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Abstract

Evaluation of wave extremes occurring in short-crested sea
states is the research topic of this doctoral thesis. Short-crestedness
is the typical condition in sea storms. In fact, engineering practice
and reports from people working offshore (e.g. on fixed platforms
or routing ships) are raising questions on the adequacy of con-
ventional wave statistics for the prediction of extremes during
short-crested storm conditions. Indeed, wave statistics has been
traditionally derived from time measurements, i.e. at a fixed
point. Recently, experimental evidence has proved that the max-
imum sea surface elevation occurring at a fixed point of the sea
is smaller than the maximum occurring over a surrounding area.
Hence, unless the space dynamics of wave groups is fully included
inside the area, the measured maximum at a point or over a
smaller area underestimates the actual maximum. To overcome
this fact, during the last decade stochastic models to calculate
maxima of Gaussian multidimensional random fields, i.e. Piter-
barg’s theorem and Adler and Taylor’s Euler Characteristic ap-
proach, have been applied to wave statistics. According to these
theories, we should be able to estimate the expected maxima that
can occur over an area (space) during a short-crested sea state of
given duration (time), giving an explanation to the experimental
evidence.

The aim of this doctoral thesis is to investigate and discuss
these recently applied stochastic models, in order to contribute
changing the paradigm of wave analysis: from time to space-
time domain. Thus, we worked on multiple fronts with multi-
ple approaches. Field campaigns allowed us to validate stochas-
tic models and to propose a data analysis procedure to char-
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acterize sea states at a given location with respect to space-time
wave extremes. Analytical and numerical approaches served us to
give possible solutions to the well-recognized lack of directional
wave spectra, i.e. the input of the multidimensional stochastic
models. Indeed, we propose closed formulae to calculate the in-
put spectral parameters in a context of idealized sea states and
we develop an ad hoc version of the SWAN (Simulating WAves
Nearshore) model, called SWAN-ST (SWAN Space-Time), to al-
low space-time extreme analysis to be performed on realistic do-
mains. Moreover, analytical and numerical model outputs were
used to investigate the dependence of wave extremes upon specific
physical parameters governing wind wave mechanics (i.e. wind
speed, fetch length, ambient current speed and bottom slope). Fi-
nally, we tested the numerical modeling of space-time extremes on
realistic domains by running a 3 years hindcast of on the Mediter-
ranean Sea.
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Sommario

Il tema di ricerca di questa tesi è la valutazione degli estremi
di moto ondoso che si possono verificare in stati di mare a creste
corte. Questa è infatti la condizione tipica durante le tempeste
marine. La pratica ingegneristica e l’esperienza di chi opera nel
settore off-shore (e.g. su piattaforme o navi), stanno sollevando
interrogativi circa l’adeguatezza della statistica d’onda conven-
zionale per quanto riguarda la stima degli estremi durante con-
dizioni di mare a creste corte in tempesta. Infatti, la statistica
delle onde è stata tradizionalmente ricavata da misure temporali,
cioè ottenute in un punto fisso. Recentemente, è stata provata
l’evidenza sperimentale secondo cui la massima elevazione di su-
perficie che si verifica in un punto del mare è minore della massima
elevazione che si verifica su un area circostante. Perciò, a meno
che la dinamica spaziale di un gruppo d’onda sia completamente
inclusa all’interno dell’area, il massimo misurato ad un punto o su
un area più piccola sottostima il massimo effettivo. Per ovviare
a ciò, nella scorsa decade sono stati applicati alla statistica del
moto ondoso alcuni modelli stocastici per la stima dei massimi
di campi multidimensionali Gaussiani, ovvero il teorema di Piter-
barg e l’approccio alle caratteristiche di Eulero di Adler e Taylor.
In base a queste teorie, siamo in grado di stimare i massimi attesi
che si possono verificare su un area (spazio) durante uno stato
di mare a creste corte di una data durata (tempo), fornendo cos̀ı
una spiegazione dell’evidenza sperimentale.

Lo scopo di questa tesi dottorale è quello di investigare e dis-
cutere questi modelli stocastici di recente applicazione al fine
di contribuire ad un cambio di paradigma nell’analisi del moto
ondoso: dal dominio del tempo al dominio dello spazio-tempo.
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Quindi, ci siamo concentrati su diversi fronti utilizzando approcci
differenti. Campagne di misura ci hanno consentito di validare i
modelli stocastici e di proporre una procedura di analisi dei dati
volta a caratterizzare gli stati di mare in un sito, relativamente
agli estremi nel dominio spazio-tempo. Approcci analitici e ap-
procci numerici ci sono invece serviti per fornire possibili soluzioni
al ben noto problema della mancanza di spettri direzionali d’onda,
ovvero gli input del modelli stocastici multidimensionali. Infatti,
abbiamo proposto delle formule chiuse per calcolare i parametri
spettrali di input in un contesto di stati di mare concettualiz-
zati e abbiamo sviluppato una versione ad hoc del modello nu-
merico SWAN (Simulating WAves Nearshore), chiamata SWAN-
ST (SWAN Space-Time) per permettere l’analisi degli estremi
nel dominio spazio-tempo su domini realistici. Inoltre, i risultati
ottenuti da questi approcci analitici e numerici sono stati utiliz-
zati per studiare la dipendenza degli estremi di moto ondoso da
parametri fisici specifici che governano la meccanica delle onde
da vento, ovvero la velocità del vento, la lunghezza del fetch, la
presenza di una corrente e la pendenza del fondo. Infine, abbi-
amo testato la possibilità di modellare numericamente gli estremi
spazio-tempo su domini realistici, simulando 3 anni di eventi sul
mare Mediterraneo.
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Chapter 1
Extreme waves

1.1 Introduction

1.1.1 Observations

During the last decades, scientific community has devoted many efforts
in trying to accurately measure, model and predict extreme sea wave condi-
tions. In fact, the standard statistical model of ocean waves, i.e. based on the
linear or second-order random phase/amplitude wave model, has been widely
employed with success to accurately predict wave spectra, wave statistics and
wave kinematics in ordinary conditions. Nevertheless, it is not able to explain
some extreme wave measurements and accidents occurring to offshore struc-
tures, e.g. fixed platforms and ships (Forristall, 2005). As an example, the
famous ”Gorm wave” and ”New Year (or Draupner) wave” (Figure 1.1) had
a crest to significant wave height ratio of 2.2 and 1.54, respectively, whereas
the standard wave model predicted a maximum value of 1.25. Collections
of such extreme events, either measured or indirectly witnessed by the dam-
ages on structures and by the sinking of ships (Figure 1.2) can be found for
example in (Sand et al., 1990; Skourup et al., 1997; Socquet-Juglard, 2005;
Forristall, 2007; Dysthe et al., 2008; Forristall, 2011; Cavaleri et al., 2012).
In addition, during the European project MaxWave (Rosenthal and Lehner,
2008) several accidents occurred to ships and offshore platforms were ana-
lyzed to improve the understanding of physical processes underlying extreme
waves generation.

To explain these ”freak wave” events, part of the scientific community fo-
cused on the physical mechanism of their generation and on higher order, i.e.
strongly non-linear, wave models (Osborne et al., 2000; Onorato et al., 2001,
2002). Wave tank experiments, field measurements and numerical modeling

3



Figure 1.1: Extremely high waves unexplainable resorting to the standard wave model
(predicted maximum crest to significant wave height ratio, 1.25). Left: the ”Gorm Wave”
recorded in the North Sea on November 17, 1984 (crest to significant wave height ratio,
2.2). Right: the ”New Year wave”, recorded at the Draupner platform in the North Sea
on January 1, 1995 (crest to significant wave height ratio, 1.54). Picture from (Dysthe
et al., 2008)

Figure 1.2: Locations of 22 supercarriers sinkings after collision with extremely high waves,
between 1969 and 1994. Picture from (Kharif and Pelinovsky, 2003).
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(e.g. using the Nonlinear Schroedinger equations) individuated the spatial
focusing due to current induced refraction, the dispersive focusing and the
nonlinear focusing, i.e. the so called Benjamin-Feir instability, as the main
factors that contribute to the genesis of an extremely high wave (Dysthe
et al., 2008). Nevertheless, research on these topics is still ongoing and far
from a closure of the problem.

A different theoretical approach is based on the belief that such extreme
wave events are not outliers of the standard wave model, but have to be con-
sidered either elements of another population or elements of a more numer-
ous Gaussian (i.e. linear) or second-order sample. For this reason, Forristall
(2005) stated that new statistics able to model and predict also extremely
high waves is nowadays more needed than new physics of waves and strongly
non-linear models. To confirm it, in a review on oceanic rogue waves (i.e.
unexpectedly high waves) Dysthe et al. (2008) concluded that a wave statis-
tics based on a second-order wave model is sufficient to explain the most of
the measured rogue waves. Additionally, results of MaxWave project were
in agreement with this conclusion (Rosenthal and Lehner, 2008). Despite
this, Forristall (2005, 2007) prove that even a second-order wave statistics
is ineffective to interpret, for example, damages occurred to the decks and
structures of some platforms in the Gulf of Mexico during hurricanes Ivan,
Katrina and Rita.

To summarize, except for a few rare events, e.g. the New Year wave of
Figure 1.1, measurements of extreme waves are well modeled by the stan-
dard second-order wave model, but the most of damages occurred to offshore
structures and sinking of routing ships have not yet found a satisfactory ex-
planation. A possible motivation to this fact will be detailed in the next
Section.

1.1.2 Time vs space-time: experimental evidence

Traditionally the sea surface elevation has been measured by using 0D
instruments, i.e. recording the time series of the sea surface displacement
η from a reference level at a single fixed point. For several decades, data
recorded from wave gauges, ultrasonic instruments and buoys represented
the only wave measurements available. Thus, wave statistical models have
been validated against wave data gathered at fixed points, with time t as the
only independent variable, i.e. η = η(t). Nevertheless, sea surface elevation
is a variable evolving over a 2D space x = (x, y), i.e. η = η(x, t) (Holthuijsen,
2007).

Since the 80s, the computing capabilities allowed to retrieve 2D maps of
the sea-surface elevation η(x, t), thanks to image sequences recorded using
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stereo-photogrammetry (Shemdin et al., 1988; Banner et al., 1989). After
that, radar mounted on ships and platforms and Synthetic Aperture Radar
(SAR) or Interferometric SAR (ISAR) mounted on satellites widened the
possibility of retrieving portions of the sea surface in time, with different
spatial scales and accuracies (Dankert et al., 2003). Hence, remote sensing
the wave field over an area during a storm or estimating it indirectly by the
damages occurred, for example, to the deck of a platform (Forristall, 2006),
some authors suggested that the standard model underestimates the actual
maxima.

The change of the domain of observation from time to space-time revealed
that the maximum sea surface elevation recorded over an area of the sea
surface during a given duration sea state is greater than that obtained at
single fixed points inside the area. This evidence was found among the others
by Forristall (2006) while studying the problem of the air gap below the deck
of drilling platforms. Fedele et al. (2013) deployed a stereo-photogrammetric
system, i.e. WASS (Wave Acquisition Stereo System, (Benetazzo, 2006)) on
the CNR-ISMAR oceanographic tower ”Acqua Alta”, 8 miles off the Venice
coast in the northern Adriatic Sea. During field campaigns in 2009 and 2010
they measured the sea surface elevations over different size areas during sea
states. They proved that the maximum sea surface elevation ηST increases
with the area. Socquet-Juglard et al. (2005) and Forristall (2005) verified the
same evidence by numerically simulating short-crestes sea states. Forristall
(2011) observed this fact on a wave tank experiment. Besides these, European
project MaxWave concluded that extending analysis to space domain results
in much more individual waves observed, hence the standard model criteria
for extreme waves have to be overcome (Rosenthal and Lehner, 2008).

1.1.3 New statistics in space-time domain

Currently, the underestimation of the actual wave maxima by point mea-
surements is accepted and acknowledged by the ocean community, but as an
experimental evidence rather than as a consolidated and widespread paradigm
of analysis. This is due to the lack, until recently, of robust enough statistical
theories able to model the distribution of sea surface elevation maxima over
the space-time domain. The problem is that there is no mathematical defini-
tion of a wave in space. In fact, even an analogous of wave period is difficult
to be defined in space, unless an arbitrary direction is prescribed. Neverthe-
less, when space domain is considered, the geometry of the waves must be
accounted for (Baxevani and Rychlik, 2006). That is, short-crestedness and
directional wave characteristics have to be calculated, e.g. wavelength and
wave crest.
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Stochastic theories to evaluate maxima of multidimensional Gaussian ran-
dom fields were developed by Piterbarg (1996) and Adler and Taylor (2007).
They followed different approaches and reached similar results that allowed
to estimate the exceedance probability distribution functions (EDFs) of max-
ima of random fields in Rn, provided that the sample is numerous and the
threshold considered sufficiently high. Besides EDFs, these theories allow to
estimate the expected maximum of the random field. Recently, Piterbarg’s
theorem and Adler and Taylor Euler Characteristics approach have been ap-
plied to ocean wave statistics, reasonably assuming that the sea surface can
be modeled as a Gaussian random surface either in R1, i.e. in time, in R2,
i.e. over the 2D-space, or in R3, i.e. over the 2D-space and time. Krogstad
et al. (2004) chose the Piterbarg’s approach and applied it straightforwardly
to ocean wave analysis. They also corrected the linear estimate of maxima
to the second-order according to the Tayfun quadratic equation (Tayfun,
1980). Hence, according to the definition of Socquet-Juglard et al. (2005)
in the followings we will talk of Piterbarg’s model in a linear context and
of Tayfun-Piterbarg’s model in a second-order non-linear context. Fedele
(2012) instead focused on the approach of Adler and Taylor and developed
a method, hereafter called Fedele’s method, that differs from the Piterbarg’s
model mainly because it accounts for the occurrence of maxima even at the
boundaries of the space-time domain, as it could happen when the area of
analysis is smaller than the characteristic space dimension of the waves. For
this reason, Fedele’s methods holds for areas of any given size, while Piter-
barg’s theorem only for areas with side greater than the mean wavelength
of the sea state. To meet this fact, Forristall (2005) developed an approxi-
mation that allows to apply Piterbarg’s model also on smaller areas. Also
Fedele’s method results can be corrected to the second-order applying Tayfun
quadratic equation (Tayfun, 1980). The details of these stochastic methods
will be described and discussed in Chapter 3.

1.2 Motivations and aims

Including Piterbarg and Fedele’s stochastic models into wave statistics
could significantly increase the reliability of extreme wave predictions. Ap-
plicability of these models is constrained by the availability of directional
wave spectra. In fact, since they synthesize the wave field space-time fea-
tures, they are the basis of extreme wave prediction. Directional wave spectra
are generally obtained by measuring the time evolving 2D wave field with di-
rectional buoys, arrays of wave gauges, stereo-photogrammetry, radars or
satellites SAR and ISAR. Then, measurements are post-processed using de-
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terministic or stochastic techniques to get the directional spectrum. Some
of the instrumentations cited are relatively expensive and difficult to deploy
and maintain in an open sea environment or in orbit around the Earth. At
present, one of the most promising sources of directional spectra are spectral
numerical wave models, despite the limitations of modeling and the unavoid-
able errors introduced by numerics. For these reasons, directional spectra
are rarely available and, when available, periods of coverage of the data are
usually limited by the duration of projects and studies.

Beside this, space-time stochastic models have been not yet robustly val-
idated against space-time measurements of sea states. Piterbarg’s theorem
model results have been compared to numerical simulated maximum sea sur-
face elevations (Forristall, 2005, 2007; Krogstad et al., 2004; Socquet-Juglard
et al., 2005) and to wave tank experiments maxima (Forristall, 2011).

Moreover, due to the pure statistical character of these models and to
their limited application until now, the relationship between maximum sea
surface elevation over an area and physical parameters governing wind wave
mechanics has not been yet investigated.

In this context, we were motivated to give a contribution aimed at fill-
ing these gaps. Primary, we intended to compare stochastical space-time
extremes against stereo-photogrammetric WASS measurements, in order to
validate these models and discuss their application to realistic measured sea
states. Then, we wanted to propose possible solutions to the lack of direc-
tional spectra. To this end, we resorted to the analytical spectral formulation
of idealized sea states, i.e. Pierson-Moskowitz and JONSWAP spectra, and
to numerical spectral wave modeling. We were also aimed at investigating
and discussing the dependence of stochastic space-time sea surface maxima
upon specific physical parameters, such as wind speed and fetch length, the
presence of an ambient current and bottom steepness. Finally, we intended
to test the capability of performing space-time extreme analysis in realistic
conditions by means of numerical modeling.

1.3 General overview

Apart from the present, i.e. Introduction (Part I), this doctoral thesis
is composed of two more Parts. In the next, i.e. second, Part, we will
define the Theoretical Background (Part II) we want the reader to be
acknowledged of before going into the core of the results obtained. This
theoretical basis is common to all the results presented in the following Part.
In particular, the basic assumptions of the random wave model and the
spectral representation of short-crested sea states will be presented (Chapter
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2). Then, we will illustrate the techniques used to obtain the directional
wave spectrum that is the starting point of our successive analysis. After
that, we will face with the representation of idealized, i.e. simplified under
some hypotheses, and realistic sea states. In this contexts, the analytical
and numerical tools we employed are presented. Once these bases have been
given, we will illustrate the stochastic methods to model space-time wave
extremes of sea states, i.e. the Piterbarg’s theorem and the Fedele’s method
based on the Adler and Taylor’s Euler Characteristics approach (Chapter
3). We will also present Forristall’s approximation, holding for small areas
relative to the mean wavelength and the Tayfun second-order correction to
account for non-linearities in the sea states. These methods will be used in the
rest of the thesis to obtain the expected wave space-time extremes of short-
crested sea states, object of investigations. The physical mechanism limiting
results of the stochastic models, i.e. wave-breaking, will be mentioned before
closing the second Part.

The third Part collects the Results (Part III) we scored during the
doctoral school program, inherent with the topic of the thesis. Results
are structured in order to be gathered according to the methodology em-
ployed, namely, field results (Chapter 4 and 5), analytical results (Chapter
6) and numerical results (Chapter 7). Field campaigns allowed us to validate
the stochastic models of Piterbarg and Fedele (using stereo-photogrammetric
wave measurements) and to investigate space-time extremes dependence upon
space domain size and probability distributions (using directional buoy wave
measurements). Analyical and numerical results were achieved with a dual
purpose. On the one hand, we tried to solve the difficulty of applying space-
time extremes stochastic models due to the well-recognized lack of directional
wave spectra. Indeed, using analytical methods in the context of idealized sea
states we derived closed formulae for the models inputs (i.e. mean wavenum-
ber vector, mean wave period, space-time and space-space irregularity pa-
rameters) that depend upon physical parameters only, e.g. wind speed and
fetch length. In the context of realistic sea states, we took advantage of
spectral numerical wave modeling to allow space-time extreme analysis to
be performed on geophysical domains. To do that, we developed an ad hoc
version of the SWAN model (Simulating WAves Nearshore, (Booij et al.,
1999)) devoted to the calculation of stochastic models inputs. On the other
hand, analytical and numerical methodologies were used to meet stochas-
tically obtained space-time results with physical parameters governing the
mechanics of waves, i.e. wind speed, fetch length, ambient current speed and
bottom steepness. Numerical modeling was also used to perform a 3 years
(2008-2010) hindcast of Mediterranean Sea states and space-time extremes.
Doing so, we proved the possibility of using numerical models for space-time
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extremes prediction in realistic conditions.
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Part II

Theoretical background
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Chapter 2
Spectral representation of short-crested
sea states

2.1 Random wave model

Short-crested sea states are herein represented by the two-dimensional
random-phase/amplitude model. According to this model, sea surface ele-
vation evolving in time t over 2D space x = (x, y), i.e. η(x, t), is a random
variable as well as amplitude a and phase φ. In particular, amplitude is
Rayleigh distributed and phase is uniformly distributed over [0; 2π]. Angu-
lar frequency σ and direction θ, hence wave-number vector k, are arbitrarily
discretized in the spectral domain (σ, θ) in order to accurately approximate
the continuous energy spectrum E(σ, θ).

In this context, the random wavy surface is represented by the sum of a
large number MN of harmonics 1:

η(x, t) =
M∑
m=1

N∑
n=1

am,n cos (km,n · x− σmt+ φm,n) (2.1)

where km,n ·x = km(x cos θn+y sin θn), being k the magnitude of k. For each
harmonic component (m = 1, ...,M) the relationship between frequency σm
and wavenumber km is defined by the linear dispersion relationship (d: water
depth and g gravitational acceleration):

σ2
m = gkm tanh kmd (2.2)

1Herein, an harmonic wave is a cosine wave with single amplitude, frequency and
wavenumber: h(t) = a cos (k · x− σt+ φ).
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The random-phase/amplitude model (2.1) represents a Gaussian sea state,
i.e. a space-time portion of the sea with Gaussian distributed sea surface el-
evations η(x, t), that is stationary in time t and homogeneous over space x.
This linear process has been widely used with success to model mild slope
short-crested random waves in deep waters (Holthuijsen, 2007).

2.2 Directional spectrum

The distribution of sea wave energy over frequencies σ and directions θ is
provided by the directional energy density spectrum E(σ, θ) (unit: Nm−1Hz−1rad−1).
The directional variance density spectrum S(σ, θ) 2 (unit: m2Hz−1rad−1) is
proportional to E(σ, θ) through water density ρ and gravitational accelera-
tion g

S(σ, θ) = E(σ, θ)/(ρg) (2.3)

The directional spectrum S(σ, θ) is conventionally 3 decomposed as fol-
lows:

S(σ, θ) = S(σ)D(σ, θ) (2.4)

where:

• S(σ) is the one-sided variance density spectrum or frequency spectrum,

S(σ) =

∫ 2π

0

S(σ, θ)dθ (2.5)

• D(σ, θ) is the directional spreading function, i.e. a function that mod-
els the spreading of wave energy/variance at each frequency σ over
directions θ.

D(σ, θ) satisfies the two following properties:

• D(σ, θ) is a non-negative function of θ;

•
∫ 2π

0
D(σ, θ)dθ = 1

2Since the relationship between σ and k is assumed to be governed by (2.2), the direc-
tional spectrum S(σ, θ) could be alternatively written as S(k, θ) or S(k).

3The spectral decomposition (2.4) is conventional in a time domain approach, since it
separates the unknown part of the spectrum to be modeled, i.e. D(σ, θ), from the most
reliable part, i.e. S(σ).
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To simplify the directional spreading function, it is assumed to be dependent
only upon θ, i.e. D(σ, θ) = D(θ).

Wave extremes in the space-time domain depend upon the directional
spectrum S(σ, θ) which is the basis for prediction through stochastic models
like Piterbarg’s theorem and Fedele’s method. In fact, directional spectrum
synthesizes the space-time features of the wave field. Hence, spectral pa-
rameters of S(σ, θ) are used to implement the cited models. These spectral
parameters will be presented in the followings.

Unfortunately, directional spectra are rarely available in the practice be-
cause they require advanced techniques and expensive instrumentations to
be measured. Recently, satellites radar imaging (SAR, ISAR) as well as
stereo-photogrammetric imaging (Benetazzo et al., 2012) have increased the
availability of directional spectra but a directional spectral representation of
the sea states is not yet the standard in the ocean waves community, es-
pecially among design engineers. Alternatively, directional spectra could be
obtained resorting to analytical spectral functions, in the context of idealized
sea states, i.e. simplified under specific assumptions. However nowadays, the
most promising ”source” of directional spectra is numerical spectral model-
ing. In fact, despite the unavoidable approximations and errors introduced by
numerics, numerical models can provide directional spectra with considerable
detail both in space and time, accounting for realistic domains and forcings.
Analytical spectral functions and numerical modeling will be illustrated in
the following sections.

2.2.1 Spectral parameters

Spectral parameters required for the implementation of Piterbarg’s the-
orem and Fedele’s method can be expressed in terms of the moments of the
directional spectrum S(σ, θ) (Fedele, 2012):

mijl =

∫ 2π

0

∫ ∞
0

kixk
j
yσ

lS(σ, θ)dσdθ (2.6)

being kx = k cos θ and ky = k sin θ the components of the wavenumber vector
k.

Preliminary, we rotate the axes of the reference frame until positive x-axis
corresponds to the mean wave direction θ 4. Then, following Baxevani and

4This common practice in ocean engineering ensures that spatial partial derivatives of
the sea surface η(x, t) are uncorrelated and hence independent in a statistical sense. The
rotation has to be chosen in order that the variance of the surface gradient is maximum
along, for example, x direction (Baxevani and Rychlik, 2006).
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Rychlik (2006), spectral parameters can be written as

T = 2π

√
m000

m002

, Lx = 2π

√
m000

m200

, Ly = 2π

√
m000

m020

αxt =
m101√
m200m002

, αyt =
m011√
m020m002

, αxy =
m110√
m020m200

(2.7)

Here, T is the mean wave period, Lx and Ly are the mean wavelength com-
ponents in the x − y reference frame. In the chosen reference frame, i.e.
x-axis corresponding to mean wave direction, Lx becomes the mean wave-
length and Ly the mean crest length 5. αxt, αyt and αxy are irregularity
parameters that express the correlation between space and space, or space
and time derivatives of η(x, t).

While the physical meaning of T , Lx and Ly is straightforward, the role
of irregularity parameters αxt, αyt and αxy needs explanation. According to
Baxevani and Rychlik (2006), these parameters characterize the kinematics
of the wave field and play an important role in the distribution of high crests.
They represent the ratio between the principal and the drift velocity of the
wave field and assume values within [-1,1]. So, if a wave field is simply
drifting in time along a principal direction, e.g. x, the absolute value of the
corresponding parameter αxt approaches unity. If a wave field results from
two wave fields moving along positive x and y axes, then αxt and αyt are null,
but not αxy. In such crossed sea conditions, the waves are higher than in the
case of drifting along x. Irregularity parameters express how much organized
is the wave motion of the random field. The more it is organized, the smaller
is the number of waves one has to expect in the space-time domain or on its
boundary. In fact, they act as reducing factors in the formulae of the average
number of waves (see Chapter 3). Hence, the probability of exceedence of a
certain threshold decreases.

The degree of short-crestedness of a sea state can be evaluated by using
the following parameter, once again resorting to the moments of the direc-
tional spectrum (Baxevani et al., 2003):

γs =

√
m020

m200

(2.8)

It approaches 0 for a long-crested sea state, while it tends to 1 the more the
sea state is short-crested.

5Since Lx and Ly are calculated from second order moments in kx and ky, arctanLx/Ly
is not equal to the mean wave propagation direction, that is obtained from first order
moment components, i.e. θ = arctan (m010/m100).
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2.2.2 Directional wave spectrum calculation

Given the importance of getting reliable directional wave spectra as input
for space-time stochastic models, we recall here some systems to estimate
such spectra from observations. Directional spectra can be measured using:

• single-point systems: they record simultaneously 3 wave properties at
a fixed location. The most widely used are:

– the heave-pitch-roll buoy, measuring rotations about the 3 buoy
axes;

– the directional waverider buoy, measuring the vertical displace-
ment, i.e. surface elevation, and the two component of the hori-
zontal displacement;

– the two-components current meter, associated with a pressure or
a surface-elevation probe.

• arrays of probes: they are composed of several fixed location sensors
recording simultaneous time series of the surface elevation, pressure or
other wave properties.

• remote sensing systems: such as radars or stereo-photogrammetric sys-
tems, they take pictures of the sea surface over space and time.

Data gathered by the listed instrumentations have to be processed to ob-
tain the directional spectrum. For single-point systems and arrays of gauges,
resorting to the spectral decomposition (2.4), S(σ, θ) is estimated by com-
bining a Fourier transform of the time varying sea surface elevation, aimed
at calculating S(σ), with deterministic or stochastic techniques to calculate
the directional spreading function D(σ, θ). In case of remote sensing sys-
tems, S(σ, θ) can be derived by the two-dimensional wavenumber spectrum
S(kx, ky), according to

S(σ, θ) =
σ

ccg
S(kx, ky) (2.9)

where S(kx, ky) is obtained by Fourier transforming the sea surface eleva-
tion field, while c and cg are wave phase celerity and wave group celerity,
respectively.

In Chapters 4 and 5 (Part III) we will calculate directional spectra gath-
ered from a stereo-photogrammetric system (WASS) and from a directional
waverider buoy, respectively. Besides what written above, to calculate S(σ, θ)
from stereo-photogrammetric measurements in one of the field test reported
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we extracted a set of virtual gauges from the reconstructed 3D maps of sea
surface elevations. Therefore, we used one of the techniques typically used
for array of gauges, instead of Fourier transforming the wave the sea surface
elevation field. In all the cases analyzed, we applied stochastic techniques,
since we are only interested in the directional spectrum calculation and not
in the knowledge of the phases distribution (Benoit et al., 1997).

Stochastic methods

Stochastic techniques for directional spectrum calculation proceed in two
steps (Benoit et al., 1997):

1. perform spectral analysis of the recorded time-series, by computing the
cross-spectral density functions between each pair of signals.

Assume J sensors are employed: they are located in xj and their sig-
nals Pj(t) are recorded over a time T, at a sampling rate 1/∆t. The
analysis of the correlation between each pair of signals is performed
in the frequency domain, by estimating the cross-spectral densities Gij

between each couple (Pi;Pj). Following the Wiener-Kintchine theo-
rem, the cross-spectral densities Gij and the cross-correlation functions
Rij(τ) are a Fourier transform pair 6:

Gij(σ) =

∫ +∞

−∞
Rij(τ)e−iσtdτ (2.11)

where

Rij(τ) = lim
T→∞

1

T

∫ +T

0

Pi(t)Pj(t+ τ)dt (2.12)

In the practice, the cross-spectra Gij are estimated from the discretely
sampled and finite duration time-series, by digital procedures based on
the Fast Fourier Transform. In the same way, a Fourier pair (physical-
wavenumber spaces) exists between the cross-spectral density function
G(r, σ) measured at two locations separated by r = xi − xj and the
directional spectrum S(k, σ):

G(r, σ) =

∫
k

S(k, σ)e−i
~k·rdk (2.13)

6The Fourier transform of a function x(t) is

X(σ) =

∫ +∞

−∞
x(t)e−iσtdt (2.10)
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Since Gij and Gji are complex conjugate quantities, the cross-spectra
are evaluated only for i ≤ j. For a J probes system, the total number
of (complex) cross-spectra to compute is J(J + 1)/2. But one can note
that:

• J are auto-spectra (i = j), real quantities;

• J(J − 1)/2 are actual cross-spectra (i < j), whose real parts Cij
are called ”coincident spectral density functions” or ”co-spectra”,
while their imaginary parts Qij are called ”quadrature spectral
density functions” or ”quad-spectra”.

2. determine the directional spectrum (or the directional spreading func-
tion D(σ, θ)) by inverting the relationship between the cross-spectra and
the directional spectrum.

Under the assumptions fixed above, the relationship between the cross
power spectrum and the wavenumber-frequency spectrum S(k, σ) for
a pair of wave properties was introduced by Isobe et al. (1984):

Gij(σ) =

∫
k

Hi(k, σ)H∗j (k, σ)e−ik(xj−xi)S(k, σ)dk (i = 1, ..., J ; i < j)

(2.14)
Hi and H∗j

7 are transfer functions between the surface elavation signal
and other wave signals (pressure, velocity and slope of the surface).
For the surface elevation, they are trivially equal to 1 and eq. (2.13) is
resorted. The wave-number k is related to frequency through the dis-
persion relation (2.2) and so, according to (2.9), (2.14) can be rewritten
in terms of the directional spectrum S(σ, θ) as:

Gij(σ) =

∫ 2π

0

Hi(σ, θ)H
∗
j (σ, θ)e−ik(xj−xi)S(σ, θ)dθ (i = 1, ..., J ; i < j)

(2.15)
or in terms of the directional spreading function D(σ, θ), exploiting
(2.4):

Gij(σ) = S(σ)

∫ 2π

0

Hi(σ, θ)H
∗
j (σ, θ)e−ik(xj−xi)D(σ, θ)dθ (i = 1, ..., J ; i < j)

(2.16)

The core of the directional wave analysis is the solution of the integral
system of equations (2.16), that is, finding a function D(σ, θ) continuous over
[0; 2π] at each frequency, from a finite and limited number of equations given

7The symbol * stands for the complex conjugation.
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by cross-spectra. Variance density spectrum S(σ) is obtained by performing
Welch’s method with 50% overlapping and Hanning windowing (Bendat and
Piersol, 2011). If an infinite number of wave signals were simultaneously
recorded, the directional spectrum could be uniquely determined.

In the followings, a brief illustration of the chosen techniques (i.e., EMEP
and WFS) is reported, while a more complete description of them and of the
other techniques available can be found, for example, in (Benoit et al., 1997):

• WFSM: Weighted Fourier Series Method (Longuet-Higgins et al., 1963)

It is an easy-implementation computational efficient method, though it
is not one of the more accurate. The method basically consists in cal-
culating an approximation of the directional spreading function D(σ, θ)
using a Fourier Series truncated at order K:

D(σ, θ) =
a0

2π
+

1

π

K∑
n=1

(an cosnθ + bn sinnθ) (2.17)

where

an =

∫ 2π

0

D(σ, θ) cosnθdθ bn =

∫ 2π

0

D(σ, θ) sinnθdθ (2.18)

and a0 = 1. To avoid the occurrence of negative values of the directional
spreading function Longuet-Higgins et al. (1963) introduced a weighting
function WK(θ)

WK(θ) = RK

(
cos

θ

2

)2K

(2.19)

whereRK is the normalization coefficient chosen such that
∫ 2π

0
WK(θ)dθ =

1

RK =
22K−1(K!)2

π(2K)!
(2.20)

WK(θ) has a Fourier series decomposition with coefficients aKk . Con-
volving the truncated Fourier series and the weighting function gives

DWFS(σ, θ) =

∫ 2π

0

WK(θ − θ′)D(σ, θ′)dθ′ = 1

=
1

2π
+

1

π

K∑
n=1

aKk (an cosnθ + bn sinnθ)

(2.21)

For a single point measuring device acquiring the sea surface elevation
and the horizontal displacements, e.g. a directional waverider buoy,
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K=2 and

W2(θ) =
1

2π
+

1

π

[
2

3
cos θ +

1

6
cos 2θ

]
(2.22)

DWFS(σ, θ) =
1

2π
+

2

3π
(a1 cos θ + b1 sin θ) +

1

6π
(a2 cos 2θ + b2 sin 2θ)

(2.23)

a1(f) =
Q12√

C11(C22 + C33)
a2(f) =

C22 − C33

C22 + C33

b1(f) =
Q13√

C11(C22 + C33)
b2(f) =

2C23

C22 + C33

(2.24)

• EMEP: Extended Maximum Entropy Method (Hashimoto et al., 1994).

It basically consists in determining the directional spreading function
by maximizing an entropy function and accounting for errors. For a
detailed description of the method, see (Hashimoto et al., 1994). Com-
putation time is highly variable depending on how easily the iterative
computation finds the solution. Low spectral energies at low and high
frequencies can cause problems with the solution and slow the com-
putation. In these cases the computation may need to be successively
over-relaxed to achieve a converging solution. The authors concluded
that:

– the EMEP can be applied to handle arbitrary-mixed instrument
array measurements;

– when the EMEP is applied to three-quantity measurements, it
yields the same estimate as the MEP (Maximum Entropy Princi-
ple) and has higher resolution than the EMLM (Extended Maxi-
mum Likelihood Method);

– when the EMEP is applied to more than three arbitrary-mixed
instrument array measurements, it yields almost the same esti-
mate as the BDM (Bayesian Direct Method, i.e. the more accu-
rate method) and has the highest resolution among other existing
methods.

2.3 Idealized sea states: analytical spectral

formulations

The analysis of complex realistic problems is usually made by resorting to
simplified idealized conditions. Idealized sea states strictly holds under the
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hypothesis of a constant wind blowing perpendicularly off a long and straight
coastline over deep waters. Nevertheless, often they are employed even if
the founding hypothesis does not strictly hold, because idealized conditions
allow to disentangle the roles of different forcings, highlighting the governing
physical processes at the expenses of minor ones.

In these conditions, sea state wave parameters, i.e. significant wave height
Hs and peak wave period Tp, and the variance density spectrum S(σ) are
determined by the wind speed U , the fetch length F and the time since the
wind started to blow D. Resorting to the concept of equivalent fetch of a
wave component, i.e. the length of the fetch such that the wind has the same
time to transfer energy to the wave component, only wind speed U and fetch
length F are required to describe the sea state. In this context, universal
relationship for wave parameters have been observed and universal spectral
shapes have been proposed. For example in fully-developed conditions, when
fetch length is not relevant, significant wave height Hs and peak period Tp
depend only upon wind speed and dimensionless Hs and Tp are universal
constant. In fact, the use of dimensionless quantities allows to generalize
observations making them independent from the scale of observation.

2.3.1 Completely developed sea states: the Pierson-
Moskowitz spectrum

The first variance density spectral shape S(σ) considered is the fully-
developed spectrum observed by Pierson and Moskowitz (1964). It is a one
parameter spectrum that can be expressed as a function of either wind speed
U , modal frequency σm or significant wave height Hs. If wind speed U is the
parameter of the spectrum, then

S(σ) = Ag2σ−5e−B(g/U/σ)4 (2.25)

where A = 0.0081 is the Phillips constant and B = 0.74.
In the following we will use the modal frequency dependent spectral shape:

to highlight dependence on modal frequency, we can resort to one of the
universal relationship observed, i.e. σm = 0.87(g/U) 8 (Ochi, 2005) obtaining

S(σ) = Ag2σ−5e−P (σ/σm)−4

(2.26)

8In fully developed conditions sea state depends only upon the wind speed U, i.e. fetch
length is not relevant and waters are deep. In such conditions, Pierson and Moskowitz
(1964) found a dimensionless modal period gTm/U = 7.14, yielding to σm = 0.87(g/U).
Here, U is measured 19.5 m above sea level. To account for 10 m wind speed U10,
assuming U19.5 = 1.075U10, dimensionless modal period becomes gTm/U10 = 7.69 and
σm = 0.82(g/U10) (Holthuijsen, 2007)
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being P = 5/4.
Alternatively, Pierson Moskowitz spectrum can be written as a function

of the significant wave height Hs, taking advantage of another universal re-
lationship observed for a fully developed sea state, i.e. Hs = 0.21(U2/g) 9

(Ochi, 2005)

S(σ) = Ag2σ−5e−Q(g/Hs)2/σ4

(2.27)

where Q = 0.032.

2.3.2 Generating sea states: the JONSWAP spectrum

Pierson-Moskowitz spectrum provides good fittings to fully-developed
seas data. For younger fetch-limited seas, i.e. with fetch length shorter
than the equivalent fetch length, the JONSWAP spectrum was proposed
by Hasselmann et al. (1973). The high and low frequency tails of spectra
observed during JONSWAP (JOint North Sea WAves Project) project have
the same shape of those of Pierson-Moskowitz spectra, but JONSWAP peaks
are sharper. Hence, JONSWAP frequency spectrum is expressed as a scaled
Pierson-Moskowitz spectrum, multiplied by a peak-enhancement function

G(σ) = γ
exp

[
− 1

2(σ/σm−1
β )

2]
(2.28)

where β is a peak-width parameter (β = βa = 0.07 for σ ≤ σm and β = βb =
0.09 for σ > σm). The scaling is provided by the AJ parameter. JONSWAP
frequency spectrum is therefore (Holthuijsen, 2007)

S(σ) = AJg
2σ−5e−P (σ/σm)−4

γ
exp

[
− 1

2(σ/σm−1
β )

2]
(2.29)

Parameters of JONSWAP spectrum evolve as the sea-state evolves. In
particular for a constant wind speed, AJ , γ and σm decrease with fetch
length F (Figure 2.1). As the sea state tends to fully developed condi-
tions, AJ → A = 0.0081, γ → 1 and the dimensionless modal frequency
ν = (σm/2π)U/g → 0.13. These are typical values of Pierson-Moskowitz
spectrum parameters. Several authors proposed to model the dependence of
JONSWAP parameters upon ν by using power laws (Hasselmann et al., 1973,
1976; Mitsuyasu et al., 1980; Lewis and Allos, 1990; Young, 1999). Different
coefficients for power laws were obtained from large data sets analyses, in-
cluding JONSWAP project data set. Some discrepancies emerged among the

9In fully developed conditions Pierson and Moskowitz (1964) found a dimensionless
significant wave height gHs/U

2 = 0.21, yielding to Hs = 0.21(U2/g). To account for 10 m
wind speed U10 in place of 19.5 m wind speed, assuming U19.5 = 1.075U10, dimensionless
Hs becomes Hs = 0.24(U2

10/g) (Holthuijsen, 2007)
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Figure 2.1: Parameters of the JONSWAP spectrum as a function of fetch length F (solid
lines), according to Lewis and Allos (1990). Wind speed U = 15 m/s and F values are
chosen in order to keep F between 0 and 104, drawing upon (Lewis and Allos, 1990). Left
panel: scaling parameter AJ . Central panel: peak-enhancement factor γ. Right panel: di-
mensionless modal frequency ν = (σm/2π)U/g. Dashed lines represent parameters values
of the Pierson-Moskowitz spectrum (fully developed conditions): A = 0.0081 (left panel),
γ = 1 (central panel), ν = 0.13 (right panel).

cited studied (Young, 1999). Hence, we choose to model evolution of JON-
SWAP parameters according to the power laws of Lewis and Allos (1990),
since they assume Pierson-Moskowitz shape as correct, thus taking into ac-
count the transition to fully developed conditions:

AJ = 0.032ν0.67

γ = 5.87ν0.86

F = 47.4ν−3.03

(2.30)

where F = Fg/U2 is dimensionless fetch. According to (2.30) and to the def-
initions of dimensionless modal frequency ν and fetch length F , JONSWAP
parameters can be expressed as a function of wind speed U and fetch length
F :

AJ = 0.032
(
F/47.4

)−0.67/3.03
= 0.045

(
F/U2

)−0.22

γ = 5.87
(
F/47.4

)−0.86/3.03
= 9.18

(
F/U2

)−0.28

σm = 2πg/U(F/47.4)−1/3.03 = 16.5(FU)−0.33

(2.31)

Typically, AJ = [0.0081, 0.032], γ = [1, 7] with a mean value of 3.3, σm >
0.13g/U .
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2.3.3 Directional distribution function

The analytic formulations of the directional spectrum S(σ, θ) we will use
in the rest of the thesis are the easiest to be manipulated since we chose a
directional distribution function that does not depend on the frequency σ:

S(σ, θ) = S(σ)D(σ, θ) = S(σ)D(θ) (2.32)

We considered the cos2 directional distribution function (Ochi, 2005).
This directional distribution depends on the direction θ only and has direc-
tional spreading equal to 31.5◦, therefore it can be reasonably employed to
represent short-crested wind sea states (Holthuijsen, 2007):

D(θ) =
2

π
cos(θ − θp)2, −π/2 ≤ (θ − θp) ≤ π/2 (2.33)

θp being peak wave direction. To simplify further the analyses, we will as-
sume peak wave direction θp = 0, i.e. propagation along x axis of a cartesian
reference frame.

2.4 Realistic sea states: spectral numerical

wave modeling

Idealized conditions described above are generally used under the cited
hypotheses, i.e. simple domains and constant winds. In fact, when an accu-
rate prediction of wave parameters (in space and time) is required in presence
of complex domains and rapidly changing winds (in space and time) idealized
conditions can be used only to get a first estimate of wave sea states. The
alternative approach is to integrate the wave energy evolution equation:

dS(σ, θ)

dt
=
∂S(σ, θ)

∂t
+ cg · ∇S(σ, θ) = F (σ, θ) (2.34)

Eq. (2.34) can be integrated either on the wave rays, i.e. following a La-
grangian approach, or locally on the nodes of a discretized spatial domain,
i.e. following a Eulerian approach. Due to the non-linear character of the
processes involved and accounted for in the source term F (σ, θ) 10, the Eu-
lerian approach has been preferred and advanced spectral numerical wave
modeling, i.e. second and third generation models, are therefore based on it.

10Since the source term F (σ, θ) depends on all the components of the directional spec-
trum S(σ, θ), the solution of the evolution equation (2.34) for a spectral component at a
prediction point along a ray requires the knowledge of the energy associated to the other
components of the spectrum, that are obviously unknown. For this reason the Lagrangian
approach has been abandoned (Holthuijsen, 2007).

25



2.4.1 The wave action balance equation

Modern spectral numerical wave models solve the wave action density
balance equation, that will be presented and described in this section. Wave
action density is N(σ, θ) = S(σ, θ)/σ, σ being relative wave frequency, i.e.
the angular frequency in a system moving with the current (if present). The
reason for this change of variable, i.e. from energy density to action density,
is the possibility of including the effects of wave-current interaction into eq.
(2.34). In fact, including them into an energy density based equation implies
adding extra terms representing the effects of the work done by the current
against the radiation stresses. Instead, wave action density equation, though
identical to wave energy density equation, does not require extra terms be-
cause wave action density N(σ, θ) is conserved in presence of an ambient
current. Basically, wave action density equation can be obtained, exactly as
done for wave energy density equation, by balancing the wave action of one
spectral component (σ, θ) traveling through a ∆x∆y cell during a time inter-
val ∆t: change of wave action = net import + local generation. To account
for some wave propagation processes, e.g. shoaling, refraction and others,
also the net import of wave action inside a spectral cell ∆σ∆θ must be con-
sidered. After the three contributions have been made explicit (for details
on how the equation is obtained see for example (Holthuijsen, 2007)), the
equation in its more general form, i.e. holding both in coastal and oceanic
waters 11, reads:

∂N(σ, θ)

∂t
+
∂cg,xN(σ, θ)

∂x
+
∂cg,yN(σ, θ)

∂y
+
∂cg,θN(σ, θ)

∂θ
+
∂cg,σN(σ, θ)

∂σ
=
F (σ, θ)

σ
(2.36)

The same equation can be written in the geographical (λ, φ) domain. Herein,
we will focus on the equation written above in the cartesian domain (x, y),
aware that the same considerations hold also for the equation in the geo-

11The equation herein reported holds both in coastal and oceanic waters. In oceanic,
i.e. deep and far from coasts, waters, a simpler form of the equation can be derived.
It is written for energy density S(σ, θ) since, generally, in oceanic waters the effect of
wave-current interactions is negligible. Moreover, the group celerity, i.e. the speed at
which energy (action) is transported, does not depend on x and y, hence it can be taken
out of the derivatives. Only propagation in the physical domain (x, y) is accounted for.
Hence, processes of refraction, diffraction and shoaling are not modeled. Finally, the source
term does not account for processes like bottom friction, triad wave-wave interactions and
depth-induced wave breaking. The resulting equation is exactly equal to the evolution
equation (2.34)

∂S(σ, θ)

∂t
+ cg,x

∂S(σ, θ)

∂x
+ cg,y

∂S(σ, θ)

∂y
= F (σ, θ) (2.35)
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graphical domain.
The first term of eq. (2.36) accounts for the temporal variation of wave

action density. The second and the third terms represent wave propagation in
the physical space (x, y), while fourth and fifth ones represent wave propaga-
tion in the spectral space (σ, θ). The right-hand side term, i.e. F (σ, θ), is the
source term, collecting the contributions of various processes of generation,
dissipation and transfer of energy over the spectral components. Generation
is due to wind. Dissipation is caused by whitecapping, depth-induced break-
ing and bottom friction. Transfer of energy over the spectral components is
due to non-linear wave-wave interactions in deep waters (quadruplets) and in
intermediate/shallow waters (triplets). Dynamic processes occurring during
wave propagation, e.g. refraction, diffraction, shoaling (depth-induced) and
wave-current interactions, are represented by the left-hand side terms of eq.
(2.36). Refraction due to depth variations and diffraction, though the latter
not properly modeled 12, are accounted for in the fourth term. In fact, the
rotation induced by these processes to spectral components in the physical
space corresponds to propagation along θ in the spectral space, with speed
cg,θ. In the followings we will focus on shoaling and wave-current interaction,
which are two of the processes investigated in Part III. They are typical
intermediate/shallow water processes and, though their causes are different,
they share some common characteristics.

Shoaling

Depth-induced shoaling is the process of steepening of an harmonic wave,
occurring when its phase speed decreases approaching shallower waters. It
is mainly governed by the group speed cg, since balancing energy transport
P = Ecg between two different depth sections (2: deep waters, 1: onshore),
i.e. (Ecg)2 = (Ecg)1, implies that

H2

H1

=

√
cg,1
cg,2

(2.37)

being E = 1/8ρgH2 the energy of an harmonic wave with height H. Hence,
the effect of shoaling on an harmonic wave approaching the coastline over
a flat sloping bottom is to slow down the wave speed and to increase the
amplitude 13. This process is known as ”energy bunching”, namely the hor-

12Diffraction is not properly modeled because the diffraction-induced turning rate
cθ,diff , formulated for an harmonic wave, is modeled in an approximate form for irregular
waves.

13Actually, in a first phase of the propagation towards the coastline, the group speed
increases before decreasing. Hence, looking at eq. (2.40), initially the amplitude of an
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izontal compacting of energy. On the contrary, frequency can be considered
constant during shoaling.

The effect of shoaling on a spectrum can be investigated by looking at
the shoaling effect on each spectral component. Hence, energy globally in-
creases since the amplitude of the harmonics composing the spectrum in-
creases. Mean frequency changes, because low frequency components are
more affected by shoaling with respect to high frequency components. In
fact, deep waters waves are dispersive, so longer low frequency components
travel faster than higher frequency components. Therefore, a down-shifting
on the mean frequency is usually observed on the spectrum while waves
propagate towards shallower waters. In wave action density equation (2.36),
shoaling is accounted for in the second and third terms, where the group
speed variation acts. To highlight the effect of shoaling eq. (2.36) have to be
written in absence of other processes, i.e. no wind generation, dissipation or
energy transfer:

∂N(σ, θ)

∂t
+
∂cg,xN(σ, θ)

∂x
+
∂cg,yN(σ, θ)

∂y
= 0 (2.38)

Assuming a 1D domain and stationary conditions, shoaling can be easily
studied. In fact:

∂cg,xN(σ, θ)

∂x
= 0 (2.39)

which means that for each spectral component:

cg,xN(σ, θ) = const (2.40)

Wave-current interaction

The presence of an ambient time and/or space varying current modifies
the propagation of waves. It interacts with waves by exchanging energy (work
done by the current against the radiation stresses) and by bodily moving its
medium of propagation with varying speed. In the following, we will briefly
discuss which are the effects of current on waves and how they are accounted
for in the wave action balance equation (2.36). A more complete dissertation
on this topic can be found in (Holthuijsen, 2007), for example.

Primarily, we must distinguish among the cases of constant and variable
current speed. In fact in the former case, an harmonic wave propagating on a
moving medium is only bodily transported by the current without changing
wave height, frequency nor direction. Hence, in a moving frame of reference
whose moving speed is that of the current, i.e. V , kinematics of linear wave

harmonic decreases.
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is retained. Accordingly, linear dispersion relationship (2.2) for an harmonic
wave does not change, assuming σ is the relative frequency. The absolute fre-
quency ω, i.e. absolute with respect to a fixed frame of reference, is expressed
by the Doppler-shifted dispersion relationship, accounting for current speed
V :

ω = σ + k ·V (2.41)

where k ·V represents the Doppler shift. Neither ω changes if current speed
is constant. However, the presence of an ambient current, even if constant,
modifies the magnitude and direction (in the absolute reference frame) of
the energy transport. As a matter of fact, group speed cg in the absolute
reference frame is (subscript a stands for absolute, subscript r for relative):

cg,a = cg,r + V (2.42)

On the contrary, the presence of an ambient current that is variable in
space and/or time causes also:

• changes in height, due to energy bunching, refraction and transfer of
energy between current and waves;

• changes in frequency, due to current-induced frequency shifting (in the
reference frame moving with wave action (or wave energy) speed);

• changes in direction, due to refraction.

Studying the wave-current interactions, Phillips (1977) obtained the re-
lationship between relative phase speed of an harmonic wave in a moving
medium c and in still waters c0 (hereinafter, subscript 0 will indicate that
physical parameters are in still waters). Resorting to the wave numbers con-
servation principle in stationary conditions 14, he obtained:

c

c0

=
1

2
+

1

2

(
1 +

4V

c0

)0.5

(2.44)

Eq. (2.44) shows that the phenomenon of a wave entering a moving medium
is governed by the ratio V/c0. It shows also that part of the right-hand side

14Eq. (2.44) was obtained starting from the principle of wave conservation. ∂k/∂t +
∇ω = 0. In 1D stationary conditions, it gives: ω =const. Hence, absolute frequency is
maintained between still and moving (with speed V ) waters. According to eq. (2.42),
since ω = kc it follows that k(c + V ) = k0c0 and in deep waters the following quadratic
equation in c/c0 is obtained,

c2

c20
=

c

c0
+
V

c0
(2.43)

whose solution is eq. (2.44)

29



term vanishes when V = −1/4c0. In other words, when an opposing current
has speed equal to one fourth of the wave phase speed, waves can’t propagate
through the current field. Actually, they break before that limit (Phillips,
1977).

Concerning change in wave height, energy bunching and transfer of energy
are readily accounted for in the wave action balance equation by using the
actual propagation velocity of wave energy, i.e. cg, and by substituting wave
energy balance with wave action balance, respectively. Consider an harmonic
wave with heightH0 that passes from still waters, i.e. with current speed V0 =
0, to a current field with constant speed V . Wave energy is not conserved
in presence of a current, hence we have to balance the transport of wave
action N between a section in still waters and a section in moving waters:
(Ncg)0 = (N(cg + V )) implies that (Phillips, 1977):

H

H0

=
c0√

c(c+ 2V )
(2.45)

where deep waters have been assumed for the sake of simplicity (σ = g/(2cg)
and cg = c/2). Eq. (2.45) models how wave height is modified by an ambient
current. If this is a following current, i.e. V > 0, eq. (2.44) shows that phase
speed is increased and hence, according to eq. (2.45) wave height is reduced.
If waves are propagating against the current, i.e. V < 0, from (2.44) follows
that phase speed is slowed down and consequently according to (2.45) wave
height increases.

In a frame of reference moving with wave action speed, relative frequency
σ evolves in presence of an ambient current. The rate of change is cσ = dσ/dt.
Calling n and m the directions respectively parallel and orthogonal to the
wave propagation direction, i.e. normal to the crest:

cσ =
∂σ

∂d

(
∂d

∂t
+ V · ∇d

)
− cgk ·

∂V

∂n
(2.46)

cσ is the velocity of frequency shifting, that is due to a time variation of water
depth (first term between brackets), to the effect of a current bodily moving
the wave over a horizontally varying bottom (second term in brackets) and
to the effect of a wave moving with horizontally varying current (last term
of the right-hand side).

Current-induced refraction is the change of wave direction due to the
presence of an ambient current. Its rate of change cθ,curr sums to those
ones due to depth-induced refraction cθ,depth and diffraction cθ,diff , and is
expressed by:

cθ,curr = −k

k

∂V

∂m
(2.47)
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Thus, it only acts in presence of a current that is variable along the wave
crest direction m.

2.4.2 The Simulating WAves Nearshore (SWAN) model

To solve the wave action density balance equation on complex domains
and accounting for all the cited processes of wave generation, propagation and
dissipation, numerical techniques are required. To this end, several numerical
models have been developed, e.g. WAVEWATCH (Tolman, 1999), WAM
(The WAMDI Group, 1988; Günther et al., 1992), TOMAWAC (Benoit et al.,
1996), MIKE21-SW (Sorensen et al., 2004) and SWAN (Booij et al., 1999)
among others. They share the most of the features and they mainly differ for
the numerical scheme used to solve eq. (2.36) (e.g. finite differences, finite
elements or finite volumes) and for the formulations of the source terms
adopted. These models are also known as ”spectral wave models” since they
assume a spectral representation of sea states. Alternatively, they are called
”phase-averaging models” since they predict average or integral properties of
the sea state, instead of resolving each single waves, as done by the ”phase-
resolving models”. In fact, the spectral approach takes into account the
amplitudes but not the phases (Young, 1999).

We chose to employ the Simulating WAves Nearshore model (SWAN,
(Booij et al., 1999; The SWAN Team, 2011)), Cycle III version 40.85. As
opposed to other spectral wave models, SWAN has been optimized to be
performant in the nearshore areas of the seas. In fact, in these regions geo-
graphical space must be discretized in order to catch the bottom variability
and the small scale processes that the latter can cause (e.g. depth-induced
breaking, refraction, shoaling). Hence, the resolution of the grids is allowed
to reach very low values, until 10-100 m of cell side. A model with such
resolution cannot simultaneously satisfy Courant criterion 15 and guarantee
a reasonable computational efforts, therefore SWAN is based on an implicit
finite difference numerical scheme that is unconditionally stable 16 (Holthui-
jsen, 2007). Nevertheless, the integration of the source terms is not so stable,
because some of these require an explicit scheme. Hence, differently from

15Courant criterion (Holthuijsen, 2007) requires that an explicit numerical scheme satisfy
the following condition to prevent numerical instabilities: during a time step ∆t wave
energy must not travel more than a cell side ∆x, i.e. ∆t < ∆x/cg,x (analogously for ∆y).
It follows that if ∆x is small enough to catch the bottom variability, ∆t is forced to be
small too. For example, a 0.04 Hz wave on a coastal region (5 m deep) discretized using
100 m side cells, requires a 15 s time step to be modeled.

16Though stable under condition, e.g. Courant criterion, explicit schemes are often
preferred with respect to implicit schemes, because the former are more robust and can
be solved directly without solving implicit equations.
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other models, SWAN applies a limiter to wave action change, to avoid the
development of numerical instabilities.

Grids can be expressed in SWAN by using Cartesian or spherical coordi-
nates and they can be both rectangular or curvilinear. Boundary conditions
are fully absorbing for wave energy leaving the open boundaries or reaching
the coastlines and needs to be prescribed for wave energy entering the compu-
tational domain. The directional spectral space can be discretized in order
to cover the whole range of directions, i.e. θ = [0◦-359◦], or alternatively
only a sector, i.e. θmin ≤ θ ≤ θmax. Frequencies are defined with logarith-
mic distribution between a minimum and a maximum cut-off frequency, i.e.
σmin ≤ σ ≤ σmax Outside this prognostic range, the diagnostic tails are im-
posed, i.e. 0 for σ < σmin and σ−m (m = 4, 5) for σ > σmax. The latter
tail is needed to compute integral wave parameters 17 and to calculate the
non-linear wave-wave interactions at high frequencies.

SWAN models the processes characterizing wave propagation, such as
shoaling, refraction and wave-current interaction. These are represented in
the left-hand side of wave action balance equation (2.36). Additionally, the
processes of generation, dissipation and transfer of wave energy are included
and represented in the right-hand side of eq. (2.36), i.e. in the source term
F (σ, θ). The formulations adopted by SWAN for these processes are the
same as those of WAM model, i.e. WAM Cycle III (The WAMDI Group,
1988) and WAM Cycle IV (Günther et al., 1992). Additionally, as a model
devoted to nearshore areas, SWAN includes depth-induced breaking, bottom
friction and triad wave-wave interactions in intermediate/shallow waters. For
a detailed illustration of the formulations adopted and available with SWAN,
see (The SWAN Team, 2011).

17The integral parameters of the spectrum are calculated from the moments of the
directional spectrum S(σ, θ). The latter are obtained according to eq. (2.6) by integrating
frequency between 0 and ∞. Hence, a diagnostic tail on high frequencies is needed to
extend integration over the maximum cut-off frequency σmax.
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Chapter 3
Stochastic models for space-time
extremes estimate

Stochastic models for wave extreme estimation in the space-time domain
are herein illustrated. We will start from the firstly developed model, based
on Piterbarg’s theorem (Piterbarg, 1996; Krogstad et al., 2004). Then we will
consider an approximation of Piterbarg’s theorem holding for small areas, i.e.
whose side is shorter than a wavelength, due to Forristall (Forristall, 2006).
After that, we will expose Fedele’s method (Fedele, 2012) based on the Adler
and Taylor’s Euler Characteristics approach (Adler, 1981; Adler and Taylor,
2007). Hence, the second-order non-linear correction of maximum sea surface
elevations, based on the Tayfun quadratic equation (Tayfun, 1980), will be
presented. Finally, we will discuss wave breaking, i.e. the physical mechanism
that limits the stochastic estimated maxima.

3.1 Piterbarg’s theorem

Piterbarg’s Theorem (Piterbarg, 1996) states the asymptotic extremal
distributions for homogeneous Gaussian fields in Rn. We take n = 3, as-
suming the stochastic variable is the space-time varying sea surface elevation
ζ(x, t) = η(x, t)/ση, here normalized on the standard deviation of η(x, t),
i.e. ση . The distribution of maxima depends on the size of the space-time
volume V ⊂ R3 and on the size of an average wave W

|V | = XYD |W | = LxLyT (1− α2
xt − α2

xt)
−1/2 (3.1)

Here, X and Y are area sides, D is sea state duration, Lx is mean wavelength,
Ly is mean crest length, T is mean wave period, αxt and αyt account for the
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correlation between space and time derivatives of η(x, t) (see Section 2.2.1).
The equivalent number of waves within V is therefore (Krogstad et al., 2004)

N = 2π
|V |
|W |

= 2π
XY D

LxLyT

√
1− α2

xt − α2
yt (3.2)

Assuming a sample of N waves with parent statistics of this kind:

Nh2
Ne
−h2N/2 = 1 (3.3)

hN represents the maximum among N , i.e. the threshold exceeded once over
N in the sample. A good enough approximation to hN is

hN ∼
√

2 lnN + 2 ln(2 lnN) (3.4)

Taking threshold s >> ση, Piterbarg’s theorem define the cumulative dis-
tribution function of the maximum sea surface elevation ζST over space and
time

Pr(ζST ≤ s) ∼ exp

(
(s2 − 1)

h2
N

exp

(
−1

2
(s2 − h2

N)

))
(3.5)

For large N , (3.5) tends asympotically to the Gumbel distribution (Gumbel,
1958)

G(ζST ≤ s) = exp (− exp (−(hN − 2/hN)(s− hN))) (3.6)

Hence, the expected maximum sea surface height ζST over an area and
during a time interval (space-time domain) is obtained as the expected value
of the Gumbel distribution (3.6) (Krogstad et al., 2004)

ζST = ηST/ση = hN +
γ

hN − 2/hN
(3.7)

being γ ∼ 0.5772 the Euler-Mascheroni constant.
The expected maximum at a fixed point ζT (time domain) stems from a

Rayleigh parent statistics, thus it can be obtained combining

ζT = ηT/ση = hN +
γ

hN
(3.8)

with hN =
√

2 lnN , where the average number of waves N = D/T (time
domain).

To consistently compare results of Piterbarg’s theorem with results of
Fedele’s method that are normalized on the significant wave height Hs, the
expected maximum over the space-time ζST and the expected maximum over
time ζT are rewritten as:

ξST = ζST/4 ξT = ζT/4 (3.9)

in the approximation of a narrow-banded process, in which Hs = 4ση holds.
Hence, results hold when ηST >> Hs/4.
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3.2 Forristall’s approximation for small areas

Forristall found empirically that for small areas, i.e. whose side is smaller
than a wavelength, a good fit to simulated maximum surface elevations ver-
sus area size can be achieved using the following average number of waves
(Forristall, 2006)

N = 2
X

Lx

D

T
(3.10)

Thus, for small areas, the equivalent number of waves is proportional to the
side of the area X, rather than to the area. This is due to the fact that the
maximum is likely to occur on the side of the area when this is small with
respect to the average size of the waves, i.e. LxLy.

In the following analysis, when A ≤ LxLy results of Piterbarg’s theo-
rem will be replaced by those obtained using Forristall’s approximation, i.e.
maxima over space and time (3.7) will be calculated using (3.10) in place of
(3.2).

3.3 Fedele’s method

Assume η(x, t) is a homogeneous (in space) and stationary (in time) Gaus-
sian random field, e.g. the sea surface elevation in deep waters with a low
sea severity. The excursion set UΩ,h is the subset of the space-time volume
Ω (with zero mean and standard deviation ση) such that the threshold h is
exceeded by η(x, t)

UΩ,h = {(x, t) ∈ Ω : η(x, t) > h}

The Euler Characteristic EC of this set is a topological invariant counting
the number of connected volumetric components minus the number of holes
plus the number of hollows in the set. Hence, if the threshold h is high, i.e.
h >> ση, EC counts the local maxima of the sea surface. Adler (1981) and
Adler and Taylor (2007) have shown that the probability that the maximum
exceeds a given high threshold h >> ση is well approximated by the expected
Euler Characteristic EC of the excursion set:

P (max (η) > h|Ω) = E[EC(UΩ,h)] (3.11)

The maximum could exceed the threshold inside the volume V , at one of the
sides of the volume, i.e. over S, or along the perimeter, i.e. along P . Hence,
resorting to Euler Characteristics, the probability (3.11) is splitted among
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three contributions

P (max (η) > h|Ω) = P (max (η) > h|V )+P (max (η) > h|S)+P (max (η) > h|P )
(3.12)

The average number of 3D waves inside the volume has been defined by
Fedele (2012), following Adler and Taylor (2007), as

M3 = 2π
D

T

X

Lx

Y

Ly

√
1− α (3.13)

where α = α2
xt + α2

yt + α2
xy − 2αxtαytαxy. The average number of 2D waves

on the sides of the volume is (Fedele, 2012)

M2 =
√

2π

(
XD

TLx

√
1− α2

xt +
Y D

TLy

√
1− α2

yt +
XY

LxLy

√
1− α2

xy

)
(3.14)

Along the perimeter of the volume, the average number of 1D waves is
(Fedele, 2012)

M1 =
D

T
+
X

Lx
+
Y

Ly
(3.15)

Though, since we are interested in comparing space-time contribution against
time contribution, we will consider the average number of 1D waves as
M1 = D

T
. Spectral parameters involved in the previous formulae have been

introduced and presented in Section 2.2.1, equation (2.7).
Given a sea state with sea severity Hs, the probabilities of exceedance

(Fedele, 2012) of 3D, 2D and 1D waves are respectively

PV (h|Hs) = [16(h/Hs)
2 − 1]P (h|Hs)

PS(h|Hs) = 4(h/Hs)P (h|Hs)

PP (h|Hs) = P (h|Hs)

(3.16)

where P (h|Hs) = exp
(
−8 h2

H2
s

)
is the Rayleigh exceedence distribution func-

tion, holding in time domain under the narrow-banded process hypothesis.
Assuming stochastic independence among waves, according to Fedele

(2012) the exceedance distribution of the maximum (3.12) can be written
as

P (max (η) > h|Ω) = M3PV (h|Hs) +M2PS(h|Hs) +M1PP (h|Hs) (3.17)

Hence, the expected maximum sea surface height over an area A and
during an interval D follows from Gumbel asymptotics (Gumbel, 1958)

ξST = ηST/Hs = hN +
γ

16hN − (32M3hN+4M2)

(16M3h2N+4M2hN+M1)
(3.18)
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where hN is calculated from the parent statistics

(16M3h
2
N + 4M2hN +M1) exp (−8h2

N) = 1. (3.19)

The expected maximum sea surface height at a fixed point is recovered
imposing X = Y = 0 in the previous equations:

ξT = ηT/Hs = hN +
γ

16hN
(3.20)

where hN =

√
ln D/T

8
.

Since results are normalized on significant wave height Hs, in the approx-
imation of a narrow-banded process (Hs = 4ση), results of Fedele’s method
hold when ηST >> Hs/4.

The method of Fedele differs from Piterbarg’s theorem because, thanks to
Euler Characteristics, it splits the average number of waves (3.2) into three
contributions, namely (3.13), (3.14) and (3.15). This is aimed to take into
account the probability that maxima could also occur on the boundaries of
the space-time volume, i.e. on the [X,Y], [X,T], [Y,T] faces or on the X, Y, T
lines. This allows the analysis to be performed even on small areas, i.e. areas
with sides shorter than the mean wavelength. Moreover, a new coefficient for
the correlation between space derivatives of η(x, t), i.e. αxy, is introduced.
Forristall’s approximation holds on small areas too, but not on large ones.

3.4 Non-linear correction

To account for second-order non-linearities in the wave profile, we cor-
rected expected maxima over an area ξST and at a point ξT , according to
Tayfun quadratic equation (Tayfun, 1980) 1:

ξST,2 = ξST +
µ

2Hs

ξ
2

ST

ξT,2 = ξT +
µ

2Hs

ξ
2

T

(3.21)

In literature, when non-linear correction is applied to Piterbarg’s theorem,
i.e. to Piterbarg’s theorem, the stochastic model is named Tayfun-Piterbarg
model.

1Tayun equation has been originally derived for normalized crests (on standard devia-
tion σ), hence in case of crests normalized on significant wave height Hs the second-order
contribution has to be divided by Hs.
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Here, µ is an integral measure of steepness (Fedele and Tayfun, 2009).
It is related to the skewness coefficient λ, since µ = λ/3. Nevertheless,
this estimate of µ is statistically unstable, because it could be affected by the
presence of trends or exceptionally high waves. A more stable estimate can be
achieved by using the variance density spectrum S(σ): for a narrow-banded
sea state, µ is obtained as µm = σησ

2
m/g, being ση the standard deviation

of η and σm = m1/m0 the mean frequency based on the first order moment
m1 of the variance density spectrum. Resorting to the bandwidth parameter
ν =

√
(m0m2)/m2

1 − 1 of Longuet-Higgins (1975), steepness calculation can
be generalized to arbitrary bandwidth sea states:

µ = µm(1− ν + ν2) (3.22)

3.5 Physical limiter to stochastic models: the

wave breaking

According to wave mechanics, growth of a single wave is limited by the
dissipative process known as wave breaking. Due to its strong non-linear
character, wave breaking remains one of the least understood processes in
wave mechanics. This is of two kinds:

• depth-induced breaking, occurring in coastal shallow waters when the
wave looses its stability due to a wave height H too high with respect
to the local water depth d. Thus, the breaking criterion is expressed
through a breaker index γb

Hmax

d
= γb (3.23)

A typical range of γb for the individual wave height in an irregular wave
field is 0.7÷0.8 (Holthuijsen, 2007), though ratios of 0.5 as well as ratios
of 1.5 have been observed, depending on the incident wave steepness
and on the beach slope.

• steepness-induced breaking (white-capping), occurring when the steep-
ness H/L of an individual wave reaches a limiting value after which
the wave looses its stability (L is wavelength). It occurs at any relative
water depth, but since shoaling enhance wave steepness, white-capping
increases its importance in coastal waters. It also verifies in presence
of a strong opposing current, i.e. when current speed approaches one
fourth of the wave phase speed. For a regular wave (i.e. periodic and
fixed in shape), Miche (1944) obtained the following breaking criterion,
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based on the fact that the particle velocity in the crest cannot overcome
the phase speed of the wave:

Hmax

L
= 0.14 tanh (kd) (3.24)

Eq. (3.24) implies that Hmax/L = 0.14, occurring in deep waters, is an
upper bound. However, observations showed that also other parame-
ters, e.g. degree of short-crestedness and wind speed, seem to control
the phenomenon (Holthuijsen, 2007).

Hence, a wave is stable if:

Hmax < min (γbd, 0.14 tanh (kd)L) (3.25)

While the depth-induced breaking criterion (3.23) holds for an individual
irregular wave, the steepness-induced one (3.24) was obtained for a individual
regular wave. According to Tayfun (2008), Miche criterion cannot be used as
a consistent indicator of wave breaking for irregular waves, but it represents
an upper bound for the maximum height a large wave can reach. Indeed,
according to the theory of Quasi-Determinism of Boccotti (2000), large waves
behaves more like regular than irregular waves.

Quasi-determinism theory (Boccotti, 2000) states that if a large crest
C/ση >> 1 (ση being standard deviation of η(x, t)) occurs at a point x0, then
most likely this is the crest of a 3D wave group at the apex of its development.
In these conditions, the profile of the wave group has a deterministic shape.
In the time domain, i.e. fixing x = x0, it is

η(x0, T ) = Cψ(T ) (3.26)

where ψ(T ) is time autocovariance function 2 of η(x0, t), normalized on the
maximum in order to vary between 1 and -1. T is the time lag from the
occurrence of the large crest t0, herein set to t0 = 0 without loss of generality.
In accordance to the latter specifications, when T = 0, then η(x0, 0) = C.
Crest height C can be rewritten using Tayfun quadratic equation,

C = C1 +
µ

2ση
C2

1 (3.28)

2Time autocovariance function describes how much the surface elevation η(t) and a
T -shifted surface elevation η(t + T ) are correlated. In fact, for a zero-mean process as
η(t) is, autocovariance equals autocorrelation. It can be obtained from the time series,
as ψ(T ) = η(t)η(t+ T ), or alternatively via spectral estimate, according to the Wiener-
Kintchine theorem:

ψ(T ) =

∫ ∞
0

S(σ) cos (σT )dσ (3.27)
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C1 being the linear component of the actual crest height C, obtained solving
eq. (3.28) 3. Hence, the deterministic profile of the wave group with large
crest C can be corrected to account for second-order non-linearities:

η(x0, T ) = C1ψ(T ) + C2
1

µ

2
(ψ2(T )− ψ̂2(T )) (3.29)

where ψ̂(T ) is the Hilbert transform 4 of ψ(T ).
To check if the expected maximum sea surface elevations estimated by the

stochastic models of Piterbarg and Fedele belong to stable, i.e. non-breaking,
waves the following approach could be followed:

1. consider the result of the model, i.e. ξST (linear) or ξST,2 (non-linear).

If ξST >> Hs/4 (ξST,2 >> Hs/4), then the maximum expected sea
surface height in space-time is likely to be the crest C of the central
wave of a group at the apex of its development

C = ξST or C = ξST,2 (3.31)

Hence, according to Boccotti (2000) the profile of this wave is (3.26)
(or (3.29) in case of second-order correction). The wavelength L of
this wave can be inferred the dispersion relationship (2.2) by using the
wave period estimated from the profile η(x0, T ), after zero-crossing.
Alternatively, the wave period can be assumed to be equal to the peak
period Tp

5, since the the propagation speed of the waves in the group
is nearly equal to that associated with Tp (Boccotti, 2000). The wave
height H can be obtained following Quasi-determinism theory:

H = C(1 + |ψ(T∗)|) (3.32)

where T ∗ is the abscissa (time) of the first minimum of autocovariance
function ψ(T ), herein taken in absolute value 6.

3Tayun equation has been originally derived for normalized crests (on standard devia-
tion σ), hence in case of dimensional crests the second-order contribution has to be divided
by σ.

4The Hilbert transform of a real-valued function x(t), defined within −∞ < x(t) <∞,
is:

x̂(t) =
1

τ

∫ ∞
0

x(τ)

t− τ
dτ (3.30)

5If peak period is not available, the period TC of the wave with crest C can be reasonably
assumed to be TC = 1.3T (Gōda, 2010), T being the mean wave period (see (2.7)). A
similar result can be inferred assuming a JONSWAP spectrum according to (Boccotti,
2000). Indeed, TC = 0.97Tp and Tp/T = 1.41 for a spectrum with high frequency tail
proportional to σ−5 (σ is angular frequency). Hence, TC = 0.97 · 1.41T = 1.37T .

6|ψ(T∗)| is a narrow-bandedness parameter (Boccotti, 2000), being 1 for a narrow-
banded process and 0 for a wide-banded process. Hence, if the process is linear and
narrow-banded, then H = 2C as expected.
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2. the maximum wave height Hmax of a stable wave is calculated according
to the Miche criterion (3.24)

Hmax = 0.14L tanh (kd) (3.33)

Here, L is the wavelength of the wave with crest C, previously esti-
mated.

3. the maximum crest height Cmax,1 of a stable linear wave is obtained
from (3.32):

Cmax,1 =
Hmax

1 + |ψ(T∗)|
(3.34)

The maximum crest height Cmax,2 of a stable non-linear (second-order)
wave is obtained from Cmax,2 once again resorting to Tayfun quadratic
equation (3.28).

4. finally, we end up with 3 breaking criteria: one for wave height H of
the maximum wave in space-time 7, i.e. H > Hmax, and two for the
maximum crest in space-time, i.e. C > Cmax,1 for linear crest and
C > Cmax,2 for non-linear (second-order) crest.

An alternative, more straightforward though equivalent, approach to eval-
uate the stability of waves predicted by stochastic models is to verify that
the steepness ε of the wave with crest C (and wavenumber kp, associated to
peak period)

ε = kpC (3.35)

does not exceed the Stokes limiting steepness εmax, obtained from Miche-
Stokes criterion (3.24):

• εmax = 0.44, for a narrow-banded linear process;

• εmax = 0.89/(1 + |ψ(T ∗)|), for a linear process with narrow-bandedness
parameter |ψ(T ∗)|.

A second-order-based criterion is herein ignored since its implementation
requires the calculation of Hmax through eq. (3.33).

7According to Stokes theory, second-order non-linearities do not affect wave height but
only wave crest and wave trough.
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Chapter 4
Space-time extremes from
stereo-photogrammetric data

4.1 Introduction

In this Chapter, we will report on the exploitation of field data to validate
stochastic models for wave extreme prediction in the space-time domain. To
our best knowledge, this is one of the first time such stochastic models are
validated against field data. Indeed until now, their capability to predict
wave extreme over space-time has been mostly proved resorting to labora-
tory experiments (Forristall, 2011) or numerical modeling (Forristall, 2005,
2007; Krogstad et al., 2004; Socquet-Juglard et al., 2005). Only recently,
Fedele et al. (2011) compared stereo-photogrammetric measurements with
theoretical prediction of Tayfun-Piterbarg’s theorem. The aforementioned
comparisons concern Piterbarg’s theorem only. In fact, Fedele’s method
was validated for the first time by Fedele et al. (2012, 2013): using stereo-
photogrammetric measurements they proved its capability to predict the ex-
pected ratio between the maximum over an area and the maximum at a given
point during a sea state, i.e. ηST/ηT .

In this context, we were aimed at testing the performance of both stochas-
tic models in the prediction of the expected maximum sea surface elevation
ηST occurring during a sea state over an area. However, validation of such
stochastic models is a challenging task. First of all, field data sets in space-
time are difficult to be gathered for the same reasons that cause directional
spectra to be rarely available (see Section 2.2). Then, the data sets must be
sufficiently extended over both space and time, but particularly over space,
to guarantee at the same time a numerous enough sample and stochastic
independence of the elements included in the sample. Finally, the data sets
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must be composed of elements consistent with the non-unique concept of a
wave in space-time. In fact, as stated in Section 1.1.3, there is no univoque
definition for a wave in space.

At present, only few instruments can record space-time evolution of waves:
stereo-photogrammetric systems and radars. Though the latter can cover
larger areas with high spatial resolutions, they cannot guarantee sufficient
time resolutions. To validate Piterbarg’s theorem and Fedele’s method we
took advantage of the 3D sea surface profile reconstructed by a novel stereo-
photogrammetric technique, i.e. Wave Acquisition Stereo System (WASS,
(Benetazzo, 2006)). This was used on one hand to extract the sea surface
elevation maxima during a sea state at random points and over different size
areas around the same points. On the other hand, it was used to calculate
the directional spectrum of the sea state and to apply Tayfun-Piterbarg’s
and Fedele’s models (corrected to the second order). Then, by comparing
measured maxima with those predicted by stochastic models we evaluated
their performance in predicting space-time maxima of sea states ηST .

WASS data were gathered during two different field campaigns. The first
set of experiments was performed in March 2013 at the ISMAR-CNR oceano-
graphic tower ”Acqua Alta” (Figure 4.1), located in the northern Adriatic
Sea 16 km off the Venice coast at 17 m water depth. The second field
campaign was conducted in April 2013 in the southern Adriatic Sea from
a ship, the ISMAR-CNR ”R/V Urania”. Description of this novel stereo-
photogrammetric technique is detailed in (Benetazzo et al., 2014).

4.2 Field campaign at CNR-ISMAR oceano-

graphic tower ”Acqua Alta”, northern Adri-

atic Sea

4.2.1 Data description

The first experiment was conducted on 15.03.2013 (11.41UTC) at ISMAR-
CNR oceanographic tower ”Acqua Alta” (Figure 4.1) in the northern Adri-
atic Sea, during a crossing-sea event: North-East wave (Bora) conditions
were crossing South-East (Sirocco) waves. In fact, the wind was rotating
from Bora to Sirocco. Mean wind speed was 5.20 m/s and significant wave
height Hs was 0.58 m. Table 4.1 summarizes sea state conditions during
the experiment, represented by the spectral parameters available from data
recorded by permanent instrumentation installed on the sea bottom, i.e. an
AWAC Acoustic Doppler Current Profiler (AWAC-ADCP).
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Figure 4.1: ISMAR-CNR oceanographic tower ”Acqua Alta” (right), located in the north-
ern Adriatic Sea (left) 16 km off the Venice coast at 17 m water depth (label AA in left
panel).

Data Unit AWAC-ADCP

Hs (m) 0.58
Tp (s) 3.83
T02 (s) 2.87
θp (◦N) 58.44

θ (◦N) 64.40

Table 4.1: Sea state conditions during experiment at oceanographic tower ”Acqua Alta”
(15.03.2013 11.41UTC) represented by spectral parameters from permanent instrumen-
tation (AWAC-ADCP). Hs: spectral significant wave height; Tp: peak wave period; T02:
mean wave period; θp and θ: peak and mean wave direction, here intended as the directions
from which waves are coming from, referred to the geographical North.
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Data basically consist of 5850 stereo-photogrammetric image pairs recorded
by two cameras installed on ”Acqua Alta” tower 12.5 m above the mean sea
level. The frame rate was 10 Hz, hence a sea state of nearly 10 minutes
was remotely sensed (Figure 4.2). WASS system error on surface elevations
was estimated to be 0.02 m. A detailed description of WASS deployment at
”Acqua Alta” is reported in (Benetazzo et al., 2012).

4.2.2 Directional spectrum calculation

After the 3D profile was reconstructed, in order to calculate the direc-
tional spectrum S(σ, θ) 14 virtual probes were randomly chosen inside the
area framed by WASS (Figure 4.2) and corresponding time series were ex-
tracted from the space-time data set. The relative positions of the probes
were chosen in order to guarantee that the following criteria were satisfied
(Gōda, 2010):

• no pair of probes should have the same vectorial distance;

• the vectorial distance should be distributed uniformly in a range as
wide as possible;

• the minimum distance between a pair of probes should be smaller than
half the wavelength of the shortest component included in spectral
analysis.

The time series at the probes were smoothed to remove outliers and also
filtered to remove high frequency noise. Smoothing was performed by using a
weighted moving average. Since time series frequency spectra showed a noise
floor from approximately 2 Hz (i.e. 12.57 rad/s) to the Nyquist frequency
of 5 Hz (i.e. 31.42 rad/s) data were filtered by means of a low-band pass
frequency filter, with cut-off frequency equal to 12.57 rad/s (Figure 4.3).

Following procedures described in Section 2.2.2, the directional spectrum
S(σ, θ) was estimated by applying a stochastic method of analysis, precisely
the Extended Maximum Entropy Method (EMEP), on an array of virtual
wave probes. EMEP is implemented within the DIWASP toolbox for MAT-
LAB (Johnson). The toolbox version available at the moment we performed
analysis, i.e. version 1.3, showed some bugs 1. Therefore, we adapted and

1The following version of DIWASP toolbox, i.e. version 1.4, has the cited bugs fixed
and can be used to calculate directional spectrum with some warnings: (i) use cartesian
convention for angles since nautical convention does not properly work again; (ii) carte-
sian 3D plots are not completely displayed, so it is preferable to use polar plots; (iii)
the ambiguity in wave direction calculation is due to the possibility of performing cross-
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Figure 4.2: Area framed by WASS. Gray dots are points of stereo-photogrammetric anal-
ysis for profile reconstruction. Virtual probes for directional spectrum calculation are
highlighted by red asterisks.
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Figure 4.3: Time series frequency spectrum at one of the virtual probes of Figure 4.2
(blue): smoothed (red), smoothed and filtered (green).
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corrected DIWASP version 1.3 to fix bugs concerning the estimate of spectral
significant wave height Hs and ambiguity in wave direction calculation. Af-
ter correction, we calculated the directional spectrum S(σ, θ), that is showed
in Figure 4.4-a in cartesian (σ, θ) coordinates and in Figure 4.4-b in polar
(σ, θ) coordinates. Directional and frequency resolutions are ∆θ = 3◦ and
∆σ ∼ 0.25 rad/s, respectively. Some parameters of the directional spectrum,
i.e. the same available from reference instrumentations in Table 4.1, are
summarized in Table 4.2.

Data Unit Value

Hs (m) 0.59 ± 0.02
Tp (s) 3.66
T02 (s) 3.02
θp (◦N) 58.00

θ (◦N) 85.00

Table 4.2: Parameters of the directional spectrum S(σ, θ) calculated using EMEP. Hs:
spectral significant wave height; Tp: peak wave period; T02: mean wave period; θp: peak
wave direction; θ: mean wave direction. Directions are here intended as the direction from
which waves are coming from.

A direct comparison of Table 4.1 and Table 4.2 revealed that spectral pa-
rameters of the directional spectrum calculated through EMEP are in agree-
ment with the same parameters obtained by AWAC-ADCP and WASS: Hs

differs for a 2% from ADCP observations; Tp, T02 and θp differ for 4%, 5%
and 1%, respectively. θ is less in agreement with AWAC-ADCP observa-
tions, differing for a 32%. This is probably due to an erroneous detection
of a changing direction by AWAC-ADCP. Beside this, the omnidirectional
frequency spectrum S(σ) =

∫ 2π

0
S(σ, θ)dθ in Figure 4.5 pointed out that the

high frequency tail of the estimated spectrum is consistent with those gener-
ally observed on wave spectra, in particular by Forristall (1981) 2. Indeed, it

spectral analysis with two different functions: in fact, built-in MATLAB function cpsd.m
and DIWASP function diwasp csd.m (according to the manual, to be used when built-in
function is nota available) calculate opposite imaginary parts of spectra, hence results are
180◦ shifted; we recommend to use DIWASP function diwasp csd.m to get correct results,
otherwise directions are not consistent with the rest of the toolbox.

2Following Phillips (1958), the high frequency tail of S(σ), i.e. σ > σp, decays following
a power law of this kind: S(σ) ∼ αg2σ−n. This range of the spectrum where the energy
exchange between wind and sea is accounted for, is called saturation or equilibrium range.
According to Phillips (1958), the power n was theoretically estimated to be equal to 5.
However, observational studies (Toba, 1973; Forristall, 1981; Battjes et al., 1986) have
shown different behaviors. For example, Forristall (1981) reported of a n = 4 power law
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Figure 4.4: Directional spectrum S(σ, θ) calculated using EMEP. Directions here are prop-
agation directions, therefore 180◦ shifted with respect to directions in Table 4.1 and Ta-
ble 4.2. Resolutions are ∆θ = 3◦ and ∆σ ∼ 0.25 rad/s). (a) Cartesian σ − θ coordinates.
(b) Polar σ − θ coordinates.
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initially decays with σ−4, while it seems to decay with σ−5 for σ > 3 rad/s.
Nevertheless, due to the limitations of EMEP and the fact that calculation
is performed on a limited number of probes, we observed the presence of
energy on directions that are not consistent with the wave field analyzed
(Figure 4.4).

In such conditions, spectral analysis through EMEP detected a short-
crestedness parameter γs = 0.95, hence short crested conditions, which is a
situation consistent with a generating crossing-sea.
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Figure 4.5: Omnidirectional frequency spectrum S(σ). The power laws σ−4 and σ−5 are
plotted as straight lines with -4 (blue) and -5 (red) slopes.

4.2.3 Stochastic models validation

To estimate the expected maxima from WASS measurements, the same
14 points used for EMEP analysis were chosen (Figure 4.6) and 26 square
areas were built around each of them, whose sizes ranges from 0 to 156.25
m2. The number of points and the size of the areas were constrained by the
need of a sufficient number of space-time volumes from one side and by the
small size of the framed area from the other side. In our opinion, what we
got is a good compromise between these two constraints.

next to the peak, followed by a n = 5 power law. The higher frequency range of the
spectrum has been less investigated because of the reduced signal-to-noise ratio.
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Figure 4.6: ”Acqua Alta” tower experiment (15.03.2013 11.41UTC): rectangular area for
space-time extremes analysis. Black circles are points of analysis.

For each area size, the expected maximum η̂ST was calculated averaging
the maxima η̂ST observed inside each area during the whole sea state dura-
tion, i.e. nearly 10 minutes 3. Expected values of observations are provided
with confidence interval ±ση̂ST , which accounts also for the error of WASS
system (ση̂ST being the standard deviation of η̂ST ). Then, space-time anal-
ysis was performed using Tayfun-Piterbarg’s theorem and Fedele’s method
corrected to the second order to calculate the expected maxima ηST over the
areas of listed sizes and during approximately 10 minutes. Results are shown
in Figure 4.7 for Tayfun-Piterbarg’s theorem and in Figure 4.8 for Fedele’s
method.

Figure 4.7 and Figure 4.8 give another experimental proof of the fact that
the maximum sea surface elevation over an area is larger than that occurring
at a point. In fact looking at results for the largest area (i.e. 156.25 m2), the
normalized expected maximum sea surface elevation measured by WASS was

ξ̂ST = η̂ST/Hs = 1.27. At the same time, the normalized expected maximum

over a point, i.e. represented by 0 m2 area, was ξ̂T = 0.90. Hence, the ratio

of the expected maxima over space-time and over time was ξ̂ST/ξ̂T = 1.41, at
156.25 m2. The measurement uncertainties, indicated in Figures by the con-
fidence interval, were quite large and reached their maximum at the smaller

3We recall that x means expectation of x and x̂ indicates that x is observed.
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Figure 4.7: Tayfun-Piterbarg’s theorem predictions (black asterisks) versus WASS observa-
tions (gray solid line) at ”Acqua Alta” tower (15.03.2013 11.41UTC): expected maximum
over space-time as a function of area size. Observations are provided with confidence in-
terval ±ση̂ST

(grey): the narrower band (darker gray) is without WASS error (i.e. 0.02
m). (a) Linear plot. (b) Log plot, to emphasize small areas.
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Figure 4.8: Fedele’s method predictions (black asterisks) versus WASS observations (gray
solid line) at ”Acqua Alta” tower (15.03.2013 11.41UTC): expected maximum over space-
time as a function of area size. Observations are provided with confidence interval ±ση̂ST

(grey): the narrower band (darker gray) is without WASS error (i.e. 0.02 m). (a) Linear
plot. (b) Log plot, to emphasize small areas.
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areas and at the point observation (0 m2). The large standard deviation at
the point observation is an effect of short-crestedness of the sea state. In
fact, in a long-crested sea spatial variability of the expected maximum η̂ST
would have surely been much lower. Standard deviation decreased increas-
ing area size. This means that the fluctuations around the expected value of
the maxima measured over various equal size areas, here represented by the
standard deviation, tend to decrease for larger areas. This can be due to a
right convergence of maxima towards a single expected value but also to an
effect of superposition of the areas that, while increasing, at some time could
overlap and detect the same maxima. This latter effect could be avoided if
larger framed areas were available. Unfortunately, at present it is not easy
to meet the need of larger areas with high space-time resolutions.

Both stochastic models reproduced the trend of measured η̂ST (A). How-
ever, Tayfun-Piterbarg’s theorem underpredicted the observed η̂ST for largest
area sizes (Figure 4.7), at least while Forristall approximation is used. In
fact, for area sizes greater than 40 m2 and smaller than 140 m2 Tayfun-
Piterbarg’s theorem predictions fell outside the confidence interval. On the
contrary, Fedele’s method was in agreement with observations, falling always
within η̂ST (A) ± ση̂ST (Figure 4.8). The motivation for Tayfun-Piterbarg’s
theorem underpredition is in the size of the space domain used. In fact, we
were analyzing relatively small areas with respect to the average size of a 3D
wave. The largest analyzed area, i.e. 156.25 m2, has a 12.5 m side, while the
wavelength Lx was 11 m. Hence, Tayfun-Piterbarg’s theorem could not be
applied in its original version for the smallest areas because, being asymp-
totic, it works only for large areas. For this reason, as stated in Section 3.2,
we calculated the average number of waves in the domain through Forristall’s
approximation when area side was smaller than wavelength, i.e. below 140
m2. As a matter of fact, Forristall’s approximation seemed to be inaccurate
for the bigger

√
A/Lx ratios 4. Moreover, it seemed to be inconsistent with

the point estimate for the smaller areas (Figure 4.7). Over 140 m2 Tayfun-
Piterbarg’s theorem seemed to work fine. On the contrary, Fedele’s method
accounts for the possibility that maxima occur on the boundary of the do-
main, hence it works even for areas smaller than the characteristic size of a
wave. Nevertheless, accuracy in prediction of maxima increased as area sizes
increased (Figure 4.8).

4Forristall’s expression for the number of waves in small areas condition was obtained
experimentally but was not given together with a range of applicability. From results in
(Forristall, 2005) it seems however that the agreement with simulations is good down to√
A/Lx ∼ 0.1 and up to

√
A/Lx ∼ 1. Nevertheless, it must be pointed out that these results

have been obtained by fitting theoretical predictions to simulations, since the irregularity
parameter α was unknown.
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Performances of stochastic models prediction with respect to WASS ob-
servations are summarized by statistics in Table 4.3. It is worthwhile to
point out the high correlation coefficients (i.e. larger than 0.98) and the low
RMSE (i.e. 0.02 m and 0.01 m) for both the stochastic models. Coefficient
of determination and best fit line slope were considerably higher for Fedele’s
method. Moreover, a larger Bias (negative, meaning underestimation) was
observed for Tayfun-Piterbarg’s theorem, though rather small compared to
the absolute value of observations.

CC RMSE (m) p Bias (m) R2

WASS/Tayfun-Piterbarg 0.96 0.02 0.79 -0.04 0.50
WASS/Fedele 1.00 0.01 0.93 0.01 0.98

Table 4.3: Statistics of prediction from stochastic models with respect to WASS observa-
tions at ”Acqua Alta” tower. CC: correlation coefficient, RMSE: root mean square error,
p: best fit line slope, Bias, R2: coefficient of determination.

4.3 Field campaign from CNR-ISMAR oceano-

graphic R/V ”Urania”, southern Adri-

atic Sea

4.3.1 Data description

The second experiment was conducted on 14.04.2013 08.12UTC. WASS
system was deployed on board the ISMAR-CNR R/V Urania during an
oceanographic cruise in the southern Adriatic Sea. Wind was blowing with
an average wind speed of 7.1 m/s from 312.2◦N. During the experiment the
ship was drifting towards wind direction with average speed of 0.23 m/s.
However, the space-time extremes analysis should not be affected by the
slow drift of the ship, which can be estimated to be approximately the 6%
of the wave celerity associated to the mean wave period. Moreover, since we
are looking at maxima of time and space-time series rather than at a time
sequence at a fixed point, maxima can be considered independent being sep-
arated one form each other by a certain time lag. 12 minutes long sequence
was acquired by WASS cameras at 15 Hz while the ship was in 1000 m deep
waters. Then, data were processed to retrieve the 3-D sea surface profile,
accounting also for the rotations of the ship.

57



4.3.2 Directional spectrum calculation

Prior to spectral calculation, in order to remove high frequency noise
on the data set, this was smoothed using a median filter in space using
a 3x3 window. Then, the time series at each WASS point were filtered
by means of low-pass frequency filter with 1 Hz cut-off frequency. Hence,
wavenumber spectrum S(kx, ky) was obtained by Fourier transforming the
sea surface elevation field at each frame of the WASS dataset and averaging
all the spectra so obtained. Then, resorting to (2.9), the directional spectrum
S(σ, θ) was calculated (Fig. 4.9). Sea state spectral parameters from WASS
are summarized in Table 4.4. They represent the only available data of the
sea state, since no other instrument was deployed at the moment. To compare
WASS measurements we benefitted of the SWAN numerical model results we
set up on the Mediterranean Sea, forced by COSMO-I7 winds (see Chapter
7). For this sea state, short-crestedness parameter was estimated to be 0.51.

Data Unit Value

Hs (m) 0.64 ± 0.02
Tp (s) 3.22
T02 (s) 2.34
θp (◦N) 335.90

Table 4.4: Parameters of the directional spectrum S(σ, θ). Hs: spectral significant wave
height; Tp: peak wave period; T02: mean wave period; θp: peak wave direction. Directions
are here intended as the direction from which waves are coming from, in analogy with
wind convention.

Differently from ”Acqua Alta” experiment, spectral resolution for ”R/V
Urania” experiment depends upon the size of the framed area. Since it is
quite small, the wavenumber spectrum S(kx, ky) and the directional spec-
trum S(σ, θ) are roughly discretized over the spectral domain. This certainly
introduce some inaccuracies in the space-time extremes prediction. In fact,
besides the rough spectral discretization cited, low frequency components
are not described within the spectrum but at the same time they contribute
to the observed values of maxima. Nevertheless, at present this is the best
resolution we can get. Hence, we accept it aware of the fact that space-time
extremes obtained by stochastic analysis could underestimate to some extent
the actual observed maxima.
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Figure 4.9: Spectra from R/V Urania experiment. (a) Directional spectrum S(σ, θ), carte-
sian σ − θ coordinates. (b) Directional spectrum S(σ, θ), polar σ − θ coordinates. Direc-
tions here are propagation directions, therefore 180◦ shifted with respect to directions in
Table 4.4 and wind direction.
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Figure 4.10: R/V ”Urania” experiment (14.04.2013 08.12UTC): rectangular area for space-
time extremes analysis. Black circles are points of analysis.

4.3.3 Stochastic models validation

Expected maxima from WASS measurements were estimated by choosing
25 points (Figure 4.10) over the framed sea portion and 26 square areas built
around each point. Area size ranges from 0 to 156.25 m2. As already stated
for ”Acqua Alta” experiment, the number of points and the size of the areas
were constrained by the need of a sufficient number of space-time volumes
from one side and by the small size of the framed area from the other side.

For each area size, the expected maximum η̂ST was calculated averaging
the maxima η̂ST observed inside each area during the whole sea state dura-
tion, i.e. nearly 12 minutes. Expected values of observations are provided
with confidence interval ±ση̂ST , which accounts also for the error of WASS
system (ση̂ST being the standard deviation of η̂ST ). Then, space-time anal-
ysis was performed using Tayfun-Piterbarg’s theorem and Fedele’s method
corrected to the second order to calculate the expected maxima ηST over the
areas of listed sizes and during approximately 12 minutes. Results are shown
in Figure 4.11 for Tayfun-Piterbarg’s theorem and in Figure 4.12 for Fedele’s
method.

The experimental evidence that the maximum over an area is larger than
that at a single point was verified also in this experiment. Indeed, the nor-
malized expected maximum sea surface elevation measured by WASS was
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Figure 4.11: Tayfun-Piterbarg’s theorem predictions (black asterisks) versus WASS obser-
vations (gray solid line) from R/V ”Urania” (14.04.2013 08.12UTC): expected maximum
over space-time as a function of area size. Observations are provided with confidence in-
terval ±ση̂ST

(grey): the narrower band (darker gray) is without WASS error (i.e. 0.02
m). (a) Linear plot. (b) Log plot, to emphasize small areas.
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Figure 4.12: Fedele’s method predictions (black asterisks) versus WASS observations (gray
solid line) from R/V ”Urania” (14.04.2013 08.12UTC): expected maximum over space-time
as a function of area size. Observations are provided with confidence interval ±ση̂ST

(grey):
the narrower band (darker gray) is without WASS error (i.e. 0.02 m). (a) Linear plot. (b)
Log plot, to emphasize small areas.
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ξ̂ST = 1.42 at the largest area (i.e. 156.25 m2), while it was ξ̂T = 0.96 at the

smallest area. This leads to a ratio ξ̂ST/ξ̂T = 1.48. Both Tayfun-Piterbarg’s

theorem and Fedele’s method correctly reproduced the growth of ξ̂ST with
A. Nevertheless, Fedele’s method was well performant over the whole range
of tested areas, while Tayfun-Piterbarg’s theorem worked fairly well at the
smallest areas, where Forristall’s approximation holds. At the largest areas,
i.e. after LxLy = 137.00 m2, original Tayfun-Piterbarg’s theorem seemed to
work better than Forristall’s approximation, nevertheless prediction fell at
the edge of confidence interval.

Performances of stochastic models prediction with respect to WASS ob-
servations are summarized by statistics in Table 4.5. As already observed in
”Acqua Alta” experiment results, both the stochastic models exhibited high
correlation coefficients (i.e. larger than 0.98) and low RMSE (i.e. 0.02 m).
Coefficient of determination and best fit line slope were considerably higher
for Fedele’s method. Moreover, a larger Bias (negative, meaning underesti-
mation) was observed for Tayfun-Piterbarg’s theorem, though rather small
compared to the absolute value of observations.

CC RMSE (m) p Bias (m) R2

WASS/Tayfun-Piterbarg 0.98 0.02 0.76 -0.04 0.67
WASS/Tayfun-Fedele 1.00 0.02 0.80 0.01 0.96

Table 4.5: Statistics of prediction from stochastic models with respect to WASS observa-
tions from R/V ”Urania”. CC: correlation coefficient, RMSE: root mean square error, p:
best fit line slope, Bias, R2: coefficient of determination.
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4.4 Conclusions

In this Chapter, we compared stereo-photogrammetric observations (i.e.
WASS) to stochastic models results to provide an observation-based vali-
dation to Tayfun-Piterbarg’s theorem and Fedele’s model for the first time
to our best knowledge. Data were gathered during two different field cam-
paigns: one from a fixed platform, one from a quasi-still ship. In the first
experiment, at ”Acqua Alta”, we used a consolidated deployment of WASS.
Hence, we got results with a satisfactory resolution and without warnings.
Dealing with R/V ”Urania” ship experiment, it is worth to say that this was
the first WASS deployment on a moving platform. Besides this, the technique
we had to use to calculate the spectrum led to a rough spectral resolution,
which to some extent warned us on a potential underestimation of the ex-
pected maxima with respect to observations. During both the experiments,
Tayfun-Piterbarg’s theorem and Fedele’s model exhibited the same trends.
In fact, they correctly reproduced the growth of space-time extreme ηST with
area size. Nevertheless, Fedele’s method was always within the observations
confidence interval, remaining close to the observed expected value. On the
contrary, Tayfun-Piterbarg’s theorem was well performant at very small and
very high (within the tested range) areas: that is, when Forristall’s approx-
imation and original theorem are in their best range of operation. In fact,
at transition, predictions fell out of the confidence interval. However, the
agreement of both models’ predictions with ”Acqua Alta” observations was
better than with ”Urania” observations, due to the already cited reasons.

To summarize, Fedele’s method exhibited very good performance in pre-
dicting space-time extremes in the range of areas we tested. Tayfun-Piterbarg’s
theorem exhibited good performance at very small and large areas, but not
on the whole tested range. As a final remark, we point out that the next
step for validation is to perform it on larger areas.

64



Chapter 5
Space-time extremes from buoy data

5.1 Introduction

In the previous Chapter we validated the stochastic models for wave ex-
tremes prediction in space-time domain, i.e. Piterbarg’s theorem and Fedele’s
method. Hence, hereinafter we will assume that they can be regarded as reli-
able theoretical tools to estimate the space-time extreme of a sea state, given
significant wave height Hs, area A and duration D, i.e. ηST/Hs = ξST (A,D).

In this Chapter, we will show how we modeled the dependence of ξST
upon the area size and inferred the probability distribution of ξST (A) at a
given geographical location, thanks to field data. We exploited the sea sur-
face elevations and simultaneous horizontal displacements gathered during
March 2012 from a directional buoy off the Catalan coast, in the north-west
Mediterranean Sea (Figure 5.1). For each observed sea state, we obtained
the directional spectra from buoy data in order to estimate the expected
space-time maxima ξST at the buoy location, according to Piterbarg’s the-
orem and Fedele’s method. To analyze the dependence of maxima upon
area size (duration was fixed), we applied stochastic models to a variable
area. The dependence could be expressed through a dimensionless quantity

by introducing the parameter S = A/L
2
, being L the mean wavelength cor-

responding to mean wave period through linear dispersion relationship (2.2).
Hence, ξST (S) was analyzed as presented in the followings.

5.2 Data description

The input data herein used were recorded by a ”Datawell MKIII” direc-
tional buoy deployed in front of Barcelona (Figure 5.1), at 41◦ 23.919’ N,
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2◦ 15.486’ E, in 50 m deep waters. Data were provided by the XIOM net-
work of the Catalan Government. The wave climate was widely described by
Sánchez-Arcilla et al. (2008). In this nearshore portion of the Catalan Sea
(north-west Mediterranean Sea) the predominant waves come from south and
south-east, thanks to stronger winds and longer fetches.

Figure 5.1: Location of the buoy providing input data, off the Catalan coast at 50 m water
depth.

Buoy measuring system stores the sea surface elevations η(t) at a sam-
pling rate of 1.28 Hz (∆t = 0.7812 s), simultaneously with the horizontal
displacement components, along the x(t) (i.e. east) and y(t) (i.e. north)
directions. Typically, the gathered raw data, i.e. η(t), x(t), y(t), are rou-
tinely processed by the software of the buoy to provide synthetic spectral
parameters, e.g. spectral significant wave height Hm0, mean wave period
T02, peak wave period Tp, peak wave direction θp, directional spreading Dsp
(red points in Figure 5.2, Table 5.1) and others (Datawell, 2009). In fact,
directional spectrum is calculated but not usually provided as a result of the
analysis. However, to apply stochastic models of Piterbarg and Fedele we
need directional spectrum, hence we processed the time series of η(t), x(t)
and y(t) rather than using synthetic spectral parameters calculated by the
buoy. The analysis was performed within the period of availability of the
raw data, i.e. from 07.03.2012 00.23.00 to 31.03.2012 23.46.00. The time
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series recorded by the buoy were 30 minutes long and continuous over ap-
proximately 25 days, hence a set of 1195 sea states was available. During
the period of analysis, sea states with Hm0 up to 2.62 m and T02 up to 6.78
s occurred (Table 5.1). The average mean wave direction was 122◦, hence
predominant waves came from South-East, as already stated.

mean std min max
Hm0 (m) 0.66 0.50 0.12 2.62
Tp (s) 6.03 2.26 1.75 40.00
T02 (s) 4.22 1.02 2.25 6.78
θp (◦) 122 41 43 341
Dsp (◦) 44 12 12 77

Table 5.1: Mean, standard deviation, minimum and maximum of the spectral parameters
calculated by the software of the buoy during the period under analysis. Maximum Tp is
certainly an outlier due to a measurement error.

Some statistical parameters of each time series were computed: mean,
standard deviation, skewness and kurtosis (Table 5.2).

mean std min max
mean(η) (m) 2·10−6 2·10−4 -9·10−4 8·10−4

std(η) (m) 0.18 0.11 0.03 0.53
skewness(η) 0.04 0.05 -0.18 0.23
kurtosis(η) 3.08 0.18 2.65 5.22

Table 5.2: Mean, standard deviation, minimum and maximum of the basic statistical
parameters of sea surface elevation η.

As any other measuring instrumentation, buoys have some bugs that
could affect measurements. Indeed, it is well known that buoys tend to
underestimate the very high waves because they go through the crests or,
in short crested seas, they go around them (Allender et al., 1989). Hence,
buoys tend to linearize waves. For this reason, Tucker and Pitt (2001) showed
that buoys are not reliable instruments to study the nonlinear behavior of
waves 1. Unfortunately, this effect could not be avoided, but since we didn’t

1We initially suspected that the data could suffer of this effect, because we obtained
suspiciously low values of the wave steepness (Appendix A.2). Besides this, we observed
that the sampling frequency value, i.e. 1.28 Hz, is a very low value, probably too low to
sample the time evolving sea surface elevation with the needed resolution. A consequence
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look at individual waves but rather at directional spectra, it was regarded as
a minor importance effect. Nevertheless, other factors can still affect buoy
measurements (Appendix A.1). To overcome these issues, 400 of the original
1195 sea states, i.e. 33%, were discarded after a quality control on the time
series (Appendix A.1). The remaining 795 time series were analyzed and
results of the analysis are reported in the followings.

5.3 Directional wave spectrum calculation

We obtained directional spectra of the 795 sea states following a proce-
dure analogous to that adopted by the software of the buoy (Datawell, 2009),
i.e. the truncated Fourier series decomposition. The method we implemented
is called the Weighted Fourier Series Decomposition (WFS) (Benoit et al.,
1997), see Chapter 2 (Part II). It is an easy-implementation and compu-
tational efficient method, though it is not one of the most accurate. Other
stochastic methods, e.g. Extended Maximum Entropy Principle (EMEP)
(Benoit et al., 1997) or Bayesian Direct Method (BDM) (Benoit et al., 1997),
were also applied but without providing acceptable results, so we chose WFS.
Besides, a more consistent comparison with the buoy software result could
be done. In fact, to check the reliability of the directional spectra we ob-
tained, we compared some spectral parameters with the outputs of the buoy
processing software. In particular, we checked:

• spectral significant wave height Hm0 = 4
√
m000 (Figure 5.2-a);

• peak wave period Tp = 2π/σp (Figure 5.2-b);

• peak wave direction θp (Figure 5.2-c);

• mean wave period T02 = 2π
√

m000

m002
(Figure 5.2-d);

• directional spreading Dsp = π
180

√
2− 2

√
a1(fp)2 + b1(fp)2 at the peak

(Figure 5.2-e).

being mijl the ijl-th moment of the directional spectrum, according to (2.6).
Table 5.3 summarizes the comparisons in terms of correlation coefficients
(CC), root mean square errors (RMSE) and biases.

of this low value is that crest and troughs are sometimes beheaded and wave steepness is
reduced.
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Figure 5.2: Wave parameters calculated from the directional spectrum S(σ, θ) obtained
by performing WFS method on the 795 sea states that passed quality control (black).
Comparison with wave parameters calculated from the buoy software (red). (a) Spectral
significant wave height Hm0. (b) Peak wave period Tp. (c) Peak wave direction θp. (d)
Mean wave period T02. (e) Directional spreading at the peak Dsp. x-labels are measured
sea states, after quality control.
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CC RMSE Bias
Hm0 1.00 0.04 m -0.01 m
Tp 0.87 0.88 s -0.11 s
T02 0.99 0.16 s 0.12 s
θp 0.81 19.2◦ -0.89◦

Dsp 0.64 9.64◦ 3.11◦

Table 5.3: Comparison between spectral parameters calculated from the directional spec-
trum obtained performing the WFS method with those provided by the buoy processing
software. CC: correlation coefficient, RMSE: root mean square error.

Looking at Table 5.3, we can state that the directional spectra we cal-
culated throughly resembled the spectra calculated by the buoy software.
Indeed, except for the directional spreading Dsp, the correlation coefficients
CC were always above 0.8, reaching values close or equal to 1 for Hm0 and
T02, which also showed the RMSE closest to 0. The calculation of θp and Dsp
could be affected by the choice of a different method for directional spreading
function estimate.

5.4 Space-time extremes analysis

Piterbarg’s theorem and Fedele’s method analyses were performed on
space-time domains of variable space size, in order to do a sensitivity analysis
on the dimension of the area A. Duration of the sea state D=1800 s was
fixed. We chose 50 squared areas with sizes X = Y ranging from 1 to 50
m, hence areas A = XY range from 1 to 2500 m2. Increasing the area,
the maximum expected elevation ξST = ηST/Hs in the sea state grew, as
illustrated in Figure 5.3 where a sea state with Hs =1.71 m and Tp =9.09
s has been chosen as an example. As already shown in Chapter 4, Fedele’s
method predictions were higher than Piterbarg’s theorem predictions because
the contribution of the domain boundaries has been accounted for in Fedele’s
method.

To generalize the analysis, we normalized the area A leading to the dimen-
sioneless parameter S. Among various tentative normalizations we choose to
define S as

S =
A

L
2 (5.1)

where L is the wavelength corresponding to the mean wave period T02 accord-
ing to the linear dispersion relationship (2.2). We preferred this particular
normalization with respect to others, e.g. dividing A by LxLy, because the
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Figure 5.3: Space-time extremes dependence upon area size A for a given sea state
(Hs =1.71 m, Tp =9.09 s), according to Piterbarg’s theorem (black) and Fedele’s method
(red).

availability of L is greater than that of Lx and Ly, since L can be obtained
from the mean wave period T02 without the need of directional spectrum or
other spatial information. S expresses on average the number of waves over
the space domain considered, e.g. S = 1 means that there is on average one
20 m mean wavelength wave over an area of 202 m2; S = 2 means that there
are on average two 10 m mean wavelength over the same area.

In Figure 5.4-a, the maximum sea surface over an area according to Piter-
barg’s theorem are plotted as a function of the parameter S, i.e. ξST (S). We
observed that as S increased, ξST increased too. We also noticed that approx-
imately at S = 1 the data sets are highly discontinuous due to the different
methods used to calculate ξST at S >1 and S <1, i.e. Piterbarg’s theo-
rem and Piterbarg’s theorem with Forristall’s approximation, respectively.
In Figure 5.4-b the maximum sea surface over an area according to Fedele’s
method are plotted as a function of the parameter S, i.e. ξST (S). Simi-
larly to Piterbarg’s theorem results, ξST increased with increasing S. This
means that as the number of waves in space domain grew, higher sea surface
heights were more likely to occur. This is reasonable in a short-crested sea.
Due to the discontinuities encountered in the Piterbarg’s theorem results
(Figure 5.4-a), we chose to continue the analysis only taking into account
Fedele’s method results, which are continuous over S. We also choose to
discard the left tails of the data sets shown in Figure 5.4-b by neglecting
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Figure 5.4: Space-time extremes dependence upon parameter S. (a) According to Piter-
barg’s theorem. (b) According to Fedele’s method (data for A ≤ 32 m2 (grey) were
discarded in the following analysis).
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results for A ≤ 32 m2 (grey points in Figure 5.4). The resulting data set is
the black one in Figure 5.4.

5.4.1 Modeling of ξST (S)

Looking at Figure 5.4-a, it can be observed that, despite a certain spread-
ing, on average space-time expected maxima ξST (S) behave linearly in a log-
arithmic plane. Thus, we can model expected maxima dependence upon S
with a straight line:

ln (ξST ) = a ln (S) + b (5.2)

Consequently, in the original plane ξST (S) can be modeled by an exponential
function multiplied by a power law of S:

ξST = Sa exp (b) (5.3)

Coefficients a and b in (5.2) and (5.3) were determined through least square
fitting of the data set in the logarithmic plane and are collected in Table 5.4.
The goodness of the fit was checked using coefficient of determination R2

and root mean square errors RMSE (Table 5.4). The first represents the
correlation between the data and the fitted model, the second accounts for
the errors in the regression. They both indicated a very good agreement
between the data and the modeling functions. Besides, increasing the degree
of the least square fitting seemed unnecessary. The linear regression modeling
ξST (S) is plotted in Figure 5.5.

a b R2 RMSE
0.0447 0.2058 0.983 0.009

Table 5.4: Regression of space-time extremes as a function of parameter S (A > 32 m2),
according to Fedele’s method. Coefficients of least square fitting of the data set, coefficients
of determination R2 and RMSE.
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Figure 5.5: Linear regression of space-time extremes ξST (S) (red line), according to
Fedele’s method (A > 32 m2).

The function (5.3) together with coefficients in Table 5.4 can predict the
expected maximum sea surface elevation over an area A at the buoy location,
given Hs and T02. Nevertheless, a certain variability still remains. It is due
to the fact that (5.3) fit on average a data set which gather together maxima
from different sea states. In fact, though normalized on Hs, different spectral
features cause a spreading of the data about the average. Following a safety
criterion, we individuated the upper bounds of the data set, i.e. the extremal
ξST (S) (black crosses in Figure 5.6). Looking at Figure 5.6, they can be
modeled either by a linear or a quadratic function in the logarithmic plane:

ln (ξST ) =a ln (S) + b linear

ln (ξST ) =a ln (S)2 + b ln (A) + c quadratic
(5.4)

In the original plane, the functions in (5.4) become:

ξST =Sa exp (b) linear

ξST =(Sa)lnSSb exp (c) = S(a lnS+b) exp (c) quadratic
(5.5)
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Coefficients a, b and c in (5.4) and (5.5) were obtained through least square
fitting of the upper bound of the data set. They are collected in Table 5.5,
together with coefficients of determinations R2 and root mean square errors
RMSE.

a b c R2 RMSE
linear 0.0428 0.2201 / 0.996 0.007

quadratic -0.0010 0.0407 0.2268 1.000 0.002

Table 5.5: Regressions of the upper bound of space-time extremes as a function of param-
eter S (A > 32 m2), according to Fedele’s method. Coefficients of least square fitting of
the upper bounds of the data set, coefficients of determination R2 and RMSE.
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Figure 5.6: Linear and quadratic regressions of the upper bound of the space-time extremes
ξST (S) data set (red line), according to Fedele’s method. A > 32 m2. The upper bound
is indicated by black asterisks.
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5.4.2 Probability distributions of ξST

In this Section, ξST is considered itself a random variable. In fact, we
considered the set of the sea surface elevation maxima ξST , each one taken
from a different sea state which is stationary in time and homogeneous in
space. Hence, we can reasonably assume that ξST are statistically inde-
pendent. Moreover, they are identically distributed since they are expected
values of the same parent distribution (3.19).

The data set we are using is too short over time (i.e. 25 days) to consider
what we did in the following a long-term statistics. Nevertheless, over 25
days conditions are certainly non-stationary and the assumption of stationary
process, which is the basis for short-term statistics, does not hold. Hence,
the statistical analysis we will present are closer to long rather than to short-
term statistics. Therefore, the methodology we will apply can be extended
to wider data sets, i.e. longer over time, to actually perform a long-term
statistics of ξST at a given location.

We must start by saying that there is not a theoretical statistical model
for the expected sea surface elevation maxima ξST at present. Thus, we are
aimed at find good representations of the probability distributions of ξST .
In order to provide a statistical characterization of ξST at a given location,
we obtained experimental marginal pdf and EDF (Exceedence Distribution
Function) of ξST and we compared them to the theoretical probability dis-
tribution functions usually employed in long term statistics. Just to recall
them, they are (Holthuijsen, 2007)

• Weibull distribution, employed to statistically represents the significant
wave heights in the ”initial-distribution” approach;

• Gumbel distribution, which represents the distribution of annual max-
imum significant wave heights, in the ”annual-maximum” approach;

• Generalized Pareto distribution, that is used to model the maximum
significant wave heights taken from storms, in the ”peak-over-threshold”
approach.

Weibull, Gumbel and Generalized Pareto EDFs are, respectively:

PW (ξST ) = exp

[
−
(
ξST
B

)A]
(5.6)

PG(ξST ) = exp (− exp (−z)) (5.7)

PP (ξST ) = (1 + Fy)1/F (5.8)
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Here, A and B are the parameters of the Weibull distribution: A is the shape
parameter and B is the scale parameter. z = (ξST −D)/C, where C and D
are the scale and location parameters of Gumbel distribution, respectively.
y = (ξST − G)/E, where E, F and G are the scale, shape and location
parameters of Generalized Pareto distribution, respectively. Given a data
set, parameters A to F can be inferred resorting to different techniques,
e.g. the maximum likelihood method we used herein. Weibull, Gumbel and
Generalized Pareto pdfs are, respectively:

pW (ξST ) = AB−Aξ
(A−1)

ST exp

[
−
(
ξST
B

)A]
(5.9)

pG(ξST ) =
1

C
exp (−(z + exp (−z))) (5.10)

pP (ξST ) =
1

E
(1 + Fy)−(1/F+1) (5.11)

If we consider ξST representative of the sea state, just as significant wave
height is, the listed theoretical distributions can be borrowed to check which
one is the best to statistically model the experimental distribution of ξST at
a given location. To this end, we resorted to Q-Q (Quantile-Quantile) plots
and probability plot correlation coefficients, i.e. the correlation coefficient be-
tween the paired sample quantiles. Perfect agreement between experimental
and theoretical distributions is represented by a straight line (red in Figures).
Figure 5.7, Figure 5.8 and Figure 5.9 show the Weibull, Gumbel and Gener-
alized Pareto Q-Q plots of the Catalan buoy data set, respectively. Weibull
distribution modeled correctly the experimental data set from ξST ∼ 1 and
above, while some differences were observed at the smallest ξST values. Gum-
bel distribution behaves analogously but fit well the experimental data for
values ξST > 1. On the contrary, Generalized Pareto distribution was not
able to correctly describe the tails of the experimental distribution. The
probability plot correlation coefficients are collected in Table 5.6. Even if
they are very close to 1 for all the theoretical distribution tested, it is ev-
ident that the best one is Weibull distribution. We discarded Generalized
Pareto and continued the analysis with Weibull and Gumbel distributions.

Weibull Gumbel Generalize Pareto
0.998 0.993 0.981

Table 5.6: Probability plot correlation coefficients for the theoretical distribution functions
used to model the experimental ξST .
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Figure 5.7: Q-Q plot of experimental and Weibull distributions of ξST . Reference line
(red) represents perfect agreement with Weibull distribution.
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Figure 5.8: Q-Q plot of experimental and Gumbel distributions of ξST . Reference line
(red) represents perfect agreement with Gumbel distribution.
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Figure 5.9: Q-Q plot of experimental and Generalized Pareto distributions of ξST . Refer-
ence line (red) represents perfect agreement with Pareto distribution.

In Figure 5.10 the experimental marginal EDF of ξST is compared with
Weibull and Gumbel EDFs, i.e. (5.6) and (5.7) respectively. Similarly, in
Figure 5.11 the experimental marginal pdf of ξST was compared to Weibull
and Gumbel pdfs. The agreements are good, especially for the right hand
side part of the data set, i.e. ξST > 1.
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Figure 5.10: Experimental marginal EDF of ξST (black asterisks), Weibull EDF (A = 1.24
and B = 14.42, red solid line) and Gumbel EDF (C = 1.24 and D = 0.08, blue solid line).
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Figure 5.11: Experimental marginal pdf of ξST (black asterisks), Weibull pdf (A = 1.24
and B = 14.42, red solid line) and Gumbel pdf (C = 1.24 and D = 0.08, blue solid line).

From the results shown, we could argue that the expected sea surface ele-
vations ξST provided by Fedele’s method are well represented by Weibull and
Gumbel distributions. The definition of a theoretical distribution function
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modeling the experimental data set turns out to be useful for extrapolation
in order to obtain exceedence probabilities of unobserved values.

The experimental joint probability distribution function (pdf) of ξST and
S was also obtained (Figure 5.12). From the joint pdf we could infer the
most probable (ξST , S) pair, which in the Catalan buoy case corresponded
to (1.09,0.01). Moreover, from Figure 5.12 we can state that the most of the
maxima occurred for S < 1 and corresponding values are ξST < 1.23.
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Figure 5.12: Experimental joint pdf of ξST and S.

5.5 Conclusions

In this Chapter, we used data gathered from a directional buoy to model
the behavior of space-time extremes ξST with space domain size, which was

represented by means of the dimensionless parameter S = A/L
2

(L being
the mean wavelength associated to mean wave period according to linear
dispersion relationship). We found that ξST (S) can be modeled with enough
accuracy by a function composed of a power law multiplied by an exponential
law. The coefficients we got through linear regression are location dependent,
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nevertheless the functional behavior is general and the same analysis can be
repeated elsewhere leading to expression that allow to model and also to
predict the space-time extremes ξST at given location, if significant wave
height Hs and mean wave period T are provided. To meet a safety criterion
and reduce the spreading of the data about the function obtained, the upper
bound of the ξST (S) data set was also modeled.

Besides this, we inferred some probabilistic features of ξST , considered
itself a random variable. We analyzed the experimental marginal pdf and
EDF of ξST and the joint pdf of ξST and S. We found that ξST at a given
location is well represented by a Weibull or Gumbel law. This could be useful
to perform extrapolations oriented to long-term prediction of the space-time
extremes.
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Chapter 6
Analytical results

6.1 Introduction

In this Chapter, we explored the possibility of performing a wave extreme
analysis in the space-time domain starting from analytical spectral shapes.
This could meet the scarce availability of directional wave spectra that limit
the possibility of estimating maximum sea surface elevation over an area. For
the proposed aim, we considered two commonly used and easy to be manip-
ulated directional wave spectra, i.e. Pierson-Moskowitz (2.25) or JONSWAP
(2.29) frequency spectra combined with a cos2 directional spreading func-
tion (2.33). Under some specific assumptions the analytical integration of
the directional spectra S(σ, θ) is possible. Hence, we should be able to get
closed forms of spectral moments (2.6) and spectral parameters (2.7), and
thus perform space-time extremes analysis according to Piterbarg’s theorem
and Fedele’s method. Besides, results obtained were used to discuss the de-
pendence of the sea surface elevation maxima, i.e. ξST and ξT , and of their
ratio upon wind speed (U = U10), fetch length (F ) and size of the area of
analysis (A = XY ).

The assumptions we added to the general hypotheses stated in Chapter
2 are:

• deep waters wave propagation, i.e. d/L > 0.5 (being d water depth
and L wavelength), for every spectral component;

• short-crested wind sea state, i.e. shortcrestedness γs >> 0 or, equiva-
lently, wave crests only slightly longer than wavelengths (Ly & Lx);

• fully developed wind sea state represented by Pierson-Moskowitz spec-
tral shape (2.25), or partially developed and fetch-limited wind sea
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states represented by JONSWAP spectrum (2.29);

• sea state duration equals to 100 mean wave periods; indeed, 100 waves
has been indicated as the minimum of the number of waves in a real sea-
state, according to the definitions of Boccotti (2000) and Holthuijsen
(2007).

We just recall that for sake of simplicity we chose a frame of reference such
that wave propagation is oriented along x axis, hence θp = 0, Ly is wave crest
and Lx is wavelength. This can be achieved after a rotation of the directional
spectrum. This does not affect at all the results of space-time analysis.
However, a procedure to obtain the spectral parameters in an arbitrary frame
of reference, e.g. North oriented, was obtained and it is reported in the
followings.

6.2 Spectral parameters computation

Under the listed assumptions, we obtained analytic expressions for the
spectral parameters of S(σ, θ) required to perform extreme analysis in the
space-time domain, i.e. average wave period T , mean wave and crest length
Lx and Ly, irregularity parameters αxy, αxt, αyt, according to (2.7). They
all depend on the moments of the directional wave spectrum mijl, i.e. (2.6).
Assuming deep waters propagation, frequency to wavenumber dependence
can be made explicit from linear dispersion relationship

σ2 = gk (6.1)

leading to the possibility of explicitly express wavenumber components in
terms of frequency σ, as follows:

kx =
σ2

g
cos(θ)

ky =
σ2

g
sin(θ)

(6.2)

According to (6.2), (2.6) can be rewritten in deep water as:

mijl =

∫ 2π

0

∫ ∞
0

σ2(i+j)+l

gi+j
cosi(θ) sinj(θ)S(σ, θ)dσdθ (6.3)

Using directional spectrum decomposition (2.32), (6.3) becomes

mijl =

∫ 2π

0

∫ ∞
0

σ2(i+j)+l

gi+j
cosi(θ) sinj(θ)S(σ)D(θ)dσdθ (6.4)
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Since the chosen directional distribution function depends on direction θ only,
we can rearrange (6.4) in order to separate the integrals

mijl =

∫ 2π

0

cosi(θ) sinj(θ)D(θ)dθ

∫ ∞
0

σ2(i+j)+l

gi+j
S(σ)dσ (6.5)

It has been demonstrated that if the tail of the frequency spectrum is
proportional to σ−5, as in the Pierson-Moskowitz and JONSWAP spectra,
the 4th moment in frequency is not finite (Ochi, 2005). Thus, if

2(i+ j) + l = 4

the corresponding mijl moments are not finite and we cannot calculate spec-
tral parameters depending on them. The solution we adopted is to limit the
upper bound of integration in the frequency domain to a reasonable value,
σ∞. Obviously, this forces the spectral parameter, and so results of space-
time extreme analysis, to depend on the choice of the cut-off frequency σ∞.
For this reason we decided to link σ∞ to the physics of surface gravity waves,
assuming it represents the higher frequency an harmonic wave could expe-
rience in the ordinary gravity waves range. σ∞ is then the gravity-capillary
limit, i.e. σ∞ = 60 rad/s (Holthuijsen, 2007). We investigated the effects
of the choice of this value on the space-time extremes, through a sensitiv-
ity analysis (Section 6.4). Among the moments in (2.7), the limitation of
integrals up to σ∞ has to be applied to m200, m020 and m110.

6.2.1 Pierson-Moskowitz and cos2 function

Assuming the Pierson-Moskowitz spectral shape (2.26) with cos2 func-
tion (2.33), under the fully developed sea hypothesis, (6.4) and (6.5) can be
rewritten as:

mijl =

∫ 2π

0

∫ ∞
0

2

π
Ag2−(i+j)σ

2(i+j)+l

σ5
cosi+2(θ) sinj(θ)e−P (σ/σm)−4

dσdθ (6.6)

mijl =
2

π
Ag2−(i+j)

∫ 2π

0

cosi+2(θ) sinj(θ)dθ

∫ ∞
0

σ2(i+j)+l

σ5
e−P (σ/σm)−4

dσ (6.7)

Using computer algebra system Maxima (2011), analytic calculation of
the integrals was performed and the resulting expression for the moments of
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the Pierson-Moskowitz spectrum with cos2 directional distribution are:

m000 =
Ag2

4σ4
mP

m002 =
Ag2
√
π

4σ2
m

√
P

=
√
πPm000σ

2
m

m020 =
AΓ(0, s)

16
=
PΓ(0, s)

4g2
m000σ

4
m

m200 =
3AΓ(0, s)

16
=

3PΓ(0, s)

4g2
m000σ

4
m

m101 =
2AgΓ(1/4)

3πσmP 1/4
=

8P 3/4Γ(1/4)

3πg
m000σ

3
m

m110 = 0

m011 = 0

(6.8)

with s = σ4
mP

1.296·107
. In the previous formulae, Γ(a) and Γ(a, z) are the Gamma

and upper incomplete Gamma functions, respectively (Abramowitz and Ste-
gun, 1972):

Γ(a) =

∫ ∞
0

ta−1e−tdt (6.9)

Γ(a, z) =

∫ ∞
z

ta−1e−tdt (6.10)

While Γ(a) was easily obtained from Maxima or MATLAB (2012) built-
in functions, Γ(a, z) was calculated (see Appendix B.1) by using its upper
limiting function E1(z) (Abramowitz and Stegun, 1972)

E1(z) = −γ − ln (z)−
∞∑
1

(−1)k
zk

k(k!)
(6.11)

where γ ∼ 0.5772 is Euler-Mascheroni constant. In fact, when a = 0
(Abramowitz and Stegun, 1972)

Γ(0, z) = lim
a→0

Γ(a)− 1

a
−
(
γ(a, z)− 1

a

)
= E1(z) (6.12)

being γ(a, z) the lower incomplete Gamma function. Note that since s de-
pends upon σm, Γ(0, s) is itself function of σm.

Spectral parameters were finally obtained substituting eqs. (6.8) into eqs.
(2.7)
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T =
4.46

σm

Lx =
63.6

σ2
m

√
Γ(0, s)

Ly =
110.0

σ2
m

√
Γ(0, s)

αxy = 0

αxt =
2.68√
Γ(0, s)

αyt = 0

(6.13)

Explicit dependence of spectral parameters (6.13) upon wind speed U (Fig-
ure 6.1) can be pointed out through σm = 0.87(g/U) (Ochi, 2005), as shown
in Appendix (B.2). The same has been done for significant wave height Hs,
again in Appendix (B.2).

Ochi (2005) obtained the analytic expressions of zero-th moment and
mean zero-crossing period for a spectral formulation with σ−5 tail, S(σ) =
C
σ5 e
−D/σ4

m000 = C/(4D) T = 4.72D−1/4

If Pierson-Moskowitz spectrum is considered, i.e. (2.26), then C = Ag2,
D = Pσ4

m and first eqs. of (6.8) and (6.13) are exactly recovered.

The ratio m200/m020 = 3 is constant, i.e. independent from σm. Conse-
quently, the ratio Lx/Ly = 0.58 is also constant. Hence, crests are only a
little longer than waves, consistently with the chosen directional spreading
function (cos2), representative of short-crested conditions (γs = 0.76).

Consistently with Baxevani and Rychlik (2006), the irregularity parame-
ters are null, except for the one expressing correlation between surface deriva-
tives along direction of propagation (x) and time (t), i.e. αxt. From (2.7),
αxy and αyt equal zero since m110 and m011 are zero. In fact, when the sym-
metric cos2 function is multiplied by a sine function, whose integral is zero in
[−π/2,π/2], the global integral is again zero. Meaning of αxt 6= 0 is that, due
to a organized motion along x direction, a reduced number of exceedances of
a certain threshold has to be expected inside the space-time domain and on
its [X,T] boundary.
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6.2.2 JONSWAP and cos2 function

JONSWAP frequency spectrum (2.29) cannot be integrated analytically
(Holthuijsen, 2007). Thus, moments of the spectrum had to be calculated
under some assumptions and approximations. Yamaguchi (1984) obtained
good approximations for zero-th, first and second order moments of (2.29).
Nevertheless, we needed moments up to the fourth order, so we adapted the
procedure due to Gran (1992) to get approximate form of integrals. Following
the work of Gran, moments of JONSWAP spectrum can be obtained in
approximate form if the spectrum is considered as a peak-enhanced wave
spectrum consisting of two independent wave components:

• a broad-banded random wave component ζPM , conforming with a Pierson-
Moskowitz spectrum with modal frequency σm and responsible for the
low and high frequency tails of the spectrum;

• a narrow-banded random wave component ζNB with density closely
centered about the peak, i.e. at modal frequency σm.

Indeed, according to Gran, the area of the additional peak in the JONSWAP
spectrum corresponds approximately to the variance of an additional narrow-
banded peak-wave about σm. The variance of the narrow-banded wave ζPM
relative to the broad-banded wave was thus described by the η parameter
(not to be confused with sea surface elevation, never used explicitly within
this Section)

η =
m000,NB

m000,PM

(6.14)

Assuming parameter β = 0.08 in (2.29), i.e. the average value between βa =
0.07 and βb = 0.09, Gran (1992) estimated η for the JONSWAP spectrum to
be approximately

η ∼ γ − 1

6
(6.15)

thus, proportional to the peak-enhancement factor γ and such that:

• if γ = 1, i.e. the Pierson-Moskowitz spectrum is recovered, η = 0. In
fact, no additional variance is added to the broad-banded wave;

• if γ = 7, i.e. the maximum value it can assume, then η = 1 and
the variance is equally distributed between the broad and the narrow-
banded components.

Under the chosen assumptions, we can extend the work of Gran to yield
the mijl moments of a directional wave spectrum consisting of the JONSWAP
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frequency spectrum and cos2 directional distribution function

mijl = mijl,PM +mijl,NB (6.16)

where mijl,PM are the moments of the Pierson-Moskowitz spectrum and cos2

function, i.e. eqs. (6.8), while mijl,NB are the moments of the additional
peak. Thanks to narrow-bandedness, the latters can be written as:

mijl,NB =
σ

2(i+j)+l
m

g(i+j)
m000,NB

∫ 2π

0

cosi(θ) sinj(θ)D(θ)dθ (6.17)

Then, according to (6.14):

mijl,NB = η
σ

2(i+j)+l
m

g(i+j)
m000,PM

∫ 2π

0

cosi(θ) sinj(θ)D(θ)dθ (6.18)

Using computer algebra system Maxima (2011), analytic calculation of
the integrals was performed leading to needed moments mijl,NB

m000,NB = η
AJg

2

4Pσ4
m

m002,NB = η
AJg

2

4Pσ2
m

m020,NB = η
AJ
16P

m200,NB = η
3AJ
16P

m101,NB = η
2AJg

3πPσ
m110,NB = 0

m011,NB = 0

(6.19)

being AJ the JONSWAP spectrum scaling parameter.

Hence, following (6.16), the approximate moments of the directional spec-
trum consisting of JONSWAP frequency spectral shape with cos2 function
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are:

m000,J = (η + 1)
AJg

2

4Pσ4
m

= (η + 1)m000,PM

m002,J = (η +
√
πP )

AJg
2

4Pσ2
m

= (η +
√
πP )m000,PMσ

2
m

m020,J = (η + PΓ(0, s))
AJ
16P

=

(
η + PΓ(0, s)

4g2

)
m000,PMσ

4
m

m200,J = (η + PΓ(0, s))
3AJ
16P

= 3

(
η + PΓ(0, s)

4g2

)
m000,PMσ

4
m

m101,J = (η + P 5/4Γ(1/4))
2gAJ

3πPσm
=

8

3πg
(η + P 3/4Γ(1/4))m000,PMσ

3
m

m110,J = 0

m011,J = 0

(6.20)

where m000,PM = AJg
2/(4Pσ4

m) is the variance of the broad-banded compo-
nent with Pierson-Moskowitz spectral shape scaled by the JONSWAP scaling

parameter AJ . Here, s = σ4
mP

1.296·107
and Γ(0, s) is the upper incomplete Gamma

function.
Finally, spectral parameters were obtained according to (2.7), (6.15) and

(6.20)

T =
6.28

σm

√
η + 1

η + 1.98
=

6.28

σm

√
γ + 5.0

γ + 10.88

Lx =
71.2

σ2
m

√
η + 1

η + 1.25Γ(0, s)
=

71.2

σ2
m

√
γ + 5.0

γ + 7.5Γ(0, s)− 1

Ly =
123.0

σ2
m

√
η + 1

η + 1.25Γ(0, s)
=

123.0

σ2
m

√
γ + 5.0

γ + 7.5Γ(0, s)− 1

αxy = 0

αxt =
0.981√

η + 1.25Γ(0, s)

η + 4.28√
η + 1.98

=
0.981(γ + 24.68)

√
γ + 10.88

√
γ + 7.5Γ(0, s)− 1

αyt = 0

(6.21)

where dependence on modal frequency σm and peak-enhancement factor γ
was made explicit. The dependence of spectral parameters (6.21) upon wind
speed U and fetch length F (Figure 6.2) is provided by expression for γ and
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σm in (2.31). An alternative formulation to (6.21) based on U and F is
presented in Appendix (B.2).

For η = 0 or γ = 1, corresponding to Pierson-Moskowitz spectrum, pa-
rameters (6.13) are recovered. As already obtained for Pierson-Moskowitz
spectrum and cos2 function, the ratio m200/m020 = 3 is independent from σm
and leads to Lx/Ly = 0.58 (γs = 0.76). Irregularity parameters αxt, αxy and
αyt behave in the same way described earlier for Pierson-Moskowitz spec-
trum and cos2 function, revealing that they are affected only by directional
characteristics of the sea state.

6.3 Comparison with numerical results

Though we did not employed any numerical technique to calculate mo-
ments and spectral parameters of JONSWAP spectrum with cos2 function,
the procedure of Gran (1992), which we herein extended, takes advantage of
some approximations. Among all, the principal ones are:

• the peak-enhanced JONSWAP spectrum is approximated by a scaled
Pierson-Moskowitz spectral shape plus a narrow-banded spectrum about
the modal frequency;

• the relationship between η and γ for JONSWAP spectrum is the ap-
proximate result of a numerical technique, i.e. the method of the steep-
est descent.

In order to evaluate the reliability of the results we obtained for the JON-
SWAP spectrum with cos2 function, we compared moments and spectral pa-
rameters obtained analytically through eqs. (6.20) and (6.21) respectively,
with the corresponding quantities obtained by numerical integration of a cho-
sen JONSWAP and cos2 function directional spectrum (Figure 6.3). Prior to
this, we performed the same comparison for the Pierson-Moskowitz and cos2

function directional spectrum, to verify reliability of numerical integration
procedure.

Spectral domain was discretized by using:

• an exponential frequency axis with 32 bins in the interval [0.05,1.00]
Hz and a resolution ∆σ/σ = 0.1;

• a uniform directional axis with 315 bins in the interval [-π/2, π/2] rad
and resolution ∆θ = 0.01 rad.
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Figure 6.3: Directional wave spectrum used for numerical integration of a JONSWAP
spectrum and cos2 function.

Numerical integration was performed using trapezoidal rule up to the
maximum cut-off frequency, i.e. 1.00 Hz. Over this value, a diagnostic fre-
quency tail, proportional to σ−5, was added and analytic integration was
performed. For 4th order mijl moments, analytic integration was bounded
above by σ∞ = 60 rad/s, i.e. the capillary-gravity limit.

6.3.1 Pierson-Moskowitz and cos2 function

The values of the directional spectrum with (2.26) and (2.33) were calcu-
lated at the discrete bins above indicated. We assumed a modal frequency
σm = 0.75 rad/s, corresponding to Hs = 2.81 m. Hence, mijl moments (6.6)
and spectral parameters (2.7) were numerically calculated and then compared
to that obtained from (6.8) and (6.13), respectively.

Table 6.1 and Table 6.2 show an excellent agreement for both the spectral
moments and spectral parameters, with differences of an order smaller than
10−5 for spectral moments and smaller than 10−3 for spectral parameters
that can be ascribed to numerics. Thus, we verified the reliability of the
numerical calculation technique. We then used it for the evaluation of the
analytical results for JONSWAP spectrum under the specified assumptions
and approximations.

94



Technique m000 (m2) m002 (m2 rad2 s−2) m020 (rad2)
NUMERICAL 0.4927 0.5493 0.0085
ANALYTICAL 0.4927 0.5492 0.0085

Technique m200 (rad2) m101 (m rad2 s−1) m110 (rad2)
NUMERICAL 0.0254 0.0771 −10−14

ANALYTICAL 0.0254 0.0771 0

Technique m011 (m rad2 s−1)
NUMERICAL −10−11

ANALYTICAL 0

Table 6.1: Spectral moments of a Pierson-Moskowitz spectrum with cos2 function. Com-
parison between numerical and analytical techniques results.

Technique T (s) Lx (m) Ly (m) αxt (-) αxy (-) αyt (-)
NUMERICAL 5.95 27.67 47.93 0.65 -10−12 −10−8

ANALYTICAL 5.95 27.67 47.93 0.65 0 0

Table 6.2: Spectral parameters of a Pierson-Moskowitz spectrum with cos2 function. Com-
parison between numerical and analytical techniques results.

6.3.2 JONSWAP and cos2 function

We first calculated the values of the directional spectrum with (2.29)
and (2.33) at the specified discrete bins. We assumed σm = 0.75 rad/s, the
average value for the peak-enhancement factor γ = 3.3 and the average value
for β, i.e. β = 0.08, as done by Gran (1992). For simplicity, we assumed
AJ = A. Considered sea state had a significant wave height Hs = 3.47 m,
obtained by numerical integration of the spectrum.

Table 6.3 and Table 6.4 show that analytically obtained spectral moments
and parameters are consistent with that calculated by numerical integration
of the spectrum. Nevertheless, some differences due to the cited approxi-
mations in the Gran procedure emerged. The most considerable is the 9%
difference on m000, which leads to a 5% difference on the significant wave
height estimate. We observed that greater differences are associated with
smaller orders of the spectral moments in frequency, e.g. the fourth order
moments m200, m020 and m110 present the smaller differences, less than 1%.
For what concerns spectral parameters, excellent estimates resulted for the
irregularity parameters. Maximum differences, i.e. 4%, were observed for Lx
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and Ly, while for the other parameters the agreement was better. Chang-
ing peak-enhancement factor γ affected only slightly the differences between
analytical and numerical results. Differences dropped as γ decreased down
to γ = 1, while they didn’t show significant increases as γ was raised up to
γ = 7.

Technique m000 (m2) m002 (m2 rad2 s−2) m020 (rad2)
NUMERICAL 0.7509 0.6954 0.0087
ANALYTICAL 0.6816 0.6555 0.0086

Technique m200 (rad2) m101 (m rad2 s−1) m110 (rad2)
NUMERICAL 0.0259 0.0867 −10−14

ANALYTICAL 0.0261 0.0840 0

Technique m011 (m rad2 s−1)
NUMERICAL −10−11

ANALYTICAL 0

Table 6.3: Spectral moments of a JONSWAP spectrum with cos2 function. Comparison
between numerical and analytical techniques results.

Technique T (s) Lx (m) Ly (m) αxt (-) αxy (-) αyt (-)
NUMERICAL 6.53 33.73 58.41 0.64 -10−12 −10−8

ANALYTICAL 6.41 32.25 55.86 0.64 0 0

Table 6.4: Spectral parameters of a JONSWAP spectrum with cos2 function. Comparison
between numerical and analytical techniques results.

We can conclude that:

• for a Pierson-Moskowitz spectrum with cos2 directional distribution,
the proposed analytical formulae of spectral parameters represent a
valuable alternative to the lack of directional spectra (from measure-
ments, numerical modeling, etc). They are exact in the range of the
surface-gravity waves frequency range and they can be used without
the need of numerical tools or softwares. They depend only on the
modal frequency σm, hence on wind speed U or significant wave height
Hs, and not for example on the discretization of the spectral domain
(frequency and directional resolution, cut-off frequencies among all);

• for a JONSWAP spectrum with cos2 directional distribution, the pro-
posed formulae are affected by the approximations used in the deriva-
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tion procedure. This cause discrepancies within 5% from results of nu-
merical integration, herein assumed as a benchmark. Hence, proposed
formulae are not exact but they however represents a valuable alterna-
tive in absence of directional spectra, since they don’t need numerical
tools or softwares to be used. Moreover, they make the dependence
upon wind speed U and fetch length F explicit.

6.4 Cut-off frequency: sensitivity analysis

As already specified in Section 6.2, the choice of the cut-off frequency
σ∞ affects the results of wave space-time extreme analysis. Therefore, we
performed a sensitivity analysis to investigate the effects of the choice of
σ∞ = 60 rad/s on spectral parameters (2.7) and on the expected maximum
sea surface elevation ξST (or, equivalently, on the ratio with ξST/ξT ).

We considered Pierson-Moskowitz and cosine square function directional
spectra, assuming wind speeds U = [10, 20] m/s. We fixed a square area
A = 104 m2 and a duration D = 100T . Spectral parameters were obtained by
analytic integration of (6.7) according to the procedure in Section 6.2.1, but
σ∞ was forced to vary of ±10% and ±50%. Then, space-time extreme anal-
ysis was performed following Fedele’s method (Section 3.3). We compared
spectral parameters (Figure 6.4 and Table 6.5) and the expected maximum
sea surface elevation obtained from different cut-off frequencies analyses (Ta-
ble 6.5). Then, we calculated percentage differences with respect to σ∞ = 60
rad/s analysis results (Table 6.5), for U = 20 m/s, i.e. the condition associ-
ated to maximum variations of investigated parameters (Figure 6.4).

We observed that percentage differences were equal for all the non-null
spectral parameters interested by the cut-off frequency variations, i.e. those
dependent upon 4th order moments (Lx, Ly, αxt). We also observed that
these differences were within 10% with respect to the chosen σ∞ = 60 rad/s
analysis even when the cut-off frequency was increased of 50%. The expected
maximum sea surface elevation was less sensitive to cut-off frequency varia-
tions. In fact, differences with respect to the chosen σ∞ = 60 rad/s analysis
are always within the 1.1%. For smaller areas, the differences on ξST drop
below 1.0%.
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6.5 Spectral parameters in the original frame

of reference

The assumption of wave propagation along the x positive direction, i.e.
θp = 0, was used to simplify the final formulae of spectral parameters. The
letters lost dependence upon the actual wave propagation direction θp. Al-
though neither the spectral shape nor the space-time extreme analysis are
affected by a rotation of the frame of reference, some of the spectral pa-
rameters depend upon the chosen frame of reference. These are spectral
parameters obtained from moments having non-null exponents for wavenum-
ber components kx,ky, i.e. Lx, Ly, αxt, αxy, αyt. Hence, it could be useful to
correct these spectral parameters formulae in the rotated frame of reference
to get the ones in the original frame of reference.

6.5.1 Wavelength and wave crest

To correct wavelength Lx and wave crest Ly, first consider that although
kx,ky depend upon the frame of reference, the wavenumber vector magnitude
k is instead the same. Hence, once the latter has been obtained it is sufficient
to project it onto the axes (x̂, ŷ) of the original frame of reference to get
(kx̂,kŷ)

kx̂ = k cos θ̂ kŷ = k sin θ̂ (6.22)

θ̂ being the direction of wave propagation in the original frame of reference:

θ̂ = arctan

(
kŷ
kx̂

)
(6.23)

Then, wavelength Lx̂ and wave crest Lŷ are obtained as:

Lx̂ =
2π

kx̂
Lŷ =

2π

kŷ
(6.24)

Since we are using second order moments to calculate wavenumber com-
ponents kx,ky, the directions of wavenumber vector in the rotated or in the
original frame of reference are different from the direction of propagation θp.
To summarize

θ̂ 6= θ 6= θp (6.25)

Hence, referring to rotated frame of reference, we will never obtain ky = 0,
unless the sea state is long-crested. In fact, we recall that short-crestedness
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parameter is defined as

γs =

√
m020

k200

=
ky
kx

(6.26)

where γs = 0 corresponds to long-crested conditions, while γs = 1 represents
short-crested conditions.

To obtain θ̂, we built a directional spectrum (Pierson-Moskowitz and cos2

function) and we changed direction of wave propagation θp between−π/2 and
π/2, i.e. in the domain of definition of the directional spreading function.
Then, we calculated the directions of propagation in the following ways:

• θ̂, directly from numerical integration of the spectrum;

• θ, from analytical formulae of wavelength and wave crest in the rotated
frame of reference.

The ratios rθ = θ̂/θ we obtained at different θp can be modeled as:

rθ = 1.5 +
cos (2(θp + π/2))

2
(6.27)

Hence, we can express θ̂ as a function of θp:

θ̂(θp) = θrθ

= θ

(
1.5 +

cos (2(θp + π/2))

2

)
(6.28)

and we were finally able to correct the analytical formulae for Lx and Ly to
get them in the original frame of reference with an error smaller than 1%.

6.5.2 Irregularity parameters

To correct the irregularity parameters αxt, αxy, αyt we could not proceed
as for the wavelength and wave crest since magnitudes of the specular veloc-
ity vectors are not the same in different frame of references. So, we directly
modeled the ratio of the quantities in the two frames of reference for differ-
ent wave propagation directions. Since αxy and αyt are null in the rotated
reference frame, we proceeded as following:

• we calculated rxt = αx̂t/αxt at different θp and modeled it by using a
8-th degree polynomial fitting function, depending on θp only; αx̂t was
obtained by numerical integration of the spectrum. By this way we
corrected αxt;
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• we calculated the ratios rt = αx̂t/αŷt and rx = αx̂t/αx̂ŷ between αx̂t,
αŷt, and αx̂ŷ respectively, at different θp. Then, we modeled the ratios
using hyperbolic cotangent functions thus correcting αxy and αyt.

However, probably due to the approximations in the modeling of the
ratios, the errors committed with this correction were too large to consider
this procedure reliable, at least for αxy and αyt. Thus, we consider the
correction of the spectral parameters acceptable only for wavelength and
wave crest.

6.6 Results

The analysis of wave extremes in the space-time domain can now be per-
formed, taking advantage of eqs. (6.13) or (6.21). This means that if one
assumes either a Pierson-Moskowitz (PM) or a JONSWAP (JON) spectral
shape and a cos2 directional distribution, one can analytically estimate the
spectral parameters characterizing the sea state, under some specified as-
sumptions and approximations. Then, the maximum sea surface elevation
expected over an area ξST can be computed by applying one of the described
stochastic methods, i.e. Piterbarg’s theorem or Fedele’s method.

In this Chapter, we obtained and discussed the dependence upon area size
A, wind speed U and fetch length F of the maximum expected sea surface ele-
vation over an area ηST (or normalized ξST ). Wind speeds considered were in
the range for which Pierson-Moskowitz spectral shape was deduced (Pierson
and Moskowitz, 1964; Ochi, 2005), i.e. U = [10, 20] m/s. For the Pierson-
Moskowitz case, they corresponded to Hs = [2.15, 8.56] m (Figure 6.5, left
panel). Fetch lengths F , which only enter JONSWAP spectrum that is fetch
limited, were in the range F = [10, 260] km. For simplicity of discussion,
fetch was let vary when the wind speed U = 15 m/s was constant. Corre-
sponding significant wave heights were Hs = [0.69, 3.65] m (Figure 6.5, right
panel). The choice of area size, in particular of the minimum one, was led by
the fact that we wanted to compare results from different stochastic methods.
Since Piterbarg’s theorem fails when the area side is shorter than a wave-
length, as it will be shown later on, we could not go down much less than the
minimum average wavelength, i.e. 22 m for the Pierson-Moskowitz case and
5 m for the JONSWAP case. Nevertheless, we wanted to discuss Forristall’s
approximation as well as Fedele’s method, working even down to less than 1
m2. We then chose a 100 m2 minimum area for the Pierson-Moskowitz case
and a 10 m2 for the JONSWAP case. Duration D was chosen such that an
average number of 100 waves was contained within time domain: D = 100T
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Figure 6.5: Significant wave heights of the analyzed sea states. Left panel: Pierson-
Moskowitz and cos2 function. Right panel: JONSWAP and cos2 function, with fixed wind
speed U=15 m/s.

for every sea state. This allowed a parametric analysis on the wind speed U ,
fetch length F and space domain size A only.

Note that within this Chapter, we separated Piterbarg’s theorem and
Forristall approximation, meaning that Piterbarg’s theorem results are not
modified to account for Forristall’s approximation. Moreover, at this step of
analysis, we focused only on the linear prediction from stochastic models, i.e.
without accounting for second order correction.

6.6.1 Pierson-Moskowitz and cos2 function

Piterbarg’s theorem

Following Figures show results of wave extreme analysis in the space-time
domain, performed with the stochastic method of Piterbarg. Expected max-
imum sea surface elevation over an area ξST and at a fixed point inside that
area ξT were calculated according to (3.7), using (3.4) and hN =

√
2 logN ,

respectively. The ratio r of the expected maximum sea surface elevation over
an area to that at a point was obtained as r = ξST/ξT .
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Figure 6.6: PM-Piterbarg’s theorem. Expected maximum sea surface elevation at a point
as a function of area size and wind speed; semilogarithmic plot, spacing between lines: 1
m/s. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.7: PM-Piterbarg’s theorem. Expected maximum sea surface elevation over an
area as a function of area size and wind speed; contour plot, spacing between contours:
0.05. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.9: PM-Piterbarg’s theorem. Ratio of the expected maximum sea surface elevation
over an area to the expected maximum at a point as a function of area size and wind speed.
(a) Contour plot, spacing between contours: 0.05. (b) Semilogarithmic plot, spacing
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Figure 6.10: PM-Piterbarg’s theorem. Contribution of organization: A is normalized on
LxLy to highlight dependence upon space-time irregularity parameters αxt, αyt, αxy. (a)
Expected maximum sea surface elevation over an area, normalized on Hs. (b) Ratio of
the expected maximum sea surface elevation over an area to the expected maximum at a
point.

Figures show that:

• expected maximum sea surface elevation at a point ηT grows as wind
speed increases (Figure 6.6, right panel), but obviously it does not
change as area size increases (Figure 6.6). Moreover, the normalized
elevation ξT at a point does not vary with wind speed (Figure 6.6,
left panel). In the context of a linear wave model, from left panel of
Figure 6.6, expected maximum wave height Hmax at a point can be
evaluated as

Hmax = 2ηT = 2 · 0.81Hs = 1.62Hs

The ratio Hmax/Hs obtained is lower than the usual 1.8÷2.0 (Dysthe
et al., 2008). The reason is that the number of waves imposed, i.e.
100, is lower than that associated to the usual ratio, i.e. 500÷1000. In
both the cases the parent statistics is the Rayleigh distribution and it
is sufficient to impose a number of 500 waves in time domain to recover
Hmax/Hs ∼ 1.8.

• expected maximum sea surface over an area ηST grows as both wind
speed and area size increase (right panels of Figure 6.7 and Figure 6.8).
Normalized one, i.e. ξST , instead drops as wind speed increases and
grows as area size increases (left panels of Figure 6.7 and Figure 6.8).
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Indeed, referring to the left panel of Figure 6.7, taking a fixed area
size and increasing wind speed the expected maximum sea surface ξST
drops since longer wavelengths yields to a smaller number of waves
inside the space-time domain. If then wind speed is fixed, as the area
widens ξST grows since a bigger number of constant wavelength waves
is contained inside the space-time domain.
The expected maximum wave height Hmax can be evaluated in the
context of a linear wave model

10 m/s: Hmax = 2ηST = 2 · 1.22Hs = 2.44Hs

20 m/s: Hmax = 2ηST = 2 · 1.06Hs = 2.12Hs

with values at A = 104 m2. Even with a relatively low number of waves
in the time domain, the ratios Hmax/Hs exceed the usual 1.8÷2.0 ratio
(Dysthe et al., 2008).

• the ratio r of the maximum expected sea surface over an area to the
maximum at a point drops as wind speed increases and grows as area
increases (Figure 6.9). This is a natural consequence of ξT being con-
stant over wind speed and area size and of the described dependence of
ξST . In fact, left and right panel of (Figure 6.9) are strongly consistent
with left panel of Figure 6.7 and left panel of Figure 6.8, respectively.

• variations of ξST and r are mainly due to changes of T , Lx and Lx.
In fact, contribution of organization of the wave field, through space-
time irregularity parameters, is less effective (Figure 6.10). This is
reasonable, since variations of wind speed U affect frequency spectrum,
while directional distribution, which was showed to be responsible for
effects on irregularity parameters, didn’t change.

Forristall’s approximation for small areas

Piterbarg’s analysis was also performed according to Forristall’s approxi-
mation for small areas (3.10). Following Figures contain expected maximum
sea surface elevations (3.7) over an area and at a fixed point, calculated ac-
cording to Forristall (black lines) while X < Lx and according to Piterbarg
while X ≥ Lx.

Figures show that for areas smaller than a wavelength, both the expected
maximum over an area ξST (Figure 6.12) and the ratio r (Figure 6.13) in-
creased with respect to Piterbarg’s theorem results. This is due to the asymp-
totic character of Piterbarg’s theorem, which works for large number of waves,
i.e. for large areas. Moreover, Forristall’s approximation assumes the maxi-
mum could occur on the area side.

107



10
2

10
3

10
4

0.7

0.8

0.9

1

1.1

1.2

A (m
2
)

ξ
T

(a)

10
2

10
3

10
4

2

4

6

8

10

20 m/s

10 m/s

A (m
2
)

η
T
(m

)
(b)

Figure 6.11: PM-Forristall’s approximation. Expected maximum sea surface elevation at
a point as a function of area size and wind speed; semilogarithmic plot, spacing between
lines: 2 m/s. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.12: PM-Forristall’s approximation. Expected maximum sea surface elevation
over an area as a function of area size and wind speed; semilogarithmic plot, spacing
between lines: 2 m/s. Forristall’s approximation (black) is used while X < Lx; over,
Piterbarg’s theorem (red) is applied. (a) Normalized on the significant wave height. (b)
Non-normalized.
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Figure 6.13: PM-Forristall’s approximation. Ratio of the expected maximum sea surface
elevation over an area to the expected maximum at a point as a function of area size and
wind speed, semilogarithmic plot, spacing between lines: 2 m/s. Forristall’s approximation
(black) is used while X < Lx; over, Piterbarg’s theorem (red) is applied.

Fedele’s method

Following Figures show results of wave extreme analysis in the space-
time domain, performed with the stochastic method of Fedele. Expected
maximum sea surface elevation over an area ξST and at a fixed point inside
that area ξT are calculated according to (3.18) and (3.20) respectively. The
ratio r of the expected maximum sea surface elevation over an area to that
at a point was obtained as ξST/ξT .

Figures show that:

• expected maximum sea surface at a point ηT grows as wind speed in-
creases (Figure 6.14, right panel), but obviously it does not change as
area size increases (Figure 6.14). Moreover, the normalized maximum
sea surface elevation at a point ξT does not vary with wind speed (Fig-
ure 6.14, left panel). In the context of a linear wave model, from the
left panel of Figure 6.14, expected maximum wave height Hmax at a
point can be evaluated as

Hmax = 2ηT = 2 · 0.81Hs = 1.62Hs

The ratio Hmax/Hs obtained is lower than the usual 1.8÷2.0 (Dysthe
et al., 2008). The reason is that the number of waves imposed, i.e. 100,
was lower than that associated to the usual ratio, i.e. 500÷1000. In
both the cases the parent statistics is the Rayleigh distribution and it
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Figure 6.14: PM-Fedele’s method. Expected maximum sea surface elevation at a point
as a function of area size and wind speed; semilogarithmic plot, spacing between lines: 1
m/s. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.15: PM-Fedele’s method. Expected maximum sea surface elevation over an area
as a function of area size and wind speed; contour plot, spacing between contours: 0.05.
(a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.16: PM-Fedele’s method. Expected maximum sea surface elevation over an area
as a function of area size and wind speed; semilogarithmic plot, spacing between lines: 1
m/s. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.17: PM-Fedele’s method. Ratio of the expected maximum sea surface elevation
over an area to the expected maximum at a point as a function of area size and wind speed.
(a) Contour plot, spacing between contours: 0.05. (b) Semilogarithmic plot, spacing
between lines: 1 m/s.

111



log
10

(A/L
x
/L

y
) (−)

U
 (

m
/

s)

 

 

−2 −1 0 1
10

12

14

16

18

20

ξ
S
T

0.6

0.8

1

1.2

(a)

log
10

(A/L
x
/L

y
) (−)

U
 (

m
/

s)

 

 

−2 −1 0 1
10

12

14

16

18

20

r 
(−

)

1

1.2

1.4

1.6

1.8

(b)

Figure 6.18: PM-Fedele’s method. Contribution of organization: A is normalized on LxLy
to highlight dependence upon space-time irregularity parameters αxt, αyt, αxy. (a) Ex-
pected maximum sea surface elevation over an area, normalized on Hs. (b) Ratio of the
expected maximum sea surface elevation over an area to the expected maximum at a point.

is sufficient to impose a number of 500 waves in time domain to recover
Hmax/Hs ∼ 1.8. Note that the same result was obtained performing
Piterbarg’s analysis, as expected.

• expected maximum sea surface over an area ηST grows as both wind
speed and area size increase (right panels of Figure 6.15 and Fig-
ure 6.16). If normalized, i.e. ξST , it drops as wind speed increases
and grows as area size increases (left panels of Figure 6.15 and Fig-
ure 6.16). In the context of a linear wave model, expected maximum
wave height Hmax can be evaluated as

10 m/s: Hmax = 2ηST = 2 · 1.25Hs = 2.50Hs

20 m/s: Hmax = 2ηST = 2 · 1.11Hs = 2.22Hs

with values at A = 104 m2. Even with a relatively low number of waves
in the time domain, the ratios Hmax/Hs exceed the usual 1.8÷2.0 ra-
tio (Dysthe et al., 2008). We observed that expected maximum wave
heights herein obtained are slightly higher than those predicted by
Piterbarg’s theorem. This is due to the contribution of the space-time
domain boundaries.

• the ratio r of the maximum expected sea surface over an area to the
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maximum at a point drops as wind speed increases and grows as area
increases (Figure 6.17).

• variations of ξST and r are mainly due to changes of T , Lx and Lx.
In fact, contribution of organization of the wave field, through space-
time irregularity parameters, is less effective (Figure 6.18). This is
reasonable, since variations of wind speed U affect frequency spectrum,
while directional distribution didn’t change.

If we compare results from Piterbarg’s and Fedele’s method we observe
that:

• predicted expected maxima at a fixed point ξT are equal among the
two methods; this is obvious since both methods estimate time maxima
from the same distribution, i.e. Rayleigh for wave crests, taking the
same number of waves, i.e. N = D/T ;

• Fedele’s method globally predicts higher expected maximum surface
elevations ξST and higher ratios r than Piterbarg’s theorem; the reason
is the correction in Fedele’s method to account for the boundaries of
the space-time domain;

• major differences between the two methods results occur at small ar-
eas. In fact, Piterbarg’s theorem states the ”asymptotic” distribution
of maxima of a Gaussian random field, meaning it works fine for large
number of waves N , or equivalently, for large areas A. As a matter of
fact, Piterbarg’s theorem does not work for areas whose side is smaller
than the average wavelength. On the contrary, splitting the number of
waves calculation over space-time domain and its boundaries, Fedele’s
method allows performing the analysis even if the area side is smaller
than a wavelength. Figure 6.19 shows the ratio of the expected maxi-
mum sea surface elevations over an area calculated by Piterbarg’s and
Fedele’s method, respectively. As the number of waves increases, i.e.
area widens or wind speed decreases, differences tend to cancel and the
ratio tends to 1.

Figure 6.20 compare results of the different performed methods for a
U = 10 m/s wind speed. For both ξST and r, we observe that differences
between Fedele’s and Piterbarg’s theorems decrease at large areas, while dif-
ferences between Fedele’s method and Forristall’s approximation decreases at
small areas. This confirms the wider range of application of Fedele’s method.
Finally, we observed that Fedele’s method predicts higher sea surface eleva-
tions and ratios for all the analyzed areas. This is due to the boundary
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Figure 6.19: Expected maximum sea surface elevation over an area as a function of area
size and wind speed. Ratio of the maximum calculated by Piterbarg’s theorem (ξST,K) to

that calculated by Fedele’s method(ξST,F ).

correction, included to account for possible occurrencies of maxima over the
boundaries of the space-time domain.

6.6.2 JONSWAP and cos2 function

Piterbarg’s theorem

Following Figures show results of wave extreme analysis in the space-time
domain, performed with the stochastic method of Piterbarg. Expected max-
imum sea surface elevation over an area ξST and at a fixed point inside that
area ξT were calculated according to (3.7), using (3.4) and hN =

√
2 logN ,

respectively. The ratio r of the expected maximum sea surface elevation over
an area to that at a point was obtained as r = ξST/ξT .

Figures show that:

• expected maximum sea surface at a point ηT grows as fetch length
increases (Figure 6.21, right panel), but obviously it does not change as
area size increases (Figure 6.21). Moreover, the normalized maximum
sea surface elevation at a point ξT does not vary with fetch length
(Figure 6.21, left panel). In the context of a linear wave model, from
left panel of Figure 6.21, expected maximum wave height Hmax at a
point can be evaluated

Hmax = 2ηT = 2 · 0.81Hs = 1.62Hs
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Figure 6.20: Comparison among methods, assuming wind speed U = 10 m/s: Piterbarg
(black), Forristall (blue), Fedele (red). Change between dotted and solid lines occurs where
X = Lx. (a) Expected maximum sea surface elevation over an area, normalized on Hs.
(b) Ratio of the expected maximum sea surface elevation over an area to the expected
maximum at a point.
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Figure 6.21: JON-Piterbarg’s theorem. Expected maximum sea surface elevation at a point
as a function of area size and fetch length (wind speed U = 15 m/s); semilogarithmic plot,
spacing between lines: 25 km. (a) Normalized on the significant wave height. (b) Non-
normalized.
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Figure 6.22: JON-Piterbarg’s theorem. Expected maximum sea surface elevation over
an area as a function of area size and fetch length (wind speed U = 15 m/s); contour
plot, spacing between contours: 0.05. (a) Normalized on the significant wave height. (b)
Non-normalized.
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Figure 6.23: JON-Piterbarg’s theorem. Expected maximum sea surface elevation over an
area as a function of area size and fetch length (wind speed U = 15 m/s); semilogarithmic
plot, spacing between lines: 25 km. (a) Normalized on the significant wave height. (b)
Non-normalized.

116



A (m
2
)

F
 (

k
m

)

 

 

2000 4000 6000 8000 10000

50

100

150

200

250

r 
(−

)

1

1.2

1.4

1.6

1.8

(a)

10
2

10
4

1

1.2

1.4

1.6

1.8

10 km

260 km

A (m
2
)

r 
(−

)

(b)

Figure 6.24: JON-Piterbarg’s theorem. Ratio of the expected maximum sea surface eleva-
tion over an area to the expected maximum at a point as a function of area size and fetch
length (wind speed U = 15 m/s). (a) Contour plot, spacing between contours: 0.05. (b)
Semilogarithmic plot, spacing between lines: 25 km.
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Figure 6.25: JON-Piterbarg’s theorem. Contribution of organization: A is normalized on
LxLy to highlight dependence upon space-time irregularity parameters αxt, αyt, αxy. (a)
Expected maximum sea surface elevation over an area, normalized on Hs. (b) Ratio of
the expected maximum sea surface elevation over an area to the expected maximum at a
point.
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The ratio Hmax/Hs obtained is lower than the usual 1.8÷2.0 (Dysthe
et al., 2008). The reason is that the number of waves imposed, i.e. 100,
was lower than that associated to the usual ratio, i.e. 500÷1000. In
both the cases the parent statistics is the Rayleigh distribution and it
is sufficient to impose a number of 500 waves in time domain to recover
Hmax/Hs ∼ 1.8.

• expected maximum sea surface over an area ηST grows as both fetch
length and area size increase (right panels of Figure 6.22 and Fig-
ure 6.23). Normalized one, i.e. ξST , instead drops as fetch length
increases and grows as area size increases (left panels of Figure 6.22
and Figure 6.23). Indeed, referring to the left panel of Figure 6.7, tak-
ing a fixed area size and increasing fetch length the expected maximum
sea surface ξST drops since longer wavelengths yields to a smaller num-
ber of waves inside the space-time domain. If then fetch length is fixed,
as the area widens ξST grows since a bigger number of constant wave-
length waves is contained inside the space-time domain.
The expected maximum wave height Hmax can be evaluated in the
context of a linear wave model

10 km: Hmax = 2ηST = 2 · 1.38Hs = 2.76Hs

260 km: Hmax = 2ηST = 2 · 1.18Hs = 2.36Hs

with values at A = 104 m2. Even with a relatively low number of waves
in the time domain, the ratios Hmax/Hs exceed the usual 1.8÷2.0 ratio
(Dysthe et al., 2008).

• the ratio r of the maximum expected sea surface over an area to the
maximum at a point drops as fetch length increases and grows as area
increases (Figure 6.24). This is a natural consequence of ξT being con-
stant over fetch length and area size and of the described dependence of
ξST . In fact, left and right panel of (Figure 6.24) are strongly consistent
with left panel of Figure 6.22 and left panel of Figure 6.23, respectively.

• variations of ξST and r are mainly due to changes of T , Lx and Lx.
In fact, contribution of organization of the wave field, through space-
time irregularity parameters, is less effective (Figure 6.25). This is
reasonable, since variations of fetch length F affect frequency spectrum,
while directional distribution doesn’t change.

Compared to Pierson-Moskowitz based directional spectra, results of Piter-
barg’s analysis are higher in terms of both expected maximum over an area
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ξST and ratio r. This is consistent with the sea state represented, i.e. a de-
veloping sea with shorter wavelengths and shorter wave crests with respect to
a fully developed sea state. Thus, there is a greater number of waves inside
the space-time domain.

Forristall’s approximation for small areas

Piterbarg’s analysis was also performed according to Forristall’s approxi-
mation for small areas (3.10). Following Figures contain expected maximum
sea surface elevations (3.7) over an area ξST and at a fixed point ξT , cal-
culated according to Forristall (black lines) while X < Lx and according to
Piterbarg while X ≥ Lx.

Figures show that for areas smaller than a wavelength, both the expected
maximum over an area ξST (Figure 6.27) and the ratio r (Figure 6.28) increase
with respect to Piterbarg’s theorem results. This is due to the asymptotic
character of Piterbarg’s theorem, which works for large number of waves, i.e.
for large areas. Moreover, Forristall’s approximation assumes the maximum
occurs on the area side.
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Figure 6.26: JON-Forristall’s approximation. Expected maximum sea surface elevation at
a point as a function of area size and wind speed; semilogarithmic plot, spacing between
lines: 25 km. (a) Normalized on the significant wave height. (b) Non-normalized.
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Figure 6.27: JON-Forristall’s approximation. Expected maximum sea surface elevation
over an area as a function of area size and wind speed; semilogarithmic plot, spacing
between lines: 25 km. Forristall’s approximation (black) is used while X < Lx; over,
Piterbarg’s theorem (red) is applied. (a) Normalized on the significant wave height. (b)
Non-normalized.
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Figure 6.28: JON-Forristall’s approximation. Ratio of the expected maximum sea surface
elevation over an area to the expected maximum at a point as a function of area size and
wind speed, semilogarithmic plot, spacing between lines: 25 km. Forristall’s approximation
(black) is used while X < Lx; over, Piterbarg’s theorem (red) is applied.
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Fedele’s method

Following Figures show results of wave extreme analysis in the space-
time domain, performed with the stochastic method of Fedele. Expected
maximum sea surface elevation over an area ξST and at a fixed point inside
that area ξT were calculated according to (3.18) and (3.20) respectively. The
ratio r of the expected maximum sea surface elevation over an area to that
at a point was obtained as r = ξST/ξT .
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Figure 6.29: JON-Fedele’s method. Expected maximum sea surface elevation at a point
as a function of area size and fetch length (wind speed U = 15 m/s); semilogarithmic
plot, spacing between lines: 25 km. (a) Normalized on the significant wave height. (b)
Non-normalized.

Figures show that:

• expected maximum sea surface at a point ηT grows as fetch length
increases (Figure 6.29, right panel), but obviously it does not change as
area size increases (Figure 6.29). Moreover, the normalized maximum
sea surface elevation at a point ξT does not vary with fetch length
(Figure 6.29, left panel). In the context of a linear wave model, from
the left panel of Figure 6.29, expected maximum wave height Hmax at
a point can be evaluated as

Hmax = 2ηT = 2 · 0.81Hs = 1.62Hs

The ratio Hmax/Hs obtained is lower than the usual 1.8÷2.0 (Dysthe
et al., 2008). The reason is that the number of waves imposed, i.e. 100,
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Figure 6.30: JON-Fedele’s method. Expected maximum sea surface elevation over an
area as a function of area size and fetch length (wind speed U = 15 m/s); contour plot,
spacing between contours: 0.05. (a) Normalized on the significant wave height. (b) Non-
normalized.
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Figure 6.31: JON-Fedele’s method. Expected maximum sea surface elevation over an area
as a function of area size and fetch length (wind speed U = 15 m/s); semilogarithmic
plot, spacing between lines: 25 km. (a) Normalized on the significant wave height. (b)
Non-normalized.
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Figure 6.32: JON-Fedele’s method. Ratio of the expected maximum sea surface elevation
over an area to the expected maximum at a point as a function of area size and fetch
length (wind speed U = 15 m/s). (a) Contour plot, spacing between contours: 0.05. (b)
Semilogarithmic plot, spacing between lines: 25 km.
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Figure 6.33: JON-Fedele’s method. Contribution of organization: A is normalized on
LxLy to highlight dependence upon space-time irregularity parameters αxt, αyt, αxy. (a)
Expected maximum sea surface elevation over an area, normalized on Hs. (b) Ratio of
the expected maximum sea surface elevation over an area to the expected maximum at a
point.
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was lower than that associated to the usual ratio, i.e. 500÷1000. In
both the cases the parent statistics is the Rayleigh distribution and it
is sufficient to impose a number of 500 waves in time domain to recover
Hmax/Hs ∼ 1.8. Note that the same result was obtained performing
Piterbarg’s analysis, as expected.

• expected maximum sea surface over an area ηST grows as both fetch
length and area size increase (right panels of Figure 6.30 and Fig-
ure 6.31). If normalized, i.e. ξST , it drops as fetch length increases
and grows as area size increases (left panels of Figure 6.30 and Fig-
ure 6.31). In the context of a linear wave model, expected maximum
wave height Hmax can be evaluated as

10 km: Hmax = 2ηST = 2 · 1.39Hs = 2.78Hs

260 km: Hmax = 2ηST = 2 · 1.21Hs = 2.42Hs

with values at A = 104 m2. Even with a relatively low number of waves
in the time domain, the ratios Hmax/Hs exceed the usual 1.8÷2.0 ratio
(Dysthe et al., 2008). We observe that expected maximum wave heights
herein obtained are slightly higher than those predicted by Piterbarg’s
theorem. This is due to the contribution of the space-time domain
boundaries.

• the ratio of the maximum expected sea surface over an area to the
maximum at a point drops as fetch length increases and grows as area
increases (Figure 6.32).

• variations of ξST and r are mainly due to changes of T , Lx and Lx.
In fact, contribution of organization of the wave field, through space-
time irregularity parameters, is less effective (Figure 6.33). This is
reasonable, since variations of fetch length F affect frequency spectrum,
while directional distribution doesn’t change.

If we compare results from Piterbarg’s and Fedele’s method we observe
that:

• predicted expected maxima at a fixed point ξT are equal among the
two methods; this is obvious since both methods estimate time maxima
from the same distribution, i.e. Rayleigh for wave crests, taking the
same number of waves, i.e. N = D/T ;

• Fedele’s method globally predicts higher expected maximum surface
elevations ξST and higher ratios r than Piterbarg’s theorem; the reason
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Figure 6.34: Expected maximum sea surface elevation over an area as a function of area
size and fetch length . Ratio of the maximum calculated by Piterbarg’s theorem (ξST,K)

to that calculated by Fedele’s method(ξST,F ).

is the correction in Fedele’s method to account for the boundaries of
the space-time domain;

• major differences between the two methods results occur at small areas.
In fact, Piterbarg’s theorem states the ”asymptotic” distribution of
maxima of a Gaussian random field, meaning it works fine for large
number of waves N , or equivalently, for large areas. As a matter of fact,
Piterbarg’s theorem does not work for areas whose side is smaller than
the average wavelength. On the contrary, splitting the number of waves
calculation over space-time domain and its boundaries, Fedele’s method
allows performing the analysis even if the area side is smaller than a
wavelength. Figure 6.34 shows the ratio of the expected maximum sea
surface elevations over an area calculated by Piterbarg’s and Fedele’s
method, respectively. As the number of waves increases, i.e. area
widens or fetch length decreases, differences tend to cancel and the
ratio tends to 1.

Figure 6.35 compare results of the different performed analyses for a U =
15 m/s wind speed and F = 260 km fetch length. For both ξST and r, we
observe that differences between Fedele’s and Piterbarg’s theorems decrease
at large areas, while differences between Fedele’s method and Forristall’s
approximation decreases at small areas. This confirms again the wider range
of application of Fedele’s method. Finally, we observed that Fedele’s method
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predicts higher sea surface elevations and ratios for all the analyzed areas.
This is due to the boundary correction, included to account for possible
occurrences of maxima over the boundaries of the space-time domain.
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Figure 6.35: Comparison among methods, assuming wind speed U = 15 m/s and fetch
length F = 260 km: Piterbarg (black), Forristall (blue), Fedele (red). Change between
dotted and solid lines occurs where X = Lx. (a) Expected maximum sea surface elevation
over an area, normalized on Hs. (b) Ratio of the expected maximum sea surface elevation
over an area to the expected maximum at a point.

6.7 Conclusions

In this Chapter, we explored the possibility of applying analytical meth-
ods to space-time extreme analysis. We analytically integrated the direc-
tional spectra to obtain closed formulae of spectral moments and spectral pa-
rameters. We could benefit of parametric spectral formulations, i.e. Pierson-
Moskowitz and JONSWAP, combined with cos2 directional distribution func-
tion. Thanks to this, we could relate spectral moments and spectral param-
eters to physical quantities governing mechanics of wave growth, e.g. wind
speed U and fetch length F . For Pierson-Moskowitz, integration could be
performed straightforwardly, while for JONSWAP (which is not analytically
integrable) an approximation was introduced. We had to limit integration
for moments m020, m200 and m110 to an upper bound, since the integral
does not exist otherwise for spectra having frequency tail proprtional to σ−5.
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Qualitatively, results confirmed what we expected. Indeed, ξST increased
with space domain size S. Moreover, ξST decreased with increasing U and
F : in fact, being ηST normalized on significant wave height Hs, the latter
also increased together with space-time characteristic size of waves, i.e. T ,
Lx, Ly, causing smaller numbers of waves in the domain and hence smaller
ξST . We also observed that even for relatively small areas, maximum wave
height estimates exceeded the time domain estimates and the conventional
Hmax = 2Hs. Besides this, results allowed us to quantify the entity of the
maximum space-time sea surface elevations that could occur. Finally, it is
worthwhile to point out that we provided a possible solution to scarcity of
directional spectra by means of closed formulae of spectral parameters that
depend only upon wind speed U , for Pierson-Moskowtiz case, or wind speed
U and fetch length F for JONSWAP case.
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Chapter 7
Numerical results

7.1 Introduction

In this Chapter, we present the results we obtained after applying a nu-
merical approach to the problem of estimating maxima in the space-time
domain. As already stated, the aims were to provide a solution to scarcity of
directional spectra on the one hand and to discuss the dependence of space-
time extremes ξST upon physical parameters, i.e. ambient current speed
magnitude V and bottom slope λ, on the other. The basic idea of this
approach is to benefit of the directional spectra that are used by spectral
numerical models. Saving spectra over all the computational domain (x, y, t)
is an unfeasible task for realistic geophysical simulations. Hence, spectra are
usually saved as outputs at few user-specified locations. Nevertheless, we in-
tended to gather all the spectra the models calculate. Thus, we modified the
numerical wave model SWAN (Simulating WAves Nearshore model, version
40.85 (The SWAN Team, 2011)) by providing new routines that calculate
spectral parameters (2.7) as output variables. We called this new version
SWAN-ST (Space-Time).

Then, using SWAN-ST we investigated two test cases. The first one was
aimed at analyzing the effects of wave-current interactions and shoaling on
space-time extremes of sea states. We set-up a rectangular grid and forced
the model on a boundary by means of Pierson-Moskowitz spectrum. The
second test case was focussed on testing the potentialities of using SWAN-
ST for geophysical applications. To this end, we run a Mediterranean Sea
hindcast over 3 years. We also run the first months of 2013 with the aim
of hindcasting both the events we observed through WASS in the northern
and southern Adriatic Sea. Doing so, we could compare results of space-time
analysis with observations and validate the use of numerical models spectra
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to perform space-time analysis.

7.2 A SWAN model version to estimate space-

time extremes of sea states: SWAN-ST

As stated, we developed a modified version of SWAN version 40.85, called
SWAN Space-Time (SWAN-ST). Doing so, we provide SWAN new routines to
obtain the parameters (2.7) of the directional spectrum. After that, stochas-
tic models can be easily implemented off-line in post-processing, with the
advantage of saving a lot of memory, since the user is prevented to save
directional spectra all over the computational domain (x, y, t).

Assume the following spectral domain discretization in SWAN: directions
are represented by P bins θ1 ≤ θr ≤ θR, separated by a constant step ∆θ.
Frequencies instead are geometrically distributed as σq+1 = 1.1σq between
minimum and maximum cut-off frequencies, i.e σ1 ≤ σq ≤ σQ, respectively.
To calculate moments of the spectrum, a diagnostic tail proportional to σ−m

is added beyond σQ (m=4,5 but m=5 is often preferred to resemble observed
spectral tails (Forristall, 1981)).

Within SWAN-ST, spectral parameters (2.7) are obtained at each node
of the computational domain (x, y, t) by calculation of the spectral moments
through integration of the directional spectrum S(σ, θ) = σN(σ, θ). In the
prognostic range of frequencies σ1 ≤ σ ≤ σQ, integration is performed
numerically by means of the technique routinely used within SWAN (The
SWAN Team, 2011), which can be straightforwardly applied to calculate
every moment mijl:

mijl,P ' µ
R∑
r=1

Q∑
q=1

k2(i+j)
q cos θr

i sin θr
lσ(2+l)
q N(σq, θr)∆θ (7.1)

where µ = ln (σi+1/σi). Integration over the diagnostic tail σQ ≤ σ ≤ ∞
is performed analytically according to the technique implemented in SWAN
(The SWAN Team, 2011):

mijl,D ' τ
(
k

2(i+j)
Q cos θR

i sin θR
lσ

(2+l)
Q N(σQ, θR)∆θ

)
(7.2)

where τ = 1/(χ(1 + χ(υ − 1))), χ = r − l − 2(i + j)− 1 and υ =
√
σi+1/σi.

Though, since we chose m=5, (7.2) cannot be performed to calculate the
moments mijl realizing 2(i + j) + l = 4 (i.e. m200, m020 and m110), because
χ cancels. Hence, similarly to what we did in the analytical approach, in
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deep waters we limit the integration over σ to the gravity-capillary limit, i.e.
σc = 60 rad/s, coming to:

mijl,Dc ' κ
(
k

2(i+j)
Q cos θR

i sin θR
lσ

(2+l)
Q N(σQ, θR)∆θ

)
(7.3)

where κ = (ln (σc)− ln (υσQ)) Accordingly, moments of the directional spec-
trum (2.6) are obtained as

mijl ' mijl,P +mijl,D when 2(i+ j) + l 6= 4

mijl ' mijl,P +mijl,Dc when 2(i+ j) + l = 4
(7.4)

Spectral parameters follow straightforwardly from (2.7).

FORTRAN 90 subroutines we developed from scratch and those we mod-
ified for SWAN-ST are entirely reported in Appendix C.1.

7.3 Test case: wave-current interaction and

shoaling effects on space-time extremes

7.3.1 Model set-up

The effects of wave-current interactions on space-time extremes could be
investigated thanks to SWAN-ST. We set-up a 500 km-long deep-waters 1-D
model with ∆x = 500 m spatial resolution. On the x = 0 boundary, the
model was forced by Pierson-Moskowitz distributed energy with a cos2 direc-
tional distribution function to represent short-crested sea states. Peak direc-
tion (counterclockwise from x axis) was 0◦, hence energy propagated mainly
along positive x direction. Spectral space was discretized using 180 directions
in the range [-90◦,90◦] and 39 frequencies geometrically distributed within
[0.05,2.00] Hz. Five different sea severities were tested, ranging from 0.5 m
to 8.0 m. To highlight the effects of wave-current interactions and shoaling,
simulations were performed in stationary mode without source terms, i.e.
no generation, wave-wave interaction, dissipation. The spectral parameters
obtained as outputs of SWAN-ST were used to implement Fedele’s model
(in its linear version, i.e. without second order corrections) and discuss the
dependence of ηST and ξST upon Vx. Space-time sizes of domain of analysis
were chosen in order to avoid scale effects, hence they were proportional to
the characteristics sizes of the sea state: T = 100T and S = LxLy, Lx and
Ly being the wavelength and wave crests in absence of current (Vx = 0 m/s)
or in deep waters flat bottom (λ = 0), respectively.
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7.3.2 Model validation

Prior to run the model in its space-time configuration, we checked its
capabilities in reproducing the desired phenomena: wave-current interactions
and shoaling. To this end we, ran an extremely narrow banded spectrum
along both frequency and direction to simulate a regular wave train.

Wave-current interaction

To validate wave-current interactions, we tested 4 configurations combin-
ing 2 boundary conditions with 2 current speeds: a narrow-banded spectrum
forced the model at the left boundary, while a current speed (+1 m/s or
-1 m/s) was imposed in the range [250,500] km. Results for the 4 tested
configurations (details in Table 7.1) are depicted in Figure 7.1, Figure 7.2,
Figure 7.3 and Figure 7.4, showing current speed Vx, significant wave height
Hs, spectral parameters (T , Lx, Ly, αxt, αxy, αyt) and space-time extremes
(ξST , ηST ).

Variations of significant wave height from still waters (Vx=0 m/s) to
the moving field (with Vx) were compared with theoretical predictions from
(2.45). SWAN-ST outputs, summarized in Table 7.1, are in good agreement
with theoretical predictions. We also verified qualitatively a shortening of
the mean wavelength Lx with opposing current and a lengthening with fol-
lowing current (Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4). What we
observed is consistent with the theory of wave-current interactions, hence we
considered the model validated.

Vx (m/s) Hs (m) H0 (m) T0 (s)

IN IN OUTNUM OUTTH IN OUTNUM OUTTH IN
1.00 2.00 1.87 1.70 1.41 1.32 1.20 7.0
-1.00 2.00 2.69 2.49 1.41 1.90 1.76 7.0
1.00 4.00 3.82 3.56 2.82 2.70 2.52 10.0
-1.00 4.00 4.87 4.62 2.82 3.44 3.27 10.0

Table 7.1: Validation of wave-current interaction on SWAN-ST. Inputs and outputs (nu-
merical (NUM), i.e. SWAN-ST, and theoretical (TH), i.e. according to (2.45). Relation
between spectral significant wave height Hs and regular wave height H0 is Hs =

√
2H0.

Shoaling

To validate shoaling, we tested the variations of significant wave height
occurring after a sloping bottom with slope λ=1/500, from -150.0 m to -1.0 m.
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Figure 7.1: Validation of wave-current interaction on SWAN-ST: Pierson-Moskowitz spec-
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Then, we compared results with theoretical prediction from (2.40). Results
are depicted in Figure 7.5 and summarized in Table 7.2: agreement between
numerical and theoretical outputs is excellent. Besides this, in Figure 7.5
we observed a shortening of wavelength Lx and a slight decrease of wave
height Hs followed by an increase of it, consistently with shoaling theory
(Holthuijsen, 2007).

λ (m/s) Hs (m) H0 (m) T0 (s)

IN IN OUTNUM OUTTH IN OUTNUM OUTTH IN
1/500 2.00 2.71 2.70 1.41 1.92 1.91 7.0

Table 7.2: Validation of shoaling on SWAN-ST. Inputs and outputs (numerical (NUM),
i.e. SWAN-ST, and theoretical (TH), i.e. according to (2.45). Relation between spectral
significant wave height Hs and regular wave height H0 is Hs =

√
2H0.

7.3.3 Results: wave-current interaction

For wave-current interaction tests, the following sea severities (i.e. Hs)
were accounted for: 0.50, 1.00, 2.00, 4.00, 8.00 m. Different current fields
were imposed in the range [250,500] km, changing Vx component of the ve-
locity vector V=(Vx,0) within [-1,+1] m/s, which is a reasonable range for
sea current speeds. Tested speeds were: -1.00, -0.50, -0.40, -0.35, -0.30, -0.25,
-0.20, -0.10, +0.25, +0.50, +1.00 m/s. Here, negative speed means opposing
current, while positive means following. Detailed results for each velocity
Vx are shown for Hs = 1.00 m only (from Figure 7.6 to Figure 7.16). In
the followings (from Figure 7.17 to Figure 7.31), results accounting for every
velocity we tested are summarized by 3 Figures for each considered sea sever-
ity: the first one deals with spectral parameters and space-time extremes at
different Vx, the second and the third one depict directional spectrum mod-
ifications due to current speed. Spectral modifications are represented by
bandwidth parameter ν and directional spreading δ.
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(dashed); αii panel: αxt (dashed-crossed), αyt (dotted) and αxy (solid); ξ panel: ξST
(solid) and ξT (dashed); η panel: ηST (solid) and ηT (dashed).
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Figure 7.11: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −0.25 m/s. Li panel: wavelength (solid) and wave crest
(dashed); αii panel: αxt (dashed-crossed), αyt (dotted) and αxy (solid); ξ panel: ξST
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Figure 7.12: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −0.30 m/s. Li panel: wavelength (solid) and wave crest
(dashed); αii panel: αxt (dashed-crossed), αyt (dotted) and αxy (solid); ξ panel: ξST
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Figure 7.13: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −0.35 m/s. Li panel: wavelength (solid) and wave crest
(dashed); αii panel: αxt (dashed-crossed), αyt (dotted) and αxy (solid); ξ panel: ξST
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Figure 7.14: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −0.40 m/s. Li panel: wavelength (solid) and wave crest
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Figure 7.15: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −0.50 m/s. Li panel: wavelength (solid) and wave crest
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Figure 7.16: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m, Vx = −1.00 m/s. Li panel: wavelength (solid) and wave crest
(dashed); αii panel: αxt (dashed-crossed), αyt (dotted) and αxy (solid); ξ panel: ξST
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Figure 7.17: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=0.5 m. Li panel: wavelength (dashed-dotted) and wave crest (dashed-
crossed); αii panel: αxt (dashed-crossed), αyt (dashed-triangled) and αxy (dashed-dotted);
ξ panel: ξST (solid) and ξT (dashed); η panel: ηST (solid) and ηT (dashed).

150



f 
(H

z
)

 

 

0

0.5

1

S
(f

) 
(m

2
/

H
z

)

0

0.05

0

0.5

1

ν
D

ir
 (

°)

 

 

−50

0

50

D
(θ

) 
(r

a
d

−
1
)

0

0.02

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

20

30

40

δ
 (

°)

V
x
 (m/s)

Figure 7.18: Wave-current interactions effect on directional spectra and spectral shape
parameters: Pierson-Moskowitz spectrum with Hs=0.5 m.
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Figure 7.19: Wave-current interactions effect on spectral shape parameters: Pierson-
Moskowitz spectrum with Hs=0.5 m.
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Figure 7.20: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=1.0 m. Li panel: wavelength (dashed-dotted) and wave crest (dashed-
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Figure 7.21: Wave-current interactions effect on directional spectra and spectral shape
parameters: Pierson-Moskowitz spectrum with Hs=1.0 m.
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Figure 7.22: Wave-current interactions effect on spectral shape parameters: Pierson-
Moskowitz spectrum with Hs=1.0 m.
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Figure 7.23: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=2.0 m. Li panel: wavelength (dashed-dotted) and wave crest (dashed-
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Figure 7.24: Wave-current interactions effect on directional spectra and spectral shape
parameters: Pierson-Moskowitz spectrum with Hs=2.0 m.

15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

δ (°)

ν

 

 

V
x
 (

m
/

s)

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 7.25: Wave-current interactions effect on spectral shape parameters: Pierson-
Moskowitz spectrum with Hs=2.0 m.
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Figure 7.26: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=4.0 m. Li panel: wavelength (dashed-dotted) and wave crest (dashed-
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Figure 7.27: Wave-current interactions effect on directional spectra and spectral shape
parameters: Pierson-Moskowitz spectrum with Hs=4.0 m.
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Figure 7.28: Wave-current interactions effect on spectral shape parameters: Pierson-
Moskowitz spectrum with Hs=4.0 m.
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Figure 7.29: Wave-current interactions effect on space-time extremes: Pierson-Moskowitz
spectrum with Hs=8.0 m. Li panel: wavelength (dashed-dotted) and wave crest (dashed-
crossed); αii panel: αxt (dashed-crossed), αyt (dashed-triangled) and αxy (dashed-dotted);
ξ panel: ξST (solid) and ξT (dashed); η panel: ηST (solid) and ηT (dashed).
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Figure 7.30: Wave-current interactions effect on directional spectra and spectral shape
parameters: Pierson-Moskowitz spectrum with Hs=8.0 m.
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Figure 7.31: Wave-current interactions effect on spectral shape parameters: Pierson-
Moskowitz spectrum with Hs=8.0 m.
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Figure 7.32: Wave-current interactions effect on space-time extremes ηST .

Finally, results for all the sea severities and velocities we tested are sum-
marized in Figures from Figure 7.32 to Figure 7.34. Figure 7.32 shows that
ηST grew higher in presence of opposing (i.e. negative) currents. All the sea
severities tested exhibited the same behavior, that is however enhanced for
the highest Hs. On the contrary, a following (i.e. positive) current reduced
ηST . What described is consistent with the mechanics of wave-current inter-
actions (e.g., see Holthuijsen (2007)). It is worthwhile to notice that all the
experimental curves of Figure. 7.32 have a singularity at approximately -0.3
m/s. To interpret this fact, we normalized space-time extremes on sea sever-
ity Hs, looking at ξST , which is depicted in Figure 7.33. Indeed, we observed
more clearly singularities between -0.25 and -0.35 m/s. Here, ξST exhibited
an absolute maximum and after this it sharply decayed. This behavior in
presence of opposing currents was almost certainly due to the blocking effect
at the highest frequencies of the spectrum. In fact, the highest frequency
waves modeled, i.e. 2 Hz, have blocking speed at -0.2 m/s, meaning that for
negative values larger than this the tail of the spectrum began to experience
loss of energy due to the impossibility of the highest frequencies of propa-
gating against current. However, further investigations are planned to better
interpret results in proximity of blocking speed.

160



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

1.15

1.2

1.25

V
x
 (m/s)

ξ
S
T
(-
)

 

 

PM05m

PM1m

PM2m

PM4m

PM8m

Figure 7.33: Wave-current interactions effect on space-time extremes ξST .
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Figure 7.34: Wave-current interactions effect on space-time extremes ξST . Zoom on the
discontinuity zone.
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7.3.4 Results: shoaling

For shoaling effect tests, a single sea severity was tested, i.e. Hs =2.00 m
(Pierson-Moskowitz spectrum). Three different bottom slopes were imposed:
λ = 1/1000, λ = 1/500 and λ = 1/100. Depth difference, from -150.0 m to -
1.0 m was the same of the three tests. We had no source terms in wave action
density conservation equation, but for 1/500 test we tried to activate depth-
induced breaking and bottom friction alternatively and simultaneously. De-
tailed results are shown in Figures, from Figure 7.35 to Figure 7.36. Here,
we observed that the effect induced on space-time extremes ηST by a sloping
bottom, whichever it is, is consistent with the behavior of wave height Hs.
Indeed, after an initial decrease, ηST increased. However, ηST increase never
came with a ξST increase. Besides this, the increase was always localized very
close to the coast (here represented by -1.0 m depth), where depth-induced
breaking was likely to occur. In fact, when the depth-induced breaking was
activated (Figure 7.37), we did not observed any increase in ηST . Bottom
friction caused the same effect but due to slightly different reasons. In fact,
while ηST did not increase, ξST increased because wave crest  Ly significantly
dropped and so the number of waves significantly increased. When both
processes were activated, they combined but bottom friction effect seemed
to prevail.
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Figure 7.35: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/1000. Li panel: wavelength (solid) and wave crest (dashed); αii panel:
αxt (dashed), αyt (dashed-dotted) and αxy (solid); ξ panel: ξST (solid) and ξT (dashed);
η panel: ηST (solid) and ηT (dashed).
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Figure 7.36: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/500. Li panel: wavelength (solid) and wave crest (dashed); αii panel:
αxt (dashed), αyt (dashed-dotted) and αxy (solid); ξ panel: ξST (solid) and ξT (dashed);
η panel: ηST (solid) and ηT (dashed).
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Figure 7.37: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/500, depth-induced breaking activated. Li panel: wavelength (solid)
and wave crest (dashed); αii panel: αxt (dashed), αyt (dashed-dotted) and αxy (solid); ξ
panel: ξST (solid) and ξT (dashed); η panel: ηST (solid) and ηT (dashed).
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Figure 7.38: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/500, bottom friction activated. Li panel: wavelength (solid) and wave
crest (dashed); αii panel: αxt (dashed), αyt (dashed-dotted) and αxy (solid); ξ panel: ξST
(solid) and ξT (dashed); η panel: ηST (solid) and ηT (dashed).
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Figure 7.39: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/500, depth-induced breaking and bottom friction activated. Li panel:
wavelength (solid) and wave crest (dashed); αii panel: αxt (dashed), αyt (dashed-dotted)
and αxy (solid); ξ panel: ξST (solid) and ξT (dashed); η panel: ηST (solid) and ηT
(dashed).
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Figure 7.40: Shoaling effect on space-time extremes: Pierson-Moskowitz spectrum with
Hs=2.0 m, λ = 1/100. Li panel: wavelength (solid) and wave crest (dashed); αii panel:
αxt (dashed), αyt (dashed-dotted) and αxy (solid); ξ panel: ξST (solid) and ξT (dashed);
η panel: ηST (solid) and ηT (dashed).
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7.4 Test case: Mediterranean Sea states

In order to test the capability of SWAN-ST in predicting space-time ex-
tremes on complex realistic conditions we set up a Mediterranean Sea model.
We benefitted of high-resolution wind fields to hindcast 3 years (2008-2010)
of Mediterranean sea states. Fedele’s model (in its linear version, i.e. with-
out second-order corrections) was then applied thanks to spectral parameters
computed by SWAN-ST at each computational grid node and time step. We
chose it with respect to Piterbarg’s theorem because we focused on the model
that provided the more accurate predictions, according to results of Chapter
4. At this step, we performed the space-time extremes analysis by considering
fixed space and time domains. This kind of analysis could be employed for
example for operational forecasts aimed at defining safe routes for navigation.

7.4.1 Model set-up

The Mediterranean Sea model had a grid resolution of approximately 6x6
km2 and a temporal resolution of 1200 s. To set-up the domain, depicted in
Fig. 7.41, ETOPO-1 (http://www.ngdc.noaa.gov/mgg/global/) and GSHHS-
H (http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html) databases were
used. The model was forced by COSMO-I7 (Steppeler et al., 2003) high
resolution hourly wind fields (10 m above sea level). For this reason, Mediter-
ranean Sea region was cropped to the entail COSMO-I7 modeled area (Fig. 7.41).
Spectral space was discretized using 36 direction (within [0◦,360◦]) and 39
frequencies (within [0.05,2.00] Hz). The model was run in third genera-
tion mode, using a saturation-based whitecapping formulation with wind
input from Yan (1987). Wave-wave interaction was modeled through DIA
(8 fully explicit computations). Friction was modeled according to Madsen
formulation (Madsen et al., 1988) and depth-induced breaking was assumed
with default parameters. Numerical scheme employed was Backward Space-
Backward Time (BSBT). Outputs were provided by SWAN-ST every hour
and with computational grid resolution of 6 km.

7.4.2 Space-time extreme analysis of sea states

We implemented the model of Fedele on the spectral parameters calcu-
lated by SWAN-ST (mean wave period T , mean wavelength components Lx
and Ly, space-space and space-time correlation parameters αxt, αyt, αxy).
Time domain D was fixed to 1 hour. Space domain A = XY was chosen
in order to reproduce the area covered by a container ship, e.g. MAERSK
Eleonora. Hence, it was fixed to 24000 m2. We limited Fedele’s model es-
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timates by using the breaking criterion (3.35). Hence, maximum allowed
steepness was ε = 0.44, according to Stokes breaking limit. At this step,
extremes were calculated without applying non-linear correction, i.e. under
a linear wave model assumption.

7.4.3 Validation

Prior to analyze results, we compared space-time extremes obtained from
spectra at ”Acqua Alta” tower and R/V ”Urania” locations during exper-
iments we used to validate Piterbarg’s and Fedele’s stochastic models (see
Chapter 4). To this aim, SWAN-ST simulations of the first 6 months of 2013
were carried out with the same described model set-up. In this validation
step, we accounted also for Piterbarg’s theorem predictions, though Mediter-
ranean Sea results were obtained only from Fedele’s method application.

”Acqua Alta” tower experiment

In Figure 7.42, spectra computed by SWAN-ST and by EMEP technique
from WASS data are compared. We observed an underestimation of wave
variance by SWAN-ST, which can be ascribed to an underestimation of the
input wind by COSMO-I7 model. Therefore, results of Piterbarg’s (Fig-
ure 7.43-a) and Fedele’s model (Figure 7.43-a) computed from SWAN-ST
spectra underestimated the observations in terms of ηST . But if the space-
time extremes are normalized on significant wave height (i.e. ξST ), results
resembled EMEP results with an excellent accuracy (Figure 7.43-b and Fig-
ure 7.44-b). In order to calculate ηST , we scaled SWAN-ST spectrum (Fig-
ure 7.42-a) with respect to EMEP spectrum (Figure 7.42-b) to recover the
same significant wave height. To this end, we multiplied SWAN-ST spec-
trum by the zero-th moments ratio. Stochastic models results in terms of
ηST resembled very well the EMEP predictions, in particular for Fedele’s
model (Figure 7.45). This means that, apart from a total variance underes-
timation, spectra computed by SWAN-ST can be used to predict spec-time
extremes with an accuracy comparable to that obtained from WASS mea-
surements (Table 4.3).
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Figure 7.42: Directional spectrum S(σ, θ) at ”Acqua Alta” tower, polar (σ, θ) coordi-
nates. (a) S(σ, θ) from SWAN-ST runs. (b) S(σ, θ) from WASS measurements (EMEP).
Directions are propagation directions.
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Figure 7.43: Piterbarg’s model prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. (a) Non-normalized extremes ηST . (b)
Normalized extremes ξST .
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Figure 7.44: Fedele’s model prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. (a) Non-normalized extremes ηST . (b)
Normalized extremes ξST .
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Figure 7.45: Stochastic models prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. SWAN-ST spectrum scaled by the ratio
of zero-th moments rm0. (a) Piterbarg’s model. (b) Fedele’s model.
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R/V ”Urania” experiment

In Figure 7.46, spectra computed by SWAN-ST and by EMEP technique
from WASS data are compared. As for ”Acqua Alta” experiment, we ob-
served an underestimation of wave variance by SWAN-ST, which can be
again ascribed to an underestimation of the input wind by COSMO-I7 model.
Moreover, we noticed the presence of additional energy at a direction specu-
lar with respect to the peak. Therefore, results of Piterbarg’s (Figure 7.47-a)
and Fedele’s model (Figure 7.47-a) computed from SWAN-ST spectra un-
derestimated the observations in terms of ηST . If the space-time extremes
are normalized on significant wave height (i.e. ξST ), results poorly resembled
EMEP results (Figure 7.47-b and Figure 7.48-b). In fact, they both overes-
timated reference lines, probably due to the additional energy observed in
SWAN-ST spectra. In order to calculate ηST , we scaled SWAN-ST spec-
trum (Figure 7.46-a) with respect to EMEP spectrum (Figure 7.46-b) to
recover the same significant wave height. To this end, we multiplied SWAN-
ST spectrum by the zero-th moments ratio. Stochastic models results in
terms of ηST overestimated the EMEP predictions, in particular for Fedele’s
model (Figure 7.49). These results force us to do additional investigations to
strengthen the reliability of SWAN-ST results. Nevertheless, we recall that
R/V ”Urania” experiment were gathered and analyzed with some warnings
(see Chapter 4), hence we plan to perform additional experiments.
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Figure 7.46: Directional spectrum S(σ, θ) at R/V”Urania” position, polar (σ, θ) coordi-
nates. (a) S(σ, θ) from SWAN-ST runs. (b) S(σ, θ) from WASS measurements (EMEP).
Directions are propagation directions.
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Figure 7.47: Piterbarg’s model prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. (a) Non-normalized extremes ηST . (b)
Normalized extremes ξST .
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Figure 7.48: Fedele’s model prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. (a) Non-normalized extremes ηST . (b)
Normalized extremes ξST .
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Figure 7.49: Stochastic models prediction (red crosses: SWAN-ST runs; black asterisks:
EMEP) versus WASS observations (gray solid line): expected maximum over space-time
as a function of area size. Observations are provided together with error bands (grey): the
wider band (brighter gray) includes WASS error. SWAN-ST spectrum scaled by the ratio
of zero-th moments rm0. (a) Piterbarg’s model. (b) Fedele’s model.
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7.4.4 Results

Space-time extremes ξST and time extremes ξT calculated from Fedele’s
model after SWAN-ST results are depicted in the following Figures. We syn-
thesized results by calculating the temporal mean (< · >) and the absolute
maximum (max(·)) of each quantity at every grid node. Hence, mean and
maximum ξT are plotted in Figure 7.50 and Figure 7.51, respectively, while
mean and maximum ξST are plotted in Figure 7.52 and Figure 7.53, respec-
tively. To highlight the contribution of space domain in sea surface extremes
prediction, the mean and the maximum ratio r = ξST/ξT over the 3 hind-
casted years also are depicted in Figure 7.54 and Figure 7.55. In other words,
these two Figures emphasize the mean and maximum underestimation that
would have followed over 24000 m2 areas if a time domain approach was used
instead of a space-time approach.
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For the 1 hour simulated sea states, time extremes were within 1.0 and
0.965 times the significant wave height (Figure 7.50). In the linear context
assumed, this would lead to an average maximum wave height estimate of
Hmax ∼ 1.93÷2.00Hs, which is consistent with conventional predictions from
the standard wave model, i.e. Hmax ∼ 1.8÷2.2Hs. Highest ξST were localized
on shallower waters. Therefore, Adriatic Sea was featured by the highest
values, especially in the northern part of the basin. This can be ascribed to
the fact that in these regions the sea severity was lower than in deeper waters
sea, hence mean wave periods T were shorter. Thus, according to (3.15) a
larger average number of waves M1 was expected within a fixed duration
D, causing higher predicted ξT (3.20). Maximum time extremes were only
slightly higher (Figure 7.51), reaching up to 1.1Hs, i.e. Hmax ∼ 2.2Hs.
Spatial distribution of maxima was more scattered than the distribution of
mean values.

Space-time extremes exhibited similar mean and maximum patterns (Fig-
ure 7.52 and Figure 7.53, respectively). The reason for mean space-time
extremes pattern is partially the same adduced to motivate time extremes
mean pattern. As explained for M1, according to (3.13) and (3.14), in lower
sea severity regions also M2 and M3 were lower than in deeper waters re-
gions. Hence, after (3.18), lower space-time maxima had to be expected,
being space domain fixed. Thus, Adriatic Sea exhibited the highest values
(up to 1.6 times the significant wave height) also for space-time extremes.
In the context of a linear wave model, this would lead to an average maxi-
mum wave height estimate of Hmax ∼ 3.00 ÷ 3.30Hs. In addition, we could
argue that western Mediterranean Sea exhibited the lowest average values of
ξST because of the persistence of long-crested sea states, which developed in
Mistral conditions (north-westerly wind).

Ratios r substantially reproduced the pattern of ξT and ξST for mean
pattern. They are included within 1.55 and 1.60 on average and within 1.60
and 1.65 at maximum, pointing out that a considerable underestimation of
wave extremes would be done if only time domain approach was adopted.

7.5 Conclusions

In this Chapter, we applied a numerical approach to solve the problem of
space-time extreme prediction. To this end, we developed a modified version
of SWAN model, i.e. SWAN-ST. Thanks to this model, we widened the
possibility of gathering directional spectra and thus performing space-time
extremes analysis. In fact, we could calculate spectral parameters needed
by stochastic models of Piterbarg and Fedele at each computational step (in
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space and time) of an arbitrary domain.
As a first test case, we applied SWAN-ST on a simplified domain to in-

vestigate the dependence of ηST from ambient current speed and shoaling.
We found that following currents decreased ηST , while opposing currents
increased ηST . Apart from these expected results, we observed a global max-
imum of ξST at approximately -0.35 m/s, for every sea severity tested. We
ascribed this behavior to the blocking effect higher frequency of the spectrum
experienced for opposing current speeds stronger than -0.20 m/s. Dealing
with shoaling, we observed an increase of ηST while approaching the shore-
line, which is however localized in areas where depth-induced breaking could
occur. In fact, depth-induced breaking and bottom friction reduced the ηST
increase. Besides these results, consistent with the physics of wave prop-
agation, we provided a tool to get quantitative estimates of wave-current
interaction and shoaling effects on ηST .

As a second test case, we applied SWAN-ST on a complex domain to
test its capability in predicting space-time extremes in realistic conditions.
Hence, we hindcasted 3 years (2008-2010) of Mediterranean Sea states by
forcing a 6x6 km2 model with high-resolution wind fields. Prior to this, we
verified the performance of SWAN-ST in prediction of ηST by comparing
model-based results with measurements-based results of ”Acqua Alta” and
”Urania” experiments. We found that ξST were included within 1.5 and 1.6
times the significant wave height and 1.55 to 1.6 times the time extreme ξT .
Spatially, mean and maximum space-time and time extremes seemed to be
correlated to bottom topography, being higher in the shallowest parts of the
basin and lower in the deepest ones. In general, we observed low spatial
and temporal variabilities of mean ξST and ξST , meaning their estimates are
rather robust. Although these results were obtained only in a fixed space-
time domain condition, they reveal how numerical models forecasting could
benefit from space-time extremes stochastic models.
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Appendix A
Appendix to Chapter 5

A.1 Quality control

To avoid that some bugs in the measuring system and other unknown
external sources of error could affect the data, in particular the maxima, a
quality control was applied to the recorded sea surface elevation time series
prior to the wave extremes analyses. Drawing upon the work of Casas-Prat
and Holthuijsen (2010), we defined 4 criteria to check the quality of the data:

• Completeness : time series shorter than 30 minutes, i.e. 2304 data at
1.28 Hz, were discarded.

• Bumping : we observed unusual low frequency-high amplitude oscilla-
tions of the sea surface elevation (Figure A.1). Casas-Prat and Holthui-
jsen (2010) described them as bumpings caused by the hitting of ex-
ternal objects against the buoy, e.g. a ship. We observed them both
in the time and in the frequency domain. As done by the cited au-
thors we discarded the sea states when the omnidirectional spectrum
S(σ) showed energy above a certain threshold Slim in the lower fre-
quency components. We considered the same threshold of the paper,
Slim = 0.004 m2/Hz:

S(σi) ≤ Slim i = 1, 2

• Aliasing : to avoid aliasing we discarded sea states when the peak fre-
quency fp was too close to the Nyquist frequency σN = 2πfs/2 = 2 π
0.64 = 4.02 rad/s.

σp ≤
σN
3
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Figure A.1: Bumping observed in a time series.

Coefficient 1/3 was chosen in accordance to Casas-Prat and Holthuijsen
(2010).

• Peak period : sometimes peak period Tp inconsistent with wind gravity
waves in the Mediterranean Sea were observed, hence we discarded sea
states showing peak period of the spectrum S(σ) greater than 15 s

Tp ≤ 15s (A.1)

A.2 Spectral analysis

Analysis of each sea state in the frequency domain was done using Welch’s
method with a 50% overlapping and Hanning windowing (Bendat and Piersol,
2011). Spectral resolution is 0.0028 Hz. After the spectrum S(σ) has been
so obtained, exploiting its moments mi =

∫∞
0
σiS(σ)dσ, we calculated

• spectral significant wave height Hm0

Hm0 = 4
√
m0 (A.2)

• peak period Tp = 2π/σp, σp being the peak frequency;

• spectral bandwidth parameter of Longuet-Higgins (1975) (Figure A.2-
a)

ν =

(
m0m2

m2
1

− 1

)
(A.3)

• integral steepness of the sea state (Fedele and Tayfun, 2009) (Fig-
ure A.2-b)

µ = µnb(1− ν + ν2)

µnb =
√
m0(m1/m0)2/g

(A.4)
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where µnb is the integral steepness of a sea state represented by a
narrow-banded frequency spectrum.
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Figure A.2: (a) Spectral bandwidth parameter of the sea states. (b) Integral steepness of
the sea states. x-labels are measured sea states.

Spectral bandwidth parameter ν fill the range of values between 0.3 and
0.7 (Figure A.2-a). Integral steepness parameter µ is included between 0.005
and 0.055 (Figure A.2-b). Steepness we calculated was quite low if compared
to typical values occurring during storms, i.e. approximately 0.1 (Casas-Prat
and Holthuijsen, 2010). The reasons for this could be the linearization and
sampling frequency effects described in Chapter 5. Both of them act more
on the wave heights than on the periods, thus reducing the steepness.

Autocovariance function ψ(T ) was calculated from the spectrum S(σ).
The first minimum of ψ(T ), i.e. ψ∗, (Figure A.3) was stored to be used
for Boccotti probability distribution (Tayfun and Fedele, 2007). Typical
values for wind sea states are −0.75 ≤ ψ∗ ≤ −0.65, while −0.60 ≤ ψ∗

deal with wind waves superimposed on swells (Boccotti, 2000). We observed
a huge number of sea states outside wind sea range, i.e. −0.65 ≤ ψ∗ ≤
−0.15 (Figure A.3). Plotting ψ∗ versus the spectral significant wave height
(Figure A.3-a) we saw that as Hm0 increases, the values seemed to converge,
though dispersively, to a narrower range of values. Plotting ψ∗ versus the
spectral bandwidth parameter ν (Figure A.3-b), we observed a trend such
that the values indicated by Boccotti seemed associated to the more narrow
banded spectra while the high values of ψ∗, i.e. until -0.1, seemed associated
with wider spectra. This is reasonable since |ψ∗| is itself a narrow bandedness
parameter, approaching 1 when the process is narrow-banded and 0 when it
is wide-banded.
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Figure A.3: First minimum ψ∗ of the autocovariance function ψ(T ) versus spectral signif-
icant wave height Hm0 (a) and versus spectral bandwidth parameter ν (b). Red rectangle
highlights the typical region for wind waves, i.e −0.75 ≤ ψ∗ ≤ −0.65. Sea states with
−0.60 ≤ ψ∗ are probably dealing with wind waves superimposed on swells.

We can conclude that the data set was composed of both narrow-banded
and wide-banded spectrum sea states; wide-banded spectra could either:

• be caused by errors in the measurements. The values of ψ∗ outside
the range indicated by Boccotti are much more frequent for low height
sea states, i.e. the ones for which the error could be comparable to the
measurement. E.g. for Hm0 > 1.5 m, −0.55 ≤ ψ∗ ≤ −0.75 (Figure A.3-
a);

• indicate the presence of swell and/or bimodal sea states, as pointed out
by Sánchez-Arcilla et al. (2008).
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Appendix B
Appendix to Chapter 6

B.1 MATLAB script to compute Γ(a, z)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % gammainc fb (a , z )
4 %
5 % MATLAB func t i on to c a l c u l a t e upper incomplete gamma funct ion , us ing
6 % l i m i t i n g func t i on X ( Abramowitz and Stegun , 1972) , when a tends to 0 .
7 %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 f unc t i on X = gammainc fb (a , z ) ;
11 k = 1 : 10 ;
12 % l i m i t i n g func t i on to the upper incomplete gamma f . as a tends to 0
13 X = − 0.5772− l og ( z)−sum((−1) .ˆ k .∗ z . ˆ k . / ( k .∗ f a c t o r i a l ( k ) ) ) ;

B.2 Alternative spectral parameters formu-

lations

In this Chapter, alternative formulations for the spectral parameters of
directional spectra presented in Chapter 2 (i.e. Pierson-Moskowitz or JON-
SWAP spectra with cos2 function) are provided. For the Pierson-Moskowitz
spectrum, the following formulae express spectral parameters as a function of
either wind speed U or significant wave height Hs. For the JONSWAP spec-
trum, they highlight dependence of spectral parameters upon wind speed U
and fetch length F , simultaneously. A formulation for JONSWAP depending
on significant wave height has not been derived since there is not a relation-
ship between Hs and σm or (F,U) for fetch limited conditions. To conclude,
following equations complete the formulae provided in Chapter 6, which are
expressed as a function of modal frequency σm.

195



B.2.1 Pierson-Moskowitz and cos2 function

Wind speed U

The wind speed U dependent spectral parameters of Pierson-Moskowitz
and cos2 function directional spectrum can be obtained in a similar manner
as in Section 6.2.1, using (2.25) instead of (2.26). Alternatively, they can
be achieved from (6.13) through the universal relationship observed in fully
developed seas between modal frequency σm and wind speed U , i.e. σm =
0.87(g/U):

T = 0.518U

Lx =
0.859U2√

Γ(0, s)

Ly =
1.49U2√

Γ(0, s)

αxy = 0

αxt =
2.68√
Γ(0, s)

αyt = 0

(B.1)

Here, s = g4B
1.296·107U4 and Γ(0, s) is the upper incomplete Gamma function.

Significant wave height Hs

Spectral parameters of Pierson-Moskowitz and cos2 function directional
spectrum can be also expressed as a function of significant wave height Hs

by following procedure in Section 6.2.1 with (2.27) instead of (2.26). Al-
ternatively, the same result can be obtained by substituting into (B.1) the
universal relationship observed in fully developed seas between significant

196



wave height Hs and wind speed U , i.e. Hs = 0.21(U2/g):

T = 3.56
√
Hs

Lx =
40.6Hs√

Γ(0, s)

Ly =
70.3Hs√

Γ(0, s)

αxy = 0

αxt =
2.68√
Γ(0, s)

αyt = 0

(B.2)

where s = g2Q
1.296·107H2

s
.

B.2.2 JONSWAP and cos2 function

Dependence of spectral parameters of JONSWAP and cos2 directional
spectrum upon wind speed U and fetch length F can be more explicit by
using modal frequency formulation (2.31) of Lewis and Allos (1990) into
(6.21):

T =
0.38

(FU)−0.33

√
γ + 5.0

γ + 10.88

Lx =
0.26

(FU)−0.66

√
γ + 5.0

γ + 7.5Γ(0, s)− 1

Ly =
0.45

(FU)−0.66

√
γ + 5.0

γ + 7.5Γ(0, s)− 1

αxy = 0

αxt =
0.981(γ + 24.68)

√
γ + 10.88

√
γ + 7.5Γ(0, s)− 1

αyt = 0

(B.3)

where s = g4B
1.296·107U4 and Γ(0, s) is the upper incomplete Gamma function.

Note that according to Lewis and Allos (1990), also peak parameter γ de-
pends upon U and F . Nevertheless, often γ is fixed. Hence, herein it is not
expressed as a function of wind speed and fetch length but in any case, (2.31)
provides their relationship (Lewis and Allos, 1990).
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Appendix C
Appendix to Chapter 7

C.1 SWAN-ST specific subroutines

C.1.1 Spectral parameters computation: fboexm

1 !
2 subrout ine fboexm ( oqproc , bkc , mip , xc , yc , voqr , voq , ac2 , &
3 ac loc , spc s i g , spcd i r , kgrpnt , depxy , c r o s s )
4 !
5 !
6 ! Authors
7 !
8 ! 40FB: Francesco Barbar i o l
9 !

10 ! Updates
11 !
12 ! Purpose
13 !
14 ! Subrout ine f o r the space−time extreme a n a l y s i s in SWAN model
15 !
16 ! Method
17 !
18 ! The sb r t i s c a l l e d by SWOUTP, when output v a r i a b l e s are reques ted
19 ! and command
20 ! STEXTREMES i s read in the command f i l e . sw .
21 ! −−− Cal l FBSMOM, to c a l c u l a t e the s p e c t r a l moments
22 ! −−− Cal l FBSPAR, to c a l c u l a t e s p e c t r a l parameters
23 !
24 ! Modules used
25 !
26 use ocpcomm4
27 use swcomm1
28 use swcomm2
29 use swcomm3
30 use swcomm4
31 use outp data
32 !
33 i m p l i c i t none
34 !
35 ! number o f v a r i a b l e s to compute
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36 i n t ege r , parameter : : nmom = 13
37 !
38 ! Argument v a r i a b l e s
39 !
40 ! a c t i on dens i ty at one l o c a t i o n
41 r ea l , dimension (MDC,MSC) : : a c l o c
42 ! a c t i on dens i ty at one l o c a t i o n
43 r ea l , dimension (MDC,MSC,MCGRD) , i n t e n t ( in ) : : ac2
44 ! x−coord o f comp gr id po in t s
45 r ea l , dimension (MIP) , i n t e n t ( in ) : : xc
46 ! y−coord o f comp gr id po in t s
47 r ea l , dimension (MIP) , i n t e n t ( in ) : : yc
48 r ea l , dimension (MSC) , i n t e n t ( in ) : : s p c s i g !
49 r ea l , dimension (MDC, ∗ ) , i n t e n t ( in ) : : s p c d i r !
50 r ea l , dimension (MCGRD) , i n t e n t ( in ) : : depxy
51 i n t ege r , dimension (MXC,MYC) , i n t e n t ( in ) : : kgrpnt
52 l o g i c a l , dimension (4 , mip ) , i n t e n t ( in ) : : c r o s s
53 i n t ege r , i n t e n t ( in ) : : bkc
54 i n t ege r , i n t e n t ( in ) : : mip
55 l o g i c a l , dimension (∗ ) , i n t e n t ( in ) : : oqproc
56 i n t ege r , dimension (∗ ) : : voqr
57 r ea l , dimension (MIP, ∗ ) : : voq
58 !
59 ! Local v a r i a b l e s
60 !
61 ! number o f e n t r i e s in t h i s subrout ine
62 i n t ege r , save : : i e n t = 0
63 ! power o f the pqr−th moment , kx
64 i n t e g e r : : p
65 ! power o f the pqr−th moment , ky
66 i n t e g e r : : q
67 ! power o f the pqr−th moment , sigma
68 i n t e g e r : : r
69 ! counter on output po in t s
70 i n t e g e r : : ip
71 ! v ec to r conta in ing spec mom SWAN computes
72 i n t ege r , dimension (nmom) : : ivoum (nmom)
73 l o g i c a l : : e q r e a l
74 ! i f t rue value in po int i s undef ined 40 .86
75 l o g i c a l : : excpt
76 r e a l : : pqrm
77 r e a l : : e000
78 r e a l : : e011
79 r e a l : : e101
80 r e a l : : e110
81 r e a l : : e002
82 r e a l : : e020
83 r e a l : : e200
84 r e a l : : s tva r
85 r e a l : : dep loc
86 i n t e g e r : : i i
87 i n t e g e r : : i v type
88 i n t e g e r : : xp , yp
89 r ea l , dimension (MSC) : : wk
90 r ea l , a l l o c a t a b l e : : wkx ( : )
91 r ea l , a l l o c a t a b l e : : wky ( : )
92 !
93 ! S t ruc ture
94 !
95 ! De s c r ip t i on o f the pseudo code
96 !
97 ! Source t ex t
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98 !
99 data ivoum /72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84/

100

101 ! c a l l s t r a c e ( i ent , ’ fboexm ’ )
102 !
103 a l l o c a t e (wkx(mdc∗msc ) )
104 a l l o c a t e (wky(mdc∗msc ) )
105 !
106 ! loop over a l l output po in t s
107 !
108 do 800 ip = 1 , mip
109 deploc=voq ( ip , voqr ( 4 ) )
110 !
111 ! a s s i g n except ion value i f depth i s negat ive or po int i s ou t s id e g r id
112 !
113 i f ( dep loc . l e . 0 . ) goto 700
114 i f ( e q r e a l ( deploc , ovexcv ( 4 ) ) ) goto 700
115 i f ( optg . ne . 5 ) then
116 i f ( kreptx . eq . 0 ) then
117 ! non−r epea t ing g r id
118 i f ( xc ( ip ) . l t . −0.01) goto 700
119 i f ( xc ( ip ) . gt . r e a l (mxc−1)+0.01) goto 700
120 e n d i f
121 i f ( yc ( ip ) . l t . −0.01) goto 700
122 i f ( yc ( ip ) . gt . r e a l (myc−1)+0.01) goto 700
123 e n d i f
124 !
125 ! f i r s t the ac t i on dens i ty spectrum i s i n t e r p o l a t e d
126 !
127 i f ( optg . ne . 5 ) then
128 c a l l swoina ( xc ( ip ) , yc ( ip ) , ac2 , ac loc , kgrpnt , depxy , &
129 c r o s s (1 , ip ) , excpt )
130 e l s e
131 i f ( . not . lcompgrd ) then
132 i f ( . not . e q r e a l ( voq ( ip , 1 ) , ovexcv ( 1 ) ) ) xp=voq ( ip ,1)− x o f f s
133 i f ( . not . e q r e a l ( voq ( ip , 2 ) , ovexcv ( 2 ) ) ) yp=voq ( ip ,2)− y o f f s
134 c a l l SwanInterpolateAc ( ac loc , xp , yp , ac2 , excpt )
135 e l s e
136 ac l o c ( : , : ) = ac2 ( : , : , ip )
137 e n d i f
138 e n d i f
139 !
140 ! Ca l cu la t e s p e c t r a l moments
141 !
142 ! m000
143 !
144 i v type = 72
145 i f ( oqproc ( iv type ) ) then
146 p = 0
147 q = 0
148 r = 0
149 pqrm = 0 .
150 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
151 !
152 ! wr i t e s p e c t r a l moment to output vec to r
153 !
154 i f (pqrm . ne . 0 . ) then
155 voq ( ip , voqr ( iv type ) ) = pqrm
156 e l s e
157 voq ( ip , voqr ( iv type ) ) = 0 .
158 e n d i f
159 i f ( i t e s t . ge . 10 0 ) then
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160 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
161 222 format ( ’ FBOEXM: POINT ’ , i5 , 2x , a , 1x , e12 . 4 )
162 e n d i f
163 e n d i f
164 !
165 !
166 !
167 ! m101
168 !
169 i v type = 73
170 i f ( oqproc ( iv type ) ) then
171 p = 1
172 q = 0
173 r = 1
174 pqrm = 0 .
175 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
176 !
177 ! wr i t e s p e c t r a l moment to output vec to r
178 !
179 i f (pqrm . ne . 0 . ) then
180 voq ( ip , voqr ( iv type ) ) = pqrm
181 e l s e
182 voq ( ip , voqr ( iv type ) ) = 0 .
183 e n d i f
184 i f ( i t e s t . ge . 10 0 ) then
185 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
186 e n d i f
187 e n d i f
188 !
189 !
190 !
191 ! m011
192 !
193 i v type = 74
194 i f ( oqproc ( iv type ) ) then
195 p = 0
196 q = 1
197 r = 1
198 pqrm = 0 .
199 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
200 !
201 ! wr i t e s p e c t r a l moment to output vec to r
202 !
203 i f (pqrm . ne . 0 . ) then
204 voq ( ip , voqr ( iv type ) ) = pqrm
205 e l s e
206 voq ( ip , voqr ( iv type ) ) = 0 .
207 e n d i f
208 i f ( i t e s t . ge . 10 0 ) then
209 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
210 e n d i f
211 e n d i f
212 !
213 !
214 !
215 ! m110
216 !
217 i v type = 75
218 i f ( oqproc ( iv type ) ) then
219 p = 1
220 q = 1
221 r = 0
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222 pqrm = 0 .
223 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
224 !
225 ! wr i t e s p e c t r a l moment to output vec to r
226 !
227 i f (pqrm . ne . 0 . ) then
228 voq ( ip , voqr ( iv type ) ) = pqrm
229 e l s e
230 voq ( ip , voqr ( iv type ) ) = 0 .
231 e n d i f
232 i f ( i t e s t . ge . 10 0 ) then
233 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
234 e n d i f
235 e n d i f
236 !
237 !
238 !
239 ! m002
240 !
241 i v type = 76
242 i f ( oqproc ( iv type ) ) then
243 p = 0
244 q = 0
245 r = 2
246 pqrm = 0 .
247 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
248 !
249 ! wr i t e s p e c t r a l moment to output vec to r
250 !
251 i f (pqrm . ne . 0 . ) then
252 voq ( ip , voqr ( iv type ) ) = pqrm
253 e l s e
254 voq ( ip , voqr ( iv type ) ) = 0 .
255 e n d i f
256 i f ( i t e s t . ge . 10 0 ) then
257 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
258 e n d i f
259 e n d i f
260 !
261 !
262 !
263 ! m020
264 !
265 i v type = 77
266 i f ( oqproc ( iv type ) ) then
267 p = 0
268 q = 2
269 r = 0
270 pqrm = 0 .
271 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
272 !
273 ! wr i t e s p e c t r a l moment to output vec to r
274 !
275 i f (pqrm . ne . 0 . ) then
276 voq ( ip , voqr ( iv type ) ) = pqrm
277 e l s e
278 voq ( ip , voqr ( iv type ) ) = 0 .
279 e n d i f
280 i f ( i t e s t . ge . 10 0 ) then
281 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
282 e n d i f
283 e n d i f
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284 !
285 !
286 !
287 ! m200
288 !
289 i v type = 78
290 i f ( oqproc ( iv type ) ) then
291 p = 2
292 q = 0
293 r = 0
294 pqrm = 0 .
295 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
296 !
297 ! wr i t e s p e c t r a l moment to output vec to r
298 !
299 i f (pqrm . ne . 0 . ) then
300 voq ( ip , voqr ( iv type ) ) = pqrm
301 e l s e
302 voq ( ip , voqr ( iv type ) ) = 0 .
303 e n d i f
304 i f ( i t e s t . ge . 10 0 ) then
305 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
306 e n d i f
307 e n d i f
308 !
309 !
310 !
311 ! sttm
312 !
313 i v type = 79
314 i f ( oqproc ( iv type ) ) then
315 p = 0
316 q = 0
317 r = 0
318 e000 = 0 .
319 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e000 , wkx , wky)
320

321 p = 0
322 q = 0
323 r = 2
324 e002 = 0 .
325 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e002 , wkx , wky)
326

327 s tva r = 2∗ pi ∗ s q r t ( e000 / e002 )
328 !
329 ! wr i t e s p e c t r a l moment to output vec to r
330 !
331 i f ( s tva r . ne . 0 . ) then
332 voq ( ip , voqr ( iv type ) ) = s tva r
333 e l s e
334 voq ( ip , voqr ( iv type ) ) = 0 .
335 e n d i f
336 i f ( i t e s t . ge . 10 0 ) then
337 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
338 e n d i f
339 e n d i f
340 !
341 !
342 !
343 ! s t l x
344 !
345 i v type = 80
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346 i f ( oqproc ( iv type ) ) then
347 p = 0
348 q = 0
349 r = 0
350 e000 = 0 .
351 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e000 , wkx , wky)
352

353 p = 2
354 q = 0
355 r = 0
356 e200 = 0 .
357 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e200 , wkx , wky)
358

359 s tva r = 2∗ pi ∗ s q r t ( e000 / e200 )
360 !
361 ! wr i t e s p e c t r a l moment to output vec to r
362 !
363 i f ( s tva r . ne . 0 . ) then
364 voq ( ip , voqr ( iv type ) ) = s tva r
365 e l s e
366 voq ( ip , voqr ( iv type ) ) = 0 .
367 e n d i f
368 i f ( i t e s t . ge . 10 0 ) then
369 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
370 e n d i f
371 e n d i f
372 !
373 !
374 !
375 ! s t l y
376 !
377 i v type = 81
378 i f ( oqproc ( iv type ) ) then
379 p = 0
380 q = 0
381 r = 0
382 e000 = 0 .
383 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e000 , wkx , wky)
384

385 p = 0
386 q = 2
387 r = 0
388 e020 = 0 .
389 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e020 , wkx , wky)
390

391 s tva r = 2∗ pi ∗ s q r t ( e000 / e020 )
392 !
393 ! wr i t e s p e c t r a l moment to output vec to r
394 !
395 i f ( s tva r . ne . 0 . ) then
396 voq ( ip , voqr ( iv type ) ) = s tva r
397 e l s e
398 voq ( ip , voqr ( iv type ) ) = 0 .
399 e n d i f
400 i f ( i t e s t . ge . 10 0 ) then
401 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
402 e n d i f
403 e n d i f
404 !
405 !
406 !
407 ! s taxy
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408 !
409 i v type = 82
410 i f ( oqproc ( iv type ) ) then
411 p = 1
412 q = 1
413 r = 0
414 e110 = 0 .
415 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e110 , wkx , wky)
416

417 p = 2
418 q = 0
419 r = 0
420 e200 = 0 .
421 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e200 , wkx , wky)
422

423 p = 0
424 q = 2
425 r = 0
426 e020 = 0 .
427 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e020 , wkx , wky)
428

429 s tva r = e110 / s q r t ( e200∗ e020 )
430 !
431 ! wr i t e s p e c t r a l moment to output vec to r
432 !
433 i f ( s tva r . ne . 0 . ) then
434 voq ( ip , voqr ( iv type ) ) = s tva r
435 e l s e
436 voq ( ip , voqr ( iv type ) ) = 0 .
437 e n d i f
438 i f ( i t e s t . ge . 10 0 ) then
439 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
440 e n d i f
441 e n d i f
442 !
443 !
444 !
445 ! s t ax t
446 !
447 i v type = 83
448 i f ( oqproc ( iv type ) ) then
449 p = 1
450 q = 0
451 r = 1
452 e101 = 0 .
453 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e101 , wkx , wky)
454

455 p = 2
456 q = 0
457 r = 0
458 e200 = 0 .
459 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e200 , wkx , wky)
460

461 p = 0
462 q = 0
463 r = 2
464 e002 = 0 .
465 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e002 , wkx , wky)
466

467 s tva r = e101 / s q r t ( e200∗ e002 )
468 !
469 ! wr i t e s p e c t r a l moment to output vec to r
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470 !
471 i f ( s tva r . ne . 0 . ) then
472 voq ( ip , voqr ( iv type ) ) = s tva r
473 e l s e
474 voq ( ip , voqr ( iv type ) ) = 0 .
475 e n d i f
476 i f ( i t e s t . ge . 10 0 ) then
477 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
478 e n d i f
479 e n d i f
480 !
481 !
482 !
483 ! s taxy
484 !
485 i v type = 84
486 i f ( oqproc ( iv type ) ) then
487 p = 0
488 q = 1
489 r = 1
490 e011 = 0 .
491 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e011 , wkx , wky)
492

493 p = 0
494 q = 2
495 r = 0
496 e020 = 0 .
497 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e020 , wkx , wky)
498

499 p = 0
500 q = 0
501 r = 2
502 e002 = 0 .
503 c a l l fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , e002 , wkx , wky)
504

505 s tva r = e011 / s q r t ( e020∗ e002 )
506 !
507 ! wr i t e s p e c t r a l moment to output vec to r
508 !
509 i f ( s tva r . ne . 0 . ) then
510 voq ( ip , voqr ( iv type ) ) = s tva r
511 e l s e
512 voq ( ip , voqr ( iv type ) ) = 0 .
513 e n d i f
514 i f ( i t e s t . ge . 10 0 ) then
515 wr i t e ( p r i n t f , 222) ip , ovsnam ( ivtype ) , voq ( ip , voqr ( iv type ) )
516 e n d i f
517 e n d i f
518 !
519 goto 800
520 !
521 !
522 ! po in t s on land : a s s i g n except ion value
523 !
524 700 do 730 i i = 1 , nmom
525 i v type = ivoum ( i i )
526 i f ( oqproc ( iv type ) ) then
527 voq ( ip , voqr ( iv type ) ) = ovexcv ( iv type )
528 i f ( ovsvty ( iv type ) . eq . 3 ) then
529 voq ( ip , voqr ( iv type )+1) = ovexcv ( iv type )
530 e n d i f
531 e n d i f
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532 730 enddo
533 800 enddo
534 !
535 d e a l l o c a t e (wkx)
536 d e a l l o c a t e (wky)
537 !
538 end subrout ine fboexm
539 !

C.1.2 Spectral moments computation: fbsmom

1 !
2 subrout ine fbsmom(p , q , r , ac loc , spcd i r , deploc , spc s i g , wk , pqrm , wkx , wky)
3 !
4 ! Authors
5 !
6 ! 40FB: Francesco Barbar i o l
7 !
8 ! Updates
9 !

10 ! Purpose
11 !
12 ! Subrout ine f o r the s p e c t r a l moments c a l c u l a t i o n
13 !
14 ! Method
15 !
16 ! The sb r t i s c a l l e d by FBOEXM.
17 ! −−− Cal l KSCIP1 , to c a l c u l a t e the wavenumbers from f r e q u e n c i e s
18 ! −−− Calcu la te kx and ky components o f wavenumbers , f o r each
19 ! d i r e c t i o n theta (SPCDIR)
20 ! −−− I n t e g r a t e the wave ac t i on d e n s i t i e s and c a l c u l a t e the s p e c t r a l
21 ! moments .
22 ! −−− Numerical i n t e g r a t i o n up to maximum frequency
23 ! −−− Analyt i c i n t e r g r a t i o n up to :
24 ! −−− i n f i n i t y , f o r moments up to 3 rd order
25 ! −−− q in f , f o r 4 th order moments (
26 ! g rav i ty−c a p i l l a r i t y l i m i t = 60 rad/ s )
27 !
28 !
29 ! Modules used
30 !
31 use swcomm1
32 use swcomm2
33 use swcomm3
34 use swcomm4
35 use outp data
36 use ocpcomm4
37 !
38 i m p l i c i t none
39 !
40 ! Argument v a r i a b l e s
41 !
42 ! SPCDIR: ( ∗ , 1 ) ; s p e c t r a l d i r e c t i o n s ( rad ians ) 30 .82
43 ! ( ∗ , 2 ) ; c o s i n e o f s p e c t r a l d i r e c t i o n s 30 .82
44 ! ( ∗ , 3 ) ; s i n e o f s p e c t r a l d i r e c t i o n s 30 .82
45 !
46 ! number o f e n t r i e s in t h i s subrout ine
47 i n t ege r , save : : i e n t = 0
48 ! power o f the pqr−th moment , kx
49 i n t ege r , i n t e n t ( in ) : : p
50 ! power o f the pqr−th moment , ky

208



51 i n t ege r , i n t e n t ( in ) : : q
52 ! power o f the pqr−th moment , sigma
53 i n t ege r , i n t e n t ( in ) : : r
54 ! depth at one l o c a t i o n
55 r ea l , i n t e n t ( in ) : : dep loc
56 ! a c t i on dens i ty at one l o c a t i o n
57 r ea l , dimension (MDC,MSC) , i n t e n t ( in ) : : a c l o c
58 r ea l , dimension (MSC) , i n t e n t ( in ) : : s p c s i g !
59 r ea l , dimension (MDC, ∗ ) , i n t e n t ( in ) : : s p c d i r !
60 ! pqr−th moment o f energy dens i ty spectrum
61 r ea l , i n t e n t ( out ) : : pqrm
62 r ea l , dimension (MDC,MSC) : : wkx
63 r ea l , dimension (MDC,MSC) : : wky
64 !
65 ! Local v a r i a b l e s
66 !
67 ! loop counter over d i r e c t i o n b ins
68 i n t e g e r : : id
69 ! loop counter over f requency b ins
70 i n t e g e r : : i s
71 ! power o f the f requency f o r c a l c u l a t i o n , r r = r + 2
72 i n t e g e r : : r r
73 i n t e g e r : : i s t a t
74 r e a l : : wkxp
75 r e a l : : wkyq
76 r e a l : : s i g r r
77 r e a l : : e p t a i l
78 r e a l : : p p t a i l
79 r e a l : : mom
80 r e a l : : kks
81 ! upper bound f o r i n t e g r a t i o n o f 4 th order moments in f r e q
82 r e a l : : q i n f
83 r ea l , dimension (∗ ) : : wk
84 r ea l , dimension (MSC) : : cg
85 r ea l , dimension (MSC) : : n
86 r ea l , dimension (MSC) : : nd
87 !
88 ! S t ruc ture
89 !
90 ! De s c r ip t i on o f the pseudo code
91 !
92 ! Source t ext
93 !
94 i f ( l t r a c e ) c a l l s t r a c e ( i ent , ’ fbsmom ’ )
95 !
96 ! Ca l cu la t e the wavenumbers from f r e q u e n c i e s : k sc ip1
97 !
98 c a l l k sc ip1 (msc , spc s i g , deploc , wk , cg , n , nd )
99 !

100 ! Ca l cu la t e kx and ky components o f wavenumbers ,
101 ! f o r each f r e q (SPCSIG) and d i r e c t i o n theta (SPCDIR)
102 !
103 wkx = 0 .
104 wky = 0 .
105 do id = 1 , mdc
106 do i s = 1 , msc
107 wkx( id , i s ) = wk( i s )∗ cos ( s p c d i r ( id , 1 ) )
108 wky( id , i s ) = wk( i s )∗ s i n ( s p c d i r ( id , 1 ) )
109 enddo
110 enddo
111 !
112 ! I n t e g r a t e the wave ac t i on d e n s i t i e s and c a l c u l a t e
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113 ! the s p e c t r a l moments .
114 !
115 mom = 0 .
116 wkxp = 0 .
117 wkyq = 0 .
118 r r = r + 2 .
119 ! i n t e g r a t i o n over [ 0 , i n f ] 40 .87
120 do id =1, mdc
121 do i s =1, msc
122 wkxp = wkx( id , i s )∗∗p
123 wkyq = wky( id , i s )∗∗q
124 s i g r r = s p c s i g ( i s )∗∗ r r
125 kks = wkxp∗wkyq∗ s i g r r
126 mom = mom + kks∗ a c l o c ( id , i s )∗ ddi r
127 enddo
128 enddo
129 mom = mom∗ f r i n t f
130 ! c o n t r i b u t i o n o f t a i l to t o t a l energy dens i ty
131 ! ( f r equency counter @ msc )
132 i f (msc . gt . 3) then
133 ! t a i l i n t e g r a l u n t i l i n f i n i t y i f p+q<2
134 i f (p+q . l t . 2) then
135 p p t a i l = pwta i l ( 1 ) − r − 2∗(p+q ) − 1
136 e p t a i l = 1 . / ( p p t a i l ∗ ( 1 . + p p t a i l ∗( f r i n t h −1 . ) ) )
137 do id =1, mdc
138 wkxp = wkx( id , msc )∗∗p
139 wkyq = wky( id , msc )∗∗q
140 s i g r r = s p c s i g (msc )∗∗ r r
141 kks = wkxp∗wkyq∗ s i g r r
142 mom = mom + e p t a i l ∗kks∗ a c l o c ( id , msc )∗ ddi r
143 enddo
144 ! t a i l i n t e g r a l u n t i l q i n f =60 rad/ s i f p+q>=2,
145 ! o the rw i s e i n t e g r a l d i v e r g e s ( grav i ty−c a p i l l a r i t y l i m i t )
146 e l s e
147 q i n f = 60
148 do id =1, mdc
149 wkxp = wkx( id , msc )∗∗p
150 wkyq = wky( id , msc )∗∗q
151 s i g r r = s p c s i g (msc )∗∗ r r
152 kks = wkxp∗wkyq∗ s i g r r
153 mom = mom + kks∗ ac l o c ( id , msc )∗ &
154 ( l og ( q i n f ) − l og ( s p c s i g (msc )∗ f r i n t h ) )∗ ddi r
155 enddo
156 e n d i f
157 e n d i f
158 pqrm = mom
159 !
160 end subrout ine fbsmom
161 !

C.1.3 Adaptation of existing subroutines

Output variables initialization: SWINIT

1 !
2 ! Spe c t r a l moments , s tep2 − 10 .10 . 2012 − FB
3 !
4 IVTYPE = 72
5 OVKEYW(IVTYPE) = ’M000 ’ ! 40 .FB
6 OVSNAM(IVTYPE) = ’m000 ’ ! 40 .FB
7 OVLNAM(IVTYPE) = ’000−th spec mom’
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8 OVUNIT(IVTYPE) = ’m2 ’
9 OVSVTY(IVTYPE) = 1

10 OVLLIM(IVTYPE) = 0 .
11 OVULIM(IVTYPE) = 1000 .
12 OVLEXP(IVTYPE) = 0 .
13 OVHEXP(IVTYPE) = 10 .
14 OVEXCV(IVTYPE) = −99.
15 !
16 IVTYPE = 73
17 OVKEYW(IVTYPE) = ’M101 ’ ! 40 .FB
18 OVSNAM(IVTYPE) = ’m101 ’ ! 40 .FB
19 OVLNAM(IVTYPE) = ’101−th spec mom’
20 OVUNIT(IVTYPE) = ’ rad2∗m/ s ’
21 OVSVTY(IVTYPE) = 1
22 OVLLIM(IVTYPE) = −1000.
23 OVULIM(IVTYPE) = 1000 .
24 OVLEXP(IVTYPE) = −0.1
25 OVHEXP(IVTYPE) = 0 .1
26 OVEXCV(IVTYPE) = −99.
27 !
28 IVTYPE = 74
29 OVKEYW(IVTYPE) = ’M011 ’ ! 40 .FB
30 OVSNAM(IVTYPE) = ’m011 ’ ! 40 .FB
31 OVLNAM(IVTYPE) = ’011−th spec mom’
32 OVUNIT(IVTYPE) = ’ rad2∗m/ s ’
33 OVSVTY(IVTYPE) = 1
34 OVLLIM(IVTYPE) = −1000.
35 OVULIM(IVTYPE) = 1000 .
36 OVLEXP(IVTYPE) = −0.1
37 OVHEXP(IVTYPE) = 0 .1
38 OVEXCV(IVTYPE) = −99.
39 !
40 IVTYPE = 75
41 OVKEYW(IVTYPE) = ’M110 ’ ! 40 .FB
42 OVSNAM(IVTYPE) = ’m110 ’ ! 40 .FB
43 OVLNAM(IVTYPE) = ’110−th spec mom’
44 OVUNIT(IVTYPE) = ’ rad2 ’
45 OVSVTY(IVTYPE) = 1
46 OVLLIM(IVTYPE) = −1000.
47 OVULIM(IVTYPE) = 1000 .
48 OVLEXP(IVTYPE) = −0.1
49 OVHEXP(IVTYPE) = 0 .1
50 OVEXCV(IVTYPE) = −99.
51 !
52 IVTYPE = 76
53 OVKEYW(IVTYPE) = ’M002 ’ ! 40 .FB
54 OVSNAM(IVTYPE) = ’m002 ’ ! 40 .FB
55 OVLNAM(IVTYPE) = ’002−th spec mom’
56 OVUNIT(IVTYPE) = ’ rad2∗m2/ s2 ’
57 OVSVTY(IVTYPE) = 1
58 OVLLIM(IVTYPE) = 0 .
59 OVULIM(IVTYPE) = 1000 .
60 OVLEXP(IVTYPE) = 0 .
61 OVHEXP(IVTYPE) = 10 .
62 OVEXCV(IVTYPE) = −99.
63 !
64 IVTYPE = 77
65 OVKEYW(IVTYPE) = ’M020 ’ ! 40 .FB
66 OVSNAM(IVTYPE) = ’m020 ’ ! 40 .FB
67 OVLNAM(IVTYPE) = ’020−th spec mom’
68 OVUNIT(IVTYPE) = ’ rad2 ’
69 OVSVTY(IVTYPE) = 1
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70 OVLLIM(IVTYPE) = 0 .
71 OVULIM(IVTYPE) = 1000 .
72 OVLEXP(IVTYPE) = 0 .
73 OVHEXP(IVTYPE) = 10 .
74 OVEXCV(IVTYPE) = −99.
75 !
76 IVTYPE = 78
77 OVKEYW(IVTYPE) = ’M200 ’ ! 40 .FB
78 OVSNAM(IVTYPE) = ’m200 ’ ! 40 .FB
79 OVLNAM(IVTYPE) = ’020−th spec mom’
80 OVUNIT(IVTYPE) = ’ rad2 ’
81 OVSVTY(IVTYPE) = 1
82 OVLLIM(IVTYPE) = 0 .
83 OVULIM(IVTYPE) = 1000 .
84 OVLEXP(IVTYPE) = 0 .
85 OVHEXP(IVTYPE) = 10 .
86 OVEXCV(IVTYPE) = −99.
87 !
88 ! Synthet i c s p e c t r a l q u a n t i t i e s , s tep3 − 18 .12 .2012 − FB
89 !
90 IVTYPE = 79
91 OVKEYW(IVTYPE) = ’STTM’ ! 40 .FB
92 OVSNAM(IVTYPE) = ’ sttm ’ ! 40 .FB
93 OVLNAM(IVTYPE) = ’ST−mean per ’
94 OVUNIT(IVTYPE) = UT
95 OVSVTY(IVTYPE) = 1
96 OVLLIM(IVTYPE) = 0 .
97 OVULIM(IVTYPE) = 1000 .
98 OVLEXP(IVTYPE) = 0 .
99 OVHEXP(IVTYPE) = 100 .

100 OVEXCV(IVTYPE) = −9.
101 !
102 IVTYPE = 80
103 OVKEYW(IVTYPE) = ’STLX ’ ! 40 .FB
104 OVSNAM(IVTYPE) = ’ s t l x ’ ! 40 .FB
105 OVLNAM(IVTYPE) = ’ST−mean Lx ’
106 OVUNIT(IVTYPE) = UL
107 OVSVTY(IVTYPE) = 1
108 OVLLIM(IVTYPE) = 0
109 OVULIM(IVTYPE) = 1000 .
110 OVLEXP(IVTYPE) = 0
111 OVHEXP(IVTYPE) = 200
112 OVEXCV(IVTYPE) = −9.
113 !
114 IVTYPE = 81
115 OVKEYW(IVTYPE) = ’STLY ’ ! 40 .FB
116 OVSNAM(IVTYPE) = ’ s t l y ’ ! 40 .FB
117 OVLNAM(IVTYPE) = ’ST−mean Ly ’
118 OVUNIT(IVTYPE) = UL
119 OVSVTY(IVTYPE) = 1
120 OVLLIM(IVTYPE) = 0
121 OVULIM(IVTYPE) = 1000 .
122 OVLEXP(IVTYPE) = 0
123 OVHEXP(IVTYPE) = 200
124 OVEXCV(IVTYPE) = −9.
125 !
126 IVTYPE = 82
127 OVKEYW(IVTYPE) = ’STAXY’ ! 40 .FB
128 OVSNAM(IVTYPE) = ’ staxy ’ ! 40 .FB
129 OVLNAM(IVTYPE) = ’ST−xy co r r ’
130 OVUNIT(IVTYPE) = ’ ’
131 OVSVTY(IVTYPE) = 1
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132 OVLLIM(IVTYPE) = −10.
133 OVULIM(IVTYPE) = 10 .
134 OVLEXP(IVTYPE) = −1.
135 OVHEXP(IVTYPE) = 1 .
136 OVEXCV(IVTYPE) = −9.
137 !
138 IVTYPE = 83
139 OVKEYW(IVTYPE) = ’STAXT’ ! 40 .FB
140 OVSNAM(IVTYPE) = ’ s tax t ’ ! 40 .FB
141 OVLNAM(IVTYPE) = ’ST−xt co r r ’
142 OVUNIT(IVTYPE) = ’ ’
143 OVSVTY(IVTYPE) = 1
144 OVLLIM(IVTYPE) = −10.
145 OVULIM(IVTYPE) = 10 .
146 OVLEXP(IVTYPE) = −1.
147 OVHEXP(IVTYPE) = 1 .
148 OVEXCV(IVTYPE) = −9.
149 !
150 IVTYPE = 84
151 OVKEYW(IVTYPE) = ’STAYT’ ! 40 .FB
152 OVSNAM(IVTYPE) = ’ s tay t ’ ! 40 .FB
153 OVLNAM(IVTYPE) = ’ST−yt co r r ’
154 OVUNIT(IVTYPE) = ’ ’
155 OVSVTY(IVTYPE) = 1
156 OVLLIM(IVTYPE) = −10.
157 OVULIM(IVTYPE) = 10 .
158 OVLEXP(IVTYPE) = −1.
159 OVHEXP(IVTYPE) = 1 .
160 OVEXCV(IVTYPE) = −9.
161 !

Output requests processing: SWOUTP

1 !
2 ! c a l l FBOEXM, to perform space−time extreme a n a l y s i s
3 !
4 CALL FBOEXM (OQPROC ,BKC ,
5 & MIP ,VOQ(1+2∗MIP) ,
6 & VOQ(1+3∗MIP) ,VOQR ,
7 & VOQ(1) ,AC2 ,
8 & ACLOC ,SPCSIG ,
9 & SPCDIR ,KGRPNT ,

10 & COMPDA(1 ,JDP2) ,CROSS )
11 !

Module with common variables: SWCOMM1

1 ! s y n t h e t i c s p e c t r a l parameters added ( 7 ) , 18.12.2012−FB
2 PARAMETER (NMOVAR = 84 , MOUTPA=50) ! 40FB
3 !
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