric method
used for classification and regression. In pattern recognition, it represents one
of the simple but at the same time used learning algorithm. An object can be
classified on the base of its neighbor by a majority vote: the class membership
will indicate the class with the higher number of neighbors among the k
nearest ones (figure 4.6).

k-NN is defined as an instance-based classifier, unlike GTM for example,
which defines a generative latent model. There are several implementation
of this algorithm, such us the weighted version for taking into account the
different importance of the neighbors on the base of the distance to the
test unlabeled point. k-NN technique requires the definition of a similarity
measure, or in other words a distance measure. The most common used
metrics is the Euclidean distance, but also other metrics such as Hamming
distance can be used depending on structure and properties of the data of
interest. It is a simple and flexible technique whose drawbacks are well
known, as for example the application of the basic majority voting criterion
for classification when the dataset is strongly unbalanced in terms of the
different classes. In this case the class with higher frequency of occurrence
can distort the majority vote among k nearest neighbors. One solution to
overcome this problem is to take into account the distance of each of the k
nearest neighbors with a weighted sum: a common rule is to multiply simply
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Figure 4.6: k-Nearest Neighbor technique with k=3: in thi case the test point z
is classified as triangle.

for a factor proportional to the inverse of the distance from the considered
point to the test unlabeled point.

Anyway k-NN has some strong consistency results. In particular the
algorithm is guaranteed to yield an error rate no worse than twice the Bayes
error rate if the amount of data tends to infinity [12]. Bayes error rate is
referred to the optimal decision boundary that provides the lowest probability
of error for a classifier, given distribution of data [13].

Mahalanobis distance [14]

A particular metrics which has been exploited as similarity measure with the
k-NN technique, is the Mahalnobis distance, whose definition and intuitive
picture are represented in Figure 4.7. If we are considering the problem of
estimating the probability that a test point belongs to a certain set, intu-
itively, it is quite easy to deduce that the closer the point in question is to
the center of mass of the distribution of points , the more likely it belongs
to the set. When the considered distribution of points is not spherical then
the probability of the test point to belong to the set, depends not only on
the distance , but also on the direction.

Therefore,for a multivariate vector x = (x1, 3, ..., T ), assuming a generic
distribution of points with center of mass g = (p1, o, ..., uy) and whose
probability distribution is represented by the covariance matrix S, Maha-
lanobis distance is defined as Dy = /(x — p)TS™1((x — p).

In Figure 4.7 for example we are assuming that the distribution of points
is ellipsoidal. In those directions where the ellipsoid has a short axis the test
point must be closer, while in those ones where the axis is long the test point
can be further away from the center, always maintaining the same probability
to belong to the considered set. The ellipsoid that best represents the set’s
probability distribution can be estimated by building the covariance matrix
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of the samples. The Mahalanobis distance is simply the distance of the test
point from the center of mass divided by the width of the ellipsoid in the
direction of the test point.
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Figure 4.7: Comparison between Mahalanobis distance and Euclidean distance.
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4.2.7 Conformal Predictors

Conformal predictors are placed in the wide framework of the machine learn-
ing techniques that have been developed for prediction and classification pur-
poses. Unlike others methods, they have the peculiarity to provide together
with prediction or classification also the corresponding level of confidence.
The theory of Conformal Predictions is based on the principles of algorith-
mic randomness, and on the Kolmogorov complexity of an i.i.d. (identically
independently distributed) sequence of data instances [15].

Conformal predictors can be used in principle with any method of pre-
diction, such as support vector machines, neural networks, decision trees,
nearest neighbor classifiers, etc. To determine the confidence level for the
classification of a new object, it is necessary to estimate how different a new
object is from the old examples: to this purpose, usually a nonconformity
score is calculated on the base of a defined nonconformity measure. In par-
ticular we are interested to predictions using features of the new object; let’s
consider successive n ordered pairs (t1,y1), (t2,92), ..., (tn,yn), Where z; =
(ti,y;) represents the generic example, which consists of an object t; and the
corresponding label y;. Both the object and the labels belong to measurable
spaces, respectively the object and the label space.

Conformal prediction requires firstly the definition of a nonconformity
measure, which quantifies how different a new example is from old examples
[16]. A bag of size n € N is a collection of n elements that may be identical
and can be given in any order. In the following we will refer to a bag of size
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n with the notation (zi,...,2,). The first step of the conformal prediction
algorithm is the computation of the nonconformity scores «; for any object
of the given bag on the base of a defined nonconformity measure A:

Q= A(<Z17"'7Zi—luzi+17"'7Z1’L>7Zi) (414)

Nevertheless, nonconformity scores have not an absolute value, being rela-
tive to the particular case considered for the given bag of objects (21, ..., Z,).
Therefore, in order to generalize and give a measure of how unusual an el-
ement z is with respect to the other elements of the bag, its score must be
compared with the one of all the other objects. This can be done, for exam-
ple, by computing the so-called p-value, which is defined by the fraction:

#H] = 1, N Oéj Z Oéz}|
n

p-value = (4.15)
This fraction, which is the p-value for z; can assume values between 1/n
and 1, and represents the normalized number of examples belonging to the
bag at least as nonconforming as z;. The closer to its lower bound 1/n the
p-value is, the more nonconforming the object z; is with respect to the other
elements of the bag. If n is large enough, an high level of nonconformity may
define an outlier for the considered class.

In the framework of the classification with conformal predictors, the p-
values have a dual function: they are used to assign the class of a new
element, and, at the same time, on the base of their values it is possible to
define the goodness and the reliability of the classification itself. Thus, if we
consider a new object of unknown label to be classified on the base of the
defined nonconformity measure into one of N available classes, the conformal
predictor will assign to this new object the label of the highest p-value. The
reliability of the prediction is quantified by two parameters, confidence and
credibility, defined as:

Confidence = 1 — 2" largest p-value
Credibility = largest p-value (max(p;), j =1,...,N) (4.16)

The values of credibility and confidence are indicative of the reliability with
which the classification is provided. In particular, assuming that each class
is statistically well represented in the training set, a low value of credibility
means that the new object (test) is not representative of any class of objects
in the bag (training set). Another important point is represented by the fact
that the maximum p-value is not necessarily defined in unique way, in the
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sense that the maximum p-value could be attributed to more than one class.
This is a case of ambiguity, that means the conformal predictor for the given
training set, on the base of the defined nonconformity measure, is not able
to discriminate among the classes which the maximum p-value is associated
with.

As it has been anticipated at the beginning of this section, the nonconfor-
mity score can be computed in different ways. For the classification purpose
of this work the conformal predictor will be based on the nearest neighbor
technique. When a new example z,, = (t,,y,) is given to the conformal pre-
dictor for classification, the nearest neighbor technique finds the object t; of
the training set closest to the new one (t,,) and assign its label y; to the label
yn to be predicted. At this point, in order to quantify the goodness of the
prediction, we have to compare the distance of the nearest object t; with the
distance of the nearest neighbor with a different label with respect to the one
previously attributed to the test object. According to this considerations, the
nonconformity scores can be computed as:

min{lt; —t;| : 1<j<n&j#i&y =y}
Qp = — . =
minf{[t; —ti[: 1 <j<n&j#i&y #y}

(4.17)

distance to z's nearest neighbour with the same label

~ distance to 2's nearest neighbour with a dif ferent label

4.2.8 Logistic regression

Classification is one of the most important topics in statistic and machine
learning, and a simple approach to it is to come up with a rule which pro-
vide a discrete output (binary if the discrimination is between two classes)
depending on the input variables. But in many cases, for example if we want
to take into account the eventual presence of noise in our data, a discrete
output is not the best rule, but probably we would like to provide an answer
with a probability or a level of confidence.

If we define t as the input variable and Y as the output variable, this could
be done simply by considering the conditional distribution of Y given the
input variable t, that is P(Y'|t).

Let’s consider Y as a binary or dichotomous output variable which is coded
as 0 or 1. The logistic regression models the probability that a generic sample
belongs to a class 0 or 1 using t as independent variable or predictor. This
probability is formally defined as:

p(t)

O =t (4.18)

log
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Therefore,p(t) will be given by:

6a+5t

p(t) = T gotht (4.19)
To minimize the misclassification rate, we should predict Y = 1 when p > 0.5
and Y = 0 when p < 0.5. Therefore, logistic regression gives us a linear
classifier, whose decision boundary separating the two predicted classes is
nothing else that the solution of o + St = 0. In Figure 4.8 the logistic curve

is represented.

Figure 4.8: Logistic curve (from http://en.wikipedia.org/wiki/Logistic_ regression).
If p(t) is the probability of the event, the odds of the event is defined as:

p(t)
1—p(t)
The logistic model (logit) is based on a linear relationship between the natural

logarithm of the odds of an event and a numerical independent variable;
therefore, we can express the logistic regression as:

odds =

(4.20)

logit = log(odds) = o + [t (4.21)
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Chapter 5

State of the art: techniques
applied to disruption
classification and prediction

5.1 Introduction

In tokamaks the disruption of a discharge can induce large forces on the sur-
rounding structure and large heat loads on in-vessel components, especially
in large devices as ITER. In this framework, being able to predict and clas-
sify disruptions would be of primary importance for improving avoidance and
mitigation strategies. Physical models able to reliably recognize and predict
the occurrence of disruptions are currently not available, therefore in the last
decade, various machine learning techniques have been exploited as an alter-
native approach to disruption prediction and automatic classification.
Presently, the systems for detection of disruptions are based on more or
less complex combinations of signals that, on the base of a predefined rules
or thresholds, allow to take proper actions for terminating the discharge with
the lowest possible risk for eventual damages on the machine. In ASDEX
and in JET, for example, there is a control system in closed loop based on a
threshold on the locked mode amplitude, which triggers a mitigation system
(a massive gas injection valve in ASDEX). But, very often, what can be de-
tected by these systems is unfortunately the final part of the chain of events
which leads to disruption, and this is not sufficient in many case to avoid
potential damages to machine structures.
In the following section, the most important techniques for disruptions pre-
diction and classification will be reviewed.
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5.2 Machine Learning

5.2.1 Main applications

Neural Networks (NNs) are one of the first techniques used in the framework
of disruption prediction and classification. Neural Networks are basically
an information processing system which try to resemble the way biological
nervous systems, such as the brain, process information. Their structure is
typically based on a large number of highly interconnected processing ele-
ments (neurons), arranged in different layers. Typically they have an input
layer, an output layer and one or more hidden layers, whose number depends
basically by the complexity of the specific task or application. The inter-
connections among neurons of different layers are called synapses and are
characterized by "weights" which are updated during the learning process.
The output of each neuron is computed in function of its weighted inputs
through an activation function.

One of the first predictors of disruptions based on neural networks has
been built for TEXT tokamak [1]. In this work the authors propose a Multi
Layer Perceptron (MLP) to predict the fluctuations of the poloidal magnetic
field measured through Mirnov coils, in order to identify MHD modes m =
2, which are widely recognized as important precursors of the disruptions.
The proposed neural network, trained with one disruptive and a one non-
disruptive pulse was able to predict a disruption in another shot 1 ms in
advance. This approach has been extended with better results by adding to
Mirnov coils measurements the soft X-ray signals |2]: in this case the system
was able to predict some disruptions 3 ms in advance.

Always the same approach has been adopted in another tokamak, ADITYA,
where in addition to Mirnov coils and soft X-ray signals, Balmer o (H,) sig-
nals were used to increase prediction performance, extending to 8 ms the time
in advance with which precursors of density limit disruptions were predicted
[3].

In DIII-D tokamak instead, a three layer MLP was trained on the base
of 33 input magnetic measurements, using a training set of 56 and a test
set of 28 S-limit disruptions. The prediction were performed on the base of
a parameter function of the normalized [y, and the system was optimized
maximizing true positive detection and minimizing false detection. About
90% of the disruptions were correctly predicted.

A NN-based disruptions predictor has been implemented also in the toka-
mak JT-60. Its objective was to predict disruptions caused by density limit,
ramp down of the plasma current, locked modes due to low density, and (-
limit. The neural network was trained with 9 input parameters, by adopting
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a successive retraining procedure on the base of a stability level produced
by the first procedure of training. This led to a success rate of about 97%
of correct prediction 10 ms in advance, not considering disruptions due to
[-limit, that didn’t show clear precursors before the actual disruptions. The
false detections were about the 2% [4]. A separated NN was trained appo-
sitely to predict § limit disruptions but with lower performance.

In ASDEX Upgrade NN-based methods have been widely employed for
disruption prediction. In [5] a NN had the function to trigger a pellet in-
jection system for the mitigation of the disruptions. It was trained on 99
disruptive discharges and 386 non-disruptive discharges, taking in input sig-
nals representative of the stable behavior of plasma, such as the locked mode
or the gg5. The online system was able to correctly recognize 79% of disrup-
tions.

In [6] a neural network predictor has been built using plasma discharges
selected from two years of ASDEX Upgrade experiments. In order to test
the real-time prediction capability of the system, its performance has been
evaluated using discharges coming from different subsequent experimental
campaigns. The large majority of selected disruptions are of the cooling
edge type and typically preceded by the growth of tearing modes, degra-
dation of the thermal confinement and enhanced plasma radiation. A very
small percentage of them happen at large beta after a short precursor phase.
For each discharge, seven plasma diagnostic signals have been selected from
numerous signals available in real-time [7|. During the training procedure,
a self-organizing map has been used to reduce the database size in order to
improve the training of the neural network. Moreover, an optimization pro-
cedure has been performed to discriminate between safe and pre-disruptive
phases. Such a system was able to achieve about 82% of success rate on the
pulses of the same campaigns, but it deteriorated significantly when applied
to subsequent campaigns.

The degrade of performance was almost entirely overcome through a re-
training procedure [8]. The adaptive system contains a Self Organizing Map,
which determines the 'novelty’ of the input of the MLP predictor module.
The answer of the MLP predictor will be inhibited whenever a novel sample
is detected. Furthermore, it is possible that the predictor produces a wrong
answer although it is fed with known samples. In this case, a retraining
procedure will be performed to update the MLP predictor in an incremental
fashion using data coming from both the novelty detection, and from wrong
predictions. In particular, a new update is performed whenever a missed
alarm is triggered by the predictor with which the non-recognize disruptive
discharges were integrated to the training set in the adaptive procedure. The
performance has been calculated on a test set of 536 safe discharges and 128
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disruptive ones, giving a total prediction success rate greater than 93% with
a missed alarm rate of about 13%.

Also for JET there are several experiences where NN-based predictors
have been used to predict disruptions. In |9] a MLP was trained on 86 dis-
ruptive discharges and 400 discharges successfully terminated. A balanced
training set was computed selecting randomly 400 samples from each safe
discharge and the samples of the last 400 ms for each disruptive discharge.
The most important input parameters were found to be the plasma current,
the total input power, poloidal # and the internal inductance of the plasma.
84% of the disruptions belonging to the test set were correctly predicted at
least 100 ms in advance.

Anyway, by testing the proposed approach with the whole pulses, the
performance of the system deteriorates probably because of the fact that
the reduced (for computational reasons) dataset used in the training was
not representative enough of all the possible features for discriminating a
non-disruptive behavior from a disruptive one. In order to overcome this
inconvenient, a clustering method based on a Self Organizing Map was used
to reduce more coherently the size of the training set, allowing the predictor
to reach 77% of correct predictions with only 1% of false detections on a test
set [10].

One of the major drawbacks of the NN approaches is that the network
performance normally deteriorates when new plasma configurations are pre-
sented to the network. The ageing of a neural prediction system is unavoid-
able for the machines, such as JET, where new the plasma configurations
are explored. Improvements might be possible using Novelty Detection (ND)
techniques. In [11], both the prediction and the novelty detection tasks are
performed by the same system using a Support Vector Machine (SVM). The
SVM predictor shows a null percentage of false alarms, while the percentage
of missed alarms is not negligible. However, using the knowledge acquired
during the training phase of the predictor, the system is able to detect the
novelty of new pulses increasing the performance of the entire system. In
particular, the novelty detector is able to justify many of the missed alarms
of the predictor as they are recognized as belonging to new regions of the
operational space.

In |12] the mapping of the 7-dimensional plasma parameter space of AS-
DEX Upgrade (AUG) has been performed using a 2-D self-organizing map,
which reveals the map potentiality in data visualization. The proposed ap-
proach allowed the definition of simple displays capable of presenting mean-
ingful information on the actual state of the plasma, but it also suggested to
use the SOM as a disruption predictor by analyzing the trajectories described
over the map by the discharges under test. Various criteria have been studied
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to associate the risk of disruption of each region of the map to a disruption
alarm threshold. The data for this study came from AUG experiments exe-
cuted between July 2002 and November 2009. The prediction performance
of the proposed system has been evaluated on a test set of discharges (199
disrupted and 1070 non disrupted) different from those used for the map
training, obtaining a very good prediction success rate close to 90%.

A successful experience in JET is represented by the real-time Advanced
Predictor Of DISruptions (APODIS) [13]. In its most recent configuration it
consists of a combination of supervised classification systems, based on SVM
(Support Vector Machines) organized in two layers. The first layer contains
a series of three different SVM predictors, analyzing three consecutive time
windows (each 32 ms long) of data to take into account the history of the
discharge. The outputs of these three evaluations are used as inputs to the
second layer classifier, which takes the final decision whether or not to launch
an alarm. APODIS was trained/tested with 8169 discharges (7648 safe dis-
charges and 521 unintentional disruptions), working in open loop during the
ITER-like wall campaigns of JET (2011-2012). This predictor achieved a
success rate of about 98% with a false alarm rate of 0.92%. with an average
warning time of 426 ms. Regarding the minimum time to perform mitigation
actions in JET, which is 30 ms [14], the fraction of disruptions correctly
detected 30 ms in advance has been 87.50%.

Regarding the framework of disruption classification, a first attempt of
automatic classifier based on NN has been proposed in [15]. Such a classifier,
based on pattern recognition techniques, was trained to discriminate among
4 classes of disruptions: mode lock, density limit/high radiated power, H-L
transition and I'TB plasma disruptions. The considered methods referred to
clustering techniques as Self-Organizing Maps and K-means, and classifica-
tion techniques such as Multi-Layer Perceptrons, Support Vector Machines,
and k-Nearest Neighbours. In particular, to improve the robustness and the
reliability, a Multiple Classifiers system consisting of five MLPs was imple-
mented.

Recently, a new clustering method, based on the geodesic distance on
a probabilistic manifold, has been applied to the JET disruption database
for classification purposes [16]. The proposed approach allows to take into
account also the error bars of the measurements and, through the nearest
neighbor approach, was able to achieve a success rate of about 85% in the
identification of the different types of disruptions, with no type of disruption
classified with a success rate lower than 70%.
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5.3 Statistical methods

Besides Neural Networks, other methods have been applied with remarkable
results in the prediction and the classification of disruptions. In ASDEX, a
very interesting application related to the prediction of cooling edge disrup-
tions is described in [17]. The proposed method is based on discriminant
analysis, a model-based clustering that can be used to estimate probability
density functions within a supervised learning framework. In this specific
application a threshold has been set to discriminate between disruptive and
non disruptive pulses. The parameters which appear in the equation, being
related to the causes of cooling edge disruptions, allow through their rela-
tions to find also some characteristic behaviors of the phenomenon, as for
example the increasing of the internal inductance associated to a contraction
of the current profile. Such a method allowed to detect 80% of cooling edge
disruptions 20 ms in advance.

The data driven techniques described in [12| require a number of safe
and disrupted pulses to build the predictive model. However, for ITER only
a limited number of disruptions are acceptable to avoid irreversible damage
to structures surrounding the plasma. A new view on disruption prediction
has been proposed in [18] using Fault Detection and Isolation technique,
which is a well-tested industrial technique. The prediction is based on the
analysis of the residuals of an auto regressive exogenous input model of the
system in Normal Operating Conditions . Hence, the disruption prediction is
formalized as a fault detection problem, where the non disrupted pulses are
assumed as the normal operation conditions and the disruptions are assumed
as status of fault. The main advantage with respect to the literature is the
fact that the model does not need disruptions to train the system but only
a limited number of safe pulses. The input for the model are the time se-
ries of the radiated fraction of the total input power, the internal inductance
and the poloidal beta coming from ASDEX Upgrade data between 2002 and
2009. Results are promising but lower false alarm rates are needed.

Recently another very promising application has been developed for the
prediction of disruptions based on diagnostic data in the high-f spherical
torus NSTX [19], where an approach of combining multiple threshold tests
has been developed on the base of the values of many signals. The starting
point has been that no single signal or calculation and associated threshold
value give rise to the basis for disruption prediction in NSTX. The main diffi-
culty was related to the fact that the combination of thresholds that produce
an acceptable false-positive rate have too large a missed or late-warning rate
and viceversa. Therefore, an algorithm for optimizing the tuning of the mul-
tiple threshold tests has been developed allowing to achieve a false-positive
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rate of 2.8%, with a late + missed warning rate of 3.7%, and thus a total
failure rate of 6.5%. Such a methods has been tested on a database of about
2000 disruptions, during the plasma current flat top, collected from three run
campaigns.

In JET, besides several NN applications, also other approaches have been
beaten, as for example the fuzzy logic approach. The prediction of the prob-
ability of disruption was based on 12 input signals and 36 logic based rules,
where both input and output signals were categorized according to a certain
ranking among 3 or 5 available ones |[20|. This method has the additional
value to provide the possibility of transposing on the rules some basic physics
related to operational limits for example, even if the optimization of the cate-
gorization of the input variables is achieved by training on a set of disruptive
and non-disruptive discharges, with all the drawbacks previously discussed
about the representativeness of the training set.

5.4 General comments and multi-machine ap-
proach

One of the main critical aspects of the application of these methods, NN-
based and not, is represented by the need itself to require a representative
training set in order to perform efficiently. Having available a representative
training set means basically to have had a certain number of disruptions,
but in larger devices, especially in the case of ITER, they are anything but
desired events.

Another important point is represented by the tendency to deteriorate as
more as we move away from the operative conditions in which the training has
been performed. A possible solution could be to develop a "cross-machine"
predictor which can be trained with data of certain machines allowing to
extrapolate to other machines, independently on their size. In order to be
able to do this, first of all the input plasma parameters must be not only
well representative of the disruptive behaviour of the plasma, but in addition
they must be made dimensionless.

There are already parameters which intrinsically satisfy these requirements,
as qo; and Oy for example, and others that can be made dimensionless by
dividing for a quantity with the same dimension. For example the radiated
power can be divided by the input power to define a radiated power fraction
parameter. For this approach to be really applicable, there should be a rep-
resentative set of dimensionless plasma parameters defined in the same way
in all the machine, and eventual scaling factors have to be defined to be able
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to apply the systems in different machines. Furthermore, a first attempt to
realize a "cross-tokamak" predictor has been described in [21], where a NN
trained on a tokamak was used to predict the time to disruption of another
tokamak (JET and ASDEX Upgrade). The best performance was achieved
with seven dimensionless parameters in input. The results of this study are
quite encouraging, even if, as it would be expected, the system performed
significantly better when tested on the same machine used for the training
too.

Again in this direction, the work presented in [22] described the latest de-
velopments in data-analysis tools for disruption prediction and exploration of
multi-machine operational spaces. In this framework, manifold learning tools
already showed in several applications their potentiality, allowing a very effi-
cient investigation of the operational space where the relevant physics takes
place, unlike most of the other approaches described in this chapter. There-
fore, even if the aforementioned drawbacks keep to be valid also for manifold
learning techniques, they provide the possibility to strongly improve the un-
derstanding about the underlying physics and mechanisms at the base of
disruptions, and they can represent a fundamental resource for extrapolation
studies in the framework of multi-machine approach.
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Chapter 6

The database for JET

6.1 Introduction

A crucial issue for analysis, exploration and mapping of high operational
spaces is represented by the quality of the database in terms of reliability,
and representativeness. One of the main problem in the construction of a
database characterized by high dimensionality and a large amount of obser-
vations, is how to "reduce" coherently available data preserving statistical
significance. Two separated databases have been built with discharges be-
longing to the Carbon Wall (CW) configuration and to the new ITER-like
Wall (ILW) configuration. The distinction is motivated basically by the need
to analyze what is changed moving from a configuration to the other one in
terms of the underlying physics and operational space. This point will be
addressed in the following discussing also from a statistical point of view the
observed differences.

For the Carbon Wall, data comes from plasma discharges selected from
JET campaigns C15 (2005) - C27 (2009), whereas ITER-like Wall (ILW)
database is based on the same set of signals belonging to the campaigns C28
(2011) - C30 (2013). The aim, as it has been discussed in detail in the chapter
dedicated to Manifold Learning, is to learn the possible manifold structure
embedded in the data, to create some representations of the plasma parame-
ters on low-dimensional maps, which are understandable and which preserve
the essential properties owned by the original data. Therefore, proper crite-
ria have been used to select suitable signals downloaded from JET databases
in order to obtain a data set of reliable observations. Moreover, a statistical
analysis has been performed to recognize the presence of outliers. Finally,
data reduction, based on clustering methods, has been performed to select
a limited and representative number of samples for the operational space
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mapping.

6.2 JET CW database

The database is built taking into account a set of signals recorded by sev-
eral diagnostics and available from JET experimental campaigns. For the
selection of the signals to be considered, an analysis based on physical con-
siderations and the availability in real time is carried out, also with reference
to the plasma parameters used from various authors for disruption predic-
tion both on JET [1] and [2]. The selected signals are representative of
the behavior of both the plasma "safe" configurations, i.e. when the pulses
are correctly terminated, and when a disruption occurs. Thus, the database
contains both safe and disruptive pulses selected during the current flat-top,
which are classified making reference mainly to the JET disruption database.
Discharges for which the plasma current remained below 1MA were discarded
as for disruptive events these are usually insignificant at JET.

The parameters considered to build the database are available in real
time in the JET pulse file (JPF) system or can be directly calculated by
other signals available in real time except the qg5 signal. The set of con-
sidered signals is shown in table 6.1. Among all the pulses available from
JET campaigns, only those belonging to the campaigns from C15 to C27 are
taken into account, because, during the shutdown following the campaign
C14, changes were made to in-vessel components such as divertor tiles. In
the aforementioned interval, 10366 pulses are selected, including safe and dis-
ruptive shots. Only the non-intentional disruptions are taken into account.
In the campaigns C15-C27, 428 non-intentional disruptions are retained, for
which all the 10 signals reported in table 6.1 are available. Note that the

JPF Signal Acronym Unit
Plasma current 1, A
Poloidal beta Bp a.u.
Mode lock amplitude LM T
Safety factor at 95% of poloidal flux q95 a.u.
Total input power Piot w
Plasma internal inductance l; a.u.
Plasma centroid vertical position e m
Line-integrated plasma density neyiq m~2
Stored diamagnetic energy time derivative dWg;,/dt W
Total radiated power Proa w

Table 6.1: Set of considered signals
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plasma current in JET reference frame is negative. In this case we make
reference to its absolute values.

According to the literature |1], in order to synchronize the signals on the

same time base vector, a sampling frequency of 1kHz is chosen.
A statistical analysis is carried out in order to identify eventual anomalous
signals and a not negligible number is found to be unusable because of the
excessive presence of outliers or a time evolution with no physical meaning,
probably due to a fault of the corresponding diagnostic during the acquisi-
tion. Such a selection has given rise to a final dataset of 243 non-intentional
disruptions among all those ones available in the considered campaigns. In
fact the resulting database consists of a subset of all the non intentional dis-
ruptions corresponding to specific types, whose composition will be discussed
in the chapter dedicated to the automatic classification. A distinction in dif-
ferent types for JET has been described in the survey in |[3]: it is based
on a manual classification, where specific chain of events have been detected
and used to classify disruptions, grouping those that follow specific paths.
A more detailed picture of disruption classification will be provided again in
the chapter related to the automatic classification.

By analyzing the distributions of the signal values, a proper range of vari-
ation for each signal is assumed to clean the data. These ranges are validated
with the help of JET physicists.

A time instant ¢p.._q4s has been defined for the disrupted discharges,
which discriminates between the non-disruptive and the disruptive phase.
In this discussion, tp._aisr i assumed equal for all the discharges, and it is
set equal to 210 ms following some suggestions reported in the literature |[4].
The choice of using a unique t,,¢_q;s- for all disruptive pulses is widely shared
in the literature and in different machines [1], [2], [5]. The assessment of a
specific t,,._qgisr for each disruptive discharge represents one of the most rel-
evant issues in understanding the disruptive events. However,the relevance
of the topic and the problem complexity led us to consider it a main topic of
future work.

The dataset for each disruptive pulse consists of 210 points for each of the
10 signals(one sample every 1ms), in the time interval [tp — 210, ¢ pms,where
tp is the time in which the disruption takes place. The main statistical pa-
rameters of the cleaned data in the time interval [tp —210, tp|ms are reported
in table 6.2.

Then, confidence limits at 1% and 99% are used for each signal through
the quantile function.

The introduction of a confidence level is widely employed as reported in
the literature [6]. Regarding the utilization of confidence level, it is very
important to point out that practically all the thresholds for cleaning the
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Signal Min Max Mean Median Std

I, 7.00E+05 3.85E+06 1.86E+06 1.87E4+06 4.08E+05
Bp 3.03E-06 3.16E+00 3.17E-01 2.07E-01 3.41E-01
LM 1.00E-04 4.65E-03 5.58E-04 4.55E-04 3.97E-04
Q95 2.02E+00 9.66E+00 4.01E4+00 3.80E4+00 1.06E-+00
Piot 1.46E4+05 4.04dE4+07 5.76E4+06 3.48E+06 5.77E+06
l; 3.62E-01 2.60E+00 1.09E4+00 1.12E400 1.78E-01
Lee 1.26E-03 1.17E+00  2.71E-01 2.76E-01 6.75E-02
neyd 4.02E+18 2.68E+21 1.02E+20 7.47E+19 1.73E+20
AWy /dt  -2.39E+07  1.19E407 -1.09E+06 -7.45E4+05 1.91E+06
Praa 1.01E4+05 1.99E+4+08 4.83E4+06 2.76E+06 8.75E+06

Table 6.2: CW non-intentional disruptions statistics ([tp - 210, tp|ms).

data are chosen with consistent margin with respect to the real limit values
of the signals. The final number of disruptive samples is 38900.

6.2.1 Safe discharges data-reduction

In the considered interval of campaigns (C'15 — C'27), all the 10 signals in-
cluded in table 6.1 are available for the flat-top of 10366 safe discharges. The
pulses for which the plasma current is less than 1MA are discarded obtaining
9000 safe discharges. Moreover, all the pulses for which the signals to be used
are not consistent, from a physical point of view or in relation to a suitable
range of values, are discarded. Being each signal sampled at 1kHz, a huge
amount of data are available for describing the safe operational space.

A first shot selection is performed taking into account that several shots
are repeated with similar settings of the parameters. This analysis is based
on various statistical parameters (mean, median, minimum, maximum and
standard deviation of each signal for all the pulses), and the resulting selec-
tion is widely validated by visual inspection. Finally, 1467 safe discharges are
retained, which results in more than 20M samples. Note that this number is
too large to be handled by the data visualization algorithms. Furthermore, it
is much larger than the number of disrupted samples, for which only the last
210 ms for each discharge are considered. For this reason,data reduction has
to be performed on the safe samples in order to obtain a balanced dataset.
First of all, as for disruptive shots, a data cleaning is performed discarding
the outliers. Then, the k-means clustering technique |7] is employed as a
base for the development of the data reduction algorithm.
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Data reduction algorithm

The application of the k-means algorithm requires the normalization of data
in order to maximize the effectiveness of the clustering. Here, the variables
are normalized between 0 and 1. For each pulse, the samples are grouped in
a fixed number of clusters. Such a number is chosen by optimizing the value
of a clustering validation index (the Dunn Index [8]) for a limited number of
pulses. Here, 10 clusters are used; note that by increasing such a number, no
performance improvement is reached while a greater computational burden
ensues. Then, in each cluster,the samples are selected in such a way to under-
sample the space ensuring to cover the 10-D parameter space.

Let h be the data reduction rate, N is the number of the safe samples
in the cluster, and R is the cluster radius. The cluster is partitioned through
Nec/h 10-D hyper spheres, with radius r; centered in the cluster centroid,
where

i e =1 Nh (6.1)
m—ch/h or 1=1,...,N, X
For each hyper sphere, the sample closest to its surface is retained. In this
case, a reduction rate h = 70 is set. In figure 6.1, the result obtained by the
data reduction algorithm for the shot No. 66389 is visualized through a PCA
projection. Figures 1(a) and (b) show the two principal components of the
ten-dimensional samples before and after data reduction, respectively.

3~ = — - R—— =

F]
-1

Figure 6.1: Result of the data reduction algorithm visualized through PCA (shot
No. 66389): scatter plot of the first two PCs (a) of the dataset; (b) of the dataset
after data reduction by k-means.

In addition to the visual investigation, for evaluating the goodness of the al-
gorithm, the distributions of the original and reduced data sets are evaluated
showing that reduced data statistically reflect the information of original
data, even if with a lower density with reference to the same range of the
considered variables. Figure 6.2 shows the distribution of starting data ad
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reduced data for the ggs.
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Figure 6.2: Distribution of gg5 before and after the data reduction: the statistical
distribution is preserved.

The data reduction algorithm allows one to reduce the original database from
20M to about 0.3M samples. The main statistical parameters for the cleaned
data of the selected safe pulses are reported in table 6.3. Also here, confi-
dence limits at 1% and 99% are used for each signal, leading to about 240000
samples.

6.3 JET ILW database

ITER-like Wall database is based on the same set of signals of table 6.1
belonging to the campaigns C28 (2011) - C30 (2013). Presently, regarding
the safe discharges, the database is still under construction: in the considered
interval of campaigns (C28—(C'30), after a initial selection, mainly on the base
of the availability of all the 10 signals included in table 6.1, the resulting set of
safe discharges consists of approximately 1200 discharges. All the procedures
for shot selection and data reduction have to be applied yet.

Regarding the disruptive discharges, the database consists of 149 non
intentional disruptions from ILW campaign (C28 — (C'30), whose composition
in terms of different classes is summarized in the table 6.5.

A more detailed discussion will be addressed in the chapter dedicated to



JET ILW database

Signal Min Max Mean Median Std

I, 8.16E+05 3.86E+06 2.03E4+06 1.96E4+06 3.12E+05
Bp 6.47E-06 2.95E4+00 3.10E-01 1.92E-01 2.70E-01
LM 1.00E-04 5.00E-03 2.16E-04 2.06E-04 9.18E-05
q95 2.33E+00 7.49E+00 3.89E4+00 3.81E4+00  6.86E-01
Piot 1.00E4+05 3.26E4+07 4.33E+06 1.42E+06 5.30E+06
l; 5.87E-01 2.40E4+00 1.06E4+00 1.11E400 1.16E-01
Zee 1.39E-01 4.71E-01 2.91E-01 3.00E-01 3.66E-02
neyqd 4.01E+18 4.80E+20 6.71E+19 5.10E+19 4.35E+19
dWaie/dt  -2.40E+07  2.52E+07 2.37E4+04 2.36E+04  9.27E+05
Praa 1.00E4+05 9.96E4+07 2.47E+06 6.10E+05 6.39E+06

Table 6.3: CW safe discharge statistics.

Signal Min Max Mean Median Std

I, 9.61E+05 3.42E+06 1.95E4+06 1.92E4+06 3.67TE+05
Bp 3.07E-08 1.22E4+00  2.99E-01 2.31E-01 1.74E-01
LM 1.00E-04 4.28E-03 4.88E-04 4.21E-04 3.38E-04
qos 2.17E+00  5.89E+00  3.65E+400  3.58E+00  6.28E-01
Piot 1.15E+05 2.80E+07 5.27TE+06 4.26E4+06 4.14E4-06
l; 3.79E-01 2.01E+00 1.08E4+00 1.07E4+00 1.98E-01
Zee 1.21E-03 4.23E-01 2.52E-01 2.48E-01 4.60E-02
neyd 4.02E+18 1.13E+21 1.35E+20 1.23E+19 1.06E+20
dWyie/dt  -1.76E+07  3.95E+06 -1.49E+06 -9.50E+05 1.88E+06
Prod 1.16E+05 1.16E+08 5.02E+06 3.67TE+06 5.50E-+06

Table 6.4: ILW non-intentional disruptions statistics ([tp - 210, tp|ms).

ILW Disruptions

Labels Classes Tot %

ASD Auxiliary Power Shut-Down 2 1.34
GWL Greenwald Limit 0 0.00
IMC Impurity Control Problem 109 73.15
ITB Too Strong Internal Transport Barrier 0 0.00
LON Low Density and Low q 7 4.70
NC Density Contol Problem 22 1477
NTM Neo-classical Tearing Model 9 6.04

Table 6.5: Composition of the ILW Database in terms of different classes.
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the automatic classification, nevertheless, as a general consideration which is
important to highlight, in the first campaigns with the full metallic wall there
were no disruptions due to too strong I'TB and disruptions due to Greenwald
limit.
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Chapter 7

Mapping of JET operational
space

7.1 Introduction

In this chapter the high dimensional operational space of JET with the Car-
bon Wall (CW) will be described and visualized using different linear pro-
jection methods such as Grand Tour (GT) and Principal Component Analy-
sis (PCA), and mapped through non-linear manifold learning techniques as
Self-Organizing Map (SOM) and Generative Topographic Map (GTM). The
potentiality of manifold learning methods will be discussed showing several
types of representations, also with reference to the data analysis and visual-
ization tools developed for GTM presented in chapter 5. As integration of
the analysis of the operational spaces there will be also a comparison with
classical scatter plots identifying operational limits and boundaries for the
considered database. All the algorithms have been described in the chapter
5.

Both SOM and GTM maps can be exploited to identify characteristic
regions of the plasma scenario and for discriminating between regions with
high risk of disruption and those with low risk of disruption, quantify and
evaluate the effectiveness of the mapping itself. Some measures have been
implemented to evaluate the performance of the proposed methodologies.
In particular, the precision of the clustering over the entire dataset has been
calculated through the average quantization error for both the nonlinear map-
pings, as well as the trustworthiness of the projected neighborhood and the
preservation of the resulting neighborhood.

Moreover, an outlier analysis has been performed on the available data in or-
der to compare how the two mapping techniques relate in terms of mapping
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94 CHAPTER 7. MAPPING OF JET CW OPERATIONAL SPACE

of observations not representative of the considered datasets.

The results show quite clearly that nonlinear manifold learning techniques
are more suitable for mapping the JET high dimensional operational space,
and what is really interesting is represented by the fact that the two non-
linear methods seem to converge on a manifold with similar characteristics,
which means that such characteristics are strongly related to the intrinsic
properties hidden in the high dimensional data.

The final dataset (all the details about construction and statistical anal-
ysis are reported in the chapter 6) which we will refer to consists of:

e 222 flat-top disruptions (38900 samples)
e 1467 safe discharges (239965 samples)

7.2 Data visualization with linear projection
methods

7.2.1 Projection with Grand Tour

Grand Tour algorithm provides a multivariate visualization method generat-
ing a continuous sequence of 2-D or 3-D projections of a high dimensional
data set. The animation is particularly useful for discovering eventual struc-
tures hidden in high dimensional data, allowing to look at data from practi-
cally all possible points of view.

To investigate the 10-D JET CW data, a sequence of 2-D images has been
generated using Grand Tour algorithm. Figure 7.1 shows four 2-D scatter
plots corresponding to different iterations of the algorithm, i.e. to different
viewpoints, where blue points correspond to safe samples whereas red points
correspond to disruptive samples. As can be noted, safe regions (blue) and
disrupted regions (red) can be identified, even if overlaps are present.

7.2.2 Projection and mapping with PCA

Principal Component Analysis is one of the most popular and mostly used
dimensionality reduction methods. The technique performs an orthogonal
linear transformation of the components of the original input data in such a
way that they are uncorrelated one with each other. The resulting principal
components are ordered and those ones which explain most of the variance
of dataset are retained. For obvious constraints of visualization, only the
first two (2-D visualization) or the first three (3-D visualization) principal
components can be used as new coordinate axes for providing a graphical
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Figure 7.1: Grand Tour projections of 10-D training disruptive (red) and safe
(blue) samples at different iterations.
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representation of the dataset.

The Dimensionality Reduction Toolbox of Matlab, already mentioned in
chapter 5, has been used. The analysis by PCA of the 10-dimensional dataset
allowed among the other things to get an indication of the actual dimension-
ality of the considered operational space. Therefore,the variance retained by
each principal component and the cumulative variance retained by a progres-
sive number of components have been reported in Table 7.1.

JET operational space PCA

Component Variance Cumulative variance (%)

1° 0.3625 36.25
2° 0.1699 93.24
3° 0.1350 66.74
4° 0.1007 76.81
5° 0.0727 84.08
6° 0.0473 88.81
7° 0.0424 93.05
8° 0.0348 96.53
9° 0.0196 98.49
10° 0.0150 100.00

Table 7.1: Variance retained by each component for JET respectively and corre-
sponding cumulative variance.

Figure 7.2 shows the projection of the JET data onto the first two principal
components. Here too, blue points correspond to safe samples whereas red
points correspond to disruptive samples. On the left hand side of the figure,
the safe points have been plotted before the disruptive ones, conversely, on
the right hand side, the disruptive points have been plotted before the safe
ones. As it can be noted, with this representation, two principal components
are not enough to clearly separate the disruptive operational space from the
safe one. The 10-D training samples have been also projected on the first
three principal components, giving a 3-D visualization of the operational
space of JET. Figure 7.3 reports the 3-D PCA projection. The visualization
power of this map is higher than the previous one, even if the overlapping is
still present.
In order to compare the discrimination capability of this projection method
with the mapping obtained with SOM and GTM, which will be discussed in
the following sections, a 2-D mapping has been realized on the base of the
PCA projection with respect to the two first principal components.

The mapping is built on a regular grid of 4900 cells (comparable with re-
spect to the number used for SOM and GTM units) in the 2-D plane, where
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PC2

Figure 7.2: PCA projection of the 10-D training samples on the 2-D PCA; safe
samples (blue), disruptive samples (red).

Figure 7.3: PCA projection of the 10-D training samples on the 3-D PCA; safe
samples (blue), disruptive samples (red).
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each cell is colored depending on its composition: blue cells contain only
safe samples; red cells contain only disruptive samples; gray cells contain
both safe and disruptive samples; white cells are empty (see Figure ?7(a)).
As it can be noted, with this representation, two principal components are
not enough to clearly separate the disruptive operational space from the safe
one. In figure 7.4(b), the composition of the PCA representation in terms of
samples into the cells is reported. The color code is the same as used in the
previous 2-D and 3-D representations.

As can be seen, the blue (safe) cells contain 22.14% of the total samples
and the red (disruptive) cells contain 3.04% of the total samples. Hence,
74.81% of the samples belong to mixed cells, which are the large majority of
the total samples. Note that PCA performs a linear transformation of the
input variables; in order to handle and discover nonlinear relationships be-
tween variables, nonlinear algorithms for dimensionality reduction are more
effective.

msafe samples

B Disruptive sam ples

EMixed samples

(b)

Figure 7.4: (a) PCA projection of the 10-D training samples on the 2-D PCA.
Safe cells (blue), disruptive cells (red), mixed cells (gray); (b) composition of the
2-D PCA projection in terms of samples into the cells: safe cells/samples (blue),
disruptive cells/samples (red), mixed cells/samples (gray).

7.3 Mapping with nonlinear methods

7.3.1 Mapping with SOM

In this section, SOM algorithm has been applied to visualize and analyze
the structure of the 10-dimensional JET operational space. As the range of
variation of the signals is very different, even several orders of magnitude,
and since the manifold learning algorithms make use of space metrics, scal-
ing of variables is mandatory. Hence, before projecting data, each signal in
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the data base has been normalized between 0 and 1 by using the min-max
normalization.

Further knowledge can be added to the intrinsic knowledge contained by the
10-D data associating a label to each sample in the data set: a safe state
is associated to each non disruptive sample, whereas a disruptive state is
associated to each disruptive sample.

As previously cited, the SOM is a non-linear dimensionality reduction
method that produces a low-dimensional map of data by preserving their
topology. The map consists of components called node or clusters. First
of all, the map dimension, i.e., the number of clusters in the SOM, has to
be properly selected. This has been done optimizing some performance in-
dexes commonly used in literature to evaluate how appropriate the clustering
performed by the SOM is |1]. Moreover, limiting the number of clusters pre-
serves the generalization capability of the map. It is mandatory to choose
the map dimension to maximize its capacity to discriminate among patterns
with different features, keeping in the meanwhile a high generalization ca-
pability. A good tradeoff between these requirements is achieved with 4998
clusters.

The resulting map has 10 input neurons and 4998 neurons in the 2-D Ko-
honen layer. In this work, the SOM Toolbox 2.0 for Matlab [1] has been used
to train the SOM. The safe or disruptive label associated to each sample can
be used to identify four main categories of clusters in the SOM, depending
on their composition: empty clusters, which contain no samples; disruptive
clusters, which contain disruptive samples; safe clusters, which contain safe
samples; mixed clusters, which contain both safe and disruptive samples.
The same color code used in the previous section has been associated to each
cluster of the map: depending on its class membership (see Figure 7.5): safe
clusters are blue; disruptive clusters are red, mixed clusters are grey, and
empty clusters are white. Each color, which is representative of a particular
cluster composition, corresponds to a different disruption risk.

The 2-D SOM in figure 7.5(a) clearly highlights the presence of a large
safe region (blue) with an associated low risk of disruption, some disruptive
regions (red), with a high risk of disruption well separated from the safe re-
gion by transition and empty regions. Therefore, safe and disruptive states
of plasma seem quite well separated in the SOM.

The SOM composition is reported in Figure 7.5(b) in terms of samples into
the clusters. As it can be seen, safe clusters contain the 60.03% of the total
samples, the disruptive region contains the 7.61% of the total samples and
the transition region contains the remaining 32.36% of the samples. Note
that, the 69.76% of the safe samples falls in the safe region and the 54.55%
of the disruptive samples falls in the disruptive region. The remaining sam-
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W Safe samples

60,03%

B DEruptive smplkes

B Mixed samples

(b)

Figure 7.5: (a) 2-D SOM of the 10-D JET operational space: safe clusters (blue),
disruptive clusters (red), mixed clusters (grey), empty clusters (white); (b) Com-
position of the SOM in terms of samples into the clusters: safe clusters/samples
(blue), disruptive clusters/samples (red), mixed clusters/samples (grey), empty
clusters (white).
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ples identify the transition region that is mainly composed by safe samples:
the 80.41% of samples in the mixed clusters are safe and the others are dis-
ruptive.

One of the causes of the presence of transition clusters is the choice of
a unique value of t,,._qs for all the discharges. This choice is due to the
lack of information on the length of the pre-disruptive phase for each shot,
and can lead to incorrectly label some samples of disruptive discharges or
to miss some information. Further effort can be devoted in order to reduce
the transition region and better define the boundary between safe and dis-
ruptive regions. Note that the coordinates of the prototypes are known in
the original multidimensional space, allowing identifying the values of plasma
parameters along the boundaries between safe and disruption regions.

7.3.2 Mapping with GTM

The Generative Topographic Mapping algorithm is a probabilistic reformu-
lation of the SOM introduced in [2]. Unlike the SOM, GTM has not been
developed in the context of neural networks but in a statistic framework.
As discussed in the dedicated section in chapter 5, GTM model addresses
some limitations of the SOM such as the lack of a cost function, the lack of
a theoretical basis for parameters, and the lack of a proof of convergence.
Furthermore, in SOM hard assignments are used instead of soft ones (prob-
abilities).

The parameters of the low-dimensional probability distribution and the smooth
map are learned from the training data using the expectation-
maximization (EM) algorithm [3].

The projection of the JET data onto the 2-D GTM map has been ob-
tained using the Exploratory Data Analysis toolbox for MATLAB [4]. Also
here, in order to compare GTM with SOM mapping, a regular grid of 4900
cells (comparable with respect to the number of SOM units) has been con-
sidered in the GTM plane, and the same color code has been adopted: blue
cells contain only safe samples; red cells contain only disruptive samples;
grey cells contain both safe and disruptive samples; white cells are empty
(see figure 7.6(a)).

As in the SOM, the GTM presents a large safe region (blue), some dis-
ruptive regions (red), well separated from the safe region by transition and
empty regions. In figure 7.6)(b) the composition of the GTM in terms of
samples into the cells is reported.

The safe cells contain 79.95% of the total samples and the disruptive cells
contain 10.27% of the total samples. Only 9.77% of samples belong to mixed
cells. Note that, the 92.93% of the safe samples falls in the safe cells and the
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Figure 7.6: (a) GTM map of the 10 D JET operational space: safe cells (blue),
disruptive cells (red), mixed cells (grey), empty cells (white); (b) Composition
of the GTM map in terms of samples into the cells: safe cells/samples (blue),
disruptive cells/samples (red), mixed cells/samples (grey).

73.62% of the disruptive samples falls in the disruptive cells. The remaining
samples identify the transition region that is mainly composed by safe sam-
ples: the 62.35% of samples are safe and the others are disruptive. Then, the
capability of the GTM to discriminate between safe and disrupted samples
seems to be quite better than the SOM.

SOMs are widely used for data visualization and analysis, a lot of tools
are available to explore the maps properties, and the computational complex-
ity is limited also when managing huge amount of data, as in the problem
at hand. To train the SOM only few minutes are needed by a double 6-core
computer. To obtain the GTM map using the same data used for the SOM
mapping, more than 1 hour of computation time was used by the same com-
puter, and the algorithm turned out to be particularly demanding in terms
of required memory. Therefore, from a computational point of view there are
without doubt stronger constraints for GTM’s model construction. Further-
more, there were no comparable tools available for data analysis, but part
of the work carried out in the framework of this thesis has been dedicated
exactly to this purpose.

Regarding the comparison of the two considered topographic maps of the
JET 10-D operational space, it is very interesting to observe how clearly, by
shrinking the SOM along the vertical axis, the manifold identified with the
two mapping techniques look very similar (figure 7.7). Of course, the differ-
ent approach in the non-linear mapping gives rise to differences, but to be
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able to recover so likewise the underlying structure of the data, represents a
good starting point that allows us to deal with the obtained mappings with
a certain level of confidence.

Figure 7.7: a) GTM of the 10-D JET operational space: safe units (blue), dis-
ruptive units (red), mixed units (grey), empty units (white); b) Shrunk version of
the SOM in Figure 7.5(a)

7.4 Comparison with classical scatter plots

In literature, several efforts have been done to define a relationship between
disruption risk and operational ranges. The most common diagrams con-
cerning the tokamak operational ranges are related to the low-q and density
limit (Hugill diagram), and to the [-limit, whose theory has already been
discussed in the chapter 4.

The Hugill diagram shows the operational ranges with respect to the
low-q limit and the density limit. The boundary of operation as limited by
disruptions is plotted against the inverse edge safety factor 1/¢, and the Mu-
rakami parameter n.R/B,; , where n, is the line averaged plasma density (in
m~3). Disruptions generally restricts operation to a region g, > 2 and to
electron density such that (n.R/B;)q, is below a critical value in the range
10 =20 - 10"¥m=2T~! or higher when additional heating is applied. At JET,
a critical value of 40 - 10**m=2T~!, independent of the power, has been em-
pirically found as shown in [5].

Figure 7.8(a) shows the Hugill diagram for the safe samples, whereas fig-
ure 7.8(b) shows the same Hugill diagram for the disruptive samples. Note
that, the points in the diagram correspond to the safe and disruptive sam-
ples in the original space. Darker colors correspond to regions with high data
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Figure 7.8: Hugill Diagram showing the operating regime for: (a) safe discharges;
(b) last 210 ms of disruptive discharges.

concentration, as quantified in logarithmic scale by the color bar. An off-line
signal for the line averaged density is available, even if for a limited number
of the discharges considered in our data base. All the safe data lies in the
region where qg5 > 2. Few disruptive samples exceed the Greenwald limit,
as shown in literature [6]. As it can be noted from the Hugill diagrams,
several plasma configurations, leading to disruptions in less than 210 ms, are
positioned in the same region of the safe discharges, confirming that a scat-
ter plot of two parameters at a time is not suitable to distinguish between
regions with high risk of disruption, and those with low risk of disruption.

Another operational boundary is the -limit. Usually, tokamaks operate
under the levels of Sy = (;(aB;/1,) = 4l; where [y is the normalized Sy and
B¢ is the toroidal . Figure 7.9 (a) and (b) report data for the safe samples
and for the disrupted samples respectively, in the plane ;% versus [;1,/aB;;
here too, darker colors correspond to regions with high data concentration,
as quantified in logarithmic scale by the color bar.

The  limit is given by the black line. As it can be noted, few samples are
over the limit on these graphs. This is mainly because no real high 5 disrup-
tions seem to have happened during the considered period, as shown in [5].
Moreover, the operational space is more complex, hence, it is not possible to
distinguish safe and disruptive configurations looking at their position in the
diagram, as highlighted also in |7].

The Hugill and the S-limit diagrams for safe and disruptive samples clearly
show that it is not possible to distinguish safe and disruptive regions look-
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Figure 7.9: Scatter plot of the toroidal ;% versus l;I,/aB;: (a) safe discharges;
(b) last 210 ms of disruptive discharges.

ing at their position in the diagrams, hence using only two parameters at a
time. On the contrary, SOM and GTM maps, whose mapping project the
information of a 10-D parameter space, are able to perform a better sep-
aration. These results point out the effective visualization capabilities of
nonlinear data reduction methods for extracting valuable information from
a large amount of high-dimensional data.

7.5 Analysis of JET operational space

7.5.1 Self Organizing Map analysis
Component plane

The Component Plane is one of the tools available to analyze the SOM re-
sults [8]. It allows a global view of the database and supports the user
in detecting if there is any relation among variables through the analysis of
similar patterns.

The Component Plane representation expresses the relative component dis-
tributions of the input data on the 2-D map. The dependencies among
different variables can be identified by comparing the corresponding compo-
nent planes: similar patterns (the colors corresponding to the values of the
variables) in identical locations on the component planes are consistent with
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correlated components.

In figure 7.10 the component planes for I,,, qos, l;, LM and dW4,,/dt are
shown, together with the SOM. Note that, by picking the same cluster in
each plane (in the same location), we could assemble the relative values of
the plasma parameters of the cluster prototypes.

In figure 7.10 the disruptive regions have been marked with boxes A, B,
and C. Figure 7.11 reports the probability density functions of the values of
the prototypes of the clusters in the disrupted regions (region A: dotted line;
region B: dashed line; region C: dash-dot line) and in the safe region (solid
line) for the five variables considered in figure 7.10. From these functions an
exact quantification of the range of the plasma parameters in the different
regions of the map can be done. The analysis of figures 7.10 and 7.11 con-
firms well known operational limits. For example, a parameter which is very
often linked with the upcoming disruption is the locked mode. Such aspect is
underlined very well by the SOM. In fact, as we should expect, the disruptive
regions marked with boxes A and B in figure 7.10 are characterized by high
values of the locked mode signal.

Besides the considerations about the operational boundaries, what we
can observe in the components plane is the presence of common patterns or
regions where we have a correspondence among the distributions of different
signals. For example, the disrupted region marked with the box A in figure
7.10 is characterized by high values of locked mode and internal inductance,
low values of plasma current and negative values of the time derivative of
the diamagnetic energy. The disruptive region marked with the box B has
similar correspondences.

Moreover, it is well known that plasma current and safety factor are
strongly correlated. This is confirmed by the probability density functions of
the high disruption risk regions A, B, and C. Moreover, the disruption risk
region C corresponds to a different operational configuration with respect
to A and B. The first has high values of I, and, as expected, low values of
o5, the last ones the opposite. However, although g5 and I, are inversely
proportional, the correlation between the two variables is not straightforward
and they supply complementary information. For example, qg5 allows one to
discriminate regions A and B, whereas [, does not (see figure 7.11). Thus
we have a very complex behavior which cannot be reduced to simple corre-
spondences or dependencies between two variables. The same information
contained in figure 7.11 is reported also in table 7.2.
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Figure 7.10: SOM and Component plane for I, qgs, l;, LM, and dWy;,/dt.
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Probability density function of prototype values
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Figure 7.11: Probability density functions of the values of the prototypes of
the clusters in the disrupted regions (region A: dotted line; region B: dashed line;
region C: dash-dot line) and in the safe region (solid line) for I, qos, l;, LM, and
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Region
Signal Safe A B C
I,(MA) (19t02) <2 <1.85 (1.9 to 2.3)
LM(1074T) <3 >3 (3 to 6) (2.1 to 3.8)
95 - (4.1 to 4.6) (4.5 to 6) <3.3
l; - (1.17 to 1.25)  (0.95 to 1.2)  (0.95 to 1.1)
dWasa/dt <2 (-8 to -1) < -2 (6.5 to 0)

Table 7.2: Range of plasma parameters in safe and disruptive regions.

D-matrix

The component planes of the remaining variables P,.q, Piot, n€iid, Bp, and
Z.. are reported in figure 7.12, together with the D-matrix, is another type
of representation available for the SOM toolbox, which visualizes the median
distance between a cluster and adjacent ones.

Thus, the D-matrix allows one to display the similarity of data elements

into one cluster with respect to the data into nearest ones. With this repre-
sentation, it is possible to detect if there are macro-clusters of data and to
judge if eventually they are well separated or not.
In figure 7.12, the D-Matrix corresponding to the SOM in figure 7.5 is shown.
In the same figure 7.12, the component planes of P.uq, Piot, n€ia; Bp, and Z.,
are reported. Light areas in the D-matrix, where the distances between
clusters are minimal, can be thought as macro-clusters and dark areas as
separators. The high disruption risk regions in the top-right corner (box A)
and in the right side (box B) of the SOM in figure 7.5 are well identified in
the same location in figure 7.12. Other separated regions (marked with the
boxes in figure 7.12) can be identified in the bottom of the D-Matrix display,
which do not correspond to further high disruption risk regions. Neverthe-
less, the component planes of P.uq, Piot, n€iia, Bp, clearly show that these
regions correspond to modifications in the operational parameters of the ma-
chine.

Moreover, the analysis of the SOM carried out through Component Planes
and D-matrix highlights that only the variable Z.. does not give any visually
evident information in the perspective of defining the boundaries between
disruptive and safe regions or distinguishing among different disruptive re-
gions. Note that, Z.. is crucial in predicting Vertical Displacement disrup-
tions (VDDs), as demonstrated in |9]. Anyway, VDDs have not been con-
sidered because there is no a particular interest for them in the framework
of disruption prediction and classification since their prediction can be done



110 CHAPTER 7. MAPPING OF JET CW OPERATIONAL SPACE

D-matrix P j
rad [“ ] 1 4904007
‘ 47 B62e+006
%
" 1
. 1 ’
' I_ —_) | b2
T
Piot [W]
1 12e+020
- 4.18e+019
0.332
E b doosr
;- - | —
| |
Loms ™ 3 ‘4 0.146 0229

Figure 7.12: D-Matrix and Component Plane for P..q, Piot, neiid, Bp, and Z..
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quite easily on the base of a threshold on Zo¢, as shown in [9)].

Discharge tracking

The potentiality of the available toolbox for the SOM suggests the possibility
to track the temporal sequence of the samples on the map, depicting the
movement of the operating point during a discharge. Following the trajectory
in the SOM, it will be possible to eventually recognize the proximity to an
operational region where the risk of an imminent disruption is high. In figure
7.13, the trajectories of a safe discharge (No. 78000) and of a disruptive
discharge (No. 73851) are reported. As can be noted, the disruptive discharge
(magenta trajectory) starts in a safe (blue) cluster, crosses mixed clusters,
and arrives in a disruptive (red) cluster. The safe discharge (cyan trajectory)
starts in a safe cluster, and evolves with the time moving into the safe region.

Figure 7.13: Tracks of the disruptive pulse No. 73851 (magenta) and of the safe
pulse No. 78000 (cyan) on the 2-D SOM.
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7.5.2 Generative Topographic Mapping analysis
Component plane

Besides the map representation, other tools analogous to those ones available
for SOMs have been developed for GTM model. Among these tools, similarly
to the SOMs’ case, it turned out to be very interesting the analysis with the
component planes. In figure 7.14, the component planes for I, g¢5, l;, LM,
and dWg;,/dt are shown, together with the GTM’s map. Some disrupted
regions have been marked with boxes labeled from A to C.
Note that, even if the numbers of points in the latent spaces are about the
same, GTM and SOM are based on a different non-linear relationship be-
tween the latent space and the data space. Although in both cases, points
close to each other in the input space are mapped on the same or neighboring
points in the latent space, the algorithms applied to define the mappings are
different. Therefore, no direct correspondence was expected among the dis-
ruptive areas detectable on the GTM and the ones detectable on the SOM.
The analysis of the Component Planes for the GTM leads to consider-
ations similar to those done for the SOM, even if the situation in this case
is more complex. All the three disruptive regions highlighted in figure 7.14
correspond to high values of LM and negative values of dWy;, /dt; moreover,
the region B is clearly characterized by low values of I,, but high values of
Qo5 and lz

Discharge tracking

Similarly to SOMs, also for GTMs a function to track the temporal sequence
of the samples on the map has been developed. In figures 7.15 and 7.16, the
trajectories of the same discharges projected on the SOM in figure 7.13 (No.
73851 and No. 78000) are reported.

Also in this case, the disruptive discharge starts in a safe (blue) cluster,
crossing mixed clusters, and ends up in a disruptive (red) cluster. The safe
discharge instead starts in a safe cluster, and evolves with the time moving
within the safe region. Therefore, the considerations are basically the same
of the tracking performed onto the SOM map. Furthermore, it is interesting
to observe that corresponding discharges evolve approximately on the same
regions in the operational space, and this reinforces the considerations about
the similarity of the manifold identified by the two methods.

Finally, it is worth emphasizing that, compared to other disruption pre-
diction approaches such as those in [10] and [11], the SOM and the GTM
maps provide significant additional value. Whereas the tools in the reference
paper are black boxes, which provide a prediction but are very difficult to
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Figure 7.14: GTM and Component plane for I, qos, l;, LM, and dWg;,/dt.
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Figure 7.15: Track of the disruptive pulse No. 73851 (green) from the start of
the flat-top phase (yellow dot) to the time of disruption (pink dot).

Figure 7.16: Track of the disruptive pulse No. 73851 (green) from the start
(yellow dot) to the end (pink dot) of the flat-top phase.
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interpret, on the contrary, the maps allow to follow the trajectory of the
plasma and to study its behavior leading to a disruption. So the developed
maps have the potential to provide much more than a simple prediction in
the understanding of the operational space and the causes of the disruptions.

7.6 Mapping performance analysis

7.6.1 Introduction

In order to compare the mappings obtained with SOM and GTM, some mea-
sures can be used to evaluate the performance of each methodology. Spe-
cial emphasis is put on the position of outliers and extreme points in the
maps, and on quantization and topological errors. In particular, some novel
measures such as Quantization Error measure, Trustworthiness measure, and
Topology Preservation measure will be defined to provide an objective means
by which the mappings can be compared. Until now, it does not appear that
these methodologies have been compared in a setting in which the underly-
ing structure of the data may not be known a-priori. Moreover, an outlier
analysis has been performed on the available data in order to quantify the
goodness of the projection. In fact, in order to preserve the shape of the data
cloud, the outliers in the original space should be projected on the margin of
the map.

7.6.2 Outliers’ analysis

An outlier is an observation that numerically deviates abnormally from other
values of the rest of the population it belongs to. For characterizing abnor-
mal observations there exist different techniques, and, among the graphical
ones, scatter plots and box plots are widely employed, revealing outliers’ lo-
cation and distance with respect to the other points of the population. In
the following, the outlier analysis has been used to evaluate the goodness of
the mapping. In fact, the topological shape of the data cloud in the original
space is preserved during the mapping if extreme points of the data cloud
are mapped to extreme units, located at the borders of the map.

The Mahalanobis distance is a measure of statistical distance in a mul-
tidimensional space. The points with the greatest Mahalanobis distance are
considered outliers. Figure 7.17 reports the Mahalanobis distance for each
point of the dataset with respect to the mean value of the same JET dataset.
As it can be seen, the Mahalanobis distances of the safe and disruptive sam-
ples are quite different for the two macro-sets.
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Figure 7.17: Mahalanobis distance of the safe (blue) and disruptive samples (red)
with respect to the mean value of the entire JET dataset.

This is confirmed by using the box plot representation (see Figure 7.18)
of the Mahalanobis distances [12|. On each box, the central mark is the
median value, the edges of the box are the 25" (lower quartile) and 75"
percentiles (upper quartile), the whiskers extend to the most extreme data
points not considered outliers, whereas outliers are plotted individually. If
the lower quartile is )7 and the upper quartile is ()3, then the difference
(Q3 — Q1) is called the interquartile range or IQR. A data point is usually
marked as outlier if it is beyond the following quantity called inner fence:

e Upper/lower inner fence: Q3 +1.5-IQR

Another more severe condition for identifying outliers takes into consideration
a larger threshold on the previous definition that is the outer fence:

e Upper/lower outer fence: Q3 £3-IQR

A point beyond an outer fence is considered an extreme outlier.

In Figure 7.18, both for safe and disruptive samples, outliers (marked in red)
with respect to inner fences are identified, and, as it can be seen, they are
all above the upper one.

In the maps in Figure 7.19, the green map units contain samples with Ma-
halanobis distance greater than the upper outer fence. It can be noted that
both in the GTM and the SOM, part of the identified outliers are mapped
in the borders of the map, whereas the other part is mostly associated with
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Figure 7.18: Box plot of the Mahalanobis distance for safe samples (on the left)
and disruptive samples (on the right) of JET CW dataset with outliers marked
with respect to the upper outer fence.

disruptive map units, well separated by transition and empty regions from
the safe ones. Moreover, outliers’ location in the learned manifolds is simi-
lar for the GTM and the SOM. The difference is emphasized because of the
different geometric shape factor of the two maps.

7.6.3 Performance indexes

The Average quantization error F¢ is a common measure used to calculate
the precision of the SOM clustering over the entire dataset [13]:

K N;

1
Eq:ﬁzzntp_ il (7.1)

j:l p:l

This error evaluates the fitting of the map to the data and it is determined
by averaging the distance of each data vector t, from the barycenter b; of
the IV; data associated to the map unit j to whom t, is associated. Thus,
the optimal map is expected to yield the smallest average quantization error.
Partitions with a good resolution are characterized by low values of Fq.
Literature reports several error indexes to control the conservation of
topology, (see [14] and the references therein). Topology preservation has,
however, turned out to be quite difficult to be defined for a discrete grid.
Here, the "Trustworthiness" of the projected neighborhood and the "Preser-
vation" of the resulting neighborhood have been taken into account. Trust-
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Figure 7.19: Data points with Mahalanobis distance greater than the upper outer
fence (green map units) in the GTM (a) and SOM (b)
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worthiness measures if data points mapped closed by on the maps are close
by in the input space as well |14]. For each data point in the latent space,
the set of N; points belonging to the same map unit constitutes the consid-
ered neighborhood. The Trustworthiness of the neighborhood is quantified
by measuring how far the data points belonging to the neighborhood in the
latent space are from their barycenter in the original space. The distances
are measured as rank orders. A measure of the error on the trustworthiness
can be expressed as

By = % ; m Z [rank(t;, b;) — Nj] (7.2)

J tiGUNj

where K* is the number of no-empty map units, /V; is the neighborhood
size, i.e., the number of samples associated with the 5 map unit, by is the
barycenter of the N; vectors in map unit j, Uy; is the set of the t; vectors
associated with the map unit j which are not in the NNV; closest to b; in the
original space, rank(t;, b;) is the position of vector t; within the sorted list
of increasing Euclidean distances from b;.

A second type of measure analyzes if the original neighborhood is pre-
served when data are projected. In particular, in the latent space, for the
GTM all the points belonging to a certain map unit j will be characterized
by the corresponding mode of the posterior probability mode;, whereas in
the case of the SOM they will be characterized by the corresponding proto-
type vector x;. For the GTM the error on the preservation of the original
neighborhood can be expressed as

K*
1 1
EwGriy = = E N(N=N) g [rank(mode(t;), mode;) — N;| (7.3)
=1 tieV,

1=

where Vy; is the set of the x; vectors among the N; closest to mode; in
the original space which are not associated with the map unit j, whereas
rank(mode(t;, mode;)) is the position of mode(t;) within the sorted list of
increasing Euclidean distances from mode;. For Self Organizing Maps the
corresponding error is

K*

Eson) = % Z m Z [rank(x(t:),x;) — Nj] (7.4)

j=1 J tiEVNj

where x(t;) is the prototype vector associated with t;. Note that all the
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points associated with the same map unit have the same rank.

The quantization errors and the errors on the trustworthiness of the pro-
jected data and on the preservation of the original neighborhood are reported
in Table 7.3. GTM presents a lower quantization error, i.e., a better fitting
of the map to data with respect to SOM. In this case, the map units better
represent the data set. G'TM is characterized by a more reliable visualiza-
tion of the proximities, being the Trustworthiness error one-order lower than
SOM. On the contrary, SOM has better performance on the preservation of
the original neighborhood. This is not surprising because each dimension-
ality reduction method necessarily achieves a compromise between the last
two kinds of errors.

Quality Index GTM SOM

E, 0.063  0.155
Ey 0.0011 0.0121
E» 0.0082 0.0016

Table 7.3: Quantization and topological errors for GTM and SOM.
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Chapter 8

Automatic Disruption
Classification for real-time
applications on JET

8.1 Introduction

In the previous chapters, it has been highlighted from several points of view
how much complex the understanding of disruption physics is. The devel-
opment of a physical model to reliably recognize and predict the occurrence
of this hazardous plasma behaviour is presently beyond reach, due to sev-
eral reasons, as in particular the amount of available signals in experiments
and the nonlinear relationship between various instabilities. Therefore, in
the last decade, various machine learning techniques, mainly artificial neu-
ral networks and support vector machines (SVMs), have been used as an
alternative approach to disruption prediction [1]- [4]. The progress has been
quite remarkable and recently a new predictor, called APODIS [4], has been
very successfully deployed in JET real time network. Notwithstanding the
considerable success rate, predictors such as APODIS can foresee the occur-
rence of a disruption but are not designed to identify its type.

On the other hand, to optimize the effectiveness of mitigation systems, it
is important to predict the type of disruptive event about to occur. Indeed
the best strategy to handle a disruptive plasma evolution triggered by an
ITB (Internal Transport Barrier), for example, is not necessarily the same
as the one to mitigate a radiative collapse. Reliable prediction of the disrup-
tion type would allow the control and the mitigation systems to optimize the
strategy to land the plasma safely and reduce to a minimum the probability
of damage to the device.

123
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In [5] a survey of the disruption causes has been carried out over the last
decade of JET operations. Each disruption has been manually analyzed and
associated to a particular disruption class. In particular, specific chains of
events have been detected and used to classify disruptions, grouping those
that follow specific paths. For JET unintentional disruptions, various char-
acteristic sequences of events have been identified. Among them, a number
of clear paths could be identified that can be associated with a specific dis-
ruption class, e.g., those due to a too strong internal transport barrier and a
too fast current rise, as it can be seen in Figure 8.1.
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Figure 8.1: Schematic overview showing the statistics of the chain of events for
non-intentional disruptions with the CW from 2000 to 2010 [5].

It should be noted, however, that the complexity of the disruption process
makes this manual classification very difficult, time consuming and some-
times ambiguous. A few disruptions were not able to be classified at all [5].
Furthermore there are cases where multiple destabilizing factors acted at the
same time, therefore the determination of the sequence of events between the
root cause and the final disruption process turned out to be not so straight-
forward. Nevertheless, this basic work is essential to develop an automated
classification able to help identifying a strategy for disruption avoidance or
mitigation.
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A first attempt to automatically classify disruptions at JET was proposed
in |9] using pattern recognition techniques. Disruptions for training were
manually classified by the authors, in collaboration with physicists at JET,
in four classes: mode lock, density limit/high radiated power, H-mode/L-
mode transition, and internal transport barrier plasma disruptions. In this
chapter, an approach to automatic disruptions classification based on the
nonlinear manifold learning methods described in the previous chapters, will
be described, with a detailed discussion about the results.

The proposed approach for the discrimination of disruption types con-
sists of identifying characteristic regions in the operational space where the
plasma undergoes a disruption. To this purpose, given the results in the
mapping of JET 10-dimensional space, SOM and GTM potentialities have
been extensively investigated and an algorithm for automatic classification
has been developed for both the methods.

Also in this case, the already described database of 243 non-intentional
disruptions occurred in the JET CW campaigns from C15 to C27 (pulse
range 63718-79853) have been considered. Each disruption is projected on
the maps described in the previous chapter, and the probabilities of belonging
to the different disruption classes are monitored during the time evolution,
returning the class which the disrupted pulse more likely belongs to.

8.2 Automatic classification with the Carbon
Wall

8.2.1 The database of disruption types

For many of the disruptive shots available on JET database, in addition
to the time of the disruption, also disruption classes, which are associated
to typical chain-of-events, were identified [5]. In particular, 243 disruptive
discharges belonging to campaigns performed at JET from C15 (year 2005)
and up to C27 (year 2009), in the range between shot number 63718 and
79853, have been considered. Table 8.1 reports the seven disruption types
identified in the database, and their acronyms, reported in |[5|. Moreover,
in the same table, the number of shots in each class, and the percentage
of occurrence in the database, are reported. This established classification
is based on the macroscopic symptoms exhibited by the discharges prior to
the disruption and allows comparing the results of the proposed automated
clustering with the expert classification.

The plasma quantities used to automatically classify these discharges are
the same ones already described in chapter 7 and also used for the mapping
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CW Disruptions

Labels Classes Tot Tot %
ASD Auxiliary Power Shut-Down 50 20.58
GWL Greenwald Limit 9 3.70
IMC Impurity Control Problem 83 34.16
ITB Too Strong Internal Transport Barrier 10 4.12
LON Low Density and Low q 12 4.94
NC Density Contol Problem 58 23.87
NTM Neo-classical Tearing Model 21 8.64
TOT 243 100

Table 8.1: Composition of the CW Database in terms of different classes.

of JET operational space. The choice of these quantities is basically due
to their relation to plasma stability and their availability in real-time. The
set, of quantities has already been used in literature for disruption prediction
purposes [1].

Note that, although large outliers have been removed, the selected signals
could still contain erroneous data. Thus, the system performance which are
going to be presented in the following sections takes also into account the
eventual fails of the diagnostics.

8.2.2 Analysis of the disrupted regions

The temporal sequence of the samples in a discharge can be projected on
the map, depicting the movement of the operating point during a discharge.
Following the trajectory in the map, it will be possible to eventually recog-
nize the proximity to an operational region where the risk of an imminent
disruption is high.

Effective real time strategies have been developed to use the JET mapping
for classification purposes. An analysis has been made to find whether the
different disruption classes lie in confined regions of the map, i.e., whether the
different disrupted regions of the map are associated to particular disruption
classes. To this purpose, making reference to the manual disruption classi-
fication as reported in [5], a label (corresponding to the disruption types
reported in Table 8.1) has been associated to each sample of a disruption.

Monitoring the evolution of each disruptive discharge on the maps, it
has been found that many of them evolve within the same region. However,
some regions can contain samples belonging to different disruption classes,
as can be seen in figures 6 a-b, where the Auxiliary power shut-down (ASD)
and Density control problem (NC) classes are represented. In particular, the
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clusters in the SOM and in the GTM maps, which contain samples of ASDs
8.2(a) and NCs 8.2(b), are marked with different shades of bright red and
green, in such a way to identify at the same time the class of disruption and
the percentage of samples of the considered class with respect to the total
number of disruptive samples. ASDs and NCs are two among the most nu-
merous classes of disruption in the considered database. Qualitatively, it can
be seen that the two classes mainly occupy different areas in the maps.

The other class with a high frequency of occurrence, both in the considered
database and in the totality of non-intentional disruptions on JET, is the Im-
purity control problem (IMC). These last three classes are quite widespread
all over the disruptive regions in the operational space, even if we can find
regions where a specific class results to be predominant with respect to the
others (see figure 8.2). This can be seen also making reference to figures
8.3-8.4 where the SOM and GTM maps are visualized using the so-called
"pie planes". In such visualization, each node is represented by a pie chart
describing the percentage composition in terms of number of samples belong-
ing to safe and disruptive shots. The samples belonging to safe discharges
are represented in blue, while the ones belonging to disruptive discharges are
diversified according to the color code reported on the legend in the same
figures, with reference to the different classes of disruptions. From this figure,
it can be seen for example that the nodes in the regions marked with boxes
relate to samples mainly coming from IMC and NC disrupted discharges.
This very heterogeneous picture could be partially due to the uncertainty of
the manual classification or, more likely, to the complexity of the chain-of-
events that the disruptions follow during their temporal evolution.

For example, the well-known mechanism leading to an edge cooling dis-
ruption could take place because of different reasons, such as a too high edge
density or a high impurity density at the edge. In the case of density con-
trol problem (NC) and impurity control problem (IMC) disruptions, the two
processes could be quite distinct even if both characterized by a high level
of radiation. In particular, for a density limit disruption, radiation can be
poloidally asymmetric and the instability is often linked to the stability of
the divertor detachment and to the formation of MARFEs. Instead, in the
case of radiative collapse by impurities, the radiation collapse is poloidally
symmetric, shrinking the plasma column and increasing the plasma induc-
tance [13], [14].

The previous considerations are confirmed by looking again at figure 8.4,
which reports also the Component Planes of the internal inductance and the
locked mode. The Component Plane representation, as described in the pre-
vious chapter, expresses the relative component distribution of the input data
on the 2-D map. For each signal, the Component Plane associates each node



128 CHAPTER 8. AUTOMATIC DISRUPTION CLASSIFICATION

80% < ASDs < 100%
60% < ASDs < 80%
40% < ASDs < 60%
20% < ASDs < 40%

(a) 1% < ASDs < 20%

80% < NCs < 100%
60% < NCs < 80%
40% < NCs < 60%
20% < NCs < 40%

1% < NCs < 20%

Figure 8.2: SOM (left) and GTM (right) maps coloured depending on disruption
class: (a) clusters marked by shades of red contain ASD samples; (b) clusters
marked by shades of green contain NC samples.
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Figure 8.3: On the top: SOM map (left side) using a pie chart representation.
Zoom of the regions in the boxes (right side). - On the bottom: GTM component
planes of the internal inductance (left side) and the locked mode (right side).
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Figure 8.4: On the top: GTM map (left side) using a pie chart representation.
Zoom of the regions in the boxes (right side). - On the bottom: GTM component
planes of the internal inductance (left side) and the locked mode (right side).
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with the mean value of the corresponding signal for all the samples belong-
ing to such node. From these figures, it can be seen that the regions marked
with boxes are mainly characterized by density control problem (NC) and
impurity control problem (IMC) disruptions, and show high values of internal
inductance and locked mode. The presence of both classes in the described
region could be due to the connection with high radiation, even if the pro-
cesses that lead to disruption are different. In this case, the signals contained
in the database do not seem to allow a further distinction of the two classes.

Unlike the previously analyzed classes, disruptions due to a too strong in-
ternal transport barriers (ITB), occupy a confined region in the right bottom
corner in GTM map (see Figures 8.6 and 8.5). Disruptions due to too strong
internal transport barriers (ITB) constitute an important class of disruptions
to which one of the shortest duration of the chain-of-events is associated. Be-
ing fast, they result to be particularly difficult to detect and typically exhibit
the highest energies and heat loads. As it has been shown in [5], disruptions
due to too strong internal transport barriers are characterized by the highest
ratio between the plasma energy at the time of the disruption and the max-
imum energy during the last one second of plasma.

Plasmas characterized by internal transport barriers exhibit radially lo-
calized regions of improved confinement with steep pressure gradients in the
plasma core, which in turn could drive instabilities that lead to a disrup-
tion. In relation to the achievement of continuous operation, it is well known
that a large fraction of bootstrap current is necessary, and that discharges
exhibiting the formation of I'TBs are favourable to this aim. Experimentally,
the presence of such a current fraction is usually associated with high f,
discharges with a weakly positive or negative magnetic shear in the central
region of the plasma column. High values of ¢ are probably due to the fact
that advanced scenarios are typically run at q=5 and 6.

In figures 8.5 and 8.6, the nodes associated with the samples of the dis-
ruptions due to too strong internal transport barriers (ITB) are visualized
respectively on the SOM and the GTM map. The different cyan shades rep-
resent different percentages of samples of the considered class with respect
to the total number of disrupted samples associated with the same node.
It can be seen that disruptions due to too strong internal transport barri-
ers mainly occupy the region marked with the boxes in figures 8.5 and 8.6.
These regions have also been represented by means of the Component Planes
of the poloidal beta and the safety factor. As expected, disruptions due to
too strong ['TBs are characterized by high values of these two parameters.
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Figure 8.5: Analysis of the node composition for ITB disruptions and Component
Planes of poloidal beta and safety factor in the SOM.
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Figure 8.6: Analysis of the node composition for ITB disruptions and Component
Planes of poloidal beta and safety factor in the GTM.



134 CHAPTER 8. AUTOMATIC DISRUPTION CLASSIFICATION

8.2.3 Results of the automatic disruption classification

Each node in the map (SOM or GTM) is related to samples coming from
different disruption types and/or safe samples. By following on the map the
temporal sequence of the samples of a disruption (the last 210 samples of
the disrupted shots), each sample will be associated with a node. For each
sample and each class, a class membership can be defined, being the per-
centage of samples of the considered class in the node to which the sample
is associated, with respect to the total number of disruptive samples in the
node itself. In figure 8.7 a-b the temporal evolution of the class membership
of the seven classes (Class membership function) during the JET discharge
No0.66313 is reported.
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Figure 8.7: Class membership functions for disruption No.66313; (a) SOM (b)
GTM

As it can be noted, for the majority of samples of this shot, the greatest
class membership value corresponds to impurity control problem disruption
(IMC), which is the same class assigned to this shot in [5]. This is true for
a relatively long interval before the disruption time, especially in the case
of the GTM. Note that, during this pulse, excessive Neon is introduced into
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the plasma during a phase with no auxiliary heating, resulting in a radiative
collapse. As Neon also increases the density significantly, this could justify
the presence of relatively high NC class membership values close to the dis-
ruption in figure 8.7.

The previous analysis shows the power and the versatility of the proposed
technique; the different classes of disruption tend to aggregate according to
the self-organization of the map in such a way that each class results to be
predominant with respect to the others in particular regions of the opera-
tional space. In order to perform an automatic disruption classification using
topographic maps output and to quantify its effectiveness, a proper classifi-
cation, criterion has been introduced. In particular, to classify a disruptive
shot a majority voting algorithm has been adopted based on the class mem-
bership of each class in the whole time interval before the disruption (210
ms).

In the histograms in figure 8.8, the results obtained by applying the ma-
jority voting to all the 222 disrupted pulses, are reported in terms of per-
centage success rate. A pulse has been considered correctly classified if the
automatic system produces the same classification given in [5]. As it can be
noted, the success rate of GTM is higher than that of SOM for all the con-
sidered classes, reaching in some cases even the percentage of 100%. These
results show the higher discrimination capability of the GTM model with
respect to the considered classification, that is exactly what has been found
in terms of separation between safe and disruptive regions in the mapping of
JET operational space.

8.2.4 Discussion of the results

Even if the analysis of the previous section clearly shows the potentiality of
the described tools, it is important to identify the limits of its discriminating
capability in the present configuration. It is worth noting that disruption
classes are defined on the base of the typical chain-of-events, as reported in
[5]. In particular, the classification is mostly based on the middle track of
these chains. In this work, the automatic classification has been developed
taking into account only the last 210 ms of the disruptive discharges. Thus,
depending on the length of the typical chain-of-events, it could happen that
the classifier is not able to entirely pick up the phenomenology which char-
acterizes a certain class. On the other hand, it could even happen that, in
the final stage of the discharge, the indication about the class changes, as
if the disruption is evolving from a certain class to another one. This is
basically due to the fact that several different paths can converge towards
very similar destabilization of modes that lead in the end to the disruption.
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Figure 8.8: Comparison between the percentage success rates of the off-line au-
tomatic classification performed by GTM and SOM.

Hence, this limits the discrimination capability of the classification system
when approaching to the disruption time.

For example, in our classification, a not uncommon phenomenon is ob-

served for density control problem (NC) and impurity control problem (IMC)
disruptions, which initially evolve in a region where they could be correctly
classified with a high level of confidence, and then evolve in the auxiliary shut
down (ASD) class when approaching the disruption time. In figure 8.9 the
class membership functions for the shot No. 67322, manually classified in [5]
as NC, are shown. As it can be seen, the discharge initially evolves in nodes
where all the samples belong to the NC class, while, as it approaches to the
disruption time, it moves towards nodes where the majority of the samples
belong to ASD class. Note that, an ASD disruption is basically a density
control problem during/after the switch of the heating system. Hence, at
first glance, the traces of an ASD and of the considered disruption would
follow very similar paths.
Another cause that limits the discrimination capability of the classification
system is that some classes can exhibit very similar values of some parame-
ters. This is the case of Neoclassical Tearing Mode (NTM) disruptions and
those due to too strong internal transport barriers (ITBs) in particular op-
erating scenarios.

In JET several experiments have been carried out for the beta limit as-
sessment, varying the pressure and the q profiles, ranging from Hybrid to
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Figure 8.9: Class membership functions for disruption No.67322; (a) SOM (b)

GTM.
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ITB configuration, in order to investigate advanced scenarios. During these
experiments, among the other instabilities, NTMs with m/n=2/1, 3/2, 4/3
have been observed [15]. In these conditions, the value of go5 is about 4-5,
while the currents assume values in a range slightly above 1MA.

Figure 8.10a shows the nodes interested by the discharge No. 72670,
manually classified as NTM. Such a discharge evolves in the right bottom
corner of the GTM. As shown in figure 8.4 (see pie planes representations),
the majority of disruptions in this area is due to NTMs and too strong [TBs.
Figure 8.10b shows the class membership during the time evolution of the
shot. As predicted by the previous considerations, NTM and I'TB classes are
characterized by a comparable value of the class membership functions. In
this case, the adopted criterion allows one to correctly classify the disruption
as NTM, even if with a reduced level of confidence. As it can be noted by
the component planes for 3,, P, and I, the right bottom covering both the
maps is characterized by high values of poloidal beta (figure 8.6) and total
input power (figure 8.10c), as well as low values of plasma current (figure
8.10d). Discrimination capability could be improved by considering further
information, e.g., for example the measurement of pressure profile peaking,
and this is true for all the classes in general. But many information, in par-
ticular those one related to several profiles, are not always available in real
time, or need to be processed a posteriori.

Two other very interesting cases, are represented by the shot No.79772, man-
ually classified as NC, and the shot No.79770 manually classified as LON
[5]. In figure 8.11a and 8.11b the class membership functions returned by
the GTM are reported. Such discharges were performed for investigating the
physics of ELM control with magnetic perturbation fields (EFCC). Our sys-
tem classified the pulse No. 79770 as LON, as in [5], whereas, regarding the
pulse No. 79772, classified as NC in [5], the GTM recognizes the presence
of the NC class for the whole considered time interval, but the highest class
membership is associated with the Low density and low q problem disrup-
tion (LON) class. The pulse in the final phase is indeed characterized by low
values of the edge safety factor and disrupted at go5 ~ 2.5. Actually, during
this pulse, when the NBI was switched off, erroneous density control gave

rise to too fast a density decrease, leading to too low a density and an error
field locked mode.
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Figure 8.10: (a) clusters (black box) occupied in the GTM by the disruption No.
72670; (b) Class membership functions.(c-d): component planes of the total input
power (left) and the plasma current (right).
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Figure 8.11: Class membership functions for disruptions No. 79772(a) and No.
79770 (b).
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8.3 Automatic classification with the ITER-like
Wall

8.3.1 Introduction

Also the 10-dimensional operational space of JET with ITER Like wall has
been explored using the Generative Topographic Mapping method. A new
2-dimensional map has been exploited to develop automatic disruption clas-
sifications of 7 classes manually identified in [5] and described in the previous
section. In particular, among all the non-intentional disruptions, the subset
indicated in the Table 8.2 has been considered, that occurred in the JET
campaigns from C28 (2011) to C30 (2013) after the installation of the new
ITER Like Wall (ILW).

A statistical analysis has been performed on the plasma parameters de-
scribing the operational spaces of JET with CW and ILW and some physical
considerations have been made on the difference of these two operational
spaces and the disruption classes which can be identified.

The performance of the ILW GTM classifier is tested in a real time fash-
ion in conjunction with a disruption predictor presently operating at JET.
Moreover, to validate and analyze the results, another reference classifier has
been developed, based on the k-Nearest Neighbor technique.

Finally, in order to verify the reliability of the performed classification,
a conformal predictor has been developed which is based on non-conformity
measures.

8.3.2 Impact of the ITER-like Wall on disruptions

In the 2010 — 2011 all the plasma-facing components (PFCs) have been re-
placed with a metallic wall, the so-called ITER-like Wall (ILW). The new
wall is composed of beryllium tiles in the main chamber and tungsten in the
divertor. The change of materials has significantly modified the physics of
disruptions. ILW have caused first of all an enhancing of heat loads and
vessel forces, and this is due basically to the lower fraction of energy that
is radiated during the disruption process. Consequently, in fact, a larger
fraction of thermal and magnetic energy is "available" to be conducted to
the even more fragile PFCs. The lower fraction of radiated energy gives rise
to higher temperatures during the post-thermal quench phase, which means
longer current quench times, since this latter is inversely proportional to the
plasma resistivity |[6].

The disruption rate is increased, especially in the first period of opera-
tions after the installation of the new metallic wall, since the properties of the
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new materials affected not only the physics of disruptions, but also control
schemes and operational scenarios turned out to be different with respect to
what we had for the CW.

Also operational limits, such as the density limit, have been affected. In
fact, as described in chapter 4, this limit is determined mainly by the ra-
diation instability which build up at the plasma edge. In the case of the
ILW it develops at significantly lower edge temperatures, since the radiation
efficiency of Be is lower than for C and shows its highest values at lower
temperatures. In conjunction with the different properties of recycling, this
produced an increase of the densities at which is possible to operate JET [7].

Another important aspect related to the installation of the ILW, is the
presence of new causes and new chains of events which lead to disruption
[8]. An analysis identical to the one described for the Carbon Wall has been
carried out, as shown in the scheme in Figure 8.12. Therefore, a statisti-
cal analysis on the root causes has been performed and characteristic chains
of events have been identified to group those disruptions which follow the
same path [8]. Besides the changes in the composition in terms of different
classes, which will be described in the following section, the main peculiar-
ity is related to the onset of new causes, among which the dominant is the
one indicated in the scheme in Figure 8.12 as "RPK", that is strong radia-
tion peaking. This phenomenon has occurred in 4.6% of all the discharges
operated in 2011 — 2012. Several discharges disrupted due to this high core
radiation, which in part happened during the main heating phase and in part
after the switch-off of the auxiliary heating.

Although the causes for the strong radiation peaking are not completely
clear, it is thought to be associated mainly to the transport properties of
high Z-impurities, which give rise to a strong accumulation in the core, or
in other cases, the radiation increase occurs for a sudden influx of impuri-
ties due to an enhancing of the divertor source. This two processes have a
different time scale, in particular, the first one develops on a much slower
resistive time scale and is characterized by the hollowing of the temperature
profile, with at the same time, a strong peaking of the density profile. On
this time scale, becoming hollow, the temperature profile starts to modify
the q and the current density profiles, which could be driven unstable by the
broadening of the g-profile itself |[8|. This broadening can also be observed
in terms of reduction of the plasma internal inductance.

Another important point that has to be taken into account, especially
from the point of view of the prediction, is related to the fact that with the
ILW the current quench is significantly slower than what we had with the
CW. In particular, if we make reference to the threshold of dI,/dt > 5MA/s
for defining disruption, there are even cases in which a thermal quench is not
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followed by any current quench. Or in other cases it can happen that, after
a first thermal quench, the temperature recovers and another chain of events
not directly connected with the previous one, can eventually takes place and
lead to disruption.
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Figure 8.12: Schematic overview showing the statistics of the chain of events for
non-intentional disruptions with the ILW (2011 —2012) [8].

8.3.3 ILW versus CW operational space of JET

After campaign C27, JET installed the new ITER Like wall (ILW). The first
attempt was to project the disruptions of the ILW campaigns onto the GTM
map trained with the CW discharges, but the performance of the map in
classifying the new disruptions significantly deteriorated for certain classes,
probably because of the fact that the operational space, or at least, the con-
sidered feature space is changed.

Therefore, a more detailed analysis has been performed to investigate
how the operational space of JET with the new ITER Like wall eventually
changed and if the disruption physics modified with respect to the CW ex-
periments. The whole database consists of 243 non intentional disruptions
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belonging to the CW campaigns from C15 to C27, and of 149 non intentional
disruptions of the ILW campaigns from C28 to C30. In Table 8.2, the com-
position and the occurrence in terms of different classes is reported for both
the CW and the ILW databases.

Disruptions Cw ILW
Labels Classes Tot Tot % Tot Tot %
ASD Auxiliary Power Shut-Down 50 20.58 2 1.34
GWL Greenwald Limit 9 3.70 0 0.00
IMC Impurity Control Problem 83 3416 109 73.15
ITB Too Strong Internal Transport Barrier 10 4.12 0 0.00
LON Low Density and Low q 12 4.94 7 4.70
NC Density Contol Problem 58 23.87 22 14.77
NTM Neo-classical Tearing Model 21 8.64 9 6.04

Table 8.2: CW vs. ILW Database.
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Figure 8.13: Distribution of disruptions in the CW (black) and ILW (blue) cam-
paigns.

As it can be seen from Table 8.2 and Figure 8.13, the composition of the
two data bases is quite different: in particular, disruptions due to Greenwald
limit or due to too strong I'TB are no longer present in the new campaign,
whereas the number of disruptions due to IMC consistently increased.
Moreover, a new class has been identified, characterized by strong radia-
tion peaking due to impurity tungsten accumulation in the core of the plasma
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(new Impurity Control Problems disruptions: IMC_new). The distinction in
different classes is based on the manual classification described in |8], where
specific chains of events have been detected and used to classify disruptions,
grouping those that follow specific paths.

A statistical analysis has been then performed on the plasma parameters
describing the operational spaces of JET with CW and with ILW. In Figure
8.14 the probability density distributions of the last 210 ms of Plasma cur-
rent [, (a), Safety Factor at 95% of Poloidal Flux go5 (b), Plasma Internal
Inductance [; (c) and Line Integrated Plasma Density ne;q (d) have been
reported for the IMC disruptions with the CW (red lines) and with the ILW
(grey dashed lines), and for the new impurity type (IMC _new) with the ILW
(blue dashed lines).
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Figure 8.14: Probability density distributions of: (a) Plasma current Ip; (b)
Safety Factor at 95% of Poloidal Flux ggs; (c) Plasma Internal Inductance [;; (d)
Line Integrated Plasma Density ne;j;q-

The analysis highlights interesting features in particular for the new impurity
type class, confirming that a new GTM is needed to represent the ILW oper-
ational space of JET. From Figure 8.14, it can be seen that it is quite difficult
to discriminate among classes just from the distribution of the signals. In
fact it is well known that what is really important is the combination of the
signals.
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Moreover, looking at the previous figures, some interesting features can
be found: for the new impurity type class the distribution function of inter-
nal inductance is shifted towards lower values, whereas the electron density
function is shifted toward higher values. This can be probably due to the fact
that the impurity accumulation of the tungsten in the core, in certain cases,
when a certain concentration is reached, starts to modify the temperature
and the current profiles giving rise to instabilities followed, in some cases,
by disruptions. Further analysis can be made to compare different disrup-
tion classes behavior passing from CW to ILW. Regarding density control
problem and impurity control problem classes, Figure 8.15 reports the prob-
ability density functions of I, and [; for the IMC and NC disruptions with
CW, whereas Figure 8.16 reports the distributions of the same signals for the
IMC, IMC _new and NC disruptions with ILW.
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Figure 8.15: Probability density functions of Ip (left side) and li (right side) for
the IMC (grey) and NC (green) disruptions with CW.
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Figure 8.16: Probability density functions of Ip (left side) and li (right side) for
the IMC (dashed grey), IMC new (dashed blue) and NC (dashed green) disrup-
tions with ILW.

From figure 8.15, it can be seen that, with the CW, both I,, and [; signal dis-
tributions are more or less overlapped and this is coherent with the analysis
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of the disrupted regions presented in the section 8.2.2. Conversely, for the
ILW, I, and [; distributions result to be quite different, especially if we com-
pare NC and IMC _new classes. In particular, for the plasma current, it can
be seen that, at least in the last 210 ms, there are no NC disruptions above
2 MA. Moreover, the new impurity type basically occurs for lower values of
the internal inductance.

8.3.4 Mapping of the JET ITER-like Wall operational
space

Starting from the previous statistical analysis and the physical considerations
on the new disruption types, a new GTM has been trained to represent the
ILW operational space of JET. The training set consists of the last 210 ms of
the 149 non intentional ILW disruptions (29137 samples), which have been
mapped through 81 radial basis functions (Gaussian shape) with a 1.5 width,
over a latent space of 36x36 grid.

In Figure 8.17(a) the Mode representation of the GTM is reported. Figure

8.17(b) shows the GTM Pie Plane representation. In such visualization, each
node is represented by a pie chart describing the percentage composition in
terms of number of samples belonging to the different disruption classes. The
samples are diversified according to the color code reported on the legend in
the same figure, with reference to the different classes of disruptions.
Both representations highlight a high level of separation among the different
classes with respect to what has been found for the Carbon Wall. In Ta-
ble 8.3, the level of separation of the different classes is reported in terms
of percentage of samples of each class which is projected in nodes entirely
composed by samples of the considered class.

Classes Class Samples (%)

ASD 15.86
IMC 93.51
LON 68.16
NC 77.57
NTM 60.38

Table 8.3: Discrimination capability of GTM model for the considered classes.

Figure 8.18 shows the same map (Mode (a) and Pie Plane (b) representa-
tions), trained with the same training parameters, where the IMC new class
has been introduced.

It can be seen that the new class is even better separated with respect to
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Figure 8.17: 2-D GTM of the 10-D JET ILW operational space: (a) Mode Repre-
sentation. The nodes are represented with different color and symbols as indicated
in the legend, empty nodes are white; (b) Pie Plane Representation. The nodes
composition in terms of the five different classes of disruptions is represented ac-
cording to the color code reported on the legend.
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Figure 8.18: 2-D GTM of the 10-D JET ILW operational space with the IMCnew
disruption class: (a) Mode Representation. The nodes are represented with differ-
ent color and symbols as indicated in the legend, empty nodes are white; (b) Pie
Plane Representation. The nodes composition in terms of the six different classes
of disruptions is represented according to the color code reported on the legend.
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other classes. Table 8.4 reports the same information of Table 8.3, but with
the addition of the new impurity type class.

Classes Class Samples (%)

ASD 15.86
IMC 72.90
LON 68.16
NC 77.57
NTM 55.36
IMCnew 91.18

Table 8.4: Discrimination capability of GTM model for the considered classes.

It is interesting to observe in fact, that, coherently with what has been found
for the CW operational space, the main contribution to the nodes shared
by samples of density control problem and impurity control problem disrup-
tions is given by the old "IMC" class, whereas the overlapping on the map
presented by the new impurity type is mainly with the IMC class itself.

8.3.5 Real time application in conjunction with APODIS

On the base of only the mapping of the operational space, having zoomed on
the disruptive space, one can guess that by applying the majority voting al-
gorithm to the last 210 ms, practically all of the disruptions can be correctly
classified according to the manual classification; in fact apart one isolated
case it is what it happens.

But one of the main objective of this study is to develop a system that
can be used in real time and can be integrated eventually with the other
systems already working in real time at JET. Therefore, in order to test the
performance in classification of the new maps, a real time application has
been simulated in conjunction to APODIS [4], improving at the same time
the efficiency of the codes and assessing finally the suitability for real time
applications.

APODIS (Advanced Predictor Of DISruptions) is a disruption predictor
mainly constituted of three different Support Vector Machine (SVM) predic-
tors, which analyze three consecutive time windows (each one 32 ms long) of
data to take into account the history of the discharge. It has been deployed
in JET’s real-time system during the last campaigns with the ILW with very
good results (well above 90% of Success Rate) and it is presently working in
the ATM network in open loop.

During the simulation, the majority voting algorithm has been applied
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to the class membership function of a time window of respectively 32 or 64
ms right before the time in which APODIS triggers the alarm. Note that,
in several cases APODIS gives the alarm significantly in advance with re-
spect to the thermal quench time, even hundreds of ms in advance. Table
8.5 reports the results of the real time automatic classification performed
by the GTM trained considering the classes previously defined for the CW
campaigns, therefore without any distinction in the different impurity types
disruptions. As can be seen, the Success Rate is quite high reaching more
than 90%, thus in very good agreement with the manual classification.

GTM GLOBAL ASD IMC LON NC NTM

32ms 93.23 100.00 94.00 66.67 100.00 85.71
64ms 94.07 100.00 95.10 66.67 100.00 85.71

Table 8.5: Percentage success rates of the real time automatic classification per-
formed by GTM on the classes identified for the CW campaigns.

The classification performances slightly deteriorates when the new class is
considered, as shown in Table 8.6. This is due to the difficulty to discrimi-
nate in certain cases the new class from the previous impurity control problem
one.

GTM GLOBAL ASD IMC LON NC NTM IMCnew

32ms 87.22 100.00 67.86 66.67 100.00 83.33 93.15
64ms 85.93 100.00 71.43 66.67 100.00 83.33 89.33

Table 8.6: Percentage success rates of the real time automatic classification per-
formed by GTM considering the IMC _new disruption class.

8.3.6 Validation and comparison

In order to validate and analyze the results obtained with GTM, another ref-
erence classifier has been developed based on k-NN which uses as kernel the
Mahalonobis distance (see chapter 5). The simulations have been performed
using as kernel different metrics, such as the Euclidean or the Hamming dis-
tances, but, at least for this specific problem, Mahalanobis distance performs
quite better with respect to the other tested metrics. k-NN is a reference in-
stant based classifier, unlike GTM that builds a generative latent model. In
this case the majority voting is applied to the k closest points in the high
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dimensional space. Table 8.7 reports the performance of the k-NN classifier
for the classes identified for the CW campaign. Table 8.8 shows the k-NN
performance when the new impurity type is considered. Also in this case,
the global performance is above 90% when the new impurity control problem
class is not considered, whereas the performance slightly deteriorates when
the new class is considered.

k-NN GLOBAL ASD IMC LON NC NTM

32ms 92.91 100.00 95.19 7143 9048 85.71
64ms 92.20 100.00 95.19 7143 90.48 85.71

Table 8.7: Percentage success rates of the real time automatic classification per-
formed by k-NN classifier considering the classes identified for the CW campaign.

k-NN GLOBAL ASD IMC LON NC NTM IMCnew

32ms 90.78 100.00 82.14 71.43 9524 83.33 94.81
64ms 87.94 100.00 82.14 71.43 90.48 83.33 90.91

Table 8.8: Percentage success rates of the real time automatic classification per-
formed by k-NN classifier considering the IMC new disruption class.

The class membership function of the disruptions gives us useful information.
As an example, in Figure 8.19 the class-memberships of the pulse No. 82867
is reported for both GTM and k-NN, which is a IMC disruption according
to the manual classification.

It is possible to note a transition among different classes, and in particular
the one between NCs and IMCs or vice versa, which is not uncommon both
for CW and ILW. Note that APODIS alarm is triggered almost two seconds
before the thermal quench. It is also very important to point out that both
the classifiers converge onto the same results, even if in this specific case we
can observe that for GTM based classifiers the phase where we can associate
the highest probability to the correct class is about 400 ms before tp, whereas
in the k-NN is more than 700 ms in advance.

In Figure 8.20 the time evolution of some of the signals which are part of
the database is reported for the discharge No. 82867, whereas in Figure 8.21
a zoom of the previous plots is reported with respect to the time window
analyzed in Figure 8.19.
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Figure 8.19: Class-membership functions of the shot No. 82867 (IMC) for GTM
(left side) and k-NN (right side). According to the legend, the vertical green line
identifies the thermal quench, the blue line the PTN alarm, and the pink line the
APODIS alarm.
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As it can be seen from these pictures, a Reciprocating Langmuir Probes
(RCP) caused a locked mode at ¢ ~ 53.79s, time around which a rapid change
of the density occurs, followed by a quench of the temperature that in the
subsequent phases recovers up to the final thermal quench at t ~ 55.73s.
Both PTN and APODIS trigger the alarm when the mode locks (see Figure
8.19)and for both the classifiers the discharge is evolving as a NC disruption
up to the final phase where is correctly classified as IMC, according to the
manual classification.

Given the complex behaviors which often characterize the evolution of a
discharge, it is important to know the reliability and the confidence of the
classification. Literature provides recent methods, such as the conformal pre-
dictors, already described in chapter 5, which allow us to take into account
also this aspect. To this purpose, a conformal predictor has been developed
which is based on non-conformity measures.

Regarding classification, the conformal predictors can provide the level
of reliability of classification itself with two parameters: the credibility and
the confidence which are defined on the base of the p-values (see chapter 5).
In figure 8.22 the label provided by the classification, the credibility and the
confidence levels are reported for pulse No. 82867. As it can be seen the
credibility, which is the parameter with more variability, is quite low for all
the initial phase, then it rises constantly during the last ~ 400ms, according
to the results obtained with the GTM based classifier.
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Figure 8.22: Left side: class-membership provided by the conformal predictor for
the shot No. 82867, confidence level (blue) and credibility (black). The vertical
green line identifies the thermal quench, the blue line the PTN alarm, and the pink
line the APODIS alarm (left side). Right side: zoom representing the confidence
level (blue), the credibility (black) and the threshold of 0.05 (red) (right side).

The credibility, even if low in the phase where the conformal predictor is as-
signing the label corresponding to the NC class, is mostly above 0.05, which
in literature is often used as threshold for trusting or not a prediction (Figure
8.22 (right side)). In general, if the credibility is less than 5%, the consid-
ered samples are not representative of the training set, or in other words we
cannot consider that they are generated independently from the same dis-
tribution. In particular, the credibility falls under the considered threshold
in correspondence of the transition between NC and IMC classes, behavior
that could depend on a rapid reconfiguration or a change in the considered
parameters’ space. Further analysis are needed to clarify this point.

In Figure 8.23, the class memberships function obtained with the GTM

(a) and with the k-NN (b) based classifiers are reported for the pulse No.
82569, which has been manually classified as IMC disruption.
What is particularly interesting to observe in this case is the fact that, apart
the agreement in the classification provided by the two methods, if we look
at the confidence level plotted in Figure 8.24, we find that remains very high
for a long phase. In fact looking at the projection on the map (Figure 8.25),
we can see that the discharge is evolving in a not extended region of the
operational space, and this mean that the parameters are not changing too
much in the considered time interval, at least up to the last phases just be-
fore the disruption. This is confirmed by the time evolution of some of the
considered signals, as we can see in Figure 8.26.
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Figure 8.25: Projection of the discharge No. 82569 on the GTM map

Regarding the disruptions belonging to the new impurity type, in Figure 8.27
is reported an example of disruption due to impurity accumulation. In this
case the accumulation of W occurs after a step-down of the Neutral Beam
Injection power, and the hollowing of the temperature profile can be observed
in correspondence of the increasing of radiation by tungsten. This, on the
slow time scale of the transport process, affects the current density and the
q profiles, driving MHD modes unstable until we have a locked mode.

By computing the automatic classification it is possible to verify that the
pulse is correctly classified as belonging to the new impurity type by all the
implemented systems. Furthermore it is interesting to see that when the
mode locks, there are "jumps" in the class-membership calculated by the
conformal predictor, and the credibility in this interval drops practically to
zero. In the interval prior to the locked mode, again all the classifiers are
clearly recognizing the new impurity type, as it is shown in Figures 8.28 and
8.29.

8.3.7 Discussion of the results

The challenge to automatically discriminate the type of disruptions at JET
both in the Carbon wall (CW) campaigns and in the ITER Like wall (ILW)
ones has been tackled using a GTM manifold learning method. The disrup-
tion classes in the ILW have been deeply analyzed and compared with those
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Figure 8.29: Class-membership functions calculated through a) conformal predic-
tor for discharge No. 82669; in b) a zoom of a) is reported regarding the confidence
level (black) and the credibility (blue).

in the CW JET campaigns. In particular, the probability density functions of
the different plasma parameters highlight the different behaviors of the new
impurity control problem disruptions, due to high-Z impurity accumulation
in the core of the plasma column, with respect to the old IMC ones. More-
over, the statistical analysis showed the variation of the operational space of
JET with ILW with respect to that with CW.

For this reason, two different GTM maps have been trained for CW and
ILW campaigns. The latter has been used to simulate a real time behaviour
of the GTM classifier in conjunction with the prediction system APODIS,
which is successfully working on line at JET. The obtained results assess the
suitability of the GTM based classifier for real time application with very
good results: the prediction success rate is quite high (above 90%) accord-
ing to the manual classification. However, the performance worsened when
the new IMC class is introduced, because it is quite difficult to distinguish
this new class from the previously defined IMC class. Furthermore, in order
to validate and analyze the obtained results, another reference classifier has
been developed, based on k-NN, which uses as kernel the Mahalanobis dis-
tance. The performance of the reference classifier is still above 90%, but, also
for it, the success rate deteriorates when the new IMC class is introduced.

Several visualization tools have been developed for the GTM such as
Mode representation or Pie Plane representation, which make possible to ex-
tract relevant information that confirms the physical characteristics of the
different classes. Monitoring the evolution of each disruptive discharge on
the GTM, a class membership has been defined by which it is possible to
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perform a statistical analysis of the transitions among different classes.

Finally, in order to verify the reliability of the performed classification,
a conformal predictor has been developed which is based on non-conformity
measures. The obtained results indicate the suitability of the conformal
predictors to assess the reliability of the GTM classification even if the cal-
culation time allowed their use only in an off line fashion.

The mapping of the JET operational space has been built on the base of
a set of signals which are available in real time with an high reliability, and
every device should provide for each discharge in standard operations.
This does not mean that the performance of the system in mapping and clas-
sification could not improve if additional information are taken into account.
In [8] the disruptivity, which gives the likelihood of a disruption within a
specific parameter space, has been calculated in terms of different parame-
ters, as for example the temperature peaking and the radiation peaking.
Some parameters representative of the profiles of certain quantities which
would help to improve the discrimination capability of the proposed sys-
tems, but often they require a post-pulse validation. Therefore a trade-off
between performance and reliability has to be carefully considered, without
forgetting, on the other hand, real-time and computational constraints.
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Chapter 9

Disruption prediction at ASDEX
Upgrade

9.1 Introduction

In this chapter, two different approaches are proposed as disruption predic-
tors at ASDEX Upgrade. The first method consists in extracting informa-
tion from the complex multidimensional operational space of the machine by
means of data visualization and dimensionality reduction methods. The sec-
ond method allows to build a black-box predictor which provides a statistic
predictive model.

In this study, among the visualization and dimensionality reduction meth-
ods, the Self-Organizing Map and the Generative Topographic Mapping are
investigated. The 2-D mappings provided by SOM and GTM are used with
good results as disruption predictor by associating the risk of disruption of
each cluster in the map to a disruption alarm threshold. Furthermore, fol-
lowing the trajectory of the plasma on the maps it is possible to study its
behavior leading to a disruption; thus, it can be taken advantage of this
additional value to realize a single system for disruption prediction and clas-
sification.

Among the multivariate statistical models the Logistic regression ap-
proach is proposed. The Logistic model works as disruption predictor by
monitoring the probability of a disruptive event during the experiments. De-
spite its simplicity, good results have been achieved, but being a probabilistic
classification model the logistic predictor does not make available any other
additional information on the plasma state evolution.

In addition, the two methods have been combined to realize a predictive
system able to exploit the complementary behaviors of the two approaches.

163
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The data base for this study represents the 7-D ASDEX Upgrade operational
space described by means of disrupted and safe discharges selected in the shot
range 21654 — 26891, and performed in ASDEX Upgrade between May 2007
and April 2011.

9.2 Database

Data for this study were extracted from the AUG experimental campaigns
performed between 2007 and 2012, in the shots range 21654 — 28832. The
database has been divided in three subsets, following a temporal progression
as reported in Table 9.1. The Training set, containing only discharges per-
formed between May 2007 and April 2011, has been used to build the maps
and to optimize the coefficients of the logit model; the data set Test 1, con-
taining shots performed in the same time period of Training set, has been
used to test the generalization capability of the maps and the logit model,
the set Test 2, containing shots performed after those of Training set, has
been used to evaluate the ageing of the models when used during more recent
campalgns.

Data Time Safe Disrupted

Set Period Discharges Discharges
Training May 2007 - April 2011 310 121
Test 1 May 2007 - April 2011 155 60
Test 2 April 2011 - November 2012 271 106

Table 9.1: Data base composition.

Only disruptions which occurred in the flat-top phase or within the first 100
ms of the plasma ramp-down phase, and characterized by a plasma current
greater than 0.8 MA, are considered. Disruptions mitigated by massive gas
injection, triggered by the locked mode detector, and those caused by ver-
tical instabilities, so called Vertical Displacement Disruptions (VDDs), were
excluded. Each of the three data sets is composed by time series related to
the seven plasma parameters reported in Table 9.2. All the parameters are
sampled making reference to the time base of the plasma current signal. The
sampling rate is equal to 1 kHz.
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Signal Acronym

Safety factor at 95% of poloidal flux qos

Total input power Pror

Locked Mode signal LM signal
Radiated fraction of the input power Ptrac = Prad/Pror
Plasma density divided by the Greenwald limit  negreenwaid
Internal inductance l;

Poloidal Bp

Table 9.2: Plasma parameters considered in the data base.

9.3 2-D AUG operational space mapping

One of the viable way to realize a disruption predictor consists in extracting
information from the multidimensional operational space of the reactor by
means of data visualization and dimensionality reduction methods as SOM
and GTM. Looking at the good results on disruption prediction accomplished
by the authors with SOM on a foregoing AUG databases |1], and on oper-
ational space mapping with GTM on the JET database |[2|, in this work,
both SOM and GTM have been employed to realize a 2-D mapping of the
7-D AUG operational space on the considered database.

In order to project the 7-D AUG operational space onto the 2-D SOM
and GTM, further knowledge is added to the intrinsic knowledge owned by
the 7-D data space, which consists in associating a label to each sample in the
training set. Samples coming from safe discharges have been labeled as safe
samples (ss). For disrupted discharges, a time value, called tprp_prsgr, has
to be assumed to discriminate between the safe and disruptive phases. On
the basis of previous experiences [3|, an empirical value equal to 45 ms from
the disruption time (¢p) has been taken for each discharge. Therefore, sam-
ples preceding t,.._a;s are considered as safe samples (ss), whereas samples
in the interval [ty .—aisr +tp] are labeled as disruptive samples (ds). Only the
disruptive samples and safe samples from safe discharges have been included
in the Training set; the safe phase of disruptive discharges is assumed to be
well represented by the safe samples of safe discharges.

The training set results in a large amount of data, 310 safe discharges
make 1094697 (ss) available, whereas 121 disruptive discharges make 5267
(ds) available. As it can be noted the group of safe sample is 210 time larger
than the disruptive one. Thus, in order to avoid the predominant influence
of safe samples with respect the disruptive ones during the training phase,
and with the aim to aggregate the expected redundant information contained
in a so large database into a more manageable and efficient one, a data re-
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duction on safe samples has been performed. The goal of the data reduction
procedure has been to achieve a ratio ss/sd < 10 ; that value comes from
the authors previous experiences on AUG and JET database, in [1| a data
reduction with ss/sd = 7.1 and in [5| a data reduction with ss/sd = 6.4
were performed respectively.

A reduced number of representative safe samples have been selected by a
procedure where firstly each signal has been quantized in a range of values
depending on its own distribution. Then, the 7-D space has been partitioned
with a 7-D grid where each node is the combination of the quantized signal
values. Finally, a fraction of the samples corresponding to each node has
been selected. The nodes to which correspond a number of samples lower
than the mean value of samples per node on the entire grid have been ex-
cluded from the selection. The adopted criterion allows us to exclude from
the database the samples related to unusual signal combinations. The data
reduction procedure results in 39115 safe samples, with ss/sd = 7.43 .

Figure 9.1 shows the pdf of the considered plasma parameters for safe
samples before (blue line) and after the data reduction (green dashed line).
As it can be noted the trend of the seven signals remain unchanged after
the data reduction. Figure 9.2 shows the projection of the 7-D space of safe
sample before the data reduction (blue points) and after the data reduction
(green points) onto the first three principal components. As can be noted,
only regions with low density are uncovered after the data reduction. Figure
9.3 displays the two mappings obtained with the reduced safe samples group
and the disruptive samples belonging to the training set; figure (a) reports
the GTM with 1600 map units and the figure (b) reports the SOM with 1674
map units. The dimension of SOM, i.e. the number of map units, has been
selected with an heuristic rule proposed in [4]; for comparison purposes also
the GTM size has been chosen applying the same rule. On the two maps
four types of map unit can be identified depending on their composition: safe
map units containing safe samples, disruptive map units containing disrup-
tive samples, mixed map units containing both safe and disruptive samples
and empty map units containing no samples. A color code has been adopted
to identify the four map unit categories on the map. The safe map units are
green, those disruptive are red, the mixed map units are grey and finally the
empty ones are white.

For both maps, a large safe region (the green one) where the risk of disruption
is low, two mainly disruptive regions (in red) where the risk of disruption is
high, and transition regions as boundary between the previous ones, can be
identified. Tracking the temporal evolution of plasma discharges both on the
GTM and the SOM, it has been observed that the great majority of the safe
discharges evolves within the safe region, as the yellow trajectories reported
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Figure 9.1: Probability density functions of the plasma parameters included in
the data base for safe samples, before the data reduction (blue line) and after the
data reduction (green dashed line).
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Figure 9.2: PCA projection of the 7-D AUG safe space of training set before the
data reduction (blue points) and after the data reduction (green points) onto the
first three principal components.

on the two maps in Figure 9.3. On the contrary, for the majority of disrup-
tive discharges, the trajectory starts in the safe region and, passing through
the transition region, ends in a disruptive region, as the blue trajectories on
figure 9.3. This suggested us to use both maps as disruption predictors by
linking the disruption alarm to the disruption risk of the different regions.

9.4 Disruption Predictors

In order to evaluate the prediction performance of the two maps as predictors
some performance indices have been introduced:

e Successful Predictions (SPs): the fraction of safe or disruptive dis-
charges correctly predicted.

e Tardy Detections (TDs): the fraction of disruptive discharges which
triggers the alarm too late.

e Missed Alarms (MAs): the fraction of disruptive discharges predicted
as non-disruptive.

e False Alarms (FAs): the fractions of safe discharges predicted as dis-
ruptive.
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Figure 9.3: 2-D mappings of AUG operational space, a) GTM whit 1600 map
units; b) SOM with 1674 map units; safe map units (green), disruptive map units
(red), mixed map units (grey), empty map units (white). On both the maps the
projection of a safe discharge (yellow line) and a disruptive discharge (blue line)
on the GTM (a) and the SOM (b) is reported.
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e Successful Rate (SR): the fraction of discharges (safe and disruptive)
correctly predicted.

At AUG a disruption is considered correctly predicted if the prediction sys-
tem is able to trigger the alarm 2ms before ¢p. Two ms is the time needed
to the mitigation systems to intervene |[6]. Conversely, a safe discharges is
correctly predicted when the alarm is not triggered at all. One of the mail
goals of experimental reactors, as AUG, is to exploit its own potentialities.
A conservative disruption predictor could limit the exploration capability of
the machine; in order to avoid this drawback, the percentage of disruption
triggered too much in advance has to be limited as well as the false alarms.
To this purpose, the Early Detection (ED) index has been defined as the frac-
tion of disruptive discharges which triggers the alarm too much in advance.
In this study, a disruption is considered predicted too much in advance if
the alarm is activated within the time window [trrar—ToP, tp —500] ms |[7],
where tppar_rop is the flat top beginning time of plasma current.

9.5 SOM and GTM

In order to employ the two mappings as disruption predictors, a suitable
alarm criteria which links the disruption risk of the different regions to the
percentage of disruptive samples (DS%) into the map unit, has been opti-
mized. In particular, the alarm is triggered when the trajectory stays in a
disruptive or a mixed map unit containing at least 95% of disruptive sam-
ples for at least h consecutive samples. For each cluster the parameter h is
evaluated by means of 9.1 for the GTM and 9.2 for the SOM.

hery = round(—5.6 - DS% + 562) (9.1)
hsom = round(—3.2 - DS% + 322)

where round() is the nearest integer function.

The coefficients of these linear functions have been optimized maximizing the
Successful Rate (SR) on the training set. Table 9.3 reports the prediction
performance for SOM and GTM on the three data sets simulating the on-line
operation.

Table 9.3 shows that the SR obtained with GTM results to be better than the
ones with the SOM. Moreover, the GTM has always better performance on
early detections and false alarms than the SOM, instead the SOM achieves
always lower MAs than the GTM.
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Disruptive discharges Safe discharges

Method - Data set rpyo ™ \iaj Sp(%]| SP[%| FA[%| SR[%| ED[%|

Training 1.61 5.65 92.74  94.52 5.48 94.01 16.93
SOM Test_1 4.76 6.35 88.89  89.60 10.32 89.50  17.46

Test 2 0 1.83 98.17 84.13 15.87 88.16  16.51

Training 0 8.26 91.74 97.42 2.58 95.82 9.1
GTM Test 1 0 11.67  88.33 91.61 8.39 90.70 10

Test 2 0 3.77 96.23  89.67 10.33 91.51 12.26

Table 9.3: Prediction performance for SOM and GTM on the three data sets.

9.6 Logit model

Besides SOM and GTM, a Logit model has been trained to predict, start-
ing from the seven variables listed in table 9.2, the probability of a generic
sample to belong to a safe or a disruptive phase. During the training of
the model, the dichotomous output has been set equal to 0 for safe sam-
ples and 1 for disruptive samples. Thus, the Logit model realizes a mapping
from the input variables to a continuous output, which should assume large
negative values for samples belonging to safe phase and large positive val-
ues for those belonging to disruptive phase. From a preliminary analysis,
it has been observed that, for the majority of safe discharges belonging to
the training phase, the Logit model output (LMO) is always smaller than 0
throughout the discharge. Conversely, for the great majority of the of dis-
rupted discharges the time evolution of the LMO remains at low values for
the majority of the discharge and begins to grow when the pulse approaches
the disruption time. As an example, Fig. 9.4 reports the LMO for a disrup-
tive (No. 21886) and a safe (No. 21718) discharge.

This behavior suggests us to use the logit model as disruption predictor by
introducing a suitable threshold value that discriminates between the safe
and the disruptive phase. Figure 9.5 reports the probability density func-
tion of LMO for samples belonging to the training set. It can be seen that
for the great majority of safe samples belonging both to safe and disrup-
tive discharges (blue and green line respectively), LMO remains smaller than
0. Conversely, for the majority of disrupted samples, LMO is greater than
zero. Figure 9.5 shows that an LMO value can be set as alarm threshold to
discriminate between safe and disruptive phase. Thus, the adopted alarm
criteria consists in triggering a disruption alarm when the LMO exceeds the
threshold value. To avoid false alarms sometimes caused by spikes in the
diagnostic signals, a time delay has been introduced that inhibits the alarm
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Figure 9.4: Logit model output (LMO) for a disruptive discharge (upper plot)
and a safe discharge (lower plot).
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Figure 9.5: Probability density of LMO for samples belonging to the training set.
Three sample groups are represented: ss of safe discharges (blue), ss of disruptive
discharges (green) and ds of disruptive discharges (red)
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for h samples after the alarm is activated. The optimum threshold value
has been optimized in the range |1 <+ 3| maximizing the Successful Rate on
the training set. The parameter h has been optimized in the range [1 <+ 10].
The best performance of the Logit model as disruption predictor has been
achieved with an alarm threshold equal to 2.3 and h = 2 (see Table 9.4). It
can be noted that the SRs and FAs obtained with the Logit model are always
slightly worse than those achieved with the SOM and the GTM, but among
the three methods, the Logit model reaches the best performance on early
detections.

Disruptive discharges Safe discharges

Method = Data set o0 ™ \iatgr] SP[%] SP[%] FA[%] SR[%] ED[%]

Training 0.80 8.87 90.32 94,51 5.48 93.32 4.84
Logit Test 1 1.61 11.29  87.09  89.68 10.32 88.94 4.84
Test 2 0.90 0.00 99.10  82.28 17.71 86.95 10.8

Table 9.4: Prediction performance for the Logit model on the three data sets.

9.7 Combined predictors

Comparing tables 9.3 and 9.4, the three methods achieve comparable val-
ues of SRs, but no one method can be stated as the most suitable. In fact,
the Logit regressor maintains limited the early detections, always lower than
10.8%, but false alarms overcome 17% (on Test 3); the GTM presents the
best performance on safe discharges, with FA always lower than 10% , but
EDs are higher than 9% on the three data set; the SOM reaches the worst
results on EDs, always higher than 16%, and FAs are higher than 10% on
Test 2 and Test 3. Thus, SOM and GTM have poor results on early de-
tections where the Logit model achieves good results. On the contrary the
Logit model has poor results on false alarms where the GTM obtains good
results.

The complementary behavior previously pointed out, suggest to combine
both the SOM and the GTM with the Logit regressor in order to realize
two combined predictors able to maintain limited early detections and false
alarms as well as maximizing the SRs. In the combined predictors the alarm
is triggered only when the trajectory evolving on the map (either SOM or
GTM) stays in disrupted or mixed map units containing at least 90% of dis-
ruptive samples for at least h consecutive samples and the LMO is higher
than a suitable alarm threshold. The parameters h and the alarm thresh-
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old have been optimized maximizing the SR on the training set. The alarm
threshold has been optimized in the range [1 + 3|. The predictor consisting
in the combination of the SOM and the Logit model achieves the best perfor-
mance (see Table 9.5) with an alarm threshold equal to 1.8 and h is evaluated
in each cluster by means of the function hgoy = round(—2.6 - DS% + 262),
where DS% is the percentage of disruptive sample in the cluster.

The predictor consisting in the combination of the GTM and the Logit
model achieves the best performance, reported in Table 9.5 too, with an
LMO threshold equal to 1.7 and h is evaluated in each cluster by means the
function hgry = round(1.3 - DS% + 132).

Disruptive discharges Safe discharges

Method = Data set o0 ™ \ia1g] SP[%] SP[%] FA[%] SR[%] ED[%]

SOM Training 1.65 8.26 90.08  98.39 1.61 96.06 5.79
& Test 1 6.56 8.20 85.25  93.55 6.45 91.20 3.28
LOGIT Test 2 0.00 1.85 98.15 91.88 8.12 93.67 6.48

GTM Training 0.00 8.33 91.67 97.74 2.26 96.05 5.00
& Test 1 3.23 11.29 8548  92.26 7.74 90.32 4.84
LOGIT Test_ 2 0.00 2.80 97.20 89.67 10.33 91.80 7.48

Table 9.5: Prediction performance for the combined predictors on the three data
set.

Table 9.5 shows that, with respect to SOM and GTM, the corresponding
combined predictors accomplish slightly better SRs, but it has to be high-
lighted that EDs and FAs significantly improve. In particular, combining the
Logit model with the SOM allows both early detections and false alarms to
fall down 7%, instead MAs slightly deteriorate on Trainig set and Test 2.
Combining the Logit model with the GTM allows the early detections to
remain below 8%, false alarms have been reduced only for the training set
and Test 1, no enhancement are attained for Test 2. Regarding MAs, no
considerable improvements are achieved on the three data set.

9.8 Disruption classification

A preliminary analysis shows that during the disruptive phase different types
of disruptions evolve in different disruptive map regions. As an example, fig-
ure 9.6 reports the time evolution of a density limit disruption (black trajec-
tory) and a beta limit disruption (blue trajectory) on both GTM and SOM.
The black point represents the trajectory starting point, the yellow point is
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the trajectory ending point. As it is shown by the yellow squares, on both
maps, the density limit disruption ends in the disruptive region on the right
upper corner, instead the beta limit ends in the small disruptive region on
the left map side. This means that on both SOM and GTM, disruptions
happening at low thermal energy (density limit) end in a disruptive region
different from those happening at high thermal energy (beta limit).

Figure 9.6: Time evolution of two disruption types on GTM and SOM; black tra-
jectory: density limit disruption (No. 28727); blue trajectory: beta limit disruption
(No. 25172).

This preliminary study shows that among the disruptive regions, areas de-
picting the behavior of a certain disruption class could be identified. There-
fore, following the trajectory on the map, it is possible to eventually recognize
non only the proximity of disruption but also the class it belongs to. These
results confirm the potentiality of SOM and GTM as disruption classifier too,
as well as it is shown in JET database in [5].

9.9 Conclusions

This study shows that it is possible to describe the 7-D AUG operational
space on a 2-D map (SOM and GTM), where regions with different risk of
disruption can be identified. A criterion has been optimized to associate the
risk of disruption of each map region with a disruption alarm threshold. The
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prediction performance of the proposed predictive systems has been evalu-
ated on a test set of discharges coming from experimental campaigns carried
out at ASDEX Upgrade from May 2011 to November 2012.

The GTM predictor results to have better Success Rate than the SOM pre-
dictor on both the Test sets, reaching on average ~ 91%. Furthermore, GTM
has always better performance on Early Detections and False Alarms than
SOM, although on the test sets both indexes remain above 8%. Conversely,
the SOM achieves better performance on Missed Alarms than the GTM.
Additionally a statistic predictor has been trained and tested on the same
data set. This predictor, based on a Logistic Regressor model, achieves
slightly worse performance than SOM and GTM, except on early detections,
which are much lower than those achieved by SOM and GTM.

Finally, the good performance of SOM and GTM and the tendency of Logit
model to limit the early detections have been exploited combining each map
with the statistical model. A new alarm criterion has been optimized, in par-
ticular, the alarm triggered on the map (either SOM or GTM) is activated
only if Logit Model Output is greater than a certain threshold.

An overall improvement of the performance has been obtained both for SOM
and GTM. The new predictor involving the SOM gets the best performances,
on test sets, the SR exceeds 91%, FAs remain lower than 8.2% and EDs reach
at most 6.5%.



Bibliography

1]

2]

3]
4]

[5]

6]

7]

Aledda R. et al. 2012 IEEE Transactions On Plasma Science, Vol. 40,
No. 3.

Cannas B., Fanni A., Murari A., Pau A., Sias G., and JET EFDA
Contributors 2013 Manifold learning to interpret JET high-dimensional
operational space, Plasma Phys. Control. Fusion 55 art. no 045006

Cannas B. et al. 2010 Nuclear Fusion 50 075004

SOMtoolbox 2005 Adaptive Informatics Research
Centre, Helsinky Uniyv. of Technology, Finland.
http://www.cis.hut.fi/projects/somtoolbox

Cannas B., Fanni A., Murari A., Pau A., Sias G. and JET EFDA
Contributors 2013 Automatic disruption classification based on mani-
fold learning for real-time applications on JET Nucl. Fusion 53 093023

Pautasso G., et al. 2009 Disruptions studies in ASDEX Upgrade in view
of ITER Plasma Phys. Control Fusion, vol. 51, no. 12, p. 124 056

Zhang Y., Pautasso G., Kardaun O., Tardini G., Zhang X.D. and the
ASDEX Upgrade Team 2011 Prediction of ASDEX Upgrade disruptions
using discriminant analysis, Nucl. Fusion 51 063039-41

177



178 BIBLIOGRAPHY



Conclusions and future work

The activities carried out in the framework of this thesis regarded the devel-
opment, the implementation and the application of algorithms for classifica-
tion and prediction of disruptions in Tokamaks.

Disruptions can expose the plasma facing components to severe thermo-
mechanical stresses and conductors surrounding the vessel to huge electro-
magnetic forces; therefore, it becomes of primary importance to avoid or
mitigate disruptions in order to preserve the integrity of the machine. This
aspect turns out to be particularly relevant in design and running of new
experimental devices as ITER.

These considerations motivate and still motivate a strong interest in devel-
oping methods and techniques aimed to minimize both number and severity
of disruptions. But, besides the prediction, it is particularly important to be
able to distinguish among their different types in order to improve avoidance
and mitigation strategies. Since physical models able to reliably recognize
and predict the occurrence of disruptions are currently not available, ma-
chine learning techniques have been exploited as an alternative approach to
disruption prediction and automatic classification, both with the application
and further development of existing systems and with the investigation of
new approaches.

One of the first problems which have to be addressed when working
with data-based methods is the construction of a reliable and representa-
tive database. This is true especially in fusion, where the character of high
dimensionality and the huge amount of available observations, poses a se-
rious problem about how to "reduce" coherently available data. Therefore,
proper criteria have been used to select suitable signals downloaded from
JET databases in order to obtain a data set of reliable observations. Finally,
data-reduction, based on clustering methods, has been performed to select
a limited and representative number of samples for the operational space
mapping. Two separated databases have been built with discharges belong-
ing to the Carbon Wall (CW) configuration (campaigns from 2005 to 2009)
and to the new ITER-like Wall (ILW) configuration (campaigns from 2011

179
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to 2013). The distinction allowed to analyze what is changed moving from a
configuration to the other one in terms of the underlying physics and oper-
ational space, and this is reflected in the different behaviour of disruptions,
coherently to what has been found with all the analysis carried out.

One of the most important part of the work regarded the mapping of the
high dimensional operational space of JET, which has been described and vi-
sualized using different linear projection methods such as Grand Tour (GT)
and Principal Component Analysis (PCA), and mapped through non-linear
manifold learning techniques as Self-Organizing Map (SOM) and Generative
Topographic Map (GTM). The potentiality of manifold learning methods has
been discussed showing several types of representations, also with reference
to the data analysis and visualization tools developed for GTM. The power
of the proposed techniques has also been highlighted through a comparison
with classical scatter plots identifying operational limits and boundaries for
the considered database.

In particular, both SOM and GTM maps can be exploited to identify charac-
teristic regions of the plasma scenario and for discriminating between regions
with high risk of disruption and those with low risk of disruption, to quantify
and evaluate the effectiveness of the mapping itself. In addition, some mea-
sures have been used to evaluate the performance of the proposed methodolo-
gies. To calculate the precision of the clustering over the entire dataset the
average quantization error, a common index of the map resolution, has been
applied. Furthermore, to control the conservation of topology two different
aspects have been analyzed, i.e., the trustworthiness of the projected neigh-
borhood and the preservation of the resulting neighborhood. Moreover, an
outlier analysis has been performed on the available data in order to quantify
goodness and effectiveness of the projection.

Regarding the results achieved with the mapping, both the SOM and the
GTM presents a large safe region well separated from some disruptive re-
gions by transition regions, which consists of map units that contains both
safe and disruptive samples, and empty regions. In particular GTM model
turned out to have both higher capability of discriminate between safe and
disruptive samples (less than 10% of the samples are projected in transition
regions) and better performance in the mapping.

Given the results in the mapping of JET 10-dimensional space, SOM
and GTM potentialities have been extensively investigated and an algorithm
for automatic classification has been developed for both the methods. The
proposed approach for the discrimination of disruption types consists of iden-
tifying characteristic regions in the operational space where the plasma un-
dergoes a disruption.

A relevant part of the activities carried out in the framework of this thesis
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has been spent in the analysis of the different types of disruptions that can
occur in JET, making reference to the manual classification made available
by physicists, where specific chains of events have been detected and used to
classify disruptions, grouping those that follow specific paths.

The characterization of the operational space in terms of the different dis-
ruption classes may lead to better overall understanding and more focussed
prevention and mitigation methods. The maps obtained with SOM and
GTM algorithms have shown to self-organize in such a way that the disrup-
tions which belong to the same class tend to aggregate, defining in this way
regions where a certain class results to be predominant with respect to the
others. Each disruption has been projected on the maps, and the proba-
bilities of belonging to the different disruption classes have been monitored
during the time evolution, returning, among the seven considered classes,
the one which the disrupted pulse more likely belongs to. In order to per-
form the classification, a majority voting algorithm has been applied the the
class-membership, computed for each shot. The algorithm associates to each
sample a probability to belong to the seven classes. The success rate of GTM
is high for all the considered classes (above 97%), reaching in some cases even
the percentage of 100%.

After the campaign in 2009, JET installed the new ITER Like wall (ILW).

The first attempt has been to project the disruptions of the ILW campaigns
onto the GTM map trained with the CW discharges; the classification perfor-
mance for the new disruptions significantly deteriorated for certain classes.
Thus, the disruption classes with the ILW have been deeply analyzed and
compared with those in the CW JET campaigns. In particular, the probabil-
ity density functions of the different plasma parameters clearly highlighted
the different behavior of a new class, an impurity type due to high-Z impurity
accumulation in the core of the plasma column. Instead, in the considered
period, some disruption classes present in the CW data bases are no longer
present in the ILW data base, as those due to too strong internal transport
barrier and the ones due to Greenwald limit.
The performance of the new ILW GTM classifier has been tested in conjunc-
tion with APODIS, a prediction system working on-line at JET, simulating
the application in real time, that is, by synchronizing a time windows of 32
and 64 ms in advance with respect to the time in which APODIS triggers
the alarm. By applying the majority voting algorithm to the class member-
ship in the considered time window, the prediction success rate is still quite
high (above 90%) according to the manual classification. The performance
slightly worsened when the new impurity type is introduced, because in cer-
tain cases it turns out to be quite difficult to distinguish this new class from
the previously defined impurity control problem class.
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Furthermore, in order to validate and analyze the obtained results, another
reference classifier has been developed based on k-NN which uses as kernel
the Mahalanobis distance. The performance of the reference classifier is still
above 90%, but, also for it, the success rate deteriorates when the new IMC
class is introduced.

Finally, in order to verify the reliability of the performed classification, a
conformal predictor has been developed, which is based on non-conformity
measures. The preliminary results indicate the suitability of the conformal
predictors to assess the reliability of the GTM classification even if the cal-
culation time allows their use only in an off-line fashion.

GTMs potentiality has also been exploited for the prediction of disrup-
tions at ASDEX Upgrade: a 2-D GTM has been built to represent the 7D
AUG operational space on the base of discharges performed between May
2007 and April 2011. As it has been obtained in the case of JET, the GTM
clearly proves to be able to separate non-disruptive and disruptive states of
plasma. Therefore, likewise the SOM, the GTM can be used as a disrup-
tion predictor by tracking the temporal sequence of the samples on the map,
depicting the movement of the operating point during a discharge. Various
criteria have been studied to associate the risk of disruption of each map
region with a disruption alarm threshold. The prediction performance of the
proposed predictive system has been evaluated on a set of discharges coming
from experimental campaigns carried out at AUG from May 2011 to Novem-
ber 2012.

The GTM predictor achieves the best overall performance, above the 91% on
the considered Test sets. Furthermore, GTM has always better performance
on Early Detections and False Alarms than SOM, although, on the test sets
both indexes remain above 8%. Conversely, the SOM achieves better perfor-
mance on Missed Alarms than the GTM.

Additionally, a statistic predictor has been trained and tested on the same
data set. This predictor, based on a Logistic Regressor model, achieves
slightly worse performance than SOM and GTM, except on early detections,
which are much lower than those achieved by SOM and GTM.

Therefore, the good performance of SOM and GTM and the tendency of
Logit model to limit the early detections have been exploited combining
each map with the statistical model. A new alarm criterion has been opti-
mized, in particular, the alarm triggered on the map (either SOM or GTM)
is activated only if the Logit model output is greater than a certain thresh-
old, achieving an overall improvement of the performance. The combined
predictor involving the SOM gets the best performances, on test sets, the
Success Rate exceeds 91%, False Alarms remain lower than 8.2% and Early
Detections reach at most 6.5%.
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The high performance of the proposed methods gives rise to the per-
spective of a deployment of these tools in real time: regarding this point,
even if a porting of the Matlab codes should be needed for the integration
in the real time frameworks, the suitability for real time applications has
been already assessed. Furthermore, the algorithms described in this work
have been developed in a tool for Matlab which allows, given a database, to
perform all the analysis presented in this thesis almost automatically, from
the data-reduction, going through the mapping of operational spaces up to
the projection of new data and the assessment of mapping performance.
This techniques represent a powerful tool for data-analysis and could be very
useful not only in the framework of disruption prediction and classification,
but also in other fields, such as, for example, one would like to distinguish
or discriminate a particular behavior or plasma state. To conclude, still re-
garding the future perspectives, machine learning tools are also producing
very interesting results in the comparative analysis of different fusion devices
operational spaces, as in the case of JET and ASDEX Upgrade, on the route
of developing predictors capable of extrapolating from one device to another,
as foreseen in the framework of a cross-machine approach.
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