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Introdution

The physiist Andreevih Artsimovih in the 1970 wrote that "thermonulear

[fusion℄ energy will be ready when mankind needs it". Considering the atual

world energy situation and the e�et on the environment due to the present

harnessing of the di�erent soures of energy, the hope is that time for fusion

is �nally arrived.

Bakground and Motivation

The ativities arried out in the framework of this thesis regarded the devel-

opment, implementation and appliation of algorithms for lassi�ation and

predition of disruptions in Tokamaks.

The balane of plasmas in a magneti �eld an be desribed by the theory

of magneto-hydro-dynami (MHD). MHD instabilities are among the most

serious fators that limit fusion devies operation in magneti on�nement

on�gurations. When they our on a large sale an degrade the perfor-

mane of the plasma and lead to loss of on�nement and ontrol.

A disruption is a sudden loss of stability or on�nement of tokamak

plasma; it is a ritial event in whih the plasma energy is lost within a

time span of few milliseonds exposing the plasma faing omponents to se-

vere thermo-mehanial stresses and ondutors surrounding the vessel to

huge eletromagneti fores. Therefore, it beomes of primary importane

to avoid or mitigate disruptions in order to preserve the integrity of the ma-

hine. This aspet and the understanding of disruptive phenomena play a

key role in design and running of new experimental devies as ITER, ur-

rently under onstrution in Cadarahe (Frane), whih will have the task

of demonstrating the feasibility of fusion energy prodution from a tehnial

and engineering point of view.

These onsiderations motivate a strong interest in developing methods

and tehniques aimed to minimize both number and severity of disruptions.

Furthermore when a disruption ours it would be partiularly important to

be able to distinguish among its di�erent types in order to improve avoidane
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ii INTRODUCTION

and mitigation strategies. Sine physial models able to reliably reognize

and predit the ourrene of disruptions are urrently not available, the re-

searh arried out �ts in the broad framework of mahine learning tehniques

that have been exploited as an alternative approah to disruption predition

and automati lassi�ation.

Promising approahes to predition and lassi�ation are represented by

the so-alled "data-based" methods: to this purpose, existing systems have

been applied and further developed and new approahes have been investi-

gated.

The mentioned ativity has been arried out in ollaboration with the

University of Cagliari and European Researh Centers for nulear fusion,

taking as ase study some of the most important experimental mahines

suh as JET and ASDEX Upgrade (AUG), with several months of researh

spent at the Culham Siene Centre.

List of publiations and ontributions of this the-

sis

[1℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-
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spae", Plasma Phys. Control. Fusion 55 045006, 2013.

[2℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Automati disruption lassi�ation based on manifold learning for

real-time appliations on JET", Nulear Fusion 53 093023, 2013.

[3℄ A. Pau, B. Cannas, A. Fanni, A. Murari, G. Sias, and JET-EFDA Con-

tributors, "Advanes in disruption lassi�ation at JET", 8th Workshop on

Fusion Data Proessing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).

[4℄ G. Sias, R. Aledda, B. Cannas, A. Fanni, A. Pau, G. Pautasso, and

ASDEX Upgrade Team, "Data visualization and dimensionality redution

methods for disruption predition at ASDEX Upgrade", 8th Workshop on Fu-
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-

trol. Fusion - "Physis-based optimization of plasma diagnosti information"

Cluster.

[6℄ A. Murari, J. Vega, P. Boutot, B. Cannas, S. Dormido-Canto, A. Fanni,

J. M. Lopez, R. Moreno, A. Pau, G. Sias, J. M.Ramirez, G. Verdoolaege,

ASDEX Upgrade Team and JET EFDA ontributors, "Latest Developments

in Data Analysis Tools for Disruption Predition and for the Exploration of

Multimahine Operational Spaes", Pro. of 24th IAEA Fusion Energy Con-

ferene Abstrats, San Diego, USA, 8-13 Otober 2012.

One of the most demanding ativities, espeially in terms of required time,

has been the building of representative and reliable databases whih results

to be fundamental for suessfully apply data-driven methods. For AUG a

database was already available and it is onstantly updated by the researhers

of University of Cagliari.

Regarding JET, in order to analyze and investigate its high-dimensional

operational spae, a reliable database has been built up on the base of 10

real time signals, whih are representative of the disruptive behavior of the

plasma. For the Carbon Wall (CW) data omes from plasma disharges

seleted from JET ampaigns from 2005 to 2009, whereas ITER-like Wall

(ILW) database is based on the same set of signals belonging to the am-

paigns from 2011 to 2013.

Several riteria and statistial analysis have been onsidered in order to

properly selet a redued representative number of disharges. Di�erent data

redution algorithm have been developed in order to obtain a reasonable

amount of data, keeping at the same time the diversity and the representa-

tiveness of data in statistial terms. Only non-intentional disruptions have

been onsidered with plasma urrent above 1MA. The resulting CW database

is omposed of 243 disruptions, whereas ILW database onsists of 149 dis-

ruptions, where eah signal has been sampled at a frequeny of 1 kHz.

The high dimensional operational spae of JET has been analyzed and

visualized using di�erent linear projetion methods suh as Grand Tour (GT)

and Prinipal Component Analysis (PCA), and mapped through non-linear

manifold learning tehniques as Self-Organizing Map (SOM) and Genera-

tive Topographi Map (GTM). The use of the "Manifold Learning" �nds its

motivation in the fat that high-dimensional data an lie on an embedded,

eventually non-linear, low-dimensional manifold, whih an be easily visual-

ized and understood if we onsider a 2 or 3 dimensional spae. Hene, in this

PhD Thesis, Manifold Learning methods have been suessfully applied both

for lassi�ation and predition of disruptions, showing their potentiality in
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the analysis and the visualization of the operational spae.

The SOM and/or GTM maps an be exploited to identify harateristi

regions of the plasma senario and for disriminating between regions with

high risk of disruption and those with low risk of disruption. This part of the

work has been supported with the implementation of tools for data analysis

and data visualization with whih it is also possible to quantify and eval-

uate the e�etiveness of the mapping itself. The results show quite learly

that nonlinear manifold learning tehniques are more suitable for mapping

the JET high dimensional operational spae; in partiular GTM exhibits a

higher apability of disriminating between safe and disruptive regions [1].
An important result of this analysis is represented by the fat that the two

nonlinear methods seem to onverge on the same manifold, whih means that

we are atually looking at the intrinsi properties hidden in the high dimen-

sional data.

The tools developed for data analysis and visualization, in partiular for

GTMs, ould be partiularly useful in the study of the operational spae

where the relevant physis takes plae, allowing the pereption of eventual

similarities among the di�erent variables. The identi�ation of dependenies

and omplex relations among the variables is made possible by analysis and

omparison of similar patterns in the relative omponent distributions of the

input variables onto the 2-D maps.

By applying suh tehniques, another relevant part of the Ph.D. ativities

has been spent in the analysis of the di�erent types of disruption that an

our in JET, making referene to the manual lassi�ation that has been

done in [P.C. de Vries, et al., Nul. Fusion 51 (2011) 053018 ℄, where spei�

hains of events have been deteted and used to lassify disruptions, grouping

those that follow spei� paths. The lassi�ation is part of a partiularly

omplex senario whose analysis has required a onsiderable amount of time.

The haraterization of the operational spae in terms of the di�erent dis-

ruption lasses may lead to better overall understanding and more foussed

prevention and mitigation methods. A preliminary analysis arried out both

with SOMs and GTMs has shown that the maps seem to self-organize in suh

a way that the disruptions whih belong to the same lass tend to aggregate,

de�ning in this way regions where a ertain lass results to be predominant

with respet to the others.

As desribed in [2], the potentiality of the GTM mapping of the JET

operational spae has been exploited to develop an automati disruption las-

si�ation of seven disruption lasses ourred with the Carbon Wall. Eah

disruption is projeted on the map and the probabilities of belonging to the

di�erent disruption lasses are monitored during the time evolution, return-

ing the lass that the disrupted pulse more likely belongs to. Using the GTM
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trained on the CW dataset with ILW disharges seleted from the JET ILW

ampaigns C28-C30 signi�antly deteriorates the lassi�ation performane,

partiularly on ertain disruption lasses. Hene, a new GTM has been built

to represent the new operational spae of JET. Using this map with all the

disruptions ourred in these last ampaigns the very high lassi�ation per-

formane is on�rmed and therefore, the prospets for the deployment of this

tool in real time are very promising [3].
GTMs potentiality has also been exploited for the predition of disrup-

tions at ASDEX Upgrade [4]: a 2-D-GTM has been built to represent the

7D AUG operational spae on the base of disharges performed between May

2007 and April 2011. As it has been obtained in the ase of JET, the GTM

learly proves to be able to separate non-disruptive and disruptive states of

plasma. Therefore, likewise the SOM, the GTM an be used as a disrup-

tion preditor by traking the temporal sequene of the samples on the map,

depiting the movement of the operating point during a disharge. Various

riteria have been studied to assoiate the risk of disruption of eah map

region with a disruption alarm threshold. The predition performane of the

proposed preditive system has been evaluated on a set of disharges oming

from experimental ampaigns arried out at AUG from May 2011 to Novem-

ber 2012.

Some measures have been used to evaluate the performane of the pro-

posed methodologies. To alulate the preision of the lustering over the

entire dataset, the average quantization error, a ommon index of the map

resolution, has been applied. Moreover, to ontrol the onservation of topol-

ogy two di�erent aspets have been analyzed, i.e., the trustworthiness of the

projeted neighborhood and the preservation of the resulting neighborhood.

Moreover, an outlier analysis has been performed on the available data in

order to quantify goodness and e�etiveness of the projetion [5].
In the last years, signi�ant e�orts have been devoted to the development

of advaned data analysis tools to both predit the ourrene of disruptions

and to investigate the operational spaes of devies, with the long term goal

of advaning the understanding of the physis of these events and to pre-

pare for ITER. Manifold learning tools are also produing very interesting

results in the omparative analysis of JET and AUG operational spaes, on

the route of developing preditors apable of extrapolating from one devie

to another, as foreseen in the framework of ross-mahine approah [6].
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Outline of the Thesis

In hapter 1 the perspetives of fusion in the world energy ontext as an

almost unlimited soure of energy for the future are disussed, with partiu-

lar referene to the role of magneti on�nement. Furthermore, the bases of

fusion reations have been introdued.

In hapter 2 the main aspets of plasma stability in tokamaks on�gu-

rations are desribed with the aim to provide an adequate referene for all

the disussions of the following hapters. In partiular, the main parameters

related to plasma stability, whih have been used for the onstrution of the

databases, have been introdued.

The hapter 3 is foused on the desription of the operational limits

with referene to the main quantities whih should be maximized to im-

prove plasma performane. Everything, also in the previous hapters, has

been framed to introdue the key problems whih this thesis has addressed:

analysis, predition and lassi�ation of disruptions. After the main onsid-

erations about the operational limits, the main phases, the auses and the

onsequenes of disruptions have been disussed, trying to integrate the sta-

bility onepts introdued in the previous hapter.

The hapter 4 is �nalized to provide an insight of the Mahine Learn-

ing methods whih represent the starting point of all the analysis and algo-

rithms implemented for disruption predition and lassi�ation. Today the

large amount of data available from fusion experiments and their harater

of high-dimensionality make partiularly di�ult handling, proessing, un-

derstanding and extrating properly what is really important among all the

available information. Mahine Learning allows to deal with the problem in

e�ient way. Therefore, a framework of all the tehniques exploited for the

analysis has been provided, with partiular referene to the Manifold Learn-

ing algorithms as Self Organizing Maps (SOMs) and Generative Topographi

Mappings (GTMs). Also referene methods suh as k-Nearest Neighbor (k-

NN) or more reent methods suh as Conformal Preditors, exploited for

validation and reliability assessment purposes, have been desribed.

In hapter 5 the state of the art of mahine learning tehniques ap-

plied to disruption predition and lassi�ation is presented, desribing in

partiular the main appliations with the widely employed Neural Networks,

suh Multi Layer Pereptrons (MLPs), Support Vetor Mahines (SVMs)

and Self Organizing Maps (SOMs), and statistial methods suh as Disrim-

inant Analysis or Multiple Threshold tehnique. Strengths and weaknesses

have also been disussed with referene to a possible solution to overome

the drawbaks of these methods: the multi-mahine approah.

Chapter 6 is dediated to the desription of the databases used for all
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the analysis presented in the following hapters. In partiular, the statistial

analysis and the data-redution algorithms that have been needed to build

a reliable and statistially representative database have been disussed in

detail.

The last three hapters ontain all the analysis and all the algorithms im-

plemented for the mapping of the operational spae, disruption lassi�ation

and predition. In hapter 7 the mapping of the JET operational spae

is presented. The �rst setions deal with projetions and data-visualization

with linear projetion methods suh as Grand Tour (GT) and Prinipal Com-

ponent Analysis (PCA). In the entral part, the same aspets have been taken

into aount by exploiting nonlinear Manifold Learning tehniques, SOM and

GTM, on the base of whih a detailed analysis of the operational spae has

been performed. Suh analysis, showing the potentiality of the methods, has

been performed, regarding GTM model, through the implementation of a

dediated tool. Finally, an outliers' analysis and performane indexes appo-

sitely proposed have been onsidered for evaluating the overall performane

of the mapping.

In the hapter 8 the developed automati disruption lassi�ation for

JET has been desribed. The hapter is divided in two parts: the �rst one

desribes the lassi�ation of disruptions belonging to the Carbon Wall (CW)

ampaigns, whereas in the seond part the lassi�ation of disruptions with

the ITER-like Wall (ILW) is framed in the assessment of the suitability of the

automati lassi�er for real time appliations, in onjuntion with predition

systems working online at JET. The reliability of the results has been vali-

dated by omparison with a k-NN based referene lassi�er and through the

reent onformal preditors, with whih is possible to provide, in addition to

the predition/lassi�ation, the related level of on�dene.

Chapter 9 is dediated to the disruption predition at ASDEX Upgrade.

The �rst part is related to the desription of the database and the data-

redution tehnique used to selet a representative and balaned dataset.

Self-Organizing Map and the Generative Topographi Mapping have been

exploited to map ASDEX Upgrade operational spae and to build a disrup-

tion preditor, introduing at the same time their potentiality for disruptions

lassi�ation. Furthermore, the use of this two methods ombined with a Lo-

gisti model has been proposed to realize a preditive system able to exploit

the omplementary behaviors of the two approahes, improving the overall

performane in predition.
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Prefazione

Il �sio Andreevih Artsimovih nel 1970 srisse he "l'energia da fusione

nuleare sarà disponibile quando l'umanità ne avrà bisogno". Considerando

l'attuale senario energetio mondiale e l'impatto sull'ambiente dovuto allo

sfruttamento delle diverse risorse energetihe, la speranza è he quel momento

sia �nalmente arrivato.

Bakground e Motivazione

Le attività svolte nell'ambito di questa tesi hanno riguardato lo sviluppo,

l'implementazione e l'appliazione di algoritmi per la lassi�azione e la predi-

zione di disruzioni nei Tokamak.

L'equilibrio dei plasmi nei ampi magnetii può essere desritto dalla teo-

ria magneto-idro-dinamia (MHD). Le instabilità MHD sono tra i fattori he

limitano più seriamente le operazioni nelle mahine a fusione a on�namento

magnetio.

Una disruzione è un'improvvisa perdita di stabilità e di on�namento nei

tokamak; è un evento ritio durante il quale l'energia immagazzinata nel

plasma viene persa nell'aro di pohi milliseondi, esponendo i omponenti

della parete interna della amera da vuoto a severi stress termo-meanii,

e i onduttori irostanti a enormi forze elettromagnetihe. Quindi diventa

di primaria importanza l'avoidane e la mitigazione delle disruzioni al �ne di

preservare l'integrità della mahina. Questo aspetto e la omprensione dei

fenomeni disruttivi gioano un ruolo hiave nel progetto e nel funzionamento

delle nuove mahine sperimentali ome ITER, attualmente in ostruzione

a Cadarahe (Frania), la quale avrà la �nalità di dimostrare la fattibilità

tenia ed ingegneristia della produzione di energia da fusione.

Queste onsiderazioni motivano un forte interesse nello sviluppo di metodi

e tenihe atti a minimizzare sia il numero he l'entità delle disruzioni. In-

oltre, quando si veri�a una disruzione, sarebbe veramente importante rius-

ire a distinguere tra i diversi tipi di disruzione, al �ne di migliorare le strate-

gie di avoidane e mitigazione. Dal momento he ad oggi non esistono mod-

ix
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elli �sii in grado di rionosere e predire in maniera a�dabile l'arrivo di una

disruzione, la riera portata avanti in questi anni si integra nel più ampio

ontesto delle tenihe di Mahine Learning, le quali sono state utilizzate

ome approio alternativo alla predizione ed alla lassi�azione automatia

delle disruzioni.

Approi promettenti alla predizione ed alla lassi�azione sono rapp-

resentati dai osidetti approi "data-based": a questo proposito sono state

appliate e ulteriormente sviluppate diverse tenihe, e si è indagato su nuovi

approi.

Le attività itate sono state svolte in ollaborazione on l'Università di

Cagliari e importanti entri di riera europei sulla fusione, prendendo in

esame alune delle più importanti mahine sperimentali, quali il JET (Regno

Unito) e ASDEX Upgrade (Germania), on diversi mesi trasorsi al Culham

Siene Centre (Abingdon, Regno Unito).

Eleno delle pubbliazioni e dei ontributi legati

alla tesi

[1℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Manifold learning to interpret JET high-dimensional operational

spae", Plasma Phys. Control. Fusion 55 045006, 2013.

[2℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Automati disruption lassi�ation based on manifold learning for

real-time appliations on JET", Nulear Fusion 53 093023, 2013.

[3℄ A. Pau, B. Cannas, A. Fanni, A. Murari, G. Sias, and JET-EFDA Con-

tributors, "Advanes in disruption lassi�ation at JET", 8th Workshop on

Fusion Data Proessing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).

[4℄ G. Sias, R. Aledda, B. Cannas, A. Fanni, A. Pau, G. Pautasso, and

ASDEX Upgrade Team, "Data visualization and dimensionality redution

methods for disruption predition at ASDEX Upgrade", 8th Workshop on Fu-

sion Data Proessing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).

[5℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Overview of manifold learning tehniques for the investigation of
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-

trol. Fusion - "Physis-based optimization of plasma diagnosti information"

Cluster.

[6℄ A. Murari, J. Vega, P. Boutot, B. Cannas, S. Dormido-Canto, A. Fanni,

J. M. Lopez, R. Moreno, A. Pau, G. Sias, J. M.Ramirez, G. Verdoolaege,

ASDEX Upgrade Team and JET EFDA ontributors, "Latest Developments

in Data Analysis Tools for Disruption Predition and for the Exploration of

Multimahine Operational Spaes", Pro. of 24th IAEA Fusion Energy Con-

ferene Abstrats, San Diego, USA, 8-13 Otober 2012.

Una delle attività più onerese, speie in termini di tempo, è stata la ostruzione

di un database a�dabile e rappresentativo, he risulta essere fondamentale

per un'appliazione oerente dei metodi "data-driven". Nel aso di ASDEX

Upgrade un database era già disponibile e ostantemente aggiornato da rier-

atori dell'Università di Cagliari.

Per quanto riguarda il JET invee, al �ne di analizzare il suo spazio op-

erativo ad altà dimensionalità, è stato ostruito un database a�dabile sulla

base di diei segnali disponibili in tempo reale, he sono rappresentativi del

omportamento disruttivo del plasma. Per la parete in arbone (CW), i dati

provengono dalle ampagne sperimentali he vanno dal 2005 al 2009, mentre

per quanto riguarda la parete metallia (ILW), il database è basato sugli

stessi segnali relativi agli esperimenti delle ampagne dal 2011 al 2013.

Sono inoltre stati valutati diversi riteri e analisi statistihe al �ne di se-

lezionare in maniera appropriata un numero ridotto di sarihe. Sono inoltre

sono stati sviluppati diversi algoritmi di data-redution al �ne di ottenere

una quantità di dati ragionevole, preservando al tempo stesso la diversità e

la rappresentatività del database in termini statistii. Sono state onsiderate

uniamente le disruzioni non intenzionali on una orrente di plasma non

inferiore ad 1MA. Il risultante database per la parete in arbone è omposto

da 243 disruzioni, mentre quello relativo alla parete metallia é ostituito da

149 impulsi disrotti, per i quali iasun segnale è ampionato alla frequenza

di 1kHz.

L'analisi e la visualizzazione dello spazio ad alta dimensionalità di JET è

stata ottenuta sia on metodi di proiezione lineari, quali il Grand Tour (GT)

e la Prinipal Component Analysis (PCA), he on metodi di proiezione non

lineari, detti di "Manifold Learning", quali la Self Organizing Maps (SOM) e

le Generative Topographis Mappping (GTM). L'uso del Manifold Learning

trova la sua ragion d'essere nel fatto he dati ad alta dimensionalità possono

giaere in una struttura o spazio eventualmente non lineare a minore dimen-

sionalità he può essere failmente visualizzato e "ompreso" se si onsidera
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uno spazio 2-D o 3-D. Dunque, in questa tesi, le tenihe di Manifold Learn-

ing sono state appliate on suesso per la predizione e la lassi�azione di

disruzioni, evidenziando in partiolare le loro potenzialità nell'analisi e nella

visualizzazione degli spazi operativi.

Le mappe SOM e GTM possono essere utilizzate per identi�are regioni

aratteristihe e per disriminare tra quelle on alto e quelle on basso rishio

di disruzione. Questa parte del lavoro è stato supportata on l'implementazione

di strumenti per l'analisi e la visualizzazione dei dati, on ui è anhe possi-

bile quanti�are e valutare l'e�aia del mapping stesso. I risultati mostrano

hiaramente he le tenihe di Manifold Learning non lineari si dimostrano

più adeguate nel mapping dello spazio operativo di JET ad alta dimensional-

ità; in partiolare, la GTM presenta una maggiore apaità di disriminazione

tra regioni "safe" e regioni disrotte [1]. Un importante risultato di questa

analisi è rappresentato dal fatto he i due metodi non lineari sembrano on-

vergere nell'identi�azione dello stesso manifold, il he signi�a he stiamo

realmente osservando le proprietà intrinsehe nasoste nei dati ad alta di-

mensionalità.

Il tool sviluppato per la data-analysis e la visualizzazione, in partiolare

per le GTM, potrebbe essere partiolarmente utile nello studio dello spazio

operativo dove la �sia di rilievo, relativamente ai fenomeni onsiderati, ha

luogo, onsentendo l'individuazione di eventuali similarità tra le diverse vari-

abili. L'identi�azione di partiolari dipendenze è resa possibile dall'analisi

di pattern simili nella distribuzione relativa delle variabili in ingresso al sis-

tema nelle mappe 2-D.

Una parte rilevante delle attività di dottorato è stata spesa appliando

queste tenihe all'analisi dei diversi tipi di disruzioni he possono veri�arsi

al JET, faendo riferimento alla lassi�azione manuale he è desritta in

[P.C. de Vries, et al., Nul. Fusion 51 (2011) 053018 ℄, dove spei�he atene

di eventi sono state individuate e utilizzate per lassi�are le disruzioni. La

lassi�azione è parte di uno senario partiolarmente omplesso per la ui

analisi è stata molto onerosa in termini di tempo. La aratterizzazione dello

spazio operativo in termini di diverse lassi di disruzione può portare ad una

migliore omprensione globale del fenomeno, nonhè a metodi di prevenzione

e mitigazione più mirati. Un'analisi preliminare ondotta sia on SOM he

on GTM ha dimostrato he le mappe sembrano auto-organizzarsi in modo

tale he le disruzioni he appartengono alla stessa lasse tendono ad aggre-

garsi, de�nendo in questo modo delle regioni in ui una determinata lasse

risulta essere predominante rispetto alle altre.

Come desritto in [2], le potenzialità del mapping dello spazio operativo

di JET on le GTM, possono essere sfruttate per sviluppare una lassi�-

azione automatia relativamente alle sette lassi di disruzione onsiderate
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per la parete in arbone. Ogni disruzione viene proiettata sulla mappa e le

probabilità di appartenenza alle diverse lassi vengono monitorate durante

l'evoluzione nel tempo, restituendo la lasse più probabile per l'impulso on-

siderato. Utilizzando la stessa mappa GTM per sarihe on la parete metal-

lia (ILW), selezionate dalle ampagne sperimentali C28-C30, si è trovato

he le prestazioni in lassi�azione si deteriorano in modo signi�ativo, speie

per quanto riguarda alune lassi di disruzione. Quindi, è stata ostruita una

nuova mappa GTM per rappresentare il nuovo spazio operativo del JET. Uti-

lizzando questa mappa sulla totalità delle disruzioni veri�atesi nelle ultime

ampagne, si ritrovano prestazioni molto elevate in lassi�azione, e quindi

le prospettive per l'utilizzo di questo strumento in tempo reale, sono molto

promettenti [3].
Le potenzialità delle GTM sono state utilizzate anhe per la predizione

delle disruzioni ad ASDEX Upgrade [4]: è stata realizzata una mappa GTM

2-D per rappresentare lo spazio operativo 7D di ASDEX relativamente alle

sarihe e�ettuate tra maggio 2007 e aprile 2011. Come si è ottenuto nel

aso del JET, la GTM dimostra hiaramente di essere in grado di disrim-

inare tra gli stati disruttivi e quelli non disruttivi del plasma. Pertanto,

analogamente alla SOM, la GTM può essere usata ome predittore di dis-

ruzioni monitorando la sequenza temporale dei ampioni sulla mappa, he

ra�gura l'evoluzione del punto di lavoro durante una saria. Diversi riteri

sono stati studiati per assoiare il rishio di disruzione di ogni regione della

mappa on una spei�a soglia di allarme. Le performane del sistema pred-

ittivo proposto sono state valutate su una serie di sarihe provenienti dalle

ampagne sperimentali e�ettuate ad ASDEX da maggio 2011 al novembre

2012.

Per valutare le prestazioni delle metodologie di mapping proposte sono

stati utilizzati aluni indiatori. Per alolare la preisione del lustering è

stato valutato l'errore medio di quantizzazione sull'intero insieme di dati,

un indie omunemente utilizzato per la valutazione della risoluzione delle

mappe. Inoltre, per veri�are la onservazione della topologia, sono stati

analizzati due aspetti di�erenti, ossia l'a�dabilità del viinato mappato e

la onservazione del viinato originale. Inoltre, è stata eseguita sui dati

disponibili l'analisi degli outlier, al �ne di quanti�are la bontà e l'e�aia

della proiezione [5].
Negli ultimi anni sono stati dediati notevoli sforzi allo sviluppo di stru-

menti di analisi avanzata dei dati, sia per predire il veri�arsi di una dis-

ruzione, sia per studiare gli spazi operativi delle mahine, on l'obiettivo a

lungo termine di far progredire la omprensione della �sia he sta dietro a

questi eventi in vista di ITER. Gli strumenti di Manifold Learning stanno

produendo risultati molto interessanti anhe per quanto onerne l'analisi
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omparativa degli spazi operativi di JET e ASDEX, in relazione alla sviluppo

di predittori in grado di estrapolare da un mahina ad un altra, ome pre-

visto nell'ambito della strategia ross-mahine [6].

Outline della Tesi

Nel apitolo 1 vengono disusse le prospettive della fusione nel ontesto

energetio mondiale ome fonte quasi illimitata di energia per il futuro, on

partiolare riferimento al ruolo del on�namento magnetio. Inoltre, sono

state introdotte le basi sulle reazioni di fusione.

Nel apitolo 2 vengono desritti gli aspetti prinipali della stabilità del

plasma nelle on�gurazioni tokamak, on l'obiettivo di fornire un riferimento

adeguato per tutte le disussioni dei apitoli suessivi. In partiolare ven-

gono introdotti i prinipali parametri relativi alla stabilità del plasma, he

sono stati utilizzati per la ostruzione dei database.

Il apitolo 3 è inentrato sulla desrizione dei limiti operativi on riferi-

mento ai prinipali parametri he dovrebbero essere ottimizzati per migliorare

le performane del plasma. Tutto, anhe nei apitoli preedenti, è ontestuale

all'introduzione dei prinipali problemi he questa tesi si pone l'obiettivo di

a�rontare: analisi, predizione e lassi�azione delle disruzioni. Dopo le on-

siderazioni sui limiti operativi, vengono disusse le fasi prinipali, le ause e

le onseguenze dei proessi disruttivi, erando di integrarvi i onetti sulla

stabilità introdotti nel apitolo preedente.

Il apitolo 4 è invee �nalizzato a fornire una panoramia sui metodi di

Mahine Learning he rappresentano il punto di partenza per tutte le analisi

e gli algoritmi implementati per la predizione e la lassi�azione delle dis-

ruzioni. Oggi la grande quantità di dati disponibili dagli esperimenti sulla

fusione e il loro arattere di alta dimensionalità, rendono partiolarmente

di�ile la gestione, l'elaborazione, la omprensione e l'estrazione di quelle

informazioni he sono veramente importanti tra tutte quelle disponibili.

Il Mahine Learning onsente di a�rontare il problema in modo e�iente.

Viene quindi fornito un quadro generale di tutte le tenihe utilizzate per

l'analisi, on partiolare riferimento agli algoritmi di Manifold Learning ome

la Self Organizing Map (SOM) e la Generative Topographi Mapping (GTM).

Vengono inoltre desritti metodi di riferimento ome il k-Nearest Neighbor

(k-NN) o metodi più reenti ome i predittori onformali, utilizzati per sopi

di validazione e valutazione dell'a�dabilità.

Nel apitolo 5 viene presentato lo stato dell'arte relativamente alle te-

nihe di Mahine Learning appliate alla predizione e alla lassi�azione di

disruzioni, desrivendo in partiolare le prinipali appliazioni on le ampia-
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mente utilizzate Reti Neurali, quali Multi Layer Pereptrons (MLP), Support

Vetor Mahines (SVM) e Self Organizing Maps (SOM), e i metodi statistii

ome la Disriminant Analysis o la tenia Multiple Threshold. Vantaggi e

svantaggi vengono disussi anhe on riferimento ad una possibile soluzione

per superare gli svantaggi di questi metodi: l'approio multi-mahine.

Il apitolo 6 è dediato alla desrizione dei database utilizzati per tutte le

analisi he verranno presentate nei apitoli seguenti. In partiolare vengono

disussi in dettaglio l'analisi statistia e gli algoritmi di data-redution he

si sono resi neessari per ostruire un database a�dabile e statistiamente

rappresentativo.

Gli ultimi tre apitoli ontengono le analisi e gli algoritmi implementati

per il mapping degli spazi operativi, la lassi�azione e la predizione delle

disruzioni. Nel apitolo 7 viene desritto il mapping dello spazio opera-

tivo di JET. Le prime sezioni si oupano di proiezione e visualizzazione

dei dati on metodi di proiezione lineari ome Grand Tour (GT) e Prinipal

Component Analysis (PCA). Nella parte entrale sono stati trattati gli stessi

aspetti sfruttando tenihe non lineari di Manifold Learning, SOM e GTM,

sulla base delle quali è stata e�ettuata una dettagliata analisi dello spazio op-

erativo. Tale analisi, mostrando la potenzialità dei metodi, è stata eseguita,

per quanto riguarda il modello GTM, mediante la realizzazione di un tool

dediato. In�ne, le performane nel mapping sono state valutate attraverso

l'analisi degli outlier e di indii di performane appositamente proposti.

Nel apitolo 8 viene desritta la lassi�azione automatia implementata

per le disruzioni al JET. Il apitolo è diviso in due parti: la prima desrive

la lassi�azione delle disruzioni appartenenti alle ampagne on la parete

in arbonio, mentre nella seonda parte è desritta la lassi�azione on la

parete metallia (ILW) ontestualmente alla valutazione della idoneità del

lassi�atore automatio per appliazioni in tempo reale, unitamente ai sis-

temi di predizione on-line al JET. L'a�dabilità dei risultati è stata validata

attraverso il onfronto on un lassi�atore di riferimento basato sulla te-

nia k-NN, e attraverso i più reenti predittori onformali, on ui è possibile

fornire in aggiunta alla predizione/lassi�azione il relativo livello di on�-

denza.

Il apitolo 9 invee è dediato alla predizione delle disruzioni ad AS-

DEX Upgrade. La prima parte è relativa alla desrizione del database e

della tenia di data-redution utilizzata per selezionare un insieme di dati

rappresentativo ed bilaniato. SOM e GTM sono stati utilizzate per map-

pare lo spazio operativo di ASDEX Upgrade e per ostruire un predittore

di disruzioni, introduendo al stesso tempo le loro potenzialità in termini di

lassi�azione. Inoltre è stato proposto l'uso ombinato di questi due metodi

on un regressore logistio al �ne di realizzare un sistema predittivo in grado
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di sfruttare i omportamenti omplementari dei due approi, migliorando le

prestazioni omplessive in predizione.
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Chapter 1

Fusion and magneti on�nement

1.1 Fusion energy

Fusion is a form of nulear energy that powers the Sun and the stars and has

the potential to provide an almost unlimited soure of energy for the Earth.

The physiist Andreevih Artsimovih in the 1970 wrote that "thermonu-

lear fusion [energy℄ will be ready when mankind needs it". Considering the

atual world energy situation and the e�et on the environment due to the

present harnessing of the di�erent soures of energy, the hope is that time

for fusion is �nally arrived.

Fusion represents a soure of energy really attrative �rst of all beause

the fuels whih have to be used in a typial fusion power plant, water

and lithium, are lean and environmentally sustainable not produing at-

mospheri pollution as the greenhouse gases. Another important point on

the side of fusion is that suh fuels are partiularly abundant in the Earth,

suh that their supply will not represent a problem in the future. Unlike

�ssion, low atomi number elements an reat in suh a way to onvert mass

to energy through fusion proesses, as it happens for example in the Sun,

where massive gravitational fores gives rise to the adequate onditions for

fusion.

In the piture 1.1 we an see a graph representing the nulear binding

energy per nuleon plotted against the total number of protons and neutrons

in the nuleus, i.e. the atomi mass. Nulear binding energy is the energy

required to separate a nuleus of an atom into its individual protons and

neutrons. The mass defet is related to the energy released when the nuleus

is formed aording to the well known Einstein law E = ∆m · c2. The most

important feature of �gure 1.1 is the maximum around mass number 56 or-

responding to Fe element. This means that energy an be released if two

1
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Figure 1.1: Nuleon binding energy. [from: www.shoolphysis.o.uk ℄

lighter atoms join to form a heavier one (moving from the left side toward

the maximum of the urve) giving rise to a fusion reation. On the other

hand, aording to the graph, energy an also be released if, moving from

the right side toward the maximum of the urve, very heavy atom splits to

form lighter fragments in a �ssion proess.

On Earth onditions for fusion unfortunately are muh harder to ahieve.

Low atomi number elements, as hydrogen and its isotopes, have to be heated

to very high temperatures for reahing the right onditions for fusion. When

these onditions are met gas mixture evolves into another state of the matter

named plasma, where the negatively harged eletrons are separated from

the positively harged atomi nulei (ions). One of the reasons that makes

fusion not possible normally is that the strongly repulsive eletrostati fores

whih arises between the positively harged nulei prevent them from get-

ting lose enough for fusion to our. But when the temperature inreases

to a ertain extent, the positively harged nulei gain energy up to the point

where attrative nulear fores exeed eletrostati repulsive fores allowing

fusion between the nulei and the resulting release of energy.

If we onsider on Earth a fuel of isotopes of hydrogen, we have not only

to heat suh a mixture of gas at temperatures of the order of 100 million

degrees Celsius, but we have also to on�ne and keep it su�iently dense in

order to make fusion between nulei possible. The fusion of hydrogen is the

main reation that powers the sun too, but in this ase the strong gravita-
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tional fores provides a fundamental ontribution to ahievement of fusion

onditions.

Beyond the very important advantages of fusion energy onneted with

environmental impat, one has to onsider also the aspet of fuel reserves.

As it will be desribed in the following, the most onvenient reation through

whih fusion an be ahieved is the one between an equal mix of Deuterium

and Tritium. Deuterium an be found naturally in oean water, an be ex-

trated at relatively low ost and in partiular, assuming the present rate of

total world energy onsumption, its supply an be guaranteed for something

like 2 billion years!

The atual limit in terms of fuel reserve is represented by the Tritium: it is

a radioative isotope with a half-life of roughly 12 years, thus, in pratial

terms, it is not available naturally and has to be produed in situ in the

power plant. But it is possible to obtain Tritium by breeding with the iso-

tope Li6 of lithium whih the blanket of the future fusion devies will onsist

of. Always assuming the present rate of total world energy onsumption,

estimates indiate that Li6 will be available on Earth for something like 20

millennia, before whih, very likely, e�ient tehnologial solutions to em-

ploy D-D reations will be ready, even if they produe less energy than D-T

reations.

Fusion energy has the potential to provide large amounts of base load

eletriity, hanging deeply and in large sale the way in whih the world

onsumes energy. The sienti� feasibility of thermonulear fusion via mag-

neti on�nement has already been demonstrated, and presently also inertial

on�nement experiments are very promising. But in order to make fusion fea-

sible also from the tehnologial and engineering point of view, several ritial

issues have to be addressed, many of whih will be dealt with in the frame-

work of next generation of fusion reators suh as ITER and DEMO, whih

represent one of the most hallenging sienti� experiments of the upom-

ing future. Developing proper tehnologies and transposing all the sienti�

ahievement to demonstrate not only the tehnial but also the eonomial

feasibility of a fusion power plant whih provides energy to eletri grid, will

require a onsiderable e�ort and further improvements of present tehnolo-

gies.

In the piture 1.2 a shemati representation of a future fusion power plant

is reported. Deuterium and tritium fuel burns at a very high temperature

in the entral reation hamber. The energy is released as harged partiles,

neutrons, and radiation and it is absorbed in a lithium blanket surrounding

the reation hamber. The neutrons onvert the lithium into tritium fuel. A

onventional steam-generating plant is used to onvert the nulear energy to

eletriity. The waste produt from the nulear reation is helium.
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Figure 1.2: Shemati diagram of a proposed nulear fusion power plant. [Fusion:

The Energy of the Universe℄



1.2. BASIS OF FUSION REACTION 5

1.2 Basis of Fusion reation

As it has been disussed in the previous setion fusion an represent an

almost unlimited soure of energy for the future. The strong interest in

fusion reations has been motivated not only by onsiderations about fuel

reserve and environmental impat, but also by the enormous potential in

terms of produed energy with respet to other fuels and soures of energy.

If we take into aount the energy equivalene of di�erent types of fuels, it

is very easy to understand the reason of suh a strong interest: the energy

produed with 0.14 tons of Deuterium by fusion reations is equivalent to

the one produed by burning 106 tons of fossil oil or 0.8 tons of Uranium by

nulear �ssion. Among the relevant nulear fusion reations, as antiipated

in the previous setion, we have those ones among hydrogen isotopes suh

as D-D reations (1.1, 1.2), whih produe energy by the nulear interation

between two deuterium nulei aording to the two equally likely reations:

D+D → He3 + n + 3.27 MeV (1.1)

D +D → T+ p + 4.03 MeV (1.2)

D-D are the most desirable reations, sine theoretially their supply is eo-

nomial and pratially unlimited. Instead the D-T reation (1.3) is based

on the nulear interation between a deuterium nuleus and a tritium nu-

leus (�gure 1.3). Among the possible fusion reations it is the one with the

highest likelihood of ourrene and it is usually written in the following way:

D + T → α + n + 17.6 MeV (1.3)

The 17.6 MeV of energy released through the D-T reation is in the form of

kineti energy in part assoiated with the neutron (14.1 MeV) and in part

with the alpha partile (3.5 MeV). Alpha partile should be on�ned within

the plasma and transfer its energy by ollisions to plasma ions and eletrons.

In this ase the reation releases 3.52 MeV per nuleon, whereas for the D-D

(1.2) we have roughly 1.01 MeV released per nuleon. One of the problems in

this ase is assoiated to high energeti neutrons whih pose serious problems

of material ativation and radiation damages, but the main drawbaks are

related to tritium, Tritium is radioative, it undergoes beta deay with a

half-life (approximately 12.5 years), and is not naturally present on Earth.

Nevertheless the high likelihood of ourrene with respet to the others,

makes this reation the main option of worldwide fusion researh. In the

�gure 1.4 the probability that a fusion reation will take plae is represented

in terms of ross setions for a wide range of energies. In partiular at lower

energies the probability for the D-T reation is muh higher than for the
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Figure 1.3: Deuterium-Tritium reation. [from: www.shoolphysis.o.uk ℄

Figure 1.4: Cross setions versus enter-of-mass energy for key fusion reations.

[from http://ie.neep.wis.edu/ ℄
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other reations.

As antiipated in the previous setion tritium has to be supplied diretly

in situ, in the fusion power plant, by neutron apture in lithium, that is the

most favorable hemial element for breeding tritium. In this ontext, the

primary reations through whih tritium an be produed are the following

(1.4, 1.5):

Li6 + n(slow) → α + T+ 4.8 MeV (1.4)

Li7 + n(fast) → T + α+ n− 2.5 MeV (1.5)

Both reations give rise to the prodution of tritium, even if the �rst one

releases energy whereas the seond one onsumes it. On the other hand, the

reation with Li7 is partiularly important as well, beause it doesn't onsume

a neutron allowing the possibility for self-su�ient tritium prodution in a

fusion reator, that is eah neutron gives rise to the prodution of at least

one new tritium nuleus. Naturally there is muh more Li7, but the reation
related to Li6 has an higher likelihood of ourrene, therefore, it is the

reation whih dominates in the breeding of tritium.

1.3 Magneti on�nement in fusion

Presently, two main experimental approahes are being studied: magneti

on�nement and inertial on�nement. The �rst approah in order to keep

on�ned the hot plasma uses strong magneti �elds, whereas in the seond

approah small pellets ontaining fusion fuel are ompressed to extremely

high densities through strong lasers or partile beams.

Regarding magneti on�nement the widely investigated onepts are

tokamaks (and spherial tokamaks), stellarators, reversed �eld pinhes, sphero-

maks, �eld reversed on�gurations and levitated dipoles. All the mahines

are basially 2-D axisymmetri toroidal on�gurations, exept the stellara-

tor, that is an inherently 3-D on�guration. Among all the on�gurations

tokamaks have ahieved the best overall performane, followed by stellara-

tors. These on�gurations (�gure 1.5) are all haraterized by strong mag-

neti �elds, reasonable transport losses and an operate in stable onditions

with aeptable performane. Unlike tokamaks, stellarators do not require

toroidal urrent drive in a reator but the omplexity and the osts related

to the ahievement of the 3-D magneti on�guration are a not negligible

disadvantage.

In general, the presene of large toroidal magneti �elds implies reators

of ertain size, and this means higher osts, whereas in the ase of other

on�gurations as the reverse �eld pinh, the toroidal magneti �eld is muh
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Figure 1.5: Tokamak and stellarator onepts.
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smaller, as well as the osts, but unfortunately it orresponds to poor plasma

performane with higher transport losses. Furthermore, tokamaks and stel-

larators on�gurations an be MHD stable even without the presene of a

onduting wall near the plasma, whereas devies as reverse �eld pinhes

would require ideally a perfetly onduting wall with ontrol feedbak sys-

tem for steady state operations. There are advantages and drawbaks for all

the on�gurations, but so far tokamaks remain the most attrative on�gura-

tion for a reator, in fat ITER, whih should demonstrate tehnologial and

engineering feasibility of a burning plasma experiment, will be a tokamak.
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Chapter 2

Plasma stability in tokamak

on�gurations

2.1 Introdution

The equilibrium of plasmas embedded in a magneti �eld an be desribed

by the magneto-hydro-dynami (MHD) theory. MHD instabilities have the

e�et to strongly restrit fusion performane in magneti on�ned plasmas,

mainly beause of the operational limits they impose. Suh instabilities do

not only limit the devie operational domain reduing the ahievable per-

formane, but when they our on a large sale often they an degrade the

on�nement leading to a sudden loss of plasma urrent and energy, that is

a disruption. Plasma energy is lost within a time span of few milliseonds

exposing the plasma faing omponents to severe thermo-mehanial stresses

and ondutors surrounding the vessel to huge eletromagneti fores. The

deposition of the plasma energy on the vessel walls an ause deformations,

strutural damages, and eventually melting or evaporating of the in-vessel

omponents. All these aspets not only drive strutural and mehanial de-

sign of the mahine, but also make neessary to avoid or mitigate disruptions

in order to preserve the integrity of the mahine.

2.2 Magneti on�nement with Tokamak on-

�guration

A thermonulear fusion plasma, due to its high temperature, is not allowed

to ome diretly in ontat with the wall, beause the materials eroded by

the plasma itself would quikly ool this latter. One solution to overome this

13
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problem is to on�ne and thermally insulate the fuels in a hamber by mag-

neti �elds. A harged partile q moving in a magneti �eld will undergo a

Lorentz fore F = q(E+v×B) perpendiular to both the diretion of partile
motion (with veloity v) and magneti �eld B, where E is the eletri �eld.

This fore is responsible of produing a irular partile motion in the plane

perpendiular to the magneti �eld line. In other words a harge partile in

a magneti �eld will move along the �eld line with a spiral trajetory (�gure

2.1), whose radius is alled gyro-radius (or Larmor radius) and is inversely

proportional to the strength of the magneti �eld. As we have disussed in

Figure 2.1: Charged partile motion along a magneti �eld line in a toroidal

on�guration

the previous setions, tokamaks represent one of the possible approahes to

magneti on�nement of plasmas. As it is well known, tokamak on�guration

allows to overome the inherent end losses that we have in ylindrial geom-

etry. In a pure toroidal system with only a toroidal �eld, intrinsi fators as

magneti �eld urvature and gradient gives rise to a vertial drift in opposite

diretion for ions and eletrons (with veloities vd,i and vd,e respetively),

as it is shown in the sketh in Figure 2.2. The eletri �eld resulting by the

harge separation, determines an outward E × B drift of plasma partiles

(with veloity vE×B). In other words, a toroidal on�guration with purely

a toroidal magneti �eld is intrinsially unstable: to avoid radially outward

drift motions and thus that partiles hit the wall, it is neessary to twist

magneti �eld lines through some additional omponent. A poloidal mag-

neti �eld must be superimposed upon the toroidal magneti �eld in order

to ompensate these drifts. The result is to have helial magneti �eld lines

entirely ontained within the toroidal hamber. Suh a poloidal �eld, in the

ase of the tokamak is produed by a toroidal urrent �owing in the plasma,

whereas in a stellarator is produed by external oils.



Magneti on�nement with Tokamak on�guration 15

Figure 2.2: Partiles drift in a toroidal on�guration

2.2.1 Tokamak oordinate system

Given suitable operative onditions, it has been proved that tokamaks are

stable. Nevertheless in order to inrease plasma performane and on�ne-

ment it is neessary to push relevant plasma parameters lose to their limits,

as for example pressure, urrent and density. This an determine the onset

of di�erent instabilities that a�et signi�antly the on�nement leading in

ertain irumstanes to the abrupt termination of the disharge. Consider-

ing a torus, it is usual to work in a ylindrial oordinate system (R, φ, z),
where R is the radial oordinate, φ is the toroidal angle and z is vertial axis
of the torus (�gure 2.3a). When all quantities results to be independent with

respet to the toroidal angle φ we are in a ondition of axisymmetri. In

�gure 2.3b we an see the quantities of interest in the poloidal ross setion,

the oordinate along the minor radius r and the poloidal angle θ.

2.2.2 Shafranov shift and equilibrium in a toroidal mag-

neti on�guration

Unfortunately, when we onnet the ends of a ylinder obtaining a torus, the

ondition of MHD equilibrium is no longer satis�ed. In fat plasma has the

tendeny to expand outward in the diretion of the major radius basially for

two reasons. The �rst one is related to the fat that the pressure fores inside

the ylinder are in �rst approximation equally distributed on the boundary

of the poloidal ross setion, but in a toroidal geometry, the outer surfae

has a larger area than the inner one, so that the net fore is outwards. The

seond one is due to iruit theory onsiderations, in fat sine we are onsid-
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Figure 2.3: (a) axisymmetri oordinate system in a toroidal geometry; (b)

poloidal ross setion oordinates.

ering a ring where a urrent is �owing through along the toroidal diretion,

we have that urrent elements shifted by an angle φ = π repel eah other

beause the urrent is in opposite diretion. Also in this ase the net fore

is outwards, or in other words, it tends to expand the plasma ring along the

radial diretion. Therefore, a toroidal plasma olumn is not in equilibrium

beause of the magneti e�et given by the urrent inside and beause of the

kineti e�et assoiated to the pressure of the plasma.

As we have seen in the introdutory hapter dediated to di�erent de-

vies in relation to the magneti on�nement, magneti surfaes in tokamak

toroidal geometry are essentially irular tubes around the main axis of the

mahine (z axis), and the urrent �eld lines lie on these magneti surfaes

that are isobari surfaes too.

The magneti �eld in a geometry as the toroidal one has three om-

ponents: the radial one along the R axis (major radius), the vertial one

along the z axis and the toroidal one along the oordinate orresponding to

the toroidal diretion, i.e. along the angle φ (along whih all the physial

parameters should be equal in every point sine we are assuming an axisym-

metri on�guration). The basi ondition for plasma equilibrium requires

that fores in every point are zero [2℄, as reported by the following relation

(eq 2.1):

j×B−∇p = 0 (2.1)

where j is the urrent density, B the magneti �eld and ∇p is the pressure

gradient.

Flux surfaes in a tokamak on�guration look like nested toroidal �ux tubes

and are the solution of the Grad-Shafranov equation, whih is a di�erential

equation in terms of a poloidal �ux funtion ψ. Grad Shafranov equation
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an be numerially solved under simple geometrial assumptions (irular

plasma and large aspet ratio, that is the ratio between major and minor

radius), as most of the odes for the equilibrium reonstrution do, as EFIT

for example. Being the plasma enlosed in an eletrially ondutive shell,

the most important e�et assoiated with the fat that plasma tends to ex-

pand outwards, is that �eld lines are ompressed in the outboard side. This

ompression gives rise to an inrease of the magneti pressure that has the

e�et to ounterat the tendeny of the plasma to expand. The resulting

equilibrium state is then haraterized by a shift of the �uid outwards with

respet to the geometri enter of the irumferene related to the poloidal

ross setion, whih does not orrespond anymore to the axis of the mag-

neti on�guration in the new equilibrium state. This deviation, de�ned as

Shafranov shift (∆), is shown in Figure 2.4.

Figure 2.4: Shafranov shift.

2.2.3 Stabilization with external vertial �eld and beta

parameter

As introdued in the previous paragraph, in the outboard side the poloidal

�eld lines are loser eah other than the inboard side: this means that the

poloidal �eld is stronger in the outer region, and, being the magneti pressure

proportional to the square of the magneti indution, the resulting fore is

inwards and opposes the expansion of the plasma. To ounterat the fores

whih tends to expand the plasma, the pratial solution is represented by

the addition of a vertial magneti �eld along the zeta axis, whose interation

with the toroidal plasma urrent gives rise to a j × B fore in the opposite

diretion, i.e. inwards. The fat that a plasma ring is not in equilibrium

alone but we need a magneti �eld produed by external soures to keep the
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equilibrium is not a partiular property of the toroidal on�guration, but

it is a general property of the plasma independently on its on�guration.

This general priniple is expressed by the Virial's theorem, whih says that

it is impossible to sustain any MHD equilibrium without urrents external

to the plasma. At the equilibrium, under ertain hypothesis (single �uid

under stationary onditions, irular ross setion and large aspet ratio),

the poloidal �eld on plasma surfae at minor radius a and angle θ is given

by the following formula (2.2):

Bθ(a, θ) =
µ0I

2πa
· (1 + a

R0
Λ · cosθ) where Λ = βθ +

li
2
− 1 (2.2)

In the expression of Λ, they appear two quantities of fundamental importane

in relation to plasma stability and equilibrium: the poloidal beta βθ and the

internal indutane li. The parameter β is de�ned as the ratio between kineti
plasma pressure, averaged over the plasma volume, and the orresponding

magneti pressure:

β =
〈p〉
B2

2µ0

(2.3)

The poloidal beta simply refers to the poloidal magneti �eld Bθ. This

parameter represents a measure of the quality and eonomi e�ieny of the

on�nement, and plays a key role in stability. If we onsider a plasma ring

with a urrent �owing inside, the urrent density inside is �xed, but usually

is not uniform in the ross setion. The temperature in the ore region

of the plasma is higher than the one in the edge region, and it's known

that the plasma resistivity, di�erently by the ondutor material like opper,

dereases as the temperature inreases. The urrent tends to �ow where the

resistivity is lower, so it tends to onentrate in the enter of the plasma

olumn. Regarding the indutane we an say that in general is de�ned as

the ratio of the linked �ux divided by the orresponding urrent. Anyway it

turns out quite di�ult to de�ne the internal indutane of a plasma olumn

beause normally it's de�ned for urrent �laments. In these ases, when the

urrent is not �lamentary, we an de�ne the internal indutane li in terms

of magneti energy, as the following ratio (2.4):

li =
〈B2

θ〉
B2

θ (a)
(2.4)

where a is the minor radius. In other words the internal indutane is a nor-

malized parameter that gives an indiation about radial pro�le and peaking
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of plasma urrent, sine the poloidal �eld depends on the plasma urrent in

the toroidal diretion (Ip). Returning to the onsiderations about the need of

external soures aording to the Virial theorem, the vertial �eld neessary

to maintain the plasma in equilibrium is expressed by the following equation

(2.5):

Bz =
µ0Ip
4πa

· (ln8R0

a
+ Λ− 1

2
) (2.5)

Its e�et is to provide an inward fore able to ounterat the outward hoop

fore that ats on the plasma beause of the aforementioned reasons.

2.2.4 The safety fator q

Another very important parameter for the analysis of the equilibrium and the

on�nement properties of the plasma is the safety fator q, whih is de�ned

as:

q =
∆Φ

2π
(2.6)

Suh a parameter is indiative of the heliity of the �eld lines, determining

how many toroidal rotations (indiated by the variation of the toroidal angle

∆Φ) are neessary for a single rotation of a magneti �eld line in the poloidal

diretion (2π). If q = m/n and m and n are the integer values orresponding

respetively to the toroidal and the poloidal turns after whih a �eld line

rejoins up on itself, we say that the �eld line lies on a rational surfae,

otherwise we speak about ergodi surfaes. As we will deal with in the next

setion, rational surfaes of q and its radial pro�le play a key role in the

stability of the plasma. The �gure 2.5 shows typial pro�les of the main

quantities in a large aspet-ratio tokamak. In general, making referene to

the equation of the �eld lines we have that for tokamaks with large aspet

ratio (

R
a
≫ 1) safety fator an be approximated as follow (2.7)

q(r) =
r

R

Bφ

Bθ
(2.7)

Taking into aount the elongation k of the plasma shape, on the base of

whih r = a
√
k, and the Ampere Law, aording to whih the poloidal

magneti �eld Bθ is de�ned as

Bθ =
µ0Ip
2πr

(2.8)
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Figure 2.5: Typial pro�les in a tokamak in the large-aspet-ratio limit R/a →
∞, where BΦ is the toroidal omponent of the magneti �eld, Bθ is the poloidal

omponent, p is the pressure, JΦ is the toroidal urrent density and q is the safety
fator [3℄.

the safety fator at the edge, an be written as (2.9):

qedge =
Bφ · a2k

2RIp · 10−7
(2.9)

Rational values and radial pro�le of the safety fator are essential in MHD

stability onsiderations, as well as the so alled magneti shear, de�ned as

follow (2.10):

s(r) =
r

q(r)

dq(r)

dr
(2.10)

The magneti shear is stritly related to the resonane onept and has im-

portant impliations in MHD stability: it desribes basially the variation of

the magneti �eld winding angle moving radially through subsequent mag-

neti surfaes. In this ontext therefore, a strong magneti shear is generally

good for stability; onversely it results really dangerous onversely when

lose surfaes has the same safety fator, beause these surfaes an ouple

with eah other giving rise to resonane phenomena and instabilities. There-

fore,the q-radial pro�le plays a key role in governing several MHD instabili-
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ties. Furthermore it has also several impliations in the haraterization of

on�nement modes: partiularly important examples to this purpose are the

reverse, the optimized and the negative entral shear whih are assoiated to

enhaned on�nement regimes.

2.3 MHD stability

2.3.1 Basi lassi�ations of MHD instabilities

The marosopi equilibrium of a fusion plasma an be desribed by MHD

theory. As it has been desribed in the previous setions, the equilibrium in

a toroidal on�guration is haraterized by a set of nested �ux surfaes on

whih magneti and urrent �eld lines lie. MHD onsiders the plasma as a

single, globally quasi-neutral �uid, omposed of harged partiles whih an

ondut eletrial urrents and reat to magneti �elds.

MHD equations an be seen as the union of �uid dynamis equations and

Maxwell's equations of eletromagnetism, and an be properly elaborated in

order to desribe in stationary onditions MHD equilibria. The equilibria

on�gurations are linked to a spei� devie and are de�ned for a ertain

set of boundary onditions. In partiular, for the toroidal pinh devies,

the on�gurations haraterizing the equilibria an be found by solving the

Grad-Shafranov equation, whih is expressed in terms of the poloidal �ux

funtion ψ (2.11):

R
∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂z2
= −µ0 R

2dp(ψ)

dψ
− µ0

2f(ψ)
df(ψ)

dψ
(2.11)

Moreover,we have seen moreover that a vertial �eld produed by an ex-

ternal soure is needed to balane the intrinsi tendeny of a plasma in a

toroidal on�guration to expand outwards along the major radius R. In a

on�ned plasma, an instability is driven by the free energy ontained in the

equilibrium on�guration. In a tokamak, there are two main soures of free

energy: the kineti energy of the plasma and the energy of the magneti �eld

generated by the plasma. Instabilities an therefore, be driven by the radial

gradient of either the pressure or the urrent pro�le. At low β, the magneti

energy is muh higher than the kineti energy and the instabilities will mainly

be urrent-driven; at high β, we expet the pressure driven instabilities to

beome signi�ant.
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Current driven and pressure driven instabilities

MHD instabilities in�uene the ahievable β of a on�guration, therefore,

they have to be avoided or kept under ontrol ideally. An example is the

external kink driven by urrent gradients near the edge imposing restri-

tions on the possible urrent pro�les. Restritions on the pressure pro�le

an ome from the so-alled interhange instabilities or from the ballooning

instabilities. Pressure driven instabilities basially depend on the entity of

the pressure gradient and on the �eld line urvature.

Figure 2.6: Bad and good urvature for pressure driven instabilities

In �gure 2.6 we an see that in relation to the interhange of free energies

between the �eld lines we may have bad urvatures to whih is assoiated an

unstable situation as the entral one, or good urvatures (as the side ones),

where the interhange of magneti �eld and plasma works very well to re-

lease free energies providing in this way a stabilizing e�et. In other words

when the radius of urvature is parallel to the pressure gradient (so-alled

bad urvature)we have a destabilizing e�et, while if the radius of urvature

is anti-parallel to the pressure gradient, an interhange of plasma and mag-

neti �eld will inrease the magneti energy and thus be stabilizing (good

urvature).

Pressure driven instabilities are often assoiated to internal modes, that

is they our within the plasma without a�eting marosopially the en-

tire surfae region of the plasma olumn. Ballooning modes are generally

the most unstable pressure driven instabilities and in a tokamak usually are

haraterized by a larger amplitude on the low �eld side of a �ux surfae,

whereas kink modes, on the ontrary, have more or less the same amplitude

along the �ux surfae. Their stability depends espeially by the urvature of

the magneti �eld lines. In general pressure driven instabilities are partiu-

larly important beause they set a limit to the maximum ahievable β in a

fusion plasma.

Current driven instabilities are onneted to the parallel urrent, and are

typially the so alled kink modes, beause of the shape assoiated to the

deformation of the plasma olumn. In the �gure 2.7 for example we an see

a kink instability in presene of a ondutive wall, whih through the eddy
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urrents that �ow in its surfae gives rise to a restoring fore whih has the

e�et to stabilize the kink. In partiular if there were no vauum region be-

tween the plasma and the onduting wall we ould't have any displaement

of the plasma surfae and only internal kink modes would be possible.

Obviously, to have a perfetly onduting wall surrounding plasma sur-

fae is not a viable option with fusion plasmas. We have to onsider a wall

with �nite resistivity whih has the e�et to slow down the growth rate of

instabilities as the external kink modes for example. Therefore, a perfetly

onduting wall ould greatly improve stability beyond the limit of the ideal

no-wall ase, whereas a resistive wall in pratie does not hange the limit

with respet to the no-wall ase but it hanges the time sale slowing down

the growth rate. Current driven instabilities in general an be assoiated to

Figure 2.7: kink stability in presene of a onduting wall

internal or external modes, and, as it will deal with in the hapter dediated

to the operational limits, espeially external kink modes are very important

beause they limit the maximum toroidal plasma urrent in stable onditions.

Ideal and resistive MHD

The previous distintion was based on the soure of the instabilities. Another

basi distintion is made on the basis of the time sale of the harateristis

phenomena and is between ideal MHD and resistive MHD instabilities. In

the ideal ase, we onsider the plasma perfetly ondutive and, therefore, we

refer to the Alfvén time sale, where the evolution of the instability is limited

only by the inertia of the plasma, whih is very small beause the mass of the

plasma itself is very small (order of miroseonds or tens of miroseonds).

If instead we onsider resistive MHD instabilities, the time sale is of order

of milliseonds beause even if the plasma is not perfetly ondutive the

resistivity is low.
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This distintion is partiularly relevant sine even if the plasma in ertain

onditions should be stable in ideal MHD approximation, it ould be unstable

beause of resistive e�ets. Furthermore, the �ux onservation law, whih is

valid in ideal MHD, ditates that magneti �eld lines move with the plasma

�ow, and therefore magneti topology is onserved ("frozen"), whih in other

words means that magneti �eld lines annot tear or reonnet, as instead

happens in resistive MHD.

2.4 General onepts of linear MHD stability

2.4.1 Mode numbers

Another basi lassi�ation is related to the mode numbers and the resonane

position. In the simple ase of a irular tokamak with large aspet-ratio,

the modes, or in other words the heliity of the perturbations, are in the

form e(mθ−nφ)
, where m and n are respetively the poloidal and the toroidal

mode numbers. A mode m,n is resonant in the plasma if inside it or lose

to its surfae there are magneti surfaes satisfying the ondition m/n = q,
where q is the safety fator desribing the heliity of suh a surfae. Avoiding

resonant modes in the plasma is fundamental for stability in tokamaks.

In the �gure 2.8(A) a sketh of the set of Mirnov oils installed on the

STOR-M tokamak for the investigation of MHD instabilities is reported. In

partiular two sets of poloidal arrays of 12 Mirnov oils regularly spaed with

a step of 30◦ at two opposite toroidal setions, allow the measure of poloidal

mode numbers up tom = 6. Toroidal mode numbers an instead be analyzed

by four sets of toroidal arrays, eah one omposed by 4 disrete Mirnov oils

toroidally separated eah one from the others by 90◦. This distribution allows
the determination of toroidal mode numbers up to n = 2. In the �gure 2.8(B)
some shemati pitures of toroidal (n = 1) and poloidal (m = 1, 2, 4) modes

numbers have been reported.

2.4.2 Main formulations of linear stability

Also in the MHD framework the most reliable de�nition of stability is the

one of exponential stability, on the base of whih a system is unstable if

any of the modes eigenfrequenies orrespond to exponential growth, that is

when the related imaginary part is greater than zero [1℄ [5℄. Beyond eigen-

funtions and orresponding eigenfrequenies alulation, another theoretial

proedure for stability analysis is the energy priniple, based on the poten-

tial energy variation for a ertain plasma displaement ξ(x). In partiular,
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Figure 2.8: (A) Distribution of toroidal and poloidal Mirnov oils; (B) represen-

tation of toroidal (n = 1) and poloidal (m = 1, 2, 4) modes numbers from [4℄

linear stability an be evaluated by linearization of the equations governing

the system and by analyzing the response to su�iently small perturbations

around equilibrium onditions. The amplitude of suh perturbations satu-

rates above a ertain level beause of nonlinear proesses. Possible soures

of perturbations are typially the onset of an instability or the presene of a

magneti �eld error. Let's onsider for example the simple ase of a tokamak

with helial �eld lines where on a poloidal setion the magneti topology is

desribed by onentri irles and the magneti �eld has the following form

(2.12):

B = Bφφ̂+Bθθ̂ (2.12)

If we add now to an equilibrium ondition (subsript "0") a small radial

perturbation of small amplitude br, suh as br/B0 ≪ 1, the resulting magneti

�eld will be given by (2.13):

B = B0(r) + br(r)sin(mθ − nφ)r̂ (2.13)

Being the wave vetor of the perturbation (2.14)

k =
m

r
θ̂ − n

R
φ̂ where k‖ = 0 (2.14)

if 2.15 is satis�ed, whih is analog to onsider q = m/n for the onsidered

�eld line, then the mode is resonant in the plasma, and a small magneti

perturbation an give rise to a large �eld line exursion.

k ·B =
m

r
Bθ −

n

R
Bφ = 0 (2.15)
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Considering the resistive e�et, we have a broader range of aessible states

and magneti �eld lines an tear giving rise to signi�ant hanges of topology

suh as reonnetion phenomena and the formation of magneti islands as

shown for example in �gure 2.9.

Figure 2.9: (a) Field lines tearing and reonnetion; (b) m = 3 magneti islands

(from [6℄).

The energy priniple

Energy priniple for ideal MHD is based on the fat that if a perturbation of

a given equilibrium ondition redues the potential energy assoiated to the

on�guration, the onsidered equilibrium is unstable. Given a ertain equi-

librium ondition, if F represents the fore arising beause of a displaement

ξ, the potential energy will be de�ned by the following equation (2.16):

δW = −1

2

∫

V ol

F · ξ dτ (2.16)

The linearized fore is given by the relation 2.17

F = j1 ×B0 + j0 ×B1 −∇p1 (2.17)

where the equilibrium is indiated by the subsript 0, whereas the perturba-
tion by the subsript 1. Regarding the perturbed terms, p1 is obtained by

integrating the linearized adiabati equation, B1 is obtained by integrating
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Faraday's indution law, whereas the perturbed urrent density j1 is alu-
lated through Ampere's law. The �nal formulation for the variation of the

potential energy is the following 2.18:

δW =
1

2

∫

plasma

(

γp0(∇ · ξ)2 + (ξ ·∇p0) ∇ · ξ +
B1

2

µ0
− j0 · (B1 × ξ)

)

dτ+

+

∫

vacuum

(

Bv
2

2µ0

)

dτ

(2.18)

As it has been said above, plasma equilibrium is onsidered unstable if for

any physially allowable displaement ξ the orresponding variation of po-

tential energy is negative. In partiular we an distinguish in the previous

equation the pressure driven term (ξ ·∇p0) ∇ ·ξ and the urrent driven term

j0 · B1 × ξ : depending on the term whih results to be prevalent between

the two, the mode will be onsidered pressure driven or urrent driven. The

integral in the seond row of the equation (2.18) represents instead the trans-

fer of energy to the vauum region (Bv is the magneti �eld in the vauum).

Stability problem is usually addressed by onsidering the behavior and

the time evolution in response to perturbation of small amplitudes. Conse-

quently it is possible to linearize the onsidered systems of partial di�erential

equations for whih there exist several numerial tehniques that make om-

plex problems of stability analysis tratable. Obviously, the theory of linear

stability annot predit or extrapolate the behavior of the system interested

by a non-linear evolution of stability, but experiments have proved that a

plasma unstable aording to linear MHD stability, often evolve unavoidably

to a state of dramati deterioration of on�nement. In this sense therefore

linear stability provides a strong base for suh an analysis.



28 CHAPTER 2. PLASMA STABILITY



Bibliography

[1℄ J. Wesson J. Oxfor University Press 2004 Tokamaks 4th edn

[2℄ V. S. Mukhovatov, V. D. Shafranov, 2011 Plasma Equilibrium in a Toka-

mak, Nulear Fusion 11

[3℄ J.P. Freidberg, 2007 Cambridge University Press, Plasma Physis and

Fusion Energy

[4℄ C. Xiao et al. IOP-IAEA 2008 Investigation of MHD instabilities on

STOR-M tokamak

[5℄ J.P. Friedberg 1987 Plenum Press, New York, "Ideal MHD

[6℄ http://home.physis.ula.edu/alendar/onferenes/mpd/

talks/forest.pdf

29



30 BIBLIOGRAPHY



Chapter 3

Operational limits and

disruptions on Tokamaks

The goal of fusion researh is to ahieve the onditions for a magnetially on-

�ned burning plasma. In partiular when adequate onditions are provided,

in a D-T plasma, α partiles heating alone is su�ient to sustain plasma

temperature against energy losses, without the further need of additional

heating. This operational point is alled ignition, and basially identi�es the

ondition at whih a nulear fusion reation beomes self-sustaining, as it an

be expressed through the �gure of merit represented by the triple produt of

density, temperature and on�nement time (3.1). For a D-T plasma the value

has to be of a ertain order, as it is expressed by the following ondition:

nTτE > 1021m−3 keV s (3.1)

The value an hange depending mainly on the onsidered pro�le for density

and temperature. Suh a ondition is derived on the base of the well known

Lawson riterion. The aim is to give rise to the onditions needed to self-

sustain a plasma with a temperature of 10keV , a on�nement time of several

seonds and a fuel density of the order of 1020 particles/m3
. The fusion en-

ergy gain fator Q, is de�ned as the ratio of fusion power produed by nulear
fusion reations to the power needed to sustain the plasma. The ondition

of Q = 1 is referred to as break-even (�gure 3.1). Commerial power plants

would require a Q value between 20 and 30, whereas the tehnial objetive

for ITER will be a minimum gain of Q = 10 for at least 300 seonds and to

demonstrate steady-state operation with a Q = 5 for several thousands of

seonds [1℄. The fusion power in a tokamak devie has di�erent onstraints,

some of them are tehnial and eonomial onstraints as the mahine size

or the applied magneti �eld, others are related to physial limits onneted

31
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Figure 3.1: Figure of merit of fusion performane (Triple Produt nTτE)
[www.efda.org℄.

with the stability onept, as for example β whih should be maximized for

the reasons already disussed in the previous hapter.

In order to ahieve the target of nulear fusion, the experiment have to

maximize three basi quantities: fuel density n, energy on�nement time τE,
and the normalized pressure beta. The optimization of this parameters is

often limited by the onset of MHD instabilities that an be driven basially

by the gradients of the plasma urrent or the pressure pro�les. MHD insta-

bilities on marosopi sales an lead to the degradation of the on�nement

(soft limit) or in the worst ase to the abrupt termination of the disharge

with a disruption (hard limit). Maximizing β requires to inrease as more as

possible plasma pressure and stored energy and to do this we have only the

possibility to at on the available external ontrol parameters. To inrease

the temperature for example we have to apply more auxiliary heating, if we

want to set the density (feedbak ontrolled) to a ertain level, we have to

at on the gas fuelling rate, whereas the ontrol of the plasma urrent has to

be done through the indued loop voltage and therefore through �ux regula-

tion.

Furthermore, depending on the regimes or foreseen operational senar-

ios, the optimization of plasma performane omes up against di�erent on-

straints. There are senarios where suh a optimization requires a proper

shaping and ontrol of pressure and urrent density pro�les, as well as we

have for example in the ase of optimized or reversed shear senarios [2℄.

An extensive disussion about operational limits is beyond the sope of this
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thesis, nevertheless they will brie�y disussed and summarized all the main

onstraints with partiular referene to their onnetion with disruptions.

3.1 Operational limits

Disruption-free operations in a tokamak are limited by well known opera-

tional limits not neessarily related diretly to a violation of an MHD stability

boundary: the urrent and the pressure limit, whih are a diret onsequene

of development of an ideal MHD instability, and the density limit whih is

more diretly a onsequene of an exessive radiation from the plasma, a-

ompanied by a progressive deterioration of plasma energy and on�nement.

This does not mean that during the hain of events that leads eventually to

disruptions there is no an intermediate MHD instability whih ontributes

to the �nal loss of on�nement.

The violation of these operational boundaries in tokamaks leads to the

onset of MHD instabilities, often haraterized by helial perturbations, as

those ones desribed in the previous hapter. These MHD instabilities grow

non-linearly in the �nal phase until a major disruption ours. In the present

generation of medium-size tokamaks the loss of thermal energy has a typi-

al time sale of ∼ 100µs. The rapid ooling due to the thermal quenh

and the onsequent inrease of plasma resistivity gives rise to the fast deay

of the urrent, known as urrent quenh. Coming bak to the desription

of the three basi operational boundaries, the urrent limit and the density

limit an be desribed making referene to the well known Hugill diagram,

where the inverse of the safety fator at the edge 1/qa is plotted against the

so-alled Murakami parameter nR/Bφ, that is basially a normalized line

averaged density (�gure 3.2).

Sine the temperature has an optimum value at ∼ 20keV , n, that here in-

diates the line averaged density, should be as high as possible. But density

is limited by disruptions due too exessive edge ooling: for a given plasma

urrent there is a maximum ahievable line averaged density.

The density limit, also known as Greenwald limit [3℄, is expressed by

the ondition nGW (1020m−3) ∼ Ip(MA)/[πa2(m2)]. This is an empirial

boundary, and espeially in the last years has inreased due to appliation of

additional heating and advaned wall onditioning methods that redue the

strong radiated power related to impurities. In fat, as it will be disussed in

the setion dediated to the analysis of the auses and the hain of events of

disruption, there is a strong onnetion with the radiation instabilities suh

as the radiative ollapse and MARFE limit.

Regarding the urrent limit instead, as we an see in the Hugill diagram
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Figure 3.2: Hugill diagram: density limit (top); urrent limit (bottom) [4℄.
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[5℄, the ondition 1/qa > 0.5 or analogously qa > 2 represents an hard limit

beause in the region where this ondition is not satis�ed, the external kink

mode m = 2, n = 1 beomes unstable and the disharge will unavoidably

disrupt. Considering the dependene between the safety fator at the edge

and the plasma urrent, this is atually a limit on the maximum urrent

for a given magneti �eld. This mode ould in theory be stabilized with a

highly ondutive wall surrounding losely the plasma, whih is not possible

beause of the need to redue the interation of the plasma with the wall.

As the latter limit, also the pressure limit has an MHD origin. In parti-

ular, it is related to the Troyon ideal MHD limit [6℄ on the volume averaged

toroidal beta βt, whih is, in other words, a limit on the maximum plasma

pressure that an be on�ned by a given magneti �eld. The alulation had

been done taking into aount ideal MHD instabilities as ballooning modes

and Merier riterion [7℄ for optimized plasma urrent and pressure pro�les,

and what had been found was that n=1 free boundary kink modes set a limit

on the maximum ahievable β.

Figure 3.3: Beta limit in di�erent tokamaks

As it is reported in Figure 3.3, the normalized volume average beta

βN = βt(%)/[Ip(MA)/a(m)B(T)] should not exeed the value of approxi-

mately 3.5%MA/(m · T) [8℄. It is important to highlight that these bound-

aries must not be onsidered rigidly, in fat there exist onditions in whih

the desribed limits an be exeeded, and, on the other hand, there are on-

ditions far from these boundaries where the plasma however disrupts. This is

due basially to the high omplexity of the underlying physis and MHD sta-

bility on the base of the proesses whih drive disruption phenomenon, and



36 CHAPTER 3. OPERATIONAL LIMITS AND DISRUPTIONS

this is the reason whereby it is so important to develop di�erent approahes

as data-driven methods for disruption predition.

3.2 Disruptions

3.2.1 Introdution

A disruption is a sudden loss of stability or on�nement of a tokamak plasma:

plasma energy is lost within a time span of few milliseonds exposing the

plasma faing omponents to severe thermo-mehanial stresses and on-

dutors surrounding the vessel to huge eletromagneti fores. As it has

been introdued in the previous setion, the operational spae aessible to a

tokamak is highly restrited by disruptive events. Moreover, disruptions, in

addition to a�eting the exeution of the researh program, an onstitute a

risk for the strutural integrity of the mahine, espeially in large devies.

Therefore, it is partiularly important, espeially in view of ITER, to im-

prove the understanding of the proesses whih lead to disruption. Deeply

investigations have been arried out on preursors, auses and onsequenes

of disruptive events. The main phases preeding a disruption are represented

in �gure 3.4.

Figure 3.4: Main phases of a disruptions [5℄

The pre-preursor and the preursor phase, whih are often onsidered a
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unique phase, refer to a hange in the underlying onditions up to a ritial

point when there is the onset of an MHD instability.

The fast phase, also referred as thermal quenh, is haraterized by a

entral temperature ollapse in few milliseond, followed by a rapid inrease

of plasma resistivity with a redistribution of the toroidal urrent and a �at-

tening of its radial pro�le. The resulting �attened urrent pro�le is also

assoiated to a onsequent derease of plasma internal indutane that, for

�ux onservation, gives usually rise to a harateristi spike of the plasma

urrent and large transient negative loop voltage.

The �nal phase, referred as urrent quenh, is haraterized by the deay

to zero of the plasma urrent: it is not unommon to have urrent deays

greater than 100[MA/s℄, whereas time sales are determined by the partiular

onditions in whih the proess sets up [5℄.

3.2.2 Main auses and mehanisms

The main physis instabilities whih lead to disruption are diretly related to

the overoming of the operational limits desribed in the initial setion of this

hapter. Moreover it is of primary importane to understand the underlying

mehanisms at the base of the hain of events whih haraterize disruptions

[9℄.

Depending on the onditions in whih the disharge is evolving, the same

modes whih are often observed as preursors an lead to disruption or not.

The omplexity of the mehanisms whih an get the plasma unstable makes

the predition very hallenging.

The density limit, for example, is strongly onneted to the mehanisms of

radiation instability that builds up when the total radiated power exeeds the

heating power. Plasma radiated power has di�erent origins: Bremsstrahlung

radiations, ylotron radiations and the radiations due to line emissions. Ra-

diated power from impurity ions represent the most important soure of radi-

ation in the plasma: besides enhaning Bremsstrahlung losses, the presene

of impurities produes further losses due to line radiation and reombination

with a power density equal to PR = R(Te)neni, where ne is the plasma den-

sity, ni id impurity ion density and R(Te) is the radiation e�ieny.

Radiation instabilities an set up with di�erent mehanisms [5℄ [10℄. One of

these is by radiation ooling of the plasma edge where impurity ions are not

fully ionized: as the density inreases at the edge, the temperature dereases

and the line radiation from low-Z impurities is strongly enhaned. As we an

see in the piture 3.5, radiation e�ienies have a peak at low temperatures.

This produes a poloidally symmetri radiation at the plasma edge, where as

more the temperature is redued due to strong radiation losses, the more the
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Figure 3.5: Radiation e�ieny of impurities [3℄

plasma radiation losses are enhaned, and this gives rise to further derease

of the temperature self-feeding the instability proess.

When the density limit is reahed, or, in other words, when radiation

losses exeeds the heating power, the temperature ollapse and the ontra-

tion of the plasma urrent pro�le by ooling edge makes the plasma unstable

to MHD modes, leading eventually to disruption. This is the basi meha-

nism at the base of a radiative ollapse.

Critial density sales with heating power and low e�etive harge state

Zeff [11℄; therefore, inreasing the heating power and reduing the impurity

ontent in the plasma, it is possible to ahieve higher values of density before

to get into the density limit. In this onditions there an be the onset of

another radiation limit, the MARFE (Multifaeted Asymmetri Radiation

From Edge) [12℄, a poloidally asymmetri radiation instability whih devel-

ops usually on the High Field Side (HFS) or near the X-point.

The onditions for the onset of a MARFE depend on plasma-wall inter-

ation, �ux of reyling neutrals of the working gas and heat �ow from the

plasma entre to the edge [13℄. In this ase the maximum ahievable den-

sity does not depend on the input heating power as we have for a poloidally

symmetri radiative ollapse, but depends diretly on the average urrent

density, as well as it is learly expressed by the Greenwald limit. The linear

dependeny between density and plasma urrent density is learly shown in

the Hugill diagram.
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Another important ause of instability related to radiation is the impurity

aumulation [14℄ [15℄. High-Z impurity aumulation in the plasma entre

gives rise to strong radiation due to the fat that atoms are not fully ionized.

This in turn give rise to �attening or even a hollowing of the temperature

pro�les with a onsequent dereasing of the urrent density in the entre due

to raising of plasma resistivity. This piture is also haraterized by hollow

q pro�les, with values of the safety fator on axis greater than one, and thus

no sawthooth rashes. When this mehanism is ampli�ed beyond a ertain

level the entral temperature ollapses ausing internal disruptions due to

the onset of MHD ativity.

Regarding the MHD stability, as it has been disussed in the previous

setion, two basi restritions on the aessible operational domain are im-

posed by the limit on the safety fator at the edge,whih is a urrent limit,

and by the β limit, whih is a limit on the maximum plasma pressure whih

an be on�ned for a given magneti �eld. The �rst one is related to the

unstable external kink modes for m=2, n=1, whereas the ideal limit on β is

imposed by free-boundary kink modes for n=1.

Assuming a non-zero plasma resistivity, the instabilities whih may even-

tually deteriorate plasma on�nement leading to a disruption are the tearing

modes. These resistive instabilities are haraterized by the development

of magneti islands due to magneti �ux reonnetions, as shown in Figure

3.6. When suh modes are destabilized and grow up to a level whereby the

island saturates, the hanges in the plasma urrent pro�le an determine a

loss of on�nement in an always larger region ausing eventually a disrup-

tion. Magneti island stability and evolution is governed by the Rutherford

Figure 3.6: Reonnetion and magneti islands
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equation (3.2):

τR
r2s

dw

dt
= ∆

′

(w) (3.2)

where the growth or deay rate of an island of width w an be desribed

in terms of loal resistive time τR, minor radius rs at the rational surfae

q = m/n and a lassial stability index ∆
′

(3.3).

∆
′

(w) =
1

Br

(

∂Br

∂r

)

∣

∣

∣

∣

∣

rs−w/2

rs+w/2

(3.3)

There exist even situations where double tearing modes our. Normally q

pro�le is monotonous and inreases from the axis, where it has its minimum,

toward the edge, where it reahes its maximum value. This ondition an

also be desribed in terms of magneti shear, always positive in these on-

ditions. But in partiular regimes or senarios, as in the ase of reversed

shears, or strong impurity aumulation in the entre with hollow urrent

density pro�les, q pro�les do not preserve the harateristi of monotoniity.

We an have therefore oupling of the modes related to the same rational

q-values and enhaning of the transport between the orresponding rational

surfaes with the formation of magneti islands, whih, eventually, destroy

the on�nement and ause major disruptions.

Often tearing modes and magneti islands are lear preursors of a dis-

ruption. When they start to stop, or do not rotate anymore together with

the plasma �uid, they lok to the wall and grow with a time sale dependent

on the resistive time onstant of the surrounding vauum vessel wall. The

orresponding radial magneti �eld perturbation indues eddy urrent in the

wall whose magneti �eld tends to oppose to magneti island rotation exert-

ing a fore whih has the e�et to slow down and stop the island.

Besides eddy urrent fores, MHD instabilities suh as loked modes, an

also interat and be exited by error �elds (EFs), whih are deviations of

the magneti �elds from axi-symmetry. EFs are due mainly to non perfet

alignment of the oils surrounding the plasma; they an exite modes making

them grow until they lok to the wall and the plasma disrupts. Error �elds

an be ompensated or redued to a non-ritial level through a dediate

system of external oils, the so-alled Error Field Corretion Coils (EFCCs).

Regarding the boundary on the maximum plasma pressure, ideal β limit

is alulated for optimized urrent and pressure pro�les; therefore, it de-

pends on the partiular onditions of operation. Some experiments showed

that suh a limit is only reahed transiently. On the base of the boundary
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onditions and the onsidered senarios, di�erent instabilities limit the max-

imum ahievable β to a lower value, as Neolassial Tearing Modes (NTMs)

or Resistive Wall Modes (RWMs) [2℄.

NTMs are driven loally by the redution of the bootstrap urrent whih

depends on the �attening of the pressure pro�le aross a magneti island

with a onsequent enhaning of the loal radial transport. The most signi�-

ant NTMs are haraterized by mode numbers m=2, n=1, and m=3, n=2.

They an be desribed by a modi�ed Rutherford equation [16℄, where an

additional term takes into aount the redution of bootstrap urrent. NTMs

pose a serious problem for high performane senarios, even if presently sev-

eral tehniques for their stabilizations have been studied and suessfully

applied as shown in the Figure (3.7). The e�et on the energy on�nement

Figure 3.7: NTMs stabilization: two DIII-D disharges with (No. 114504, dotted

lines) and without (No. 114494, solid lines) ECCD suppression of an m=3, n=2

NTM. (a) Neutral beam power, (b) βN , () n = 2, (d) n = 1.(T.C. Hender et al.,

IPB2007, Chapter 3)

due to m=3, n=2 and m=2, n=1 NTMs an be seen in the evolution of βN
through the omparison of two disharges in DIII-D. The two pulses are more

or less idential, with the presene of the same sequene of NTMs, but in the
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disharge where stabilization by eletron ylotron urrent drive (ECCD) is

performed the e�et on βN is well evident.

In onditions of high plasma pressure, RWMs an ause disruptions as

well. High β plasmas are unstable to external kink modes, and this obvi-

ously represents a limit in the exploitation of high performane advaned

senarios with high bootstrap urrent fration. External kink modes ould

be stabilized by a nearby ondutive wall, allowing in priniple to exeed the

no-wall limit. In Figure 3.8 is reported the alulation of the time evolution

of βN for the no-wall limit with the orresponding measures of the MHD a-

tivity by Mirnov loops and photodiodes. But being a real wall haraterized

Figure 3.8: Time evolution of disharge No. 92544 showing (a) βN relative to

the omputed no-wall limit and the saddle loop amplitude δBr of the RWM, (b)

measured plasma rotation from CER at q = qmin and q = 3, and () MHD ativity

from Mirnov loops and photodiodes. (A.M. Garofalo et al., PRL. 82, 3811 (1999))

by a �nite resistivity, the grow rate of the resulting resistive mode will now

be governed by the resistive time onstant of the wall. Also in the ase of

RWMs, di�erent methods for stabilization have been demonstrated by sev-

eral experiments, in partiular by using ative feedbak oils systems and by

plasma rotation.

In advaned senarios with the presene of Internal Transport Barriers
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(ITBs), Alfveni growth rate instabilities an build up leading with very fast

time sales to disruption. Being fast, they result to be partiularly di�-

ult to detet and typially give rise to the highest energies and heat loads.

Plasmas haraterized by ITBs exhibit radially loalized regions of improved

on�nement with steep pressure gradients in the plasma ore, whih in turn

ould drive instabilities leading to disruption. In relation to the ahievement

of ontinuous operation it is well known that a large fration of bootstrap

urrent is neessary, and, that disharges exhibiting the formation of ITBs

are favorable to this aim. Experimentally, the presene of suh a urrent

fration is usually assoiated with high β disharges with a weakly positive

or negative magneti shear in the entral region of the plasma olumn.

3.2.3 VDEs

Another ause of instability is the lost position ontrol of plasma vertially

elongated. It is well known that plasmas are elongated for reasons of stability

and on�nement. However, being unstable to vertial displaements, that is

in the diretion of elongation, it is neessary a feedbak ontrol stabilization

system on plasma vertial position, based on poloidal �eld oils (see hapter

2). When the vertial ontrol is lost, a Vertial Displaement Event (VDE)

develops, induing large fores on the surrounding strutures. Therefore,

these events are partiularly dangerous for the integrity of the mahine, even

if the presene of ondutive surrounding strutures oppose to the displae-

ment thanks to the indued urrents, slowing down the vertial motion on

the base of the resistive time. The loss of vertial ontrol an be aused also

by the rapid hanges in plasma parameters during a disruption, but in some

ases it ours before the energy and the urrent quenh, therefore it an be

seen as a ause.

3.2.4 Consequenes

As it has been disussed in the introdutory setion, disruptions represent

a not negligible risk for the strutural integrity of the mahine. The ther-

mal quenh, that is the phase in whih a large amount of thermal energy is

lost from the plasma, an ause extremely high thermal loads on the plasma

faing omponents (PFCs), on the diverter and in general on the �rst wall.

Presently, no material ould withstand all the thermal energy of a large de-

vie as ITER without being heavily damaged or diretly melted. Obviously,

there are mehanisms through whih a onsistent fration of the thermal en-

ergy is dissipated before to be released on surfae materials, as for example

by radiation losses. Furthermore, we have to take into aount that the total
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heat �ux has to be distributed on the largest possible area. Anyway, the

foreseen heat loads are still too high for PFCs and divertor materials, there-

fore, further mitigation ations must be onsidered.

Besides heat loads, another serious issue is represented by the onse-

quenes of the plasma abrupt urrent quenh: large eddy urrents an be

indued in the vauum vessel and surrounding strutures, reating fores

potentially apable of damaging the devie. Eddy urrents are driven ba-

sially by the movement of the plasma olumn and by the variation of the

plasma urrent values. Moreover, during disruptions the plasma an hit the

�rst wall and a onsistent fration of plasma urrent an �ows diretly from

the plasma to the vauum vessel and the surrounding ondutive strutures

through the wall-ontating region. The resulting urrents �ow mostly in the

poloidal diretion and are haraterized typially by a toroidally symmetri

omponent due to magneti �ux onservation, and eventually by a toroidally

asymmetri omponent with mode number n=1, whose origin so far is not

so lear (�gure 3.9).

The fores indued by these so alled halo urrents an be very harmful.

Eddy and halo urrents give rise to vertial fores between the plasma olumn

and the vauum vessel and fores between the vauum vessel and the oils.

The problem of equilibrium and vertial stability has already been disussed

in the hapter 3.

Finally, the prodution of relativisti (runaway) eletrons during the urrent

quenh poses another threat to the integrity of the plasma faing omponents,

espeially in the ase of high-urrent tokamaks as ITER. The onversion by

Coloumb avalanhe multipliation of plasma urrent to relativisti eletron

urrent an reah even 70% of the initial plasma urrent, leading to potential

damages to PFCs.

Observations in present tokamaks have shown that runaway eletron an

ause damages due to the deposition of thermal energy on material surfaes.

An additional fration to this energy is originated from the onversion of the

magneti energy assoiated to the relativisti beam [17℄. Thus, on the base

of the always improving understanding of the nature of suh a phenomenon,

di�erent avoidane or mitigation strategies are urrently under study, with

partiular referene to their appliation in ITER.
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Figure 3.9: Example of halo urrent dynamis in NSTX: (a) vertial motion

leading up to the disruption, (b) ontours of halo urrent as a funtion of time and

toroidal angle, () maximum and minimum urrent instantaneously measured on

any tile, along with the amplitudes in a simple n = 1 deomposition, and (d) the

plasma urrent.(from: [18℄)
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Chapter 4

Mahine learning for mapping,

predition and lassi�ation

4.1 Introdution

Today the large amount of data available from fusion experiments and their

harater of high-dimensionality make partiularly di�ult handling, pro-

essing, understanding and extrating properly what is really important

among all the available information. In fat very often data sets onsists

not only in a huge number of examples, but are also haraterized by a on-

sistent number of features neessary to exhaustively represent the behavior

of a ertain phenomenon for example. Obviously, not all the features have

neessarily the same level of importane, or it an happen that some of them

are redundant or ompletely useless in relation to a spei� objetive. This

is a key point for several reasons: �rst of all, even if it is ontinuously in-

reasing, there is a omputational limit to the amount of data whih an be

handled beause of the omplexity of the algorithm, the required memory,

et. Furthermore, high-dimensionality makes data very di�ult to interpret;

sientists often have to deal with problems involving high-dimensional data.

The most obvious issue is visualization; when the data dimension is

greater than three annot be visualized and it beomes harder to pereive

similarities and dissimilarities between di�erent variables. Furthermore, the

sampling of the spae is harder due to the high number of possible data

samples. Essentially, the amount of data to ahieve a given spatial density

of examples inreases exponentially with the dimensionality of data spae

(empty spae phenomenon). Generally speaking, algorithms that operate on

high-dimensional data are faed with the "urse of dimensionality" and the

assoiated issues, resulting in a very high omplexity. For example, organiz-

49
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ing and searhing data relies on deteting areas where objets form groups

with similar properties; in high-dimensional data however all objets appear

to be sparse and dissimilar in many ways whih prevents ommon data or-

ganization strategies from being e�ient. One approah to simpli�ation is

to assume that the data of interest lies on a low-dimensional manifold, em-

bedded in the high-dimensional spae. Thus, data redued to a small enough

number of dimensions an be visualized in the low-dimensional embedding

spae. Attempting to unover this manifold struture in a data set is re-

ferred to as manifold learning. It is worth mentioning that identifying the

right manifold would also allow to better model the relevant physis. There-

fore,manifold learning has the potential not only to improve the visualization

and the intuitive estimation of problems but also to qualitatively inrease the

understanding of the relevant physis.

Moreover, beyond visualization, one has to take into aount also the

aspet of the omputational burden required by pattern reognition, lassi-

�ation and predition algorithms whih usually are used immediately after

the initial step of dimensionality redution. In other words, reduing the

quantity of relevant features in a data set is a fundamental step for the

subsequent appliation of powerful data-analysis and mahine learning teh-

niques [1℄.

When we talk about data visualization and mapping, very often we are

intrinsially making referene to the same onept, but sometimes some dis-

tintion are made among methods whih provide just visualization and meth-

ods that provide a mapping. In the ontext of mahine learning, mapping

methods are onsidered mostly able to provide a preliminary feature ex-

tration step, after whih pattern reognition algorithms an be e�iently

applied. Instead, data visualization methods an be onsidered as a subset

of mapping methods based mostly on distane measurements and data prox-

imity. Anyway, in many appliations suh a distintion beomes in pratie

inappreiable.

4.2 Manifold learning algorithms

In the last few years, many manifold learning tehniques have been devel-

oped for dimensionality redution. A number of supervised and unsupervised

linear dimensionality redution frameworks have been designed [2℄, whih

de�ne spei� proedures to hoose interesting linear projetions of the data

suh as PCA [3℄ and Grand Tour [4℄. These linear methods an be powerful,

espeially in terms of data-visualization, but often miss important nonlinear

strutures in the data. Reently, several di�erent algorithms have been de-
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veloped to perform dimensionality redution of nonlinear manifolds. Among

them, there are powerful methods suh as Self Organizing Map (SOM), Gen-

erative Topographi Mapping (GTM), Isomap and Loally Linear Embedding

(LLE) [2℄.

Isomap is a simple method of nonlinear dimensionality redution that

extends metri multidimensional saling (MDS) exploiting graph distane

as an approximation of the geodesi distane, instead of the Eulidean dis-

tane. The main idea at the base of the method is to use the distane along a

geodesi path onto the onsidered manifold as measure of dissimilarity. The

mapping preserve the intrinsi metri of the data, therefore it an be de�ned

as a distane preservation method.

LLE instead, similarly to SOM and GTM algorithms, is a topology preser-

vation method. In mathematis, a topologial variety or manifold is basi-

ally a topologial spae that resembles Eulidean spae near eah point, or

in other words eah point of an n-dimensional manifold has a neighborhood

homeomorphi to the Eulidean spae in R
n
. LLE de�nes a eigenvetor based

method, and its optimization don't involve an iterative algorithm, avoiding

in this way the problem of eventual loal minima.

The most important feature about manifolds is represented by their topol-

ogy, or, in other words, the neighborhood relationships between subregions of

the onsidered manifold. Nonlinear dimensionality redution an be ahieved

also with distane preservation, but it turns out to be very onstraining. In

ertain ases the embedding of a manifold requires that some regions has

to be strethed or shrunk to be properly embedded in a lower dimensional

spae. This is the reason whereby generally topology preservation, even if

more omplex, seems to be more suitable in this framework.

Therefore, summarizing, dimensionality redution is the proess through

whih we an �nd a suitable representation of our original data, with the aim

of disovering eventually partiular strutures or patterns whih an lead to

more targeted statistial analysis suh as lustering, smoothing, probabil-

ity density estimation and lassi�ation. In addition to these advantages,

moreover, we have to onsider the power of visualization if dimensionality is

redued to 2-D or 3-D.

LLE, unlike SOM and GTM, for preserving topology proposes a di�erent

approah based on the so-alled onformal mapping, whih, instead of pre-

serving loal distanes, preserves loal angles. In a ertain way loal distanes

and loal angles are linked by salar produts, thus they may be interpreted

as two di�erent ways to preserve loal salar produts [2℄. Anyway, regard-

ing the di�erent methods, a not negligible point is the omputational burden

that has to be evaluated in relation to the spei� appliation. Regarding

Isomap and LLE for example, the spetral deomposition required by the
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two algorithms an represent a heavy omputational bottlenek. Going up

with dimensionality and size of databases, their use beomes hard without a

very powerful hardware on�guration, and an eventual real-time appliation

would be partiularly hallenging.

Figure 4.1: Comparison between PCA and Manifold Learning methods (LLE and

Isomap). [from www.astroml.org/book_�gures℄

There exist several other algorithms for manifold learning, as well there ex-

ists also di�erent variants of the ited algorithms, but an extensive disussion

about all the methods is beyond the sope of this thesis. Therefore, only the

methods applied for the analysis performed in the framework of this thesis

will be desribed, in partiular Grand Tour and Prinipal Component Anal-

ysis among the linear tehniques, and Self Organizing Maps and Generative

Topographi Mappings among the nonlinear ones. The linear tehniques are

simpler and easier to implement than more reent methods onsidering non-

linear transforms, but often miss important nonlinear strutures in the data.

In any ase, they turn out to be very useful for an initial analysis about

basi statistial properties and interesting linear strutures hidden in data.

Furthermore, some setions will be dediated to the introdution of referene

lassi�ation and predition algorithms used in the framework of this thesis
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in onjuntion with manifold learning algorithms, suh as k-Nearest Neigh-

bor (kNN) tehnique and Conformal Preditors.

Let us onsider the problem of reduing the dimensionality of a given

data set onsisting of N high-dimensional points in an Eulidean spae. The

high-dimensional input points will be referred to as T = {t1, t2, ...., tN} with
ti ∈ R

D
. Let L be the dimensionality of the manifold that the input is

assumed to lie on. The low-dimensional representations that the dimension-

ality redution algorithms �nd will be referred to as X = {x1,x2, ....,xN}
with xi ∈ R

L
.

4.2.1 Grand Tour (GT)

Usually, in order to disover some basi property of a dataset of interest, it

is useful to start looking at data from di�erent points of view, investigating

the highest possible number of lower dimensional representations. This is a

proper method of analysis, espeially in those ases for whih eventual stru-

tures hidden within data are totally unknown.

The Grand Tour method, introdued by Asimov [4℄ and Buja and Asi-

mov [5℄, is a multivariate visualization method that generates a ontinuous

sequene of low dimensional projetions of a high dimensional data set. The

animation obtained provides an overview of the high dimensional spae in a

sequene of 2-D plots. Data are looked from all possible viewpoints to get

an idea of the overall distribution.

To reate a two dimensional Grand Tour, a sequene of planes is generated.

The set of planes has to be dense in the data spae; the sequene of planes

is also required to move ontinuously from one plane to the next so that the

human visual system an smoothly interpolate the data and trak individual

points and strutures in the data. Hene, the mathematis of the Asimov-

Buja Grand Tour requires a ontinuous, spae-�lling path through the set of

planes in the high-dimensional data spae. Then, data has to be projeted

onto the planes and observed in a time-sequened set of 2-2-DD images. Sev-

eral algorithms have been proposed to ahieve these two onditions, based

on obtaining a general rotation in the high dimensional spae. In this work,

the MATLAB implementation in [6℄ of the Pseudo Grand Tour algorithm,

�rstly desribed in Wegman and Shen [7℄, has been used. The main ad-

vantages of the Pseudo Grand Tour, whih is an approximate version of the

Grand Tour, are speed, ease of alulation, uniformity of the tour, and ease

of reovering the projetion. However, the algorithm is not spae �lling, thus

only a "pseudo" grand tour is obtained.
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4.2.2 Prinipal Component Analysis (PCA)

The main purpose of Prinipal Component Analysis is to redue dimension-

ality taking into aount as muh of the variane of our high-dimensional

data as possible.

PCA �nds the L diretions (vetors) along whih the data has maximum

variane and the relative importane of these diretions. If data lies perfetly

along an embedding subspae of R
L
, PCA will reveal that subspae; other-

wise, PCA will introdue some errors. Let the �rst L prinipal omponents

of T be P = [p1, ...,pL] with pi ∈ R
D
.

The olumns of P are the diretions of maximum variation within the

data, and they form an orthonormal basis that spans the prinipal subspae

so there is no redundant information [3℄. The data xi an be approximated

by linear ombination of the prinipal omponents as xi = PTti, where

PTti = ci are the linear oe�ients obtained by projeting the training data

onto the prinipal subspae; that is, C = [c1, ...., cN] = PTT.

Despite PCA's popularity it presents a number of limitations. The main

drawbak is the requirement that the data lies on a linear subspae. Indeed,

when data lies in a low-dimensional manifold, not in a low dimensional sub-

spae, PCA does not orretly extrat the low-dimensional struture. Man-

ifold learning algorithms essentially attempt to dupliate the behavior of

PCA, but on nonlinear manifolds instead of linear subspaes.

4.2.3 Self Organizing Map (SOM)

The SOM is a type of arti�ial neural network developed by Kohonen [8℄.

SOMs are widely applied as nonlinear dimensionality-redution tools in or-

der to onvert omplex nonlinear relationship between data items into a low-

dimensional spae. A SOM an be intuitively interpreted as some kind of

nonlinear PCA. In a SOM the objetive is more to preserve the topology,

rather than the distane, in the distribution of the data.

One natural way to put this idea in pratie onsists of replaing the

hyper-plane with a disrete (and bounded) grid or lattie de�ned by some

points alled prototypes. The prototypes have oordinates in both the em-

bedding and the initial spae. They are iteratively �tted inside the data loud

moving the prototypes together with their neighbors in the lattie toward the

original data points as it is shown in Figure 4.2. Hene, the Self-Organizing

Map is a nonlinear dimensionality redution tehnique whih performs two

onurrent subtasks:

• Dimensionality redution: high dimensional inputs are projeted on a

low-dimensional regular grid.
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• Data lustering and topology preservation: points lose to eah other

in the input spae are mapped to the same or neighboring lusters in

the output spae.

Figure 4.2: Self Organizing Map: prototypes iterative �tting inside the data loud

Let us onsider in more detail the problem of reduing the dimensionality of a

given data set onsisting of high-dimensional points in Eulidean spae. The

SOM replaes the set of points T = {t1, t2, ...., tN} in the D-dimensional in-

put spae T onto the smaller set of K prototypes pointsX = {x1,x2, ....,xK}
with xi ∈ R

L
. Eah prototype point in the low-dimensional regular lattie

orresponds to a point in the original spae. Moreover, SOM preserves the

topologial properties of the input. This means that points lose to eah other
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in the input spae are mapped on the same or neighboring prototypes in the

embedding spae. Preserving neighborhood's relations in the mapping makes

possible to see more learly the struture hidden in the high-dimensional

data. The oordinates x are initialized and then updated iteratively during

the SOM training proedure. The SOM runs through the data set T several

times, alled epohs. During eah epoh, for eah ti, the losest prototype

vetor xr is determined. Then, the oordinates of all the prototypes are

updated aording to the learning rule

xi = ηΛ(i, r)(ti − xr) (4.1)

The neighborhood funtion Λ(i, r) is equal to 1 for i = r, and falls o� ex-

ponentially with the distane dir between prototypes i and r in the lattie.

Thus, prototypes lose to the winner r, as well as the winner itself, have

their oordinates updated, whereas those further away, experiene little ef-

fet. Learning generally proeeds in two broad stages: a shorter initial train-

ing phase, in whih the map re�ets the oarser and more general patterns

in the data, followed by a muh longer �ne tuning stage, in whih the loal

details of the organization are re�ned. We start with a wide range of Λ(i, r)
and η then both the range of Λ(i, r) and the value of η are gradually redued
as the learning proeeds. A typial hoie forΛ(i, r) is:

Λ(i, r) = e−d2ir/2σ
2

(4.2)

where σ is a width parameter that is gradually dereased. Thus, the SOM si-

multaneously performs the ombination of three onurrent subtasks: vetor

quantization, dimensionality redution and topology preservation.

4.2.4 Generative Topographi Mapping (GTM)

Generative Topographi Mapping belongs to the lass of the so alled "gen-

erative models", whih try in a ertain way to model the distribution of the

data by de�ning a density model with low intrinsi dimensionality in the

data spae. Through a nonlinear mapping from the latent spae to the data

spae it generates a mixture of Gaussians, whose enters are onstrained to

lie on, a low dimension spae embedded in the high-dimensional one and

has to be �tted to the data. This is usually ahieved through a form of the

Expetation Maximization algorithm (EM) by maximizing the likelihood or

the log-likelihood funtion of the model [9℄.
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In a ertain way, GTM has been inspired by the SOM algorithm, at-

tempting to overome its limitations. In partiular, SOM does not de�ne a

density model and the onvergene of the prototype vetors are not based on

the optimization of an objetive funtion suh as the likelihood funtion, in

fat the preservation of the neighborhood struture is not guaranteed. Being

a generative latent model, GTM basially tries to �nd a representation in

terms of a small number of latent variables: in order to be able to visualize

the lower dimensional representation of the data, the latent variable dimen-

sion must be 2 or 3. Sine the mapping is de�ned from the latent spae to

the data spae, for visualization purposes an inversion of the mapping itself

is required and this is ahieved omputing the posterior probability in the

latent spae through the Bayes' theorem.

However, we have to take into aount that a single data point orrespond

to a probability distribution in the latent spae, not just to a single point,

reason for whih we usually make referene to ondensed information suh

as the mean or the mode of the posterior distribution.

Let's desribe now in more detail the basi mathematial formulation

upon whih GTM is based. GTM de�nes a mapping from the latent spae

(L-dimensional spae) into the data spae (D-dimensional spae). So, given

a dataset in the data spae T = {t1, t2, ...., tN}, the �rst step is to map the

latent spae, whih onsists of a regular grid of nodes X = {x1,x2, ....,xK},
into the data spae through a parameterized nonlinear funtion y(x;W),
where W is the matrix of parameters representative of the mapping (see �g-

ure 4.3). The objetive of the GTM is to de�ne a probability distribution

over the D- dimensional spae in terms of latent variables:

p(t) =

∫

p(t|x)p(x)dx (4.3)

Sine data in reality only approximately lies on a low dimensional mani-

fold embedded in the data spae, a ertain noise has been inluded in the

observed data whih will be modeled by a radially symmetri Gaussian prob-

ability density funtion entered on the transformed latent nodes. Thus, the

distribution of t, for a given x and W, is a spherial Gaussian entered on

y(x;W)

p(t|x,W, β) =

(

β

2π

)−D/2

· e{−
β
2
||y(x;W)−t||2}

(4.4)

where the inverse of the β parameter is the noise variane. The distribution

inT-spae, for a given value ofW, ould then be obtained by integration over

the x-distribution. Sine the integral is generally not analytially tratable,
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the latent variable distribution is replaed by a prior distribution p(x) on-
sisting of a superposition of delta funtions, eah one assoiated with one of

the nodes of the regular grid in the latent spae

p(x) =
1

K
·

K
∑

k=1

δ(x− xk) (4.5)

Substituting 4.4 and 4.5 in 4.3, the distribution funtion in the data spae

beomes:

p(t|W,β) = 1

K
·

K
∑

k=1

p(t|xk,W, β) (4.6)

The suggested approah is to use radial basis funtion (RBF), suh as for ex-

ample Gaussians, to perform the nonlinear mapping between the latent spae

and the data spae. The mapping an be expressed by a linear regression

model, where the mapping funtion y is expressed as a linear ombination of

these basis funtions Φ:

y(x,W) = Φ(x) ·W (4.7)

where W is a D ×M matrix of weight parameters and M is the number of

the basis funtions.

Figure 4.3: GTM mapping and manifold: eah node loated at a regular grid in

the latent spae is mapped to a orresponding point y(x;W) in the data spae,

and forms the entre of a orresponding Gaussian distribution. In the �gure the

orrespondenes between a data point in the manifold embedded in the data spae

and the mean of the posterior distribution in the latent spae is also shown.



Manifold learning algorithms 59

The adaptive parameters of the model are W and β. Sine the GTM repre-

sents a parametri probability density model, it an be �tted to the data set

by maximum likelihood, e.g. maximizing the log likelihood funtion. This

an be performed, e.g., using the expetation-maximization algorithm.

The likelihood funtion for a set of i.i.d data points {t1, t2, ...., tN} an be

written as:

L =
N
∏

n=1

(p(t|W, β)) =
N
∏

n=1

(

1

K

K
∑

k=1

p(tn|xk,W, β)

)

(4.8)

therefore, the log-likelihood funtion, whose handling is usually more e�ient,

has the following form:

l =

N
∑

n=1

ln

(

1

K

K
∑

k=1

p(tn|xk,W, β)

)

(4.9)

Aordingly to the SOM algorithm, GTM an be applied for data lustering

and topology preservation. Being the mapping de�ned by the nonlinear fun-

tion y(x;W) smooth and ontinuous, the topographi ordering of the latent

spae will be preserved in the data spae, in the sense that points lose in the

latent spae will be mapped onto nodes still lose in the data spae. With re-

spet to the Self Organizing Map algorithm, GTM de�nes expliitly a density

model (given by the mixture distribution) in the data spae, and it allows

overoming several problems, in partiular the ones related to the objetive

funtion (log likelihood) to be maximized during the training proess, and

the onvergene to a (loal) maximum of suh an objetive funtion, that is

guaranteed by the Expetation Maximization algorithm.

Visualization

For visualization purposes, the resulting mapping in the high-dimensional

spae has to be transposed into the low-dimensional latent spae, whih is

therefore hosen to be 2-D or three-dimensional (3-D). Extra dimensions

would improve the quality of the results, but data with more than two or

three dimensions an be di�ult to interpret. The inversion of the map-

ping is performed by employing Bayes' theorem, whih allows alulating

the posterior probability in the latent spae. One we have found suitable

values W∗
and β∗

for respetively the matrix of weight and biases for the

nonlinear mapping and for the inverse of the noise variane, GTM de�nes a

probability distribution in the data spae onditioned on the latent variable,

that is p(t|xk) with k = 1, 2, ..., K. But what we are interesting in is the
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orresponding posterior distribution in the latent spae for any given data

point t, that is p(xk|t); therefore, in order to ompute this latter we an use

the Bayes' theorem in onjuntion with the prior distribution over the latent

variable p(x), as it is alulated in the following expression (4.10):

p(xk|t) =
p(tn|xk,W

∗, β∗) · p(xk)
∑K

k′=1 p(tn|xk,W∗, β∗) · p(xk′)
(4.10)

For visualizing all the data points in the latent spae, it is then possible to plot

the mean (4.11) or the mode (4.12) of the posterior probability distribution

in the latent spae.

xmean
n =

K
∑

k=1

xk · p(xk|tn) (4.11)

xmode
n = argmax {p(xk|tn)} (4.12)

The mean position xmean
n (t) in the latent spae is alulated by averaging

the oordinates of all nodes taking the posterior probabilities as weighting

fators. In �gure 4.3, the data point t∗ is represented in the latent spae as

the mean weighted by the posterior probabilities.

Algorithm and implementation [10℄

A sheme whih summarizes the basi steps for the GTM onstrution model

is given in the �owhart in �gure 4.4.

The Matlab toolbox for the omputation of the GTM whih has been used

as a base for the implementation of the data analysis and lassi�ation al-

gorithms is part of Exploratory Data Analysis (EDA) toolbox desribed in

[11℄. The �rst step of the omputation is the generation of the grids of the

latent points and of the radial basis funtion enters. Regarding the radial

basis funtions in partiular, the width σ is an important parameter, sine in

onjuntion with their number and with the number of latent points, deter-

mines smoothness and �exibility of the mapping. Therefore,it is important

to note that even if for omputational reasons the algorithm works with a

disrete number of latent points, the mapping is ontinuous over the latent

spae. In fat, it has to orrespond to the manifold embedded in the data

spae where the enters of Gaussians (orresponding to the latent points) lie

on. The hoie of these parameters, as suggested by the main author of the

tool [10℄, in general is not uniquely de�ned sine it depends on the spei�

ase, but the important point is that the hoie will a�et the �nal mapping.
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Figure 4.4: GTM algorithm �owhart

As general onsideration, depending on the RBF width and their num-

ber, we an have larger or smaller overlapping among them, that means we

an have more or less orrelation. The more and broader the basis funtions

are, the higher the �exibility of the mapping will be, but we don't have to

lose ompletely the orrelation among RBFs, otherwise also the smoothness

of the mapping will be lost. A measure of the overlapping among RBFs is

given also by the number of points they have in ommon; therefore, in order

to preserve the smoothness, we have to guarantee that the number of shared

points is not too low. Regarding the number of latent points, the author

suggests as a good rule to have O(10L) number of latent points as support
of eah basis funtion.

Regarding the nonlinear mapping (4.7), a generalized linear regression

model is usually hosen as parametri nonlinear model, whereas regarding

basis funtions, several types ould be used, but in the adopted implementa-

tion Gaussian basis funtions are used. One the matrix Φ of basis funtions

has been omputed, the initialization of W an be done randomly or PCA-

based, and β has to be initialized oherently with respet toW initialization.

The next step is represented by the alulation of the distane ∆ between

any given data point and the Gaussian enters to whih latent points are

mapped (∆kn = ||tn −ΦkW||2). At this point we enter in the iterative pro-
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edure for the mixture of Gaussians �tting through the EM algorithm. In

the Expetation step the responsibilities rkn that the n-th point t in the data

spae is generated from the k-th node of the grid are alulated aording to

the following expression:

rkn = p(xk|tn,W, β) =
p(tn|xk,W, β)

∑K
k′=1 p(tn|xk,W, β) · p(xk′)

(4.13)

Suh responsibilities are the weights in funtion of whih the parameters W
and β are updated at eah iteration until a onvergene riterion will not

be satis�ed (usually the maximum number of iterations). In other words, in

the Maximization step eah omponent of the mixture of Gaussians is moved

toward dataset points for whih it results to have higher responsibility. A

shemati representation of main steps of the Expetation Maximization for

GTM building model is reported in the box of �gure 4.5

Figure 4.5: EM main steps.

4.2.5 Extension of the GTM tool for data analysis, pre-

dition and lassi�ation

A not negligible part of the work arried out in the framework of this thesis

has regarded the implementation of algorithms for data analysis, lassi�a-

tion and predition, whih basially are an extension of the basi GTM tool

(and an be applied also to SOMs). The developed tools, whih will be

desribed in onjuntion with the results in the following hapters, provide

additional funtions related to the mapping of an high-dimensional spae, in

partiular:
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• evaluation and quanti�ation of the e�etiveness of the mapping (Quan-

tization Error measure, Trustworthiness measure, and Topology Preser-

vation measure).

• implementation of di�erent types of representation (basi maps, Pie-

planes and Component-planes).

• traking of temporal evolution of a new objet onto the map (online

and real-time implementation)

• data-redution algorithm based on the GTM model

GTM's tools ould be partiularly useful in the study of the operational spae

where the relevant physis takes plae, allowing the pereption of eventual

similar patterns and the identi�ation of dependenies or omplex relations

in the feature spae. Furthermore, these tools have been used not only for

analysis but also as "kernel" for the algorithms of predition and lassi�a-

tion, as it will desribed in the subsequent part of the thesis.

4.2.6 k-Nearest Neighbor (k-NN)

k-Nearest Neighbors algorithm (k-NN) is a referene non-parametri method

used for lassi�ation and regression. In pattern reognition, it represents one

of the simple but at the same time used learning algorithm. An objet an be

lassi�ed on the base of its neighbor by a majority vote: the lass membership

will indiate the lass with the higher number of neighbors among the k
nearest ones (�gure 4.6).

k-NN is de�ned as an instane-based lassi�er, unlike GTM for example,

whih de�nes a generative latent model. There are several implementation

of this algorithm, suh us the weighted version for taking into aount the

di�erent importane of the neighbors on the base of the distane to the

test unlabeled point. k-NN tehnique requires the de�nition of a similarity

measure, or in other words a distane measure. The most ommon used

metris is the Eulidean distane, but also other metris suh as Hamming

distane an be used depending on struture and properties of the data of

interest. It is a simple and �exible tehnique whose drawbaks are well

known, as for example the appliation of the basi majority voting riterion

for lassi�ation when the dataset is strongly unbalaned in terms of the

di�erent lasses. In this ase the lass with higher frequeny of ourrene

an distort the majority vote among k nearest neighbors. One solution to

overome this problem is to take into aount the distane of eah of the k
nearest neighbors with a weighted sum: a ommon rule is to multiply simply
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Figure 4.6: k-Nearest Neighbor tehnique with k=3: in thi ase the test point z
is lassi�ed as triangle.

for a fator proportional to the inverse of the distane from the onsidered

point to the test unlabeled point.

Anyway k-NN has some strong onsisteny results. In partiular the

algorithm is guaranteed to yield an error rate no worse than twie the Bayes

error rate if the amount of data tends to in�nity [12℄. Bayes error rate is

referred to the optimal deision boundary that provides the lowest probability

of error for a lassi�er, given distribution of data [13℄.

Mahalanobis distane [14℄

A partiular metris whih has been exploited as similarity measure with the

k-NN tehnique, is the Mahalnobis distane, whose de�nition and intuitive

piture are represented in Figure 4.7. If we are onsidering the problem of

estimating the probability that a test point belongs to a ertain set, intu-

itively, it is quite easy to dedue that the loser the point in question is to

the enter of mass of the distribution of points , the more likely it belongs

to the set. When the onsidered distribution of points is not spherial then

the probability of the test point to belong to the set, depends not only on

the distane , but also on the diretion.

Therefore,for a multivariate vetor x = (x1, x2, ..., xN), assuming a generi

distribution of points with enter of mass µ = (µ1, µ2, ..., µN) and whose

probability distribution is represented by the ovariane matrix S, Maha-

lanobis distane is de�ned as DM =
√

(x− µ)TS−1((x− µ).

In Figure 4.7 for example we are assuming that the distribution of points

is ellipsoidal. In those diretions where the ellipsoid has a short axis the test

point must be loser, while in those ones where the axis is long the test point

an be further away from the enter, always maintaining the same probability

to belong to the onsidered set. The ellipsoid that best represents the set's

probability distribution an be estimated by building the ovariane matrix
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of the samples. The Mahalanobis distane is simply the distane of the test

point from the enter of mass divided by the width of the ellipsoid in the

diretion of the test point.

Figure 4.7: Comparison between Mahalanobis distane and Eulidean distane.

4.2.7 Conformal Preditors

Conformal preditors are plaed in the wide framework of the mahine learn-

ing tehniques that have been developed for predition and lassi�ation pur-

poses. Unlike others methods, they have the peuliarity to provide together

with predition or lassi�ation also the orresponding level of on�dene.

The theory of Conformal Preditions is based on the priniples of algorith-

mi randomness, and on the Kolmogorov omplexity of an i.i.d. (identially

independently distributed) sequene of data instanes [15℄.

Conformal preditors an be used in priniple with any method of pre-

dition, suh as support vetor mahines, neural networks, deision trees,

nearest neighbor lassi�ers, et. To determine the on�dene level for the

lassi�ation of a new objet, it is neessary to estimate how di�erent a new

objet is from the old examples: to this purpose, usually a nononformity

sore is alulated on the base of a de�ned nononformity measure. In par-

tiular we are interested to preditions using features of the new objet; let's

onsider suessive n ordered pairs (t1,y1), (t2,y2), ..., (tn,yn), where zi =
(ti,yi) represents the generi example, whih onsists of an objet ti and the

orresponding label yi. Both the objet and the labels belong to measurable

spaes, respetively the objet and the label spae.

Conformal predition requires �rstly the de�nition of a nononformity

measure, whih quanti�es how di�erent a new example is from old examples

[16℄. A bag of size n ∈ ℵ is a olletion of n elements that may be idential

and an be given in any order. In the following we will refer to a bag of size
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n with the notation 〈z1, ..., zn〉. The �rst step of the onformal predition

algorithm is the omputation of the nononformity sores αi for any objet

of the given bag on the base of a de�ned nononformity measure A:

αi := A(〈z1, ..., zi−1, zi+1, ..., zn〉, zi) (4.14)

Nevertheless, nononformity sores have not an absolute value, being rela-

tive to the partiular ase onsidered for the given bag of objets 〈z1, ..., zn〉.
Therefore, in order to generalize and give a measure of how unusual an el-

ement zi is with respet to the other elements of the bag, its sore must be

ompared with the one of all the other objets. This an be done, for exam-

ple, by omputing the so-alled p-value, whih is de�ned by the fration:

p-value =
#|{j = 1, ..., n : αj ≥ αi}|

n
(4.15)

This fration, whih is the p-value for zi an assume values between 1/n
and 1, and represents the normalized number of examples belonging to the

bag at least as nononforming as zi. The loser to its lower bound 1/n the

p-value is, the more nononforming the objet zi is with respet to the other

elements of the bag. If n is large enough, an high level of nononformity may

de�ne an outlier for the onsidered lass.

In the framework of the lassi�ation with onformal preditors, the p-

values have a dual funtion: they are used to assign the lass of a new

element, and, at the same time, on the base of their values it is possible to

de�ne the goodness and the reliability of the lassi�ation itself. Thus, if we

onsider a new objet of unknown label to be lassi�ed on the base of the

de�ned nononformity measure into one of N available lasses, the onformal

preditor will assign to this new objet the label of the highest p-value. The

reliability of the predition is quanti�ed by two parameters, on�dene and

redibility, de�ned as:

Con�dene = 1− 2nd largest p-value

Credibility = largest p-value (max(pj), j = 1, ..., N) (4.16)

The values of redibility and on�dene are indiative of the reliability with

whih the lassi�ation is provided. In partiular, assuming that eah lass

is statistially well represented in the training set, a low value of redibility

means that the new objet (test) is not representative of any lass of objets

in the bag (training set). Another important point is represented by the fat

that the maximum p-value is not neessarily de�ned in unique way, in the
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sense that the maximum p-value ould be attributed to more than one lass.

This is a ase of ambiguity, that means the onformal preditor for the given

training set, on the base of the de�ned nononformity measure, is not able

to disriminate among the lasses whih the maximum p-value is assoiated

with.

As it has been antiipated at the beginning of this setion, the nononfor-

mity sore an be omputed in di�erent ways. For the lassi�ation purpose

of this work the onformal preditor will be based on the nearest neighbor

tehnique. When a new example zn = (tn,yn) is given to the onformal pre-

ditor for lassi�ation, the nearest neighbor tehnique �nds the objet ti of

the training set losest to the new one (tn) and assign its label yi to the label
yn to be predited. At this point, in order to quantify the goodness of the

predition, we have to ompare the distane of the nearest objet ti with the

distane of the nearest neighbor with a di�erent label with respet to the one

previously attributed to the test objet. Aording to this onsiderations, the

nononformity sores an be omputed as:

αi =
min{|tj − ti| : 1 ≤ j ≤ n & j 6= i & yi = yj}
min{|tj − ti| : 1 ≤ j ≤ n & j 6= i & yi 6= yj}

(4.17)

=
distance to z′s nearest neighbour with the same label

distance to z′s nearest neighbour with a different label

4.2.8 Logisti regression

Classi�ation is one of the most important topis in statisti and mahine

learning, and a simple approah to it is to ome up with a rule whih pro-

vide a disrete output (binary if the disrimination is between two lasses)

depending on the input variables. But in many ases, for example if we want

to take into aount the eventual presene of noise in our data, a disrete

output is not the best rule, but probably we would like to provide an answer

with a probability or a level of on�dene.

If we de�ne t as the input variable and Y as the output variable, this ould

be done simply by onsidering the onditional distribution of Y given the

input variable t, that is P (Y |t).
Let's onsider Y as a binary or dihotomous output variable whih is oded

as 0 or 1. The logisti regression models the probability that a generi sample

belongs to a lass 0 or 1 using t as independent variable or preditor. This

probability is formally de�ned as:

log
p(t)

1− p(t)
= α + βt (4.18)
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Therefore,p(t) will be given by:

p(t) =
eα+βt

1 + eα+βt
(4.19)

To minimize the mislassi�ation rate, we should predit Y = 1 when p ≥ 0.5
and Y = 0 when p < 0.5. Therefore, logisti regression gives us a linear

lassi�er, whose deision boundary separating the two predited lasses is

nothing else that the solution of α+ βt = 0. In Figure 4.8 the logisti urve

is represented.

Figure 4.8: Logisti urve (from http://en.wikipedia.org/wiki/Logisti_regression).

If p(t) is the probability of the event, the odds of the event is de�ned as:

odds =
p(t)

1− p(t)
(4.20)

The logisti model (logit) is based on a linear relationship between the natural

logarithm of the odds of an event and a numerial independent variable;

therefore, we an express the logisti regression as:

logit = log(odds) = α + βt (4.21)
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Chapter 5

State of the art: tehniques

applied to disruption

lassi�ation and predition

5.1 Introdution

In tokamaks the disruption of a disharge an indue large fores on the sur-

rounding struture and large heat loads on in-vessel omponents, espeially

in large devies as ITER. In this framework, being able to predit and las-

sify disruptions would be of primary importane for improving avoidane and

mitigation strategies. Physial models able to reliably reognize and predit

the ourrene of disruptions are urrently not available, therefore in the last

deade, various mahine learning tehniques have been exploited as an alter-

native approah to disruption predition and automati lassi�ation.

Presently, the systems for detetion of disruptions are based on more or

less omplex ombinations of signals that, on the base of a prede�ned rules

or thresholds, allow to take proper ations for terminating the disharge with

the lowest possible risk for eventual damages on the mahine. In ASDEX

and in JET, for example, there is a ontrol system in losed loop based on a

threshold on the loked mode amplitude, whih triggers a mitigation system

(a massive gas injetion valve in ASDEX). But, very often, what an be de-

teted by these systems is unfortunately the �nal part of the hain of events

whih leads to disruption, and this is not su�ient in many ase to avoid

potential damages to mahine strutures.

In the following setion, the most important tehniques for disruptions pre-

dition and lassi�ation will be reviewed.

71
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5.2 Mahine Learning

5.2.1 Main appliations

Neural Networks (NNs) are one of the �rst tehniques used in the framework

of disruption predition and lassi�ation. Neural Networks are basially

an information proessing system whih try to resemble the way biologial

nervous systems, suh as the brain, proess information. Their struture is

typially based on a large number of highly interonneted proessing ele-

ments (neurons), arranged in di�erent layers. Typially they have an input

layer, an output layer and one or more hidden layers, whose number depends

basially by the omplexity of the spei� task or appliation. The inter-

onnetions among neurons of di�erent layers are alled synapses and are

haraterized by "weights" whih are updated during the learning proess.

The output of eah neuron is omputed in funtion of its weighted inputs

through an ativation funtion.

One of the �rst preditors of disruptions based on neural networks has

been built for TEXT tokamak [1℄. In this work the authors propose a Multi

Layer Pereptron (MLP) to predit the �utuations of the poloidal magneti

�eld measured through Mirnov oils, in order to identify MHD modes m =

2, whih are widely reognized as important preursors of the disruptions.

The proposed neural network, trained with one disruptive and a one non-

disruptive pulse was able to predit a disruption in another shot 1 ms in

advane. This approah has been extended with better results by adding to

Mirnov oils measurements the soft X-ray signals [2℄: in this ase the system

was able to predit some disruptions 3 ms in advane.

Always the same approah has been adopted in another tokamak, ADITYA,

where in addition to Mirnov oils and soft X-ray signals, Balmer α (Hα) sig-

nals were used to inrease predition performane, extending to 8 ms the time

in advane with whih preursors of density limit disruptions were predited

[3℄.

In DIII-D tokamak instead, a three layer MLP was trained on the base

of 33 input magneti measurements, using a training set of 56 and a test

set of 28 β-limit disruptions. The predition were performed on the base of

a parameter funtion of the normalized βN , and the system was optimized

maximizing true positive detetion and minimizing false detetion. About

90% of the disruptions were orretly predited.

A NN-based disruptions preditor has been implemented also in the toka-

mak JT-60. Its objetive was to predit disruptions aused by density limit,

ramp down of the plasma urrent, loked modes due to low density, and β-
limit. The neural network was trained with 9 input parameters, by adopting
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a suessive retraining proedure on the base of a stability level produed

by the �rst proedure of training. This led to a suess rate of about 97%

of orret predition 10 ms in advane, not onsidering disruptions due to

β-limit, that didn't show lear preursors before the atual disruptions. The

false detetions were about the 2% [4℄. A separated NN was trained appo-

sitely to predit β limit disruptions but with lower performane.

In ASDEX Upgrade NN-based methods have been widely employed for

disruption predition. In [5℄ a NN had the funtion to trigger a pellet in-

jetion system for the mitigation of the disruptions. It was trained on 99

disruptive disharges and 386 non-disruptive disharges, taking in input sig-

nals representative of the stable behavior of plasma, suh as the loked mode

or the q95. The online system was able to orretly reognize 79% of disrup-

tions.

In [6℄ a neural network preditor has been built using plasma disharges

seleted from two years of ASDEX Upgrade experiments. In order to test

the real-time predition apability of the system, its performane has been

evaluated using disharges oming from di�erent subsequent experimental

ampaigns. The large majority of seleted disruptions are of the ooling

edge type and typially preeded by the growth of tearing modes, degra-

dation of the thermal on�nement and enhaned plasma radiation. A very

small perentage of them happen at large beta after a short preursor phase.

For eah disharge, seven plasma diagnosti signals have been seleted from

numerous signals available in real-time [7℄. During the training proedure,

a self-organizing map has been used to redue the database size in order to

improve the training of the neural network. Moreover, an optimization pro-

edure has been performed to disriminate between safe and pre-disruptive

phases. Suh a system was able to ahieve about 82% of suess rate on the

pulses of the same ampaigns, but it deteriorated signi�antly when applied

to subsequent ampaigns.

The degrade of performane was almost entirely overome through a re-

training proedure [8℄. The adaptive system ontains a Self Organizing Map,

whih determines the 'novelty' of the input of the MLP preditor module.

The answer of the MLP preditor will be inhibited whenever a novel sample

is deteted. Furthermore, it is possible that the preditor produes a wrong

answer although it is fed with known samples. In this ase, a retraining

proedure will be performed to update the MLP preditor in an inremental

fashion using data oming from both the novelty detetion, and from wrong

preditions. In partiular, a new update is performed whenever a missed

alarm is triggered by the preditor with whih the non-reognize disruptive

disharges were integrated to the training set in the adaptive proedure. The

performane has been alulated on a test set of 536 safe disharges and 128
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disruptive ones, giving a total predition suess rate greater than 93% with

a missed alarm rate of about 13%.

Also for JET there are several experienes where NN-based preditors

have been used to predit disruptions. In [9℄ a MLP was trained on 86 dis-

ruptive disharges and 400 disharges suessfully terminated. A balaned

training set was omputed seleting randomly 400 samples from eah safe

disharge and the samples of the last 400 ms for eah disruptive disharge.

The most important input parameters were found to be the plasma urrent,

the total input power, poloidal β and the internal indutane of the plasma.

84% of the disruptions belonging to the test set were orretly predited at

least 100 ms in advane.

Anyway, by testing the proposed approah with the whole pulses, the

performane of the system deteriorates probably beause of the fat that

the redued (for omputational reasons) dataset used in the training was

not representative enough of all the possible features for disriminating a

non-disruptive behavior from a disruptive one. In order to overome this

inonvenient, a lustering method based on a Self Organizing Map was used

to redue more oherently the size of the training set, allowing the preditor

to reah 77% of orret preditions with only 1% of false detetions on a test

set [10℄.

One of the major drawbaks of the NN approahes is that the network

performane normally deteriorates when new plasma on�gurations are pre-

sented to the network. The ageing of a neural predition system is unavoid-

able for the mahines, suh as JET, where new the plasma on�gurations

are explored. Improvements might be possible using Novelty Detetion (ND)

tehniques. In [11℄, both the predition and the novelty detetion tasks are

performed by the same system using a Support Vetor Mahine (SVM). The

SVM preditor shows a null perentage of false alarms, while the perentage

of missed alarms is not negligible. However, using the knowledge aquired

during the training phase of the preditor, the system is able to detet the

novelty of new pulses inreasing the performane of the entire system. In

partiular, the novelty detetor is able to justify many of the missed alarms

of the preditor as they are reognized as belonging to new regions of the

operational spae.

In [12℄ the mapping of the 7-dimensional plasma parameter spae of AS-

DEX Upgrade (AUG) has been performed using a 2-D self-organizing map,

whih reveals the map potentiality in data visualization. The proposed ap-

proah allowed the de�nition of simple displays apable of presenting mean-

ingful information on the atual state of the plasma, but it also suggested to

use the SOM as a disruption preditor by analyzing the trajetories desribed

over the map by the disharges under test. Various riteria have been studied
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to assoiate the risk of disruption of eah region of the map to a disruption

alarm threshold. The data for this study ame from AUG experiments exe-

uted between July 2002 and November 2009. The predition performane

of the proposed system has been evaluated on a test set of disharges (199

disrupted and 1070 non disrupted) di�erent from those used for the map

training, obtaining a very good predition suess rate lose to 90%.

A suessful experiene in JET is represented by the real-time Advaned

Preditor Of DISruptions (APODIS) [13℄. In its most reent on�guration it

onsists of a ombination of supervised lassi�ation systems, based on SVM

(Support Vetor Mahines) organized in two layers. The �rst layer ontains

a series of three di�erent SVM preditors, analyzing three onseutive time

windows (eah 32 ms long) of data to take into aount the history of the

disharge. The outputs of these three evaluations are used as inputs to the

seond layer lassi�er, whih takes the �nal deision whether or not to launh

an alarm. APODIS was trained/tested with 8169 disharges (7648 safe dis-

harges and 521 unintentional disruptions), working in open loop during the

ITER-like wall ampaigns of JET (2011-2012). This preditor ahieved a

suess rate of about 98% with a false alarm rate of 0.92%. with an average

warning time of 426 ms. Regarding the minimum time to perform mitigation

ations in JET, whih is 30 ms [14℄, the fration of disruptions orretly

deteted 30 ms in advane has been 87.50%.

Regarding the framework of disruption lassi�ation, a �rst attempt of

automati lassi�er based on NN has been proposed in [15℄. Suh a lassi�er,

based on pattern reognition tehniques, was trained to disriminate among

4 lasses of disruptions: mode lok, density limit/high radiated power, H-L

transition and ITB plasma disruptions. The onsidered methods referred to

lustering tehniques as Self-Organizing Maps and K-means, and lassi�a-

tion tehniques suh as Multi-Layer Pereptrons, Support Vetor Mahines,

and k-Nearest Neighbours. In partiular, to improve the robustness and the

reliability, a Multiple Classi�ers system onsisting of �ve MLPs was imple-

mented.

Reently, a new lustering method, based on the geodesi distane on

a probabilisti manifold, has been applied to the JET disruption database

for lassi�ation purposes [16℄. The proposed approah allows to take into

aount also the error bars of the measurements and, through the nearest

neighbor approah, was able to ahieve a suess rate of about 85% in the

identi�ation of the di�erent types of disruptions, with no type of disruption

lassi�ed with a suess rate lower than 70%.
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5.3 Statistial methods

Besides Neural Networks, other methods have been applied with remarkable

results in the predition and the lassi�ation of disruptions. In ASDEX, a

very interesting appliation related to the predition of ooling edge disrup-

tions is desribed in [17℄. The proposed method is based on disriminant

analysis, a model-based lustering that an be used to estimate probability

density funtions within a supervised learning framework. In this spei�

appliation a threshold has been set to disriminate between disruptive and

non disruptive pulses. The parameters whih appear in the equation, being

related to the auses of ooling edge disruptions, allow through their rela-

tions to �nd also some harateristi behaviors of the phenomenon, as for

example the inreasing of the internal indutane assoiated to a ontration

of the urrent pro�le. Suh a method allowed to detet 80% of ooling edge

disruptions 20 ms in advane.

The data driven tehniques desribed in [12℄ require a number of safe

and disrupted pulses to build the preditive model. However, for ITER only

a limited number of disruptions are aeptable to avoid irreversible damage

to strutures surrounding the plasma. A new view on disruption predition

has been proposed in [18℄ using Fault Detetion and Isolation tehnique,

whih is a well-tested industrial tehnique. The predition is based on the

analysis of the residuals of an auto regressive exogenous input model of the

system in Normal Operating Conditions . Hene, the disruption predition is

formalized as a fault detetion problem, where the non disrupted pulses are

assumed as the normal operation onditions and the disruptions are assumed

as status of fault. The main advantage with respet to the literature is the

fat that the model does not need disruptions to train the system but only

a limited number of safe pulses. The input for the model are the time se-

ries of the radiated fration of the total input power, the internal indutane

and the poloidal beta oming from ASDEX Upgrade data between 2002 and

2009. Results are promising but lower false alarm rates are needed.

Reently another very promising appliation has been developed for the

predition of disruptions based on diagnosti data in the high-ÿ spherial

torus NSTX [19℄, where an approah of ombining multiple threshold tests

has been developed on the base of the values of many signals. The starting

point has been that no single signal or alulation and assoiated threshold

value give rise to the basis for disruption predition in NSTX. The main di�-

ulty was related to the fat that the ombination of thresholds that produe

an aeptable false-positive rate have too large a missed or late-warning rate

and vieversa. Therefore, an algorithm for optimizing the tuning of the mul-

tiple threshold tests has been developed allowing to ahieve a false-positive
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rate of 2.8%, with a late + missed warning rate of 3.7%, and thus a total

failure rate of 6.5%. Suh a methods has been tested on a database of about

2000 disruptions, during the plasma urrent �at top, olleted from three run

ampaigns.

In JET, besides several NN appliations, also other approahes have been

beaten, as for example the fuzzy logi approah. The predition of the prob-

ability of disruption was based on 12 input signals and 36 logi based rules,

where both input and output signals were ategorized aording to a ertain

ranking among 3 or 5 available ones [20℄. This method has the additional

value to provide the possibility of transposing on the rules some basi physis

related to operational limits for example, even if the optimization of the ate-

gorization of the input variables is ahieved by training on a set of disruptive

and non-disruptive disharges, with all the drawbaks previously disussed

about the representativeness of the training set.

5.4 General omments and multi-mahine ap-

proah

One of the main ritial aspets of the appliation of these methods, NN-

based and not, is represented by the need itself to require a representative

training set in order to perform e�iently. Having available a representative

training set means basially to have had a ertain number of disruptions,

but in larger devies, espeially in the ase of ITER, they are anything but

desired events.

Another important point is represented by the tendeny to deteriorate as

more as we move away from the operative onditions in whih the training has

been performed. A possible solution ould be to develop a "ross-mahine"

preditor whih an be trained with data of ertain mahines allowing to

extrapolate to other mahines, independently on their size. In order to be

able to do this, �rst of all the input plasma parameters must be not only

well representative of the disruptive behaviour of the plasma, but in addition

they must be made dimensionless.

There are already parameters whih intrinsially satisfy these requirements,

as q95 and βN for example, and others that an be made dimensionless by

dividing for a quantity with the same dimension. For example the radiated

power an be divided by the input power to de�ne a radiated power fration

parameter. For this approah to be really appliable, there should be a rep-

resentative set of dimensionless plasma parameters de�ned in the same way

in all the mahine, and eventual saling fators have to be de�ned to be able
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to apply the systems in di�erent mahines. Furthermore, a �rst attempt to

realize a "ross-tokamak" preditor has been desribed in [21℄, where a NN

trained on a tokamak was used to predit the time to disruption of another

tokamak (JET and ASDEX Upgrade). The best performane was ahieved

with seven dimensionless parameters in input. The results of this study are

quite enouraging, even if, as it would be expeted, the system performed

signi�antly better when tested on the same mahine used for the training

too.

Again in this diretion, the work presented in [22℄ desribed the latest de-

velopments in data-analysis tools for disruption predition and exploration of

multi-mahine operational spaes. In this framework, manifold learning tools

already showed in several appliations their potentiality, allowing a very e�-

ient investigation of the operational spae where the relevant physis takes

plae, unlike most of the other approahes desribed in this hapter. There-

fore, even if the aforementioned drawbaks keep to be valid also for manifold

learning tehniques, they provide the possibility to strongly improve the un-

derstanding about the underlying physis and mehanisms at the base of

disruptions, and they an represent a fundamental resoure for extrapolation

studies in the framework of multi-mahine approah.
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Chapter 6

The database for JET

6.1 Introdution

A ruial issue for analysis, exploration and mapping of high operational

spaes is represented by the quality of the database in terms of reliability,

and representativeness. One of the main problem in the onstrution of a

database haraterized by high dimensionality and a large amount of obser-

vations, is how to "redue" oherently available data preserving statistial

signi�ane. Two separated databases have been built with disharges be-

longing to the Carbon Wall (CW) on�guration and to the new ITER-like

Wall (ILW) on�guration. The distintion is motivated basially by the need

to analyze what is hanged moving from a on�guration to the other one in

terms of the underlying physis and operational spae. This point will be

addressed in the following disussing also from a statistial point of view the

observed di�erenes.

For the Carbon Wall, data omes from plasma disharges seleted from

JET ampaigns C15 (2005) - C27 (2009), whereas ITER-like Wall (ILW)

database is based on the same set of signals belonging to the ampaigns C28

(2011) - C30 (2013). The aim, as it has been disussed in detail in the hapter

dediated to Manifold Learning, is to learn the possible manifold struture

embedded in the data, to reate some representations of the plasma parame-

ters on low-dimensional maps, whih are understandable and whih preserve

the essential properties owned by the original data. Therefore, proper rite-

ria have been used to selet suitable signals downloaded from JET databases

in order to obtain a data set of reliable observations. Moreover, a statistial

analysis has been performed to reognize the presene of outliers. Finally,

data redution, based on lustering methods, has been performed to selet

a limited and representative number of samples for the operational spae

83
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mapping.

6.2 JET CW database

The database is built taking into aount a set of signals reorded by sev-

eral diagnostis and available from JET experimental ampaigns. For the

seletion of the signals to be onsidered, an analysis based on physial on-

siderations and the availability in real time is arried out, also with referene

to the plasma parameters used from various authors for disruption predi-

tion both on JET [1℄ and [2℄. The seleted signals are representative of

the behavior of both the plasma "safe" on�gurations, i.e. when the pulses

are orretly terminated, and when a disruption ours. Thus, the database

ontains both safe and disruptive pulses seleted during the urrent �at-top,

whih are lassi�ed making referene mainly to the JET disruption database.

Disharges for whih the plasma urrent remained below 1MA were disarded

as for disruptive events these are usually insigni�ant at JET.

The parameters onsidered to build the database are available in real

time in the JET pulse �le (JPF) system or an be diretly alulated by

other signals available in real time exept the q95 signal. The set of on-

sidered signals is shown in table 6.1. Among all the pulses available from

JET ampaigns, only those belonging to the ampaigns from C15 to C27 are

taken into aount, beause, during the shutdown following the ampaign

C14, hanges were made to in-vessel omponents suh as divertor tiles. In

the aforementioned interval, 10366 pulses are seleted, inluding safe and dis-

ruptive shots. Only the non-intentional disruptions are taken into aount.

In the ampaigns C15-C27, 428 non-intentional disruptions are retained, for

whih all the 10 signals reported in table 6.1 are available. Note that the

JPF Signal Aronym Unit

Plasma urrent Ip A

Poloidal beta βp a.u.

Mode lok amplitude LM T

Safety fator at 95% of poloidal �ux q95 a.u.

Total input power Ptot W

Plasma internal indutane li a.u.

Plasma entroid vertial position Zcc m

Line-integrated plasma density nelid m−2

Stored diamagneti energy time derivative dWdia/dt W

Total radiated power Prad W

Table 6.1: Set of onsidered signals
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plasma urrent in JET referene frame is negative. In this ase we make

referene to its absolute values.

Aording to the literature [1℄, in order to synhronize the signals on the

same time base vetor, a sampling frequeny of 1kHz is hosen.

A statistial analysis is arried out in order to identify eventual anomalous

signals and a not negligible number is found to be unusable beause of the

exessive presene of outliers or a time evolution with no physial meaning,

probably due to a fault of the orresponding diagnosti during the aquisi-

tion. Suh a seletion has given rise to a �nal dataset of 243 non-intentional

disruptions among all those ones available in the onsidered ampaigns. In

fat the resulting database onsists of a subset of all the non intentional dis-

ruptions orresponding to spei� types, whose omposition will be disussed

in the hapter dediated to the automati lassi�ation. A distintion in dif-

ferent types for JET has been desribed in the survey in [3℄: it is based

on a manual lassi�ation, where spei� hain of events have been deteted

and used to lassify disruptions, grouping those that follow spei� paths.

A more detailed piture of disruption lassi�ation will be provided again in

the hapter related to the automati lassi�ation.

By analyzing the distributions of the signal values, a proper range of vari-

ation for eah signal is assumed to lean the data. These ranges are validated

with the help of JET physiists.

A time instant tpre−disr has been de�ned for the disrupted disharges,

whih disriminates between the non-disruptive and the disruptive phase.

In this disussion, tpre−disr is assumed equal for all the disharges, and it is

set equal to 210 ms following some suggestions reported in the literature [4℄.

The hoie of using a unique tpre−disr for all disruptive pulses is widely shared

in the literature and in di�erent mahines [1℄, [2℄, [5℄. The assessment of a

spei� tpre−disr for eah disruptive disharge represents one of the most rel-

evant issues in understanding the disruptive events. However,the relevane

of the topi and the problem omplexity led us to onsider it a main topi of

future work.

The dataset for eah disruptive pulse onsists of 210 points for eah of the

10 signals(one sample every 1ms), in the time interval [tD−210, tD]ms,where

tD is the time in whih the disruption takes plae. The main statistial pa-

rameters of the leaned data in the time interval [tD−210, tD]ms are reported

in table 6.2.

Then, on�dene limits at 1% and 99% are used for eah signal through

the quantile funtion.

The introdution of a on�dene level is widely employed as reported in

the literature [6℄. Regarding the utilization of on�dene level, it is very

important to point out that pratially all the thresholds for leaning the
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Signal Min Max Mean Median Std

Ip 7.00E+05 3.85E+06 1.86E+06 1.87E+06 4.08E+05

βp 3.03E-06 3.16E+00 3.17E-01 2.07E-01 3.41E-01

LM 1.00E-04 4.65E-03 5.58E-04 4.55E-04 3.97E-04

q95 2.02E+00 9.66E+00 4.01E+00 3.80E+00 1.06E+00

Ptot 1.46E+05 4.04E+07 5.76E+06 3.48E+06 5.77E+06

li 3.62E-01 2.60E+00 1.09E+00 1.12E+00 1.78E-01

Zcc 1.26E-03 1.17E+00 2.71E-01 2.76E-01 6.75E-02

nelid 4.02E+18 2.68E+21 1.02E+20 7.47E+19 1.73E+20

dWdia/dt -2.39E+07 1.19E+07 -1.09E+06 -7.45E+05 1.91E+06

Prad 1.01E+05 1.99E+08 4.83E+06 2.76E+06 8.75E+06

Table 6.2: CW non-intentional disruptions statistis ([tD - 210, tD℄ms).

data are hosen with onsistent margin with respet to the real limit values

of the signals. The �nal number of disruptive samples is 38900.

6.2.1 Safe disharges data-redution

In the onsidered interval of ampaigns (C15 − C27), all the 10 signals in-

luded in table 6.1 are available for the �at-top of 10366 safe disharges. The

pulses for whih the plasma urrent is less than 1MA are disarded obtaining

9000 safe disharges. Moreover, all the pulses for whih the signals to be used

are not onsistent, from a physial point of view or in relation to a suitable

range of values, are disarded. Being eah signal sampled at 1kHz, a huge

amount of data are available for desribing the safe operational spae.

A �rst shot seletion is performed taking into aount that several shots

are repeated with similar settings of the parameters. This analysis is based

on various statistial parameters (mean, median, minimum, maximum and

standard deviation of eah signal for all the pulses), and the resulting sele-

tion is widely validated by visual inspetion. Finally, 1467 safe disharges are

retained, whih results in more than 20M samples. Note that this number is

too large to be handled by the data visualization algorithms. Furthermore, it

is muh larger than the number of disrupted samples, for whih only the last

210 ms for eah disharge are onsidered. For this reason,data redution has

to be performed on the safe samples in order to obtain a balaned dataset.

First of all, as for disruptive shots, a data leaning is performed disarding

the outliers. Then, the k-means lustering tehnique [7℄ is employed as a

base for the development of the data redution algorithm.
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Data redution algorithm

The appliation of the k-means algorithm requires the normalization of data

in order to maximize the e�etiveness of the lustering. Here, the variables

are normalized between 0 and 1. For eah pulse, the samples are grouped in

a �xed number of lusters. Suh a number is hosen by optimizing the value

of a lustering validation index (the Dunn Index [8℄) for a limited number of

pulses. Here, 10 lusters are used; note that by inreasing suh a number, no

performane improvement is reahed while a greater omputational burden

ensues. Then, in eah luster,the samples are seleted in suh a way to under-

sample the spae ensuring to over the 10-D parameter spae.

Let h be the data redution rate, NC is the number of the safe samples

in the luster, and R is the luster radius. The luster is partitioned through

NC/h 10-D hyper spheres, with radius ri entered in the luster entroid,

where

ri = i
R

Nc/h
for i = 1, ..., Nc/h (6.1)

For eah hyper sphere, the sample losest to its surfae is retained. In this

ase, a redution rate h = 70 is set. In �gure 6.1, the result obtained by the

data redution algorithm for the shot No. 66389 is visualized through a PCA

projetion. Figures 1(a) and (b) show the two prinipal omponents of the

ten-dimensional samples before and after data redution, respetively.

Figure 6.1: Result of the data redution algorithm visualized through PCA (shot

No. 66389): satter plot of the �rst two PCs (a) of the dataset; (b) of the dataset

after data redution by k-means.

In addition to the visual investigation, for evaluating the goodness of the al-

gorithm, the distributions of the original and redued data sets are evaluated

showing that redued data statistially re�et the information of original

data, even if with a lower density with referene to the same range of the

onsidered variables. Figure 6.2 shows the distribution of starting data ad
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redued data for the q95.

Figure 6.2: Distribution of q95 before and after the data redution: the statistial
distribution is preserved.

The data redution algorithm allows one to redue the original database from

20M to about 0.3M samples. The main statistial parameters for the leaned

data of the seleted safe pulses are reported in table 6.3. Also here, on�-

dene limits at 1% and 99% are used for eah signal, leading to about 240000

samples.

6.3 JET ILW database

ITER-like Wall database is based on the same set of signals of table 6.1

belonging to the ampaigns C28 (2011) - C30 (2013). Presently, regarding

the safe disharges, the database is still under onstrution: in the onsidered

interval of ampaigns (C28−C30), after a initial seletion, mainly on the base

of the availability of all the 10 signals inluded in table 6.1, the resulting set of

safe disharges onsists of approximately 1200 disharges. All the proedures

for shot seletion and data redution have to be applied yet.

Regarding the disruptive disharges, the database onsists of 149 non

intentional disruptions from ILW ampaign (C28−C30), whose omposition

in terms of di�erent lasses is summarized in the table 6.5.

A more detailed disussion will be addressed in the hapter dediated to
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Signal Min Max Mean Median Std

Ip 8.16E+05 3.86E+06 2.03E+06 1.96E+06 3.12E+05

βp 6.47E-06 2.95E+00 3.10E-01 1.92E-01 2.70E-01

LM 1.00E-04 5.00E-03 2.16E-04 2.06E-04 9.18E-05

q95 2.33E+00 7.49E+00 3.89E+00 3.81E+00 6.86E-01

Ptot 1.00E+05 3.26E+07 4.33E+06 1.42E+06 5.30E+06

li 5.87E-01 2.40E+00 1.06E+00 1.11E+00 1.16E-01

Zcc 1.39E-01 4.71E-01 2.91E-01 3.00E-01 3.66E-02

nelid 4.01E+18 4.80E+20 6.71E+19 5.10E+19 4.35E+19

dWdia/dt -2.40E+07 2.52E+07 2.37E+04 2.36E+04 9.27E+05

Prad 1.00E+05 9.96E+07 2.47E+06 6.10E+05 6.39E+06

Table 6.3: CW safe disharge statistis.

Signal Min Max Mean Median Std

Ip 9.61E+05 3.42E+06 1.95E+06 1.92E+06 3.67E+05

βp 3.07E-08 1.22E+00 2.99E-01 2.31E-01 1.74E-01

LM 1.00E-04 4.28E-03 4.88E-04 4.21E-04 3.38E-04

q95 2.17E+00 5.89E+00 3.65E+00 3.58E+00 6.28E-01

Ptot 1.15E+05 2.80E+07 5.27E+06 4.26E+06 4.14E+06

li 3.79E-01 2.01E+00 1.08E+00 1.07E+00 1.98E-01

Zcc 1.21E-03 4.23E-01 2.52E-01 2.48E-01 4.60E-02

nelid 4.02E+18 1.13E+21 1.35E+20 1.23E+19 1.06E+20

dWdia/dt -1.76E+07 3.95E+06 -1.49E+06 -9.50E+05 1.88E+06

Prad 1.16E+05 1.16E+08 5.02E+06 3.67E+06 5.50E+06

Table 6.4: ILW non-intentional disruptions statistis ([tD - 210, tD℄ms).

ILW Disruptions

Labels Classes Tot %

ASD Auxiliary Power Shut-Down 2 1.34

GWL Greenwald Limit 0 0.00

IMC Impurity Control Problem 109 73.15

ITB Too Strong Internal Transport Barrier 0 0.00

LON Low Density and Low q 7 4.70

NC Density Contol Problem 22 14.77

NTM Neo-lassial Tearing Model 9 6.04

Table 6.5: Composition of the ILW Database in terms of di�erent lasses.
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the automati lassi�ation, nevertheless, as a general onsideration whih is

important to highlight, in the �rst ampaigns with the full metalli wall there

were no disruptions due to too strong ITB and disruptions due to Greenwald

limit.
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Chapter 7

Mapping of JET operational

spae

7.1 Introdution

In this hapter the high dimensional operational spae of JET with the Car-

bon Wall (CW) will be desribed and visualized using di�erent linear pro-

jetion methods suh as Grand Tour (GT) and Prinipal Component Analy-

sis (PCA), and mapped through non-linear manifold learning tehniques as

Self-Organizing Map (SOM) and Generative Topographi Map (GTM). The

potentiality of manifold learning methods will be disussed showing several

types of representations, also with referene to the data analysis and visual-

ization tools developed for GTM presented in hapter 5. As integration of

the analysis of the operational spaes there will be also a omparison with

lassial satter plots identifying operational limits and boundaries for the

onsidered database. All the algorithms have been desribed in the hapter

5.

Both SOM and GTM maps an be exploited to identify harateristi

regions of the plasma senario and for disriminating between regions with

high risk of disruption and those with low risk of disruption, quantify and

evaluate the e�etiveness of the mapping itself. Some measures have been

implemented to evaluate the performane of the proposed methodologies.

In partiular, the preision of the lustering over the entire dataset has been

alulated through the average quantization error for both the nonlinear map-

pings, as well as the trustworthiness of the projeted neighborhood and the

preservation of the resulting neighborhood.

Moreover, an outlier analysis has been performed on the available data in or-

der to ompare how the two mapping tehniques relate in terms of mapping

93
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of observations not representative of the onsidered datasets.

The results show quite learly that nonlinear manifold learning tehniques

are more suitable for mapping the JET high dimensional operational spae,

and what is really interesting is represented by the fat that the two non-

linear methods seem to onverge on a manifold with similar harateristis,

whih means that suh harateristis are strongly related to the intrinsi

properties hidden in the high dimensional data.

The �nal dataset (all the details about onstrution and statistial anal-

ysis are reported in the hapter 6) whih we will refer to onsists of:

• 222 �at-top disruptions (38900 samples)

• 1467 safe disharges (239965 samples)

7.2 Data visualization with linear projetion

methods

7.2.1 Projetion with Grand Tour

Grand Tour algorithm provides a multivariate visualization method generat-

ing a ontinuous sequene of 2-D or 3-D projetions of a high dimensional

data set. The animation is partiularly useful for disovering eventual stru-

tures hidden in high dimensional data, allowing to look at data from prati-

ally all possible points of view.

To investigate the 10-D JET CW data, a sequene of 2-D images has been

generated using Grand Tour algorithm. Figure 7.1 shows four 2-D satter

plots orresponding to di�erent iterations of the algorithm, i.e. to di�erent

viewpoints, where blue points orrespond to safe samples whereas red points

orrespond to disruptive samples. As an be noted, safe regions (blue) and

disrupted regions (red) an be identi�ed, even if overlaps are present.

7.2.2 Projetion and mapping with PCA

Prinipal Component Analysis is one of the most popular and mostly used

dimensionality redution methods. The tehnique performs an orthogonal

linear transformation of the omponents of the original input data in suh a

way that they are unorrelated one with eah other. The resulting prinipal

omponents are ordered and those ones whih explain most of the variane

of dataset are retained. For obvious onstraints of visualization, only the

�rst two (2-D visualization) or the �rst three (3-D visualization) prinipal

omponents an be used as new oordinate axes for providing a graphial
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Figure 7.1: Grand Tour projetions of 10-D training disruptive (red) and safe

(blue) samples at di�erent iterations.
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representation of the dataset.

The Dimensionality Redution Toolbox of Matlab, already mentioned in

hapter 5, has been used. The analysis by PCA of the 10-dimensional dataset

allowed among the other things to get an indiation of the atual dimension-

ality of the onsidered operational spae. Therefore,the variane retained by

eah prinipal omponent and the umulative variane retained by a progres-

sive number of omponents have been reported in Table 7.1.

JET operational spae PCA

Component Variane Cumulative variane (%)

1

◦
0.3625 36.25

2

◦
0.1699 53.24

3

◦
0.1350 66.74

4

◦
0.1007 76.81

5

◦
0.0727 84.08

6

◦
0.0473 88.81

7

◦
0.0424 93.05

8

◦
0.0348 96.53

9

◦
0.0196 98.49

10

◦
0.0150 100.00

Table 7.1: Variane retained by eah omponent for JET respetively and orre-

sponding umulative variane.

Figure 7.2 shows the projetion of the JET data onto the �rst two prinipal

omponents. Here too, blue points orrespond to safe samples whereas red

points orrespond to disruptive samples. On the left hand side of the �gure,

the safe points have been plotted before the disruptive ones, onversely, on

the right hand side, the disruptive points have been plotted before the safe

ones. As it an be noted, with this representation, two prinipal omponents

are not enough to learly separate the disruptive operational spae from the

safe one. The 10-D training samples have been also projeted on the �rst

three prinipal omponents, giving a 3-D visualization of the operational

spae of JET. Figure 7.3 reports the 3-D PCA projetion. The visualization

power of this map is higher than the previous one, even if the overlapping is

still present.

In order to ompare the disrimination apability of this projetion method

with the mapping obtained with SOM and GTM, whih will be disussed in

the following setions, a 2-D mapping has been realized on the base of the

PCA projetion with respet to the two �rst prinipal omponents.

The mapping is built on a regular grid of 4900 ells (omparable with re-

spet to the number used for SOM and GTM units) in the 2-D plane, where
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Figure 7.2: PCA projetion of the 10-D training samples on the 2-D PCA; safe

samples (blue), disruptive samples (red).

Figure 7.3: PCA projetion of the 10-D training samples on the 3-D PCA; safe

samples (blue), disruptive samples (red).
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eah ell is olored depending on its omposition: blue ells ontain only

safe samples; red ells ontain only disruptive samples; gray ells ontain

both safe and disruptive samples; white ells are empty (see Figure ??(a)).

As it an be noted, with this representation, two prinipal omponents are

not enough to learly separate the disruptive operational spae from the safe

one. In �gure 7.4(b), the omposition of the PCA representation in terms of

samples into the ells is reported. The olor ode is the same as used in the

previous 2-D and 3-D representations.

As an be seen, the blue (safe) ells ontain 22.14% of the total samples

and the red (disruptive) ells ontain 3.04% of the total samples. Hene,

74.81% of the samples belong to mixed ells, whih are the large majority of

the total samples. Note that PCA performs a linear transformation of the

input variables; in order to handle and disover nonlinear relationships be-

tween variables, nonlinear algorithms for dimensionality redution are more

e�etive.

Figure 7.4: (a) PCA projetion of the 10-D training samples on the 2-D PCA.

Safe ells (blue), disruptive ells (red), mixed ells (gray); (b) omposition of the

2-D PCA projetion in terms of samples into the ells: safe ells/samples (blue),

disruptive ells/samples (red), mixed ells/samples (gray).

7.3 Mapping with nonlinear methods

7.3.1 Mapping with SOM

In this setion, SOM algorithm has been applied to visualize and analyze

the struture of the 10-dimensional JET operational spae. As the range of

variation of the signals is very di�erent, even several orders of magnitude,

and sine the manifold learning algorithms make use of spae metris, sal-

ing of variables is mandatory. Hene, before projeting data, eah signal in
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the data base has been normalized between 0 and 1 by using the min-max

normalization.

Further knowledge an be added to the intrinsi knowledge ontained by the

10-D data assoiating a label to eah sample in the data set: a safe state

is assoiated to eah non disruptive sample, whereas a disruptive state is

assoiated to eah disruptive sample.

As previously ited, the SOM is a non-linear dimensionality redution

method that produes a low-dimensional map of data by preserving their

topology. The map onsists of omponents alled node or lusters. First

of all, the map dimension, i.e., the number of lusters in the SOM, has to

be properly seleted. This has been done optimizing some performane in-

dexes ommonly used in literature to evaluate how appropriate the lustering

performed by the SOM is [1℄. Moreover, limiting the number of lusters pre-

serves the generalization apability of the map. It is mandatory to hoose

the map dimension to maximize its apaity to disriminate among patterns

with di�erent features, keeping in the meanwhile a high generalization a-

pability. A good tradeo� between these requirements is ahieved with 4998

lusters.

The resulting map has 10 input neurons and 4998 neurons in the 2-D Ko-

honen layer. In this work, the SOM Toolbox 2.0 for Matlab [1℄ has been used

to train the SOM. The safe or disruptive label assoiated to eah sample an

be used to identify four main ategories of lusters in the SOM, depending

on their omposition: empty lusters, whih ontain no samples; disruptive

lusters, whih ontain disruptive samples; safe lusters, whih ontain safe

samples; mixed lusters, whih ontain both safe and disruptive samples.

The same olor ode used in the previous setion has been assoiated to eah

luster of the map: depending on its lass membership (see Figure 7.5): safe

lusters are blue; disruptive lusters are red, mixed lusters are grey, and

empty lusters are white. Eah olor, whih is representative of a partiular

luster omposition, orresponds to a di�erent disruption risk.

The 2-D SOM in �gure 7.5(a) learly highlights the presene of a large

safe region (blue) with an assoiated low risk of disruption, some disruptive

regions (red), with a high risk of disruption well separated from the safe re-

gion by transition and empty regions. Therefore, safe and disruptive states

of plasma seem quite well separated in the SOM.

The SOM omposition is reported in Figure 7.5(b) in terms of samples into

the lusters. As it an be seen, safe lusters ontain the 60.03% of the total

samples, the disruptive region ontains the 7.61% of the total samples and

the transition region ontains the remaining 32.36% of the samples. Note

that, the 69.76% of the safe samples falls in the safe region and the 54.55%

of the disruptive samples falls in the disruptive region. The remaining sam-
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Figure 7.5: (a) 2-D SOM of the 10-D JET operational spae: safe lusters (blue),

disruptive lusters (red), mixed lusters (grey), empty lusters (white); (b) Com-

position of the SOM in terms of samples into the lusters: safe lusters/samples

(blue), disruptive lusters/samples (red), mixed lusters/samples (grey), empty

lusters (white).
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ples identify the transition region that is mainly omposed by safe samples:

the 80.41% of samples in the mixed lusters are safe and the others are dis-

ruptive.

One of the auses of the presene of transition lusters is the hoie of

a unique value of tpre−disr for all the disharges. This hoie is due to the

lak of information on the length of the pre-disruptive phase for eah shot,

and an lead to inorretly label some samples of disruptive disharges or

to miss some information. Further e�ort an be devoted in order to redue

the transition region and better de�ne the boundary between safe and dis-

ruptive regions. Note that the oordinates of the prototypes are known in

the original multidimensional spae, allowing identifying the values of plasma

parameters along the boundaries between safe and disruption regions.

7.3.2 Mapping with GTM

The Generative Topographi Mapping algorithm is a probabilisti reformu-

lation of the SOM introdued in [2℄. Unlike the SOM, GTM has not been

developed in the ontext of neural networks but in a statisti framework.

As disussed in the dediated setion in hapter 5, GTM model addresses

some limitations of the SOM suh as the lak of a ost funtion, the lak of

a theoretial basis for parameters, and the lak of a proof of onvergene.

Furthermore, in SOM hard assignments are used instead of soft ones (prob-

abilities).

The parameters of the low-dimensional probability distribution and the smooth

map are learned from the training data using the expetation-

maximization (EM) algorithm [3℄.

The projetion of the JET data onto the 2-D GTM map has been ob-

tained using the Exploratory Data Analysis toolbox for MATLAB [4℄. Also

here, in order to ompare GTM with SOM mapping, a regular grid of 4900

ells (omparable with respet to the number of SOM units) has been on-

sidered in the GTM plane, and the same olor ode has been adopted: blue

ells ontain only safe samples; red ells ontain only disruptive samples;

grey ells ontain both safe and disruptive samples; white ells are empty

(see �gure 7.6(a)).

As in the SOM, the GTM presents a large safe region (blue), some dis-

ruptive regions (red), well separated from the safe region by transition and

empty regions. In �gure 7.6)(b) the omposition of the GTM in terms of

samples into the ells is reported.

The safe ells ontain 79.95% of the total samples and the disruptive ells

ontain 10.27% of the total samples. Only 9.77% of samples belong to mixed

ells. Note that, the 92.93% of the safe samples falls in the safe ells and the
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Figure 7.6: (a) GTM map of the 10 D JET operational spae: safe ells (blue),

disruptive ells (red), mixed ells (grey), empty ells (white); (b) Composition

of the GTM map in terms of samples into the ells: safe ells/samples (blue),

disruptive ells/samples (red), mixed ells/samples (grey).

73.62% of the disruptive samples falls in the disruptive ells. The remaining

samples identify the transition region that is mainly omposed by safe sam-

ples: the 62.35% of samples are safe and the others are disruptive. Then, the

apability of the GTM to disriminate between safe and disrupted samples

seems to be quite better than the SOM.

SOMs are widely used for data visualization and analysis, a lot of tools

are available to explore the maps properties, and the omputational omplex-

ity is limited also when managing huge amount of data, as in the problem

at hand. To train the SOM only few minutes are needed by a double 6-ore

omputer. To obtain the GTM map using the same data used for the SOM

mapping, more than 1 hour of omputation time was used by the same om-

puter, and the algorithm turned out to be partiularly demanding in terms

of required memory. Therefore, from a omputational point of view there are

without doubt stronger onstraints for GTM's model onstrution. Further-

more, there were no omparable tools available for data analysis, but part

of the work arried out in the framework of this thesis has been dediated

exatly to this purpose.

Regarding the omparison of the two onsidered topographi maps of the

JET 10-D operational spae, it is very interesting to observe how learly, by

shrinking the SOM along the vertial axis, the manifold identi�ed with the

two mapping tehniques look very similar (�gure 7.7). Of ourse, the di�er-

ent approah in the non-linear mapping gives rise to di�erenes, but to be
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able to reover so likewise the underlying struture of the data, represents a

good starting point that allows us to deal with the obtained mappings with

a ertain level of on�dene.

Figure 7.7: a) GTM of the 10-D JET operational spae: safe units (blue), dis-

ruptive units (red), mixed units (grey), empty units (white); b) Shrunk version of

the SOM in Figure 7.5(a)

7.4 Comparison with lassial satter plots

In literature, several e�orts have been done to de�ne a relationship between

disruption risk and operational ranges. The most ommon diagrams on-

erning the tokamak operational ranges are related to the low-q and density

limit (Hugill diagram), and to the β-limit, whose theory has already been

disussed in the hapter 4.

The Hugill diagram shows the operational ranges with respet to the

low-q limit and the density limit. The boundary of operation as limited by

disruptions is plotted against the inverse edge safety fator 1/qa and the Mu-

rakami parameter neR/Bt , where ne is the line averaged plasma density (in

m−3
). Disruptions generally restrits operation to a region qa > 2 and to

eletron density suh that (neR/Bt)qa is below a ritial value in the range

10÷ 20 · 1019m−2T−1
or higher when additional heating is applied. At JET,

a ritial value of 40 · 1019m−2T−1
, independent of the power, has been em-

pirially found as shown in [5℄.

Figure 7.8(a) shows the Hugill diagram for the safe samples, whereas �g-

ure 7.8(b) shows the same Hugill diagram for the disruptive samples. Note

that, the points in the diagram orrespond to the safe and disruptive sam-

ples in the original spae. Darker olors orrespond to regions with high data
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Figure 7.8: Hugill Diagram showing the operating regime for: (a) safe disharges;

(b) last 210 ms of disruptive disharges.

onentration, as quanti�ed in logarithmi sale by the olor bar. An o�-line

signal for the line averaged density is available, even if for a limited number

of the disharges onsidered in our data base. All the safe data lies in the

region where q95 > 2. Few disruptive samples exeed the Greenwald limit,

as shown in literature [6℄. As it an be noted from the Hugill diagrams,

several plasma on�gurations, leading to disruptions in less than 210 ms, are

positioned in the same region of the safe disharges, on�rming that a sat-

ter plot of two parameters at a time is not suitable to distinguish between

regions with high risk of disruption, and those with low risk of disruption.

Another operational boundary is the β-limit. Usually, tokamaks operate

under the levels of βN = βt(aBt/Ip) = 4li where βN is the normalized βN and

βt is the toroidal β. Figure 7.9 (a) and (b) report data for the safe samples

and for the disrupted samples respetively, in the plane βt% versus liIp/aBt;

here too, darker olors orrespond to regions with high data onentration,

as quanti�ed in logarithmi sale by the olor bar.

The β limit is given by the blak line. As it an be noted, few samples are

over the limit on these graphs. This is mainly beause no real high β disrup-

tions seem to have happened during the onsidered period, as shown in [5℄.

Moreover, the operational spae is more omplex, hene, it is not possible to

distinguish safe and disruptive on�gurations looking at their position in the

diagram, as highlighted also in [7℄.

The Hugill and the β-limit diagrams for safe and disruptive samples learly

show that it is not possible to distinguish safe and disruptive regions look-
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Figure 7.9: Satter plot of the toroidal βt% versus liIp/aBt: (a) safe disharges;

(b) last 210 ms of disruptive disharges.

ing at their position in the diagrams, hene using only two parameters at a

time. On the ontrary, SOM and GTM maps, whose mapping projet the

information of a 10-D parameter spae, are able to perform a better sep-

aration. These results point out the e�etive visualization apabilities of

nonlinear data redution methods for extrating valuable information from

a large amount of high-dimensional data.

7.5 Analysis of JET operational spae

7.5.1 Self Organizing Map analysis

Component plane

The Component Plane is one of the tools available to analyze the SOM re-

sults [8℄. It allows a global view of the database and supports the user

in deteting if there is any relation among variables through the analysis of

similar patterns.

The Component Plane representation expresses the relative omponent dis-

tributions of the input data on the 2-D map. The dependenies among

di�erent variables an be identi�ed by omparing the orresponding ompo-

nent planes: similar patterns (the olors orresponding to the values of the

variables) in idential loations on the omponent planes are onsistent with
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orrelated omponents.

In �gure 7.10 the omponent planes for Ip, q95, li, LM and dWdia/dt are
shown, together with the SOM. Note that, by piking the same luster in

eah plane (in the same loation), we ould assemble the relative values of

the plasma parameters of the luster prototypes.

In �gure 7.10 the disruptive regions have been marked with boxes A, B,

and C. Figure 7.11 reports the probability density funtions of the values of

the prototypes of the lusters in the disrupted regions (region A: dotted line;

region B: dashed line; region C: dash-dot line) and in the safe region (solid

line) for the �ve variables onsidered in �gure 7.10. From these funtions an

exat quanti�ation of the range of the plasma parameters in the di�erent

regions of the map an be done. The analysis of �gures 7.10 and 7.11 on-

�rms well known operational limits. For example, a parameter whih is very

often linked with the upoming disruption is the loked mode. Suh aspet is

underlined very well by the SOM. In fat, as we should expet, the disruptive

regions marked with boxes A and B in �gure 7.10 are haraterized by high

values of the loked mode signal.

Besides the onsiderations about the operational boundaries, what we

an observe in the omponents plane is the presene of ommon patterns or

regions where we have a orrespondene among the distributions of di�erent

signals. For example, the disrupted region marked with the box A in �gure

7.10 is haraterized by high values of loked mode and internal indutane,

low values of plasma urrent and negative values of the time derivative of

the diamagneti energy. The disruptive region marked with the box B has

similar orrespondenes.

Moreover, it is well known that plasma urrent and safety fator are

strongly orrelated. This is on�rmed by the probability density funtions of

the high disruption risk regions A, B, and C. Moreover, the disruption risk

region C orresponds to a di�erent operational on�guration with respet

to A and B. The �rst has high values of Ip and, as expeted, low values of

q95, the last ones the opposite. However, although q95 and Ip are inversely

proportional, the orrelation between the two variables is not straightforward

and they supply omplementary information. For example, q95 allows one to
disriminate regions A and B, whereas Ip does not (see �gure 7.11). Thus

we have a very omplex behavior whih annot be redued to simple orre-

spondenes or dependenies between two variables. The same information

ontained in �gure 7.11 is reported also in table 7.2.
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Figure 7.10: SOM and Component plane for Ip, q95, li, LM , and dWdia/dt.
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Figure 7.11: Probability density funtions of the values of the prototypes of

the lusters in the disrupted regions (region A: dotted line; region B: dashed line;

region C: dash-dot line) and in the safe region (solid line) for Ip, q95, li, LM , and

dWdia/dt.
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Region

Signal Safe A B C

Ip(MA) (1.9 to 2) <2 <1.85 (1.9 to 2.3)

LM(10−4
T) <3 >3 (3 to 6) (2.1 to 3.8)

q95 - (4.1 to 4.6) (4.5 to 6) <3.3

li - (1.17 to 1.25) (0.95 to 1.2) (0.95 to 1.1)

dWdia/dt <2 (-8 to -1) < -2 (6.5 to 0)

Table 7.2: Range of plasma parameters in safe and disruptive regions.

D-matrix

The omponent planes of the remaining variables Prad, Ptot, nelid, βp, and
Zcc are reported in �gure 7.12, together with the D-matrix, is another type

of representation available for the SOM toolbox, whih visualizes the median

distane between a luster and adjaent ones.

Thus, the D-matrix allows one to display the similarity of data elements

into one luster with respet to the data into nearest ones. With this repre-

sentation, it is possible to detet if there are maro-lusters of data and to

judge if eventually they are well separated or not.

In �gure 7.12, the D-Matrix orresponding to the SOM in �gure 7.5 is shown.

In the same �gure 7.12, the omponent planes of Prad, Ptot, nelid, βp, and Zcc

are reported. Light areas in the D-matrix, where the distanes between

lusters are minimal, an be thought as maro-lusters and dark areas as

separators. The high disruption risk regions in the top-right orner (box A)

and in the right side (box B) of the SOM in �gure 7.5 are well identi�ed in

the same loation in �gure 7.12. Other separated regions (marked with the

boxes in �gure 7.12) an be identi�ed in the bottom of the D-Matrix display,

whih do not orrespond to further high disruption risk regions. Neverthe-

less, the omponent planes of Prad, Ptot, nelid, βp, learly show that these

regions orrespond to modi�ations in the operational parameters of the ma-

hine.

Moreover, the analysis of the SOM arried out through Component Planes

and D-matrix highlights that only the variable Zcc does not give any visually

evident information in the perspetive of de�ning the boundaries between

disruptive and safe regions or distinguishing among di�erent disruptive re-

gions. Note that, Zcc is ruial in prediting Vertial Displaement disrup-

tions (VDDs), as demonstrated in [9℄. Anyway, VDDs have not been on-

sidered beause there is no a partiular interest for them in the framework

of disruption predition and lassi�ation sine their predition an be done
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Figure 7.12: D-Matrix and Component Plane for Prad, Ptot, nelid, βp, and Zcc.
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quite easily on the base of a threshold on ZCC , as shown in [9℄.

Disharge traking

The potentiality of the available toolbox for the SOM suggests the possibility

to trak the temporal sequene of the samples on the map, depiting the

movement of the operating point during a disharge. Following the trajetory

in the SOM, it will be possible to eventually reognize the proximity to an

operational region where the risk of an imminent disruption is high. In �gure

7.13, the trajetories of a safe disharge (No. 78000) and of a disruptive

disharge (No. 73851) are reported. As an be noted, the disruptive disharge

(magenta trajetory) starts in a safe (blue) luster, rosses mixed lusters,

and arrives in a disruptive (red) luster. The safe disharge (yan trajetory)

starts in a safe luster, and evolves with the time moving into the safe region.

Figure 7.13: Traks of the disruptive pulse No. 73851 (magenta) and of the safe

pulse No. 78000 (yan) on the 2-D SOM.
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7.5.2 Generative Topographi Mapping analysis

Component plane

Besides the map representation, other tools analogous to those ones available

for SOMs have been developed for GTM model. Among these tools, similarly

to the SOMs' ase, it turned out to be very interesting the analysis with the

omponent planes. In �gure 7.14, the omponent planes for Ip, q95, li, LM ,

and dWdia/dt are shown, together with the GTM's map. Some disrupted

regions have been marked with boxes labeled from A to C.

Note that, even if the numbers of points in the latent spaes are about the

same, GTM and SOM are based on a di�erent non-linear relationship be-

tween the latent spae and the data spae. Although in both ases, points

lose to eah other in the input spae are mapped on the same or neighboring

points in the latent spae, the algorithms applied to de�ne the mappings are

di�erent. Therefore, no diret orrespondene was expeted among the dis-

ruptive areas detetable on the GTM and the ones detetable on the SOM.

The analysis of the Component Planes for the GTM leads to onsider-

ations similar to those done for the SOM, even if the situation in this ase

is more omplex. All the three disruptive regions highlighted in �gure 7.14

orrespond to high values of LM and negative values of dWdia/dt; moreover,

the region B is learly haraterized by low values of Ip, but high values of

q95 and li.

Disharge traking

Similarly to SOMs, also for GTMs a funtion to trak the temporal sequene

of the samples on the map has been developed. In �gures 7.15 and 7.16, the

trajetories of the same disharges projeted on the SOM in �gure 7.13 (No.

73851 and No. 78000) are reported.

Also in this ase, the disruptive disharge starts in a safe (blue) luster,

rossing mixed lusters, and ends up in a disruptive (red) luster. The safe

disharge instead starts in a safe luster, and evolves with the time moving

within the safe region. Therefore, the onsiderations are basially the same

of the traking performed onto the SOM map. Furthermore, it is interesting

to observe that orresponding disharges evolve approximately on the same

regions in the operational spae, and this reinfores the onsiderations about

the similarity of the manifold identi�ed by the two methods.

Finally, it is worth emphasizing that, ompared to other disruption pre-

dition approahes suh as those in [10℄ and [11℄, the SOM and the GTM

maps provide signi�ant additional value. Whereas the tools in the referene

paper are blak boxes, whih provide a predition but are very di�ult to
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Figure 7.14: GTM and Component plane for Ip, q95, li, LM , and dWdia/dt.
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Figure 7.15: Trak of the disruptive pulse No. 73851 (green) from the start of

the �at-top phase (yellow dot) to the time of disruption (pink dot).

Figure 7.16: Trak of the disruptive pulse No. 73851 (green) from the start

(yellow dot) to the end (pink dot) of the �at-top phase.
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interpret, on the ontrary, the maps allow to follow the trajetory of the

plasma and to study its behavior leading to a disruption. So the developed

maps have the potential to provide muh more than a simple predition in

the understanding of the operational spae and the auses of the disruptions.

7.6 Mapping performane analysis

7.6.1 Introdution

In order to ompare the mappings obtained with SOM and GTM, some mea-

sures an be used to evaluate the performane of eah methodology. Spe-

ial emphasis is put on the position of outliers and extreme points in the

maps, and on quantization and topologial errors. In partiular, some novel

measures suh as Quantization Error measure, Trustworthiness measure, and

Topology Preservation measure will be de�ned to provide an objetive means

by whih the mappings an be ompared. Until now, it does not appear that

these methodologies have been ompared in a setting in whih the underly-

ing struture of the data may not be known a-priori. Moreover, an outlier

analysis has been performed on the available data in order to quantify the

goodness of the projetion. In fat, in order to preserve the shape of the data

loud, the outliers in the original spae should be projeted on the margin of

the map.

7.6.2 Outliers' analysis

An outlier is an observation that numerially deviates abnormally from other

values of the rest of the population it belongs to. For haraterizing abnor-

mal observations there exist di�erent tehniques, and, among the graphial

ones, satter plots and box plots are widely employed, revealing outliers' lo-

ation and distane with respet to the other points of the population. In

the following, the outlier analysis has been used to evaluate the goodness of

the mapping. In fat, the topologial shape of the data loud in the original

spae is preserved during the mapping if extreme points of the data loud

are mapped to extreme units, loated at the borders of the map.

The Mahalanobis distane is a measure of statistial distane in a mul-

tidimensional spae. The points with the greatest Mahalanobis distane are

onsidered outliers. Figure 7.17 reports the Mahalanobis distane for eah

point of the dataset with respet to the mean value of the same JET dataset.

As it an be seen, the Mahalanobis distanes of the safe and disruptive sam-

ples are quite di�erent for the two maro-sets.
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Figure 7.17: Mahalanobis distane of the safe (blue) and disruptive samples (red)

with respet to the mean value of the entire JET dataset.

This is on�rmed by using the box plot representation (see Figure 7.18)

of the Mahalanobis distanes [12℄. On eah box, the entral mark is the

median value, the edges of the box are the 25th (lower quartile) and 75th

perentiles (upper quartile), the whiskers extend to the most extreme data

points not onsidered outliers, whereas outliers are plotted individually. If

the lower quartile is Q1 and the upper quartile is Q3, then the di�erene

(Q3 − Q1) is alled the interquartile range or IQR. A data point is usually

marked as outlier if it is beyond the following quantity alled inner fene:

• Upper/lower inner fene: Q3 ± 1.5 · IQR

Another more severe ondition for identifying outliers takes into onsideration

a larger threshold on the previous de�nition that is the outer fene:

• Upper/lower outer fene: Q3 ± 3 · IQR

A point beyond an outer fene is onsidered an extreme outlier.

In Figure 7.18, both for safe and disruptive samples, outliers (marked in red)

with respet to inner fenes are identi�ed, and, as it an be seen, they are

all above the upper one.

In the maps in Figure 7.19, the green map units ontain samples with Ma-

halanobis distane greater than the upper outer fene. It an be noted that

both in the GTM and the SOM, part of the identi�ed outliers are mapped

in the borders of the map, whereas the other part is mostly assoiated with
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Figure 7.18: Box plot of the Mahalanobis distane for safe samples (on the left)

and disruptive samples (on the right) of JET CW dataset with outliers marked

with respet to the upper outer fene.

disruptive map units, well separated by transition and empty regions from

the safe ones. Moreover, outliers' loation in the learned manifolds is simi-

lar for the GTM and the SOM. The di�erene is emphasized beause of the

di�erent geometri shape fator of the two maps.

7.6.3 Performane indexes

The Average quantization error Eq is a ommon measure used to alulate

the preision of the SOM lustering over the entire dataset [13℄:

Eq =
1

N

K
∑

j=1

Nj
∑

p=1

||tp − bj|| (7.1)

This error evaluates the �tting of the map to the data and it is determined

by averaging the distane of eah data vetor tp from the baryenter bj of

the Nj data assoiated to the map unit j to whom tp is assoiated. Thus,

the optimal map is expeted to yield the smallest average quantization error.

Partitions with a good resolution are haraterized by low values of Eq.
Literature reports several error indexes to ontrol the onservation of

topology, (see [14℄ and the referenes therein). Topology preservation has,

however, turned out to be quite di�ult to be de�ned for a disrete grid.

Here, the "Trustworthiness" of the projeted neighborhood and the "Preser-

vation" of the resulting neighborhood have been taken into aount. Trust-
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Figure 7.19: Data points with Mahalanobis distane greater than the upper outer

fene (green map units) in the GTM (a) and SOM (b)
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worthiness measures if data points mapped losed by on the maps are lose

by in the input spae as well [14℄. For eah data point in the latent spae,

the set of Nj points belonging to the same map unit onstitutes the onsid-

ered neighborhood. The Trustworthiness of the neighborhood is quanti�ed

by measuring how far the data points belonging to the neighborhood in the

latent spae are from their baryenter in the original spae. The distanes

are measured as rank orders. A measure of the error on the trustworthiness

an be expressed as

Et1 =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈UNj

[rank(ti,bj)−Nj ] (7.2)

where K∗
is the number of no-empty map units, Nj is the neighborhood

size, i.e., the number of samples assoiated with the jth map unit, bj is the

baryenter of the Nj vetors in map unit j, UNj is the set of the ti vetors

assoiated with the map unit j whih are not in the Nj losest to bj in the

original spae, rank(ti,bj) is the position of vetor ti within the sorted list

of inreasing Eulidean distanes from bj.

A seond type of measure analyzes if the original neighborhood is pre-

served when data are projeted. In partiular, in the latent spae, for the

GTM all the points belonging to a ertain map unit j will be haraterized
by the orresponding mode of the posterior probability modej , whereas in

the ase of the SOM they will be haraterized by the orresponding proto-

type vetor xj. For the GTM the error on the preservation of the original

neighborhood an be expressed as

Et2(GTM) =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈VNj

[rank(mode(ti), modej)−Nj ] (7.3)

where VNj is the set of the xi vetors among the Nj losest to modej in

the original spae whih are not assoiated with the map unit j, whereas
rank(mode(ti, modej)) is the position of mode(ti) within the sorted list of

inreasing Eulidean distanes from modej. For Self Organizing Maps the

orresponding error is

Et2(SOM) =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈VNj

[rank(x(ti),xj)−Nj] (7.4)

where x(ti) is the prototype vetor assoiated with ti. Note that all the
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points assoiated with the same map unit have the same rank.

The quantization errors and the errors on the trustworthiness of the pro-

jeted data and on the preservation of the original neighborhood are reported

in Table 7.3. GTM presents a lower quantization error, i.e., a better �tting

of the map to data with respet to SOM. In this ase, the map units better

represent the data set. GTM is haraterized by a more reliable visualiza-

tion of the proximities, being the Trustworthiness error one-order lower than

SOM. On the ontrary, SOM has better performane on the preservation of

the original neighborhood. This is not surprising beause eah dimension-

ality redution method neessarily ahieves a ompromise between the last

two kinds of errors.

Quality Index GTM SOM

Eq 0.063 0.155

Et1 0.0011 0.0121

Et2 0.0082 0.0016

Table 7.3: Quantization and topologial errors for GTM and SOM.
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Chapter 8

Automati Disruption

Classi�ation for real-time

appliations on JET

8.1 Introdution

In the previous hapters, it has been highlighted from several points of view

how muh omplex the understanding of disruption physis is. The devel-

opment of a physial model to reliably reognize and predit the ourrene

of this hazardous plasma behaviour is presently beyond reah, due to sev-

eral reasons, as in partiular the amount of available signals in experiments

and the nonlinear relationship between various instabilities. Therefore, in

the last deade, various mahine learning tehniques, mainly arti�ial neu-

ral networks and support vetor mahines (SVMs), have been used as an

alternative approah to disruption predition [1℄- [4℄. The progress has been

quite remarkable and reently a new preditor, alled APODIS [4℄, has been

very suessfully deployed in JET real time network. Notwithstanding the

onsiderable suess rate, preditors suh as APODIS an foresee the our-

rene of a disruption but are not designed to identify its type.

On the other hand, to optimize the e�etiveness of mitigation systems, it

is important to predit the type of disruptive event about to our. Indeed

the best strategy to handle a disruptive plasma evolution triggered by an

ITB (Internal Transport Barrier), for example, is not neessarily the same

as the one to mitigate a radiative ollapse. Reliable predition of the disrup-

tion type would allow the ontrol and the mitigation systems to optimize the

strategy to land the plasma safely and redue to a minimum the probability

of damage to the devie.

123
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In [5℄ a survey of the disruption auses has been arried out over the last

deade of JET operations. Eah disruption has been manually analyzed and

assoiated to a partiular disruption lass. In partiular, spei� hains of

events have been deteted and used to lassify disruptions, grouping those

that follow spei� paths. For JET unintentional disruptions, various har-

ateristi sequenes of events have been identi�ed. Among them, a number

of lear paths ould be identi�ed that an be assoiated with a spei� dis-

ruption lass, e.g., those due to a too strong internal transport barrier and a

too fast urrent rise, as it an be seen in Figure 8.1.

Figure 8.1: Shemati overview showing the statistis of the hain of events for

non-intentional disruptions with the CW from 2000 to 2010 [5℄.

It should be noted, however, that the omplexity of the disruption proess

makes this manual lassi�ation very di�ult, time onsuming and some-

times ambiguous. A few disruptions were not able to be lassi�ed at all [5℄.

Furthermore there are ases where multiple destabilizing fators ated at the

same time, therefore the determination of the sequene of events between the

root ause and the �nal disruption proess turned out to be not so straight-

forward. Nevertheless, this basi work is essential to develop an automated

lassi�ation able to help identifying a strategy for disruption avoidane or

mitigation.
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A �rst attempt to automatially lassify disruptions at JET was proposed

in [9℄ using pattern reognition tehniques. Disruptions for training were

manually lassi�ed by the authors, in ollaboration with physiists at JET,

in four lasses: mode lok, density limit/high radiated power, H-mode/L-

mode transition, and internal transport barrier plasma disruptions. In this

hapter, an approah to automati disruptions lassi�ation based on the

nonlinear manifold learning methods desribed in the previous hapters, will

be desribed, with a detailed disussion about the results.

The proposed approah for the disrimination of disruption types on-

sists of identifying harateristi regions in the operational spae where the

plasma undergoes a disruption. To this purpose, given the results in the

mapping of JET 10-dimensional spae, SOM and GTM potentialities have

been extensively investigated and an algorithm for automati lassi�ation

has been developed for both the methods.

Also in this ase, the already desribed database of 243 non-intentional

disruptions ourred in the JET CW ampaigns from C15 to C27 (pulse

range 63718-79853) have been onsidered. Eah disruption is projeted on

the maps desribed in the previous hapter, and the probabilities of belonging

to the di�erent disruption lasses are monitored during the time evolution,

returning the lass whih the disrupted pulse more likely belongs to.

8.2 Automati lassi�ation with the Carbon

Wall

8.2.1 The database of disruption types

For many of the disruptive shots available on JET database, in addition

to the time of the disruption, also disruption lasses, whih are assoiated

to typial hain-of-events, were identi�ed [5℄. In partiular, 243 disruptive

disharges belonging to ampaigns performed at JET from C15 (year 2005)

and up to C27 (year 2009), in the range between shot number 63718 and

79853, have been onsidered. Table 8.1 reports the seven disruption types

identi�ed in the database, and their aronyms, reported in [5℄. Moreover,

in the same table, the number of shots in eah lass, and the perentage

of ourrene in the database, are reported. This established lassi�ation

is based on the marosopi symptoms exhibited by the disharges prior to

the disruption and allows omparing the results of the proposed automated

lustering with the expert lassi�ation.

The plasma quantities used to automatially lassify these disharges are

the same ones already desribed in hapter 7 and also used for the mapping
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CW Disruptions

Labels Classes Tot Tot %

ASD Auxiliary Power Shut-Down 50 20.58

GWL Greenwald Limit 9 3.70

IMC Impurity Control Problem 83 34.16

ITB Too Strong Internal Transport Barrier 10 4.12

LON Low Density and Low q 12 4.94

NC Density Contol Problem 58 23.87

NTM Neo-lassial Tearing Model 21 8.64

TOT 243 100

Table 8.1: Composition of the CW Database in terms of di�erent lasses.

of JET operational spae. The hoie of these quantities is basially due

to their relation to plasma stability and their availability in real-time. The

set of quantities has already been used in literature for disruption predition

purposes [1℄.

Note that, although large outliers have been removed, the seleted signals

ould still ontain erroneous data. Thus, the system performane whih are

going to be presented in the following setions takes also into aount the

eventual fails of the diagnostis.

8.2.2 Analysis of the disrupted regions

The temporal sequene of the samples in a disharge an be projeted on

the map, depiting the movement of the operating point during a disharge.

Following the trajetory in the map, it will be possible to eventually reog-

nize the proximity to an operational region where the risk of an imminent

disruption is high.

E�etive real time strategies have been developed to use the JET mapping

for lassi�ation purposes. An analysis has been made to �nd whether the

di�erent disruption lasses lie in on�ned regions of the map, i.e., whether the

di�erent disrupted regions of the map are assoiated to partiular disruption

lasses. To this purpose, making referene to the manual disruption lassi-

�ation as reported in [5℄, a label (orresponding to the disruption types

reported in Table 8.1) has been assoiated to eah sample of a disruption.

Monitoring the evolution of eah disruptive disharge on the maps, it

has been found that many of them evolve within the same region. However,

some regions an ontain samples belonging to di�erent disruption lasses,

as an be seen in �gures 6 a-b, where the Auxiliary power shut-down (ASD)

and Density ontrol problem (NC) lasses are represented. In partiular, the
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lusters in the SOM and in the GTM maps, whih ontain samples of ASDs

8.2(a) and NCs 8.2(b), are marked with di�erent shades of bright red and

green, in suh a way to identify at the same time the lass of disruption and

the perentage of samples of the onsidered lass with respet to the total

number of disruptive samples. ASDs and NCs are two among the most nu-

merous lasses of disruption in the onsidered database. Qualitatively, it an

be seen that the two lasses mainly oupy di�erent areas in the maps.

The other lass with a high frequeny of ourrene, both in the onsidered

database and in the totality of non-intentional disruptions on JET, is the Im-

purity ontrol problem (IMC). These last three lasses are quite widespread

all over the disruptive regions in the operational spae, even if we an �nd

regions where a spei� lass results to be predominant with respet to the

others (see �gure 8.2). This an be seen also making referene to �gures

8.3-8.4 where the SOM and GTM maps are visualized using the so-alled

"pie planes". In suh visualization, eah node is represented by a pie hart

desribing the perentage omposition in terms of number of samples belong-

ing to safe and disruptive shots. The samples belonging to safe disharges

are represented in blue, while the ones belonging to disruptive disharges are

diversi�ed aording to the olor ode reported on the legend in the same

�gures, with referene to the di�erent lasses of disruptions. From this �gure,

it an be seen for example that the nodes in the regions marked with boxes

relate to samples mainly oming from IMC and NC disrupted disharges.

This very heterogeneous piture ould be partially due to the unertainty of

the manual lassi�ation or, more likely, to the omplexity of the hain-of-

events that the disruptions follow during their temporal evolution.

For example, the well-known mehanism leading to an edge ooling dis-

ruption ould take plae beause of di�erent reasons, suh as a too high edge

density or a high impurity density at the edge. In the ase of density on-

trol problem (NC) and impurity ontrol problem (IMC) disruptions, the two

proesses ould be quite distint even if both haraterized by a high level

of radiation. In partiular, for a density limit disruption, radiation an be

poloidally asymmetri and the instability is often linked to the stability of

the divertor detahment and to the formation of MARFEs. Instead, in the

ase of radiative ollapse by impurities, the radiation ollapse is poloidally

symmetri, shrinking the plasma olumn and inreasing the plasma indu-

tane [13℄, [14℄.

The previous onsiderations are on�rmed by looking again at �gure 8.4,

whih reports also the Component Planes of the internal indutane and the

loked mode. The Component Plane representation, as desribed in the pre-

vious hapter, expresses the relative omponent distribution of the input data

on the 2-D map. For eah signal, the Component Plane assoiates eah node
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Figure 8.2: SOM (left) and GTM (right) maps oloured depending on disruption

lass: (a) lusters marked by shades of red ontain ASD samples; (b) lusters

marked by shades of green ontain NC samples.



Automati lassi�ation with the Carbon Wall 129

Figure 8.3: On the top: SOM map (left side) using a pie hart representation.

Zoom of the regions in the boxes (right side). - On the bottom: GTM omponent

planes of the internal indutane (left side) and the loked mode (right side).
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Figure 8.4: On the top: GTM map (left side) using a pie hart representation.

Zoom of the regions in the boxes (right side). - On the bottom: GTM omponent

planes of the internal indutane (left side) and the loked mode (right side).
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with the mean value of the orresponding signal for all the samples belong-

ing to suh node. From these �gures, it an be seen that the regions marked

with boxes are mainly haraterized by density ontrol problem (NC) and

impurity ontrol problem (IMC) disruptions, and show high values of internal

indutane and loked mode. The presene of both lasses in the desribed

region ould be due to the onnetion with high radiation, even if the pro-

esses that lead to disruption are di�erent. In this ase, the signals ontained

in the database do not seem to allow a further distintion of the two lasses.

Unlike the previously analyzed lasses, disruptions due to a too strong in-

ternal transport barriers (ITB), oupy a on�ned region in the right bottom

orner in GTM map (see Figures 8.6 and 8.5). Disruptions due to too strong

internal transport barriers (ITB) onstitute an important lass of disruptions

to whih one of the shortest duration of the hain-of-events is assoiated. Be-

ing fast, they result to be partiularly di�ult to detet and typially exhibit

the highest energies and heat loads. As it has been shown in [5℄, disruptions

due to too strong internal transport barriers are haraterized by the highest

ratio between the plasma energy at the time of the disruption and the max-

imum energy during the last one seond of plasma.

Plasmas haraterized by internal transport barriers exhibit radially lo-

alized regions of improved on�nement with steep pressure gradients in the

plasma ore, whih in turn ould drive instabilities that lead to a disrup-

tion. In relation to the ahievement of ontinuous operation, it is well known

that a large fration of bootstrap urrent is neessary, and that disharges

exhibiting the formation of ITBs are favourable to this aim. Experimentally,

the presene of suh a urrent fration is usually assoiated with high βp
disharges with a weakly positive or negative magneti shear in the entral

region of the plasma olumn. High values of q are probably due to the fat

that advaned senarios are typially run at q=5 and 6.

In �gures 8.5 and 8.6, the nodes assoiated with the samples of the dis-

ruptions due to too strong internal transport barriers (ITB) are visualized

respetively on the SOM and the GTM map. The di�erent yan shades rep-

resent di�erent perentages of samples of the onsidered lass with respet

to the total number of disrupted samples assoiated with the same node.

It an be seen that disruptions due to too strong internal transport barri-

ers mainly oupy the region marked with the boxes in �gures 8.5 and 8.6.

These regions have also been represented by means of the Component Planes

of the poloidal beta and the safety fator. As expeted, disruptions due to

too strong ITBs are haraterized by high values of these two parameters.
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Figure 8.5: Analysis of the node omposition for ITB disruptions and Component

Planes of poloidal beta and safety fator in the SOM.
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Figure 8.6: Analysis of the node omposition for ITB disruptions and Component

Planes of poloidal beta and safety fator in the GTM.
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8.2.3 Results of the automati disruption lassi�ation

Eah node in the map (SOM or GTM) is related to samples oming from

di�erent disruption types and/or safe samples. By following on the map the

temporal sequene of the samples of a disruption (the last 210 samples of

the disrupted shots), eah sample will be assoiated with a node. For eah

sample and eah lass, a lass membership an be de�ned, being the per-

entage of samples of the onsidered lass in the node to whih the sample

is assoiated, with respet to the total number of disruptive samples in the

node itself. In �gure 8.7 a-b the temporal evolution of the lass membership

of the seven lasses (Class membership funtion) during the JET disharge

No.66313 is reported.

Figure 8.7: Class membership funtions for disruption No.66313; (a) SOM (b)

GTM

As it an be noted, for the majority of samples of this shot, the greatest

lass membership value orresponds to impurity ontrol problem disruption

(IMC), whih is the same lass assigned to this shot in [5℄. This is true for

a relatively long interval before the disruption time, espeially in the ase

of the GTM. Note that, during this pulse, exessive Neon is introdued into
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the plasma during a phase with no auxiliary heating, resulting in a radiative

ollapse. As Neon also inreases the density signi�antly, this ould justify

the presene of relatively high NC lass membership values lose to the dis-

ruption in �gure 8.7.

The previous analysis shows the power and the versatility of the proposed

tehnique; the di�erent lasses of disruption tend to aggregate aording to

the self-organization of the map in suh a way that eah lass results to be

predominant with respet to the others in partiular regions of the opera-

tional spae. In order to perform an automati disruption lassi�ation using

topographi maps output and to quantify its e�etiveness, a proper lassi�-

ation, riterion has been introdued. In partiular, to lassify a disruptive

shot a majority voting algorithm has been adopted based on the lass mem-

bership of eah lass in the whole time interval before the disruption (210

ms).

In the histograms in �gure 8.8, the results obtained by applying the ma-

jority voting to all the 222 disrupted pulses, are reported in terms of per-

entage suess rate. A pulse has been onsidered orretly lassi�ed if the

automati system produes the same lassi�ation given in [5℄. As it an be

noted, the suess rate of GTM is higher than that of SOM for all the on-

sidered lasses, reahing in some ases even the perentage of 100%. These

results show the higher disrimination apability of the GTM model with

respet to the onsidered lassi�ation, that is exatly what has been found

in terms of separation between safe and disruptive regions in the mapping of

JET operational spae.

8.2.4 Disussion of the results

Even if the analysis of the previous setion learly shows the potentiality of

the desribed tools, it is important to identify the limits of its disriminating

apability in the present on�guration. It is worth noting that disruption

lasses are de�ned on the base of the typial hain-of-events, as reported in

[5℄. In partiular, the lassi�ation is mostly based on the middle trak of

these hains. In this work, the automati lassi�ation has been developed

taking into aount only the last 210 ms of the disruptive disharges. Thus,

depending on the length of the typial hain-of-events, it ould happen that

the lassi�er is not able to entirely pik up the phenomenology whih har-

aterizes a ertain lass. On the other hand, it ould even happen that, in

the �nal stage of the disharge, the indiation about the lass hanges, as

if the disruption is evolving from a ertain lass to another one. This is

basially due to the fat that several di�erent paths an onverge towards

very similar destabilization of modes that lead in the end to the disruption.
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Figure 8.8: Comparison between the perentage suess rates of the o�-line au-

tomati lassi�ation performed by GTM and SOM.

Hene, this limits the disrimination apability of the lassi�ation system

when approahing to the disruption time.

For example, in our lassi�ation, a not unommon phenomenon is ob-

served for density ontrol problem (NC) and impurity ontrol problem (IMC)

disruptions, whih initially evolve in a region where they ould be orretly

lassi�ed with a high level of on�dene, and then evolve in the auxiliary shut

down (ASD) lass when approahing the disruption time. In �gure 8.9 the

lass membership funtions for the shot No. 67322, manually lassi�ed in [5℄

as NC, are shown. As it an be seen, the disharge initially evolves in nodes

where all the samples belong to the NC lass, while, as it approahes to the

disruption time, it moves towards nodes where the majority of the samples

belong to ASD lass. Note that, an ASD disruption is basially a density

ontrol problem during/after the swith of the heating system. Hene, at

�rst glane, the traes of an ASD and of the onsidered disruption would

follow very similar paths.

Another ause that limits the disrimination apability of the lassi�ation

system is that some lasses an exhibit very similar values of some parame-

ters. This is the ase of Neolassial Tearing Mode (NTM) disruptions and

those due to too strong internal transport barriers (ITBs) in partiular op-

erating senarios.

In JET several experiments have been arried out for the beta limit as-

sessment, varying the pressure and the q pro�les, ranging from Hybrid to
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Figure 8.9: Class membership funtions for disruption No.67322; (a) SOM (b)

GTM.
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ITB on�guration, in order to investigate advaned senarios. During these

experiments, among the other instabilities, NTMs with m/n=2/1, 3/2, 4/3

have been observed [15℄. In these onditions, the value of q95 is about 4-5,

while the urrents assume values in a range slightly above 1MA.

Figure 8.10a shows the nodes interested by the disharge No. 72670,

manually lassi�ed as NTM. Suh a disharge evolves in the right bottom

orner of the GTM. As shown in �gure 8.4 (see pie planes representations),

the majority of disruptions in this area is due to NTMs and too strong ITBs.

Figure 8.10b shows the lass membership during the time evolution of the

shot. As predited by the previous onsiderations, NTM and ITB lasses are

haraterized by a omparable value of the lass membership funtions. In

this ase, the adopted riterion allows one to orretly lassify the disruption

as NTM, even if with a redued level of on�dene. As it an be noted by

the omponent planes for βp, Ptot, and Ip, the right bottom overing both the

maps is haraterized by high values of poloidal beta (�gure 8.6) and total

input power (�gure 8.10), as well as low values of plasma urrent (�gure

8.10d). Disrimination apability ould be improved by onsidering further

information, e.g., for example the measurement of pressure pro�le peaking,

and this is true for all the lasses in general. But many information, in par-

tiular those one related to several pro�les, are not always available in real

time, or need to be proessed a posteriori.

Two other very interesting ases, are represented by the shot No.79772, man-

ually lassi�ed as NC, and the shot No.79770 manually lassi�ed as LON

[5℄. In �gure 8.11a and 8.11b the lass membership funtions returned by

the GTM are reported. Suh disharges were performed for investigating the

physis of ELM ontrol with magneti perturbation �elds (EFCC). Our sys-

tem lassi�ed the pulse No. 79770 as LON, as in [5℄, whereas, regarding the

pulse No. 79772, lassi�ed as NC in [5℄, the GTM reognizes the presene

of the NC lass for the whole onsidered time interval, but the highest lass

membership is assoiated with the Low density and low q problem disrup-

tion (LON) lass. The pulse in the �nal phase is indeed haraterized by low

values of the edge safety fator and disrupted at q95 ≃ 2.5. Atually, during
this pulse, when the NBI was swithed o�, erroneous density ontrol gave

rise to too fast a density derease, leading to too low a density and an error

�eld loked mode.
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Figure 8.10: (a) lusters (blak box) oupied in the GTM by the disruption No.

72670; (b) Class membership funtions.(-d): omponent planes of the total input

power (left) and the plasma urrent (right).
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Figure 8.11: Class membership funtions for disruptions No. 79772(a) and No.

79770 (b).
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8.3 Automati lassi�ation with the ITER-like

Wall

8.3.1 Introdution

Also the 10-dimensional operational spae of JET with ITER Like wall has

been explored using the Generative Topographi Mapping method. A new

2-dimensional map has been exploited to develop automati disruption las-

si�ations of 7 lasses manually identi�ed in [5℄ and desribed in the previous

setion. In partiular, among all the non-intentional disruptions, the subset

indiated in the Table 8.2 has been onsidered, that ourred in the JET

ampaigns from C28 (2011) to C30 (2013) after the installation of the new

ITER Like Wall (ILW).

A statistial analysis has been performed on the plasma parameters de-

sribing the operational spaes of JET with CW and ILW and some physial

onsiderations have been made on the di�erene of these two operational

spaes and the disruption lasses whih an be identi�ed.

The performane of the ILW GTM lassi�er is tested in a real time fash-

ion in onjuntion with a disruption preditor presently operating at JET.

Moreover, to validate and analyze the results, another referene lassi�er has

been developed, based on the k-Nearest Neighbor tehnique.

Finally, in order to verify the reliability of the performed lassi�ation,

a onformal preditor has been developed whih is based on non-onformity

measures.

8.3.2 Impat of the ITER-like Wall on disruptions

In the 2010 − 2011 all the plasma-faing omponents (PFCs) have been re-

plaed with a metalli wall, the so-alled ITER-like Wall (ILW). The new

wall is omposed of beryllium tiles in the main hamber and tungsten in the

divertor. The hange of materials has signi�antly modi�ed the physis of

disruptions. ILW have aused �rst of all an enhaning of heat loads and

vessel fores, and this is due basially to the lower fration of energy that

is radiated during the disruption proess. Consequently, in fat, a larger

fration of thermal and magneti energy is "available" to be onduted to

the even more fragile PFCs. The lower fration of radiated energy gives rise

to higher temperatures during the post-thermal quenh phase, whih means

longer urrent quenh times, sine this latter is inversely proportional to the

plasma resistivity [6℄.

The disruption rate is inreased, espeially in the �rst period of opera-

tions after the installation of the new metalli wall, sine the properties of the



142 CHAPTER 8. AUTOMATIC DISRUPTION CLASSIFICATION

new materials a�eted not only the physis of disruptions, but also ontrol

shemes and operational senarios turned out to be di�erent with respet to

what we had for the CW.

Also operational limits, suh as the density limit, have been a�eted. In

fat, as desribed in hapter 4, this limit is determined mainly by the ra-

diation instability whih build up at the plasma edge. In the ase of the

ILW it develops at signi�antly lower edge temperatures, sine the radiation

e�ieny of Be is lower than for C and shows its highest values at lower

temperatures. In onjuntion with the di�erent properties of reyling, this

produed an inrease of the densities at whih is possible to operate JET [7℄.

Another important aspet related to the installation of the ILW, is the

presene of new auses and new hains of events whih lead to disruption

[8℄. An analysis idential to the one desribed for the Carbon Wall has been

arried out, as shown in the sheme in Figure 8.12. Therefore, a statisti-

al analysis on the root auses has been performed and harateristi hains

of events have been identi�ed to group those disruptions whih follow the

same path [8℄. Besides the hanges in the omposition in terms of di�erent

lasses, whih will be desribed in the following setion, the main peuliar-

ity is related to the onset of new auses, among whih the dominant is the

one indiated in the sheme in Figure 8.12 as "RPK", that is strong radia-

tion peaking. This phenomenon has ourred in 4.6% of all the disharges

operated in 2011− 2012. Several disharges disrupted due to this high ore

radiation, whih in part happened during the main heating phase and in part

after the swith-o� of the auxiliary heating.

Although the auses for the strong radiation peaking are not ompletely

lear, it is thought to be assoiated mainly to the transport properties of

high Z-impurities, whih give rise to a strong aumulation in the ore, or

in other ases, the radiation inrease ours for a sudden in�ux of impuri-

ties due to an enhaning of the divertor soure. This two proesses have a

di�erent time sale, in partiular, the �rst one develops on a muh slower

resistive time sale and is haraterized by the hollowing of the temperature

pro�le, with at the same time, a strong peaking of the density pro�le. On

this time sale, beoming hollow, the temperature pro�le starts to modify

the q and the urrent density pro�les, whih ould be driven unstable by the

broadening of the q-pro�le itself [8℄. This broadening an also be observed

in terms of redution of the plasma internal indutane.

Another important point that has to be taken into aount, espeially

from the point of view of the predition, is related to the fat that with the

ILW the urrent quenh is signi�antly slower than what we had with the

CW. In partiular, if we make referene to the threshold of dIp/dt > 5MA/s
for de�ning disruption, there are even ases in whih a thermal quenh is not
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followed by any urrent quenh. Or in other ases it an happen that, after

a �rst thermal quenh, the temperature reovers and another hain of events

not diretly onneted with the previous one, an eventually takes plae and

lead to disruption.

Figure 8.12: Shemati overview showing the statistis of the hain of events for

non-intentional disruptions with the ILW (2011 − 2012) [8℄.

8.3.3 ILW versus CW operational spae of JET

After ampaign C27, JET installed the new ITER Like wall (ILW). The �rst

attempt was to projet the disruptions of the ILW ampaigns onto the GTM

map trained with the CW disharges, but the performane of the map in

lassifying the new disruptions signi�antly deteriorated for ertain lasses,

probably beause of the fat that the operational spae, or at least, the on-

sidered feature spae is hanged.

Therefore, a more detailed analysis has been performed to investigate

how the operational spae of JET with the new ITER Like wall eventually

hanged and if the disruption physis modi�ed with respet to the CW ex-

periments. The whole database onsists of 243 non intentional disruptions
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belonging to the CW ampaigns from C15 to C27, and of 149 non intentional

disruptions of the ILW ampaigns from C28 to C30. In Table 8.2, the om-

position and the ourrene in terms of di�erent lasses is reported for both

the CW and the ILW databases.

Disruptions CW ILW

Labels Classes Tot Tot % Tot Tot %

ASD Auxiliary Power Shut-Down 50 20.58 2 1.34

GWL Greenwald Limit 9 3.70 0 0.00

IMC Impurity Control Problem 83 34.16 109 73.15

ITB Too Strong Internal Transport Barrier 10 4.12 0 0.00

LON Low Density and Low q 12 4.94 7 4.70

NC Density Contol Problem 58 23.87 22 14.77

NTM Neo-lassial Tearing Model 21 8.64 9 6.04

Table 8.2: CW vs. ILW Database.

Figure 8.13: Distribution of disruptions in the CW (blak) and ILW (blue) am-

paigns.

As it an be seen from Table 8.2 and Figure 8.13, the omposition of the

two data bases is quite di�erent: in partiular, disruptions due to Greenwald

limit or due to too strong ITB are no longer present in the new ampaign,

whereas the number of disruptions due to IMC onsistently inreased.

Moreover, a new lass has been identi�ed, haraterized by strong radia-

tion peaking due to impurity tungsten aumulation in the ore of the plasma
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(new Impurity Control Problems disruptions: IMC_new). The distintion in

di�erent lasses is based on the manual lassi�ation desribed in [8℄, where

spei� hains of events have been deteted and used to lassify disruptions,

grouping those that follow spei� paths.

A statistial analysis has been then performed on the plasma parameters

desribing the operational spaes of JET with CW and with ILW. In Figure

8.14 the probability density distributions of the last 210 ms of Plasma ur-

rent Ip (a), Safety Fator at 95% of Poloidal Flux q95 (b), Plasma Internal

Indutane li () and Line Integrated Plasma Density nelid (d) have been

reported for the IMC disruptions with the CW (red lines) and with the ILW

(grey dashed lines), and for the new impurity type (IMC_new) with the ILW

(blue dashed lines).

Figure 8.14: Probability density distributions of: (a) Plasma urrent Ip; (b)
Safety Fator at 95% of Poloidal Flux q95; () Plasma Internal Indutane li; (d)
Line Integrated Plasma Density nelid.

The analysis highlights interesting features in partiular for the new impurity

type lass, on�rming that a new GTM is needed to represent the ILW oper-

ational spae of JET. From Figure 8.14, it an be seen that it is quite di�ult

to disriminate among lasses just from the distribution of the signals. In

fat it is well known that what is really important is the ombination of the

signals.
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Moreover, looking at the previous �gures, some interesting features an

be found: for the new impurity type lass the distribution funtion of inter-

nal indutane is shifted towards lower values, whereas the eletron density

funtion is shifted toward higher values. This an be probably due to the fat

that the impurity aumulation of the tungsten in the ore, in ertain ases,

when a ertain onentration is reahed, starts to modify the temperature

and the urrent pro�les giving rise to instabilities followed, in some ases,

by disruptions. Further analysis an be made to ompare di�erent disrup-

tion lasses behavior passing from CW to ILW. Regarding density ontrol

problem and impurity ontrol problem lasses, Figure 8.15 reports the prob-

ability density funtions of Ip and li for the IMC and NC disruptions with

CW, whereas Figure 8.16 reports the distributions of the same signals for the

IMC, IMC_new and NC disruptions with ILW.

Figure 8.15: Probability density funtions of Ip (left side) and li (right side) for

the IMC (grey) and NC (green) disruptions with CW.

Figure 8.16: Probability density funtions of Ip (left side) and li (right side) for

the IMC (dashed grey), IMC_new (dashed blue) and NC (dashed green) disrup-

tions with ILW.

From �gure 8.15, it an be seen that, with the CW, both Ip and li signal dis-
tributions are more or less overlapped and this is oherent with the analysis
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of the disrupted regions presented in the setion 8.2.2. Conversely, for the

ILW, Ip and li distributions result to be quite di�erent, espeially if we om-

pare NC and IMC_new lasses. In partiular, for the plasma urrent, it an

be seen that, at least in the last 210 ms, there are no NC disruptions above

2 MA. Moreover, the new impurity type basially ours for lower values of

the internal indutane.

8.3.4 Mapping of the JET ITER-like Wall operational

spae

Starting from the previous statistial analysis and the physial onsiderations

on the new disruption types, a new GTM has been trained to represent the

ILW operational spae of JET. The training set onsists of the last 210 ms of

the 149 non intentional ILW disruptions (29137 samples), whih have been

mapped through 81 radial basis funtions (Gaussian shape) with a 1.5 width,

over a latent spae of 36x36 grid.

In Figure 8.17(a) the Mode representation of the GTM is reported. Figure

8.17(b) shows the GTM Pie Plane representation. In suh visualization, eah

node is represented by a pie hart desribing the perentage omposition in

terms of number of samples belonging to the di�erent disruption lasses. The

samples are diversi�ed aording to the olor ode reported on the legend in

the same �gure, with referene to the di�erent lasses of disruptions.

Both representations highlight a high level of separation among the di�erent

lasses with respet to what has been found for the Carbon Wall. In Ta-

ble 8.3, the level of separation of the di�erent lasses is reported in terms

of perentage of samples of eah lass whih is projeted in nodes entirely

omposed by samples of the onsidered lass.

Classes Class Samples (%)

ASD 15.86

IMC 93.51

LON 68.16

NC 77.57

NTM 60.38

Table 8.3: Disrimination apability of GTM model for the onsidered lasses.

Figure 8.18 shows the same map (Mode (a) and Pie Plane (b) representa-

tions), trained with the same training parameters, where the IMC_new lass

has been introdued.

It an be seen that the new lass is even better separated with respet to
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Figure 8.17: 2-D GTM of the 10-D JET ILW operational spae: (a) Mode Repre-

sentation. The nodes are represented with di�erent olor and symbols as indiated

in the legend, empty nodes are white; (b) Pie Plane Representation. The nodes

omposition in terms of the �ve di�erent lasses of disruptions is represented a-

ording to the olor ode reported on the legend.

Figure 8.18: 2-D GTM of the 10-D JET ILW operational spae with the IMCnew

disruption lass: (a) Mode Representation. The nodes are represented with di�er-

ent olor and symbols as indiated in the legend, empty nodes are white; (b) Pie

Plane Representation. The nodes omposition in terms of the six di�erent lasses

of disruptions is represented aording to the olor ode reported on the legend.
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other lasses. Table 8.4 reports the same information of Table 8.3, but with

the addition of the new impurity type lass.

Classes Class Samples (%)

ASD 15.86

IMC 72.90

LON 68.16

NC 77.57

NTM 55.36

IMCnew 91.18

Table 8.4: Disrimination apability of GTM model for the onsidered lasses.

It is interesting to observe in fat, that, oherently with what has been found

for the CW operational spae, the main ontribution to the nodes shared

by samples of density ontrol problem and impurity ontrol problem disrup-

tions is given by the old "IMC" lass, whereas the overlapping on the map

presented by the new impurity type is mainly with the IMC lass itself.

8.3.5 Real time appliation in onjuntion with APODIS

On the base of only the mapping of the operational spae, having zoomed on

the disruptive spae, one an guess that by applying the majority voting al-

gorithm to the last 210 ms, pratially all of the disruptions an be orretly

lassi�ed aording to the manual lassi�ation; in fat apart one isolated

ase it is what it happens.

But one of the main objetive of this study is to develop a system that

an be used in real time and an be integrated eventually with the other

systems already working in real time at JET. Therefore, in order to test the

performane in lassi�ation of the new maps, a real time appliation has

been simulated in onjuntion to APODIS [4℄, improving at the same time

the e�ieny of the odes and assessing �nally the suitability for real time

appliations.

APODIS (Advaned Preditor Of DISruptions) is a disruption preditor

mainly onstituted of three di�erent Support Vetor Mahine (SVM) predi-

tors, whih analyze three onseutive time windows (eah one 32 ms long) of

data to take into aount the history of the disharge. It has been deployed

in JET's real-time system during the last ampaigns with the ILW with very

good results (well above 90% of Suess Rate) and it is presently working in

the ATM network in open loop.

During the simulation, the majority voting algorithm has been applied
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to the lass membership funtion of a time window of respetively 32 or 64

ms right before the time in whih APODIS triggers the alarm. Note that,

in several ases APODIS gives the alarm signi�antly in advane with re-

spet to the thermal quenh time, even hundreds of ms in advane. Table

8.5 reports the results of the real time automati lassi�ation performed

by the GTM trained onsidering the lasses previously de�ned for the CW

ampaigns, therefore without any distintion in the di�erent impurity types

disruptions. As an be seen, the Suess Rate is quite high reahing more

than 90%, thus in very good agreement with the manual lassi�ation.

GTM GLOBAL ASD IMC LON NC NTM

32ms 93.23 100.00 94.00 66.67 100.00 85.71

64ms 94.07 100.00 95.10 66.67 100.00 85.71

Table 8.5: Perentage suess rates of the real time automati lassi�ation per-

formed by GTM on the lasses identi�ed for the CW ampaigns.

The lassi�ation performanes slightly deteriorates when the new lass is

onsidered, as shown in Table 8.6. This is due to the di�ulty to disrimi-

nate in ertain ases the new lass from the previous impurity ontrol problem

one.

GTM GLOBAL ASD IMC LON NC NTM IMCnew

32ms 87.22 100.00 67.86 66.67 100.00 83.33 93.15

64ms 85.93 100.00 71.43 66.67 100.00 83.33 89.33

Table 8.6: Perentage suess rates of the real time automati lassi�ation per-

formed by GTM onsidering the IMC_new disruption lass.

8.3.6 Validation and omparison

In order to validate and analyze the results obtained with GTM, another ref-

erene lassi�er has been developed based on k-NN whih uses as kernel the

Mahalonobis distane (see hapter 5). The simulations have been performed

using as kernel di�erent metris, suh as the Eulidean or the Hamming dis-

tanes, but, at least for this spei� problem, Mahalanobis distane performs

quite better with respet to the other tested metris. k-NN is a referene in-

stant based lassi�er, unlike GTM that builds a generative latent model. In

this ase the majority voting is applied to the k losest points in the high



Automati lassi�ation with the ITER-like Wall 151

dimensional spae. Table 8.7 reports the performane of the k-NN lassi�er

for the lasses identi�ed for the CW ampaign. Table 8.8 shows the k-NN

performane when the new impurity type is onsidered. Also in this ase,

the global performane is above 90% when the new impurity ontrol problem

lass is not onsidered, whereas the performane slightly deteriorates when

the new lass is onsidered.

k-NN GLOBAL ASD IMC LON NC NTM

32ms 92.91 100.00 95.19 71.43 90.48 85.71

64ms 92.20 100.00 95.19 71.43 90.48 85.71

Table 8.7: Perentage suess rates of the real time automati lassi�ation per-

formed by k-NN lassi�er onsidering the lasses identi�ed for the CW ampaign.

k-NN GLOBAL ASD IMC LON NC NTM IMCnew

32ms 90.78 100.00 82.14 71.43 95.24 83.33 94.81

64ms 87.94 100.00 82.14 71.43 90.48 83.33 90.91

Table 8.8: Perentage suess rates of the real time automati lassi�ation per-

formed by k-NN lassi�er onsidering the IMC_new disruption lass.

The lass membership funtion of the disruptions gives us useful information.

As an example, in Figure 8.19 the lass-memberships of the pulse No. 82867

is reported for both GTM and k-NN, whih is a IMC disruption aording

to the manual lassi�ation.

It is possible to note a transition among di�erent lasses, and in partiular

the one between NCs and IMCs or vie versa, whih is not unommon both

for CW and ILW. Note that APODIS alarm is triggered almost two seonds

before the thermal quenh. It is also very important to point out that both

the lassi�ers onverge onto the same results, even if in this spei� ase we

an observe that for GTM based lassi�ers the phase where we an assoiate

the highest probability to the orret lass is about 400 ms before tD, whereas
in the k-NN is more than 700 ms in advane.

In Figure 8.20 the time evolution of some of the signals whih are part of

the database is reported for the disharge No. 82867, whereas in Figure 8.21

a zoom of the previous plots is reported with respet to the time window

analyzed in Figure 8.19.
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Figure 8.19: Class-membership funtions of the shot No. 82867 (IMC) for GTM

(left side) and k-NN (right side). Aording to the legend, the vertial green line

identi�es the thermal quenh, the blue line the PTN alarm, and the pink line the

APODIS alarm.

Figure 8.20: Time evolution of a) plasma urrent, b) entral eletron temperature

from Eletron Cylotron Emission (ECE) measurements, ) line integrated density

and d) loked mode amplitude for the urrent �at-top phase of the shot No. 82867;

the vertial line in green represents the time of the loked mode.
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Figure 8.21: Zoom of Figure 8.20 (time interval [53− 56℄s - shot No. 82867).

As it an be seen from these pitures, a Reiproating Langmuir Probes

(RCP) aused a loked mode at t ≃ 53.79s, time around whih a rapid hange

of the density ours, followed by a quenh of the temperature that in the

subsequent phases reovers up to the �nal thermal quenh at t ≃ 55.73s.
Both PTN and APODIS trigger the alarm when the mode loks (see Figure

8.19)and for both the lassi�ers the disharge is evolving as a NC disruption

up to the �nal phase where is orretly lassi�ed as IMC, aording to the

manual lassi�ation.

Given the omplex behaviors whih often haraterize the evolution of a

disharge, it is important to know the reliability and the on�dene of the

lassi�ation. Literature provides reent methods, suh as the onformal pre-

ditors, already desribed in hapter 5, whih allow us to take into aount

also this aspet. To this purpose, a onformal preditor has been developed

whih is based on non-onformity measures.

Regarding lassi�ation, the onformal preditors an provide the level

of reliability of lassi�ation itself with two parameters: the redibility and

the on�dene whih are de�ned on the base of the p-values (see hapter 5).

In �gure 8.22 the label provided by the lassi�ation, the redibility and the

on�dene levels are reported for pulse No. 82867. As it an be seen the

redibility, whih is the parameter with more variability, is quite low for all

the initial phase, then it rises onstantly during the last ∼ 400ms, aording
to the results obtained with the GTM based lassi�er.
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Figure 8.22: Left side: lass-membership provided by the onformal preditor for

the shot No. 82867, on�dene level (blue) and redibility (blak). The vertial

green line identi�es the thermal quenh, the blue line the PTN alarm, and the pink

line the APODIS alarm (left side). Right side: zoom representing the on�dene

level (blue), the redibility (blak) and the threshold of 0.05 (red) (right side).

The redibility, even if low in the phase where the onformal preditor is as-

signing the label orresponding to the NC lass, is mostly above 0.05, whih
in literature is often used as threshold for trusting or not a predition (Figure

8.22 (right side)). In general, if the redibility is less than 5%, the onsid-

ered samples are not representative of the training set, or in other words we

annot onsider that they are generated independently from the same dis-

tribution. In partiular, the redibility falls under the onsidered threshold

in orrespondene of the transition between NC and IMC lasses, behavior

that ould depend on a rapid reon�guration or a hange in the onsidered

parameters' spae. Further analysis are needed to larify this point.

In Figure 8.23, the lass memberships funtion obtained with the GTM

(a) and with the k-NN (b) based lassi�ers are reported for the pulse No.

82569, whih has been manually lassi�ed as IMC disruption.

What is partiularly interesting to observe in this ase is the fat that, apart

the agreement in the lassi�ation provided by the two methods, if we look

at the on�dene level plotted in Figure 8.24, we �nd that remains very high

for a long phase. In fat looking at the projetion on the map (Figure 8.25),

we an see that the disharge is evolving in a not extended region of the

operational spae, and this mean that the parameters are not hanging too

muh in the onsidered time interval, at least up to the last phases just be-

fore the disruption. This is on�rmed by the time evolution of some of the

onsidered signals, as we an see in Figure 8.26.
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Figure 8.23: Class-membership funtions of the shot No. 82569 (IMC) for GTM

(left side) and k-NN (right side). Aording to the legend, the vertial green line

identi�es the thermal quenh, the blue line the PTN alarm, and the pink line the

APODIS alarm.

Figure 8.24: Class-membership provided by the onformal preditor for the shot

No. 82569, on�dene level (blue) and redibility (blak). The vertial green line

identi�es the thermal quenh, the blue line the PTN alarm, and the pink line the

APODIS alarm.
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Figure 8.25: Projetion of the disharge No. 82569 on the GTM map

Regarding the disruptions belonging to the new impurity type, in Figure 8.27

is reported an example of disruption due to impurity aumulation. In this

ase the aumulation of W ours after a step-down of the Neutral Beam

Injetion power, and the hollowing of the temperature pro�le an be observed

in orrespondene of the inreasing of radiation by tungsten. This, on the

slow time sale of the transport proess, a�ets the urrent density and the

q pro�les, driving MHD modes unstable until we have a loked mode.

By omputing the automati lassi�ation it is possible to verify that the

pulse is orretly lassi�ed as belonging to the new impurity type by all the

implemented systems. Furthermore it is interesting to see that when the

mode loks, there are "jumps" in the lass-membership alulated by the

onformal preditor, and the redibility in this interval drops pratially to

zero. In the interval prior to the loked mode, again all the lassi�ers are

learly reognizing the new impurity type, as it is shown in Figures 8.28 and

8.29.

8.3.7 Disussion of the results

The hallenge to automatially disriminate the type of disruptions at JET

both in the Carbon wall (CW) ampaigns and in the ITER Like wall (ILW)

ones has been takled using a GTM manifold learning method. The disrup-

tion lasses in the ILW have been deeply analyzed and ompared with those
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Figure 8.26: Time evolution of a)plasma urrent, b) q95, ) line integrated den-

sity, d) loked mode amplitude, e) poloidal beta, f)total input power and g) total

radiated power measure by bolometer for the shot No. 82569.
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Figure 8.27: Example of disruption aused by impurity aumulation (disharge

No. 82669) [6℄

Figure 8.28: Class-membership funtions alulated through a) GTM and b)

k-NN for disharge No. 82669.



Automati lassi�ation with the ITER-like Wall 159

Figure 8.29: Class-membership funtions alulated through a) onformal predi-

tor for disharge No. 82669; in b) a zoom of a) is reported regarding the on�dene

level (blak) and the redibility (blue).

in the CW JET ampaigns. In partiular, the probability density funtions of

the di�erent plasma parameters highlight the di�erent behaviors of the new

impurity ontrol problem disruptions, due to high-Z impurity aumulation

in the ore of the plasma olumn, with respet to the old IMC ones. More-

over, the statistial analysis showed the variation of the operational spae of

JET with ILW with respet to that with CW.

For this reason, two di�erent GTM maps have been trained for CW and

ILW ampaigns. The latter has been used to simulate a real time behaviour

of the GTM lassi�er in onjuntion with the predition system APODIS,

whih is suessfully working on line at JET. The obtained results assess the

suitability of the GTM based lassi�er for real time appliation with very

good results: the predition suess rate is quite high (above 90%) aord-

ing to the manual lassi�ation. However, the performane worsened when

the new IMC lass is introdued, beause it is quite di�ult to distinguish

this new lass from the previously de�ned IMC lass. Furthermore, in order

to validate and analyze the obtained results, another referene lassi�er has

been developed, based on k-NN, whih uses as kernel the Mahalanobis dis-

tane. The performane of the referene lassi�er is still above 90%, but, also

for it, the suess rate deteriorates when the new IMC lass is introdued.

Several visualization tools have been developed for the GTM suh as

Mode representation or Pie Plane representation, whih make possible to ex-

trat relevant information that on�rms the physial harateristis of the

di�erent lasses. Monitoring the evolution of eah disruptive disharge on

the GTM, a lass membership has been de�ned by whih it is possible to
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perform a statistial analysis of the transitions among di�erent lasses.

Finally, in order to verify the reliability of the performed lassi�ation,

a onformal preditor has been developed whih is based on non-onformity

measures. The obtained results indiate the suitability of the onformal

preditors to assess the reliability of the GTM lassi�ation even if the al-

ulation time allowed their use only in an o� line fashion.

The mapping of the JET operational spae has been built on the base of

a set of signals whih are available in real time with an high reliability, and

every devie should provide for eah disharge in standard operations.

This does not mean that the performane of the system in mapping and las-

si�ation ould not improve if additional information are taken into aount.

In [8℄ the disruptivity, whih gives the likelihood of a disruption within a

spei� parameter spae, has been alulated in terms of di�erent parame-

ters, as for example the temperature peaking and the radiation peaking.

Some parameters representative of the pro�les of ertain quantities whih

would help to improve the disrimination apability of the proposed sys-

tems, but often they require a post-pulse validation. Therefore a trade-o�

between performane and reliability has to be arefully onsidered, without

forgetting, on the other hand, real-time and omputational onstraints.
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Chapter 9

Disruption predition at ASDEX

Upgrade

9.1 Introdution

In this hapter, two di�erent approahes are proposed as disruption predi-

tors at ASDEX Upgrade. The �rst method onsists in extrating informa-

tion from the omplex multidimensional operational spae of the mahine by

means of data visualization and dimensionality redution methods. The se-

ond method allows to build a blak-box preditor whih provides a statisti

preditive model.

In this study, among the visualization and dimensionality redution meth-

ods, the Self-Organizing Map and the Generative Topographi Mapping are

investigated. The 2-D mappings provided by SOM and GTM are used with

good results as disruption preditor by assoiating the risk of disruption of

eah luster in the map to a disruption alarm threshold. Furthermore, fol-

lowing the trajetory of the plasma on the maps it is possible to study its

behavior leading to a disruption; thus, it an be taken advantage of this

additional value to realize a single system for disruption predition and las-

si�ation.

Among the multivariate statistial models the Logisti regression ap-

proah is proposed. The Logisti model works as disruption preditor by

monitoring the probability of a disruptive event during the experiments. De-

spite its simpliity, good results have been ahieved, but being a probabilisti

lassi�ation model the logisti preditor does not make available any other

additional information on the plasma state evolution.

In addition, the two methods have been ombined to realize a preditive

system able to exploit the omplementary behaviors of the two approahes.
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The data base for this study represents the 7-D ASDEX Upgrade operational

spae desribed by means of disrupted and safe disharges seleted in the shot

range 21654− 26891, and performed in ASDEX Upgrade between May 2007

and April 2011.

9.2 Database

Data for this study were extrated from the AUG experimental ampaigns

performed between 2007 and 2012, in the shots range 21654 − 28832. The

database has been divided in three subsets, following a temporal progression

as reported in Table 9.1. The Training set, ontaining only disharges per-

formed between May 2007 and April 2011, has been used to build the maps

and to optimize the oe�ients of the logit model; the data set Test_1, on-

taining shots performed in the same time period of Training set, has been

used to test the generalization apability of the maps and the logit model;

the set Test_2, ontaining shots performed after those of Training set, has

been used to evaluate the ageing of the models when used during more reent

ampaigns.

Data Time Safe Disrupted

Set Period Disharges Disharges

Training May 2007 - April 2011 310 121

Test_1 May 2007 - April 2011 155 60

Test_2 April 2011 - November 2012 271 106

Table 9.1: Data base omposition.

Only disruptions whih ourred in the �at-top phase or within the �rst 100

ms of the plasma ramp-down phase, and haraterized by a plasma urrent

greater than 0.8 MA, are onsidered. Disruptions mitigated by massive gas

injetion, triggered by the loked mode detetor, and those aused by ver-

tial instabilities, so alled Vertial Displaement Disruptions (VDDs), were

exluded. Eah of the three data sets is omposed by time series related to

the seven plasma parameters reported in Table 9.2. All the parameters are

sampled making referene to the time base of the plasma urrent signal. The

sampling rate is equal to 1 kHz.
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Signal Aronym

Safety fator at 95% of poloidal �ux q95
Total input power PTOT

Loked Mode signal LM signal

Radiated fration of the input power Pfrac = Prad/PTOT

Plasma density divided by the Greenwald limit neGreenwald

Internal indutane li
Poloidal β βp

Table 9.2: Plasma parameters onsidered in the data base.

9.3 2-D AUG operational spae mapping

One of the viable way to realize a disruption preditor onsists in extrating

information from the multidimensional operational spae of the reator by

means of data visualization and dimensionality redution methods as SOM

and GTM. Looking at the good results on disruption predition aomplished

by the authors with SOM on a foregoing AUG databases [1℄, and on oper-

ational spae mapping with GTM on the JET database [2℄, in this work,

both SOM and GTM have been employed to realize a 2-D mapping of the

7-D AUG operational spae on the onsidered database.

In order to projet the 7-D AUG operational spae onto the 2-D SOM

and GTM, further knowledge is added to the intrinsi knowledge owned by

the 7-D data spae, whih onsists in assoiating a label to eah sample in the

training set. Samples oming from safe disharges have been labeled as safe

samples (ss). For disrupted disharges, a time value, alled tPRE−DISR, has

to be assumed to disriminate between the safe and disruptive phases. On

the basis of previous experienes [3℄, an empirial value equal to 45 ms from

the disruption time (tD) has been taken for eah disharge. Therefore, sam-

ples preeding tpre−disr are onsidered as safe samples (ss), whereas samples

in the interval [tpre−disr÷tD] are labeled as disruptive samples (ds). Only the

disruptive samples and safe samples from safe disharges have been inluded

in the Training set; the safe phase of disruptive disharges is assumed to be

well represented by the safe samples of safe disharges.

The training set results in a large amount of data, 310 safe disharges

make 1094697 (ss) available, whereas 121 disruptive disharges make 5267

(ds) available. As it an be noted the group of safe sample is 210 time larger

than the disruptive one. Thus, in order to avoid the predominant in�uene

of safe samples with respet the disruptive ones during the training phase,

and with the aim to aggregate the expeted redundant information ontained

in a so large database into a more manageable and e�ient one, a data re-
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dution on safe samples has been performed. The goal of the data redution

proedure has been to ahieve a ratio ss/sd < 10 ; that value omes from

the authors previous experienes on AUG and JET database, in [1℄ a data

redution with ss/sd = 7.1 and in [5℄ a data redution with ss/sd = 6.4
were performed respetively.

A redued number of representative safe samples have been seleted by a

proedure where �rstly eah signal has been quantized in a range of values

depending on its own distribution. Then, the 7-D spae has been partitioned

with a 7-D grid where eah node is the ombination of the quantized signal

values. Finally, a fration of the samples orresponding to eah node has

been seleted. The nodes to whih orrespond a number of samples lower

than the mean value of samples per node on the entire grid have been ex-

luded from the seletion. The adopted riterion allows us to exlude from

the database the samples related to unusual signal ombinations. The data

redution proedure results in 39115 safe samples, with ss/sd = 7.43 .

Figure 9.1 shows the pdf of the onsidered plasma parameters for safe

samples before (blue line) and after the data redution (green dashed line).

As it an be noted the trend of the seven signals remain unhanged after

the data redution. Figure 9.2 shows the projetion of the 7-D spae of safe

sample before the data redution (blue points) and after the data redution

(green points) onto the �rst three prinipal omponents. As an be noted,

only regions with low density are unovered after the data redution. Figure

9.3 displays the two mappings obtained with the redued safe samples group

and the disruptive samples belonging to the training set; �gure (a) reports

the GTM with 1600 map units and the �gure (b) reports the SOM with 1674

map units. The dimension of SOM, i.e. the number of map units, has been

seleted with an heuristi rule proposed in [4℄; for omparison purposes also

the GTM size has been hosen applying the same rule. On the two maps

four types of map unit an be identi�ed depending on their omposition: safe

map units ontaining safe samples, disruptive map units ontaining disrup-

tive samples, mixed map units ontaining both safe and disruptive samples

and empty map units ontaining no samples. A olor ode has been adopted

to identify the four map unit ategories on the map. The safe map units are

green, those disruptive are red, the mixed map units are grey and �nally the

empty ones are white.

For both maps, a large safe region (the green one) where the risk of disruption

is low, two mainly disruptive regions (in red) where the risk of disruption is

high, and transition regions as boundary between the previous ones, an be

identi�ed. Traking the temporal evolution of plasma disharges both on the

GTM and the SOM, it has been observed that the great majority of the safe

disharges evolves within the safe region, as the yellow trajetories reported
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Figure 9.1: Probability density funtions of the plasma parameters inluded in

the data base for safe samples, before the data redution (blue line) and after the

data redution (green dashed line).
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Figure 9.2: PCA projetion of the 7-D AUG safe spae of training set before the

data redution (blue points) and after the data redution (green points) onto the

�rst three prinipal omponents.

on the two maps in Figure 9.3. On the ontrary, for the majority of disrup-

tive disharges, the trajetory starts in the safe region and, passing through

the transition region, ends in a disruptive region, as the blue trajetories on

�gure 9.3. This suggested us to use both maps as disruption preditors by

linking the disruption alarm to the disruption risk of the di�erent regions.

9.4 Disruption Preditors

In order to evaluate the predition performane of the two maps as preditors

some performane indies have been introdued:

• Suessful Preditions (SPs): the fration of safe or disruptive dis-

harges orretly predited.

• Tardy Detetions (TDs): the fration of disruptive disharges whih

triggers the alarm too late.

• Missed Alarms (MAs): the fration of disruptive disharges predited

as non-disruptive.

• False Alarms (FAs): the frations of safe disharges predited as dis-

ruptive.
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Figure 9.3: 2-D mappings of AUG operational spae, a) GTM whit 1600 map

units; b) SOM with 1674 map units; safe map units (green), disruptive map units

(red), mixed map units (grey), empty map units (white). On both the maps the

projetion of a safe disharge (yellow line) and a disruptive disharge (blue line)

on the GTM (a) and the SOM (b) is reported.
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• Suessful Rate (SR): the fration of disharges (safe and disruptive)

orretly predited.

At AUG a disruption is onsidered orretly predited if the predition sys-

tem is able to trigger the alarm 2ms before tD. Two ms is the time needed

to the mitigation systems to intervene [6℄. Conversely, a safe disharges is

orretly predited when the alarm is not triggered at all. One of the mail

goals of experimental reators, as AUG, is to exploit its own potentialities.

A onservative disruption preditor ould limit the exploration apability of

the mahine; in order to avoid this drawbak, the perentage of disruption

triggered too muh in advane has to be limited as well as the false alarms.

To this purpose, the Early Detetion (ED) index has been de�ned as the fra-

tion of disruptive disharges whih triggers the alarm too muh in advane.

In this study, a disruption is onsidered predited too muh in advane if

the alarm is ativated within the time window [tFLAT−TOP , tD − 500] ms [7℄,

where tFLAT−TOP is the �at top beginning time of plasma urrent.

9.5 SOM and GTM

In order to employ the two mappings as disruption preditors, a suitable

alarm riteria whih links the disruption risk of the di�erent regions to the

perentage of disruptive samples (DS%) into the map unit, has been opti-

mized. In partiular, the alarm is triggered when the trajetory stays in a

disruptive or a mixed map unit ontaining at least 95% of disruptive sam-

ples for at least h onseutive samples. For eah luster the parameter h is

evaluated by means of 9.1 for the GTM and 9.2 for the SOM.

hGTM = round(−5.6 · DS%+ 562) (9.1)

hSOM = round(−3.2 · DS%+ 322) (9.2)

where round() is the nearest integer funtion.

The oe�ients of these linear funtions have been optimized maximizing the

Suessful Rate (SR) on the training set. Table 9.3 reports the predition

performane for SOM and GTM on the three data sets simulating the on-line

operation.

Table 9.3 shows that the SR obtained with GTM results to be better than the

ones with the SOM. Moreover, the GTM has always better performane on

early detetions and false alarms than the SOM, instead the SOM ahieves

always lower MAs than the GTM.
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Method Data set

Disruptive disharges Safe disharges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

SOM

Training 1.61 5.65 92.74 94.52 5.48 94.01 16.93

Test_1 4.76 6.35 88.89 89.60 10.32 89.50 17.46

Test_2 0 1.83 98.17 84.13 15.87 88.16 16.51

GTM

Training 0 8.26 91.74 97.42 2.58 95.82 9.1

Test_1 0 11.67 88.33 91.61 8.39 90.70 10

Test_2 0 3.77 96.23 89.67 10.33 91.51 12.26

Table 9.3: Predition performane for SOM and GTM on the three data sets.

9.6 Logit model

Besides SOM and GTM, a Logit model has been trained to predit, start-

ing from the seven variables listed in table 9.2, the probability of a generi

sample to belong to a safe or a disruptive phase. During the training of

the model, the dihotomous output has been set equal to 0 for safe sam-

ples and 1 for disruptive samples. Thus, the Logit model realizes a mapping

from the input variables to a ontinuous output, whih should assume large

negative values for samples belonging to safe phase and large positive val-

ues for those belonging to disruptive phase. From a preliminary analysis,

it has been observed that, for the majority of safe disharges belonging to

the training phase, the Logit model output (LMO) is always smaller than 0

throughout the disharge. Conversely, for the great majority of the of dis-

rupted disharges the time evolution of the LMO remains at low values for

the majority of the disharge and begins to grow when the pulse approahes

the disruption time. As an example, Fig. 9.4 reports the LMO for a disrup-

tive (No. 21886) and a safe (No. 21718) disharge.

This behavior suggests us to use the logit model as disruption preditor by

introduing a suitable threshold value that disriminates between the safe

and the disruptive phase. Figure 9.5 reports the probability density fun-

tion of LMO for samples belonging to the training set. It an be seen that

for the great majority of safe samples belonging both to safe and disrup-

tive disharges (blue and green line respetively), LMO remains smaller than

0. Conversely, for the majority of disrupted samples, LMO is greater than

zero. Figure 9.5 shows that an LMO value an be set as alarm threshold to

disriminate between safe and disruptive phase. Thus, the adopted alarm

riteria onsists in triggering a disruption alarm when the LMO exeeds the

threshold value. To avoid false alarms sometimes aused by spikes in the

diagnosti signals, a time delay has been introdued that inhibits the alarm
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Figure 9.4: Logit model output (LMO) for a disruptive disharge (upper plot)

and a safe disharge (lower plot).

Figure 9.5: Probability density of LMO for samples belonging to the training set.

Three sample groups are represented: ss of safe disharges (blue), ss of disruptive
disharges (green) and ds of disruptive disharges (red)
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for h samples after the alarm is ativated. The optimum threshold value

has been optimized in the range [1 ÷ 3℄ maximizing the Suessful Rate on

the training set. The parameter h has been optimized in the range [1÷ 10℄.
The best performane of the Logit model as disruption preditor has been

ahieved with an alarm threshold equal to 2.3 and h = 2 (see Table 9.4). It

an be noted that the SRs and FAs obtained with the Logit model are always

slightly worse than those ahieved with the SOM and the GTM, but among

the three methods, the Logit model reahes the best performane on early

detetions.

Method Data set

Disruptive disharges Safe disharges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

Logit

Training 0.80 8.87 90.32 94.51 5.48 93.32 4.84

Test_1 1.61 11.29 87.09 89.68 10.32 88.94 4.84

Test_2 0.90 0.00 99.10 82.28 17.71 86.95 10.8

Table 9.4: Predition performane for the Logit model on the three data sets.

9.7 Combined preditors

Comparing tables 9.3 and 9.4, the three methods ahieve omparable val-

ues of SRs, but no one method an be stated as the most suitable. In fat,

the Logit regressor maintains limited the early detetions, always lower than

10.8%, but false alarms overome 17% (on Test_3); the GTM presents the

best performane on safe disharges, with FA always lower than 10% , but

EDs are higher than 9% on the three data set; the SOM reahes the worst

results on EDs, always higher than 16%, and FAs are higher than 10% on

Test_2 and Test_3. Thus, SOM and GTM have poor results on early de-

tetions where the Logit model ahieves good results. On the ontrary the

Logit model has poor results on false alarms where the GTM obtains good

results.

The omplementary behavior previously pointed out, suggest to ombine

both the SOM and the GTM with the Logit regressor in order to realize

two ombined preditors able to maintain limited early detetions and false

alarms as well as maximizing the SRs. In the ombined preditors the alarm

is triggered only when the trajetory evolving on the map (either SOM or

GTM) stays in disrupted or mixed map units ontaining at least 90% of dis-

ruptive samples for at least h onseutive samples and the LMO is higher

than a suitable alarm threshold. The parameters h and the alarm thresh-
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old have been optimized maximizing the SR on the training set. The alarm

threshold has been optimized in the range [1 ÷ 3℄. The preditor onsisting
in the ombination of the SOM and the Logit model ahieves the best perfor-

mane (see Table 9.5) with an alarm threshold equal to 1.8 and h is evaluated
in eah luster by means of the funtion hSOM = round(−2.6 · DS%+ 262),
where DS% is the perentage of disruptive sample in the luster.

The preditor onsisting in the ombination of the GTM and the Logit

model ahieves the best performane, reported in Table 9.5 too, with an

LMO threshold equal to 1.7 and h is evaluated in eah luster by means the

funtion hGTM = round(1.3 ·DS% + 132).

Method Data set

Disruptive disharges Safe disharges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

SOM Training 1.65 8.26 90.08 98.39 1.61 96.06 5.79

& Test_1 6.56 8.20 85.25 93.55 6.45 91.20 3.28

LOGIT Test_2 0.00 1.85 98.15 91.88 8.12 93.67 6.48

GTM Training 0.00 8.33 91.67 97.74 2.26 96.05 5.00

& Test_1 3.23 11.29 85.48 92.26 7.74 90.32 4.84

LOGIT Test_2 0.00 2.80 97.20 89.67 10.33 91.80 7.48

Table 9.5: Predition performane for the ombined preditors on the three data

set.

Table 9.5 shows that, with respet to SOM and GTM, the orresponding

ombined preditors aomplish slightly better SRs, but it has to be high-

lighted that EDs and FAs signi�antly improve. In partiular, ombining the

Logit model with the SOM allows both early detetions and false alarms to

fall down 7%, instead MAs slightly deteriorate on Trainig set and Test_2.

Combining the Logit model with the GTM allows the early detetions to

remain below 8%, false alarms have been redued only for the training set

and Test_1, no enhanement are attained for Test_2. Regarding MAs, no

onsiderable improvements are ahieved on the three data set.

9.8 Disruption lassi�ation

A preliminary analysis shows that during the disruptive phase di�erent types

of disruptions evolve in di�erent disruptive map regions. As an example, �g-

ure 9.6 reports the time evolution of a density limit disruption (blak traje-

tory) and a beta limit disruption (blue trajetory) on both GTM and SOM.

The blak point represents the trajetory starting point, the yellow point is
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the trajetory ending point. As it is shown by the yellow squares, on both

maps, the density limit disruption ends in the disruptive region on the right

upper orner, instead the beta limit ends in the small disruptive region on

the left map side. This means that on both SOM and GTM, disruptions

happening at low thermal energy (density limit) end in a disruptive region

di�erent from those happening at high thermal energy (beta limit).

Figure 9.6: Time evolution of two disruption types on GTM and SOM; blak tra-

jetory: density limit disruption (No. 28727); blue trajetory: beta limit disruption

(No. 25172).

This preliminary study shows that among the disruptive regions, areas de-

piting the behavior of a ertain disruption lass ould be identi�ed. There-

fore, following the trajetory on the map, it is possible to eventually reognize

non only the proximity of disruption but also the lass it belongs to. These

results on�rm the potentiality of SOM and GTM as disruption lassi�er too,

as well as it is shown in JET database in [5℄.

9.9 Conlusions

This study shows that it is possible to desribe the 7-D AUG operational

spae on a 2-D map (SOM and GTM), where regions with di�erent risk of

disruption an be identi�ed. A riterion has been optimized to assoiate the

risk of disruption of eah map region with a disruption alarm threshold. The
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predition performane of the proposed preditive systems has been evalu-

ated on a test set of disharges oming from experimental ampaigns arried

out at ASDEX Upgrade from May 2011 to November 2012.

The GTM preditor results to have better Suess Rate than the SOM pre-

ditor on both the Test sets, reahing on average ∼ 91%. Furthermore, GTM

has always better performane on Early Detetions and False Alarms than

SOM, although on the test sets both indexes remain above 8%. Conversely,

the SOM ahieves better performane on Missed Alarms than the GTM.

Additionally a statisti preditor has been trained and tested on the same

data set. This preditor, based on a Logisti Regressor model, ahieves

slightly worse performane than SOM and GTM, exept on early detetions,

whih are muh lower than those ahieved by SOM and GTM.

Finally, the good performane of SOM and GTM and the tendeny of Logit

model to limit the early detetions have been exploited ombining eah map

with the statistial model. A new alarm riterion has been optimized, in par-

tiular, the alarm triggered on the map (either SOM or GTM) is ativated

only if Logit Model Output is greater than a ertain threshold.

An overall improvement of the performane has been obtained both for SOM

and GTM. The new preditor involving the SOM gets the best performanes,

on test sets, the SR exeeds 91%, FAs remain lower than 8.2% and EDs reah

at most 6.5%.
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Conlusions and future work

The ativities arried out in the framework of this thesis regarded the devel-

opment, the implementation and the appliation of algorithms for lassi�a-

tion and predition of disruptions in Tokamaks.

Disruptions an expose the plasma faing omponents to severe thermo-

mehanial stresses and ondutors surrounding the vessel to huge eletro-

magneti fores; therefore, it beomes of primary importane to avoid or

mitigate disruptions in order to preserve the integrity of the mahine. This

aspet turns out to be partiularly relevant in design and running of new

experimental devies as ITER.

These onsiderations motivate and still motivate a strong interest in devel-

oping methods and tehniques aimed to minimize both number and severity

of disruptions. But, besides the predition, it is partiularly important to be

able to distinguish among their di�erent types in order to improve avoidane

and mitigation strategies. Sine physial models able to reliably reognize

and predit the ourrene of disruptions are urrently not available, ma-

hine learning tehniques have been exploited as an alternative approah to

disruption predition and automati lassi�ation, both with the appliation

and further development of existing systems and with the investigation of

new approahes.

One of the �rst problems whih have to be addressed when working

with data-based methods is the onstrution of a reliable and representa-

tive database. This is true espeially in fusion, where the harater of high

dimensionality and the huge amount of available observations, poses a se-

rious problem about how to "redue" oherently available data. Therefore,

proper riteria have been used to selet suitable signals downloaded from

JET databases in order to obtain a data set of reliable observations. Finally,

data-redution, based on lustering methods, has been performed to selet

a limited and representative number of samples for the operational spae

mapping. Two separated databases have been built with disharges belong-

ing to the Carbon Wall (CW) on�guration (ampaigns from 2005 to 2009)

and to the new ITER-like Wall (ILW) on�guration (ampaigns from 2011

179
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to 2013). The distintion allowed to analyze what is hanged moving from a

on�guration to the other one in terms of the underlying physis and oper-

ational spae, and this is re�eted in the di�erent behaviour of disruptions,

oherently to what has been found with all the analysis arried out.

One of the most important part of the work regarded the mapping of the

high dimensional operational spae of JET, whih has been desribed and vi-

sualized using di�erent linear projetion methods suh as Grand Tour (GT)

and Prinipal Component Analysis (PCA), and mapped through non-linear

manifold learning tehniques as Self-Organizing Map (SOM) and Generative

Topographi Map (GTM). The potentiality of manifold learning methods has

been disussed showing several types of representations, also with referene

to the data analysis and visualization tools developed for GTM. The power

of the proposed tehniques has also been highlighted through a omparison

with lassial satter plots identifying operational limits and boundaries for

the onsidered database.

In partiular, both SOM and GTM maps an be exploited to identify hara-

teristi regions of the plasma senario and for disriminating between regions

with high risk of disruption and those with low risk of disruption, to quantify

and evaluate the e�etiveness of the mapping itself. In addition, some mea-

sures have been used to evaluate the performane of the proposed methodolo-

gies. To alulate the preision of the lustering over the entire dataset the

average quantization error, a ommon index of the map resolution, has been

applied. Furthermore, to ontrol the onservation of topology two di�erent

aspets have been analyzed, i.e., the trustworthiness of the projeted neigh-

borhood and the preservation of the resulting neighborhood. Moreover, an

outlier analysis has been performed on the available data in order to quantify

goodness and e�etiveness of the projetion.

Regarding the results ahieved with the mapping, both the SOM and the

GTM presents a large safe region well separated from some disruptive re-

gions by transition regions, whih onsists of map units that ontains both

safe and disruptive samples, and empty regions. In partiular GTM model

turned out to have both higher apability of disriminate between safe and

disruptive samples (less than 10% of the samples are projeted in transition

regions) and better performane in the mapping.

Given the results in the mapping of JET 10-dimensional spae, SOM

and GTM potentialities have been extensively investigated and an algorithm

for automati lassi�ation has been developed for both the methods. The

proposed approah for the disrimination of disruption types onsists of iden-

tifying harateristi regions in the operational spae where the plasma un-

dergoes a disruption.

A relevant part of the ativities arried out in the framework of this thesis
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has been spent in the analysis of the di�erent types of disruptions that an

our in JET, making referene to the manual lassi�ation made available

by physiists, where spei� hains of events have been deteted and used to

lassify disruptions, grouping those that follow spei� paths.

The haraterization of the operational spae in terms of the di�erent dis-

ruption lasses may lead to better overall understanding and more foussed

prevention and mitigation methods. The maps obtained with SOM and

GTM algorithms have shown to self-organize in suh a way that the disrup-

tions whih belong to the same lass tend to aggregate, de�ning in this way

regions where a ertain lass results to be predominant with respet to the

others. Eah disruption has been projeted on the maps, and the proba-

bilities of belonging to the di�erent disruption lasses have been monitored

during the time evolution, returning, among the seven onsidered lasses,

the one whih the disrupted pulse more likely belongs to. In order to per-

form the lassi�ation, a majority voting algorithm has been applied the the

lass-membership, omputed for eah shot. The algorithm assoiates to eah

sample a probability to belong to the seven lasses. The suess rate of GTM

is high for all the onsidered lasses (above 97%), reahing in some ases even

the perentage of 100%.

After the ampaign in 2009, JET installed the new ITER Like wall (ILW).

The �rst attempt has been to projet the disruptions of the ILW ampaigns

onto the GTM map trained with the CW disharges; the lassi�ation perfor-

mane for the new disruptions signi�antly deteriorated for ertain lasses.

Thus, the disruption lasses with the ILW have been deeply analyzed and

ompared with those in the CW JET ampaigns. In partiular, the probabil-

ity density funtions of the di�erent plasma parameters learly highlighted

the di�erent behavior of a new lass, an impurity type due to high-Z impurity

aumulation in the ore of the plasma olumn. Instead, in the onsidered

period, some disruption lasses present in the CW data bases are no longer

present in the ILW data base, as those due to too strong internal transport

barrier and the ones due to Greenwald limit.

The performane of the new ILW GTM lassi�er has been tested in onjun-

tion with APODIS, a predition system working on-line at JET, simulating

the appliation in real time, that is, by synhronizing a time windows of 32

and 64 ms in advane with respet to the time in whih APODIS triggers

the alarm. By applying the majority voting algorithm to the lass member-

ship in the onsidered time window, the predition suess rate is still quite

high (above 90%) aording to the manual lassi�ation. The performane

slightly worsened when the new impurity type is introdued, beause in er-

tain ases it turns out to be quite di�ult to distinguish this new lass from

the previously de�ned impurity ontrol problem lass.
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Furthermore, in order to validate and analyze the obtained results, another

referene lassi�er has been developed based on k-NN whih uses as kernel

the Mahalanobis distane. The performane of the referene lassi�er is still

above 90%, but, also for it, the suess rate deteriorates when the new IMC

lass is introdued.

Finally, in order to verify the reliability of the performed lassi�ation, a

onformal preditor has been developed, whih is based on non-onformity

measures. The preliminary results indiate the suitability of the onformal

preditors to assess the reliability of the GTM lassi�ation even if the al-

ulation time allows their use only in an o�-line fashion.

GTMs potentiality has also been exploited for the predition of disrup-

tions at ASDEX Upgrade: a 2-D GTM has been built to represent the 7D

AUG operational spae on the base of disharges performed between May

2007 and April 2011. As it has been obtained in the ase of JET, the GTM

learly proves to be able to separate non-disruptive and disruptive states of

plasma. Therefore, likewise the SOM, the GTM an be used as a disrup-

tion preditor by traking the temporal sequene of the samples on the map,

depiting the movement of the operating point during a disharge. Various

riteria have been studied to assoiate the risk of disruption of eah map

region with a disruption alarm threshold. The predition performane of the

proposed preditive system has been evaluated on a set of disharges oming

from experimental ampaigns arried out at AUG from May 2011 to Novem-

ber 2012.

The GTM preditor ahieves the best overall performane, above the 91% on

the onsidered Test sets. Furthermore, GTM has always better performane

on Early Detetions and False Alarms than SOM, although, on the test sets

both indexes remain above 8%. Conversely, the SOM ahieves better perfor-

mane on Missed Alarms than the GTM.

Additionally, a statisti preditor has been trained and tested on the same

data set. This preditor, based on a Logisti Regressor model, ahieves

slightly worse performane than SOM and GTM, exept on early detetions,

whih are muh lower than those ahieved by SOM and GTM.

Therefore, the good performane of SOM and GTM and the tendeny of

Logit model to limit the early detetions have been exploited ombining

eah map with the statistial model. A new alarm riterion has been opti-

mized, in partiular, the alarm triggered on the map (either SOM or GTM)

is ativated only if the Logit model output is greater than a ertain thresh-

old, ahieving an overall improvement of the performane. The ombined

preditor involving the SOM gets the best performanes, on test sets, the

Suess Rate exeeds 91%, False Alarms remain lower than 8.2% and Early

Detetions reah at most 6.5%.
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The high performane of the proposed methods gives rise to the per-

spetive of a deployment of these tools in real time: regarding this point,

even if a porting of the Matlab odes should be needed for the integration

in the real time frameworks, the suitability for real time appliations has

been already assessed. Furthermore, the algorithms desribed in this work

have been developed in a tool for Matlab whih allows, given a database, to

perform all the analysis presented in this thesis almost automatially, from

the data-redution, going through the mapping of operational spaes up to

the projetion of new data and the assessment of mapping performane.

This tehniques represent a powerful tool for data-analysis and ould be very

useful not only in the framework of disruption predition and lassi�ation,

but also in other �elds, suh as, for example, one would like to distinguish

or disriminate a partiular behavior or plasma state. To onlude, still re-

garding the future perspetives, mahine learning tools are also produing

very interesting results in the omparative analysis of di�erent fusion devies

operational spaes, as in the ase of JET and ASDEX Upgrade, on the route

of developing preditors apable of extrapolating from one devie to another,

as foreseen in the framework of a ross-mahine approah.
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