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Introdu
tion

The physi
ist Andreevi
h Artsimovi
h in the 1970 wrote that "thermonu
lear

[fusion℄ energy will be ready when mankind needs it". Considering the a
tual

world energy situation and the e�e
t on the environment due to the present

harnessing of the di�erent sour
es of energy, the hope is that time for fusion

is �nally arrived.

Ba
kground and Motivation

The a
tivities 
arried out in the framework of this thesis regarded the devel-

opment, implementation and appli
ation of algorithms for 
lassi�
ation and

predi
tion of disruptions in Tokamaks.

The balan
e of plasmas in a magneti
 �eld 
an be des
ribed by the theory

of magneto-hydro-dynami
 (MHD). MHD instabilities are among the most

serious fa
tors that limit fusion devi
es operation in magneti
 
on�nement


on�gurations. When they o

ur on a large s
ale 
an degrade the perfor-

man
e of the plasma and lead to loss of 
on�nement and 
ontrol.

A disruption is a sudden loss of stability or 
on�nement of tokamak

plasma; it is a 
riti
al event in whi
h the plasma energy is lost within a

time span of few millise
onds exposing the plasma fa
ing 
omponents to se-

vere thermo-me
hani
al stresses and 
ondu
tors surrounding the vessel to

huge ele
tromagneti
 for
es. Therefore, it be
omes of primary importan
e

to avoid or mitigate disruptions in order to preserve the integrity of the ma-


hine. This aspe
t and the understanding of disruptive phenomena play a

key role in design and running of new experimental devi
es as ITER, 
ur-

rently under 
onstru
tion in Cadara
he (Fran
e), whi
h will have the task

of demonstrating the feasibility of fusion energy produ
tion from a te
hni
al

and engineering point of view.

These 
onsiderations motivate a strong interest in developing methods

and te
hniques aimed to minimize both number and severity of disruptions.

Furthermore when a disruption o

urs it would be parti
ularly important to

be able to distinguish among its di�erent types in order to improve avoidan
e

i
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and mitigation strategies. Sin
e physi
al models able to reliably re
ognize

and predi
t the o

urren
e of disruptions are 
urrently not available, the re-

sear
h 
arried out �ts in the broad framework of ma
hine learning te
hniques

that have been exploited as an alternative approa
h to disruption predi
tion

and automati
 
lassi�
ation.

Promising approa
hes to predi
tion and 
lassi�
ation are represented by

the so-
alled "data-based" methods: to this purpose, existing systems have

been applied and further developed and new approa
hes have been investi-

gated.

The mentioned a
tivity has been 
arried out in 
ollaboration with the

University of Cagliari and European Resear
h Centers for nu
lear fusion,

taking as 
ase study some of the most important experimental ma
hines

su
h as JET and ASDEX Upgrade (AUG), with several months of resear
h

spent at the Culham S
ien
e Centre.

List of publi
ations and 
ontributions of this the-

sis

[1℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-
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[2℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Automati
 disruption 
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ation based on manifold learning for

real-time appli
ations on JET", Nu
lear Fusion 53 093023, 2013.

[3℄ A. Pau, B. Cannas, A. Fanni, A. Murari, G. Sias, and JET-EFDA Con-

tributors, "Advan
es in disruption 
lassi�
ation at JET", 8th Workshop on
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essing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).
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tion

methods for disruption predi
tion at ASDEX Upgrade", 8th Workshop on Fu-
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(Belgium).
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tributors, "Overview of manifold learning te
hniques for the investigation of
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-

trol. Fusion - "Physi
s-based optimization of plasma diagnosti
 information"

Cluster.

[6℄ A. Murari, J. Vega, P. Boutot, B. Cannas, S. Dormido-Canto, A. Fanni,

J. M. Lopez, R. Moreno, A. Pau, G. Sias, J. M.Ramirez, G. Verdoolaege,

ASDEX Upgrade Team and JET EFDA 
ontributors, "Latest Developments

in Data Analysis Tools for Disruption Predi
tion and for the Exploration of

Multima
hine Operational Spa
es", Pro
. of 24th IAEA Fusion Energy Con-

feren
e Abstra
ts, San Diego, USA, 8-13 O
tober 2012.

One of the most demanding a
tivities, espe
ially in terms of required time,

has been the building of representative and reliable databases whi
h results

to be fundamental for su

essfully apply data-driven methods. For AUG a

database was already available and it is 
onstantly updated by the resear
hers

of University of Cagliari.

Regarding JET, in order to analyze and investigate its high-dimensional

operational spa
e, a reliable database has been built up on the base of 10

real time signals, whi
h are representative of the disruptive behavior of the

plasma. For the Carbon Wall (CW) data 
omes from plasma dis
harges

sele
ted from JET 
ampaigns from 2005 to 2009, whereas ITER-like Wall

(ILW) database is based on the same set of signals belonging to the 
am-

paigns from 2011 to 2013.

Several 
riteria and statisti
al analysis have been 
onsidered in order to

properly sele
t a redu
ed representative number of dis
harges. Di�erent data

redu
tion algorithm have been developed in order to obtain a reasonable

amount of data, keeping at the same time the diversity and the representa-

tiveness of data in statisti
al terms. Only non-intentional disruptions have

been 
onsidered with plasma 
urrent above 1MA. The resulting CW database

is 
omposed of 243 disruptions, whereas ILW database 
onsists of 149 dis-

ruptions, where ea
h signal has been sampled at a frequen
y of 1 kHz.

The high dimensional operational spa
e of JET has been analyzed and

visualized using di�erent linear proje
tion methods su
h as Grand Tour (GT)

and Prin
ipal Component Analysis (PCA), and mapped through non-linear

manifold learning te
hniques as Self-Organizing Map (SOM) and Genera-

tive Topographi
 Map (GTM). The use of the "Manifold Learning" �nds its

motivation in the fa
t that high-dimensional data 
an lie on an embedded,

eventually non-linear, low-dimensional manifold, whi
h 
an be easily visual-

ized and understood if we 
onsider a 2 or 3 dimensional spa
e. Hen
e, in this

PhD Thesis, Manifold Learning methods have been su

essfully applied both

for 
lassi�
ation and predi
tion of disruptions, showing their potentiality in
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the analysis and the visualization of the operational spa
e.

The SOM and/or GTM maps 
an be exploited to identify 
hara
teristi


regions of the plasma s
enario and for dis
riminating between regions with

high risk of disruption and those with low risk of disruption. This part of the

work has been supported with the implementation of tools for data analysis

and data visualization with whi
h it is also possible to quantify and eval-

uate the e�e
tiveness of the mapping itself. The results show quite 
learly

that nonlinear manifold learning te
hniques are more suitable for mapping

the JET high dimensional operational spa
e; in parti
ular GTM exhibits a

higher 
apability of dis
riminating between safe and disruptive regions [1].
An important result of this analysis is represented by the fa
t that the two

nonlinear methods seem to 
onverge on the same manifold, whi
h means that

we are a
tually looking at the intrinsi
 properties hidden in the high dimen-

sional data.

The tools developed for data analysis and visualization, in parti
ular for

GTMs, 
ould be parti
ularly useful in the study of the operational spa
e

where the relevant physi
s takes pla
e, allowing the per
eption of eventual

similarities among the di�erent variables. The identi�
ation of dependen
ies

and 
omplex relations among the variables is made possible by analysis and


omparison of similar patterns in the relative 
omponent distributions of the

input variables onto the 2-D maps.

By applying su
h te
hniques, another relevant part of the Ph.D. a
tivities

has been spent in the analysis of the di�erent types of disruption that 
an

o

ur in JET, making referen
e to the manual 
lassi�
ation that has been

done in [P.C. de Vries, et al., Nu
l. Fusion 51 (2011) 053018 ℄, where spe
i�



hains of events have been dete
ted and used to 
lassify disruptions, grouping

those that follow spe
i�
 paths. The 
lassi�
ation is part of a parti
ularly


omplex s
enario whose analysis has required a 
onsiderable amount of time.

The 
hara
terization of the operational spa
e in terms of the di�erent dis-

ruption 
lasses may lead to better overall understanding and more fo
ussed

prevention and mitigation methods. A preliminary analysis 
arried out both

with SOMs and GTMs has shown that the maps seem to self-organize in su
h

a way that the disruptions whi
h belong to the same 
lass tend to aggregate,

de�ning in this way regions where a 
ertain 
lass results to be predominant

with respe
t to the others.

As des
ribed in [2], the potentiality of the GTM mapping of the JET

operational spa
e has been exploited to develop an automati
 disruption 
las-

si�
ation of seven disruption 
lasses o

urred with the Carbon Wall. Ea
h

disruption is proje
ted on the map and the probabilities of belonging to the

di�erent disruption 
lasses are monitored during the time evolution, return-

ing the 
lass that the disrupted pulse more likely belongs to. Using the GTM
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trained on the CW dataset with ILW dis
harges sele
ted from the JET ILW


ampaigns C28-C30 signi�
antly deteriorates the 
lassi�
ation performan
e,

parti
ularly on 
ertain disruption 
lasses. Hen
e, a new GTM has been built

to represent the new operational spa
e of JET. Using this map with all the

disruptions o

urred in these last 
ampaigns the very high 
lassi�
ation per-

forman
e is 
on�rmed and therefore, the prospe
ts for the deployment of this

tool in real time are very promising [3].
GTMs potentiality has also been exploited for the predi
tion of disrup-

tions at ASDEX Upgrade [4]: a 2-D-GTM has been built to represent the

7D AUG operational spa
e on the base of dis
harges performed between May

2007 and April 2011. As it has been obtained in the 
ase of JET, the GTM


learly proves to be able to separate non-disruptive and disruptive states of

plasma. Therefore, likewise the SOM, the GTM 
an be used as a disrup-

tion predi
tor by tra
king the temporal sequen
e of the samples on the map,

depi
ting the movement of the operating point during a dis
harge. Various


riteria have been studied to asso
iate the risk of disruption of ea
h map

region with a disruption alarm threshold. The predi
tion performan
e of the

proposed predi
tive system has been evaluated on a set of dis
harges 
oming

from experimental 
ampaigns 
arried out at AUG from May 2011 to Novem-

ber 2012.

Some measures have been used to evaluate the performan
e of the pro-

posed methodologies. To 
al
ulate the pre
ision of the 
lustering over the

entire dataset, the average quantization error, a 
ommon index of the map

resolution, has been applied. Moreover, to 
ontrol the 
onservation of topol-

ogy two di�erent aspe
ts have been analyzed, i.e., the trustworthiness of the

proje
ted neighborhood and the preservation of the resulting neighborhood.

Moreover, an outlier analysis has been performed on the available data in

order to quantify goodness and e�e
tiveness of the proje
tion [5].
In the last years, signi�
ant e�orts have been devoted to the development

of advan
ed data analysis tools to both predi
t the o

urren
e of disruptions

and to investigate the operational spa
es of devi
es, with the long term goal

of advan
ing the understanding of the physi
s of these events and to pre-

pare for ITER. Manifold learning tools are also produ
ing very interesting

results in the 
omparative analysis of JET and AUG operational spa
es, on

the route of developing predi
tors 
apable of extrapolating from one devi
e

to another, as foreseen in the framework of 
ross-ma
hine approa
h [6].
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Outline of the Thesis

In 
hapter 1 the perspe
tives of fusion in the world energy 
ontext as an

almost unlimited sour
e of energy for the future are dis
ussed, with parti
u-

lar referen
e to the role of magneti
 
on�nement. Furthermore, the bases of

fusion rea
tions have been introdu
ed.

In 
hapter 2 the main aspe
ts of plasma stability in tokamaks 
on�gu-

rations are des
ribed with the aim to provide an adequate referen
e for all

the dis
ussions of the following 
hapters. In parti
ular, the main parameters

related to plasma stability, whi
h have been used for the 
onstru
tion of the

databases, have been introdu
ed.

The 
hapter 3 is fo
used on the des
ription of the operational limits

with referen
e to the main quantities whi
h should be maximized to im-

prove plasma performan
e. Everything, also in the previous 
hapters, has

been framed to introdu
e the key problems whi
h this thesis has addressed:

analysis, predi
tion and 
lassi�
ation of disruptions. After the main 
onsid-

erations about the operational limits, the main phases, the 
auses and the


onsequen
es of disruptions have been dis
ussed, trying to integrate the sta-

bility 
on
epts introdu
ed in the previous 
hapter.

The 
hapter 4 is �nalized to provide an insight of the Ma
hine Learn-

ing methods whi
h represent the starting point of all the analysis and algo-

rithms implemented for disruption predi
tion and 
lassi�
ation. Today the

large amount of data available from fusion experiments and their 
hara
ter

of high-dimensionality make parti
ularly di�
ult handling, pro
essing, un-

derstanding and extra
ting properly what is really important among all the

available information. Ma
hine Learning allows to deal with the problem in

e�
ient way. Therefore, a framework of all the te
hniques exploited for the

analysis has been provided, with parti
ular referen
e to the Manifold Learn-

ing algorithms as Self Organizing Maps (SOMs) and Generative Topographi


Mappings (GTMs). Also referen
e methods su
h as k-Nearest Neighbor (k-

NN) or more re
ent methods su
h as Conformal Predi
tors, exploited for

validation and reliability assessment purposes, have been des
ribed.

In 
hapter 5 the state of the art of ma
hine learning te
hniques ap-

plied to disruption predi
tion and 
lassi�
ation is presented, des
ribing in

parti
ular the main appli
ations with the widely employed Neural Networks,

su
h Multi Layer Per
eptrons (MLPs), Support Ve
tor Ma
hines (SVMs)

and Self Organizing Maps (SOMs), and statisti
al methods su
h as Dis
rim-

inant Analysis or Multiple Threshold te
hnique. Strengths and weaknesses

have also been dis
ussed with referen
e to a possible solution to over
ome

the drawba
ks of these methods: the multi-ma
hine approa
h.

Chapter 6 is dedi
ated to the des
ription of the databases used for all
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the analysis presented in the following 
hapters. In parti
ular, the statisti
al

analysis and the data-redu
tion algorithms that have been needed to build

a reliable and statisti
ally representative database have been dis
ussed in

detail.

The last three 
hapters 
ontain all the analysis and all the algorithms im-

plemented for the mapping of the operational spa
e, disruption 
lassi�
ation

and predi
tion. In 
hapter 7 the mapping of the JET operational spa
e

is presented. The �rst se
tions deal with proje
tions and data-visualization

with linear proje
tion methods su
h as Grand Tour (GT) and Prin
ipal Com-

ponent Analysis (PCA). In the 
entral part, the same aspe
ts have been taken

into a

ount by exploiting nonlinear Manifold Learning te
hniques, SOM and

GTM, on the base of whi
h a detailed analysis of the operational spa
e has

been performed. Su
h analysis, showing the potentiality of the methods, has

been performed, regarding GTM model, through the implementation of a

dedi
ated tool. Finally, an outliers' analysis and performan
e indexes appo-

sitely proposed have been 
onsidered for evaluating the overall performan
e

of the mapping.

In the 
hapter 8 the developed automati
 disruption 
lassi�
ation for

JET has been des
ribed. The 
hapter is divided in two parts: the �rst one

des
ribes the 
lassi�
ation of disruptions belonging to the Carbon Wall (CW)


ampaigns, whereas in the se
ond part the 
lassi�
ation of disruptions with

the ITER-like Wall (ILW) is framed in the assessment of the suitability of the

automati
 
lassi�er for real time appli
ations, in 
onjun
tion with predi
tion

systems working online at JET. The reliability of the results has been vali-

dated by 
omparison with a k-NN based referen
e 
lassi�er and through the

re
ent 
onformal predi
tors, with whi
h is possible to provide, in addition to

the predi
tion/
lassi�
ation, the related level of 
on�den
e.

Chapter 9 is dedi
ated to the disruption predi
tion at ASDEX Upgrade.

The �rst part is related to the des
ription of the database and the data-

redu
tion te
hnique used to sele
t a representative and balan
ed dataset.

Self-Organizing Map and the Generative Topographi
 Mapping have been

exploited to map ASDEX Upgrade operational spa
e and to build a disrup-

tion predi
tor, introdu
ing at the same time their potentiality for disruptions


lassi�
ation. Furthermore, the use of this two methods 
ombined with a Lo-

gisti
 model has been proposed to realize a predi
tive system able to exploit

the 
omplementary behaviors of the two approa
hes, improving the overall

performan
e in predi
tion.
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Prefazione

Il �si
o Andreevi
h Artsimovi
h nel 1970 s
risse 
he "l'energia da fusione

nu
leare sarà disponibile quando l'umanità ne avrà bisogno". Considerando

l'attuale s
enario energeti
o mondiale e l'impatto sull'ambiente dovuto allo

sfruttamento delle diverse risorse energeti
he, la speranza è 
he quel momento

sia �nalmente arrivato.

Ba
kground e Motivazione

Le attività svolte nell'ambito di questa tesi hanno riguardato lo sviluppo,

l'implementazione e l'appli
azione di algoritmi per la 
lassi�
azione e la predi-

zione di disruzioni nei Tokamak.

L'equilibrio dei plasmi nei 
ampi magneti
i può essere des
ritto dalla teo-

ria magneto-idro-dinami
a (MHD). Le instabilità MHD sono tra i fattori 
he

limitano più seriamente le operazioni nelle ma

hine a fusione a 
on�namento

magneti
o.

Una disruzione è un'improvvisa perdita di stabilità e di 
on�namento nei

tokamak; è un evento 
riti
o durante il quale l'energia immagazzinata nel

plasma viene persa nell'ar
o di po
hi millise
ondi, esponendo i 
omponenti

della parete interna della 
amera da vuoto a severi stress termo-me

ani
i,

e i 
onduttori 
ir
ostanti a enormi forze elettromagneti
he. Quindi diventa

di primaria importanza l'avoidan
e e la mitigazione delle disruzioni al �ne di

preservare l'integrità della ma

hina. Questo aspetto e la 
omprensione dei

fenomeni disruttivi gio
ano un ruolo 
hiave nel progetto e nel funzionamento

delle nuove ma

hine sperimentali 
ome ITER, attualmente in 
ostruzione

a Cadara
he (Fran
ia), la quale avrà la �nalità di dimostrare la fattibilità

te
ni
a ed ingegneristi
a della produzione di energia da fusione.

Queste 
onsiderazioni motivano un forte interesse nello sviluppo di metodi

e te
ni
he atti a minimizzare sia il numero 
he l'entità delle disruzioni. In-

oltre, quando si veri�
a una disruzione, sarebbe veramente importante rius-


ire a distinguere tra i diversi tipi di disruzione, al �ne di migliorare le strate-

gie di avoidan
e e mitigazione. Dal momento 
he ad oggi non esistono mod-

ix
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elli �si
i in grado di ri
onos
ere e predire in maniera a�dabile l'arrivo di una

disruzione, la ri
er
a portata avanti in questi anni si integra nel più ampio


ontesto delle te
ni
he di Ma
hine Learning, le quali sono state utilizzate


ome appro

io alternativo alla predizione ed alla 
lassi�
azione automati
a

delle disruzioni.

Appro

i promettenti alla predizione ed alla 
lassi�
azione sono rapp-

resentati dai 
osidetti appro

i "data-based": a questo proposito sono state

appli
ate e ulteriormente sviluppate diverse te
ni
he, e si è indagato su nuovi

appro

i.

Le attività 
itate sono state svolte in 
ollaborazione 
on l'Università di

Cagliari e importanti 
entri di ri
er
a europei sulla fusione, prendendo in

esame al
une delle più importanti ma

hine sperimentali, quali il JET (Regno

Unito) e ASDEX Upgrade (Germania), 
on diversi mesi tras
orsi al Culham

S
ien
e Centre (Abingdon, Regno Unito).

Elen
o delle pubbli
azioni e dei 
ontributi legati

alla tesi

[1℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Manifold learning to interpret JET high-dimensional operational

spa
e", Plasma Phys. Control. Fusion 55 045006, 2013.

[2℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Automati
 disruption 
lassi�
ation based on manifold learning for

real-time appli
ations on JET", Nu
lear Fusion 53 093023, 2013.

[3℄ A. Pau, B. Cannas, A. Fanni, A. Murari, G. Sias, and JET-EFDA Con-

tributors, "Advan
es in disruption 
lassi�
ation at JET", 8th Workshop on

Fusion Data Pro
essing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).

[4℄ G. Sias, R. Aledda, B. Cannas, A. Fanni, A. Pau, G. Pautasso, and

ASDEX Upgrade Team, "Data visualization and dimensionality redu
tion

methods for disruption predi
tion at ASDEX Upgrade", 8th Workshop on Fu-

sion Data Pro
essing, Validation and Analysis, November 4-6, 2013, Ghent

(Belgium).

[5℄ B. Cannas, A. Fanni, A. Murari, A. Pau, G. Sias, and JET-EFDA Con-

tributors, "Overview of manifold learning te
hniques for the investigation of
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disruptions on JET", JET Pin-board, to be submitted to Plasma Phys. Con-

trol. Fusion - "Physi
s-based optimization of plasma diagnosti
 information"

Cluster.

[6℄ A. Murari, J. Vega, P. Boutot, B. Cannas, S. Dormido-Canto, A. Fanni,

J. M. Lopez, R. Moreno, A. Pau, G. Sias, J. M.Ramirez, G. Verdoolaege,

ASDEX Upgrade Team and JET EFDA 
ontributors, "Latest Developments

in Data Analysis Tools for Disruption Predi
tion and for the Exploration of

Multima
hine Operational Spa
es", Pro
. of 24th IAEA Fusion Energy Con-

feren
e Abstra
ts, San Diego, USA, 8-13 O
tober 2012.

Una delle attività più onerese, spe
ie in termini di tempo, è stata la 
ostruzione

di un database a�dabile e rappresentativo, 
he risulta essere fondamentale

per un'appli
azione 
oerente dei metodi "data-driven". Nel 
aso di ASDEX

Upgrade un database era già disponibile e 
ostantemente aggiornato da ri
er-


atori dell'Università di Cagliari.

Per quanto riguarda il JET inve
e, al �ne di analizzare il suo spazio op-

erativo ad altà dimensionalità, è stato 
ostruito un database a�dabile sulla

base di die
i segnali disponibili in tempo reale, 
he sono rappresentativi del


omportamento disruttivo del plasma. Per la parete in 
arbone (CW), i dati

provengono dalle 
ampagne sperimentali 
he vanno dal 2005 al 2009, mentre

per quanto riguarda la parete metalli
a (ILW), il database è basato sugli

stessi segnali relativi agli esperimenti delle 
ampagne dal 2011 al 2013.

Sono inoltre stati valutati diversi 
riteri e analisi statisti
he al �ne di se-

lezionare in maniera appropriata un numero ridotto di s
ari
he. Sono inoltre

sono stati sviluppati diversi algoritmi di data-redu
tion al �ne di ottenere

una quantità di dati ragionevole, preservando al tempo stesso la diversità e

la rappresentatività del database in termini statisti
i. Sono state 
onsiderate

uni
amente le disruzioni non intenzionali 
on una 
orrente di plasma non

inferiore ad 1MA. Il risultante database per la parete in 
arbone è 
omposto

da 243 disruzioni, mentre quello relativo alla parete metalli
a é 
ostituito da

149 impulsi disrotti, per i quali 
ias
un segnale è 
ampionato alla frequenza

di 1kHz.

L'analisi e la visualizzazione dello spazio ad alta dimensionalità di JET è

stata ottenuta sia 
on metodi di proiezione lineari, quali il Grand Tour (GT)

e la Prin
ipal Component Analysis (PCA), 
he 
on metodi di proiezione non

lineari, detti di "Manifold Learning", quali la Self Organizing Maps (SOM) e

le Generative Topographi
s Mappping (GTM). L'uso del Manifold Learning

trova la sua ragion d'essere nel fatto 
he dati ad alta dimensionalità possono

gia
ere in una struttura o spazio eventualmente non lineare a minore dimen-

sionalità 
he può essere fa
ilmente visualizzato e "
ompreso" se si 
onsidera



xii PREFAZIONE

uno spazio 2-D o 3-D. Dunque, in questa tesi, le te
ni
he di Manifold Learn-

ing sono state appli
ate 
on su

esso per la predizione e la 
lassi�
azione di

disruzioni, evidenziando in parti
olare le loro potenzialità nell'analisi e nella

visualizzazione degli spazi operativi.

Le mappe SOM e GTM possono essere utilizzate per identi�
are regioni


aratteristi
he e per dis
riminare tra quelle 
on alto e quelle 
on basso ris
hio

di disruzione. Questa parte del lavoro è stato supportata 
on l'implementazione

di strumenti per l'analisi e la visualizzazione dei dati, 
on 
ui è an
he possi-

bile quanti�
are e valutare l'e�
a
ia del mapping stesso. I risultati mostrano


hiaramente 
he le te
ni
he di Manifold Learning non lineari si dimostrano

più adeguate nel mapping dello spazio operativo di JET ad alta dimensional-

ità; in parti
olare, la GTM presenta una maggiore 
apa
ità di dis
riminazione

tra regioni "safe" e regioni disrotte [1]. Un importante risultato di questa

analisi è rappresentato dal fatto 
he i due metodi non lineari sembrano 
on-

vergere nell'identi�
azione dello stesso manifold, il 
he signi�
a 
he stiamo

realmente osservando le proprietà intrinse
he nas
oste nei dati ad alta di-

mensionalità.

Il tool sviluppato per la data-analysis e la visualizzazione, in parti
olare

per le GTM, potrebbe essere parti
olarmente utile nello studio dello spazio

operativo dove la �si
a di rilievo, relativamente ai fenomeni 
onsiderati, ha

luogo, 
onsentendo l'individuazione di eventuali similarità tra le diverse vari-

abili. L'identi�
azione di parti
olari dipendenze è resa possibile dall'analisi

di pattern simili nella distribuzione relativa delle variabili in ingresso al sis-

tema nelle mappe 2-D.

Una parte rilevante delle attività di dottorato è stata spesa appli
ando

queste te
ni
he all'analisi dei diversi tipi di disruzioni 
he possono veri�
arsi

al JET, fa
endo riferimento alla 
lassi�
azione manuale 
he è des
ritta in

[P.C. de Vries, et al., Nu
l. Fusion 51 (2011) 053018 ℄, dove spe
i�
he 
atene

di eventi sono state individuate e utilizzate per 
lassi�
are le disruzioni. La


lassi�
azione è parte di uno s
enario parti
olarmente 
omplesso per la 
ui

analisi è stata molto onerosa in termini di tempo. La 
aratterizzazione dello

spazio operativo in termini di diverse 
lassi di disruzione può portare ad una

migliore 
omprensione globale del fenomeno, non
hè a metodi di prevenzione

e mitigazione più mirati. Un'analisi preliminare 
ondotta sia 
on SOM 
he


on GTM ha dimostrato 
he le mappe sembrano auto-organizzarsi in modo

tale 
he le disruzioni 
he appartengono alla stessa 
lasse tendono ad aggre-

garsi, de�nendo in questo modo delle regioni in 
ui una determinata 
lasse

risulta essere predominante rispetto alle altre.

Come des
ritto in [2], le potenzialità del mapping dello spazio operativo

di JET 
on le GTM, possono essere sfruttate per sviluppare una 
lassi�-


azione automati
a relativamente alle sette 
lassi di disruzione 
onsiderate
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per la parete in 
arbone. Ogni disruzione viene proiettata sulla mappa e le

probabilità di appartenenza alle diverse 
lassi vengono monitorate durante

l'evoluzione nel tempo, restituendo la 
lasse più probabile per l'impulso 
on-

siderato. Utilizzando la stessa mappa GTM per s
ari
he 
on la parete metal-

li
a (ILW), selezionate dalle 
ampagne sperimentali C28-C30, si è trovato


he le prestazioni in 
lassi�
azione si deteriorano in modo signi�
ativo, spe
ie

per quanto riguarda al
une 
lassi di disruzione. Quindi, è stata 
ostruita una

nuova mappa GTM per rappresentare il nuovo spazio operativo del JET. Uti-

lizzando questa mappa sulla totalità delle disruzioni veri�
atesi nelle ultime


ampagne, si ritrovano prestazioni molto elevate in 
lassi�
azione, e quindi

le prospettive per l'utilizzo di questo strumento in tempo reale, sono molto

promettenti [3].
Le potenzialità delle GTM sono state utilizzate an
he per la predizione

delle disruzioni ad ASDEX Upgrade [4]: è stata realizzata una mappa GTM

2-D per rappresentare lo spazio operativo 7D di ASDEX relativamente alle

s
ari
he e�ettuate tra maggio 2007 e aprile 2011. Come si è ottenuto nel


aso del JET, la GTM dimostra 
hiaramente di essere in grado di dis
rim-

inare tra gli stati disruttivi e quelli non disruttivi del plasma. Pertanto,

analogamente alla SOM, la GTM può essere usata 
ome predittore di dis-

ruzioni monitorando la sequenza temporale dei 
ampioni sulla mappa, 
he

ra�gura l'evoluzione del punto di lavoro durante una s
ari
a. Diversi 
riteri

sono stati studiati per asso
iare il ris
hio di disruzione di ogni regione della

mappa 
on una spe
i�
a soglia di allarme. Le performan
e del sistema pred-

ittivo proposto sono state valutate su una serie di s
ari
he provenienti dalle


ampagne sperimentali e�ettuate ad ASDEX da maggio 2011 al novembre

2012.

Per valutare le prestazioni delle metodologie di mapping proposte sono

stati utilizzati al
uni indi
atori. Per 
al
olare la pre
isione del 
lustering è

stato valutato l'errore medio di quantizzazione sull'intero insieme di dati,

un indi
e 
omunemente utilizzato per la valutazione della risoluzione delle

mappe. Inoltre, per veri�
are la 
onservazione della topologia, sono stati

analizzati due aspetti di�erenti, ossia l'a�dabilità del vi
inato mappato e

la 
onservazione del vi
inato originale. Inoltre, è stata eseguita sui dati

disponibili l'analisi degli outlier, al �ne di quanti�
are la bontà e l'e�
a
ia

della proiezione [5].
Negli ultimi anni sono stati dedi
ati notevoli sforzi allo sviluppo di stru-

menti di analisi avanzata dei dati, sia per predire il veri�
arsi di una dis-

ruzione, sia per studiare gli spazi operativi delle ma

hine, 
on l'obiettivo a

lungo termine di far progredire la 
omprensione della �si
a 
he sta dietro a

questi eventi in vista di ITER. Gli strumenti di Manifold Learning stanno

produ
endo risultati molto interessanti an
he per quanto 
on
erne l'analisi
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omparativa degli spazi operativi di JET e ASDEX, in relazione alla sviluppo

di predittori in grado di estrapolare da un ma

hina ad un altra, 
ome pre-

visto nell'ambito della strategia 
ross-ma
hine [6].

Outline della Tesi

Nel 
apitolo 1 vengono dis
usse le prospettive della fusione nel 
ontesto

energeti
o mondiale 
ome fonte quasi illimitata di energia per il futuro, 
on

parti
olare riferimento al ruolo del 
on�namento magneti
o. Inoltre, sono

state introdotte le basi sulle reazioni di fusione.

Nel 
apitolo 2 vengono des
ritti gli aspetti prin
ipali della stabilità del

plasma nelle 
on�gurazioni tokamak, 
on l'obiettivo di fornire un riferimento

adeguato per tutte le dis
ussioni dei 
apitoli su

essivi. In parti
olare ven-

gono introdotti i prin
ipali parametri relativi alla stabilità del plasma, 
he

sono stati utilizzati per la 
ostruzione dei database.

Il 
apitolo 3 è in
entrato sulla des
rizione dei limiti operativi 
on riferi-

mento ai prin
ipali parametri 
he dovrebbero essere ottimizzati per migliorare

le performan
e del plasma. Tutto, an
he nei 
apitoli pre
edenti, è 
ontestuale

all'introduzione dei prin
ipali problemi 
he questa tesi si pone l'obiettivo di

a�rontare: analisi, predizione e 
lassi�
azione delle disruzioni. Dopo le 
on-

siderazioni sui limiti operativi, vengono dis
usse le fasi prin
ipali, le 
ause e

le 
onseguenze dei pro
essi disruttivi, 
er
ando di integrarvi i 
on
etti sulla

stabilità introdotti nel 
apitolo pre
edente.

Il 
apitolo 4 è inve
e �nalizzato a fornire una panorami
a sui metodi di

Ma
hine Learning 
he rappresentano il punto di partenza per tutte le analisi

e gli algoritmi implementati per la predizione e la 
lassi�
azione delle dis-

ruzioni. Oggi la grande quantità di dati disponibili dagli esperimenti sulla

fusione e il loro 
arattere di alta dimensionalità, rendono parti
olarmente

di�
ile la gestione, l'elaborazione, la 
omprensione e l'estrazione di quelle

informazioni 
he sono veramente importanti tra tutte quelle disponibili.

Il Ma
hine Learning 
onsente di a�rontare il problema in modo e�
iente.

Viene quindi fornito un quadro generale di tutte le te
ni
he utilizzate per

l'analisi, 
on parti
olare riferimento agli algoritmi di Manifold Learning 
ome

la Self Organizing Map (SOM) e la Generative Topographi
 Mapping (GTM).

Vengono inoltre des
ritti metodi di riferimento 
ome il k-Nearest Neighbor

(k-NN) o metodi più re
enti 
ome i predittori 
onformali, utilizzati per s
opi

di validazione e valutazione dell'a�dabilità.

Nel 
apitolo 5 viene presentato lo stato dell'arte relativamente alle te
-

ni
he di Ma
hine Learning appli
ate alla predizione e alla 
lassi�
azione di

disruzioni, des
rivendo in parti
olare le prin
ipali appli
azioni 
on le ampia-
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mente utilizzate Reti Neurali, quali Multi Layer Per
eptrons (MLP), Support

Ve
tor Ma
hines (SVM) e Self Organizing Maps (SOM), e i metodi statisti
i


ome la Dis
riminant Analysis o la te
ni
a Multiple Threshold. Vantaggi e

svantaggi vengono dis
ussi an
he 
on riferimento ad una possibile soluzione

per superare gli svantaggi di questi metodi: l'appro

io multi-ma
hine.

Il 
apitolo 6 è dedi
ato alla des
rizione dei database utilizzati per tutte le

analisi 
he verranno presentate nei 
apitoli seguenti. In parti
olare vengono

dis
ussi in dettaglio l'analisi statisti
a e gli algoritmi di data-redu
tion 
he

si sono resi ne
essari per 
ostruire un database a�dabile e statisti
amente

rappresentativo.

Gli ultimi tre 
apitoli 
ontengono le analisi e gli algoritmi implementati

per il mapping degli spazi operativi, la 
lassi�
azione e la predizione delle

disruzioni. Nel 
apitolo 7 viene des
ritto il mapping dello spazio opera-

tivo di JET. Le prime sezioni si o

upano di proiezione e visualizzazione

dei dati 
on metodi di proiezione lineari 
ome Grand Tour (GT) e Prin
ipal

Component Analysis (PCA). Nella parte 
entrale sono stati trattati gli stessi

aspetti sfruttando te
ni
he non lineari di Manifold Learning, SOM e GTM,

sulla base delle quali è stata e�ettuata una dettagliata analisi dello spazio op-

erativo. Tale analisi, mostrando la potenzialità dei metodi, è stata eseguita,

per quanto riguarda il modello GTM, mediante la realizzazione di un tool

dedi
ato. In�ne, le performan
e nel mapping sono state valutate attraverso

l'analisi degli outlier e di indi
i di performan
e appositamente proposti.

Nel 
apitolo 8 viene des
ritta la 
lassi�
azione automati
a implementata

per le disruzioni al JET. Il 
apitolo è diviso in due parti: la prima des
rive

la 
lassi�
azione delle disruzioni appartenenti alle 
ampagne 
on la parete

in 
arbonio, mentre nella se
onda parte è des
ritta la 
lassi�
azione 
on la

parete metalli
a (ILW) 
ontestualmente alla valutazione della idoneità del


lassi�
atore automati
o per appli
azioni in tempo reale, unitamente ai sis-

temi di predizione on-line al JET. L'a�dabilità dei risultati è stata validata

attraverso il 
onfronto 
on un 
lassi�
atore di riferimento basato sulla te
-

ni
a k-NN, e attraverso i più re
enti predittori 
onformali, 
on 
ui è possibile

fornire in aggiunta alla predizione/
lassi�
azione il relativo livello di 
on�-

denza.

Il 
apitolo 9 inve
e è dedi
ato alla predizione delle disruzioni ad AS-

DEX Upgrade. La prima parte è relativa alla des
rizione del database e

della te
ni
a di data-redu
tion utilizzata per selezionare un insieme di dati

rappresentativo ed bilan
iato. SOM e GTM sono stati utilizzate per map-

pare lo spazio operativo di ASDEX Upgrade e per 
ostruire un predittore

di disruzioni, introdu
endo al stesso tempo le loro potenzialità in termini di


lassi�
azione. Inoltre è stato proposto l'uso 
ombinato di questi due metodi


on un regressore logisti
o al �ne di realizzare un sistema predittivo in grado
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di sfruttare i 
omportamenti 
omplementari dei due appro

i, migliorando le

prestazioni 
omplessive in predizione.
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Chapter 1

Fusion and magneti
 
on�nement

1.1 Fusion energy

Fusion is a form of nu
lear energy that powers the Sun and the stars and has

the potential to provide an almost unlimited sour
e of energy for the Earth.

The physi
ist Andreevi
h Artsimovi
h in the 1970 wrote that "thermonu-


lear fusion [energy℄ will be ready when mankind needs it". Considering the

a
tual world energy situation and the e�e
t on the environment due to the

present harnessing of the di�erent sour
es of energy, the hope is that time

for fusion is �nally arrived.

Fusion represents a sour
e of energy really attra
tive �rst of all be
ause

the fuels whi
h have to be used in a typi
al fusion power plant, water

and lithium, are 
lean and environmentally sustainable not produ
ing at-

mospheri
 pollution as the greenhouse gases. Another important point on

the side of fusion is that su
h fuels are parti
ularly abundant in the Earth,

su
h that their supply will not represent a problem in the future. Unlike

�ssion, low atomi
 number elements 
an rea
t in su
h a way to 
onvert mass

to energy through fusion pro
esses, as it happens for example in the Sun,

where massive gravitational for
es gives rise to the adequate 
onditions for

fusion.

In the pi
ture 1.1 we 
an see a graph representing the nu
lear binding

energy per nu
leon plotted against the total number of protons and neutrons

in the nu
leus, i.e. the atomi
 mass. Nu
lear binding energy is the energy

required to separate a nu
leus of an atom into its individual protons and

neutrons. The mass defe
t is related to the energy released when the nu
leus

is formed a

ording to the well known Einstein law E = ∆m · c2. The most

important feature of �gure 1.1 is the maximum around mass number 56 
or-

responding to Fe element. This means that energy 
an be released if two

1
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Figure 1.1: Nu
leon binding energy. [from: www.s
hoolphysi
s.
o.uk ℄

lighter atoms join to form a heavier one (moving from the left side toward

the maximum of the 
urve) giving rise to a fusion rea
tion. On the other

hand, a

ording to the graph, energy 
an also be released if, moving from

the right side toward the maximum of the 
urve, very heavy atom splits to

form lighter fragments in a �ssion pro
ess.

On Earth 
onditions for fusion unfortunately are mu
h harder to a
hieve.

Low atomi
 number elements, as hydrogen and its isotopes, have to be heated

to very high temperatures for rea
hing the right 
onditions for fusion. When

these 
onditions are met gas mixture evolves into another state of the matter

named plasma, where the negatively 
harged ele
trons are separated from

the positively 
harged atomi
 nu
lei (ions). One of the reasons that makes

fusion not possible normally is that the strongly repulsive ele
trostati
 for
es

whi
h arises between the positively 
harged nu
lei prevent them from get-

ting 
lose enough for fusion to o

ur. But when the temperature in
reases

to a 
ertain extent, the positively 
harged nu
lei gain energy up to the point

where attra
tive nu
lear for
es ex
eed ele
trostati
 repulsive for
es allowing

fusion between the nu
lei and the resulting release of energy.

If we 
onsider on Earth a fuel of isotopes of hydrogen, we have not only

to heat su
h a mixture of gas at temperatures of the order of 100 million

degrees Celsius, but we have also to 
on�ne and keep it su�
iently dense in

order to make fusion between nu
lei possible. The fusion of hydrogen is the

main rea
tion that powers the sun too, but in this 
ase the strong gravita-
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tional for
es provides a fundamental 
ontribution to a
hievement of fusion


onditions.

Beyond the very important advantages of fusion energy 
onne
ted with

environmental impa
t, one has to 
onsider also the aspe
t of fuel reserves.

As it will be des
ribed in the following, the most 
onvenient rea
tion through

whi
h fusion 
an be a
hieved is the one between an equal mix of Deuterium

and Tritium. Deuterium 
an be found naturally in o
ean water, 
an be ex-

tra
ted at relatively low 
ost and in parti
ular, assuming the present rate of

total world energy 
onsumption, its supply 
an be guaranteed for something

like 2 billion years!

The a
tual limit in terms of fuel reserve is represented by the Tritium: it is

a radioa
tive isotope with a half-life of roughly 12 years, thus, in pra
ti
al

terms, it is not available naturally and has to be produ
ed in situ in the

power plant. But it is possible to obtain Tritium by breeding with the iso-

tope Li6 of lithium whi
h the blanket of the future fusion devi
es will 
onsist

of. Always assuming the present rate of total world energy 
onsumption,

estimates indi
ate that Li6 will be available on Earth for something like 20

millennia, before whi
h, very likely, e�
ient te
hnologi
al solutions to em-

ploy D-D rea
tions will be ready, even if they produ
e less energy than D-T

rea
tions.

Fusion energy has the potential to provide large amounts of base load

ele
tri
ity, 
hanging deeply and in large s
ale the way in whi
h the world


onsumes energy. The s
ienti�
 feasibility of thermonu
lear fusion via mag-

neti
 
on�nement has already been demonstrated, and presently also inertial


on�nement experiments are very promising. But in order to make fusion fea-

sible also from the te
hnologi
al and engineering point of view, several 
riti
al

issues have to be addressed, many of whi
h will be dealt with in the frame-

work of next generation of fusion rea
tors su
h as ITER and DEMO, whi
h

represent one of the most 
hallenging s
ienti�
 experiments of the up
om-

ing future. Developing proper te
hnologies and transposing all the s
ienti�


a
hievement to demonstrate not only the te
hni
al but also the e
onomi
al

feasibility of a fusion power plant whi
h provides energy to ele
tri
 grid, will

require a 
onsiderable e�ort and further improvements of present te
hnolo-

gies.

In the pi
ture 1.2 a s
hemati
 representation of a future fusion power plant

is reported. Deuterium and tritium fuel burns at a very high temperature

in the 
entral rea
tion 
hamber. The energy is released as 
harged parti
les,

neutrons, and radiation and it is absorbed in a lithium blanket surrounding

the rea
tion 
hamber. The neutrons 
onvert the lithium into tritium fuel. A


onventional steam-generating plant is used to 
onvert the nu
lear energy to

ele
tri
ity. The waste produ
t from the nu
lear rea
tion is helium.
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Figure 1.2: S
hemati
 diagram of a proposed nu
lear fusion power plant. [Fusion:

The Energy of the Universe℄
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1.2 Basis of Fusion rea
tion

As it has been dis
ussed in the previous se
tion fusion 
an represent an

almost unlimited sour
e of energy for the future. The strong interest in

fusion rea
tions has been motivated not only by 
onsiderations about fuel

reserve and environmental impa
t, but also by the enormous potential in

terms of produ
ed energy with respe
t to other fuels and sour
es of energy.

If we take into a

ount the energy equivalen
e of di�erent types of fuels, it

is very easy to understand the reason of su
h a strong interest: the energy

produ
ed with 0.14 tons of Deuterium by fusion rea
tions is equivalent to

the one produ
ed by burning 106 tons of fossil oil or 0.8 tons of Uranium by

nu
lear �ssion. Among the relevant nu
lear fusion rea
tions, as anti
ipated

in the previous se
tion, we have those ones among hydrogen isotopes su
h

as D-D rea
tions (1.1, 1.2), whi
h produ
e energy by the nu
lear intera
tion

between two deuterium nu
lei a

ording to the two equally likely rea
tions:

D+D → He3 + n + 3.27 MeV (1.1)

D +D → T+ p + 4.03 MeV (1.2)

D-D are the most desirable rea
tions, sin
e theoreti
ally their supply is e
o-

nomi
al and pra
ti
ally unlimited. Instead the D-T rea
tion (1.3) is based

on the nu
lear intera
tion between a deuterium nu
leus and a tritium nu-


leus (�gure 1.3). Among the possible fusion rea
tions it is the one with the

highest likelihood of o

urren
e and it is usually written in the following way:

D + T → α + n + 17.6 MeV (1.3)

The 17.6 MeV of energy released through the D-T rea
tion is in the form of

kineti
 energy in part asso
iated with the neutron (14.1 MeV) and in part

with the alpha parti
le (3.5 MeV). Alpha parti
le should be 
on�ned within

the plasma and transfer its energy by 
ollisions to plasma ions and ele
trons.

In this 
ase the rea
tion releases 3.52 MeV per nu
leon, whereas for the D-D

(1.2) we have roughly 1.01 MeV released per nu
leon. One of the problems in

this 
ase is asso
iated to high energeti
 neutrons whi
h pose serious problems

of material a
tivation and radiation damages, but the main drawba
ks are

related to tritium, Tritium is radioa
tive, it undergoes beta de
ay with a

half-life (approximately 12.5 years), and is not naturally present on Earth.

Nevertheless the high likelihood of o

urren
e with respe
t to the others,

makes this rea
tion the main option of worldwide fusion resear
h. In the

�gure 1.4 the probability that a fusion rea
tion will take pla
e is represented

in terms of 
ross se
tions for a wide range of energies. In parti
ular at lower

energies the probability for the D-T rea
tion is mu
h higher than for the
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Figure 1.3: Deuterium-Tritium rea
tion. [from: www.s
hoolphysi
s.
o.uk ℄

Figure 1.4: Cross se
tions versus 
enter-of-mass energy for key fusion rea
tions.

[from http://ie
.neep.wis
.edu/ ℄



1.3. MAGNETIC CONFINEMENT IN FUSION 7

other rea
tions.

As anti
ipated in the previous se
tion tritium has to be supplied dire
tly

in situ, in the fusion power plant, by neutron 
apture in lithium, that is the

most favorable 
hemi
al element for breeding tritium. In this 
ontext, the

primary rea
tions through whi
h tritium 
an be produ
ed are the following

(1.4, 1.5):

Li6 + n(slow) → α + T+ 4.8 MeV (1.4)

Li7 + n(fast) → T + α+ n− 2.5 MeV (1.5)

Both rea
tions give rise to the produ
tion of tritium, even if the �rst one

releases energy whereas the se
ond one 
onsumes it. On the other hand, the

rea
tion with Li7 is parti
ularly important as well, be
ause it doesn't 
onsume

a neutron allowing the possibility for self-su�
ient tritium produ
tion in a

fusion rea
tor, that is ea
h neutron gives rise to the produ
tion of at least

one new tritium nu
leus. Naturally there is mu
h more Li7, but the rea
tion
related to Li6 has an higher likelihood of o

urren
e, therefore, it is the

rea
tion whi
h dominates in the breeding of tritium.

1.3 Magneti
 
on�nement in fusion

Presently, two main experimental approa
hes are being studied: magneti



on�nement and inertial 
on�nement. The �rst approa
h in order to keep


on�ned the hot plasma uses strong magneti
 �elds, whereas in the se
ond

approa
h small pellets 
ontaining fusion fuel are 
ompressed to extremely

high densities through strong lasers or parti
le beams.

Regarding magneti
 
on�nement the widely investigated 
on
epts are

tokamaks (and spheri
al tokamaks), stellarators, reversed �eld pin
hes, sphero-

maks, �eld reversed 
on�gurations and levitated dipoles. All the ma
hines

are basi
ally 2-D axisymmetri
 toroidal 
on�gurations, ex
ept the stellara-

tor, that is an inherently 3-D 
on�guration. Among all the 
on�gurations

tokamaks have a
hieved the best overall performan
e, followed by stellara-

tors. These 
on�gurations (�gure 1.5) are all 
hara
terized by strong mag-

neti
 �elds, reasonable transport losses and 
an operate in stable 
onditions

with a

eptable performan
e. Unlike tokamaks, stellarators do not require

toroidal 
urrent drive in a rea
tor but the 
omplexity and the 
osts related

to the a
hievement of the 3-D magneti
 
on�guration are a not negligible

disadvantage.

In general, the presen
e of large toroidal magneti
 �elds implies rea
tors

of 
ertain size, and this means higher 
osts, whereas in the 
ase of other


on�gurations as the reverse �eld pin
h, the toroidal magneti
 �eld is mu
h
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Figure 1.5: Tokamak and stellarator 
on
epts.
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smaller, as well as the 
osts, but unfortunately it 
orresponds to poor plasma

performan
e with higher transport losses. Furthermore, tokamaks and stel-

larators 
on�gurations 
an be MHD stable even without the presen
e of a


ondu
ting wall near the plasma, whereas devi
es as reverse �eld pin
hes

would require ideally a perfe
tly 
ondu
ting wall with 
ontrol feedba
k sys-

tem for steady state operations. There are advantages and drawba
ks for all

the 
on�gurations, but so far tokamaks remain the most attra
tive 
on�gura-

tion for a rea
tor, in fa
t ITER, whi
h should demonstrate te
hnologi
al and

engineering feasibility of a burning plasma experiment, will be a tokamak.
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Chapter 2

Plasma stability in tokamak


on�gurations

2.1 Introdu
tion

The equilibrium of plasmas embedded in a magneti
 �eld 
an be des
ribed

by the magneto-hydro-dynami
 (MHD) theory. MHD instabilities have the

e�e
t to strongly restri
t fusion performan
e in magneti
 
on�ned plasmas,

mainly be
ause of the operational limits they impose. Su
h instabilities do

not only limit the devi
e operational domain redu
ing the a
hievable per-

forman
e, but when they o

ur on a large s
ale often they 
an degrade the


on�nement leading to a sudden loss of plasma 
urrent and energy, that is

a disruption. Plasma energy is lost within a time span of few millise
onds

exposing the plasma fa
ing 
omponents to severe thermo-me
hani
al stresses

and 
ondu
tors surrounding the vessel to huge ele
tromagneti
 for
es. The

deposition of the plasma energy on the vessel walls 
an 
ause deformations,

stru
tural damages, and eventually melting or evaporating of the in-vessel


omponents. All these aspe
ts not only drive stru
tural and me
hani
al de-

sign of the ma
hine, but also make ne
essary to avoid or mitigate disruptions

in order to preserve the integrity of the ma
hine.

2.2 Magneti
 
on�nement with Tokamak 
on-

�guration

A thermonu
lear fusion plasma, due to its high temperature, is not allowed

to 
ome dire
tly in 
onta
t with the wall, be
ause the materials eroded by

the plasma itself would qui
kly 
ool this latter. One solution to over
ome this

13
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problem is to 
on�ne and thermally insulate the fuels in a 
hamber by mag-

neti
 �elds. A 
harged parti
le q moving in a magneti
 �eld will undergo a

Lorentz for
e F = q(E+v×B) perpendi
ular to both the dire
tion of parti
le
motion (with velo
ity v) and magneti
 �eld B, where E is the ele
tri
 �eld.

This for
e is responsible of produ
ing a 
ir
ular parti
le motion in the plane

perpendi
ular to the magneti
 �eld line. In other words a 
harge parti
le in

a magneti
 �eld will move along the �eld line with a spiral traje
tory (�gure

2.1), whose radius is 
alled gyro-radius (or Larmor radius) and is inversely

proportional to the strength of the magneti
 �eld. As we have dis
ussed in

Figure 2.1: Charged parti
le motion along a magneti
 �eld line in a toroidal


on�guration

the previous se
tions, tokamaks represent one of the possible approa
hes to

magneti
 
on�nement of plasmas. As it is well known, tokamak 
on�guration

allows to over
ome the inherent end losses that we have in 
ylindri
al geom-

etry. In a pure toroidal system with only a toroidal �eld, intrinsi
 fa
tors as

magneti
 �eld 
urvature and gradient gives rise to a verti
al drift in opposite

dire
tion for ions and ele
trons (with velo
ities vd,i and vd,e respe
tively),

as it is shown in the sket
h in Figure 2.2. The ele
tri
 �eld resulting by the


harge separation, determines an outward E × B drift of plasma parti
les

(with velo
ity vE×B). In other words, a toroidal 
on�guration with purely

a toroidal magneti
 �eld is intrinsi
ally unstable: to avoid radially outward

drift motions and thus that parti
les hit the wall, it is ne
essary to twist

magneti
 �eld lines through some additional 
omponent. A poloidal mag-

neti
 �eld must be superimposed upon the toroidal magneti
 �eld in order

to 
ompensate these drifts. The result is to have heli
al magneti
 �eld lines

entirely 
ontained within the toroidal 
hamber. Su
h a poloidal �eld, in the


ase of the tokamak is produ
ed by a toroidal 
urrent �owing in the plasma,

whereas in a stellarator is produ
ed by external 
oils.
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Figure 2.2: Parti
les drift in a toroidal 
on�guration

2.2.1 Tokamak 
oordinate system

Given suitable operative 
onditions, it has been proved that tokamaks are

stable. Nevertheless in order to in
rease plasma performan
e and 
on�ne-

ment it is ne
essary to push relevant plasma parameters 
lose to their limits,

as for example pressure, 
urrent and density. This 
an determine the onset

of di�erent instabilities that a�e
t signi�
antly the 
on�nement leading in


ertain 
ir
umstan
es to the abrupt termination of the dis
harge. Consider-

ing a torus, it is usual to work in a 
ylindri
al 
oordinate system (R, φ, z),
where R is the radial 
oordinate, φ is the toroidal angle and z is verti
al axis
of the torus (�gure 2.3a). When all quantities results to be independent with

respe
t to the toroidal angle φ we are in a 
ondition of axisymmetri
. In

�gure 2.3b we 
an see the quantities of interest in the poloidal 
ross se
tion,

the 
oordinate along the minor radius r and the poloidal angle θ.

2.2.2 Shafranov shift and equilibrium in a toroidal mag-

neti
 
on�guration

Unfortunately, when we 
onne
t the ends of a 
ylinder obtaining a torus, the


ondition of MHD equilibrium is no longer satis�ed. In fa
t plasma has the

tenden
y to expand outward in the dire
tion of the major radius basi
ally for

two reasons. The �rst one is related to the fa
t that the pressure for
es inside

the 
ylinder are in �rst approximation equally distributed on the boundary

of the poloidal 
ross se
tion, but in a toroidal geometry, the outer surfa
e

has a larger area than the inner one, so that the net for
e is outwards. The

se
ond one is due to 
ir
uit theory 
onsiderations, in fa
t sin
e we are 
onsid-



16 CHAPTER 2. PLASMA STABILITY

Figure 2.3: (a) axisymmetri
 
oordinate system in a toroidal geometry; (b)

poloidal 
ross se
tion 
oordinates.

ering a ring where a 
urrent is �owing through along the toroidal dire
tion,

we have that 
urrent elements shifted by an angle φ = π repel ea
h other

be
ause the 
urrent is in opposite dire
tion. Also in this 
ase the net for
e

is outwards, or in other words, it tends to expand the plasma ring along the

radial dire
tion. Therefore, a toroidal plasma 
olumn is not in equilibrium

be
ause of the magneti
 e�e
t given by the 
urrent inside and be
ause of the

kineti
 e�e
t asso
iated to the pressure of the plasma.

As we have seen in the introdu
tory 
hapter dedi
ated to di�erent de-

vi
es in relation to the magneti
 
on�nement, magneti
 surfa
es in tokamak

toroidal geometry are essentially 
ir
ular tubes around the main axis of the

ma
hine (z axis), and the 
urrent �eld lines lie on these magneti
 surfa
es

that are isobari
 surfa
es too.

The magneti
 �eld in a geometry as the toroidal one has three 
om-

ponents: the radial one along the R axis (major radius), the verti
al one

along the z axis and the toroidal one along the 
oordinate 
orresponding to

the toroidal dire
tion, i.e. along the angle φ (along whi
h all the physi
al

parameters should be equal in every point sin
e we are assuming an axisym-

metri
 
on�guration). The basi
 
ondition for plasma equilibrium requires

that for
es in every point are zero [2℄, as reported by the following relation

(eq 2.1):

j×B−∇p = 0 (2.1)

where j is the 
urrent density, B the magneti
 �eld and ∇p is the pressure

gradient.

Flux surfa
es in a tokamak 
on�guration look like nested toroidal �ux tubes

and are the solution of the Grad-Shafranov equation, whi
h is a di�erential

equation in terms of a poloidal �ux fun
tion ψ. Grad Shafranov equation
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an be numeri
ally solved under simple geometri
al assumptions (
ir
ular

plasma and large aspe
t ratio, that is the ratio between major and minor

radius), as most of the 
odes for the equilibrium re
onstru
tion do, as EFIT

for example. Being the plasma en
losed in an ele
tri
ally 
ondu
tive shell,

the most important e�e
t asso
iated with the fa
t that plasma tends to ex-

pand outwards, is that �eld lines are 
ompressed in the outboard side. This


ompression gives rise to an in
rease of the magneti
 pressure that has the

e�e
t to 
ountera
t the tenden
y of the plasma to expand. The resulting

equilibrium state is then 
hara
terized by a shift of the �uid outwards with

respe
t to the geometri
 
enter of the 
ir
umferen
e related to the poloidal


ross se
tion, whi
h does not 
orrespond anymore to the axis of the mag-

neti
 
on�guration in the new equilibrium state. This deviation, de�ned as

Shafranov shift (∆), is shown in Figure 2.4.

Figure 2.4: Shafranov shift.

2.2.3 Stabilization with external verti
al �eld and beta

parameter

As introdu
ed in the previous paragraph, in the outboard side the poloidal

�eld lines are 
loser ea
h other than the inboard side: this means that the

poloidal �eld is stronger in the outer region, and, being the magneti
 pressure

proportional to the square of the magneti
 indu
tion, the resulting for
e is

inwards and opposes the expansion of the plasma. To 
ountera
t the for
es

whi
h tends to expand the plasma, the pra
ti
al solution is represented by

the addition of a verti
al magneti
 �eld along the zeta axis, whose intera
tion

with the toroidal plasma 
urrent gives rise to a j × B for
e in the opposite

dire
tion, i.e. inwards. The fa
t that a plasma ring is not in equilibrium

alone but we need a magneti
 �eld produ
ed by external sour
es to keep the
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equilibrium is not a parti
ular property of the toroidal 
on�guration, but

it is a general property of the plasma independently on its 
on�guration.

This general prin
iple is expressed by the Virial's theorem, whi
h says that

it is impossible to sustain any MHD equilibrium without 
urrents external

to the plasma. At the equilibrium, under 
ertain hypothesis (single �uid

under stationary 
onditions, 
ir
ular 
ross se
tion and large aspe
t ratio),

the poloidal �eld on plasma surfa
e at minor radius a and angle θ is given

by the following formula (2.2):

Bθ(a, θ) =
µ0I

2πa
· (1 + a

R0
Λ · cosθ) where Λ = βθ +

li
2
− 1 (2.2)

In the expression of Λ, they appear two quantities of fundamental importan
e

in relation to plasma stability and equilibrium: the poloidal beta βθ and the

internal indu
tan
e li. The parameter β is de�ned as the ratio between kineti

plasma pressure, averaged over the plasma volume, and the 
orresponding

magneti
 pressure:

β =
〈p〉
B2

2µ0

(2.3)

The poloidal beta simply refers to the poloidal magneti
 �eld Bθ. This

parameter represents a measure of the quality and e
onomi
 e�
ien
y of the


on�nement, and plays a key role in stability. If we 
onsider a plasma ring

with a 
urrent �owing inside, the 
urrent density inside is �xed, but usually

is not uniform in the 
ross se
tion. The temperature in the 
ore region

of the plasma is higher than the one in the edge region, and it's known

that the plasma resistivity, di�erently by the 
ondu
tor material like 
opper,

de
reases as the temperature in
reases. The 
urrent tends to �ow where the

resistivity is lower, so it tends to 
on
entrate in the 
enter of the plasma


olumn. Regarding the indu
tan
e we 
an say that in general is de�ned as

the ratio of the linked �ux divided by the 
orresponding 
urrent. Anyway it

turns out quite di�
ult to de�ne the internal indu
tan
e of a plasma 
olumn

be
ause normally it's de�ned for 
urrent �laments. In these 
ases, when the


urrent is not �lamentary, we 
an de�ne the internal indu
tan
e li in terms

of magneti
 energy, as the following ratio (2.4):

li =
〈B2

θ〉
B2

θ (a)
(2.4)

where a is the minor radius. In other words the internal indu
tan
e is a nor-

malized parameter that gives an indi
ation about radial pro�le and peaking
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of plasma 
urrent, sin
e the poloidal �eld depends on the plasma 
urrent in

the toroidal dire
tion (Ip). Returning to the 
onsiderations about the need of

external sour
es a

ording to the Virial theorem, the verti
al �eld ne
essary

to maintain the plasma in equilibrium is expressed by the following equation

(2.5):

Bz =
µ0Ip
4πa

· (ln8R0

a
+ Λ− 1

2
) (2.5)

Its e�e
t is to provide an inward for
e able to 
ountera
t the outward hoop

for
e that a
ts on the plasma be
ause of the aforementioned reasons.

2.2.4 The safety fa
tor q

Another very important parameter for the analysis of the equilibrium and the


on�nement properties of the plasma is the safety fa
tor q, whi
h is de�ned

as:

q =
∆Φ

2π
(2.6)

Su
h a parameter is indi
ative of the heli
ity of the �eld lines, determining

how many toroidal rotations (indi
ated by the variation of the toroidal angle

∆Φ) are ne
essary for a single rotation of a magneti
 �eld line in the poloidal

dire
tion (2π). If q = m/n and m and n are the integer values 
orresponding

respe
tively to the toroidal and the poloidal turns after whi
h a �eld line

rejoins up on itself, we say that the �eld line lies on a rational surfa
e,

otherwise we speak about ergodi
 surfa
es. As we will deal with in the next

se
tion, rational surfa
es of q and its radial pro�le play a key role in the

stability of the plasma. The �gure 2.5 shows typi
al pro�les of the main

quantities in a large aspe
t-ratio tokamak. In general, making referen
e to

the equation of the �eld lines we have that for tokamaks with large aspe
t

ratio (

R
a
≫ 1) safety fa
tor 
an be approximated as follow (2.7)

q(r) =
r

R

Bφ

Bθ
(2.7)

Taking into a

ount the elongation k of the plasma shape, on the base of

whi
h r = a
√
k, and the Ampere Law, a

ording to whi
h the poloidal

magneti
 �eld Bθ is de�ned as

Bθ =
µ0Ip
2πr

(2.8)
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Figure 2.5: Typi
al pro�les in a tokamak in the large-aspe
t-ratio limit R/a →
∞, where BΦ is the toroidal 
omponent of the magneti
 �eld, Bθ is the poloidal


omponent, p is the pressure, JΦ is the toroidal 
urrent density and q is the safety
fa
tor [3℄.

the safety fa
tor at the edge, 
an be written as (2.9):

qedge =
Bφ · a2k

2RIp · 10−7
(2.9)

Rational values and radial pro�le of the safety fa
tor are essential in MHD

stability 
onsiderations, as well as the so 
alled magneti
 shear, de�ned as

follow (2.10):

s(r) =
r

q(r)

dq(r)

dr
(2.10)

The magneti
 shear is stri
tly related to the resonan
e 
on
ept and has im-

portant impli
ations in MHD stability: it des
ribes basi
ally the variation of

the magneti
 �eld winding angle moving radially through subsequent mag-

neti
 surfa
es. In this 
ontext therefore, a strong magneti
 shear is generally

good for stability; 
onversely it results really dangerous 
onversely when


lose surfa
es has the same safety fa
tor, be
ause these surfa
es 
an 
ouple

with ea
h other giving rise to resonan
e phenomena and instabilities. There-

fore,the q-radial pro�le plays a key role in governing several MHD instabili-
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ties. Furthermore it has also several impli
ations in the 
hara
terization of


on�nement modes: parti
ularly important examples to this purpose are the

reverse, the optimized and the negative 
entral shear whi
h are asso
iated to

enhan
ed 
on�nement regimes.

2.3 MHD stability

2.3.1 Basi
 
lassi�
ations of MHD instabilities

The ma
ros
opi
 equilibrium of a fusion plasma 
an be des
ribed by MHD

theory. As it has been des
ribed in the previous se
tions, the equilibrium in

a toroidal 
on�guration is 
hara
terized by a set of nested �ux surfa
es on

whi
h magneti
 and 
urrent �eld lines lie. MHD 
onsiders the plasma as a

single, globally quasi-neutral �uid, 
omposed of 
harged parti
les whi
h 
an


ondu
t ele
tri
al 
urrents and rea
t to magneti
 �elds.

MHD equations 
an be seen as the union of �uid dynami
s equations and

Maxwell's equations of ele
tromagnetism, and 
an be properly elaborated in

order to des
ribe in stationary 
onditions MHD equilibria. The equilibria


on�gurations are linked to a spe
i�
 devi
e and are de�ned for a 
ertain

set of boundary 
onditions. In parti
ular, for the toroidal pin
h devi
es,

the 
on�gurations 
hara
terizing the equilibria 
an be found by solving the

Grad-Shafranov equation, whi
h is expressed in terms of the poloidal �ux

fun
tion ψ (2.11):

R
∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂z2
= −µ0 R

2dp(ψ)

dψ
− µ0

2f(ψ)
df(ψ)

dψ
(2.11)

Moreover,we have seen moreover that a verti
al �eld produ
ed by an ex-

ternal sour
e is needed to balan
e the intrinsi
 tenden
y of a plasma in a

toroidal 
on�guration to expand outwards along the major radius R. In a


on�ned plasma, an instability is driven by the free energy 
ontained in the

equilibrium 
on�guration. In a tokamak, there are two main sour
es of free

energy: the kineti
 energy of the plasma and the energy of the magneti
 �eld

generated by the plasma. Instabilities 
an therefore, be driven by the radial

gradient of either the pressure or the 
urrent pro�le. At low β, the magneti


energy is mu
h higher than the kineti
 energy and the instabilities will mainly

be 
urrent-driven; at high β, we expe
t the pressure driven instabilities to

be
ome signi�
ant.
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Current driven and pressure driven instabilities

MHD instabilities in�uen
e the a
hievable β of a 
on�guration, therefore,

they have to be avoided or kept under 
ontrol ideally. An example is the

external kink driven by 
urrent gradients near the edge imposing restri
-

tions on the possible 
urrent pro�les. Restri
tions on the pressure pro�le


an 
ome from the so-
alled inter
hange instabilities or from the ballooning

instabilities. Pressure driven instabilities basi
ally depend on the entity of

the pressure gradient and on the �eld line 
urvature.

Figure 2.6: Bad and good 
urvature for pressure driven instabilities

In �gure 2.6 we 
an see that in relation to the inter
hange of free energies

between the �eld lines we may have bad 
urvatures to whi
h is asso
iated an

unstable situation as the 
entral one, or good 
urvatures (as the side ones),

where the inter
hange of magneti
 �eld and plasma works very well to re-

lease free energies providing in this way a stabilizing e�e
t. In other words

when the radius of 
urvature is parallel to the pressure gradient (so-
alled

bad 
urvature)we have a destabilizing e�e
t, while if the radius of 
urvature

is anti-parallel to the pressure gradient, an inter
hange of plasma and mag-

neti
 �eld will in
rease the magneti
 energy and thus be stabilizing (good


urvature).

Pressure driven instabilities are often asso
iated to internal modes, that

is they o

ur within the plasma without a�e
ting ma
ros
opi
ally the en-

tire surfa
e region of the plasma 
olumn. Ballooning modes are generally

the most unstable pressure driven instabilities and in a tokamak usually are


hara
terized by a larger amplitude on the low �eld side of a �ux surfa
e,

whereas kink modes, on the 
ontrary, have more or less the same amplitude

along the �ux surfa
e. Their stability depends espe
ially by the 
urvature of

the magneti
 �eld lines. In general pressure driven instabilities are parti
u-

larly important be
ause they set a limit to the maximum a
hievable β in a

fusion plasma.

Current driven instabilities are 
onne
ted to the parallel 
urrent, and are

typi
ally the so 
alled kink modes, be
ause of the shape asso
iated to the

deformation of the plasma 
olumn. In the �gure 2.7 for example we 
an see

a kink instability in presen
e of a 
ondu
tive wall, whi
h through the eddy
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urrents that �ow in its surfa
e gives rise to a restoring for
e whi
h has the

e�e
t to stabilize the kink. In parti
ular if there were no va
uum region be-

tween the plasma and the 
ondu
ting wall we 
ould't have any displa
ement

of the plasma surfa
e and only internal kink modes would be possible.

Obviously, to have a perfe
tly 
ondu
ting wall surrounding plasma sur-

fa
e is not a viable option with fusion plasmas. We have to 
onsider a wall

with �nite resistivity whi
h has the e�e
t to slow down the growth rate of

instabilities as the external kink modes for example. Therefore, a perfe
tly


ondu
ting wall 
ould greatly improve stability beyond the limit of the ideal

no-wall 
ase, whereas a resistive wall in pra
ti
e does not 
hange the limit

with respe
t to the no-wall 
ase but it 
hanges the time s
ale slowing down

the growth rate. Current driven instabilities in general 
an be asso
iated to

Figure 2.7: kink stability in presen
e of a 
ondu
ting wall

internal or external modes, and, as it will deal with in the 
hapter dedi
ated

to the operational limits, espe
ially external kink modes are very important

be
ause they limit the maximum toroidal plasma 
urrent in stable 
onditions.

Ideal and resistive MHD

The previous distin
tion was based on the sour
e of the instabilities. Another

basi
 distin
tion is made on the basis of the time s
ale of the 
hara
teristi
s

phenomena and is between ideal MHD and resistive MHD instabilities. In

the ideal 
ase, we 
onsider the plasma perfe
tly 
ondu
tive and, therefore, we

refer to the Alfvén time s
ale, where the evolution of the instability is limited

only by the inertia of the plasma, whi
h is very small be
ause the mass of the

plasma itself is very small (order of mi
rose
onds or tens of mi
rose
onds).

If instead we 
onsider resistive MHD instabilities, the time s
ale is of order

of millise
onds be
ause even if the plasma is not perfe
tly 
ondu
tive the

resistivity is low.
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This distin
tion is parti
ularly relevant sin
e even if the plasma in 
ertain


onditions should be stable in ideal MHD approximation, it 
ould be unstable

be
ause of resistive e�e
ts. Furthermore, the �ux 
onservation law, whi
h is

valid in ideal MHD, di
tates that magneti
 �eld lines move with the plasma

�ow, and therefore magneti
 topology is 
onserved ("frozen"), whi
h in other

words means that magneti
 �eld lines 
annot tear or re
onne
t, as instead

happens in resistive MHD.

2.4 General 
on
epts of linear MHD stability

2.4.1 Mode numbers

Another basi
 
lassi�
ation is related to the mode numbers and the resonan
e

position. In the simple 
ase of a 
ir
ular tokamak with large aspe
t-ratio,

the modes, or in other words the heli
ity of the perturbations, are in the

form e(mθ−nφ)
, where m and n are respe
tively the poloidal and the toroidal

mode numbers. A mode m,n is resonant in the plasma if inside it or 
lose

to its surfa
e there are magneti
 surfa
es satisfying the 
ondition m/n = q,
where q is the safety fa
tor des
ribing the heli
ity of su
h a surfa
e. Avoiding

resonant modes in the plasma is fundamental for stability in tokamaks.

In the �gure 2.8(A) a sket
h of the set of Mirnov 
oils installed on the

STOR-M tokamak for the investigation of MHD instabilities is reported. In

parti
ular two sets of poloidal arrays of 12 Mirnov 
oils regularly spa
ed with

a step of 30◦ at two opposite toroidal se
tions, allow the measure of poloidal

mode numbers up tom = 6. Toroidal mode numbers 
an instead be analyzed

by four sets of toroidal arrays, ea
h one 
omposed by 4 dis
rete Mirnov 
oils

toroidally separated ea
h one from the others by 90◦. This distribution allows
the determination of toroidal mode numbers up to n = 2. In the �gure 2.8(B)
some s
hemati
 pi
tures of toroidal (n = 1) and poloidal (m = 1, 2, 4) modes

numbers have been reported.

2.4.2 Main formulations of linear stability

Also in the MHD framework the most reliable de�nition of stability is the

one of exponential stability, on the base of whi
h a system is unstable if

any of the modes eigenfrequen
ies 
orrespond to exponential growth, that is

when the related imaginary part is greater than zero [1℄ [5℄. Beyond eigen-

fun
tions and 
orresponding eigenfrequen
ies 
al
ulation, another theoreti
al

pro
edure for stability analysis is the energy prin
iple, based on the poten-

tial energy variation for a 
ertain plasma displa
ement ξ(x). In parti
ular,
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Figure 2.8: (A) Distribution of toroidal and poloidal Mirnov 
oils; (B) represen-

tation of toroidal (n = 1) and poloidal (m = 1, 2, 4) modes numbers from [4℄

linear stability 
an be evaluated by linearization of the equations governing

the system and by analyzing the response to su�
iently small perturbations

around equilibrium 
onditions. The amplitude of su
h perturbations satu-

rates above a 
ertain level be
ause of nonlinear pro
esses. Possible sour
es

of perturbations are typi
ally the onset of an instability or the presen
e of a

magneti
 �eld error. Let's 
onsider for example the simple 
ase of a tokamak

with heli
al �eld lines where on a poloidal se
tion the magneti
 topology is

des
ribed by 
on
entri
 
ir
les and the magneti
 �eld has the following form

(2.12):

B = Bφφ̂+Bθθ̂ (2.12)

If we add now to an equilibrium 
ondition (subs
ript "0") a small radial

perturbation of small amplitude br, su
h as br/B0 ≪ 1, the resulting magneti


�eld will be given by (2.13):

B = B0(r) + br(r)sin(mθ − nφ)r̂ (2.13)

Being the wave ve
tor of the perturbation (2.14)

k =
m

r
θ̂ − n

R
φ̂ where k‖ = 0 (2.14)

if 2.15 is satis�ed, whi
h is analog to 
onsider q = m/n for the 
onsidered

�eld line, then the mode is resonant in the plasma, and a small magneti


perturbation 
an give rise to a large �eld line ex
ursion.

k ·B =
m

r
Bθ −

n

R
Bφ = 0 (2.15)



26 CHAPTER 2. PLASMA STABILITY

Considering the resistive e�e
t, we have a broader range of a

essible states

and magneti
 �eld lines 
an tear giving rise to signi�
ant 
hanges of topology

su
h as re
onne
tion phenomena and the formation of magneti
 islands as

shown for example in �gure 2.9.

Figure 2.9: (a) Field lines tearing and re
onne
tion; (b) m = 3 magneti
 islands

(from [6℄).

The energy prin
iple

Energy prin
iple for ideal MHD is based on the fa
t that if a perturbation of

a given equilibrium 
ondition redu
es the potential energy asso
iated to the


on�guration, the 
onsidered equilibrium is unstable. Given a 
ertain equi-

librium 
ondition, if F represents the for
e arising be
ause of a displa
ement

ξ, the potential energy will be de�ned by the following equation (2.16):

δW = −1

2

∫

V ol

F · ξ dτ (2.16)

The linearized for
e is given by the relation 2.17

F = j1 ×B0 + j0 ×B1 −∇p1 (2.17)

where the equilibrium is indi
ated by the subs
ript 0, whereas the perturba-
tion by the subs
ript 1. Regarding the perturbed terms, p1 is obtained by

integrating the linearized adiabati
 equation, B1 is obtained by integrating
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Faraday's indu
tion law, whereas the perturbed 
urrent density j1 is 
al
u-
lated through Ampere's law. The �nal formulation for the variation of the

potential energy is the following 2.18:

δW =
1

2

∫

plasma

(

γp0(∇ · ξ)2 + (ξ ·∇p0) ∇ · ξ +
B1

2

µ0
− j0 · (B1 × ξ)

)

dτ+

+

∫

vacuum

(

Bv
2

2µ0

)

dτ

(2.18)

As it has been said above, plasma equilibrium is 
onsidered unstable if for

any physi
ally allowable displa
ement ξ the 
orresponding variation of po-

tential energy is negative. In parti
ular we 
an distinguish in the previous

equation the pressure driven term (ξ ·∇p0) ∇ ·ξ and the 
urrent driven term

j0 · B1 × ξ : depending on the term whi
h results to be prevalent between

the two, the mode will be 
onsidered pressure driven or 
urrent driven. The

integral in the se
ond row of the equation (2.18) represents instead the trans-

fer of energy to the va
uum region (Bv is the magneti
 �eld in the va
uum).

Stability problem is usually addressed by 
onsidering the behavior and

the time evolution in response to perturbation of small amplitudes. Conse-

quently it is possible to linearize the 
onsidered systems of partial di�erential

equations for whi
h there exist several numeri
al te
hniques that make 
om-

plex problems of stability analysis tra
table. Obviously, the theory of linear

stability 
annot predi
t or extrapolate the behavior of the system interested

by a non-linear evolution of stability, but experiments have proved that a

plasma unstable a

ording to linear MHD stability, often evolve unavoidably

to a state of dramati
 deterioration of 
on�nement. In this sense therefore

linear stability provides a strong base for su
h an analysis.
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Chapter 3

Operational limits and

disruptions on Tokamaks

The goal of fusion resear
h is to a
hieve the 
onditions for a magneti
ally 
on-

�ned burning plasma. In parti
ular when adequate 
onditions are provided,

in a D-T plasma, α parti
les heating alone is su�
ient to sustain plasma

temperature against energy losses, without the further need of additional

heating. This operational point is 
alled ignition, and basi
ally identi�es the


ondition at whi
h a nu
lear fusion rea
tion be
omes self-sustaining, as it 
an

be expressed through the �gure of merit represented by the triple produ
t of

density, temperature and 
on�nement time (3.1). For a D-T plasma the value

has to be of a 
ertain order, as it is expressed by the following 
ondition:

nTτE > 1021m−3 keV s (3.1)

The value 
an 
hange depending mainly on the 
onsidered pro�le for density

and temperature. Su
h a 
ondition is derived on the base of the well known

Lawson 
riterion. The aim is to give rise to the 
onditions needed to self-

sustain a plasma with a temperature of 10keV , a 
on�nement time of several

se
onds and a fuel density of the order of 1020 particles/m3
. The fusion en-

ergy gain fa
tor Q, is de�ned as the ratio of fusion power produ
ed by nu
lear
fusion rea
tions to the power needed to sustain the plasma. The 
ondition

of Q = 1 is referred to as break-even (�gure 3.1). Commer
ial power plants

would require a Q value between 20 and 30, whereas the te
hni
al obje
tive

for ITER will be a minimum gain of Q = 10 for at least 300 se
onds and to

demonstrate steady-state operation with a Q = 5 for several thousands of

se
onds [1℄. The fusion power in a tokamak devi
e has di�erent 
onstraints,

some of them are te
hni
al and e
onomi
al 
onstraints as the ma
hine size

or the applied magneti
 �eld, others are related to physi
al limits 
onne
ted

31
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Figure 3.1: Figure of merit of fusion performan
e (Triple Produ
t nTτE)
[www.efda.org℄.

with the stability 
on
ept, as for example β whi
h should be maximized for

the reasons already dis
ussed in the previous 
hapter.

In order to a
hieve the target of nu
lear fusion, the experiment have to

maximize three basi
 quantities: fuel density n, energy 
on�nement time τE,
and the normalized pressure beta. The optimization of this parameters is

often limited by the onset of MHD instabilities that 
an be driven basi
ally

by the gradients of the plasma 
urrent or the pressure pro�les. MHD insta-

bilities on ma
ros
opi
 s
ales 
an lead to the degradation of the 
on�nement

(soft limit) or in the worst 
ase to the abrupt termination of the dis
harge

with a disruption (hard limit). Maximizing β requires to in
rease as more as

possible plasma pressure and stored energy and to do this we have only the

possibility to a
t on the available external 
ontrol parameters. To in
rease

the temperature for example we have to apply more auxiliary heating, if we

want to set the density (feedba
k 
ontrolled) to a 
ertain level, we have to

a
t on the gas fuelling rate, whereas the 
ontrol of the plasma 
urrent has to

be done through the indu
ed loop voltage and therefore through �ux regula-

tion.

Furthermore, depending on the regimes or foreseen operational s
enar-

ios, the optimization of plasma performan
e 
omes up against di�erent 
on-

straints. There are s
enarios where su
h a optimization requires a proper

shaping and 
ontrol of pressure and 
urrent density pro�les, as well as we

have for example in the 
ase of optimized or reversed shear s
enarios [2℄.

An extensive dis
ussion about operational limits is beyond the s
ope of this
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thesis, nevertheless they will brie�y dis
ussed and summarized all the main


onstraints with parti
ular referen
e to their 
onne
tion with disruptions.

3.1 Operational limits

Disruption-free operations in a tokamak are limited by well known opera-

tional limits not ne
essarily related dire
tly to a violation of an MHD stability

boundary: the 
urrent and the pressure limit, whi
h are a dire
t 
onsequen
e

of development of an ideal MHD instability, and the density limit whi
h is

more dire
tly a 
onsequen
e of an ex
essive radiation from the plasma, a
-


ompanied by a progressive deterioration of plasma energy and 
on�nement.

This does not mean that during the 
hain of events that leads eventually to

disruptions there is no an intermediate MHD instability whi
h 
ontributes

to the �nal loss of 
on�nement.

The violation of these operational boundaries in tokamaks leads to the

onset of MHD instabilities, often 
hara
terized by heli
al perturbations, as

those ones des
ribed in the previous 
hapter. These MHD instabilities grow

non-linearly in the �nal phase until a major disruption o

urs. In the present

generation of medium-size tokamaks the loss of thermal energy has a typi-


al time s
ale of ∼ 100µs. The rapid 
ooling due to the thermal quen
h

and the 
onsequent in
rease of plasma resistivity gives rise to the fast de
ay

of the 
urrent, known as 
urrent quen
h. Coming ba
k to the des
ription

of the three basi
 operational boundaries, the 
urrent limit and the density

limit 
an be des
ribed making referen
e to the well known Hugill diagram,

where the inverse of the safety fa
tor at the edge 1/qa is plotted against the

so-
alled Murakami parameter nR/Bφ, that is basi
ally a normalized line

averaged density (�gure 3.2).

Sin
e the temperature has an optimum value at ∼ 20keV , n, that here in-

di
ates the line averaged density, should be as high as possible. But density

is limited by disruptions due too ex
essive edge 
ooling: for a given plasma


urrent there is a maximum a
hievable line averaged density.

The density limit, also known as Greenwald limit [3℄, is expressed by

the 
ondition nGW (1020m−3) ∼ Ip(MA)/[πa2(m2)]. This is an empiri
al

boundary, and espe
ially in the last years has in
reased due to appli
ation of

additional heating and advan
ed wall 
onditioning methods that redu
e the

strong radiated power related to impurities. In fa
t, as it will be dis
ussed in

the se
tion dedi
ated to the analysis of the 
auses and the 
hain of events of

disruption, there is a strong 
onne
tion with the radiation instabilities su
h

as the radiative 
ollapse and MARFE limit.

Regarding the 
urrent limit instead, as we 
an see in the Hugill diagram
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Figure 3.2: Hugill diagram: density limit (top); 
urrent limit (bottom) [4℄.



Operational limits 35

[5℄, the 
ondition 1/qa > 0.5 or analogously qa > 2 represents an hard limit

be
ause in the region where this 
ondition is not satis�ed, the external kink

mode m = 2, n = 1 be
omes unstable and the dis
harge will unavoidably

disrupt. Considering the dependen
e between the safety fa
tor at the edge

and the plasma 
urrent, this is a
tually a limit on the maximum 
urrent

for a given magneti
 �eld. This mode 
ould in theory be stabilized with a

highly 
ondu
tive wall surrounding 
losely the plasma, whi
h is not possible

be
ause of the need to redu
e the intera
tion of the plasma with the wall.

As the latter limit, also the pressure limit has an MHD origin. In parti
-

ular, it is related to the Troyon ideal MHD limit [6℄ on the volume averaged

toroidal beta βt, whi
h is, in other words, a limit on the maximum plasma

pressure that 
an be 
on�ned by a given magneti
 �eld. The 
al
ulation had

been done taking into a

ount ideal MHD instabilities as ballooning modes

and Mer
ier 
riterion [7℄ for optimized plasma 
urrent and pressure pro�les,

and what had been found was that n=1 free boundary kink modes set a limit

on the maximum a
hievable β.

Figure 3.3: Beta limit in di�erent tokamaks

As it is reported in Figure 3.3, the normalized volume average beta

βN = βt(%)/[Ip(MA)/a(m)B(T)] should not ex
eed the value of approxi-

mately 3.5%MA/(m · T) [8℄. It is important to highlight that these bound-

aries must not be 
onsidered rigidly, in fa
t there exist 
onditions in whi
h

the des
ribed limits 
an be ex
eeded, and, on the other hand, there are 
on-

ditions far from these boundaries where the plasma however disrupts. This is

due basi
ally to the high 
omplexity of the underlying physi
s and MHD sta-

bility on the base of the pro
esses whi
h drive disruption phenomenon, and
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this is the reason whereby it is so important to develop di�erent approa
hes

as data-driven methods for disruption predi
tion.

3.2 Disruptions

3.2.1 Introdu
tion

A disruption is a sudden loss of stability or 
on�nement of a tokamak plasma:

plasma energy is lost within a time span of few millise
onds exposing the

plasma fa
ing 
omponents to severe thermo-me
hani
al stresses and 
on-

du
tors surrounding the vessel to huge ele
tromagneti
 for
es. As it has

been introdu
ed in the previous se
tion, the operational spa
e a

essible to a

tokamak is highly restri
ted by disruptive events. Moreover, disruptions, in

addition to a�e
ting the exe
ution of the resear
h program, 
an 
onstitute a

risk for the stru
tural integrity of the ma
hine, espe
ially in large devi
es.

Therefore, it is parti
ularly important, espe
ially in view of ITER, to im-

prove the understanding of the pro
esses whi
h lead to disruption. Deeply

investigations have been 
arried out on pre
ursors, 
auses and 
onsequen
es

of disruptive events. The main phases pre
eding a disruption are represented

in �gure 3.4.

Figure 3.4: Main phases of a disruptions [5℄

The pre-pre
ursor and the pre
ursor phase, whi
h are often 
onsidered a
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unique phase, refer to a 
hange in the underlying 
onditions up to a 
riti
al

point when there is the onset of an MHD instability.

The fast phase, also referred as thermal quen
h, is 
hara
terized by a


entral temperature 
ollapse in few millise
ond, followed by a rapid in
rease

of plasma resistivity with a redistribution of the toroidal 
urrent and a �at-

tening of its radial pro�le. The resulting �attened 
urrent pro�le is also

asso
iated to a 
onsequent de
rease of plasma internal indu
tan
e that, for

�ux 
onservation, gives usually rise to a 
hara
teristi
 spike of the plasma


urrent and large transient negative loop voltage.

The �nal phase, referred as 
urrent quen
h, is 
hara
terized by the de
ay

to zero of the plasma 
urrent: it is not un
ommon to have 
urrent de
ays

greater than 100[MA/s℄, whereas time s
ales are determined by the parti
ular


onditions in whi
h the pro
ess sets up [5℄.

3.2.2 Main 
auses and me
hanisms

The main physi
s instabilities whi
h lead to disruption are dire
tly related to

the over
oming of the operational limits des
ribed in the initial se
tion of this


hapter. Moreover it is of primary importan
e to understand the underlying

me
hanisms at the base of the 
hain of events whi
h 
hara
terize disruptions

[9℄.

Depending on the 
onditions in whi
h the dis
harge is evolving, the same

modes whi
h are often observed as pre
ursors 
an lead to disruption or not.

The 
omplexity of the me
hanisms whi
h 
an get the plasma unstable makes

the predi
tion very 
hallenging.

The density limit, for example, is strongly 
onne
ted to the me
hanisms of

radiation instability that builds up when the total radiated power ex
eeds the

heating power. Plasma radiated power has di�erent origins: Bremsstrahlung

radiations, 
y
lotron radiations and the radiations due to line emissions. Ra-

diated power from impurity ions represent the most important sour
e of radi-

ation in the plasma: besides enhan
ing Bremsstrahlung losses, the presen
e

of impurities produ
es further losses due to line radiation and re
ombination

with a power density equal to PR = R(Te)neni, where ne is the plasma den-

sity, ni id impurity ion density and R(Te) is the radiation e�
ien
y.

Radiation instabilities 
an set up with di�erent me
hanisms [5℄ [10℄. One of

these is by radiation 
ooling of the plasma edge where impurity ions are not

fully ionized: as the density in
reases at the edge, the temperature de
reases

and the line radiation from low-Z impurities is strongly enhan
ed. As we 
an

see in the pi
ture 3.5, radiation e�
ien
ies have a peak at low temperatures.

This produ
es a poloidally symmetri
 radiation at the plasma edge, where as

more the temperature is redu
ed due to strong radiation losses, the more the
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Figure 3.5: Radiation e�
ien
y of impurities [3℄

plasma radiation losses are enhan
ed, and this gives rise to further de
rease

of the temperature self-feeding the instability pro
ess.

When the density limit is rea
hed, or, in other words, when radiation

losses ex
eeds the heating power, the temperature 
ollapse and the 
ontra
-

tion of the plasma 
urrent pro�le by 
ooling edge makes the plasma unstable

to MHD modes, leading eventually to disruption. This is the basi
 me
ha-

nism at the base of a radiative 
ollapse.

Criti
al density s
ales with heating power and low e�e
tive 
harge state

Zeff [11℄; therefore, in
reasing the heating power and redu
ing the impurity


ontent in the plasma, it is possible to a
hieve higher values of density before

to get into the density limit. In this 
onditions there 
an be the onset of

another radiation limit, the MARFE (Multifa
eted Asymmetri
 Radiation

From Edge) [12℄, a poloidally asymmetri
 radiation instability whi
h devel-

ops usually on the High Field Side (HFS) or near the X-point.

The 
onditions for the onset of a MARFE depend on plasma-wall inter-

a
tion, �ux of re
y
ling neutrals of the working gas and heat �ow from the

plasma 
entre to the edge [13℄. In this 
ase the maximum a
hievable den-

sity does not depend on the input heating power as we have for a poloidally

symmetri
 radiative 
ollapse, but depends dire
tly on the average 
urrent

density, as well as it is 
learly expressed by the Greenwald limit. The linear

dependen
y between density and plasma 
urrent density is 
learly shown in

the Hugill diagram.



Disruptions 39

Another important 
ause of instability related to radiation is the impurity

a

umulation [14℄ [15℄. High-Z impurity a

umulation in the plasma 
entre

gives rise to strong radiation due to the fa
t that atoms are not fully ionized.

This in turn give rise to �attening or even a hollowing of the temperature

pro�les with a 
onsequent de
reasing of the 
urrent density in the 
entre due

to raising of plasma resistivity. This pi
ture is also 
hara
terized by hollow

q pro�les, with values of the safety fa
tor on axis greater than one, and thus

no sawthooth 
rashes. When this me
hanism is ampli�ed beyond a 
ertain

level the 
entral temperature 
ollapses 
ausing internal disruptions due to

the onset of MHD a
tivity.

Regarding the MHD stability, as it has been dis
ussed in the previous

se
tion, two basi
 restri
tions on the a

essible operational domain are im-

posed by the limit on the safety fa
tor at the edge,whi
h is a 
urrent limit,

and by the β limit, whi
h is a limit on the maximum plasma pressure whi
h


an be 
on�ned for a given magneti
 �eld. The �rst one is related to the

unstable external kink modes for m=2, n=1, whereas the ideal limit on β is

imposed by free-boundary kink modes for n=1.

Assuming a non-zero plasma resistivity, the instabilities whi
h may even-

tually deteriorate plasma 
on�nement leading to a disruption are the tearing

modes. These resistive instabilities are 
hara
terized by the development

of magneti
 islands due to magneti
 �ux re
onne
tions, as shown in Figure

3.6. When su
h modes are destabilized and grow up to a level whereby the

island saturates, the 
hanges in the plasma 
urrent pro�le 
an determine a

loss of 
on�nement in an always larger region 
ausing eventually a disrup-

tion. Magneti
 island stability and evolution is governed by the Rutherford

Figure 3.6: Re
onne
tion and magneti
 islands
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equation (3.2):

τR
r2s

dw

dt
= ∆

′

(w) (3.2)

where the growth or de
ay rate of an island of width w 
an be des
ribed

in terms of lo
al resistive time τR, minor radius rs at the rational surfa
e

q = m/n and a 
lassi
al stability index ∆
′

(3.3).

∆
′

(w) =
1

Br

(

∂Br

∂r

)

∣

∣

∣

∣

∣

rs−w/2

rs+w/2

(3.3)

There exist even situations where double tearing modes o

ur. Normally q

pro�le is monotonous and in
reases from the axis, where it has its minimum,

toward the edge, where it rea
hes its maximum value. This 
ondition 
an

also be des
ribed in terms of magneti
 shear, always positive in these 
on-

ditions. But in parti
ular regimes or s
enarios, as in the 
ase of reversed

shears, or strong impurity a

umulation in the 
entre with hollow 
urrent

density pro�les, q pro�les do not preserve the 
hara
teristi
 of monotoni
ity.

We 
an have therefore 
oupling of the modes related to the same rational

q-values and enhan
ing of the transport between the 
orresponding rational

surfa
es with the formation of magneti
 islands, whi
h, eventually, destroy

the 
on�nement and 
ause major disruptions.

Often tearing modes and magneti
 islands are 
lear pre
ursors of a dis-

ruption. When they start to stop, or do not rotate anymore together with

the plasma �uid, they lo
k to the wall and grow with a time s
ale dependent

on the resistive time 
onstant of the surrounding va
uum vessel wall. The


orresponding radial magneti
 �eld perturbation indu
es eddy 
urrent in the

wall whose magneti
 �eld tends to oppose to magneti
 island rotation exert-

ing a for
e whi
h has the e�e
t to slow down and stop the island.

Besides eddy 
urrent for
es, MHD instabilities su
h as lo
ked modes, 
an

also intera
t and be ex
ited by error �elds (EFs), whi
h are deviations of

the magneti
 �elds from axi-symmetry. EFs are due mainly to non perfe
t

alignment of the 
oils surrounding the plasma; they 
an ex
ite modes making

them grow until they lo
k to the wall and the plasma disrupts. Error �elds


an be 
ompensated or redu
ed to a non-
riti
al level through a dedi
ate

system of external 
oils, the so-
alled Error Field Corre
tion Coils (EFCCs).

Regarding the boundary on the maximum plasma pressure, ideal β limit

is 
al
ulated for optimized 
urrent and pressure pro�les; therefore, it de-

pends on the parti
ular 
onditions of operation. Some experiments showed

that su
h a limit is only rea
hed transiently. On the base of the boundary
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onditions and the 
onsidered s
enarios, di�erent instabilities limit the max-

imum a
hievable β to a lower value, as Neo
lassi
al Tearing Modes (NTMs)

or Resistive Wall Modes (RWMs) [2℄.

NTMs are driven lo
ally by the redu
tion of the bootstrap 
urrent whi
h

depends on the �attening of the pressure pro�le a
ross a magneti
 island

with a 
onsequent enhan
ing of the lo
al radial transport. The most signi�-


ant NTMs are 
hara
terized by mode numbers m=2, n=1, and m=3, n=2.

They 
an be des
ribed by a modi�ed Rutherford equation [16℄, where an

additional term takes into a

ount the redu
tion of bootstrap 
urrent. NTMs

pose a serious problem for high performan
e s
enarios, even if presently sev-

eral te
hniques for their stabilizations have been studied and su

essfully

applied as shown in the Figure (3.7). The e�e
t on the energy 
on�nement

Figure 3.7: NTMs stabilization: two DIII-D dis
harges with (No. 114504, dotted

lines) and without (No. 114494, solid lines) ECCD suppression of an m=3, n=2

NTM. (a) Neutral beam power, (b) βN , (
) n = 2, (d) n = 1.(T.C. Hender et al.,

IPB2007, Chapter 3)

due to m=3, n=2 and m=2, n=1 NTMs 
an be seen in the evolution of βN
through the 
omparison of two dis
harges in DIII-D. The two pulses are more

or less identi
al, with the presen
e of the same sequen
e of NTMs, but in the
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dis
harge where stabilization by ele
tron 
y
lotron 
urrent drive (ECCD) is

performed the e�e
t on βN is well evident.

In 
onditions of high plasma pressure, RWMs 
an 
ause disruptions as

well. High β plasmas are unstable to external kink modes, and this obvi-

ously represents a limit in the exploitation of high performan
e advan
ed

s
enarios with high bootstrap 
urrent fra
tion. External kink modes 
ould

be stabilized by a nearby 
ondu
tive wall, allowing in prin
iple to ex
eed the

no-wall limit. In Figure 3.8 is reported the 
al
ulation of the time evolution

of βN for the no-wall limit with the 
orresponding measures of the MHD a
-

tivity by Mirnov loops and photodiodes. But being a real wall 
hara
terized

Figure 3.8: Time evolution of dis
harge No. 92544 showing (a) βN relative to

the 
omputed no-wall limit and the saddle loop amplitude δBr of the RWM, (b)

measured plasma rotation from CER at q = qmin and q = 3, and (
) MHD a
tivity

from Mirnov loops and photodiodes. (A.M. Garofalo et al., PRL. 82, 3811 (1999))

by a �nite resistivity, the grow rate of the resulting resistive mode will now

be governed by the resistive time 
onstant of the wall. Also in the 
ase of

RWMs, di�erent methods for stabilization have been demonstrated by sev-

eral experiments, in parti
ular by using a
tive feedba
k 
oils systems and by

plasma rotation.

In advan
ed s
enarios with the presen
e of Internal Transport Barriers
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(ITBs), Alfveni
 growth rate instabilities 
an build up leading with very fast

time s
ales to disruption. Being fast, they result to be parti
ularly di�-


ult to dete
t and typi
ally give rise to the highest energies and heat loads.

Plasmas 
hara
terized by ITBs exhibit radially lo
alized regions of improved


on�nement with steep pressure gradients in the plasma 
ore, whi
h in turn


ould drive instabilities leading to disruption. In relation to the a
hievement

of 
ontinuous operation it is well known that a large fra
tion of bootstrap


urrent is ne
essary, and, that dis
harges exhibiting the formation of ITBs

are favorable to this aim. Experimentally, the presen
e of su
h a 
urrent

fra
tion is usually asso
iated with high β dis
harges with a weakly positive

or negative magneti
 shear in the 
entral region of the plasma 
olumn.

3.2.3 VDEs

Another 
ause of instability is the lost position 
ontrol of plasma verti
ally

elongated. It is well known that plasmas are elongated for reasons of stability

and 
on�nement. However, being unstable to verti
al displa
ements, that is

in the dire
tion of elongation, it is ne
essary a feedba
k 
ontrol stabilization

system on plasma verti
al position, based on poloidal �eld 
oils (see 
hapter

2). When the verti
al 
ontrol is lost, a Verti
al Displa
ement Event (VDE)

develops, indu
ing large for
es on the surrounding stru
tures. Therefore,

these events are parti
ularly dangerous for the integrity of the ma
hine, even

if the presen
e of 
ondu
tive surrounding stru
tures oppose to the displa
e-

ment thanks to the indu
ed 
urrents, slowing down the verti
al motion on

the base of the resistive time. The loss of verti
al 
ontrol 
an be 
aused also

by the rapid 
hanges in plasma parameters during a disruption, but in some


ases it o

urs before the energy and the 
urrent quen
h, therefore it 
an be

seen as a 
ause.

3.2.4 Consequen
es

As it has been dis
ussed in the introdu
tory se
tion, disruptions represent

a not negligible risk for the stru
tural integrity of the ma
hine. The ther-

mal quen
h, that is the phase in whi
h a large amount of thermal energy is

lost from the plasma, 
an 
ause extremely high thermal loads on the plasma

fa
ing 
omponents (PFCs), on the diverter and in general on the �rst wall.

Presently, no material 
ould withstand all the thermal energy of a large de-

vi
e as ITER without being heavily damaged or dire
tly melted. Obviously,

there are me
hanisms through whi
h a 
onsistent fra
tion of the thermal en-

ergy is dissipated before to be released on surfa
e materials, as for example

by radiation losses. Furthermore, we have to take into a

ount that the total
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heat �ux has to be distributed on the largest possible area. Anyway, the

foreseen heat loads are still too high for PFCs and divertor materials, there-

fore, further mitigation a
tions must be 
onsidered.

Besides heat loads, another serious issue is represented by the 
onse-

quen
es of the plasma abrupt 
urrent quen
h: large eddy 
urrents 
an be

indu
ed in the va
uum vessel and surrounding stru
tures, 
reating for
es

potentially 
apable of damaging the devi
e. Eddy 
urrents are driven ba-

si
ally by the movement of the plasma 
olumn and by the variation of the

plasma 
urrent values. Moreover, during disruptions the plasma 
an hit the

�rst wall and a 
onsistent fra
tion of plasma 
urrent 
an �ows dire
tly from

the plasma to the va
uum vessel and the surrounding 
ondu
tive stru
tures

through the wall-
onta
ting region. The resulting 
urrents �ow mostly in the

poloidal dire
tion and are 
hara
terized typi
ally by a toroidally symmetri



omponent due to magneti
 �ux 
onservation, and eventually by a toroidally

asymmetri
 
omponent with mode number n=1, whose origin so far is not

so 
lear (�gure 3.9).

The for
es indu
ed by these so 
alled halo 
urrents 
an be very harmful.

Eddy and halo 
urrents give rise to verti
al for
es between the plasma 
olumn

and the va
uum vessel and for
es between the va
uum vessel and the 
oils.

The problem of equilibrium and verti
al stability has already been dis
ussed

in the 
hapter 3.

Finally, the produ
tion of relativisti
 (runaway) ele
trons during the 
urrent

quen
h poses another threat to the integrity of the plasma fa
ing 
omponents,

espe
ially in the 
ase of high-
urrent tokamaks as ITER. The 
onversion by

Coloumb avalan
he multipli
ation of plasma 
urrent to relativisti
 ele
tron


urrent 
an rea
h even 70% of the initial plasma 
urrent, leading to potential

damages to PFCs.

Observations in present tokamaks have shown that runaway ele
tron 
an


ause damages due to the deposition of thermal energy on material surfa
es.

An additional fra
tion to this energy is originated from the 
onversion of the

magneti
 energy asso
iated to the relativisti
 beam [17℄. Thus, on the base

of the always improving understanding of the nature of su
h a phenomenon,

di�erent avoidan
e or mitigation strategies are 
urrently under study, with

parti
ular referen
e to their appli
ation in ITER.
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Figure 3.9: Example of halo 
urrent dynami
s in NSTX: (a) verti
al motion

leading up to the disruption, (b) 
ontours of halo 
urrent as a fun
tion of time and

toroidal angle, (
) maximum and minimum 
urrent instantaneously measured on

any tile, along with the amplitudes in a simple n = 1 de
omposition, and (d) the

plasma 
urrent.(from: [18℄)
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Chapter 4

Ma
hine learning for mapping,

predi
tion and 
lassi�
ation

4.1 Introdu
tion

Today the large amount of data available from fusion experiments and their


hara
ter of high-dimensionality make parti
ularly di�
ult handling, pro-


essing, understanding and extra
ting properly what is really important

among all the available information. In fa
t very often data sets 
onsists

not only in a huge number of examples, but are also 
hara
terized by a 
on-

sistent number of features ne
essary to exhaustively represent the behavior

of a 
ertain phenomenon for example. Obviously, not all the features have

ne
essarily the same level of importan
e, or it 
an happen that some of them

are redundant or 
ompletely useless in relation to a spe
i�
 obje
tive. This

is a key point for several reasons: �rst of all, even if it is 
ontinuously in-


reasing, there is a 
omputational limit to the amount of data whi
h 
an be

handled be
ause of the 
omplexity of the algorithm, the required memory,

et
. Furthermore, high-dimensionality makes data very di�
ult to interpret;

s
ientists often have to deal with problems involving high-dimensional data.

The most obvious issue is visualization; when the data dimension is

greater than three 
annot be visualized and it be
omes harder to per
eive

similarities and dissimilarities between di�erent variables. Furthermore, the

sampling of the spa
e is harder due to the high number of possible data

samples. Essentially, the amount of data to a
hieve a given spatial density

of examples in
reases exponentially with the dimensionality of data spa
e

(empty spa
e phenomenon). Generally speaking, algorithms that operate on

high-dimensional data are fa
ed with the "
urse of dimensionality" and the

asso
iated issues, resulting in a very high 
omplexity. For example, organiz-

49
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ing and sear
hing data relies on dete
ting areas where obje
ts form groups

with similar properties; in high-dimensional data however all obje
ts appear

to be sparse and dissimilar in many ways whi
h prevents 
ommon data or-

ganization strategies from being e�
ient. One approa
h to simpli�
ation is

to assume that the data of interest lies on a low-dimensional manifold, em-

bedded in the high-dimensional spa
e. Thus, data redu
ed to a small enough

number of dimensions 
an be visualized in the low-dimensional embedding

spa
e. Attempting to un
over this manifold stru
ture in a data set is re-

ferred to as manifold learning. It is worth mentioning that identifying the

right manifold would also allow to better model the relevant physi
s. There-

fore,manifold learning has the potential not only to improve the visualization

and the intuitive estimation of problems but also to qualitatively in
rease the

understanding of the relevant physi
s.

Moreover, beyond visualization, one has to take into a

ount also the

aspe
t of the 
omputational burden required by pattern re
ognition, 
lassi-

�
ation and predi
tion algorithms whi
h usually are used immediately after

the initial step of dimensionality redu
tion. In other words, redu
ing the

quantity of relevant features in a data set is a fundamental step for the

subsequent appli
ation of powerful data-analysis and ma
hine learning te
h-

niques [1℄.

When we talk about data visualization and mapping, very often we are

intrinsi
ally making referen
e to the same 
on
ept, but sometimes some dis-

tin
tion are made among methods whi
h provide just visualization and meth-

ods that provide a mapping. In the 
ontext of ma
hine learning, mapping

methods are 
onsidered mostly able to provide a preliminary feature ex-

tra
tion step, after whi
h pattern re
ognition algorithms 
an be e�
iently

applied. Instead, data visualization methods 
an be 
onsidered as a subset

of mapping methods based mostly on distan
e measurements and data prox-

imity. Anyway, in many appli
ations su
h a distin
tion be
omes in pra
ti
e

inappre
iable.

4.2 Manifold learning algorithms

In the last few years, many manifold learning te
hniques have been devel-

oped for dimensionality redu
tion. A number of supervised and unsupervised

linear dimensionality redu
tion frameworks have been designed [2℄, whi
h

de�ne spe
i�
 pro
edures to 
hoose interesting linear proje
tions of the data

su
h as PCA [3℄ and Grand Tour [4℄. These linear methods 
an be powerful,

espe
ially in terms of data-visualization, but often miss important nonlinear

stru
tures in the data. Re
ently, several di�erent algorithms have been de-



Manifold learning algorithms 51

veloped to perform dimensionality redu
tion of nonlinear manifolds. Among

them, there are powerful methods su
h as Self Organizing Map (SOM), Gen-

erative Topographi
 Mapping (GTM), Isomap and Lo
ally Linear Embedding

(LLE) [2℄.

Isomap is a simple method of nonlinear dimensionality redu
tion that

extends metri
 multidimensional s
aling (MDS) exploiting graph distan
e

as an approximation of the geodesi
 distan
e, instead of the Eu
lidean dis-

tan
e. The main idea at the base of the method is to use the distan
e along a

geodesi
 path onto the 
onsidered manifold as measure of dissimilarity. The

mapping preserve the intrinsi
 metri
 of the data, therefore it 
an be de�ned

as a distan
e preservation method.

LLE instead, similarly to SOM and GTM algorithms, is a topology preser-

vation method. In mathemati
s, a topologi
al variety or manifold is basi-


ally a topologi
al spa
e that resembles Eu
lidean spa
e near ea
h point, or

in other words ea
h point of an n-dimensional manifold has a neighborhood

homeomorphi
 to the Eu
lidean spa
e in R
n
. LLE de�nes a eigenve
tor based

method, and its optimization don't involve an iterative algorithm, avoiding

in this way the problem of eventual lo
al minima.

The most important feature about manifolds is represented by their topol-

ogy, or, in other words, the neighborhood relationships between subregions of

the 
onsidered manifold. Nonlinear dimensionality redu
tion 
an be a
hieved

also with distan
e preservation, but it turns out to be very 
onstraining. In


ertain 
ases the embedding of a manifold requires that some regions has

to be stret
hed or shrunk to be properly embedded in a lower dimensional

spa
e. This is the reason whereby generally topology preservation, even if

more 
omplex, seems to be more suitable in this framework.

Therefore, summarizing, dimensionality redu
tion is the pro
ess through

whi
h we 
an �nd a suitable representation of our original data, with the aim

of dis
overing eventually parti
ular stru
tures or patterns whi
h 
an lead to

more targeted statisti
al analysis su
h as 
lustering, smoothing, probabil-

ity density estimation and 
lassi�
ation. In addition to these advantages,

moreover, we have to 
onsider the power of visualization if dimensionality is

redu
ed to 2-D or 3-D.

LLE, unlike SOM and GTM, for preserving topology proposes a di�erent

approa
h based on the so-
alled 
onformal mapping, whi
h, instead of pre-

serving lo
al distan
es, preserves lo
al angles. In a 
ertain way lo
al distan
es

and lo
al angles are linked by s
alar produ
ts, thus they may be interpreted

as two di�erent ways to preserve lo
al s
alar produ
ts [2℄. Anyway, regard-

ing the di�erent methods, a not negligible point is the 
omputational burden

that has to be evaluated in relation to the spe
i�
 appli
ation. Regarding

Isomap and LLE for example, the spe
tral de
omposition required by the
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two algorithms 
an represent a heavy 
omputational bottlene
k. Going up

with dimensionality and size of databases, their use be
omes hard without a

very powerful hardware 
on�guration, and an eventual real-time appli
ation

would be parti
ularly 
hallenging.

Figure 4.1: Comparison between PCA and Manifold Learning methods (LLE and

Isomap). [from www.astroml.org/book_�gures℄

There exist several other algorithms for manifold learning, as well there ex-

ists also di�erent variants of the 
ited algorithms, but an extensive dis
ussion

about all the methods is beyond the s
ope of this thesis. Therefore, only the

methods applied for the analysis performed in the framework of this thesis

will be des
ribed, in parti
ular Grand Tour and Prin
ipal Component Anal-

ysis among the linear te
hniques, and Self Organizing Maps and Generative

Topographi
 Mappings among the nonlinear ones. The linear te
hniques are

simpler and easier to implement than more re
ent methods 
onsidering non-

linear transforms, but often miss important nonlinear stru
tures in the data.

In any 
ase, they turn out to be very useful for an initial analysis about

basi
 statisti
al properties and interesting linear stru
tures hidden in data.

Furthermore, some se
tions will be dedi
ated to the introdu
tion of referen
e


lassi�
ation and predi
tion algorithms used in the framework of this thesis
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in 
onjun
tion with manifold learning algorithms, su
h as k-Nearest Neigh-

bor (kNN) te
hnique and Conformal Predi
tors.

Let us 
onsider the problem of redu
ing the dimensionality of a given

data set 
onsisting of N high-dimensional points in an Eu
lidean spa
e. The

high-dimensional input points will be referred to as T = {t1, t2, ...., tN} with
ti ∈ R

D
. Let L be the dimensionality of the manifold that the input is

assumed to lie on. The low-dimensional representations that the dimension-

ality redu
tion algorithms �nd will be referred to as X = {x1,x2, ....,xN}
with xi ∈ R

L
.

4.2.1 Grand Tour (GT)

Usually, in order to dis
over some basi
 property of a dataset of interest, it

is useful to start looking at data from di�erent points of view, investigating

the highest possible number of lower dimensional representations. This is a

proper method of analysis, espe
ially in those 
ases for whi
h eventual stru
-

tures hidden within data are totally unknown.

The Grand Tour method, introdu
ed by Asimov [4℄ and Buja and Asi-

mov [5℄, is a multivariate visualization method that generates a 
ontinuous

sequen
e of low dimensional proje
tions of a high dimensional data set. The

animation obtained provides an overview of the high dimensional spa
e in a

sequen
e of 2-D plots. Data are looked from all possible viewpoints to get

an idea of the overall distribution.

To 
reate a two dimensional Grand Tour, a sequen
e of planes is generated.

The set of planes has to be dense in the data spa
e; the sequen
e of planes

is also required to move 
ontinuously from one plane to the next so that the

human visual system 
an smoothly interpolate the data and tra
k individual

points and stru
tures in the data. Hen
e, the mathemati
s of the Asimov-

Buja Grand Tour requires a 
ontinuous, spa
e-�lling path through the set of

planes in the high-dimensional data spa
e. Then, data has to be proje
ted

onto the planes and observed in a time-sequen
ed set of 2-2-DD images. Sev-

eral algorithms have been proposed to a
hieve these two 
onditions, based

on obtaining a general rotation in the high dimensional spa
e. In this work,

the MATLAB implementation in [6℄ of the Pseudo Grand Tour algorithm,

�rstly des
ribed in Wegman and Shen [7℄, has been used. The main ad-

vantages of the Pseudo Grand Tour, whi
h is an approximate version of the

Grand Tour, are speed, ease of 
al
ulation, uniformity of the tour, and ease

of re
overing the proje
tion. However, the algorithm is not spa
e �lling, thus

only a "pseudo" grand tour is obtained.
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4.2.2 Prin
ipal Component Analysis (PCA)

The main purpose of Prin
ipal Component Analysis is to redu
e dimension-

ality taking into a

ount as mu
h of the varian
e of our high-dimensional

data as possible.

PCA �nds the L dire
tions (ve
tors) along whi
h the data has maximum

varian
e and the relative importan
e of these dire
tions. If data lies perfe
tly

along an embedding subspa
e of R
L
, PCA will reveal that subspa
e; other-

wise, PCA will introdu
e some errors. Let the �rst L prin
ipal 
omponents

of T be P = [p1, ...,pL] with pi ∈ R
D
.

The 
olumns of P are the dire
tions of maximum variation within the

data, and they form an orthonormal basis that spans the prin
ipal subspa
e

so there is no redundant information [3℄. The data xi 
an be approximated

by linear 
ombination of the prin
ipal 
omponents as xi = PTti, where

PTti = ci are the linear 
oe�
ients obtained by proje
ting the training data

onto the prin
ipal subspa
e; that is, C = [c1, ...., cN] = PTT.

Despite PCA's popularity it presents a number of limitations. The main

drawba
k is the requirement that the data lies on a linear subspa
e. Indeed,

when data lies in a low-dimensional manifold, not in a low dimensional sub-

spa
e, PCA does not 
orre
tly extra
t the low-dimensional stru
ture. Man-

ifold learning algorithms essentially attempt to dupli
ate the behavior of

PCA, but on nonlinear manifolds instead of linear subspa
es.

4.2.3 Self Organizing Map (SOM)

The SOM is a type of arti�
ial neural network developed by Kohonen [8℄.

SOMs are widely applied as nonlinear dimensionality-redu
tion tools in or-

der to 
onvert 
omplex nonlinear relationship between data items into a low-

dimensional spa
e. A SOM 
an be intuitively interpreted as some kind of

nonlinear PCA. In a SOM the obje
tive is more to preserve the topology,

rather than the distan
e, in the distribution of the data.

One natural way to put this idea in pra
ti
e 
onsists of repla
ing the

hyper-plane with a dis
rete (and bounded) grid or latti
e de�ned by some

points 
alled prototypes. The prototypes have 
oordinates in both the em-

bedding and the initial spa
e. They are iteratively �tted inside the data 
loud

moving the prototypes together with their neighbors in the latti
e toward the

original data points as it is shown in Figure 4.2. Hen
e, the Self-Organizing

Map is a nonlinear dimensionality redu
tion te
hnique whi
h performs two


on
urrent subtasks:

• Dimensionality redu
tion: high dimensional inputs are proje
ted on a

low-dimensional regular grid.
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• Data 
lustering and topology preservation: points 
lose to ea
h other

in the input spa
e are mapped to the same or neighboring 
lusters in

the output spa
e.

Figure 4.2: Self Organizing Map: prototypes iterative �tting inside the data 
loud

Let us 
onsider in more detail the problem of redu
ing the dimensionality of a

given data set 
onsisting of high-dimensional points in Eu
lidean spa
e. The

SOM repla
es the set of points T = {t1, t2, ...., tN} in the D-dimensional in-

put spa
e T onto the smaller set of K prototypes pointsX = {x1,x2, ....,xK}
with xi ∈ R

L
. Ea
h prototype point in the low-dimensional regular latti
e


orresponds to a point in the original spa
e. Moreover, SOM preserves the

topologi
al properties of the input. This means that points 
lose to ea
h other
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in the input spa
e are mapped on the same or neighboring prototypes in the

embedding spa
e. Preserving neighborhood's relations in the mapping makes

possible to see more 
learly the stru
ture hidden in the high-dimensional

data. The 
oordinates x are initialized and then updated iteratively during

the SOM training pro
edure. The SOM runs through the data set T several

times, 
alled epo
hs. During ea
h epo
h, for ea
h ti, the 
losest prototype

ve
tor xr is determined. Then, the 
oordinates of all the prototypes are

updated a

ording to the learning rule

xi = ηΛ(i, r)(ti − xr) (4.1)

The neighborhood fun
tion Λ(i, r) is equal to 1 for i = r, and falls o� ex-

ponentially with the distan
e dir between prototypes i and r in the latti
e.

Thus, prototypes 
lose to the winner r, as well as the winner itself, have

their 
oordinates updated, whereas those further away, experien
e little ef-

fe
t. Learning generally pro
eeds in two broad stages: a shorter initial train-

ing phase, in whi
h the map re�e
ts the 
oarser and more general patterns

in the data, followed by a mu
h longer �ne tuning stage, in whi
h the lo
al

details of the organization are re�ned. We start with a wide range of Λ(i, r)
and η then both the range of Λ(i, r) and the value of η are gradually redu
ed
as the learning pro
eeds. A typi
al 
hoi
e forΛ(i, r) is:

Λ(i, r) = e−d2ir/2σ
2

(4.2)

where σ is a width parameter that is gradually de
reased. Thus, the SOM si-

multaneously performs the 
ombination of three 
on
urrent subtasks: ve
tor

quantization, dimensionality redu
tion and topology preservation.

4.2.4 Generative Topographi
 Mapping (GTM)

Generative Topographi
 Mapping belongs to the 
lass of the so 
alled "gen-

erative models", whi
h try in a 
ertain way to model the distribution of the

data by de�ning a density model with low intrinsi
 dimensionality in the

data spa
e. Through a nonlinear mapping from the latent spa
e to the data

spa
e it generates a mixture of Gaussians, whose 
enters are 
onstrained to

lie on, a low dimension spa
e embedded in the high-dimensional one and

has to be �tted to the data. This is usually a
hieved through a form of the

Expe
tation Maximization algorithm (EM) by maximizing the likelihood or

the log-likelihood fun
tion of the model [9℄.
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In a 
ertain way, GTM has been inspired by the SOM algorithm, at-

tempting to over
ome its limitations. In parti
ular, SOM does not de�ne a

density model and the 
onvergen
e of the prototype ve
tors are not based on

the optimization of an obje
tive fun
tion su
h as the likelihood fun
tion, in

fa
t the preservation of the neighborhood stru
ture is not guaranteed. Being

a generative latent model, GTM basi
ally tries to �nd a representation in

terms of a small number of latent variables: in order to be able to visualize

the lower dimensional representation of the data, the latent variable dimen-

sion must be 2 or 3. Sin
e the mapping is de�ned from the latent spa
e to

the data spa
e, for visualization purposes an inversion of the mapping itself

is required and this is a
hieved 
omputing the posterior probability in the

latent spa
e through the Bayes' theorem.

However, we have to take into a

ount that a single data point 
orrespond

to a probability distribution in the latent spa
e, not just to a single point,

reason for whi
h we usually make referen
e to 
ondensed information su
h

as the mean or the mode of the posterior distribution.

Let's des
ribe now in more detail the basi
 mathemati
al formulation

upon whi
h GTM is based. GTM de�nes a mapping from the latent spa
e

(L-dimensional spa
e) into the data spa
e (D-dimensional spa
e). So, given

a dataset in the data spa
e T = {t1, t2, ...., tN}, the �rst step is to map the

latent spa
e, whi
h 
onsists of a regular grid of nodes X = {x1,x2, ....,xK},
into the data spa
e through a parameterized nonlinear fun
tion y(x;W),
where W is the matrix of parameters representative of the mapping (see �g-

ure 4.3). The obje
tive of the GTM is to de�ne a probability distribution

over the D- dimensional spa
e in terms of latent variables:

p(t) =

∫

p(t|x)p(x)dx (4.3)

Sin
e data in reality only approximately lies on a low dimensional mani-

fold embedded in the data spa
e, a 
ertain noise has been in
luded in the

observed data whi
h will be modeled by a radially symmetri
 Gaussian prob-

ability density fun
tion 
entered on the transformed latent nodes. Thus, the

distribution of t, for a given x and W, is a spheri
al Gaussian 
entered on

y(x;W)

p(t|x,W, β) =

(

β

2π

)−D/2

· e{−
β
2
||y(x;W)−t||2}

(4.4)

where the inverse of the β parameter is the noise varian
e. The distribution

inT-spa
e, for a given value ofW, 
ould then be obtained by integration over

the x-distribution. Sin
e the integral is generally not analyti
ally tra
table,
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the latent variable distribution is repla
ed by a prior distribution p(x) 
on-
sisting of a superposition of delta fun
tions, ea
h one asso
iated with one of

the nodes of the regular grid in the latent spa
e

p(x) =
1

K
·

K
∑

k=1

δ(x− xk) (4.5)

Substituting 4.4 and 4.5 in 4.3, the distribution fun
tion in the data spa
e

be
omes:

p(t|W,β) = 1

K
·

K
∑

k=1

p(t|xk,W, β) (4.6)

The suggested approa
h is to use radial basis fun
tion (RBF), su
h as for ex-

ample Gaussians, to perform the nonlinear mapping between the latent spa
e

and the data spa
e. The mapping 
an be expressed by a linear regression

model, where the mapping fun
tion y is expressed as a linear 
ombination of

these basis fun
tions Φ:

y(x,W) = Φ(x) ·W (4.7)

where W is a D ×M matrix of weight parameters and M is the number of

the basis fun
tions.

Figure 4.3: GTM mapping and manifold: ea
h node lo
ated at a regular grid in

the latent spa
e is mapped to a 
orresponding point y(x;W) in the data spa
e,

and forms the 
entre of a 
orresponding Gaussian distribution. In the �gure the


orresponden
es between a data point in the manifold embedded in the data spa
e

and the mean of the posterior distribution in the latent spa
e is also shown.
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The adaptive parameters of the model are W and β. Sin
e the GTM repre-

sents a parametri
 probability density model, it 
an be �tted to the data set

by maximum likelihood, e.g. maximizing the log likelihood fun
tion. This


an be performed, e.g., using the expe
tation-maximization algorithm.

The likelihood fun
tion for a set of i.i.d data points {t1, t2, ...., tN} 
an be

written as:

L =
N
∏

n=1

(p(t|W, β)) =
N
∏

n=1

(

1

K

K
∑

k=1

p(tn|xk,W, β)

)

(4.8)

therefore, the log-likelihood fun
tion, whose handling is usually more e�
ient,

has the following form:

l =

N
∑

n=1

ln

(

1

K

K
∑

k=1

p(tn|xk,W, β)

)

(4.9)

A

ordingly to the SOM algorithm, GTM 
an be applied for data 
lustering

and topology preservation. Being the mapping de�ned by the nonlinear fun
-

tion y(x;W) smooth and 
ontinuous, the topographi
 ordering of the latent

spa
e will be preserved in the data spa
e, in the sense that points 
lose in the

latent spa
e will be mapped onto nodes still 
lose in the data spa
e. With re-

spe
t to the Self Organizing Map algorithm, GTM de�nes expli
itly a density

model (given by the mixture distribution) in the data spa
e, and it allows

over
oming several problems, in parti
ular the ones related to the obje
tive

fun
tion (log likelihood) to be maximized during the training pro
ess, and

the 
onvergen
e to a (lo
al) maximum of su
h an obje
tive fun
tion, that is

guaranteed by the Expe
tation Maximization algorithm.

Visualization

For visualization purposes, the resulting mapping in the high-dimensional

spa
e has to be transposed into the low-dimensional latent spa
e, whi
h is

therefore 
hosen to be 2-D or three-dimensional (3-D). Extra dimensions

would improve the quality of the results, but data with more than two or

three dimensions 
an be di�
ult to interpret. The inversion of the map-

ping is performed by employing Bayes' theorem, whi
h allows 
al
ulating

the posterior probability in the latent spa
e. On
e we have found suitable

values W∗
and β∗

for respe
tively the matrix of weight and biases for the

nonlinear mapping and for the inverse of the noise varian
e, GTM de�nes a

probability distribution in the data spa
e 
onditioned on the latent variable,

that is p(t|xk) with k = 1, 2, ..., K. But what we are interesting in is the
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orresponding posterior distribution in the latent spa
e for any given data

point t, that is p(xk|t); therefore, in order to 
ompute this latter we 
an use

the Bayes' theorem in 
onjun
tion with the prior distribution over the latent

variable p(x), as it is 
al
ulated in the following expression (4.10):

p(xk|t) =
p(tn|xk,W

∗, β∗) · p(xk)
∑K

k′=1 p(tn|xk,W∗, β∗) · p(xk′)
(4.10)

For visualizing all the data points in the latent spa
e, it is then possible to plot

the mean (4.11) or the mode (4.12) of the posterior probability distribution

in the latent spa
e.

xmean
n =

K
∑

k=1

xk · p(xk|tn) (4.11)

xmode
n = argmax {p(xk|tn)} (4.12)

The mean position xmean
n (t) in the latent spa
e is 
al
ulated by averaging

the 
oordinates of all nodes taking the posterior probabilities as weighting

fa
tors. In �gure 4.3, the data point t∗ is represented in the latent spa
e as

the mean weighted by the posterior probabilities.

Algorithm and implementation [10℄

A s
heme whi
h summarizes the basi
 steps for the GTM 
onstru
tion model

is given in the �ow
hart in �gure 4.4.

The Matlab toolbox for the 
omputation of the GTM whi
h has been used

as a base for the implementation of the data analysis and 
lassi�
ation al-

gorithms is part of Exploratory Data Analysis (EDA) toolbox des
ribed in

[11℄. The �rst step of the 
omputation is the generation of the grids of the

latent points and of the radial basis fun
tion 
enters. Regarding the radial

basis fun
tions in parti
ular, the width σ is an important parameter, sin
e in


onjun
tion with their number and with the number of latent points, deter-

mines smoothness and �exibility of the mapping. Therefore,it is important

to note that even if for 
omputational reasons the algorithm works with a

dis
rete number of latent points, the mapping is 
ontinuous over the latent

spa
e. In fa
t, it has to 
orrespond to the manifold embedded in the data

spa
e where the 
enters of Gaussians (
orresponding to the latent points) lie

on. The 
hoi
e of these parameters, as suggested by the main author of the

tool [10℄, in general is not uniquely de�ned sin
e it depends on the spe
i�



ase, but the important point is that the 
hoi
e will a�e
t the �nal mapping.



Manifold learning algorithms 61

Figure 4.4: GTM algorithm �ow
hart

As general 
onsideration, depending on the RBF width and their num-

ber, we 
an have larger or smaller overlapping among them, that means we


an have more or less 
orrelation. The more and broader the basis fun
tions

are, the higher the �exibility of the mapping will be, but we don't have to

lose 
ompletely the 
orrelation among RBFs, otherwise also the smoothness

of the mapping will be lost. A measure of the overlapping among RBFs is

given also by the number of points they have in 
ommon; therefore, in order

to preserve the smoothness, we have to guarantee that the number of shared

points is not too low. Regarding the number of latent points, the author

suggests as a good rule to have O(10L) number of latent points as support
of ea
h basis fun
tion.

Regarding the nonlinear mapping (4.7), a generalized linear regression

model is usually 
hosen as parametri
 nonlinear model, whereas regarding

basis fun
tions, several types 
ould be used, but in the adopted implementa-

tion Gaussian basis fun
tions are used. On
e the matrix Φ of basis fun
tions

has been 
omputed, the initialization of W 
an be done randomly or PCA-

based, and β has to be initialized 
oherently with respe
t toW initialization.

The next step is represented by the 
al
ulation of the distan
e ∆ between

any given data point and the Gaussian 
enters to whi
h latent points are

mapped (∆kn = ||tn −ΦkW||2). At this point we enter in the iterative pro-
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edure for the mixture of Gaussians �tting through the EM algorithm. In

the Expe
tation step the responsibilities rkn that the n-th point t in the data

spa
e is generated from the k-th node of the grid are 
al
ulated a

ording to

the following expression:

rkn = p(xk|tn,W, β) =
p(tn|xk,W, β)

∑K
k′=1 p(tn|xk,W, β) · p(xk′)

(4.13)

Su
h responsibilities are the weights in fun
tion of whi
h the parameters W
and β are updated at ea
h iteration until a 
onvergen
e 
riterion will not

be satis�ed (usually the maximum number of iterations). In other words, in

the Maximization step ea
h 
omponent of the mixture of Gaussians is moved

toward dataset points for whi
h it results to have higher responsibility. A

s
hemati
 representation of main steps of the Expe
tation Maximization for

GTM building model is reported in the box of �gure 4.5

Figure 4.5: EM main steps.

4.2.5 Extension of the GTM tool for data analysis, pre-

di
tion and 
lassi�
ation

A not negligible part of the work 
arried out in the framework of this thesis

has regarded the implementation of algorithms for data analysis, 
lassi�
a-

tion and predi
tion, whi
h basi
ally are an extension of the basi
 GTM tool

(and 
an be applied also to SOMs). The developed tools, whi
h will be

des
ribed in 
onjun
tion with the results in the following 
hapters, provide

additional fun
tions related to the mapping of an high-dimensional spa
e, in

parti
ular:
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• evaluation and quanti�
ation of the e�e
tiveness of the mapping (Quan-

tization Error measure, Trustworthiness measure, and Topology Preser-

vation measure).

• implementation of di�erent types of representation (basi
 maps, Pie-

planes and Component-planes).

• tra
king of temporal evolution of a new obje
t onto the map (online

and real-time implementation)

• data-redu
tion algorithm based on the GTM model

GTM's tools 
ould be parti
ularly useful in the study of the operational spa
e

where the relevant physi
s takes pla
e, allowing the per
eption of eventual

similar patterns and the identi�
ation of dependen
ies or 
omplex relations

in the feature spa
e. Furthermore, these tools have been used not only for

analysis but also as "kernel" for the algorithms of predi
tion and 
lassi�
a-

tion, as it will des
ribed in the subsequent part of the thesis.

4.2.6 k-Nearest Neighbor (k-NN)

k-Nearest Neighbors algorithm (k-NN) is a referen
e non-parametri
 method

used for 
lassi�
ation and regression. In pattern re
ognition, it represents one

of the simple but at the same time used learning algorithm. An obje
t 
an be


lassi�ed on the base of its neighbor by a majority vote: the 
lass membership

will indi
ate the 
lass with the higher number of neighbors among the k
nearest ones (�gure 4.6).

k-NN is de�ned as an instan
e-based 
lassi�er, unlike GTM for example,

whi
h de�nes a generative latent model. There are several implementation

of this algorithm, su
h us the weighted version for taking into a

ount the

di�erent importan
e of the neighbors on the base of the distan
e to the

test unlabeled point. k-NN te
hnique requires the de�nition of a similarity

measure, or in other words a distan
e measure. The most 
ommon used

metri
s is the Eu
lidean distan
e, but also other metri
s su
h as Hamming

distan
e 
an be used depending on stru
ture and properties of the data of

interest. It is a simple and �exible te
hnique whose drawba
ks are well

known, as for example the appli
ation of the basi
 majority voting 
riterion

for 
lassi�
ation when the dataset is strongly unbalan
ed in terms of the

di�erent 
lasses. In this 
ase the 
lass with higher frequen
y of o

urren
e


an distort the majority vote among k nearest neighbors. One solution to

over
ome this problem is to take into a

ount the distan
e of ea
h of the k
nearest neighbors with a weighted sum: a 
ommon rule is to multiply simply
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Figure 4.6: k-Nearest Neighbor te
hnique with k=3: in thi 
ase the test point z
is 
lassi�ed as triangle.

for a fa
tor proportional to the inverse of the distan
e from the 
onsidered

point to the test unlabeled point.

Anyway k-NN has some strong 
onsisten
y results. In parti
ular the

algorithm is guaranteed to yield an error rate no worse than twi
e the Bayes

error rate if the amount of data tends to in�nity [12℄. Bayes error rate is

referred to the optimal de
ision boundary that provides the lowest probability

of error for a 
lassi�er, given distribution of data [13℄.

Mahalanobis distan
e [14℄

A parti
ular metri
s whi
h has been exploited as similarity measure with the

k-NN te
hnique, is the Mahalnobis distan
e, whose de�nition and intuitive

pi
ture are represented in Figure 4.7. If we are 
onsidering the problem of

estimating the probability that a test point belongs to a 
ertain set, intu-

itively, it is quite easy to dedu
e that the 
loser the point in question is to

the 
enter of mass of the distribution of points , the more likely it belongs

to the set. When the 
onsidered distribution of points is not spheri
al then

the probability of the test point to belong to the set, depends not only on

the distan
e , but also on the dire
tion.

Therefore,for a multivariate ve
tor x = (x1, x2, ..., xN), assuming a generi


distribution of points with 
enter of mass µ = (µ1, µ2, ..., µN) and whose

probability distribution is represented by the 
ovarian
e matrix S, Maha-

lanobis distan
e is de�ned as DM =
√

(x− µ)TS−1((x− µ).

In Figure 4.7 for example we are assuming that the distribution of points

is ellipsoidal. In those dire
tions where the ellipsoid has a short axis the test

point must be 
loser, while in those ones where the axis is long the test point


an be further away from the 
enter, always maintaining the same probability

to belong to the 
onsidered set. The ellipsoid that best represents the set's

probability distribution 
an be estimated by building the 
ovarian
e matrix
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of the samples. The Mahalanobis distan
e is simply the distan
e of the test

point from the 
enter of mass divided by the width of the ellipsoid in the

dire
tion of the test point.

Figure 4.7: Comparison between Mahalanobis distan
e and Eu
lidean distan
e.

4.2.7 Conformal Predi
tors

Conformal predi
tors are pla
ed in the wide framework of the ma
hine learn-

ing te
hniques that have been developed for predi
tion and 
lassi�
ation pur-

poses. Unlike others methods, they have the pe
uliarity to provide together

with predi
tion or 
lassi�
ation also the 
orresponding level of 
on�den
e.

The theory of Conformal Predi
tions is based on the prin
iples of algorith-

mi
 randomness, and on the Kolmogorov 
omplexity of an i.i.d. (identi
ally

independently distributed) sequen
e of data instan
es [15℄.

Conformal predi
tors 
an be used in prin
iple with any method of pre-

di
tion, su
h as support ve
tor ma
hines, neural networks, de
ision trees,

nearest neighbor 
lassi�ers, et
. To determine the 
on�den
e level for the


lassi�
ation of a new obje
t, it is ne
essary to estimate how di�erent a new

obje
t is from the old examples: to this purpose, usually a non
onformity

s
ore is 
al
ulated on the base of a de�ned non
onformity measure. In par-

ti
ular we are interested to predi
tions using features of the new obje
t; let's


onsider su

essive n ordered pairs (t1,y1), (t2,y2), ..., (tn,yn), where zi =
(ti,yi) represents the generi
 example, whi
h 
onsists of an obje
t ti and the


orresponding label yi. Both the obje
t and the labels belong to measurable

spa
es, respe
tively the obje
t and the label spa
e.

Conformal predi
tion requires �rstly the de�nition of a non
onformity

measure, whi
h quanti�es how di�erent a new example is from old examples

[16℄. A bag of size n ∈ ℵ is a 
olle
tion of n elements that may be identi
al

and 
an be given in any order. In the following we will refer to a bag of size
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n with the notation 〈z1, ..., zn〉. The �rst step of the 
onformal predi
tion

algorithm is the 
omputation of the non
onformity s
ores αi for any obje
t

of the given bag on the base of a de�ned non
onformity measure A:

αi := A(〈z1, ..., zi−1, zi+1, ..., zn〉, zi) (4.14)

Nevertheless, non
onformity s
ores have not an absolute value, being rela-

tive to the parti
ular 
ase 
onsidered for the given bag of obje
ts 〈z1, ..., zn〉.
Therefore, in order to generalize and give a measure of how unusual an el-

ement zi is with respe
t to the other elements of the bag, its s
ore must be


ompared with the one of all the other obje
ts. This 
an be done, for exam-

ple, by 
omputing the so-
alled p-value, whi
h is de�ned by the fra
tion:

p-value =
#|{j = 1, ..., n : αj ≥ αi}|

n
(4.15)

This fra
tion, whi
h is the p-value for zi 
an assume values between 1/n
and 1, and represents the normalized number of examples belonging to the

bag at least as non
onforming as zi. The 
loser to its lower bound 1/n the

p-value is, the more non
onforming the obje
t zi is with respe
t to the other

elements of the bag. If n is large enough, an high level of non
onformity may

de�ne an outlier for the 
onsidered 
lass.

In the framework of the 
lassi�
ation with 
onformal predi
tors, the p-

values have a dual fun
tion: they are used to assign the 
lass of a new

element, and, at the same time, on the base of their values it is possible to

de�ne the goodness and the reliability of the 
lassi�
ation itself. Thus, if we


onsider a new obje
t of unknown label to be 
lassi�ed on the base of the

de�ned non
onformity measure into one of N available 
lasses, the 
onformal

predi
tor will assign to this new obje
t the label of the highest p-value. The

reliability of the predi
tion is quanti�ed by two parameters, 
on�den
e and


redibility, de�ned as:

Con�den
e = 1− 2nd largest p-value

Credibility = largest p-value (max(pj), j = 1, ..., N) (4.16)

The values of 
redibility and 
on�den
e are indi
ative of the reliability with

whi
h the 
lassi�
ation is provided. In parti
ular, assuming that ea
h 
lass

is statisti
ally well represented in the training set, a low value of 
redibility

means that the new obje
t (test) is not representative of any 
lass of obje
ts

in the bag (training set). Another important point is represented by the fa
t

that the maximum p-value is not ne
essarily de�ned in unique way, in the
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sense that the maximum p-value 
ould be attributed to more than one 
lass.

This is a 
ase of ambiguity, that means the 
onformal predi
tor for the given

training set, on the base of the de�ned non
onformity measure, is not able

to dis
riminate among the 
lasses whi
h the maximum p-value is asso
iated

with.

As it has been anti
ipated at the beginning of this se
tion, the non
onfor-

mity s
ore 
an be 
omputed in di�erent ways. For the 
lassi�
ation purpose

of this work the 
onformal predi
tor will be based on the nearest neighbor

te
hnique. When a new example zn = (tn,yn) is given to the 
onformal pre-

di
tor for 
lassi�
ation, the nearest neighbor te
hnique �nds the obje
t ti of

the training set 
losest to the new one (tn) and assign its label yi to the label
yn to be predi
ted. At this point, in order to quantify the goodness of the

predi
tion, we have to 
ompare the distan
e of the nearest obje
t ti with the

distan
e of the nearest neighbor with a di�erent label with respe
t to the one

previously attributed to the test obje
t. A

ording to this 
onsiderations, the

non
onformity s
ores 
an be 
omputed as:

αi =
min{|tj − ti| : 1 ≤ j ≤ n & j 6= i & yi = yj}
min{|tj − ti| : 1 ≤ j ≤ n & j 6= i & yi 6= yj}

(4.17)

=
distance to z′s nearest neighbour with the same label

distance to z′s nearest neighbour with a different label

4.2.8 Logisti
 regression

Classi�
ation is one of the most important topi
s in statisti
 and ma
hine

learning, and a simple approa
h to it is to 
ome up with a rule whi
h pro-

vide a dis
rete output (binary if the dis
rimination is between two 
lasses)

depending on the input variables. But in many 
ases, for example if we want

to take into a

ount the eventual presen
e of noise in our data, a dis
rete

output is not the best rule, but probably we would like to provide an answer

with a probability or a level of 
on�den
e.

If we de�ne t as the input variable and Y as the output variable, this 
ould

be done simply by 
onsidering the 
onditional distribution of Y given the

input variable t, that is P (Y |t).
Let's 
onsider Y as a binary or di
hotomous output variable whi
h is 
oded

as 0 or 1. The logisti
 regression models the probability that a generi
 sample

belongs to a 
lass 0 or 1 using t as independent variable or predi
tor. This

probability is formally de�ned as:

log
p(t)

1− p(t)
= α + βt (4.18)
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Therefore,p(t) will be given by:

p(t) =
eα+βt

1 + eα+βt
(4.19)

To minimize the mis
lassi�
ation rate, we should predi
t Y = 1 when p ≥ 0.5
and Y = 0 when p < 0.5. Therefore, logisti
 regression gives us a linear


lassi�er, whose de
ision boundary separating the two predi
ted 
lasses is

nothing else that the solution of α+ βt = 0. In Figure 4.8 the logisti
 
urve

is represented.

Figure 4.8: Logisti
 
urve (from http://en.wikipedia.org/wiki/Logisti
_regression).

If p(t) is the probability of the event, the odds of the event is de�ned as:

odds =
p(t)

1− p(t)
(4.20)

The logisti
 model (logit) is based on a linear relationship between the natural

logarithm of the odds of an event and a numeri
al independent variable;

therefore, we 
an express the logisti
 regression as:

logit = log(odds) = α + βt (4.21)
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Chapter 5

State of the art: te
hniques

applied to disruption


lassi�
ation and predi
tion

5.1 Introdu
tion

In tokamaks the disruption of a dis
harge 
an indu
e large for
es on the sur-

rounding stru
ture and large heat loads on in-vessel 
omponents, espe
ially

in large devi
es as ITER. In this framework, being able to predi
t and 
las-

sify disruptions would be of primary importan
e for improving avoidan
e and

mitigation strategies. Physi
al models able to reliably re
ognize and predi
t

the o

urren
e of disruptions are 
urrently not available, therefore in the last

de
ade, various ma
hine learning te
hniques have been exploited as an alter-

native approa
h to disruption predi
tion and automati
 
lassi�
ation.

Presently, the systems for dete
tion of disruptions are based on more or

less 
omplex 
ombinations of signals that, on the base of a prede�ned rules

or thresholds, allow to take proper a
tions for terminating the dis
harge with

the lowest possible risk for eventual damages on the ma
hine. In ASDEX

and in JET, for example, there is a 
ontrol system in 
losed loop based on a

threshold on the lo
ked mode amplitude, whi
h triggers a mitigation system

(a massive gas inje
tion valve in ASDEX). But, very often, what 
an be de-

te
ted by these systems is unfortunately the �nal part of the 
hain of events

whi
h leads to disruption, and this is not su�
ient in many 
ase to avoid

potential damages to ma
hine stru
tures.

In the following se
tion, the most important te
hniques for disruptions pre-

di
tion and 
lassi�
ation will be reviewed.

71
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5.2 Ma
hine Learning

5.2.1 Main appli
ations

Neural Networks (NNs) are one of the �rst te
hniques used in the framework

of disruption predi
tion and 
lassi�
ation. Neural Networks are basi
ally

an information pro
essing system whi
h try to resemble the way biologi
al

nervous systems, su
h as the brain, pro
ess information. Their stru
ture is

typi
ally based on a large number of highly inter
onne
ted pro
essing ele-

ments (neurons), arranged in di�erent layers. Typi
ally they have an input

layer, an output layer and one or more hidden layers, whose number depends

basi
ally by the 
omplexity of the spe
i�
 task or appli
ation. The inter-


onne
tions among neurons of di�erent layers are 
alled synapses and are


hara
terized by "weights" whi
h are updated during the learning pro
ess.

The output of ea
h neuron is 
omputed in fun
tion of its weighted inputs

through an a
tivation fun
tion.

One of the �rst predi
tors of disruptions based on neural networks has

been built for TEXT tokamak [1℄. In this work the authors propose a Multi

Layer Per
eptron (MLP) to predi
t the �u
tuations of the poloidal magneti


�eld measured through Mirnov 
oils, in order to identify MHD modes m =

2, whi
h are widely re
ognized as important pre
ursors of the disruptions.

The proposed neural network, trained with one disruptive and a one non-

disruptive pulse was able to predi
t a disruption in another shot 1 ms in

advan
e. This approa
h has been extended with better results by adding to

Mirnov 
oils measurements the soft X-ray signals [2℄: in this 
ase the system

was able to predi
t some disruptions 3 ms in advan
e.

Always the same approa
h has been adopted in another tokamak, ADITYA,

where in addition to Mirnov 
oils and soft X-ray signals, Balmer α (Hα) sig-

nals were used to in
rease predi
tion performan
e, extending to 8 ms the time

in advan
e with whi
h pre
ursors of density limit disruptions were predi
ted

[3℄.

In DIII-D tokamak instead, a three layer MLP was trained on the base

of 33 input magneti
 measurements, using a training set of 56 and a test

set of 28 β-limit disruptions. The predi
tion were performed on the base of

a parameter fun
tion of the normalized βN , and the system was optimized

maximizing true positive dete
tion and minimizing false dete
tion. About

90% of the disruptions were 
orre
tly predi
ted.

A NN-based disruptions predi
tor has been implemented also in the toka-

mak JT-60. Its obje
tive was to predi
t disruptions 
aused by density limit,

ramp down of the plasma 
urrent, lo
ked modes due to low density, and β-
limit. The neural network was trained with 9 input parameters, by adopting
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a su

essive retraining pro
edure on the base of a stability level produ
ed

by the �rst pro
edure of training. This led to a su

ess rate of about 97%

of 
orre
t predi
tion 10 ms in advan
e, not 
onsidering disruptions due to

β-limit, that didn't show 
lear pre
ursors before the a
tual disruptions. The

false dete
tions were about the 2% [4℄. A separated NN was trained appo-

sitely to predi
t β limit disruptions but with lower performan
e.

In ASDEX Upgrade NN-based methods have been widely employed for

disruption predi
tion. In [5℄ a NN had the fun
tion to trigger a pellet in-

je
tion system for the mitigation of the disruptions. It was trained on 99

disruptive dis
harges and 386 non-disruptive dis
harges, taking in input sig-

nals representative of the stable behavior of plasma, su
h as the lo
ked mode

or the q95. The online system was able to 
orre
tly re
ognize 79% of disrup-

tions.

In [6℄ a neural network predi
tor has been built using plasma dis
harges

sele
ted from two years of ASDEX Upgrade experiments. In order to test

the real-time predi
tion 
apability of the system, its performan
e has been

evaluated using dis
harges 
oming from di�erent subsequent experimental


ampaigns. The large majority of sele
ted disruptions are of the 
ooling

edge type and typi
ally pre
eded by the growth of tearing modes, degra-

dation of the thermal 
on�nement and enhan
ed plasma radiation. A very

small per
entage of them happen at large beta after a short pre
ursor phase.

For ea
h dis
harge, seven plasma diagnosti
 signals have been sele
ted from

numerous signals available in real-time [7℄. During the training pro
edure,

a self-organizing map has been used to redu
e the database size in order to

improve the training of the neural network. Moreover, an optimization pro-


edure has been performed to dis
riminate between safe and pre-disruptive

phases. Su
h a system was able to a
hieve about 82% of su

ess rate on the

pulses of the same 
ampaigns, but it deteriorated signi�
antly when applied

to subsequent 
ampaigns.

The degrade of performan
e was almost entirely over
ome through a re-

training pro
edure [8℄. The adaptive system 
ontains a Self Organizing Map,

whi
h determines the 'novelty' of the input of the MLP predi
tor module.

The answer of the MLP predi
tor will be inhibited whenever a novel sample

is dete
ted. Furthermore, it is possible that the predi
tor produ
es a wrong

answer although it is fed with known samples. In this 
ase, a retraining

pro
edure will be performed to update the MLP predi
tor in an in
remental

fashion using data 
oming from both the novelty dete
tion, and from wrong

predi
tions. In parti
ular, a new update is performed whenever a missed

alarm is triggered by the predi
tor with whi
h the non-re
ognize disruptive

dis
harges were integrated to the training set in the adaptive pro
edure. The

performan
e has been 
al
ulated on a test set of 536 safe dis
harges and 128



74 CHAPTER 5. STATE OF THE ART

disruptive ones, giving a total predi
tion su

ess rate greater than 93% with

a missed alarm rate of about 13%.

Also for JET there are several experien
es where NN-based predi
tors

have been used to predi
t disruptions. In [9℄ a MLP was trained on 86 dis-

ruptive dis
harges and 400 dis
harges su

essfully terminated. A balan
ed

training set was 
omputed sele
ting randomly 400 samples from ea
h safe

dis
harge and the samples of the last 400 ms for ea
h disruptive dis
harge.

The most important input parameters were found to be the plasma 
urrent,

the total input power, poloidal β and the internal indu
tan
e of the plasma.

84% of the disruptions belonging to the test set were 
orre
tly predi
ted at

least 100 ms in advan
e.

Anyway, by testing the proposed approa
h with the whole pulses, the

performan
e of the system deteriorates probably be
ause of the fa
t that

the redu
ed (for 
omputational reasons) dataset used in the training was

not representative enough of all the possible features for dis
riminating a

non-disruptive behavior from a disruptive one. In order to over
ome this

in
onvenient, a 
lustering method based on a Self Organizing Map was used

to redu
e more 
oherently the size of the training set, allowing the predi
tor

to rea
h 77% of 
orre
t predi
tions with only 1% of false dete
tions on a test

set [10℄.

One of the major drawba
ks of the NN approa
hes is that the network

performan
e normally deteriorates when new plasma 
on�gurations are pre-

sented to the network. The ageing of a neural predi
tion system is unavoid-

able for the ma
hines, su
h as JET, where new the plasma 
on�gurations

are explored. Improvements might be possible using Novelty Dete
tion (ND)

te
hniques. In [11℄, both the predi
tion and the novelty dete
tion tasks are

performed by the same system using a Support Ve
tor Ma
hine (SVM). The

SVM predi
tor shows a null per
entage of false alarms, while the per
entage

of missed alarms is not negligible. However, using the knowledge a
quired

during the training phase of the predi
tor, the system is able to dete
t the

novelty of new pulses in
reasing the performan
e of the entire system. In

parti
ular, the novelty dete
tor is able to justify many of the missed alarms

of the predi
tor as they are re
ognized as belonging to new regions of the

operational spa
e.

In [12℄ the mapping of the 7-dimensional plasma parameter spa
e of AS-

DEX Upgrade (AUG) has been performed using a 2-D self-organizing map,

whi
h reveals the map potentiality in data visualization. The proposed ap-

proa
h allowed the de�nition of simple displays 
apable of presenting mean-

ingful information on the a
tual state of the plasma, but it also suggested to

use the SOM as a disruption predi
tor by analyzing the traje
tories des
ribed

over the map by the dis
harges under test. Various 
riteria have been studied
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to asso
iate the risk of disruption of ea
h region of the map to a disruption

alarm threshold. The data for this study 
ame from AUG experiments exe-


uted between July 2002 and November 2009. The predi
tion performan
e

of the proposed system has been evaluated on a test set of dis
harges (199

disrupted and 1070 non disrupted) di�erent from those used for the map

training, obtaining a very good predi
tion su

ess rate 
lose to 90%.

A su

essful experien
e in JET is represented by the real-time Advan
ed

Predi
tor Of DISruptions (APODIS) [13℄. In its most re
ent 
on�guration it


onsists of a 
ombination of supervised 
lassi�
ation systems, based on SVM

(Support Ve
tor Ma
hines) organized in two layers. The �rst layer 
ontains

a series of three di�erent SVM predi
tors, analyzing three 
onse
utive time

windows (ea
h 32 ms long) of data to take into a

ount the history of the

dis
harge. The outputs of these three evaluations are used as inputs to the

se
ond layer 
lassi�er, whi
h takes the �nal de
ision whether or not to laun
h

an alarm. APODIS was trained/tested with 8169 dis
harges (7648 safe dis-


harges and 521 unintentional disruptions), working in open loop during the

ITER-like wall 
ampaigns of JET (2011-2012). This predi
tor a
hieved a

su

ess rate of about 98% with a false alarm rate of 0.92%. with an average

warning time of 426 ms. Regarding the minimum time to perform mitigation

a
tions in JET, whi
h is 30 ms [14℄, the fra
tion of disruptions 
orre
tly

dete
ted 30 ms in advan
e has been 87.50%.

Regarding the framework of disruption 
lassi�
ation, a �rst attempt of

automati
 
lassi�er based on NN has been proposed in [15℄. Su
h a 
lassi�er,

based on pattern re
ognition te
hniques, was trained to dis
riminate among

4 
lasses of disruptions: mode lo
k, density limit/high radiated power, H-L

transition and ITB plasma disruptions. The 
onsidered methods referred to


lustering te
hniques as Self-Organizing Maps and K-means, and 
lassi�
a-

tion te
hniques su
h as Multi-Layer Per
eptrons, Support Ve
tor Ma
hines,

and k-Nearest Neighbours. In parti
ular, to improve the robustness and the

reliability, a Multiple Classi�ers system 
onsisting of �ve MLPs was imple-

mented.

Re
ently, a new 
lustering method, based on the geodesi
 distan
e on

a probabilisti
 manifold, has been applied to the JET disruption database

for 
lassi�
ation purposes [16℄. The proposed approa
h allows to take into

a

ount also the error bars of the measurements and, through the nearest

neighbor approa
h, was able to a
hieve a su

ess rate of about 85% in the

identi�
ation of the di�erent types of disruptions, with no type of disruption


lassi�ed with a su

ess rate lower than 70%.
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5.3 Statisti
al methods

Besides Neural Networks, other methods have been applied with remarkable

results in the predi
tion and the 
lassi�
ation of disruptions. In ASDEX, a

very interesting appli
ation related to the predi
tion of 
ooling edge disrup-

tions is des
ribed in [17℄. The proposed method is based on dis
riminant

analysis, a model-based 
lustering that 
an be used to estimate probability

density fun
tions within a supervised learning framework. In this spe
i�


appli
ation a threshold has been set to dis
riminate between disruptive and

non disruptive pulses. The parameters whi
h appear in the equation, being

related to the 
auses of 
ooling edge disruptions, allow through their rela-

tions to �nd also some 
hara
teristi
 behaviors of the phenomenon, as for

example the in
reasing of the internal indu
tan
e asso
iated to a 
ontra
tion

of the 
urrent pro�le. Su
h a method allowed to dete
t 80% of 
ooling edge

disruptions 20 ms in advan
e.

The data driven te
hniques des
ribed in [12℄ require a number of safe

and disrupted pulses to build the predi
tive model. However, for ITER only

a limited number of disruptions are a

eptable to avoid irreversible damage

to stru
tures surrounding the plasma. A new view on disruption predi
tion

has been proposed in [18℄ using Fault Dete
tion and Isolation te
hnique,

whi
h is a well-tested industrial te
hnique. The predi
tion is based on the

analysis of the residuals of an auto regressive exogenous input model of the

system in Normal Operating Conditions . Hen
e, the disruption predi
tion is

formalized as a fault dete
tion problem, where the non disrupted pulses are

assumed as the normal operation 
onditions and the disruptions are assumed

as status of fault. The main advantage with respe
t to the literature is the

fa
t that the model does not need disruptions to train the system but only

a limited number of safe pulses. The input for the model are the time se-

ries of the radiated fra
tion of the total input power, the internal indu
tan
e

and the poloidal beta 
oming from ASDEX Upgrade data between 2002 and

2009. Results are promising but lower false alarm rates are needed.

Re
ently another very promising appli
ation has been developed for the

predi
tion of disruptions based on diagnosti
 data in the high-ÿ spheri
al

torus NSTX [19℄, where an approa
h of 
ombining multiple threshold tests

has been developed on the base of the values of many signals. The starting

point has been that no single signal or 
al
ulation and asso
iated threshold

value give rise to the basis for disruption predi
tion in NSTX. The main di�-


ulty was related to the fa
t that the 
ombination of thresholds that produ
e

an a

eptable false-positive rate have too large a missed or late-warning rate

and vi
eversa. Therefore, an algorithm for optimizing the tuning of the mul-

tiple threshold tests has been developed allowing to a
hieve a false-positive
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rate of 2.8%, with a late + missed warning rate of 3.7%, and thus a total

failure rate of 6.5%. Su
h a methods has been tested on a database of about

2000 disruptions, during the plasma 
urrent �at top, 
olle
ted from three run


ampaigns.

In JET, besides several NN appli
ations, also other approa
hes have been

beaten, as for example the fuzzy logi
 approa
h. The predi
tion of the prob-

ability of disruption was based on 12 input signals and 36 logi
 based rules,

where both input and output signals were 
ategorized a

ording to a 
ertain

ranking among 3 or 5 available ones [20℄. This method has the additional

value to provide the possibility of transposing on the rules some basi
 physi
s

related to operational limits for example, even if the optimization of the 
ate-

gorization of the input variables is a
hieved by training on a set of disruptive

and non-disruptive dis
harges, with all the drawba
ks previously dis
ussed

about the representativeness of the training set.

5.4 General 
omments and multi-ma
hine ap-

proa
h

One of the main 
riti
al aspe
ts of the appli
ation of these methods, NN-

based and not, is represented by the need itself to require a representative

training set in order to perform e�
iently. Having available a representative

training set means basi
ally to have had a 
ertain number of disruptions,

but in larger devi
es, espe
ially in the 
ase of ITER, they are anything but

desired events.

Another important point is represented by the tenden
y to deteriorate as

more as we move away from the operative 
onditions in whi
h the training has

been performed. A possible solution 
ould be to develop a "
ross-ma
hine"

predi
tor whi
h 
an be trained with data of 
ertain ma
hines allowing to

extrapolate to other ma
hines, independently on their size. In order to be

able to do this, �rst of all the input plasma parameters must be not only

well representative of the disruptive behaviour of the plasma, but in addition

they must be made dimensionless.

There are already parameters whi
h intrinsi
ally satisfy these requirements,

as q95 and βN for example, and others that 
an be made dimensionless by

dividing for a quantity with the same dimension. For example the radiated

power 
an be divided by the input power to de�ne a radiated power fra
tion

parameter. For this approa
h to be really appli
able, there should be a rep-

resentative set of dimensionless plasma parameters de�ned in the same way

in all the ma
hine, and eventual s
aling fa
tors have to be de�ned to be able
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to apply the systems in di�erent ma
hines. Furthermore, a �rst attempt to

realize a "
ross-tokamak" predi
tor has been des
ribed in [21℄, where a NN

trained on a tokamak was used to predi
t the time to disruption of another

tokamak (JET and ASDEX Upgrade). The best performan
e was a
hieved

with seven dimensionless parameters in input. The results of this study are

quite en
ouraging, even if, as it would be expe
ted, the system performed

signi�
antly better when tested on the same ma
hine used for the training

too.

Again in this dire
tion, the work presented in [22℄ des
ribed the latest de-

velopments in data-analysis tools for disruption predi
tion and exploration of

multi-ma
hine operational spa
es. In this framework, manifold learning tools

already showed in several appli
ations their potentiality, allowing a very e�-


ient investigation of the operational spa
e where the relevant physi
s takes

pla
e, unlike most of the other approa
hes des
ribed in this 
hapter. There-

fore, even if the aforementioned drawba
ks keep to be valid also for manifold

learning te
hniques, they provide the possibility to strongly improve the un-

derstanding about the underlying physi
s and me
hanisms at the base of

disruptions, and they 
an represent a fundamental resour
e for extrapolation

studies in the framework of multi-ma
hine approa
h.
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Chapter 6

The database for JET

6.1 Introdu
tion

A 
ru
ial issue for analysis, exploration and mapping of high operational

spa
es is represented by the quality of the database in terms of reliability,

and representativeness. One of the main problem in the 
onstru
tion of a

database 
hara
terized by high dimensionality and a large amount of obser-

vations, is how to "redu
e" 
oherently available data preserving statisti
al

signi�
an
e. Two separated databases have been built with dis
harges be-

longing to the Carbon Wall (CW) 
on�guration and to the new ITER-like

Wall (ILW) 
on�guration. The distin
tion is motivated basi
ally by the need

to analyze what is 
hanged moving from a 
on�guration to the other one in

terms of the underlying physi
s and operational spa
e. This point will be

addressed in the following dis
ussing also from a statisti
al point of view the

observed di�eren
es.

For the Carbon Wall, data 
omes from plasma dis
harges sele
ted from

JET 
ampaigns C15 (2005) - C27 (2009), whereas ITER-like Wall (ILW)

database is based on the same set of signals belonging to the 
ampaigns C28

(2011) - C30 (2013). The aim, as it has been dis
ussed in detail in the 
hapter

dedi
ated to Manifold Learning, is to learn the possible manifold stru
ture

embedded in the data, to 
reate some representations of the plasma parame-

ters on low-dimensional maps, whi
h are understandable and whi
h preserve

the essential properties owned by the original data. Therefore, proper 
rite-

ria have been used to sele
t suitable signals downloaded from JET databases

in order to obtain a data set of reliable observations. Moreover, a statisti
al

analysis has been performed to re
ognize the presen
e of outliers. Finally,

data redu
tion, based on 
lustering methods, has been performed to sele
t

a limited and representative number of samples for the operational spa
e

83
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mapping.

6.2 JET CW database

The database is built taking into a

ount a set of signals re
orded by sev-

eral diagnosti
s and available from JET experimental 
ampaigns. For the

sele
tion of the signals to be 
onsidered, an analysis based on physi
al 
on-

siderations and the availability in real time is 
arried out, also with referen
e

to the plasma parameters used from various authors for disruption predi
-

tion both on JET [1℄ and [2℄. The sele
ted signals are representative of

the behavior of both the plasma "safe" 
on�gurations, i.e. when the pulses

are 
orre
tly terminated, and when a disruption o

urs. Thus, the database


ontains both safe and disruptive pulses sele
ted during the 
urrent �at-top,

whi
h are 
lassi�ed making referen
e mainly to the JET disruption database.

Dis
harges for whi
h the plasma 
urrent remained below 1MA were dis
arded

as for disruptive events these are usually insigni�
ant at JET.

The parameters 
onsidered to build the database are available in real

time in the JET pulse �le (JPF) system or 
an be dire
tly 
al
ulated by

other signals available in real time ex
ept the q95 signal. The set of 
on-

sidered signals is shown in table 6.1. Among all the pulses available from

JET 
ampaigns, only those belonging to the 
ampaigns from C15 to C27 are

taken into a

ount, be
ause, during the shutdown following the 
ampaign

C14, 
hanges were made to in-vessel 
omponents su
h as divertor tiles. In

the aforementioned interval, 10366 pulses are sele
ted, in
luding safe and dis-

ruptive shots. Only the non-intentional disruptions are taken into a

ount.

In the 
ampaigns C15-C27, 428 non-intentional disruptions are retained, for

whi
h all the 10 signals reported in table 6.1 are available. Note that the

JPF Signal A
ronym Unit

Plasma 
urrent Ip A

Poloidal beta βp a.u.

Mode lo
k amplitude LM T

Safety fa
tor at 95% of poloidal �ux q95 a.u.

Total input power Ptot W

Plasma internal indu
tan
e li a.u.

Plasma 
entroid verti
al position Zcc m

Line-integrated plasma density nelid m−2

Stored diamagneti
 energy time derivative dWdia/dt W

Total radiated power Prad W

Table 6.1: Set of 
onsidered signals
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plasma 
urrent in JET referen
e frame is negative. In this 
ase we make

referen
e to its absolute values.

A

ording to the literature [1℄, in order to syn
hronize the signals on the

same time base ve
tor, a sampling frequen
y of 1kHz is 
hosen.

A statisti
al analysis is 
arried out in order to identify eventual anomalous

signals and a not negligible number is found to be unusable be
ause of the

ex
essive presen
e of outliers or a time evolution with no physi
al meaning,

probably due to a fault of the 
orresponding diagnosti
 during the a
quisi-

tion. Su
h a sele
tion has given rise to a �nal dataset of 243 non-intentional

disruptions among all those ones available in the 
onsidered 
ampaigns. In

fa
t the resulting database 
onsists of a subset of all the non intentional dis-

ruptions 
orresponding to spe
i�
 types, whose 
omposition will be dis
ussed

in the 
hapter dedi
ated to the automati
 
lassi�
ation. A distin
tion in dif-

ferent types for JET has been des
ribed in the survey in [3℄: it is based

on a manual 
lassi�
ation, where spe
i�
 
hain of events have been dete
ted

and used to 
lassify disruptions, grouping those that follow spe
i�
 paths.

A more detailed pi
ture of disruption 
lassi�
ation will be provided again in

the 
hapter related to the automati
 
lassi�
ation.

By analyzing the distributions of the signal values, a proper range of vari-

ation for ea
h signal is assumed to 
lean the data. These ranges are validated

with the help of JET physi
ists.

A time instant tpre−disr has been de�ned for the disrupted dis
harges,

whi
h dis
riminates between the non-disruptive and the disruptive phase.

In this dis
ussion, tpre−disr is assumed equal for all the dis
harges, and it is

set equal to 210 ms following some suggestions reported in the literature [4℄.

The 
hoi
e of using a unique tpre−disr for all disruptive pulses is widely shared

in the literature and in di�erent ma
hines [1℄, [2℄, [5℄. The assessment of a

spe
i�
 tpre−disr for ea
h disruptive dis
harge represents one of the most rel-

evant issues in understanding the disruptive events. However,the relevan
e

of the topi
 and the problem 
omplexity led us to 
onsider it a main topi
 of

future work.

The dataset for ea
h disruptive pulse 
onsists of 210 points for ea
h of the

10 signals(one sample every 1ms), in the time interval [tD−210, tD]ms,where

tD is the time in whi
h the disruption takes pla
e. The main statisti
al pa-

rameters of the 
leaned data in the time interval [tD−210, tD]ms are reported

in table 6.2.

Then, 
on�den
e limits at 1% and 99% are used for ea
h signal through

the quantile fun
tion.

The introdu
tion of a 
on�den
e level is widely employed as reported in

the literature [6℄. Regarding the utilization of 
on�den
e level, it is very

important to point out that pra
ti
ally all the thresholds for 
leaning the
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Signal Min Max Mean Median Std

Ip 7.00E+05 3.85E+06 1.86E+06 1.87E+06 4.08E+05

βp 3.03E-06 3.16E+00 3.17E-01 2.07E-01 3.41E-01

LM 1.00E-04 4.65E-03 5.58E-04 4.55E-04 3.97E-04

q95 2.02E+00 9.66E+00 4.01E+00 3.80E+00 1.06E+00

Ptot 1.46E+05 4.04E+07 5.76E+06 3.48E+06 5.77E+06

li 3.62E-01 2.60E+00 1.09E+00 1.12E+00 1.78E-01

Zcc 1.26E-03 1.17E+00 2.71E-01 2.76E-01 6.75E-02

nelid 4.02E+18 2.68E+21 1.02E+20 7.47E+19 1.73E+20

dWdia/dt -2.39E+07 1.19E+07 -1.09E+06 -7.45E+05 1.91E+06

Prad 1.01E+05 1.99E+08 4.83E+06 2.76E+06 8.75E+06

Table 6.2: CW non-intentional disruptions statisti
s ([tD - 210, tD℄ms).

data are 
hosen with 
onsistent margin with respe
t to the real limit values

of the signals. The �nal number of disruptive samples is 38900.

6.2.1 Safe dis
harges data-redu
tion

In the 
onsidered interval of 
ampaigns (C15 − C27), all the 10 signals in-


luded in table 6.1 are available for the �at-top of 10366 safe dis
harges. The

pulses for whi
h the plasma 
urrent is less than 1MA are dis
arded obtaining

9000 safe dis
harges. Moreover, all the pulses for whi
h the signals to be used

are not 
onsistent, from a physi
al point of view or in relation to a suitable

range of values, are dis
arded. Being ea
h signal sampled at 1kHz, a huge

amount of data are available for des
ribing the safe operational spa
e.

A �rst shot sele
tion is performed taking into a

ount that several shots

are repeated with similar settings of the parameters. This analysis is based

on various statisti
al parameters (mean, median, minimum, maximum and

standard deviation of ea
h signal for all the pulses), and the resulting sele
-

tion is widely validated by visual inspe
tion. Finally, 1467 safe dis
harges are

retained, whi
h results in more than 20M samples. Note that this number is

too large to be handled by the data visualization algorithms. Furthermore, it

is mu
h larger than the number of disrupted samples, for whi
h only the last

210 ms for ea
h dis
harge are 
onsidered. For this reason,data redu
tion has

to be performed on the safe samples in order to obtain a balan
ed dataset.

First of all, as for disruptive shots, a data 
leaning is performed dis
arding

the outliers. Then, the k-means 
lustering te
hnique [7℄ is employed as a

base for the development of the data redu
tion algorithm.
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Data redu
tion algorithm

The appli
ation of the k-means algorithm requires the normalization of data

in order to maximize the e�e
tiveness of the 
lustering. Here, the variables

are normalized between 0 and 1. For ea
h pulse, the samples are grouped in

a �xed number of 
lusters. Su
h a number is 
hosen by optimizing the value

of a 
lustering validation index (the Dunn Index [8℄) for a limited number of

pulses. Here, 10 
lusters are used; note that by in
reasing su
h a number, no

performan
e improvement is rea
hed while a greater 
omputational burden

ensues. Then, in ea
h 
luster,the samples are sele
ted in su
h a way to under-

sample the spa
e ensuring to 
over the 10-D parameter spa
e.

Let h be the data redu
tion rate, NC is the number of the safe samples

in the 
luster, and R is the 
luster radius. The 
luster is partitioned through

NC/h 10-D hyper spheres, with radius ri 
entered in the 
luster 
entroid,

where

ri = i
R

Nc/h
for i = 1, ..., Nc/h (6.1)

For ea
h hyper sphere, the sample 
losest to its surfa
e is retained. In this


ase, a redu
tion rate h = 70 is set. In �gure 6.1, the result obtained by the

data redu
tion algorithm for the shot No. 66389 is visualized through a PCA

proje
tion. Figures 1(a) and (b) show the two prin
ipal 
omponents of the

ten-dimensional samples before and after data redu
tion, respe
tively.

Figure 6.1: Result of the data redu
tion algorithm visualized through PCA (shot

No. 66389): s
atter plot of the �rst two PCs (a) of the dataset; (b) of the dataset

after data redu
tion by k-means.

In addition to the visual investigation, for evaluating the goodness of the al-

gorithm, the distributions of the original and redu
ed data sets are evaluated

showing that redu
ed data statisti
ally re�e
t the information of original

data, even if with a lower density with referen
e to the same range of the


onsidered variables. Figure 6.2 shows the distribution of starting data ad
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redu
ed data for the q95.

Figure 6.2: Distribution of q95 before and after the data redu
tion: the statisti
al
distribution is preserved.

The data redu
tion algorithm allows one to redu
e the original database from

20M to about 0.3M samples. The main statisti
al parameters for the 
leaned

data of the sele
ted safe pulses are reported in table 6.3. Also here, 
on�-

den
e limits at 1% and 99% are used for ea
h signal, leading to about 240000

samples.

6.3 JET ILW database

ITER-like Wall database is based on the same set of signals of table 6.1

belonging to the 
ampaigns C28 (2011) - C30 (2013). Presently, regarding

the safe dis
harges, the database is still under 
onstru
tion: in the 
onsidered

interval of 
ampaigns (C28−C30), after a initial sele
tion, mainly on the base

of the availability of all the 10 signals in
luded in table 6.1, the resulting set of

safe dis
harges 
onsists of approximately 1200 dis
harges. All the pro
edures

for shot sele
tion and data redu
tion have to be applied yet.

Regarding the disruptive dis
harges, the database 
onsists of 149 non

intentional disruptions from ILW 
ampaign (C28−C30), whose 
omposition

in terms of di�erent 
lasses is summarized in the table 6.5.

A more detailed dis
ussion will be addressed in the 
hapter dedi
ated to
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Signal Min Max Mean Median Std

Ip 8.16E+05 3.86E+06 2.03E+06 1.96E+06 3.12E+05

βp 6.47E-06 2.95E+00 3.10E-01 1.92E-01 2.70E-01

LM 1.00E-04 5.00E-03 2.16E-04 2.06E-04 9.18E-05

q95 2.33E+00 7.49E+00 3.89E+00 3.81E+00 6.86E-01

Ptot 1.00E+05 3.26E+07 4.33E+06 1.42E+06 5.30E+06

li 5.87E-01 2.40E+00 1.06E+00 1.11E+00 1.16E-01

Zcc 1.39E-01 4.71E-01 2.91E-01 3.00E-01 3.66E-02

nelid 4.01E+18 4.80E+20 6.71E+19 5.10E+19 4.35E+19

dWdia/dt -2.40E+07 2.52E+07 2.37E+04 2.36E+04 9.27E+05

Prad 1.00E+05 9.96E+07 2.47E+06 6.10E+05 6.39E+06

Table 6.3: CW safe dis
harge statisti
s.

Signal Min Max Mean Median Std

Ip 9.61E+05 3.42E+06 1.95E+06 1.92E+06 3.67E+05

βp 3.07E-08 1.22E+00 2.99E-01 2.31E-01 1.74E-01

LM 1.00E-04 4.28E-03 4.88E-04 4.21E-04 3.38E-04

q95 2.17E+00 5.89E+00 3.65E+00 3.58E+00 6.28E-01

Ptot 1.15E+05 2.80E+07 5.27E+06 4.26E+06 4.14E+06

li 3.79E-01 2.01E+00 1.08E+00 1.07E+00 1.98E-01

Zcc 1.21E-03 4.23E-01 2.52E-01 2.48E-01 4.60E-02

nelid 4.02E+18 1.13E+21 1.35E+20 1.23E+19 1.06E+20

dWdia/dt -1.76E+07 3.95E+06 -1.49E+06 -9.50E+05 1.88E+06

Prad 1.16E+05 1.16E+08 5.02E+06 3.67E+06 5.50E+06

Table 6.4: ILW non-intentional disruptions statisti
s ([tD - 210, tD℄ms).

ILW Disruptions

Labels Classes Tot %

ASD Auxiliary Power Shut-Down 2 1.34

GWL Greenwald Limit 0 0.00

IMC Impurity Control Problem 109 73.15

ITB Too Strong Internal Transport Barrier 0 0.00

LON Low Density and Low q 7 4.70

NC Density Contol Problem 22 14.77

NTM Neo-
lassi
al Tearing Model 9 6.04

Table 6.5: Composition of the ILW Database in terms of di�erent 
lasses.
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the automati
 
lassi�
ation, nevertheless, as a general 
onsideration whi
h is

important to highlight, in the �rst 
ampaigns with the full metalli
 wall there

were no disruptions due to too strong ITB and disruptions due to Greenwald

limit.
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Chapter 7

Mapping of JET operational

spa
e

7.1 Introdu
tion

In this 
hapter the high dimensional operational spa
e of JET with the Car-

bon Wall (CW) will be des
ribed and visualized using di�erent linear pro-

je
tion methods su
h as Grand Tour (GT) and Prin
ipal Component Analy-

sis (PCA), and mapped through non-linear manifold learning te
hniques as

Self-Organizing Map (SOM) and Generative Topographi
 Map (GTM). The

potentiality of manifold learning methods will be dis
ussed showing several

types of representations, also with referen
e to the data analysis and visual-

ization tools developed for GTM presented in 
hapter 5. As integration of

the analysis of the operational spa
es there will be also a 
omparison with


lassi
al s
atter plots identifying operational limits and boundaries for the


onsidered database. All the algorithms have been des
ribed in the 
hapter

5.

Both SOM and GTM maps 
an be exploited to identify 
hara
teristi


regions of the plasma s
enario and for dis
riminating between regions with

high risk of disruption and those with low risk of disruption, quantify and

evaluate the e�e
tiveness of the mapping itself. Some measures have been

implemented to evaluate the performan
e of the proposed methodologies.

In parti
ular, the pre
ision of the 
lustering over the entire dataset has been


al
ulated through the average quantization error for both the nonlinear map-

pings, as well as the trustworthiness of the proje
ted neighborhood and the

preservation of the resulting neighborhood.

Moreover, an outlier analysis has been performed on the available data in or-

der to 
ompare how the two mapping te
hniques relate in terms of mapping

93
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of observations not representative of the 
onsidered datasets.

The results show quite 
learly that nonlinear manifold learning te
hniques

are more suitable for mapping the JET high dimensional operational spa
e,

and what is really interesting is represented by the fa
t that the two non-

linear methods seem to 
onverge on a manifold with similar 
hara
teristi
s,

whi
h means that su
h 
hara
teristi
s are strongly related to the intrinsi


properties hidden in the high dimensional data.

The �nal dataset (all the details about 
onstru
tion and statisti
al anal-

ysis are reported in the 
hapter 6) whi
h we will refer to 
onsists of:

• 222 �at-top disruptions (38900 samples)

• 1467 safe dis
harges (239965 samples)

7.2 Data visualization with linear proje
tion

methods

7.2.1 Proje
tion with Grand Tour

Grand Tour algorithm provides a multivariate visualization method generat-

ing a 
ontinuous sequen
e of 2-D or 3-D proje
tions of a high dimensional

data set. The animation is parti
ularly useful for dis
overing eventual stru
-

tures hidden in high dimensional data, allowing to look at data from pra
ti-


ally all possible points of view.

To investigate the 10-D JET CW data, a sequen
e of 2-D images has been

generated using Grand Tour algorithm. Figure 7.1 shows four 2-D s
atter

plots 
orresponding to di�erent iterations of the algorithm, i.e. to di�erent

viewpoints, where blue points 
orrespond to safe samples whereas red points


orrespond to disruptive samples. As 
an be noted, safe regions (blue) and

disrupted regions (red) 
an be identi�ed, even if overlaps are present.

7.2.2 Proje
tion and mapping with PCA

Prin
ipal Component Analysis is one of the most popular and mostly used

dimensionality redu
tion methods. The te
hnique performs an orthogonal

linear transformation of the 
omponents of the original input data in su
h a

way that they are un
orrelated one with ea
h other. The resulting prin
ipal


omponents are ordered and those ones whi
h explain most of the varian
e

of dataset are retained. For obvious 
onstraints of visualization, only the

�rst two (2-D visualization) or the �rst three (3-D visualization) prin
ipal


omponents 
an be used as new 
oordinate axes for providing a graphi
al
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Figure 7.1: Grand Tour proje
tions of 10-D training disruptive (red) and safe

(blue) samples at di�erent iterations.
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representation of the dataset.

The Dimensionality Redu
tion Toolbox of Matlab, already mentioned in


hapter 5, has been used. The analysis by PCA of the 10-dimensional dataset

allowed among the other things to get an indi
ation of the a
tual dimension-

ality of the 
onsidered operational spa
e. Therefore,the varian
e retained by

ea
h prin
ipal 
omponent and the 
umulative varian
e retained by a progres-

sive number of 
omponents have been reported in Table 7.1.

JET operational spa
e PCA

Component Varian
e Cumulative varian
e (%)

1

◦
0.3625 36.25

2

◦
0.1699 53.24

3

◦
0.1350 66.74

4

◦
0.1007 76.81

5

◦
0.0727 84.08

6

◦
0.0473 88.81

7

◦
0.0424 93.05

8

◦
0.0348 96.53

9

◦
0.0196 98.49

10

◦
0.0150 100.00

Table 7.1: Varian
e retained by ea
h 
omponent for JET respe
tively and 
orre-

sponding 
umulative varian
e.

Figure 7.2 shows the proje
tion of the JET data onto the �rst two prin
ipal


omponents. Here too, blue points 
orrespond to safe samples whereas red

points 
orrespond to disruptive samples. On the left hand side of the �gure,

the safe points have been plotted before the disruptive ones, 
onversely, on

the right hand side, the disruptive points have been plotted before the safe

ones. As it 
an be noted, with this representation, two prin
ipal 
omponents

are not enough to 
learly separate the disruptive operational spa
e from the

safe one. The 10-D training samples have been also proje
ted on the �rst

three prin
ipal 
omponents, giving a 3-D visualization of the operational

spa
e of JET. Figure 7.3 reports the 3-D PCA proje
tion. The visualization

power of this map is higher than the previous one, even if the overlapping is

still present.

In order to 
ompare the dis
rimination 
apability of this proje
tion method

with the mapping obtained with SOM and GTM, whi
h will be dis
ussed in

the following se
tions, a 2-D mapping has been realized on the base of the

PCA proje
tion with respe
t to the two �rst prin
ipal 
omponents.

The mapping is built on a regular grid of 4900 
ells (
omparable with re-

spe
t to the number used for SOM and GTM units) in the 2-D plane, where
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Figure 7.2: PCA proje
tion of the 10-D training samples on the 2-D PCA; safe

samples (blue), disruptive samples (red).

Figure 7.3: PCA proje
tion of the 10-D training samples on the 3-D PCA; safe

samples (blue), disruptive samples (red).
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ea
h 
ell is 
olored depending on its 
omposition: blue 
ells 
ontain only

safe samples; red 
ells 
ontain only disruptive samples; gray 
ells 
ontain

both safe and disruptive samples; white 
ells are empty (see Figure ??(a)).

As it 
an be noted, with this representation, two prin
ipal 
omponents are

not enough to 
learly separate the disruptive operational spa
e from the safe

one. In �gure 7.4(b), the 
omposition of the PCA representation in terms of

samples into the 
ells is reported. The 
olor 
ode is the same as used in the

previous 2-D and 3-D representations.

As 
an be seen, the blue (safe) 
ells 
ontain 22.14% of the total samples

and the red (disruptive) 
ells 
ontain 3.04% of the total samples. Hen
e,

74.81% of the samples belong to mixed 
ells, whi
h are the large majority of

the total samples. Note that PCA performs a linear transformation of the

input variables; in order to handle and dis
over nonlinear relationships be-

tween variables, nonlinear algorithms for dimensionality redu
tion are more

e�e
tive.

Figure 7.4: (a) PCA proje
tion of the 10-D training samples on the 2-D PCA.

Safe 
ells (blue), disruptive 
ells (red), mixed 
ells (gray); (b) 
omposition of the

2-D PCA proje
tion in terms of samples into the 
ells: safe 
ells/samples (blue),

disruptive 
ells/samples (red), mixed 
ells/samples (gray).

7.3 Mapping with nonlinear methods

7.3.1 Mapping with SOM

In this se
tion, SOM algorithm has been applied to visualize and analyze

the stru
ture of the 10-dimensional JET operational spa
e. As the range of

variation of the signals is very di�erent, even several orders of magnitude,

and sin
e the manifold learning algorithms make use of spa
e metri
s, s
al-

ing of variables is mandatory. Hen
e, before proje
ting data, ea
h signal in
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the data base has been normalized between 0 and 1 by using the min-max

normalization.

Further knowledge 
an be added to the intrinsi
 knowledge 
ontained by the

10-D data asso
iating a label to ea
h sample in the data set: a safe state

is asso
iated to ea
h non disruptive sample, whereas a disruptive state is

asso
iated to ea
h disruptive sample.

As previously 
ited, the SOM is a non-linear dimensionality redu
tion

method that produ
es a low-dimensional map of data by preserving their

topology. The map 
onsists of 
omponents 
alled node or 
lusters. First

of all, the map dimension, i.e., the number of 
lusters in the SOM, has to

be properly sele
ted. This has been done optimizing some performan
e in-

dexes 
ommonly used in literature to evaluate how appropriate the 
lustering

performed by the SOM is [1℄. Moreover, limiting the number of 
lusters pre-

serves the generalization 
apability of the map. It is mandatory to 
hoose

the map dimension to maximize its 
apa
ity to dis
riminate among patterns

with di�erent features, keeping in the meanwhile a high generalization 
a-

pability. A good tradeo� between these requirements is a
hieved with 4998


lusters.

The resulting map has 10 input neurons and 4998 neurons in the 2-D Ko-

honen layer. In this work, the SOM Toolbox 2.0 for Matlab [1℄ has been used

to train the SOM. The safe or disruptive label asso
iated to ea
h sample 
an

be used to identify four main 
ategories of 
lusters in the SOM, depending

on their 
omposition: empty 
lusters, whi
h 
ontain no samples; disruptive


lusters, whi
h 
ontain disruptive samples; safe 
lusters, whi
h 
ontain safe

samples; mixed 
lusters, whi
h 
ontain both safe and disruptive samples.

The same 
olor 
ode used in the previous se
tion has been asso
iated to ea
h


luster of the map: depending on its 
lass membership (see Figure 7.5): safe


lusters are blue; disruptive 
lusters are red, mixed 
lusters are grey, and

empty 
lusters are white. Ea
h 
olor, whi
h is representative of a parti
ular


luster 
omposition, 
orresponds to a di�erent disruption risk.

The 2-D SOM in �gure 7.5(a) 
learly highlights the presen
e of a large

safe region (blue) with an asso
iated low risk of disruption, some disruptive

regions (red), with a high risk of disruption well separated from the safe re-

gion by transition and empty regions. Therefore, safe and disruptive states

of plasma seem quite well separated in the SOM.

The SOM 
omposition is reported in Figure 7.5(b) in terms of samples into

the 
lusters. As it 
an be seen, safe 
lusters 
ontain the 60.03% of the total

samples, the disruptive region 
ontains the 7.61% of the total samples and

the transition region 
ontains the remaining 32.36% of the samples. Note

that, the 69.76% of the safe samples falls in the safe region and the 54.55%

of the disruptive samples falls in the disruptive region. The remaining sam-
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Figure 7.5: (a) 2-D SOM of the 10-D JET operational spa
e: safe 
lusters (blue),

disruptive 
lusters (red), mixed 
lusters (grey), empty 
lusters (white); (b) Com-

position of the SOM in terms of samples into the 
lusters: safe 
lusters/samples

(blue), disruptive 
lusters/samples (red), mixed 
lusters/samples (grey), empty


lusters (white).
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ples identify the transition region that is mainly 
omposed by safe samples:

the 80.41% of samples in the mixed 
lusters are safe and the others are dis-

ruptive.

One of the 
auses of the presen
e of transition 
lusters is the 
hoi
e of

a unique value of tpre−disr for all the dis
harges. This 
hoi
e is due to the

la
k of information on the length of the pre-disruptive phase for ea
h shot,

and 
an lead to in
orre
tly label some samples of disruptive dis
harges or

to miss some information. Further e�ort 
an be devoted in order to redu
e

the transition region and better de�ne the boundary between safe and dis-

ruptive regions. Note that the 
oordinates of the prototypes are known in

the original multidimensional spa
e, allowing identifying the values of plasma

parameters along the boundaries between safe and disruption regions.

7.3.2 Mapping with GTM

The Generative Topographi
 Mapping algorithm is a probabilisti
 reformu-

lation of the SOM introdu
ed in [2℄. Unlike the SOM, GTM has not been

developed in the 
ontext of neural networks but in a statisti
 framework.

As dis
ussed in the dedi
ated se
tion in 
hapter 5, GTM model addresses

some limitations of the SOM su
h as the la
k of a 
ost fun
tion, the la
k of

a theoreti
al basis for parameters, and the la
k of a proof of 
onvergen
e.

Furthermore, in SOM hard assignments are used instead of soft ones (prob-

abilities).

The parameters of the low-dimensional probability distribution and the smooth

map are learned from the training data using the expe
tation-

maximization (EM) algorithm [3℄.

The proje
tion of the JET data onto the 2-D GTM map has been ob-

tained using the Exploratory Data Analysis toolbox for MATLAB [4℄. Also

here, in order to 
ompare GTM with SOM mapping, a regular grid of 4900


ells (
omparable with respe
t to the number of SOM units) has been 
on-

sidered in the GTM plane, and the same 
olor 
ode has been adopted: blue


ells 
ontain only safe samples; red 
ells 
ontain only disruptive samples;

grey 
ells 
ontain both safe and disruptive samples; white 
ells are empty

(see �gure 7.6(a)).

As in the SOM, the GTM presents a large safe region (blue), some dis-

ruptive regions (red), well separated from the safe region by transition and

empty regions. In �gure 7.6)(b) the 
omposition of the GTM in terms of

samples into the 
ells is reported.

The safe 
ells 
ontain 79.95% of the total samples and the disruptive 
ells


ontain 10.27% of the total samples. Only 9.77% of samples belong to mixed


ells. Note that, the 92.93% of the safe samples falls in the safe 
ells and the
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Figure 7.6: (a) GTM map of the 10 D JET operational spa
e: safe 
ells (blue),

disruptive 
ells (red), mixed 
ells (grey), empty 
ells (white); (b) Composition

of the GTM map in terms of samples into the 
ells: safe 
ells/samples (blue),

disruptive 
ells/samples (red), mixed 
ells/samples (grey).

73.62% of the disruptive samples falls in the disruptive 
ells. The remaining

samples identify the transition region that is mainly 
omposed by safe sam-

ples: the 62.35% of samples are safe and the others are disruptive. Then, the


apability of the GTM to dis
riminate between safe and disrupted samples

seems to be quite better than the SOM.

SOMs are widely used for data visualization and analysis, a lot of tools

are available to explore the maps properties, and the 
omputational 
omplex-

ity is limited also when managing huge amount of data, as in the problem

at hand. To train the SOM only few minutes are needed by a double 6-
ore


omputer. To obtain the GTM map using the same data used for the SOM

mapping, more than 1 hour of 
omputation time was used by the same 
om-

puter, and the algorithm turned out to be parti
ularly demanding in terms

of required memory. Therefore, from a 
omputational point of view there are

without doubt stronger 
onstraints for GTM's model 
onstru
tion. Further-

more, there were no 
omparable tools available for data analysis, but part

of the work 
arried out in the framework of this thesis has been dedi
ated

exa
tly to this purpose.

Regarding the 
omparison of the two 
onsidered topographi
 maps of the

JET 10-D operational spa
e, it is very interesting to observe how 
learly, by

shrinking the SOM along the verti
al axis, the manifold identi�ed with the

two mapping te
hniques look very similar (�gure 7.7). Of 
ourse, the di�er-

ent approa
h in the non-linear mapping gives rise to di�eren
es, but to be
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able to re
over so likewise the underlying stru
ture of the data, represents a

good starting point that allows us to deal with the obtained mappings with

a 
ertain level of 
on�den
e.

Figure 7.7: a) GTM of the 10-D JET operational spa
e: safe units (blue), dis-

ruptive units (red), mixed units (grey), empty units (white); b) Shrunk version of

the SOM in Figure 7.5(a)

7.4 Comparison with 
lassi
al s
atter plots

In literature, several e�orts have been done to de�ne a relationship between

disruption risk and operational ranges. The most 
ommon diagrams 
on-


erning the tokamak operational ranges are related to the low-q and density

limit (Hugill diagram), and to the β-limit, whose theory has already been

dis
ussed in the 
hapter 4.

The Hugill diagram shows the operational ranges with respe
t to the

low-q limit and the density limit. The boundary of operation as limited by

disruptions is plotted against the inverse edge safety fa
tor 1/qa and the Mu-

rakami parameter neR/Bt , where ne is the line averaged plasma density (in

m−3
). Disruptions generally restri
ts operation to a region qa > 2 and to

ele
tron density su
h that (neR/Bt)qa is below a 
riti
al value in the range

10÷ 20 · 1019m−2T−1
or higher when additional heating is applied. At JET,

a 
riti
al value of 40 · 1019m−2T−1
, independent of the power, has been em-

piri
ally found as shown in [5℄.

Figure 7.8(a) shows the Hugill diagram for the safe samples, whereas �g-

ure 7.8(b) shows the same Hugill diagram for the disruptive samples. Note

that, the points in the diagram 
orrespond to the safe and disruptive sam-

ples in the original spa
e. Darker 
olors 
orrespond to regions with high data
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Figure 7.8: Hugill Diagram showing the operating regime for: (a) safe dis
harges;

(b) last 210 ms of disruptive dis
harges.


on
entration, as quanti�ed in logarithmi
 s
ale by the 
olor bar. An o�-line

signal for the line averaged density is available, even if for a limited number

of the dis
harges 
onsidered in our data base. All the safe data lies in the

region where q95 > 2. Few disruptive samples ex
eed the Greenwald limit,

as shown in literature [6℄. As it 
an be noted from the Hugill diagrams,

several plasma 
on�gurations, leading to disruptions in less than 210 ms, are

positioned in the same region of the safe dis
harges, 
on�rming that a s
at-

ter plot of two parameters at a time is not suitable to distinguish between

regions with high risk of disruption, and those with low risk of disruption.

Another operational boundary is the β-limit. Usually, tokamaks operate

under the levels of βN = βt(aBt/Ip) = 4li where βN is the normalized βN and

βt is the toroidal β. Figure 7.9 (a) and (b) report data for the safe samples

and for the disrupted samples respe
tively, in the plane βt% versus liIp/aBt;

here too, darker 
olors 
orrespond to regions with high data 
on
entration,

as quanti�ed in logarithmi
 s
ale by the 
olor bar.

The β limit is given by the bla
k line. As it 
an be noted, few samples are

over the limit on these graphs. This is mainly be
ause no real high β disrup-

tions seem to have happened during the 
onsidered period, as shown in [5℄.

Moreover, the operational spa
e is more 
omplex, hen
e, it is not possible to

distinguish safe and disruptive 
on�gurations looking at their position in the

diagram, as highlighted also in [7℄.

The Hugill and the β-limit diagrams for safe and disruptive samples 
learly

show that it is not possible to distinguish safe and disruptive regions look-
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Figure 7.9: S
atter plot of the toroidal βt% versus liIp/aBt: (a) safe dis
harges;

(b) last 210 ms of disruptive dis
harges.

ing at their position in the diagrams, hen
e using only two parameters at a

time. On the 
ontrary, SOM and GTM maps, whose mapping proje
t the

information of a 10-D parameter spa
e, are able to perform a better sep-

aration. These results point out the e�e
tive visualization 
apabilities of

nonlinear data redu
tion methods for extra
ting valuable information from

a large amount of high-dimensional data.

7.5 Analysis of JET operational spa
e

7.5.1 Self Organizing Map analysis

Component plane

The Component Plane is one of the tools available to analyze the SOM re-

sults [8℄. It allows a global view of the database and supports the user

in dete
ting if there is any relation among variables through the analysis of

similar patterns.

The Component Plane representation expresses the relative 
omponent dis-

tributions of the input data on the 2-D map. The dependen
ies among

di�erent variables 
an be identi�ed by 
omparing the 
orresponding 
ompo-

nent planes: similar patterns (the 
olors 
orresponding to the values of the

variables) in identi
al lo
ations on the 
omponent planes are 
onsistent with
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orrelated 
omponents.

In �gure 7.10 the 
omponent planes for Ip, q95, li, LM and dWdia/dt are
shown, together with the SOM. Note that, by pi
king the same 
luster in

ea
h plane (in the same lo
ation), we 
ould assemble the relative values of

the plasma parameters of the 
luster prototypes.

In �gure 7.10 the disruptive regions have been marked with boxes A, B,

and C. Figure 7.11 reports the probability density fun
tions of the values of

the prototypes of the 
lusters in the disrupted regions (region A: dotted line;

region B: dashed line; region C: dash-dot line) and in the safe region (solid

line) for the �ve variables 
onsidered in �gure 7.10. From these fun
tions an

exa
t quanti�
ation of the range of the plasma parameters in the di�erent

regions of the map 
an be done. The analysis of �gures 7.10 and 7.11 
on-

�rms well known operational limits. For example, a parameter whi
h is very

often linked with the up
oming disruption is the lo
ked mode. Su
h aspe
t is

underlined very well by the SOM. In fa
t, as we should expe
t, the disruptive

regions marked with boxes A and B in �gure 7.10 are 
hara
terized by high

values of the lo
ked mode signal.

Besides the 
onsiderations about the operational boundaries, what we


an observe in the 
omponents plane is the presen
e of 
ommon patterns or

regions where we have a 
orresponden
e among the distributions of di�erent

signals. For example, the disrupted region marked with the box A in �gure

7.10 is 
hara
terized by high values of lo
ked mode and internal indu
tan
e,

low values of plasma 
urrent and negative values of the time derivative of

the diamagneti
 energy. The disruptive region marked with the box B has

similar 
orresponden
es.

Moreover, it is well known that plasma 
urrent and safety fa
tor are

strongly 
orrelated. This is 
on�rmed by the probability density fun
tions of

the high disruption risk regions A, B, and C. Moreover, the disruption risk

region C 
orresponds to a di�erent operational 
on�guration with respe
t

to A and B. The �rst has high values of Ip and, as expe
ted, low values of

q95, the last ones the opposite. However, although q95 and Ip are inversely

proportional, the 
orrelation between the two variables is not straightforward

and they supply 
omplementary information. For example, q95 allows one to
dis
riminate regions A and B, whereas Ip does not (see �gure 7.11). Thus

we have a very 
omplex behavior whi
h 
annot be redu
ed to simple 
orre-

sponden
es or dependen
ies between two variables. The same information


ontained in �gure 7.11 is reported also in table 7.2.
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Figure 7.10: SOM and Component plane for Ip, q95, li, LM , and dWdia/dt.
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Figure 7.11: Probability density fun
tions of the values of the prototypes of

the 
lusters in the disrupted regions (region A: dotted line; region B: dashed line;

region C: dash-dot line) and in the safe region (solid line) for Ip, q95, li, LM , and

dWdia/dt.
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Region

Signal Safe A B C

Ip(MA) (1.9 to 2) <2 <1.85 (1.9 to 2.3)

LM(10−4
T) <3 >3 (3 to 6) (2.1 to 3.8)

q95 - (4.1 to 4.6) (4.5 to 6) <3.3

li - (1.17 to 1.25) (0.95 to 1.2) (0.95 to 1.1)

dWdia/dt <2 (-8 to -1) < -2 (6.5 to 0)

Table 7.2: Range of plasma parameters in safe and disruptive regions.

D-matrix

The 
omponent planes of the remaining variables Prad, Ptot, nelid, βp, and
Zcc are reported in �gure 7.12, together with the D-matrix, is another type

of representation available for the SOM toolbox, whi
h visualizes the median

distan
e between a 
luster and adja
ent ones.

Thus, the D-matrix allows one to display the similarity of data elements

into one 
luster with respe
t to the data into nearest ones. With this repre-

sentation, it is possible to dete
t if there are ma
ro-
lusters of data and to

judge if eventually they are well separated or not.

In �gure 7.12, the D-Matrix 
orresponding to the SOM in �gure 7.5 is shown.

In the same �gure 7.12, the 
omponent planes of Prad, Ptot, nelid, βp, and Zcc

are reported. Light areas in the D-matrix, where the distan
es between


lusters are minimal, 
an be thought as ma
ro-
lusters and dark areas as

separators. The high disruption risk regions in the top-right 
orner (box A)

and in the right side (box B) of the SOM in �gure 7.5 are well identi�ed in

the same lo
ation in �gure 7.12. Other separated regions (marked with the

boxes in �gure 7.12) 
an be identi�ed in the bottom of the D-Matrix display,

whi
h do not 
orrespond to further high disruption risk regions. Neverthe-

less, the 
omponent planes of Prad, Ptot, nelid, βp, 
learly show that these

regions 
orrespond to modi�
ations in the operational parameters of the ma-


hine.

Moreover, the analysis of the SOM 
arried out through Component Planes

and D-matrix highlights that only the variable Zcc does not give any visually

evident information in the perspe
tive of de�ning the boundaries between

disruptive and safe regions or distinguishing among di�erent disruptive re-

gions. Note that, Zcc is 
ru
ial in predi
ting Verti
al Displa
ement disrup-

tions (VDDs), as demonstrated in [9℄. Anyway, VDDs have not been 
on-

sidered be
ause there is no a parti
ular interest for them in the framework

of disruption predi
tion and 
lassi�
ation sin
e their predi
tion 
an be done
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Figure 7.12: D-Matrix and Component Plane for Prad, Ptot, nelid, βp, and Zcc.
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quite easily on the base of a threshold on ZCC , as shown in [9℄.

Dis
harge tra
king

The potentiality of the available toolbox for the SOM suggests the possibility

to tra
k the temporal sequen
e of the samples on the map, depi
ting the

movement of the operating point during a dis
harge. Following the traje
tory

in the SOM, it will be possible to eventually re
ognize the proximity to an

operational region where the risk of an imminent disruption is high. In �gure

7.13, the traje
tories of a safe dis
harge (No. 78000) and of a disruptive

dis
harge (No. 73851) are reported. As 
an be noted, the disruptive dis
harge

(magenta traje
tory) starts in a safe (blue) 
luster, 
rosses mixed 
lusters,

and arrives in a disruptive (red) 
luster. The safe dis
harge (
yan traje
tory)

starts in a safe 
luster, and evolves with the time moving into the safe region.

Figure 7.13: Tra
ks of the disruptive pulse No. 73851 (magenta) and of the safe

pulse No. 78000 (
yan) on the 2-D SOM.
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7.5.2 Generative Topographi
 Mapping analysis

Component plane

Besides the map representation, other tools analogous to those ones available

for SOMs have been developed for GTM model. Among these tools, similarly

to the SOMs' 
ase, it turned out to be very interesting the analysis with the


omponent planes. In �gure 7.14, the 
omponent planes for Ip, q95, li, LM ,

and dWdia/dt are shown, together with the GTM's map. Some disrupted

regions have been marked with boxes labeled from A to C.

Note that, even if the numbers of points in the latent spa
es are about the

same, GTM and SOM are based on a di�erent non-linear relationship be-

tween the latent spa
e and the data spa
e. Although in both 
ases, points


lose to ea
h other in the input spa
e are mapped on the same or neighboring

points in the latent spa
e, the algorithms applied to de�ne the mappings are

di�erent. Therefore, no dire
t 
orresponden
e was expe
ted among the dis-

ruptive areas dete
table on the GTM and the ones dete
table on the SOM.

The analysis of the Component Planes for the GTM leads to 
onsider-

ations similar to those done for the SOM, even if the situation in this 
ase

is more 
omplex. All the three disruptive regions highlighted in �gure 7.14


orrespond to high values of LM and negative values of dWdia/dt; moreover,

the region B is 
learly 
hara
terized by low values of Ip, but high values of

q95 and li.

Dis
harge tra
king

Similarly to SOMs, also for GTMs a fun
tion to tra
k the temporal sequen
e

of the samples on the map has been developed. In �gures 7.15 and 7.16, the

traje
tories of the same dis
harges proje
ted on the SOM in �gure 7.13 (No.

73851 and No. 78000) are reported.

Also in this 
ase, the disruptive dis
harge starts in a safe (blue) 
luster,


rossing mixed 
lusters, and ends up in a disruptive (red) 
luster. The safe

dis
harge instead starts in a safe 
luster, and evolves with the time moving

within the safe region. Therefore, the 
onsiderations are basi
ally the same

of the tra
king performed onto the SOM map. Furthermore, it is interesting

to observe that 
orresponding dis
harges evolve approximately on the same

regions in the operational spa
e, and this reinfor
es the 
onsiderations about

the similarity of the manifold identi�ed by the two methods.

Finally, it is worth emphasizing that, 
ompared to other disruption pre-

di
tion approa
hes su
h as those in [10℄ and [11℄, the SOM and the GTM

maps provide signi�
ant additional value. Whereas the tools in the referen
e

paper are bla
k boxes, whi
h provide a predi
tion but are very di�
ult to
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Figure 7.14: GTM and Component plane for Ip, q95, li, LM , and dWdia/dt.
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Figure 7.15: Tra
k of the disruptive pulse No. 73851 (green) from the start of

the �at-top phase (yellow dot) to the time of disruption (pink dot).

Figure 7.16: Tra
k of the disruptive pulse No. 73851 (green) from the start

(yellow dot) to the end (pink dot) of the �at-top phase.
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interpret, on the 
ontrary, the maps allow to follow the traje
tory of the

plasma and to study its behavior leading to a disruption. So the developed

maps have the potential to provide mu
h more than a simple predi
tion in

the understanding of the operational spa
e and the 
auses of the disruptions.

7.6 Mapping performan
e analysis

7.6.1 Introdu
tion

In order to 
ompare the mappings obtained with SOM and GTM, some mea-

sures 
an be used to evaluate the performan
e of ea
h methodology. Spe-


ial emphasis is put on the position of outliers and extreme points in the

maps, and on quantization and topologi
al errors. In parti
ular, some novel

measures su
h as Quantization Error measure, Trustworthiness measure, and

Topology Preservation measure will be de�ned to provide an obje
tive means

by whi
h the mappings 
an be 
ompared. Until now, it does not appear that

these methodologies have been 
ompared in a setting in whi
h the underly-

ing stru
ture of the data may not be known a-priori. Moreover, an outlier

analysis has been performed on the available data in order to quantify the

goodness of the proje
tion. In fa
t, in order to preserve the shape of the data


loud, the outliers in the original spa
e should be proje
ted on the margin of

the map.

7.6.2 Outliers' analysis

An outlier is an observation that numeri
ally deviates abnormally from other

values of the rest of the population it belongs to. For 
hara
terizing abnor-

mal observations there exist di�erent te
hniques, and, among the graphi
al

ones, s
atter plots and box plots are widely employed, revealing outliers' lo-


ation and distan
e with respe
t to the other points of the population. In

the following, the outlier analysis has been used to evaluate the goodness of

the mapping. In fa
t, the topologi
al shape of the data 
loud in the original

spa
e is preserved during the mapping if extreme points of the data 
loud

are mapped to extreme units, lo
ated at the borders of the map.

The Mahalanobis distan
e is a measure of statisti
al distan
e in a mul-

tidimensional spa
e. The points with the greatest Mahalanobis distan
e are


onsidered outliers. Figure 7.17 reports the Mahalanobis distan
e for ea
h

point of the dataset with respe
t to the mean value of the same JET dataset.

As it 
an be seen, the Mahalanobis distan
es of the safe and disruptive sam-

ples are quite di�erent for the two ma
ro-sets.
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Figure 7.17: Mahalanobis distan
e of the safe (blue) and disruptive samples (red)

with respe
t to the mean value of the entire JET dataset.

This is 
on�rmed by using the box plot representation (see Figure 7.18)

of the Mahalanobis distan
es [12℄. On ea
h box, the 
entral mark is the

median value, the edges of the box are the 25th (lower quartile) and 75th

per
entiles (upper quartile), the whiskers extend to the most extreme data

points not 
onsidered outliers, whereas outliers are plotted individually. If

the lower quartile is Q1 and the upper quartile is Q3, then the di�eren
e

(Q3 − Q1) is 
alled the interquartile range or IQR. A data point is usually

marked as outlier if it is beyond the following quantity 
alled inner fen
e:

• Upper/lower inner fen
e: Q3 ± 1.5 · IQR

Another more severe 
ondition for identifying outliers takes into 
onsideration

a larger threshold on the previous de�nition that is the outer fen
e:

• Upper/lower outer fen
e: Q3 ± 3 · IQR

A point beyond an outer fen
e is 
onsidered an extreme outlier.

In Figure 7.18, both for safe and disruptive samples, outliers (marked in red)

with respe
t to inner fen
es are identi�ed, and, as it 
an be seen, they are

all above the upper one.

In the maps in Figure 7.19, the green map units 
ontain samples with Ma-

halanobis distan
e greater than the upper outer fen
e. It 
an be noted that

both in the GTM and the SOM, part of the identi�ed outliers are mapped

in the borders of the map, whereas the other part is mostly asso
iated with
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Figure 7.18: Box plot of the Mahalanobis distan
e for safe samples (on the left)

and disruptive samples (on the right) of JET CW dataset with outliers marked

with respe
t to the upper outer fen
e.

disruptive map units, well separated by transition and empty regions from

the safe ones. Moreover, outliers' lo
ation in the learned manifolds is simi-

lar for the GTM and the SOM. The di�eren
e is emphasized be
ause of the

di�erent geometri
 shape fa
tor of the two maps.

7.6.3 Performan
e indexes

The Average quantization error Eq is a 
ommon measure used to 
al
ulate

the pre
ision of the SOM 
lustering over the entire dataset [13℄:

Eq =
1

N

K
∑

j=1

Nj
∑

p=1

||tp − bj|| (7.1)

This error evaluates the �tting of the map to the data and it is determined

by averaging the distan
e of ea
h data ve
tor tp from the bary
enter bj of

the Nj data asso
iated to the map unit j to whom tp is asso
iated. Thus,

the optimal map is expe
ted to yield the smallest average quantization error.

Partitions with a good resolution are 
hara
terized by low values of Eq.
Literature reports several error indexes to 
ontrol the 
onservation of

topology, (see [14℄ and the referen
es therein). Topology preservation has,

however, turned out to be quite di�
ult to be de�ned for a dis
rete grid.

Here, the "Trustworthiness" of the proje
ted neighborhood and the "Preser-

vation" of the resulting neighborhood have been taken into a

ount. Trust-



118 CHAPTER 7. MAPPING OF JET CW OPERATIONAL SPACE

Figure 7.19: Data points with Mahalanobis distan
e greater than the upper outer

fen
e (green map units) in the GTM (a) and SOM (b)
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worthiness measures if data points mapped 
losed by on the maps are 
lose

by in the input spa
e as well [14℄. For ea
h data point in the latent spa
e,

the set of Nj points belonging to the same map unit 
onstitutes the 
onsid-

ered neighborhood. The Trustworthiness of the neighborhood is quanti�ed

by measuring how far the data points belonging to the neighborhood in the

latent spa
e are from their bary
enter in the original spa
e. The distan
es

are measured as rank orders. A measure of the error on the trustworthiness


an be expressed as

Et1 =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈UNj

[rank(ti,bj)−Nj ] (7.2)

where K∗
is the number of no-empty map units, Nj is the neighborhood

size, i.e., the number of samples asso
iated with the jth map unit, bj is the

bary
enter of the Nj ve
tors in map unit j, UNj is the set of the ti ve
tors

asso
iated with the map unit j whi
h are not in the Nj 
losest to bj in the

original spa
e, rank(ti,bj) is the position of ve
tor ti within the sorted list

of in
reasing Eu
lidean distan
es from bj.

A se
ond type of measure analyzes if the original neighborhood is pre-

served when data are proje
ted. In parti
ular, in the latent spa
e, for the

GTM all the points belonging to a 
ertain map unit j will be 
hara
terized
by the 
orresponding mode of the posterior probability modej , whereas in

the 
ase of the SOM they will be 
hara
terized by the 
orresponding proto-

type ve
tor xj. For the GTM the error on the preservation of the original

neighborhood 
an be expressed as

Et2(GTM) =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈VNj

[rank(mode(ti), modej)−Nj ] (7.3)

where VNj is the set of the xi ve
tors among the Nj 
losest to modej in

the original spa
e whi
h are not asso
iated with the map unit j, whereas
rank(mode(ti, modej)) is the position of mode(ti) within the sorted list of

in
reasing Eu
lidean distan
es from modej. For Self Organizing Maps the


orresponding error is

Et2(SOM) =
1

K∗

K∗

∑

j=1

1

Nj(N −Nj)

∑

ti∈VNj

[rank(x(ti),xj)−Nj] (7.4)

where x(ti) is the prototype ve
tor asso
iated with ti. Note that all the
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points asso
iated with the same map unit have the same rank.

The quantization errors and the errors on the trustworthiness of the pro-

je
ted data and on the preservation of the original neighborhood are reported

in Table 7.3. GTM presents a lower quantization error, i.e., a better �tting

of the map to data with respe
t to SOM. In this 
ase, the map units better

represent the data set. GTM is 
hara
terized by a more reliable visualiza-

tion of the proximities, being the Trustworthiness error one-order lower than

SOM. On the 
ontrary, SOM has better performan
e on the preservation of

the original neighborhood. This is not surprising be
ause ea
h dimension-

ality redu
tion method ne
essarily a
hieves a 
ompromise between the last

two kinds of errors.

Quality Index GTM SOM

Eq 0.063 0.155

Et1 0.0011 0.0121

Et2 0.0082 0.0016

Table 7.3: Quantization and topologi
al errors for GTM and SOM.
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Chapter 8

Automati
 Disruption

Classi�
ation for real-time

appli
ations on JET

8.1 Introdu
tion

In the previous 
hapters, it has been highlighted from several points of view

how mu
h 
omplex the understanding of disruption physi
s is. The devel-

opment of a physi
al model to reliably re
ognize and predi
t the o

urren
e

of this hazardous plasma behaviour is presently beyond rea
h, due to sev-

eral reasons, as in parti
ular the amount of available signals in experiments

and the nonlinear relationship between various instabilities. Therefore, in

the last de
ade, various ma
hine learning te
hniques, mainly arti�
ial neu-

ral networks and support ve
tor ma
hines (SVMs), have been used as an

alternative approa
h to disruption predi
tion [1℄- [4℄. The progress has been

quite remarkable and re
ently a new predi
tor, 
alled APODIS [4℄, has been

very su

essfully deployed in JET real time network. Notwithstanding the


onsiderable su

ess rate, predi
tors su
h as APODIS 
an foresee the o

ur-

ren
e of a disruption but are not designed to identify its type.

On the other hand, to optimize the e�e
tiveness of mitigation systems, it

is important to predi
t the type of disruptive event about to o

ur. Indeed

the best strategy to handle a disruptive plasma evolution triggered by an

ITB (Internal Transport Barrier), for example, is not ne
essarily the same

as the one to mitigate a radiative 
ollapse. Reliable predi
tion of the disrup-

tion type would allow the 
ontrol and the mitigation systems to optimize the

strategy to land the plasma safely and redu
e to a minimum the probability

of damage to the devi
e.

123
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In [5℄ a survey of the disruption 
auses has been 
arried out over the last

de
ade of JET operations. Ea
h disruption has been manually analyzed and

asso
iated to a parti
ular disruption 
lass. In parti
ular, spe
i�
 
hains of

events have been dete
ted and used to 
lassify disruptions, grouping those

that follow spe
i�
 paths. For JET unintentional disruptions, various 
har-

a
teristi
 sequen
es of events have been identi�ed. Among them, a number

of 
lear paths 
ould be identi�ed that 
an be asso
iated with a spe
i�
 dis-

ruption 
lass, e.g., those due to a too strong internal transport barrier and a

too fast 
urrent rise, as it 
an be seen in Figure 8.1.

Figure 8.1: S
hemati
 overview showing the statisti
s of the 
hain of events for

non-intentional disruptions with the CW from 2000 to 2010 [5℄.

It should be noted, however, that the 
omplexity of the disruption pro
ess

makes this manual 
lassi�
ation very di�
ult, time 
onsuming and some-

times ambiguous. A few disruptions were not able to be 
lassi�ed at all [5℄.

Furthermore there are 
ases where multiple destabilizing fa
tors a
ted at the

same time, therefore the determination of the sequen
e of events between the

root 
ause and the �nal disruption pro
ess turned out to be not so straight-

forward. Nevertheless, this basi
 work is essential to develop an automated


lassi�
ation able to help identifying a strategy for disruption avoidan
e or

mitigation.
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A �rst attempt to automati
ally 
lassify disruptions at JET was proposed

in [9℄ using pattern re
ognition te
hniques. Disruptions for training were

manually 
lassi�ed by the authors, in 
ollaboration with physi
ists at JET,

in four 
lasses: mode lo
k, density limit/high radiated power, H-mode/L-

mode transition, and internal transport barrier plasma disruptions. In this


hapter, an approa
h to automati
 disruptions 
lassi�
ation based on the

nonlinear manifold learning methods des
ribed in the previous 
hapters, will

be des
ribed, with a detailed dis
ussion about the results.

The proposed approa
h for the dis
rimination of disruption types 
on-

sists of identifying 
hara
teristi
 regions in the operational spa
e where the

plasma undergoes a disruption. To this purpose, given the results in the

mapping of JET 10-dimensional spa
e, SOM and GTM potentialities have

been extensively investigated and an algorithm for automati
 
lassi�
ation

has been developed for both the methods.

Also in this 
ase, the already des
ribed database of 243 non-intentional

disruptions o

urred in the JET CW 
ampaigns from C15 to C27 (pulse

range 63718-79853) have been 
onsidered. Ea
h disruption is proje
ted on

the maps des
ribed in the previous 
hapter, and the probabilities of belonging

to the di�erent disruption 
lasses are monitored during the time evolution,

returning the 
lass whi
h the disrupted pulse more likely belongs to.

8.2 Automati
 
lassi�
ation with the Carbon

Wall

8.2.1 The database of disruption types

For many of the disruptive shots available on JET database, in addition

to the time of the disruption, also disruption 
lasses, whi
h are asso
iated

to typi
al 
hain-of-events, were identi�ed [5℄. In parti
ular, 243 disruptive

dis
harges belonging to 
ampaigns performed at JET from C15 (year 2005)

and up to C27 (year 2009), in the range between shot number 63718 and

79853, have been 
onsidered. Table 8.1 reports the seven disruption types

identi�ed in the database, and their a
ronyms, reported in [5℄. Moreover,

in the same table, the number of shots in ea
h 
lass, and the per
entage

of o

urren
e in the database, are reported. This established 
lassi�
ation

is based on the ma
ros
opi
 symptoms exhibited by the dis
harges prior to

the disruption and allows 
omparing the results of the proposed automated


lustering with the expert 
lassi�
ation.

The plasma quantities used to automati
ally 
lassify these dis
harges are

the same ones already des
ribed in 
hapter 7 and also used for the mapping
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CW Disruptions

Labels Classes Tot Tot %

ASD Auxiliary Power Shut-Down 50 20.58

GWL Greenwald Limit 9 3.70

IMC Impurity Control Problem 83 34.16

ITB Too Strong Internal Transport Barrier 10 4.12

LON Low Density and Low q 12 4.94

NC Density Contol Problem 58 23.87

NTM Neo-
lassi
al Tearing Model 21 8.64

TOT 243 100

Table 8.1: Composition of the CW Database in terms of di�erent 
lasses.

of JET operational spa
e. The 
hoi
e of these quantities is basi
ally due

to their relation to plasma stability and their availability in real-time. The

set of quantities has already been used in literature for disruption predi
tion

purposes [1℄.

Note that, although large outliers have been removed, the sele
ted signals


ould still 
ontain erroneous data. Thus, the system performan
e whi
h are

going to be presented in the following se
tions takes also into a

ount the

eventual fails of the diagnosti
s.

8.2.2 Analysis of the disrupted regions

The temporal sequen
e of the samples in a dis
harge 
an be proje
ted on

the map, depi
ting the movement of the operating point during a dis
harge.

Following the traje
tory in the map, it will be possible to eventually re
og-

nize the proximity to an operational region where the risk of an imminent

disruption is high.

E�e
tive real time strategies have been developed to use the JET mapping

for 
lassi�
ation purposes. An analysis has been made to �nd whether the

di�erent disruption 
lasses lie in 
on�ned regions of the map, i.e., whether the

di�erent disrupted regions of the map are asso
iated to parti
ular disruption


lasses. To this purpose, making referen
e to the manual disruption 
lassi-

�
ation as reported in [5℄, a label (
orresponding to the disruption types

reported in Table 8.1) has been asso
iated to ea
h sample of a disruption.

Monitoring the evolution of ea
h disruptive dis
harge on the maps, it

has been found that many of them evolve within the same region. However,

some regions 
an 
ontain samples belonging to di�erent disruption 
lasses,

as 
an be seen in �gures 6 a-b, where the Auxiliary power shut-down (ASD)

and Density 
ontrol problem (NC) 
lasses are represented. In parti
ular, the
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lusters in the SOM and in the GTM maps, whi
h 
ontain samples of ASDs

8.2(a) and NCs 8.2(b), are marked with di�erent shades of bright red and

green, in su
h a way to identify at the same time the 
lass of disruption and

the per
entage of samples of the 
onsidered 
lass with respe
t to the total

number of disruptive samples. ASDs and NCs are two among the most nu-

merous 
lasses of disruption in the 
onsidered database. Qualitatively, it 
an

be seen that the two 
lasses mainly o

upy di�erent areas in the maps.

The other 
lass with a high frequen
y of o

urren
e, both in the 
onsidered

database and in the totality of non-intentional disruptions on JET, is the Im-

purity 
ontrol problem (IMC). These last three 
lasses are quite widespread

all over the disruptive regions in the operational spa
e, even if we 
an �nd

regions where a spe
i�
 
lass results to be predominant with respe
t to the

others (see �gure 8.2). This 
an be seen also making referen
e to �gures

8.3-8.4 where the SOM and GTM maps are visualized using the so-
alled

"pie planes". In su
h visualization, ea
h node is represented by a pie 
hart

des
ribing the per
entage 
omposition in terms of number of samples belong-

ing to safe and disruptive shots. The samples belonging to safe dis
harges

are represented in blue, while the ones belonging to disruptive dis
harges are

diversi�ed a

ording to the 
olor 
ode reported on the legend in the same

�gures, with referen
e to the di�erent 
lasses of disruptions. From this �gure,

it 
an be seen for example that the nodes in the regions marked with boxes

relate to samples mainly 
oming from IMC and NC disrupted dis
harges.

This very heterogeneous pi
ture 
ould be partially due to the un
ertainty of

the manual 
lassi�
ation or, more likely, to the 
omplexity of the 
hain-of-

events that the disruptions follow during their temporal evolution.

For example, the well-known me
hanism leading to an edge 
ooling dis-

ruption 
ould take pla
e be
ause of di�erent reasons, su
h as a too high edge

density or a high impurity density at the edge. In the 
ase of density 
on-

trol problem (NC) and impurity 
ontrol problem (IMC) disruptions, the two

pro
esses 
ould be quite distin
t even if both 
hara
terized by a high level

of radiation. In parti
ular, for a density limit disruption, radiation 
an be

poloidally asymmetri
 and the instability is often linked to the stability of

the divertor deta
hment and to the formation of MARFEs. Instead, in the


ase of radiative 
ollapse by impurities, the radiation 
ollapse is poloidally

symmetri
, shrinking the plasma 
olumn and in
reasing the plasma indu
-

tan
e [13℄, [14℄.

The previous 
onsiderations are 
on�rmed by looking again at �gure 8.4,

whi
h reports also the Component Planes of the internal indu
tan
e and the

lo
ked mode. The Component Plane representation, as des
ribed in the pre-

vious 
hapter, expresses the relative 
omponent distribution of the input data

on the 2-D map. For ea
h signal, the Component Plane asso
iates ea
h node
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Figure 8.2: SOM (left) and GTM (right) maps 
oloured depending on disruption


lass: (a) 
lusters marked by shades of red 
ontain ASD samples; (b) 
lusters

marked by shades of green 
ontain NC samples.
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Figure 8.3: On the top: SOM map (left side) using a pie 
hart representation.

Zoom of the regions in the boxes (right side). - On the bottom: GTM 
omponent

planes of the internal indu
tan
e (left side) and the lo
ked mode (right side).
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Figure 8.4: On the top: GTM map (left side) using a pie 
hart representation.

Zoom of the regions in the boxes (right side). - On the bottom: GTM 
omponent

planes of the internal indu
tan
e (left side) and the lo
ked mode (right side).



Automati
 
lassi�
ation with the Carbon Wall 131

with the mean value of the 
orresponding signal for all the samples belong-

ing to su
h node. From these �gures, it 
an be seen that the regions marked

with boxes are mainly 
hara
terized by density 
ontrol problem (NC) and

impurity 
ontrol problem (IMC) disruptions, and show high values of internal

indu
tan
e and lo
ked mode. The presen
e of both 
lasses in the des
ribed

region 
ould be due to the 
onne
tion with high radiation, even if the pro-


esses that lead to disruption are di�erent. In this 
ase, the signals 
ontained

in the database do not seem to allow a further distin
tion of the two 
lasses.

Unlike the previously analyzed 
lasses, disruptions due to a too strong in-

ternal transport barriers (ITB), o

upy a 
on�ned region in the right bottom


orner in GTM map (see Figures 8.6 and 8.5). Disruptions due to too strong

internal transport barriers (ITB) 
onstitute an important 
lass of disruptions

to whi
h one of the shortest duration of the 
hain-of-events is asso
iated. Be-

ing fast, they result to be parti
ularly di�
ult to dete
t and typi
ally exhibit

the highest energies and heat loads. As it has been shown in [5℄, disruptions

due to too strong internal transport barriers are 
hara
terized by the highest

ratio between the plasma energy at the time of the disruption and the max-

imum energy during the last one se
ond of plasma.

Plasmas 
hara
terized by internal transport barriers exhibit radially lo-


alized regions of improved 
on�nement with steep pressure gradients in the

plasma 
ore, whi
h in turn 
ould drive instabilities that lead to a disrup-

tion. In relation to the a
hievement of 
ontinuous operation, it is well known

that a large fra
tion of bootstrap 
urrent is ne
essary, and that dis
harges

exhibiting the formation of ITBs are favourable to this aim. Experimentally,

the presen
e of su
h a 
urrent fra
tion is usually asso
iated with high βp
dis
harges with a weakly positive or negative magneti
 shear in the 
entral

region of the plasma 
olumn. High values of q are probably due to the fa
t

that advan
ed s
enarios are typi
ally run at q=5 and 6.

In �gures 8.5 and 8.6, the nodes asso
iated with the samples of the dis-

ruptions due to too strong internal transport barriers (ITB) are visualized

respe
tively on the SOM and the GTM map. The di�erent 
yan shades rep-

resent di�erent per
entages of samples of the 
onsidered 
lass with respe
t

to the total number of disrupted samples asso
iated with the same node.

It 
an be seen that disruptions due to too strong internal transport barri-

ers mainly o

upy the region marked with the boxes in �gures 8.5 and 8.6.

These regions have also been represented by means of the Component Planes

of the poloidal beta and the safety fa
tor. As expe
ted, disruptions due to

too strong ITBs are 
hara
terized by high values of these two parameters.
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Figure 8.5: Analysis of the node 
omposition for ITB disruptions and Component

Planes of poloidal beta and safety fa
tor in the SOM.
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Figure 8.6: Analysis of the node 
omposition for ITB disruptions and Component

Planes of poloidal beta and safety fa
tor in the GTM.
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8.2.3 Results of the automati
 disruption 
lassi�
ation

Ea
h node in the map (SOM or GTM) is related to samples 
oming from

di�erent disruption types and/or safe samples. By following on the map the

temporal sequen
e of the samples of a disruption (the last 210 samples of

the disrupted shots), ea
h sample will be asso
iated with a node. For ea
h

sample and ea
h 
lass, a 
lass membership 
an be de�ned, being the per-


entage of samples of the 
onsidered 
lass in the node to whi
h the sample

is asso
iated, with respe
t to the total number of disruptive samples in the

node itself. In �gure 8.7 a-b the temporal evolution of the 
lass membership

of the seven 
lasses (Class membership fun
tion) during the JET dis
harge

No.66313 is reported.

Figure 8.7: Class membership fun
tions for disruption No.66313; (a) SOM (b)

GTM

As it 
an be noted, for the majority of samples of this shot, the greatest


lass membership value 
orresponds to impurity 
ontrol problem disruption

(IMC), whi
h is the same 
lass assigned to this shot in [5℄. This is true for

a relatively long interval before the disruption time, espe
ially in the 
ase

of the GTM. Note that, during this pulse, ex
essive Neon is introdu
ed into
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the plasma during a phase with no auxiliary heating, resulting in a radiative


ollapse. As Neon also in
reases the density signi�
antly, this 
ould justify

the presen
e of relatively high NC 
lass membership values 
lose to the dis-

ruption in �gure 8.7.

The previous analysis shows the power and the versatility of the proposed

te
hnique; the di�erent 
lasses of disruption tend to aggregate a

ording to

the self-organization of the map in su
h a way that ea
h 
lass results to be

predominant with respe
t to the others in parti
ular regions of the opera-

tional spa
e. In order to perform an automati
 disruption 
lassi�
ation using

topographi
 maps output and to quantify its e�e
tiveness, a proper 
lassi�-


ation, 
riterion has been introdu
ed. In parti
ular, to 
lassify a disruptive

shot a majority voting algorithm has been adopted based on the 
lass mem-

bership of ea
h 
lass in the whole time interval before the disruption (210

ms).

In the histograms in �gure 8.8, the results obtained by applying the ma-

jority voting to all the 222 disrupted pulses, are reported in terms of per-


entage su

ess rate. A pulse has been 
onsidered 
orre
tly 
lassi�ed if the

automati
 system produ
es the same 
lassi�
ation given in [5℄. As it 
an be

noted, the su

ess rate of GTM is higher than that of SOM for all the 
on-

sidered 
lasses, rea
hing in some 
ases even the per
entage of 100%. These

results show the higher dis
rimination 
apability of the GTM model with

respe
t to the 
onsidered 
lassi�
ation, that is exa
tly what has been found

in terms of separation between safe and disruptive regions in the mapping of

JET operational spa
e.

8.2.4 Dis
ussion of the results

Even if the analysis of the previous se
tion 
learly shows the potentiality of

the des
ribed tools, it is important to identify the limits of its dis
riminating


apability in the present 
on�guration. It is worth noting that disruption


lasses are de�ned on the base of the typi
al 
hain-of-events, as reported in

[5℄. In parti
ular, the 
lassi�
ation is mostly based on the middle tra
k of

these 
hains. In this work, the automati
 
lassi�
ation has been developed

taking into a

ount only the last 210 ms of the disruptive dis
harges. Thus,

depending on the length of the typi
al 
hain-of-events, it 
ould happen that

the 
lassi�er is not able to entirely pi
k up the phenomenology whi
h 
har-

a
terizes a 
ertain 
lass. On the other hand, it 
ould even happen that, in

the �nal stage of the dis
harge, the indi
ation about the 
lass 
hanges, as

if the disruption is evolving from a 
ertain 
lass to another one. This is

basi
ally due to the fa
t that several di�erent paths 
an 
onverge towards

very similar destabilization of modes that lead in the end to the disruption.
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Figure 8.8: Comparison between the per
entage su

ess rates of the o�-line au-

tomati
 
lassi�
ation performed by GTM and SOM.

Hen
e, this limits the dis
rimination 
apability of the 
lassi�
ation system

when approa
hing to the disruption time.

For example, in our 
lassi�
ation, a not un
ommon phenomenon is ob-

served for density 
ontrol problem (NC) and impurity 
ontrol problem (IMC)

disruptions, whi
h initially evolve in a region where they 
ould be 
orre
tly


lassi�ed with a high level of 
on�den
e, and then evolve in the auxiliary shut

down (ASD) 
lass when approa
hing the disruption time. In �gure 8.9 the


lass membership fun
tions for the shot No. 67322, manually 
lassi�ed in [5℄

as NC, are shown. As it 
an be seen, the dis
harge initially evolves in nodes

where all the samples belong to the NC 
lass, while, as it approa
hes to the

disruption time, it moves towards nodes where the majority of the samples

belong to ASD 
lass. Note that, an ASD disruption is basi
ally a density


ontrol problem during/after the swit
h of the heating system. Hen
e, at

�rst glan
e, the tra
es of an ASD and of the 
onsidered disruption would

follow very similar paths.

Another 
ause that limits the dis
rimination 
apability of the 
lassi�
ation

system is that some 
lasses 
an exhibit very similar values of some parame-

ters. This is the 
ase of Neo
lassi
al Tearing Mode (NTM) disruptions and

those due to too strong internal transport barriers (ITBs) in parti
ular op-

erating s
enarios.

In JET several experiments have been 
arried out for the beta limit as-

sessment, varying the pressure and the q pro�les, ranging from Hybrid to
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Figure 8.9: Class membership fun
tions for disruption No.67322; (a) SOM (b)

GTM.
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ITB 
on�guration, in order to investigate advan
ed s
enarios. During these

experiments, among the other instabilities, NTMs with m/n=2/1, 3/2, 4/3

have been observed [15℄. In these 
onditions, the value of q95 is about 4-5,

while the 
urrents assume values in a range slightly above 1MA.

Figure 8.10a shows the nodes interested by the dis
harge No. 72670,

manually 
lassi�ed as NTM. Su
h a dis
harge evolves in the right bottom


orner of the GTM. As shown in �gure 8.4 (see pie planes representations),

the majority of disruptions in this area is due to NTMs and too strong ITBs.

Figure 8.10b shows the 
lass membership during the time evolution of the

shot. As predi
ted by the previous 
onsiderations, NTM and ITB 
lasses are


hara
terized by a 
omparable value of the 
lass membership fun
tions. In

this 
ase, the adopted 
riterion allows one to 
orre
tly 
lassify the disruption

as NTM, even if with a redu
ed level of 
on�den
e. As it 
an be noted by

the 
omponent planes for βp, Ptot, and Ip, the right bottom 
overing both the

maps is 
hara
terized by high values of poloidal beta (�gure 8.6) and total

input power (�gure 8.10
), as well as low values of plasma 
urrent (�gure

8.10d). Dis
rimination 
apability 
ould be improved by 
onsidering further

information, e.g., for example the measurement of pressure pro�le peaking,

and this is true for all the 
lasses in general. But many information, in par-

ti
ular those one related to several pro�les, are not always available in real

time, or need to be pro
essed a posteriori.

Two other very interesting 
ases, are represented by the shot No.79772, man-

ually 
lassi�ed as NC, and the shot No.79770 manually 
lassi�ed as LON

[5℄. In �gure 8.11a and 8.11b the 
lass membership fun
tions returned by

the GTM are reported. Su
h dis
harges were performed for investigating the

physi
s of ELM 
ontrol with magneti
 perturbation �elds (EFCC). Our sys-

tem 
lassi�ed the pulse No. 79770 as LON, as in [5℄, whereas, regarding the

pulse No. 79772, 
lassi�ed as NC in [5℄, the GTM re
ognizes the presen
e

of the NC 
lass for the whole 
onsidered time interval, but the highest 
lass

membership is asso
iated with the Low density and low q problem disrup-

tion (LON) 
lass. The pulse in the �nal phase is indeed 
hara
terized by low

values of the edge safety fa
tor and disrupted at q95 ≃ 2.5. A
tually, during
this pulse, when the NBI was swit
hed o�, erroneous density 
ontrol gave

rise to too fast a density de
rease, leading to too low a density and an error

�eld lo
ked mode.
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Figure 8.10: (a) 
lusters (bla
k box) o

upied in the GTM by the disruption No.

72670; (b) Class membership fun
tions.(
-d): 
omponent planes of the total input

power (left) and the plasma 
urrent (right).
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Figure 8.11: Class membership fun
tions for disruptions No. 79772(a) and No.

79770 (b).
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8.3 Automati
 
lassi�
ation with the ITER-like

Wall

8.3.1 Introdu
tion

Also the 10-dimensional operational spa
e of JET with ITER Like wall has

been explored using the Generative Topographi
 Mapping method. A new

2-dimensional map has been exploited to develop automati
 disruption 
las-

si�
ations of 7 
lasses manually identi�ed in [5℄ and des
ribed in the previous

se
tion. In parti
ular, among all the non-intentional disruptions, the subset

indi
ated in the Table 8.2 has been 
onsidered, that o

urred in the JET


ampaigns from C28 (2011) to C30 (2013) after the installation of the new

ITER Like Wall (ILW).

A statisti
al analysis has been performed on the plasma parameters de-

s
ribing the operational spa
es of JET with CW and ILW and some physi
al


onsiderations have been made on the di�eren
e of these two operational

spa
es and the disruption 
lasses whi
h 
an be identi�ed.

The performan
e of the ILW GTM 
lassi�er is tested in a real time fash-

ion in 
onjun
tion with a disruption predi
tor presently operating at JET.

Moreover, to validate and analyze the results, another referen
e 
lassi�er has

been developed, based on the k-Nearest Neighbor te
hnique.

Finally, in order to verify the reliability of the performed 
lassi�
ation,

a 
onformal predi
tor has been developed whi
h is based on non-
onformity

measures.

8.3.2 Impa
t of the ITER-like Wall on disruptions

In the 2010 − 2011 all the plasma-fa
ing 
omponents (PFCs) have been re-

pla
ed with a metalli
 wall, the so-
alled ITER-like Wall (ILW). The new

wall is 
omposed of beryllium tiles in the main 
hamber and tungsten in the

divertor. The 
hange of materials has signi�
antly modi�ed the physi
s of

disruptions. ILW have 
aused �rst of all an enhan
ing of heat loads and

vessel for
es, and this is due basi
ally to the lower fra
tion of energy that

is radiated during the disruption pro
ess. Consequently, in fa
t, a larger

fra
tion of thermal and magneti
 energy is "available" to be 
ondu
ted to

the even more fragile PFCs. The lower fra
tion of radiated energy gives rise

to higher temperatures during the post-thermal quen
h phase, whi
h means

longer 
urrent quen
h times, sin
e this latter is inversely proportional to the

plasma resistivity [6℄.

The disruption rate is in
reased, espe
ially in the �rst period of opera-

tions after the installation of the new metalli
 wall, sin
e the properties of the
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new materials a�e
ted not only the physi
s of disruptions, but also 
ontrol

s
hemes and operational s
enarios turned out to be di�erent with respe
t to

what we had for the CW.

Also operational limits, su
h as the density limit, have been a�e
ted. In

fa
t, as des
ribed in 
hapter 4, this limit is determined mainly by the ra-

diation instability whi
h build up at the plasma edge. In the 
ase of the

ILW it develops at signi�
antly lower edge temperatures, sin
e the radiation

e�
ien
y of Be is lower than for C and shows its highest values at lower

temperatures. In 
onjun
tion with the di�erent properties of re
y
ling, this

produ
ed an in
rease of the densities at whi
h is possible to operate JET [7℄.

Another important aspe
t related to the installation of the ILW, is the

presen
e of new 
auses and new 
hains of events whi
h lead to disruption

[8℄. An analysis identi
al to the one des
ribed for the Carbon Wall has been


arried out, as shown in the s
heme in Figure 8.12. Therefore, a statisti-


al analysis on the root 
auses has been performed and 
hara
teristi
 
hains

of events have been identi�ed to group those disruptions whi
h follow the

same path [8℄. Besides the 
hanges in the 
omposition in terms of di�erent


lasses, whi
h will be des
ribed in the following se
tion, the main pe
uliar-

ity is related to the onset of new 
auses, among whi
h the dominant is the

one indi
ated in the s
heme in Figure 8.12 as "RPK", that is strong radia-

tion peaking. This phenomenon has o

urred in 4.6% of all the dis
harges

operated in 2011− 2012. Several dis
harges disrupted due to this high 
ore

radiation, whi
h in part happened during the main heating phase and in part

after the swit
h-o� of the auxiliary heating.

Although the 
auses for the strong radiation peaking are not 
ompletely


lear, it is thought to be asso
iated mainly to the transport properties of

high Z-impurities, whi
h give rise to a strong a

umulation in the 
ore, or

in other 
ases, the radiation in
rease o

urs for a sudden in�ux of impuri-

ties due to an enhan
ing of the divertor sour
e. This two pro
esses have a

di�erent time s
ale, in parti
ular, the �rst one develops on a mu
h slower

resistive time s
ale and is 
hara
terized by the hollowing of the temperature

pro�le, with at the same time, a strong peaking of the density pro�le. On

this time s
ale, be
oming hollow, the temperature pro�le starts to modify

the q and the 
urrent density pro�les, whi
h 
ould be driven unstable by the

broadening of the q-pro�le itself [8℄. This broadening 
an also be observed

in terms of redu
tion of the plasma internal indu
tan
e.

Another important point that has to be taken into a

ount, espe
ially

from the point of view of the predi
tion, is related to the fa
t that with the

ILW the 
urrent quen
h is signi�
antly slower than what we had with the

CW. In parti
ular, if we make referen
e to the threshold of dIp/dt > 5MA/s
for de�ning disruption, there are even 
ases in whi
h a thermal quen
h is not
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followed by any 
urrent quen
h. Or in other 
ases it 
an happen that, after

a �rst thermal quen
h, the temperature re
overs and another 
hain of events

not dire
tly 
onne
ted with the previous one, 
an eventually takes pla
e and

lead to disruption.

Figure 8.12: S
hemati
 overview showing the statisti
s of the 
hain of events for

non-intentional disruptions with the ILW (2011 − 2012) [8℄.

8.3.3 ILW versus CW operational spa
e of JET

After 
ampaign C27, JET installed the new ITER Like wall (ILW). The �rst

attempt was to proje
t the disruptions of the ILW 
ampaigns onto the GTM

map trained with the CW dis
harges, but the performan
e of the map in


lassifying the new disruptions signi�
antly deteriorated for 
ertain 
lasses,

probably be
ause of the fa
t that the operational spa
e, or at least, the 
on-

sidered feature spa
e is 
hanged.

Therefore, a more detailed analysis has been performed to investigate

how the operational spa
e of JET with the new ITER Like wall eventually


hanged and if the disruption physi
s modi�ed with respe
t to the CW ex-

periments. The whole database 
onsists of 243 non intentional disruptions
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belonging to the CW 
ampaigns from C15 to C27, and of 149 non intentional

disruptions of the ILW 
ampaigns from C28 to C30. In Table 8.2, the 
om-

position and the o

urren
e in terms of di�erent 
lasses is reported for both

the CW and the ILW databases.

Disruptions CW ILW

Labels Classes Tot Tot % Tot Tot %

ASD Auxiliary Power Shut-Down 50 20.58 2 1.34

GWL Greenwald Limit 9 3.70 0 0.00

IMC Impurity Control Problem 83 34.16 109 73.15

ITB Too Strong Internal Transport Barrier 10 4.12 0 0.00

LON Low Density and Low q 12 4.94 7 4.70

NC Density Contol Problem 58 23.87 22 14.77

NTM Neo-
lassi
al Tearing Model 21 8.64 9 6.04

Table 8.2: CW vs. ILW Database.

Figure 8.13: Distribution of disruptions in the CW (bla
k) and ILW (blue) 
am-

paigns.

As it 
an be seen from Table 8.2 and Figure 8.13, the 
omposition of the

two data bases is quite di�erent: in parti
ular, disruptions due to Greenwald

limit or due to too strong ITB are no longer present in the new 
ampaign,

whereas the number of disruptions due to IMC 
onsistently in
reased.

Moreover, a new 
lass has been identi�ed, 
hara
terized by strong radia-

tion peaking due to impurity tungsten a

umulation in the 
ore of the plasma



Automati
 
lassi�
ation with the ITER-like Wall 145

(new Impurity Control Problems disruptions: IMC_new). The distin
tion in

di�erent 
lasses is based on the manual 
lassi�
ation des
ribed in [8℄, where

spe
i�
 
hains of events have been dete
ted and used to 
lassify disruptions,

grouping those that follow spe
i�
 paths.

A statisti
al analysis has been then performed on the plasma parameters

des
ribing the operational spa
es of JET with CW and with ILW. In Figure

8.14 the probability density distributions of the last 210 ms of Plasma 
ur-

rent Ip (a), Safety Fa
tor at 95% of Poloidal Flux q95 (b), Plasma Internal

Indu
tan
e li (
) and Line Integrated Plasma Density nelid (d) have been

reported for the IMC disruptions with the CW (red lines) and with the ILW

(grey dashed lines), and for the new impurity type (IMC_new) with the ILW

(blue dashed lines).

Figure 8.14: Probability density distributions of: (a) Plasma 
urrent Ip; (b)
Safety Fa
tor at 95% of Poloidal Flux q95; (
) Plasma Internal Indu
tan
e li; (d)
Line Integrated Plasma Density nelid.

The analysis highlights interesting features in parti
ular for the new impurity

type 
lass, 
on�rming that a new GTM is needed to represent the ILW oper-

ational spa
e of JET. From Figure 8.14, it 
an be seen that it is quite di�
ult

to dis
riminate among 
lasses just from the distribution of the signals. In

fa
t it is well known that what is really important is the 
ombination of the

signals.
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Moreover, looking at the previous �gures, some interesting features 
an

be found: for the new impurity type 
lass the distribution fun
tion of inter-

nal indu
tan
e is shifted towards lower values, whereas the ele
tron density

fun
tion is shifted toward higher values. This 
an be probably due to the fa
t

that the impurity a

umulation of the tungsten in the 
ore, in 
ertain 
ases,

when a 
ertain 
on
entration is rea
hed, starts to modify the temperature

and the 
urrent pro�les giving rise to instabilities followed, in some 
ases,

by disruptions. Further analysis 
an be made to 
ompare di�erent disrup-

tion 
lasses behavior passing from CW to ILW. Regarding density 
ontrol

problem and impurity 
ontrol problem 
lasses, Figure 8.15 reports the prob-

ability density fun
tions of Ip and li for the IMC and NC disruptions with

CW, whereas Figure 8.16 reports the distributions of the same signals for the

IMC, IMC_new and NC disruptions with ILW.

Figure 8.15: Probability density fun
tions of Ip (left side) and li (right side) for

the IMC (grey) and NC (green) disruptions with CW.

Figure 8.16: Probability density fun
tions of Ip (left side) and li (right side) for

the IMC (dashed grey), IMC_new (dashed blue) and NC (dashed green) disrup-

tions with ILW.

From �gure 8.15, it 
an be seen that, with the CW, both Ip and li signal dis-
tributions are more or less overlapped and this is 
oherent with the analysis
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of the disrupted regions presented in the se
tion 8.2.2. Conversely, for the

ILW, Ip and li distributions result to be quite di�erent, espe
ially if we 
om-

pare NC and IMC_new 
lasses. In parti
ular, for the plasma 
urrent, it 
an

be seen that, at least in the last 210 ms, there are no NC disruptions above

2 MA. Moreover, the new impurity type basi
ally o

urs for lower values of

the internal indu
tan
e.

8.3.4 Mapping of the JET ITER-like Wall operational

spa
e

Starting from the previous statisti
al analysis and the physi
al 
onsiderations

on the new disruption types, a new GTM has been trained to represent the

ILW operational spa
e of JET. The training set 
onsists of the last 210 ms of

the 149 non intentional ILW disruptions (29137 samples), whi
h have been

mapped through 81 radial basis fun
tions (Gaussian shape) with a 1.5 width,

over a latent spa
e of 36x36 grid.

In Figure 8.17(a) the Mode representation of the GTM is reported. Figure

8.17(b) shows the GTM Pie Plane representation. In su
h visualization, ea
h

node is represented by a pie 
hart des
ribing the per
entage 
omposition in

terms of number of samples belonging to the di�erent disruption 
lasses. The

samples are diversi�ed a

ording to the 
olor 
ode reported on the legend in

the same �gure, with referen
e to the di�erent 
lasses of disruptions.

Both representations highlight a high level of separation among the di�erent


lasses with respe
t to what has been found for the Carbon Wall. In Ta-

ble 8.3, the level of separation of the di�erent 
lasses is reported in terms

of per
entage of samples of ea
h 
lass whi
h is proje
ted in nodes entirely


omposed by samples of the 
onsidered 
lass.

Classes Class Samples (%)

ASD 15.86

IMC 93.51

LON 68.16

NC 77.57

NTM 60.38

Table 8.3: Dis
rimination 
apability of GTM model for the 
onsidered 
lasses.

Figure 8.18 shows the same map (Mode (a) and Pie Plane (b) representa-

tions), trained with the same training parameters, where the IMC_new 
lass

has been introdu
ed.

It 
an be seen that the new 
lass is even better separated with respe
t to
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Figure 8.17: 2-D GTM of the 10-D JET ILW operational spa
e: (a) Mode Repre-

sentation. The nodes are represented with di�erent 
olor and symbols as indi
ated

in the legend, empty nodes are white; (b) Pie Plane Representation. The nodes


omposition in terms of the �ve di�erent 
lasses of disruptions is represented a
-


ording to the 
olor 
ode reported on the legend.

Figure 8.18: 2-D GTM of the 10-D JET ILW operational spa
e with the IMCnew

disruption 
lass: (a) Mode Representation. The nodes are represented with di�er-

ent 
olor and symbols as indi
ated in the legend, empty nodes are white; (b) Pie

Plane Representation. The nodes 
omposition in terms of the six di�erent 
lasses

of disruptions is represented a

ording to the 
olor 
ode reported on the legend.
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other 
lasses. Table 8.4 reports the same information of Table 8.3, but with

the addition of the new impurity type 
lass.

Classes Class Samples (%)

ASD 15.86

IMC 72.90

LON 68.16

NC 77.57

NTM 55.36

IMCnew 91.18

Table 8.4: Dis
rimination 
apability of GTM model for the 
onsidered 
lasses.

It is interesting to observe in fa
t, that, 
oherently with what has been found

for the CW operational spa
e, the main 
ontribution to the nodes shared

by samples of density 
ontrol problem and impurity 
ontrol problem disrup-

tions is given by the old "IMC" 
lass, whereas the overlapping on the map

presented by the new impurity type is mainly with the IMC 
lass itself.

8.3.5 Real time appli
ation in 
onjun
tion with APODIS

On the base of only the mapping of the operational spa
e, having zoomed on

the disruptive spa
e, one 
an guess that by applying the majority voting al-

gorithm to the last 210 ms, pra
ti
ally all of the disruptions 
an be 
orre
tly


lassi�ed a

ording to the manual 
lassi�
ation; in fa
t apart one isolated


ase it is what it happens.

But one of the main obje
tive of this study is to develop a system that


an be used in real time and 
an be integrated eventually with the other

systems already working in real time at JET. Therefore, in order to test the

performan
e in 
lassi�
ation of the new maps, a real time appli
ation has

been simulated in 
onjun
tion to APODIS [4℄, improving at the same time

the e�
ien
y of the 
odes and assessing �nally the suitability for real time

appli
ations.

APODIS (Advan
ed Predi
tor Of DISruptions) is a disruption predi
tor

mainly 
onstituted of three di�erent Support Ve
tor Ma
hine (SVM) predi
-

tors, whi
h analyze three 
onse
utive time windows (ea
h one 32 ms long) of

data to take into a

ount the history of the dis
harge. It has been deployed

in JET's real-time system during the last 
ampaigns with the ILW with very

good results (well above 90% of Su

ess Rate) and it is presently working in

the ATM network in open loop.

During the simulation, the majority voting algorithm has been applied
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to the 
lass membership fun
tion of a time window of respe
tively 32 or 64

ms right before the time in whi
h APODIS triggers the alarm. Note that,

in several 
ases APODIS gives the alarm signi�
antly in advan
e with re-

spe
t to the thermal quen
h time, even hundreds of ms in advan
e. Table

8.5 reports the results of the real time automati
 
lassi�
ation performed

by the GTM trained 
onsidering the 
lasses previously de�ned for the CW


ampaigns, therefore without any distin
tion in the di�erent impurity types

disruptions. As 
an be seen, the Su

ess Rate is quite high rea
hing more

than 90%, thus in very good agreement with the manual 
lassi�
ation.

GTM GLOBAL ASD IMC LON NC NTM

32ms 93.23 100.00 94.00 66.67 100.00 85.71

64ms 94.07 100.00 95.10 66.67 100.00 85.71

Table 8.5: Per
entage su

ess rates of the real time automati
 
lassi�
ation per-

formed by GTM on the 
lasses identi�ed for the CW 
ampaigns.

The 
lassi�
ation performan
es slightly deteriorates when the new 
lass is


onsidered, as shown in Table 8.6. This is due to the di�
ulty to dis
rimi-

nate in 
ertain 
ases the new 
lass from the previous impurity 
ontrol problem

one.

GTM GLOBAL ASD IMC LON NC NTM IMCnew

32ms 87.22 100.00 67.86 66.67 100.00 83.33 93.15

64ms 85.93 100.00 71.43 66.67 100.00 83.33 89.33

Table 8.6: Per
entage su

ess rates of the real time automati
 
lassi�
ation per-

formed by GTM 
onsidering the IMC_new disruption 
lass.

8.3.6 Validation and 
omparison

In order to validate and analyze the results obtained with GTM, another ref-

eren
e 
lassi�er has been developed based on k-NN whi
h uses as kernel the

Mahalonobis distan
e (see 
hapter 5). The simulations have been performed

using as kernel di�erent metri
s, su
h as the Eu
lidean or the Hamming dis-

tan
es, but, at least for this spe
i�
 problem, Mahalanobis distan
e performs

quite better with respe
t to the other tested metri
s. k-NN is a referen
e in-

stant based 
lassi�er, unlike GTM that builds a generative latent model. In

this 
ase the majority voting is applied to the k 
losest points in the high
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dimensional spa
e. Table 8.7 reports the performan
e of the k-NN 
lassi�er

for the 
lasses identi�ed for the CW 
ampaign. Table 8.8 shows the k-NN

performan
e when the new impurity type is 
onsidered. Also in this 
ase,

the global performan
e is above 90% when the new impurity 
ontrol problem


lass is not 
onsidered, whereas the performan
e slightly deteriorates when

the new 
lass is 
onsidered.

k-NN GLOBAL ASD IMC LON NC NTM

32ms 92.91 100.00 95.19 71.43 90.48 85.71

64ms 92.20 100.00 95.19 71.43 90.48 85.71

Table 8.7: Per
entage su

ess rates of the real time automati
 
lassi�
ation per-

formed by k-NN 
lassi�er 
onsidering the 
lasses identi�ed for the CW 
ampaign.

k-NN GLOBAL ASD IMC LON NC NTM IMCnew

32ms 90.78 100.00 82.14 71.43 95.24 83.33 94.81

64ms 87.94 100.00 82.14 71.43 90.48 83.33 90.91

Table 8.8: Per
entage su

ess rates of the real time automati
 
lassi�
ation per-

formed by k-NN 
lassi�er 
onsidering the IMC_new disruption 
lass.

The 
lass membership fun
tion of the disruptions gives us useful information.

As an example, in Figure 8.19 the 
lass-memberships of the pulse No. 82867

is reported for both GTM and k-NN, whi
h is a IMC disruption a

ording

to the manual 
lassi�
ation.

It is possible to note a transition among di�erent 
lasses, and in parti
ular

the one between NCs and IMCs or vi
e versa, whi
h is not un
ommon both

for CW and ILW. Note that APODIS alarm is triggered almost two se
onds

before the thermal quen
h. It is also very important to point out that both

the 
lassi�ers 
onverge onto the same results, even if in this spe
i�
 
ase we


an observe that for GTM based 
lassi�ers the phase where we 
an asso
iate

the highest probability to the 
orre
t 
lass is about 400 ms before tD, whereas
in the k-NN is more than 700 ms in advan
e.

In Figure 8.20 the time evolution of some of the signals whi
h are part of

the database is reported for the dis
harge No. 82867, whereas in Figure 8.21

a zoom of the previous plots is reported with respe
t to the time window

analyzed in Figure 8.19.
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Figure 8.19: Class-membership fun
tions of the shot No. 82867 (IMC) for GTM

(left side) and k-NN (right side). A

ording to the legend, the verti
al green line

identi�es the thermal quen
h, the blue line the PTN alarm, and the pink line the

APODIS alarm.

Figure 8.20: Time evolution of a) plasma 
urrent, b) 
entral ele
tron temperature

from Ele
tron Cy
lotron Emission (ECE) measurements, 
) line integrated density

and d) lo
ked mode amplitude for the 
urrent �at-top phase of the shot No. 82867;

the verti
al line in green represents the time of the lo
ked mode.
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Figure 8.21: Zoom of Figure 8.20 (time interval [53− 56℄s - shot No. 82867).

As it 
an be seen from these pi
tures, a Re
ipro
ating Langmuir Probes

(RCP) 
aused a lo
ked mode at t ≃ 53.79s, time around whi
h a rapid 
hange

of the density o

urs, followed by a quen
h of the temperature that in the

subsequent phases re
overs up to the �nal thermal quen
h at t ≃ 55.73s.
Both PTN and APODIS trigger the alarm when the mode lo
ks (see Figure

8.19)and for both the 
lassi�ers the dis
harge is evolving as a NC disruption

up to the �nal phase where is 
orre
tly 
lassi�ed as IMC, a

ording to the

manual 
lassi�
ation.

Given the 
omplex behaviors whi
h often 
hara
terize the evolution of a

dis
harge, it is important to know the reliability and the 
on�den
e of the


lassi�
ation. Literature provides re
ent methods, su
h as the 
onformal pre-

di
tors, already des
ribed in 
hapter 5, whi
h allow us to take into a

ount

also this aspe
t. To this purpose, a 
onformal predi
tor has been developed

whi
h is based on non-
onformity measures.

Regarding 
lassi�
ation, the 
onformal predi
tors 
an provide the level

of reliability of 
lassi�
ation itself with two parameters: the 
redibility and

the 
on�den
e whi
h are de�ned on the base of the p-values (see 
hapter 5).

In �gure 8.22 the label provided by the 
lassi�
ation, the 
redibility and the


on�den
e levels are reported for pulse No. 82867. As it 
an be seen the


redibility, whi
h is the parameter with more variability, is quite low for all

the initial phase, then it rises 
onstantly during the last ∼ 400ms, a

ording
to the results obtained with the GTM based 
lassi�er.
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Figure 8.22: Left side: 
lass-membership provided by the 
onformal predi
tor for

the shot No. 82867, 
on�den
e level (blue) and 
redibility (bla
k). The verti
al

green line identi�es the thermal quen
h, the blue line the PTN alarm, and the pink

line the APODIS alarm (left side). Right side: zoom representing the 
on�den
e

level (blue), the 
redibility (bla
k) and the threshold of 0.05 (red) (right side).

The 
redibility, even if low in the phase where the 
onformal predi
tor is as-

signing the label 
orresponding to the NC 
lass, is mostly above 0.05, whi
h
in literature is often used as threshold for trusting or not a predi
tion (Figure

8.22 (right side)). In general, if the 
redibility is less than 5%, the 
onsid-

ered samples are not representative of the training set, or in other words we


annot 
onsider that they are generated independently from the same dis-

tribution. In parti
ular, the 
redibility falls under the 
onsidered threshold

in 
orresponden
e of the transition between NC and IMC 
lasses, behavior

that 
ould depend on a rapid re
on�guration or a 
hange in the 
onsidered

parameters' spa
e. Further analysis are needed to 
larify this point.

In Figure 8.23, the 
lass memberships fun
tion obtained with the GTM

(a) and with the k-NN (b) based 
lassi�ers are reported for the pulse No.

82569, whi
h has been manually 
lassi�ed as IMC disruption.

What is parti
ularly interesting to observe in this 
ase is the fa
t that, apart

the agreement in the 
lassi�
ation provided by the two methods, if we look

at the 
on�den
e level plotted in Figure 8.24, we �nd that remains very high

for a long phase. In fa
t looking at the proje
tion on the map (Figure 8.25),

we 
an see that the dis
harge is evolving in a not extended region of the

operational spa
e, and this mean that the parameters are not 
hanging too

mu
h in the 
onsidered time interval, at least up to the last phases just be-

fore the disruption. This is 
on�rmed by the time evolution of some of the


onsidered signals, as we 
an see in Figure 8.26.
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Figure 8.23: Class-membership fun
tions of the shot No. 82569 (IMC) for GTM

(left side) and k-NN (right side). A

ording to the legend, the verti
al green line

identi�es the thermal quen
h, the blue line the PTN alarm, and the pink line the

APODIS alarm.

Figure 8.24: Class-membership provided by the 
onformal predi
tor for the shot

No. 82569, 
on�den
e level (blue) and 
redibility (bla
k). The verti
al green line

identi�es the thermal quen
h, the blue line the PTN alarm, and the pink line the

APODIS alarm.
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Figure 8.25: Proje
tion of the dis
harge No. 82569 on the GTM map

Regarding the disruptions belonging to the new impurity type, in Figure 8.27

is reported an example of disruption due to impurity a

umulation. In this


ase the a

umulation of W o

urs after a step-down of the Neutral Beam

Inje
tion power, and the hollowing of the temperature pro�le 
an be observed

in 
orresponden
e of the in
reasing of radiation by tungsten. This, on the

slow time s
ale of the transport pro
ess, a�e
ts the 
urrent density and the

q pro�les, driving MHD modes unstable until we have a lo
ked mode.

By 
omputing the automati
 
lassi�
ation it is possible to verify that the

pulse is 
orre
tly 
lassi�ed as belonging to the new impurity type by all the

implemented systems. Furthermore it is interesting to see that when the

mode lo
ks, there are "jumps" in the 
lass-membership 
al
ulated by the


onformal predi
tor, and the 
redibility in this interval drops pra
ti
ally to

zero. In the interval prior to the lo
ked mode, again all the 
lassi�ers are


learly re
ognizing the new impurity type, as it is shown in Figures 8.28 and

8.29.

8.3.7 Dis
ussion of the results

The 
hallenge to automati
ally dis
riminate the type of disruptions at JET

both in the Carbon wall (CW) 
ampaigns and in the ITER Like wall (ILW)

ones has been ta
kled using a GTM manifold learning method. The disrup-

tion 
lasses in the ILW have been deeply analyzed and 
ompared with those
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Figure 8.26: Time evolution of a)plasma 
urrent, b) q95, 
) line integrated den-

sity, d) lo
ked mode amplitude, e) poloidal beta, f)total input power and g) total

radiated power measure by bolometer for the shot No. 82569.
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Figure 8.27: Example of disruption 
aused by impurity a

umulation (dis
harge

No. 82669) [6℄

Figure 8.28: Class-membership fun
tions 
al
ulated through a) GTM and b)

k-NN for dis
harge No. 82669.
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Figure 8.29: Class-membership fun
tions 
al
ulated through a) 
onformal predi
-

tor for dis
harge No. 82669; in b) a zoom of a) is reported regarding the 
on�den
e

level (bla
k) and the 
redibility (blue).

in the CW JET 
ampaigns. In parti
ular, the probability density fun
tions of

the di�erent plasma parameters highlight the di�erent behaviors of the new

impurity 
ontrol problem disruptions, due to high-Z impurity a

umulation

in the 
ore of the plasma 
olumn, with respe
t to the old IMC ones. More-

over, the statisti
al analysis showed the variation of the operational spa
e of

JET with ILW with respe
t to that with CW.

For this reason, two di�erent GTM maps have been trained for CW and

ILW 
ampaigns. The latter has been used to simulate a real time behaviour

of the GTM 
lassi�er in 
onjun
tion with the predi
tion system APODIS,

whi
h is su

essfully working on line at JET. The obtained results assess the

suitability of the GTM based 
lassi�er for real time appli
ation with very

good results: the predi
tion su

ess rate is quite high (above 90%) a

ord-

ing to the manual 
lassi�
ation. However, the performan
e worsened when

the new IMC 
lass is introdu
ed, be
ause it is quite di�
ult to distinguish

this new 
lass from the previously de�ned IMC 
lass. Furthermore, in order

to validate and analyze the obtained results, another referen
e 
lassi�er has

been developed, based on k-NN, whi
h uses as kernel the Mahalanobis dis-

tan
e. The performan
e of the referen
e 
lassi�er is still above 90%, but, also

for it, the su

ess rate deteriorates when the new IMC 
lass is introdu
ed.

Several visualization tools have been developed for the GTM su
h as

Mode representation or Pie Plane representation, whi
h make possible to ex-

tra
t relevant information that 
on�rms the physi
al 
hara
teristi
s of the

di�erent 
lasses. Monitoring the evolution of ea
h disruptive dis
harge on

the GTM, a 
lass membership has been de�ned by whi
h it is possible to
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perform a statisti
al analysis of the transitions among di�erent 
lasses.

Finally, in order to verify the reliability of the performed 
lassi�
ation,

a 
onformal predi
tor has been developed whi
h is based on non-
onformity

measures. The obtained results indi
ate the suitability of the 
onformal

predi
tors to assess the reliability of the GTM 
lassi�
ation even if the 
al-


ulation time allowed their use only in an o� line fashion.

The mapping of the JET operational spa
e has been built on the base of

a set of signals whi
h are available in real time with an high reliability, and

every devi
e should provide for ea
h dis
harge in standard operations.

This does not mean that the performan
e of the system in mapping and 
las-

si�
ation 
ould not improve if additional information are taken into a

ount.

In [8℄ the disruptivity, whi
h gives the likelihood of a disruption within a

spe
i�
 parameter spa
e, has been 
al
ulated in terms of di�erent parame-

ters, as for example the temperature peaking and the radiation peaking.

Some parameters representative of the pro�les of 
ertain quantities whi
h

would help to improve the dis
rimination 
apability of the proposed sys-

tems, but often they require a post-pulse validation. Therefore a trade-o�

between performan
e and reliability has to be 
arefully 
onsidered, without

forgetting, on the other hand, real-time and 
omputational 
onstraints.
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Chapter 9

Disruption predi
tion at ASDEX

Upgrade

9.1 Introdu
tion

In this 
hapter, two di�erent approa
hes are proposed as disruption predi
-

tors at ASDEX Upgrade. The �rst method 
onsists in extra
ting informa-

tion from the 
omplex multidimensional operational spa
e of the ma
hine by

means of data visualization and dimensionality redu
tion methods. The se
-

ond method allows to build a bla
k-box predi
tor whi
h provides a statisti


predi
tive model.

In this study, among the visualization and dimensionality redu
tion meth-

ods, the Self-Organizing Map and the Generative Topographi
 Mapping are

investigated. The 2-D mappings provided by SOM and GTM are used with

good results as disruption predi
tor by asso
iating the risk of disruption of

ea
h 
luster in the map to a disruption alarm threshold. Furthermore, fol-

lowing the traje
tory of the plasma on the maps it is possible to study its

behavior leading to a disruption; thus, it 
an be taken advantage of this

additional value to realize a single system for disruption predi
tion and 
las-

si�
ation.

Among the multivariate statisti
al models the Logisti
 regression ap-

proa
h is proposed. The Logisti
 model works as disruption predi
tor by

monitoring the probability of a disruptive event during the experiments. De-

spite its simpli
ity, good results have been a
hieved, but being a probabilisti



lassi�
ation model the logisti
 predi
tor does not make available any other

additional information on the plasma state evolution.

In addition, the two methods have been 
ombined to realize a predi
tive

system able to exploit the 
omplementary behaviors of the two approa
hes.

163



164 CHAPTER 9. DISR. PREDICT. AT ASDEX UPGRADE

The data base for this study represents the 7-D ASDEX Upgrade operational

spa
e des
ribed by means of disrupted and safe dis
harges sele
ted in the shot

range 21654− 26891, and performed in ASDEX Upgrade between May 2007

and April 2011.

9.2 Database

Data for this study were extra
ted from the AUG experimental 
ampaigns

performed between 2007 and 2012, in the shots range 21654 − 28832. The

database has been divided in three subsets, following a temporal progression

as reported in Table 9.1. The Training set, 
ontaining only dis
harges per-

formed between May 2007 and April 2011, has been used to build the maps

and to optimize the 
oe�
ients of the logit model; the data set Test_1, 
on-

taining shots performed in the same time period of Training set, has been

used to test the generalization 
apability of the maps and the logit model;

the set Test_2, 
ontaining shots performed after those of Training set, has

been used to evaluate the ageing of the models when used during more re
ent


ampaigns.

Data Time Safe Disrupted

Set Period Dis
harges Dis
harges

Training May 2007 - April 2011 310 121

Test_1 May 2007 - April 2011 155 60

Test_2 April 2011 - November 2012 271 106

Table 9.1: Data base 
omposition.

Only disruptions whi
h o

urred in the �at-top phase or within the �rst 100

ms of the plasma ramp-down phase, and 
hara
terized by a plasma 
urrent

greater than 0.8 MA, are 
onsidered. Disruptions mitigated by massive gas

inje
tion, triggered by the lo
ked mode dete
tor, and those 
aused by ver-

ti
al instabilities, so 
alled Verti
al Displa
ement Disruptions (VDDs), were

ex
luded. Ea
h of the three data sets is 
omposed by time series related to

the seven plasma parameters reported in Table 9.2. All the parameters are

sampled making referen
e to the time base of the plasma 
urrent signal. The

sampling rate is equal to 1 kHz.
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Signal A
ronym

Safety fa
tor at 95% of poloidal �ux q95
Total input power PTOT

Lo
ked Mode signal LM signal

Radiated fra
tion of the input power Pfrac = Prad/PTOT

Plasma density divided by the Greenwald limit neGreenwald

Internal indu
tan
e li
Poloidal β βp

Table 9.2: Plasma parameters 
onsidered in the data base.

9.3 2-D AUG operational spa
e mapping

One of the viable way to realize a disruption predi
tor 
onsists in extra
ting

information from the multidimensional operational spa
e of the rea
tor by

means of data visualization and dimensionality redu
tion methods as SOM

and GTM. Looking at the good results on disruption predi
tion a

omplished

by the authors with SOM on a foregoing AUG databases [1℄, and on oper-

ational spa
e mapping with GTM on the JET database [2℄, in this work,

both SOM and GTM have been employed to realize a 2-D mapping of the

7-D AUG operational spa
e on the 
onsidered database.

In order to proje
t the 7-D AUG operational spa
e onto the 2-D SOM

and GTM, further knowledge is added to the intrinsi
 knowledge owned by

the 7-D data spa
e, whi
h 
onsists in asso
iating a label to ea
h sample in the

training set. Samples 
oming from safe dis
harges have been labeled as safe

samples (ss). For disrupted dis
harges, a time value, 
alled tPRE−DISR, has

to be assumed to dis
riminate between the safe and disruptive phases. On

the basis of previous experien
es [3℄, an empiri
al value equal to 45 ms from

the disruption time (tD) has been taken for ea
h dis
harge. Therefore, sam-

ples pre
eding tpre−disr are 
onsidered as safe samples (ss), whereas samples

in the interval [tpre−disr÷tD] are labeled as disruptive samples (ds). Only the

disruptive samples and safe samples from safe dis
harges have been in
luded

in the Training set; the safe phase of disruptive dis
harges is assumed to be

well represented by the safe samples of safe dis
harges.

The training set results in a large amount of data, 310 safe dis
harges

make 1094697 (ss) available, whereas 121 disruptive dis
harges make 5267

(ds) available. As it 
an be noted the group of safe sample is 210 time larger

than the disruptive one. Thus, in order to avoid the predominant in�uen
e

of safe samples with respe
t the disruptive ones during the training phase,

and with the aim to aggregate the expe
ted redundant information 
ontained

in a so large database into a more manageable and e�
ient one, a data re-
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du
tion on safe samples has been performed. The goal of the data redu
tion

pro
edure has been to a
hieve a ratio ss/sd < 10 ; that value 
omes from

the authors previous experien
es on AUG and JET database, in [1℄ a data

redu
tion with ss/sd = 7.1 and in [5℄ a data redu
tion with ss/sd = 6.4
were performed respe
tively.

A redu
ed number of representative safe samples have been sele
ted by a

pro
edure where �rstly ea
h signal has been quantized in a range of values

depending on its own distribution. Then, the 7-D spa
e has been partitioned

with a 7-D grid where ea
h node is the 
ombination of the quantized signal

values. Finally, a fra
tion of the samples 
orresponding to ea
h node has

been sele
ted. The nodes to whi
h 
orrespond a number of samples lower

than the mean value of samples per node on the entire grid have been ex-


luded from the sele
tion. The adopted 
riterion allows us to ex
lude from

the database the samples related to unusual signal 
ombinations. The data

redu
tion pro
edure results in 39115 safe samples, with ss/sd = 7.43 .

Figure 9.1 shows the pdf of the 
onsidered plasma parameters for safe

samples before (blue line) and after the data redu
tion (green dashed line).

As it 
an be noted the trend of the seven signals remain un
hanged after

the data redu
tion. Figure 9.2 shows the proje
tion of the 7-D spa
e of safe

sample before the data redu
tion (blue points) and after the data redu
tion

(green points) onto the �rst three prin
ipal 
omponents. As 
an be noted,

only regions with low density are un
overed after the data redu
tion. Figure

9.3 displays the two mappings obtained with the redu
ed safe samples group

and the disruptive samples belonging to the training set; �gure (a) reports

the GTM with 1600 map units and the �gure (b) reports the SOM with 1674

map units. The dimension of SOM, i.e. the number of map units, has been

sele
ted with an heuristi
 rule proposed in [4℄; for 
omparison purposes also

the GTM size has been 
hosen applying the same rule. On the two maps

four types of map unit 
an be identi�ed depending on their 
omposition: safe

map units 
ontaining safe samples, disruptive map units 
ontaining disrup-

tive samples, mixed map units 
ontaining both safe and disruptive samples

and empty map units 
ontaining no samples. A 
olor 
ode has been adopted

to identify the four map unit 
ategories on the map. The safe map units are

green, those disruptive are red, the mixed map units are grey and �nally the

empty ones are white.

For both maps, a large safe region (the green one) where the risk of disruption

is low, two mainly disruptive regions (in red) where the risk of disruption is

high, and transition regions as boundary between the previous ones, 
an be

identi�ed. Tra
king the temporal evolution of plasma dis
harges both on the

GTM and the SOM, it has been observed that the great majority of the safe

dis
harges evolves within the safe region, as the yellow traje
tories reported
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Figure 9.1: Probability density fun
tions of the plasma parameters in
luded in

the data base for safe samples, before the data redu
tion (blue line) and after the

data redu
tion (green dashed line).
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Figure 9.2: PCA proje
tion of the 7-D AUG safe spa
e of training set before the

data redu
tion (blue points) and after the data redu
tion (green points) onto the

�rst three prin
ipal 
omponents.

on the two maps in Figure 9.3. On the 
ontrary, for the majority of disrup-

tive dis
harges, the traje
tory starts in the safe region and, passing through

the transition region, ends in a disruptive region, as the blue traje
tories on

�gure 9.3. This suggested us to use both maps as disruption predi
tors by

linking the disruption alarm to the disruption risk of the di�erent regions.

9.4 Disruption Predi
tors

In order to evaluate the predi
tion performan
e of the two maps as predi
tors

some performan
e indi
es have been introdu
ed:

• Su

essful Predi
tions (SPs): the fra
tion of safe or disruptive dis-


harges 
orre
tly predi
ted.

• Tardy Dete
tions (TDs): the fra
tion of disruptive dis
harges whi
h

triggers the alarm too late.

• Missed Alarms (MAs): the fra
tion of disruptive dis
harges predi
ted

as non-disruptive.

• False Alarms (FAs): the fra
tions of safe dis
harges predi
ted as dis-

ruptive.
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Figure 9.3: 2-D mappings of AUG operational spa
e, a) GTM whit 1600 map

units; b) SOM with 1674 map units; safe map units (green), disruptive map units

(red), mixed map units (grey), empty map units (white). On both the maps the

proje
tion of a safe dis
harge (yellow line) and a disruptive dis
harge (blue line)

on the GTM (a) and the SOM (b) is reported.
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• Su

essful Rate (SR): the fra
tion of dis
harges (safe and disruptive)


orre
tly predi
ted.

At AUG a disruption is 
onsidered 
orre
tly predi
ted if the predi
tion sys-

tem is able to trigger the alarm 2ms before tD. Two ms is the time needed

to the mitigation systems to intervene [6℄. Conversely, a safe dis
harges is


orre
tly predi
ted when the alarm is not triggered at all. One of the mail

goals of experimental rea
tors, as AUG, is to exploit its own potentialities.

A 
onservative disruption predi
tor 
ould limit the exploration 
apability of

the ma
hine; in order to avoid this drawba
k, the per
entage of disruption

triggered too mu
h in advan
e has to be limited as well as the false alarms.

To this purpose, the Early Dete
tion (ED) index has been de�ned as the fra
-

tion of disruptive dis
harges whi
h triggers the alarm too mu
h in advan
e.

In this study, a disruption is 
onsidered predi
ted too mu
h in advan
e if

the alarm is a
tivated within the time window [tFLAT−TOP , tD − 500] ms [7℄,

where tFLAT−TOP is the �at top beginning time of plasma 
urrent.

9.5 SOM and GTM

In order to employ the two mappings as disruption predi
tors, a suitable

alarm 
riteria whi
h links the disruption risk of the di�erent regions to the

per
entage of disruptive samples (DS%) into the map unit, has been opti-

mized. In parti
ular, the alarm is triggered when the traje
tory stays in a

disruptive or a mixed map unit 
ontaining at least 95% of disruptive sam-

ples for at least h 
onse
utive samples. For ea
h 
luster the parameter h is

evaluated by means of 9.1 for the GTM and 9.2 for the SOM.

hGTM = round(−5.6 · DS%+ 562) (9.1)

hSOM = round(−3.2 · DS%+ 322) (9.2)

where round() is the nearest integer fun
tion.

The 
oe�
ients of these linear fun
tions have been optimized maximizing the

Su

essful Rate (SR) on the training set. Table 9.3 reports the predi
tion

performan
e for SOM and GTM on the three data sets simulating the on-line

operation.

Table 9.3 shows that the SR obtained with GTM results to be better than the

ones with the SOM. Moreover, the GTM has always better performan
e on

early dete
tions and false alarms than the SOM, instead the SOM a
hieves

always lower MAs than the GTM.
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Method Data set

Disruptive dis
harges Safe dis
harges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

SOM

Training 1.61 5.65 92.74 94.52 5.48 94.01 16.93

Test_1 4.76 6.35 88.89 89.60 10.32 89.50 17.46

Test_2 0 1.83 98.17 84.13 15.87 88.16 16.51

GTM

Training 0 8.26 91.74 97.42 2.58 95.82 9.1

Test_1 0 11.67 88.33 91.61 8.39 90.70 10

Test_2 0 3.77 96.23 89.67 10.33 91.51 12.26

Table 9.3: Predi
tion performan
e for SOM and GTM on the three data sets.

9.6 Logit model

Besides SOM and GTM, a Logit model has been trained to predi
t, start-

ing from the seven variables listed in table 9.2, the probability of a generi


sample to belong to a safe or a disruptive phase. During the training of

the model, the di
hotomous output has been set equal to 0 for safe sam-

ples and 1 for disruptive samples. Thus, the Logit model realizes a mapping

from the input variables to a 
ontinuous output, whi
h should assume large

negative values for samples belonging to safe phase and large positive val-

ues for those belonging to disruptive phase. From a preliminary analysis,

it has been observed that, for the majority of safe dis
harges belonging to

the training phase, the Logit model output (LMO) is always smaller than 0

throughout the dis
harge. Conversely, for the great majority of the of dis-

rupted dis
harges the time evolution of the LMO remains at low values for

the majority of the dis
harge and begins to grow when the pulse approa
hes

the disruption time. As an example, Fig. 9.4 reports the LMO for a disrup-

tive (No. 21886) and a safe (No. 21718) dis
harge.

This behavior suggests us to use the logit model as disruption predi
tor by

introdu
ing a suitable threshold value that dis
riminates between the safe

and the disruptive phase. Figure 9.5 reports the probability density fun
-

tion of LMO for samples belonging to the training set. It 
an be seen that

for the great majority of safe samples belonging both to safe and disrup-

tive dis
harges (blue and green line respe
tively), LMO remains smaller than

0. Conversely, for the majority of disrupted samples, LMO is greater than

zero. Figure 9.5 shows that an LMO value 
an be set as alarm threshold to

dis
riminate between safe and disruptive phase. Thus, the adopted alarm


riteria 
onsists in triggering a disruption alarm when the LMO ex
eeds the

threshold value. To avoid false alarms sometimes 
aused by spikes in the

diagnosti
 signals, a time delay has been introdu
ed that inhibits the alarm
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Figure 9.4: Logit model output (LMO) for a disruptive dis
harge (upper plot)

and a safe dis
harge (lower plot).

Figure 9.5: Probability density of LMO for samples belonging to the training set.

Three sample groups are represented: ss of safe dis
harges (blue), ss of disruptive
dis
harges (green) and ds of disruptive dis
harges (red)
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for h samples after the alarm is a
tivated. The optimum threshold value

has been optimized in the range [1 ÷ 3℄ maximizing the Su

essful Rate on

the training set. The parameter h has been optimized in the range [1÷ 10℄.
The best performan
e of the Logit model as disruption predi
tor has been

a
hieved with an alarm threshold equal to 2.3 and h = 2 (see Table 9.4). It


an be noted that the SRs and FAs obtained with the Logit model are always

slightly worse than those a
hieved with the SOM and the GTM, but among

the three methods, the Logit model rea
hes the best performan
e on early

dete
tions.

Method Data set

Disruptive dis
harges Safe dis
harges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

Logit

Training 0.80 8.87 90.32 94.51 5.48 93.32 4.84

Test_1 1.61 11.29 87.09 89.68 10.32 88.94 4.84

Test_2 0.90 0.00 99.10 82.28 17.71 86.95 10.8

Table 9.4: Predi
tion performan
e for the Logit model on the three data sets.

9.7 Combined predi
tors

Comparing tables 9.3 and 9.4, the three methods a
hieve 
omparable val-

ues of SRs, but no one method 
an be stated as the most suitable. In fa
t,

the Logit regressor maintains limited the early dete
tions, always lower than

10.8%, but false alarms over
ome 17% (on Test_3); the GTM presents the

best performan
e on safe dis
harges, with FA always lower than 10% , but

EDs are higher than 9% on the three data set; the SOM rea
hes the worst

results on EDs, always higher than 16%, and FAs are higher than 10% on

Test_2 and Test_3. Thus, SOM and GTM have poor results on early de-

te
tions where the Logit model a
hieves good results. On the 
ontrary the

Logit model has poor results on false alarms where the GTM obtains good

results.

The 
omplementary behavior previously pointed out, suggest to 
ombine

both the SOM and the GTM with the Logit regressor in order to realize

two 
ombined predi
tors able to maintain limited early dete
tions and false

alarms as well as maximizing the SRs. In the 
ombined predi
tors the alarm

is triggered only when the traje
tory evolving on the map (either SOM or

GTM) stays in disrupted or mixed map units 
ontaining at least 90% of dis-

ruptive samples for at least h 
onse
utive samples and the LMO is higher

than a suitable alarm threshold. The parameters h and the alarm thresh-
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old have been optimized maximizing the SR on the training set. The alarm

threshold has been optimized in the range [1 ÷ 3℄. The predi
tor 
onsisting
in the 
ombination of the SOM and the Logit model a
hieves the best perfor-

man
e (see Table 9.5) with an alarm threshold equal to 1.8 and h is evaluated
in ea
h 
luster by means of the fun
tion hSOM = round(−2.6 · DS%+ 262),
where DS% is the per
entage of disruptive sample in the 
luster.

The predi
tor 
onsisting in the 
ombination of the GTM and the Logit

model a
hieves the best performan
e, reported in Table 9.5 too, with an

LMO threshold equal to 1.7 and h is evaluated in ea
h 
luster by means the

fun
tion hGTM = round(1.3 ·DS% + 132).

Method Data set

Disruptive dis
harges Safe dis
harges

TD[%℄ MA[%℄ SP[%℄ SP[%℄ FA[%℄ SR[%℄ ED[%℄

SOM Training 1.65 8.26 90.08 98.39 1.61 96.06 5.79

& Test_1 6.56 8.20 85.25 93.55 6.45 91.20 3.28

LOGIT Test_2 0.00 1.85 98.15 91.88 8.12 93.67 6.48

GTM Training 0.00 8.33 91.67 97.74 2.26 96.05 5.00

& Test_1 3.23 11.29 85.48 92.26 7.74 90.32 4.84

LOGIT Test_2 0.00 2.80 97.20 89.67 10.33 91.80 7.48

Table 9.5: Predi
tion performan
e for the 
ombined predi
tors on the three data

set.

Table 9.5 shows that, with respe
t to SOM and GTM, the 
orresponding


ombined predi
tors a

omplish slightly better SRs, but it has to be high-

lighted that EDs and FAs signi�
antly improve. In parti
ular, 
ombining the

Logit model with the SOM allows both early dete
tions and false alarms to

fall down 7%, instead MAs slightly deteriorate on Trainig set and Test_2.

Combining the Logit model with the GTM allows the early dete
tions to

remain below 8%, false alarms have been redu
ed only for the training set

and Test_1, no enhan
ement are attained for Test_2. Regarding MAs, no


onsiderable improvements are a
hieved on the three data set.

9.8 Disruption 
lassi�
ation

A preliminary analysis shows that during the disruptive phase di�erent types

of disruptions evolve in di�erent disruptive map regions. As an example, �g-

ure 9.6 reports the time evolution of a density limit disruption (bla
k traje
-

tory) and a beta limit disruption (blue traje
tory) on both GTM and SOM.

The bla
k point represents the traje
tory starting point, the yellow point is
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the traje
tory ending point. As it is shown by the yellow squares, on both

maps, the density limit disruption ends in the disruptive region on the right

upper 
orner, instead the beta limit ends in the small disruptive region on

the left map side. This means that on both SOM and GTM, disruptions

happening at low thermal energy (density limit) end in a disruptive region

di�erent from those happening at high thermal energy (beta limit).

Figure 9.6: Time evolution of two disruption types on GTM and SOM; bla
k tra-

je
tory: density limit disruption (No. 28727); blue traje
tory: beta limit disruption

(No. 25172).

This preliminary study shows that among the disruptive regions, areas de-

pi
ting the behavior of a 
ertain disruption 
lass 
ould be identi�ed. There-

fore, following the traje
tory on the map, it is possible to eventually re
ognize

non only the proximity of disruption but also the 
lass it belongs to. These

results 
on�rm the potentiality of SOM and GTM as disruption 
lassi�er too,

as well as it is shown in JET database in [5℄.

9.9 Con
lusions

This study shows that it is possible to des
ribe the 7-D AUG operational

spa
e on a 2-D map (SOM and GTM), where regions with di�erent risk of

disruption 
an be identi�ed. A 
riterion has been optimized to asso
iate the

risk of disruption of ea
h map region with a disruption alarm threshold. The
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predi
tion performan
e of the proposed predi
tive systems has been evalu-

ated on a test set of dis
harges 
oming from experimental 
ampaigns 
arried

out at ASDEX Upgrade from May 2011 to November 2012.

The GTM predi
tor results to have better Su

ess Rate than the SOM pre-

di
tor on both the Test sets, rea
hing on average ∼ 91%. Furthermore, GTM

has always better performan
e on Early Dete
tions and False Alarms than

SOM, although on the test sets both indexes remain above 8%. Conversely,

the SOM a
hieves better performan
e on Missed Alarms than the GTM.

Additionally a statisti
 predi
tor has been trained and tested on the same

data set. This predi
tor, based on a Logisti
 Regressor model, a
hieves

slightly worse performan
e than SOM and GTM, ex
ept on early dete
tions,

whi
h are mu
h lower than those a
hieved by SOM and GTM.

Finally, the good performan
e of SOM and GTM and the tenden
y of Logit

model to limit the early dete
tions have been exploited 
ombining ea
h map

with the statisti
al model. A new alarm 
riterion has been optimized, in par-

ti
ular, the alarm triggered on the map (either SOM or GTM) is a
tivated

only if Logit Model Output is greater than a 
ertain threshold.

An overall improvement of the performan
e has been obtained both for SOM

and GTM. The new predi
tor involving the SOM gets the best performan
es,

on test sets, the SR ex
eeds 91%, FAs remain lower than 8.2% and EDs rea
h

at most 6.5%.
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Con
lusions and future work

The a
tivities 
arried out in the framework of this thesis regarded the devel-

opment, the implementation and the appli
ation of algorithms for 
lassi�
a-

tion and predi
tion of disruptions in Tokamaks.

Disruptions 
an expose the plasma fa
ing 
omponents to severe thermo-

me
hani
al stresses and 
ondu
tors surrounding the vessel to huge ele
tro-

magneti
 for
es; therefore, it be
omes of primary importan
e to avoid or

mitigate disruptions in order to preserve the integrity of the ma
hine. This

aspe
t turns out to be parti
ularly relevant in design and running of new

experimental devi
es as ITER.

These 
onsiderations motivate and still motivate a strong interest in devel-

oping methods and te
hniques aimed to minimize both number and severity

of disruptions. But, besides the predi
tion, it is parti
ularly important to be

able to distinguish among their di�erent types in order to improve avoidan
e

and mitigation strategies. Sin
e physi
al models able to reliably re
ognize

and predi
t the o

urren
e of disruptions are 
urrently not available, ma-


hine learning te
hniques have been exploited as an alternative approa
h to

disruption predi
tion and automati
 
lassi�
ation, both with the appli
ation

and further development of existing systems and with the investigation of

new approa
hes.

One of the �rst problems whi
h have to be addressed when working

with data-based methods is the 
onstru
tion of a reliable and representa-

tive database. This is true espe
ially in fusion, where the 
hara
ter of high

dimensionality and the huge amount of available observations, poses a se-

rious problem about how to "redu
e" 
oherently available data. Therefore,

proper 
riteria have been used to sele
t suitable signals downloaded from

JET databases in order to obtain a data set of reliable observations. Finally,

data-redu
tion, based on 
lustering methods, has been performed to sele
t

a limited and representative number of samples for the operational spa
e

mapping. Two separated databases have been built with dis
harges belong-

ing to the Carbon Wall (CW) 
on�guration (
ampaigns from 2005 to 2009)

and to the new ITER-like Wall (ILW) 
on�guration (
ampaigns from 2011

179
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to 2013). The distin
tion allowed to analyze what is 
hanged moving from a


on�guration to the other one in terms of the underlying physi
s and oper-

ational spa
e, and this is re�e
ted in the di�erent behaviour of disruptions,


oherently to what has been found with all the analysis 
arried out.

One of the most important part of the work regarded the mapping of the

high dimensional operational spa
e of JET, whi
h has been des
ribed and vi-

sualized using di�erent linear proje
tion methods su
h as Grand Tour (GT)

and Prin
ipal Component Analysis (PCA), and mapped through non-linear

manifold learning te
hniques as Self-Organizing Map (SOM) and Generative

Topographi
 Map (GTM). The potentiality of manifold learning methods has

been dis
ussed showing several types of representations, also with referen
e

to the data analysis and visualization tools developed for GTM. The power

of the proposed te
hniques has also been highlighted through a 
omparison

with 
lassi
al s
atter plots identifying operational limits and boundaries for

the 
onsidered database.

In parti
ular, both SOM and GTM maps 
an be exploited to identify 
hara
-

teristi
 regions of the plasma s
enario and for dis
riminating between regions

with high risk of disruption and those with low risk of disruption, to quantify

and evaluate the e�e
tiveness of the mapping itself. In addition, some mea-

sures have been used to evaluate the performan
e of the proposed methodolo-

gies. To 
al
ulate the pre
ision of the 
lustering over the entire dataset the

average quantization error, a 
ommon index of the map resolution, has been

applied. Furthermore, to 
ontrol the 
onservation of topology two di�erent

aspe
ts have been analyzed, i.e., the trustworthiness of the proje
ted neigh-

borhood and the preservation of the resulting neighborhood. Moreover, an

outlier analysis has been performed on the available data in order to quantify

goodness and e�e
tiveness of the proje
tion.

Regarding the results a
hieved with the mapping, both the SOM and the

GTM presents a large safe region well separated from some disruptive re-

gions by transition regions, whi
h 
onsists of map units that 
ontains both

safe and disruptive samples, and empty regions. In parti
ular GTM model

turned out to have both higher 
apability of dis
riminate between safe and

disruptive samples (less than 10% of the samples are proje
ted in transition

regions) and better performan
e in the mapping.

Given the results in the mapping of JET 10-dimensional spa
e, SOM

and GTM potentialities have been extensively investigated and an algorithm

for automati
 
lassi�
ation has been developed for both the methods. The

proposed approa
h for the dis
rimination of disruption types 
onsists of iden-

tifying 
hara
teristi
 regions in the operational spa
e where the plasma un-

dergoes a disruption.

A relevant part of the a
tivities 
arried out in the framework of this thesis
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has been spent in the analysis of the di�erent types of disruptions that 
an

o

ur in JET, making referen
e to the manual 
lassi�
ation made available

by physi
ists, where spe
i�
 
hains of events have been dete
ted and used to


lassify disruptions, grouping those that follow spe
i�
 paths.

The 
hara
terization of the operational spa
e in terms of the di�erent dis-

ruption 
lasses may lead to better overall understanding and more fo
ussed

prevention and mitigation methods. The maps obtained with SOM and

GTM algorithms have shown to self-organize in su
h a way that the disrup-

tions whi
h belong to the same 
lass tend to aggregate, de�ning in this way

regions where a 
ertain 
lass results to be predominant with respe
t to the

others. Ea
h disruption has been proje
ted on the maps, and the proba-

bilities of belonging to the di�erent disruption 
lasses have been monitored

during the time evolution, returning, among the seven 
onsidered 
lasses,

the one whi
h the disrupted pulse more likely belongs to. In order to per-

form the 
lassi�
ation, a majority voting algorithm has been applied the the


lass-membership, 
omputed for ea
h shot. The algorithm asso
iates to ea
h

sample a probability to belong to the seven 
lasses. The su

ess rate of GTM

is high for all the 
onsidered 
lasses (above 97%), rea
hing in some 
ases even

the per
entage of 100%.

After the 
ampaign in 2009, JET installed the new ITER Like wall (ILW).

The �rst attempt has been to proje
t the disruptions of the ILW 
ampaigns

onto the GTM map trained with the CW dis
harges; the 
lassi�
ation perfor-

man
e for the new disruptions signi�
antly deteriorated for 
ertain 
lasses.

Thus, the disruption 
lasses with the ILW have been deeply analyzed and


ompared with those in the CW JET 
ampaigns. In parti
ular, the probabil-

ity density fun
tions of the di�erent plasma parameters 
learly highlighted

the di�erent behavior of a new 
lass, an impurity type due to high-Z impurity

a

umulation in the 
ore of the plasma 
olumn. Instead, in the 
onsidered

period, some disruption 
lasses present in the CW data bases are no longer

present in the ILW data base, as those due to too strong internal transport

barrier and the ones due to Greenwald limit.

The performan
e of the new ILW GTM 
lassi�er has been tested in 
onjun
-

tion with APODIS, a predi
tion system working on-line at JET, simulating

the appli
ation in real time, that is, by syn
hronizing a time windows of 32

and 64 ms in advan
e with respe
t to the time in whi
h APODIS triggers

the alarm. By applying the majority voting algorithm to the 
lass member-

ship in the 
onsidered time window, the predi
tion su

ess rate is still quite

high (above 90%) a

ording to the manual 
lassi�
ation. The performan
e

slightly worsened when the new impurity type is introdu
ed, be
ause in 
er-

tain 
ases it turns out to be quite di�
ult to distinguish this new 
lass from

the previously de�ned impurity 
ontrol problem 
lass.
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Furthermore, in order to validate and analyze the obtained results, another

referen
e 
lassi�er has been developed based on k-NN whi
h uses as kernel

the Mahalanobis distan
e. The performan
e of the referen
e 
lassi�er is still

above 90%, but, also for it, the su

ess rate deteriorates when the new IMC


lass is introdu
ed.

Finally, in order to verify the reliability of the performed 
lassi�
ation, a


onformal predi
tor has been developed, whi
h is based on non-
onformity

measures. The preliminary results indi
ate the suitability of the 
onformal

predi
tors to assess the reliability of the GTM 
lassi�
ation even if the 
al-


ulation time allows their use only in an o�-line fashion.

GTMs potentiality has also been exploited for the predi
tion of disrup-

tions at ASDEX Upgrade: a 2-D GTM has been built to represent the 7D

AUG operational spa
e on the base of dis
harges performed between May

2007 and April 2011. As it has been obtained in the 
ase of JET, the GTM


learly proves to be able to separate non-disruptive and disruptive states of

plasma. Therefore, likewise the SOM, the GTM 
an be used as a disrup-

tion predi
tor by tra
king the temporal sequen
e of the samples on the map,

depi
ting the movement of the operating point during a dis
harge. Various


riteria have been studied to asso
iate the risk of disruption of ea
h map

region with a disruption alarm threshold. The predi
tion performan
e of the

proposed predi
tive system has been evaluated on a set of dis
harges 
oming

from experimental 
ampaigns 
arried out at AUG from May 2011 to Novem-

ber 2012.

The GTM predi
tor a
hieves the best overall performan
e, above the 91% on

the 
onsidered Test sets. Furthermore, GTM has always better performan
e

on Early Dete
tions and False Alarms than SOM, although, on the test sets

both indexes remain above 8%. Conversely, the SOM a
hieves better perfor-

man
e on Missed Alarms than the GTM.

Additionally, a statisti
 predi
tor has been trained and tested on the same

data set. This predi
tor, based on a Logisti
 Regressor model, a
hieves

slightly worse performan
e than SOM and GTM, ex
ept on early dete
tions,

whi
h are mu
h lower than those a
hieved by SOM and GTM.

Therefore, the good performan
e of SOM and GTM and the tenden
y of

Logit model to limit the early dete
tions have been exploited 
ombining

ea
h map with the statisti
al model. A new alarm 
riterion has been opti-

mized, in parti
ular, the alarm triggered on the map (either SOM or GTM)

is a
tivated only if the Logit model output is greater than a 
ertain thresh-

old, a
hieving an overall improvement of the performan
e. The 
ombined

predi
tor involving the SOM gets the best performan
es, on test sets, the

Su

ess Rate ex
eeds 91%, False Alarms remain lower than 8.2% and Early

Dete
tions rea
h at most 6.5%.
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The high performan
e of the proposed methods gives rise to the per-

spe
tive of a deployment of these tools in real time: regarding this point,

even if a porting of the Matlab 
odes should be needed for the integration

in the real time frameworks, the suitability for real time appli
ations has

been already assessed. Furthermore, the algorithms des
ribed in this work

have been developed in a tool for Matlab whi
h allows, given a database, to

perform all the analysis presented in this thesis almost automati
ally, from

the data-redu
tion, going through the mapping of operational spa
es up to

the proje
tion of new data and the assessment of mapping performan
e.

This te
hniques represent a powerful tool for data-analysis and 
ould be very

useful not only in the framework of disruption predi
tion and 
lassi�
ation,

but also in other �elds, su
h as, for example, one would like to distinguish

or dis
riminate a parti
ular behavior or plasma state. To 
on
lude, still re-

garding the future perspe
tives, ma
hine learning tools are also produ
ing

very interesting results in the 
omparative analysis of di�erent fusion devi
es

operational spa
es, as in the 
ase of JET and ASDEX Upgrade, on the route

of developing predi
tors 
apable of extrapolating from one devi
e to another,

as foreseen in the framework of a 
ross-ma
hine approa
h.
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